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Abstract

This thesis brings together three papers about the pricing of European and Bermu-
dan path-dependent options, and one paper about the stochastic modelling of a
futures price curve.

Paper one proposes a fast numerical method to compute the price of so called
cliquet options with global floor, when the underlying asset follows the Bachelier-
Samuelson model. These options often constitute the option part of many capital
guaranteed products, and are slow to price with existing Monte Carlo and PDE
methods.

Paper two deals with the pricing of swing options, when the logarithm of the
underlying asset follows an Ornstein-Uhlenbeck process driven by a jump diffusion.
Swing options are Bermudan or American options with multiple exercise rights, and
are common on the energy markets.

Paper three investigates the valuation of a natural gas storage facility, when gas
trading is permitted on the spot- and futures markets simultaneously. The main
idea is to interpret the storage as a swing option and then apply option pricing
methods.

Paper four proposes, estimates and evaluates two classes of parsimonious models
of the correlation matrix of natural gas futures returns. The individual futures prices
follow a Bachelier-Samuelson model with time-dependent volatility.
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Mats Kjaer Göteborg, April 26, 2006

iv



Contents

This thesis consists of a brief introduction and the following four appended papers:

Paper 1: M. Kjaer. Fast pricing of cliquet options with global floor. Submitted.

Paper 2: M. Kjaer. Pricing of swing options in a mean reverting model with jumps.
Submitted.

Paper 3: M. Kjaer and E.I. Ronn. Valuation of a natural gas storage facility.
Submitted.

Paper 4: M. Kjaer and E.I. Ronn. Modelling the correlation matrix of natural gas
futures price returns. Submitted.

Paper 1 is a revised and shorted version of my Licentiate of Engineering thesis
Pricing of cliquet options with global floor and cap. It was partly completed in
cooperation with the financial software company Front Capital Systems AB, Stock-
holm, Sweden. Some of the results have been implemented in the C programming
language and are available in the Front Arena Trading System.

v



vi



Introduction

”At that time, the notion of partial differential equations was very, very
strange on Wall Street.”

Robert C. Merton, Derivative Strategies, March 1998, p. 32.

In 1973, Fischer Black and Myron Scholes published their famous paper ”The pricing
of options and corporate liabilities” (Black and Scholes [7]). Based on the principle
that on a rational market, there are no certain profits, they derived formulas for the
theoretical price of European put and call options. Ever since, the development of
more complex option types and the use of mathematical tools for their pricing and
risk management have exploded.

The papers of this thesis continue this development in in three directions, namely
stochastic modelling of asset prices, option pricing and numerical methods for option
pricing. The asset classes considered are equities, spot commodities, spot electricity
and commodity futures. We will mainly use diffusion models, but a jump-diffusion
model is employed in one of the papers.

In this introductory chapter we briefly present the models and ideas used in the
appended papers. It is not self-contained, but the theory used is well known and
presented more rigorously in several books. Stochastic calculus for Wiener processes
is found in Karatzas and Shreves [21] or Øksendahl [28]. For jump diffusions, we refer
to Cont and Tankov [8] for an overview and to Protter [31] or Sato [34] for rigorous
treatments. In option pricing, Hull [18] and Wilmott [39] are introductory texts
that are nevertheless useful when implementing option pricing models in practice.
Bingham and Kiesel [5], Karatzas and Shreves [22] and Korn and Korn [23] are more
advanced treatments for models driven by Wiener processes. Cont and Tankov [8]
cover option pricing in Lévy process market models. Commodity and energy price
modelling is the topic of Geman [14] and Ronn [33].

This introduction is organised as follows: Section 1.1 discusses the pricing of
path-dependent equity options in the Black-Scholes (B-S) model. Sections 1.2 and
1.3 are about spot price models of consumption commodities and electricity re-
spectively. Futures curve models is the topic of Section 1.4 and in Section 1.5 we
illustrate how optimal storage management is equivalent to the pricing of a swing
option. We conclude this introduction in Section 1.6 by discussing the estimation
and calibration of the models of Sections 1.1 to 1.4.
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Throughout this introduction we let (Ω,F , P ) be a complete probability space
equipped with a filtration {Ft}t≥0 satisfying the usual conditions as defined in Prot-
ter [31].

1.1 Path dependent options in the B-S model

In Paper 1, we discuss the pricing of a class of path-dependent equity options. Here
we use the standard Black-Scholes market model with one stock and one risk-free
asset. The risk-less rate r and volatility σ are positive and deterministic constants.
Since this model is complete, we take P to be the equivalent martingale measure,
and expectations with respect to this measure are denoted E. Under P the stock
price St and bond price Bt satisfy the SDEs

{

dSt/St = rdt + σdWt

dBt/Bt = rdt,

with Wt being a P−Wiener process defined on (Ω,F , P ). Here we take Ft to be the
canonical filtration of the process Wt.

If T ≥ 0 is a constant point in time, we define a contingent T−claim as an
FT−measurable payout Y ≥ 0 at t = T . Now let 0 ≤ T0 < T1 < . . . < TN ≤ T ,
N ∈ N be a set of monitoring dates. A discretely path-dependent European option

has a payoff of the form Y = H(ST0
, . . . , STN

). General derivatives pricing theory
for the Black-Scholes model (see Karatzas and Shreve [22] or Korn and Korn [23])
states that the arbitrage free price Vt at time 0 ≤ t ≤ T of this claim is given by

Vt = e−r(T−t)
E[Y |Ft]. (1.1)

This class of path-dependent options includes discretely monitored Asian and look-
backs options (see Hull [18], Chapter 19 for a description of these products). For
Tn ≤ t < Tn+1, the Markov property of St yields that Vt = V (t, s1, s2, . . . , sn, s),
where sk = STk

etc. This means that the number of state variables could be large,
but in some situations this number could be reduced significantly. One example on
when this is the case is if there exist measurable functions gk and h such that

Y = h

(

N−1
∑

k=0

gk(STk
, STk+1

)

)

.

If we introduce the state variables s̄ = STn
and

z =

n−1
∑

k=0

gk(STk
, STk+1

),

it follows that Vt = V (t, s, s̄, z) for Tn ≤ t < Tn+1. Generalising the arguments used
in Andreasen [1] to derive a PDE for discretely monitored Asian options, it follows
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that Vt = V (t, s, s̄, z) satisfies the PDE (1.2).















∂V
∂t

+ σ2s2

2
∂2V
∂s2 + rs∂V

∂s
− rV = 0, Tn−1 ≤ t < Tn,

V (TN , s, s̄, z) = h(z),

V (T−
n , s, s̄, z) = V (Tn, s, s, z + gn(s̄, s)), 1 ≤ n ≤ N.

(1.2)

The type of discretely path dependent option considered in Paper 1 is called a
cliquet option with global floor. Its payoff depends on the stock price returns over
the life of the option as follows. The return Rn of St over the period [Tn−1, Tn) is
defined as

Rn =
STn

STn−1

− 1.

Truncated returns, Rn = max(min(Rn, C), F ) are returns truncated at some floor
and cap levels F and C respectively with F < C. A cliquet option with global floor
has a payoff Y at time T of

Y = B × max(
N
∑

n=1

Rn, Fg),

where the global floor Fg is the minimum total return and B is a notional amount
which is set to one for the remainder of this thesis. For Fg to be of interest, it must
satisfy NF < Fg. Consequently we have that h(z) = max(z, Fg) and

gn(s̄, s) = max
(

min
(s

s̄
− 1, C

)

, F
)

.

For this class of options, we may actually reduce the number of state variables by
one if we replace s and s̄ by y = s/s̄.

Since the number of monitoring dates N could easily be N = 12−48, computing
(1.1) by Monte Carlo simulation or solving (1.2) by finite differences could both be
a very time consuming process, even after a dimensionality reduction. The main
contribution of Paper 1 is a Fourier-transform based numerical integration method
for the computation of (1.1). It relies heavily on the fact that the returns Rn are
independent random variables. Compared to existing quasi Monte Carlo and PDE
methods, it turns out to be much faster for a given degree of computational accuracy.

1.2 Spot commodity option models

In this section we give a brief overview of some models for spot prices of spot
commodities. For a more extensive treatment, we refer to Geman [14] and Ronn
[33].

There are many differences between consumption commodities and stocks. These
include costly storage, time consuming transportation, and payments that often take
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place at delivery. Moreover, they are primarily inputs to some production process
rather than investments. Below we list some empirical facts about commodity spot
prices. Since these may be hard to observe, the most nearby futures price is often
used as a proxy.

• Mean reversion: In Bessembinder et. al. [4], a strong rate of mean reversion
in spot prices for crude oil. Over their period of observation, 44% of a price
shock is reversed in eight months on average.

• Stochastic convenience yield: Gibson and Schwartz [36] as well as Henker
and Milonas [17] report that the implied convenience yield for crude oil may
be of a significant magnitude and stochastic in nature.

• Distributional characteristics: Many models assume normally distributed
log-returns. Henker and Milonas [17] have computed estimates of the first four
moments from the empirical distribution and conclude that the log-returns are
not normally distributed. Possible explanations include stochastic volatility
and/or jumps.

• Volatility skew: When computing the implied volatility for different strike
prices of vanilla options, Beaglehole and Chebanier [2] report the presence of
volatility skew.

Most commodity spot price models are one- or multi-factor affine models. They
have closed form expressions for futures prices and Fourier transforms of vanilla op-
tion prices. Duffie, Filipovic and Schachermayer [12] treat the theoretical properties
of affine processes, while their parameter estimation is covered in Singleton [38].

Below we will give some examples of some models. In an early model, Brennan
and Schwartz model St as a stock in the B-S model paying a continuous dividend
yield equalling the net convenience yield y. This model is complete, so the dynamics
under the measures P (real world) and Q (risk neutral) are given by

dSt/St = µdt + σdWt (P ),

dSt/St = (r − y)dt + σdŴt (Q),
(1.3)

respectively, where Ŵt is a Q−Wiener process. In Gibson and Schwartz [36], this
model is improved by making the convenience yield stochastic and introducing a
market price of convenience yield risk.

Neither the Brennan-Schwartz nor the Gibson-Schwartz models feature mean
reversion. In Schwartz [35], the spot price is considered to be a non-traded asset
with P−dynamics

dXt = −αXtdt + σdWt,
St = exp(f(t) + Xt),

(1.4)

where α > 0, σ > 0 and f(t) is a deterministic seasonal trend. Since St is not traded,
this model is not complete, and an equivalent martingale measure Q is selected by
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prescribing a market price of spot price risk of the form λ(t, Xt) = λ0 + λ1Xt with
λ0 ∈ R, λ1 > −α/σ, and applying the Girsanov Theorem (see Karatzas and Shreve
[21] or Korn and Korn [23] for its formulation and proof). Defining the risk neutral

model parameters α̂ = α + σλ1, β̂ = −σλ0 and f̂(t) = f(t) + β̂

α̂
(1 − e−α̂t) finally

yields the Q−dynamics of St as

{

dXt = −α̂Xtdt + σdŴt,

St = exp(f̂(t) + Xt).
(1.5)

The choice of a linear market price of spot price risk is done for analytical tractability
in order to keep the affine structure.

This model could also be expanded by making f(t) and/or the interest rate r
stochastic, but these improvements can still not reproduce volatility smiles. Beagle-
hole and Chebanier [2] solve this by leaving the affine class of models and let the
Q−dynamics of St be given by

{

dXt = α̂(µ(t) − Xt)dt + σ(t, Xt)dŴt,
St = exp(Xt).

(1.6)

In the models presented in this section, European option prices may be computed by
evaluating risk neutral expectations. Alternatively, the Feynman-Kac representation
formula (see Korn and Korn [23]) states that the price is often given as the unique
solution to a parabolic PDE similar to the Black-Scholes PDE. Sometimes this
equation has to be solved numerically by some finite difference or finite element
method. Wilmott [39] or Eriksson et. al. [13] may be helpful for the implementation
of these methods.

1.3 Spot electricity option models

Electric power differs from the consumption commodities of Section 1.2 in that at
this moment of writing, it is not possible to store large amounts of electric energy in a
feasible manner once it has been produced. Inelastic demand and absence of stocks
to smooth supply shocks result in a price dynamics characterised by seasonality,
mean reversion and sudden spikes. Accordingly, the concept of convenience yield
does not make sense for electricity.

A consequence of these special characteristics of electricity is that it is always
modelled as a non-traded asset. Lucia and Schwartz [25] take the crude oil price
models from Schwartz [35] and use them to price electricity futures. These models
feature seasonality and mean reversion, but have continuous price trajectories. Deng
[11] replace the Wiener process of Model (1.4) with a jump diffusion in order to allow
discontinuous trajectories. Following Cont and Tankov [8], the class of equivalent
martingale measures becomes much larger due to the introduction of jumps. Apart
from adding a market price of risk as in (1.5), one may change the jump intensity
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and distribution, as long as the latter is absolutely continuous with the jump dis-
tribution under P . It is common to choose Q such that the logarithm of the price
process remains a jump diffusion under Q. If this is the case, the Feynman-Kac rep-
resentation formula yields that European option prices are often given as the unique
solution to a parabolic partial integro-differential equation (PIDE). This equation is
similar to the PIDE satisfied by equity option prices in the Merton-model proposed
in Merton [27]. The connection between jump-diffusions and PIDEs is studied in
detail in Bensoussan and Lions [3] and Cont and Tankov [8]. The latter also discuss
how to solve PIDEs numerically by finite differences or finite elements.

Jumps are not spikes however, and several attempts have been made to model
this without sacrificing the Markov property. Geman and Roncoroni [15] propose a
one-factor model with spikes and use a time-series approach to its estimation under
P . They do not discuss option pricing and how to switch from P to Q. Andreasen
and Dahlgren [10] specify an affine two-factor model with mean reversion and spikes
directly under Q. Consequently they rely fully on futures and option prices for
model calibration.

1.4 Commodity futures price models

The futures price F (t, T ) of a commodity is the price agreed upon at time t ≥ 0
for delivery and payment of a pre-specified amount of the underlying commodity
at time T ≥ t at a pre-specified location (physical settlement). That the delivery
actually takes place is very rare, and usually the position is liquidated against cash
(financial settlement). For electricity, it is common that financial settlement against
the spot price at maturity is the only way of settlement.

The most well known commodity futures exchanges in the world include Nymex
(New York: U.S. crude oil, U.S. natural gas), CBOT (Chicago: U.S. Agricultural
products) and LME (London: metals). They offer standardised futures contracts
and futures options as well as clearing and settlement services.

In order to price options on futures contracts, or to compute the value at risk
(VaR) of a futures portfolio, it may be more convenient to model F (t, T ) directly.
This was done for a single contract in Black [6], where F (t, T ) is assumed to follow
the risk neutral dynamics

dF (t, T )

F (t, T )
= σdWt. (1.7)

Ever since, this Black-model is the reference model for the pricing of vanilla options
on individual futures contracts.

In order to price options, whose payoff depends on many futures prices with
maturities T1 < T2 <, . . . , TM , one must be able to specify the joint dynamics of the
discrete futures curve F (t, T1), . . . , F (t, TM) for t ≤ T1. Inspired by the development
of HJM models (Heath, Jarrow and Morton [16]) in the interest rate area, Cortazar
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and Schwartz [9] propose the following risk neutral dynamics for F (t, Tm).

dF (t, Tm)

F (t, Tm)
=

N
∑

n=1

σmn(t)dW n
t . (1.8)

Here (W 1
t , . . . , W t

N) are independent Wiener processes, σmn(t) > 0 are deterministic
so called volatility functions, and we say that the model has N factors. If we add
the risk less bond Bt and N ≤ M , the model is complete. Schwartz [35] show that
the spot price model (1.5) corresponds to N = 1 and σm1(t) = σe−α̂(Tm−t). Similar
relations also exist for higher factor models, see Schwartz and Smith [37].

Alternatively, we may prescribe the futures price dynamics as

dF (t, Tm)

F (t, Tm)
= hm(t)dW m

t , (1.9)

for 1 ≤ m ≤ M . Here hm(t) > 0 is deterministic and Cov(W i
t , W

j
t ) = ρijt, 1 ≤

i, j ≤ M . The constants ρij are elements of a M × M correlation matrix C where
the rank of C corresponds to the number of factors. For a discrete futures curve of
M = 12 − 24 contracts, empirical evidence for crude oil (Schwartz [35]) and copper
(Cortazar and Schwartz [9]) suggest that N = 3 factors explain up to 99% of the
variance. Setting hm(t) = σm retrieves the Black model (1.7), but it is more common
to let hm(t) be an increasing increase as the time to maturity Tm − t decrease. The
solution of (1.9) is given by

F (t, Tm) = F (0, Tm) exp

(

−
1

2

∫ t

0

h2
m(u)du +

∫ t

0

hm(u)dW m
u

)

,

so F (t, Tm) is log-normal and there exist analytical formulas for European vanilla
futures options.

1.5 Swing options and storage valuation

One type of derivative that is common on the electric power and natural gas mar-
kets, is the swing option. It allows flexibility in delivery with respect to both the
timing and amount of energy delivered, and is thus a generalisation of American
and Bermudan options. Rebonato [32] describes a similar product in the interest
rate area called a chooser flexi-cap. Pricing of swing options is the topic of Dahlgren
[10], Ibáñz [19] and Jaillet, Ronn and Tompaidis [20]. Manoliu [26] and Parsons [29]
show how a swing option may be viewed as a real option on a physical storage (of
natural gas for example). All these papers have in common that they use some form
of dynamic programming to compute swing option prices or storage values. In this
section we will illustrate this by giving a very simple example of optimal storage
management.
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Consider a storage tank containing for example oil or natural gas. It has a
capacity of Z̄ and is equipped with one outlet. At times t = 0, 1, 2 the operator
selects the amount of zt to be withdrawn from the storage during the periods [0, 1),
[1, 2) and [2, 3) respectively. Furthermore, we assume that zt ∈ {0, Z̄/3, 2Z̄/3}, and
let Zt be the amount withdrawn up to and including time t. Physical constraints
impose the conditions

Z0 ∈ {0} ≡ A0

Z1 ∈ {0, Z̄/3, 2Z̄/3} ≡ A1

Z2 ∈ {0, Z̄/3, 2Z̄/3, Z̄} ≡ A2

Z3 ∈ {0, Z̄/3, 2Z̄/3, Z̄} ≡ A3.

Let St be the spot price for the commodity stored and for simplicity we assume that
the risk-neutral dynamics of St is given by (1.5). Since we assume this to be a small
storage, the operator is a price taker, so a time t decision to sell zt results in a payoff
Yt = ztSt. The aim of the operator is to maximise the storage value.

Clearly, the storage value Vt at time t satisfies Vt = V (t, s, Z) with s = St and
Z = Zt, so at t = 2 the value is given by the payoff from selling as much as possible

V (2, s, Z) = max
Z+z2∈A3

z2S2.

At times 1 < t ≤ 2, standard derivatives pricing theory and the Markov property of
St yield

V (t, s, Z) = e−r(2−t)
E[V (2, S2, Z)|St = s].

Conditioned on the tank level Z and the decision z1 at time t = 1, the operator
receives Y1 = z1S1 plus a new storage containing Z̄−Z−z1 and having one decision
point left. Maximising over z1 yields

V (1, s, Z) = max
Z+z1∈A2

{

z1S1 + e−r
E[V (2, S2, Z + z1)|S1 = s]

}

,

which we recognise as a Bellman-equation. By repetition of this step, we may
compute the storage value at t = 0 as well.

A swing option is a financial derivative, that mimics the cash flow from the
storage described above, but without any delivery of the underlying commodity.

Paper 2 is about the pricing of swing options on electricity and extends the
papers cited above in three directions. First, we will allow discontinuous spot price
trajectories. Second, the amount of electricity to be delivered is chosen from a closed
interval, rather than from a discrete set. Third, at each exercise date, the swing
option holder has to fix a vector of amounts for delivery during multiple periods,
rather than a scalar amount for delivery during a single period.

Paper 3 is about the valuation of a natural gas storage facility. Unlike the
previous papers on the topic by Manoliu [26] and Parsons [29], the storage operator
is permitted to trade natural gas on the spot and futures markets simultaneously.
This approach enables partial hedging of the storage operations using relatively
liquid futures contracts.
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1.6 Model estimation and calibration

By Bingham and Kiesel [5], Hull [18] and Rebonato [32], there are basically two
main methodologies to select model parameters.

In the martingale modelling or implied approach, the parameters are chosen such
that some distance between model and market prices at some point in time of some
set of traded derivatives is minimised. This procedure gives the parameters under
the chosen risk neutral measure Q directly, so there is no need to specify Q via P .
By Duffie, Filipovic and Schachermayer [12], models that are affine under Q have
essentially analytic expressions for futures prices and Fourier transforms of option
prices, which facilitates the calibration.

Alternatively, we first estimate the model parameters under P from a time-series
of historical data. Second, a parametric subclass of equivalent martingale measures
is selected (by introducing some functional forms of the appropriate market prices of
risk for example). Third, the parameters that are affected by this change of measure
are refitted by the implied method described above. The workhorse of time-series
estimation is the Maximum Likelihood (ML) method. Singleton [38] discusses ML-
estimation of models that are affine under P , as well as other methods like the
method of moments and quasi Maximum Likelihood.

Parameters that are invariant under the change of measure may be chosen by
either approach and their number is determined by the choice of Q. In Model (1.4)
for example, we can have α̂ = α by setting λ1 = 0. Thus we can choose to estimate as
many parameters as possible from historical data, hopefully optimising the dynamic

fit of the model, but not retrieving the market prices of futures and futures options.
Alternatively, most parameters are implied from traded derivatives, giving a good
fit to the current market prices (static fit), at the risk of a poorer dynamic fit.

For interest rate models, Rebonato [32] gives the following pieces on advise,
which should apply to equities and commodities as well:

• Derivatives that will be used for hedging must be priced exactly by the model.

• The set of derivatives used to imply parameters must be liquidly traded.

In the futures price model (1.8) both the functions hm(t) and the correlation
matrix C are invariant under the change from P to Q. For commodities, there are
usually enough of liquid vanilla options on each single futures contract to imply each
hm(t). In order to imply C however, we would need actively traded swaptions or
calendar spread options. This is usually not the case, so C has to be estimated from
historical returns. If there are M futures contracts, this means that M(M − 1)/2
parameters have to be estimated, and M = 18 − 24 is not unusual in applications.
Pourmahdi [30] report that the variance of the estimator may be reduced signif-
icantly if some parsimonious structure is imposed on C. Given such a model of
C, the ML-method described in Jöreskog or the Generalised Least Squares (GLS)
method proposed in Lee [24] may be used to estimate these parameters.
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For many commodities, most of the factors that govern demand and supply, i.e.
weather patterns, number of end users, extraction infrastructure and storage capac-
ity, do not change too much from year to year. Moreover they put constraints on the
relative price movements on adjacent contracts. Consequently it may actually be
possible to describe the correlation structure using a modest number of parameters.

In Paper 4, we propose some parsimonious models of the correlation matrix for
natural gas futures returns. To the best of our knowledge, no papers have previously
been published on the correlation structure for a commodity, such as natural gas,
with a seasonal demand or supply. We believe that our results are particulary helpful
for economic agents who seek a parsimonious method of calculating Value-at-Risk
(VAR) of a portfolio or compute the price of an exotic option with many underlying
maturities.
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FAST PRICING OF CLIQUET OPTIONS WITH GLOBAL FLOOR

MATS KJAER

Göteborg University

Abstract. We investigate the pricing of cliquet options with global floor, when
the underlying asset follows the Bachelier-Samuelson model. These options have a
payoff structure, which is a function of the sum of truncated periodic stock returns
over the life span of the option.

Fourier integral formulas for the price and Greeks are derived, and a fast and ro-
bust numerical integration scheme for the evaluation of these formulas is proposed.
This algorithm seems much faster than quasi Monte Carlo and finite difference
techniques for a given level of computational accuracy.

1. Introduction

This Millennium started with a recession and rapidly falling stock markets. In-
vestors who had relied on annual returns on investments exceeding 20% suddenly
became aware of the risk inherent in owning shares and many turned their atten-
tion to safer investments like bonds and ordinary bank accounts. As an attempt
to capitalise on this fear of losses, a variety of equity linked products with capital
guarantees were introduced on the market. Among the most successful is the so
called cliquet option with global floor, which is usually packaged with a bond and
sold to retail investors under names like equity linked bond with capital guarantee or
equity index bond.

Today, Quasi Monte Carlo and finite difference methods are the most common
methods to compute the price and greeks of these options. Since the payoff is rather
complex, these methods are relatively time consuming. In this paper, we propose a
Fourier integral method, which seems to be faster than these existing methods for
a given level of accuracy. Moreover, the method allows us to compute the Greeks
directly, avoiding the finite difference approximations of the partial derivatives often
employed in the context of Monte Carlo or finite difference methods.

Smaller banks wanting to offer these structured products to their retail clients
may lack the scale to support a separate exotic options desk. A fast computational
method could allow these banks to hedge their cliquet options with global floor
together with their vanilla options, without suffering from risky delays due to slow
computations.

For simplicity, we use the standard Bachelier-Samuelson market model, but in
separate notes, we show how the method may be used in connection with some
more advanced market models.

Date: April 25, 2006.
Key words and phrases. Exotic equity derivatives, Cliquet options with global floor, Bachelier-

Samuelson model, Fourier transforms, splines, numerical integration.
JEL classification: C63, G13.
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This paper is organised as follows: Section 2 introduces the type of options con-
sidered in this paper and Section 3 fixes notation and introduces the market model.
The pricing formula is derived in Section 4 and Section 5 discusses some additional
payoffs not considered in Section 2 that may be priced with this methodology. A
numerical integration scheme is proposed in Sections 6 to 7. The Monte Carlo and
PDE methods used as benchmarks are discussed briefly in Section 8 and pricing ex-
amples and results from benchmark tests are presented in Section 9. Finally, Section
10 containing conclusions and suggestions for future research concludes the paper.

2. Cliquet options with global floor

Let T be a future point in time, and divide the interval [0, T ] into N subintervals
called reset periods of equal length ∆Tn = Tn−Tn−1, where {Tn}

N
n=0, T0 = 0, TN = T

are called the reset days. The return of an asset with price process St over a reset
period [Tn−1, Tn) is then defined as

Rn =
STn

STn−1

− 1. (2.1)

Truncated returns, Rn = max(min(Rn, C), F ) are returns truncated at some floor
and cap levels F and C respectively with F < C. Absence of floor and/or cap
corresponds to F = −1 and C = +∞.

A cliquet option with global floor has a payoff Y at time T of

Y = B × max(

N
∑

n=1

Rn, Fg) (2.2)

where the Fg is called the global floor and B a notional amount which is set to one
for the remainder of this paper. More payoffs that may be priced with the methods
in this paper are presented in Section 5.

3. Market model

Let (Ω,F , {Ft}t≥0, P ) be a complete filtered probability measure generated by
the Wiener process Wt. For simplicity take P to be the risk neutral measure, and
expectations under this measure are written E. Under this risk neutral measure,
the stock price St and bond price Bt are assumed to follow the Bachelier-Samuelson
dynamics

{

dSt/St = rdt+ σdWt,
dBt/Bt = rdt,

(3.1)

for σ > 0 and r > 0. This implies that under P , the returns are independent and of
the form

Rn ∼ ea+bXn − 1, (3.2)

where Xn ∼ N(0, 1) and
{

a = (r − σ2

2
)(Tn − Tn−1)

b = σn

√
Tn − Tn−1.

(3.3)
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Assuming that the current reset period is m, i.e. Tm−1 ≤ t < Tm, this changes to
Rm ∼ (s/s̄)eam+bmXm − 1 where s = St, s̄ = STm−1

, Xm ∼ N(0, 1) and
{

am = (r − σ2

2
)(Tm − t)

bm = σ
√
Tm − t.

(3.4)

Below we write Rt
m instead of Rm to indicate that s and s̄ are known at time t and

define R
t

m = max(min(Rt
m, C), F ).

Note 3.1. We may replace the constants σ and r in (3.1) by the time dependent but
deterministic non-negative functions r(t) and σ(t). Continuous or discrete dividend
yields can also be introduced. If the discrete dividend yields in reset period n are
denoted αl ∈ (0, 1), 1 ≤ l ≤ L, the coefficients a and b in (3.3) have to be replaced
by

an =

L
∑

l=1

log(1 − αl) +

∫ Tn+1

Tn

(

r(t) −
1

2
σ2(t)

)

dt,

bn =

√

∫ Tn+1

Tn

1

2
σ2(t)dt,

and similar for am and bm in (3.4). Here, reset periods of different lengths are
allowed. In this generalised model, the random variables 1 + Rn = exp(an + bnXn)
are still log-normal and independent, but not identically distributed.

Note 3.2. We could also let St = exp(rt + Lt), where Lt is a Levy-process under
the chosen risk neutral measure P . However, as noted in Cont and Tankov [5], the
monthly or quarterly returns mostly used in our context, appear to be much more
normally distributed than daily returns. Thus the benefit of using a Levy-process
model would be limited for this type of options.

Note 3.3. Dividends are usually paid in discrete amounts, but using a fixed dividend
model, like the one by presented in Heath and Jarrow [9], would leave us without
an explicit expression for the density of Rn. To avoid this, fixed dividends must be
approximated with discrete or continuous dividend yields.

4. Pricing formulas

In this section we derive integral formulas for the price Vt and greeks of a cliquet
option with global floor.

Assuming that t ∈ [Tm−1, Tm), we define the performance up to date

z =
m−1
∑

n=1

Rn, (4.1)

and the auxiliary variable A = (N −m+ 1)C − Fg + z. The characteristic function
of a random variable X is written ϕX(ξ) = E[eiξX ].

The form of the price formula can be divided into the following three cases, two
of which have trivial solutions, whereas the third one requires a more thorough
analysis.
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(1) A ≤ 0: Performance has been so poor that the payoff will be Fg regardless
of future share price development.

(2) MF + z ≥ Fg: Performance has been so good that the payoff will be higher
than Fg regardless of future share price development. This results in the
analytical formulas for the price and the greeks given in Proposition 4.1.

(3) A > 0. General case. The formula in Proposition 4.2 is valid. Case II is
included in this case but we prefer to treat it separately due to the existence
of the analytical formulas for the price and the greeks in Proposition 4.1.

In Case II, we have a portfolio of forward start performance options, a derivative
that pays the holder Y = max( ST

ST0

− K, 0) at some time T > T0. Hence it is

straightforward to compute formulas for the price Vt and we give it without proof
in Proposition 4.1. Here c(t, s,K, T, σ, r) denotes the formula for the price at time t
of a European call option with strike K and maturity K in the Black-Scholes model
(3.1) with parameters r and σ. A derivation may be found in Hull [10].

Proposition 4.1. If MF + z ≥ Fg, the price Vt of a cliquet option with global floor

is given by

Vt = e−r(T−t)
{

z +MF + (N −m)
[

c(0, 1, 1 + F,∆T, σ, r) − c(0, 1, 1 + C,∆T, σ, r)
]

+er(Tm−t)
[

c(0, s/s̄, 1 + F, t− Tm, σ, r) − c(0, s/s̄, 1 + C, t− Tm, σ, r)
]}

.

The Greeks are found by taking partial derivatives of Vt in Proposition 4.1.
Before stating and proving the formulas for the price and Greeks in the general

case, we introduce the random variables R̃n = C − Rn and R̃t
m = C − R

t

m, which
are non-negative. Furthermore, Φ is the distribution function of a N(0, 1) random
variable, φ = Φ′ and the constants am, a, b and bm are given in (3.3) and (3.4).

Proposition 4.2. If A > 0, the price Vt of a cliquet option with global floor is given

by

Vt = e−r(T−t)

{

Fg + A2

∫ ∞

−∞

sinc2(
ξA

2
) × ϕR̃t

m

(ξ) ×
(

ϕR̃n
(ξ)

)N−m dξ

2π

}

(4.2)

where

ϕR̃t
m

(ξ) = eiξ(C−F ) − iξ

∫ C−F

0

Φ

(

am − log(1 + C − x)

bm

)

eiξxdx,

and

ϕR̃n
(ξ) = eiξ(C−F ) − iξ

∫ C−F

0

Φ

(

a− log(1 + C − x)

b

)

eiξxdx.

Proof. By general derivatives pricing theory, see for example Bingham and Kiesel
[2], the price is given by

Vt = e−r(T−t)E[max

N
∑

n=1

Rn, Fg)|Ft] (4.3)

= e−r(T−t)E[(Fg + max(z − Fg + ((R
t

m +

N
∑

n=m+1

Rn), 0)] (4.4)
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since St is a Markov process. Using the relations Rn = C − R̃n and R
t

m = C − R̃t
m

yields

Vt = e−r(T−t)

{

Fg + E[max(MC − Fg + z − (R̃t
m +

N
∑

n=m+1

R̃n), 0)]

}

= e−r(T−t)

{

Fg + E[max(A− (R̃t
m +

N
∑

n=m+1

R̃n), 0)]

}

.

By Fourier analysis, see Folland [8] for details, we have

ΛA(x) ≡ max(A− |x|, 0) = A2

∫ ∞

−∞

sinc2(
ξA

2
)eiξx dξ

2π
.

Using this result with x = R̃t
m +

∑N

n=m+1 R̃n, which is non-negative by construction,
gives

Vt = e−r(T−t)

{

Fg + E[A2

∫ ∞

−∞

sinc2(
ξA

2
)eiξ(R̃t

m+
P

N

n=m+1
R̃n) dξ

2π
]

}

= e−r(T−t)

{

Fg + A2

∫ ∞

−∞

sinc2(
ξA

2
)E[eiξ(R̃t

m+
P

N

n=m+1
R̃n)]

dξ

2π

}

,

by the Fubini theorem. Independence of returns and identical distribution of {R̃n}
N
n=m+1

implies that

Vt = e−r(T−t)

{

Fg + A2

∫ ∞

−∞

sinc2(
ξA

2
)E[eiξR̃t

m](E[eiξR̃n ])N−m dξ

2π

}

.

To arrive at the formula in Proposition 4.2 it remains to compute E[eiξR̃t
m ] and

E[eiξR̃n ]. But

E[eiξR̃n] = eiξ(C−F ) · P (Rn ≤ F ) +

∫ C−F

0

eiξxdP (C −Rn ≤ x) + 1 · P (Rn > C),

so

E[eiξR̃n ] = eiξ(C−F ) − iξ

∫ C−F

0

Φ

(

a− log(1 + C − x)

b

)

eiξxdx,

by (3.2) and partial integration. E[eiξR̃t
m ] is computed analogously. �

The method uses the independence of returns to transform the (N − m + 1)-
dimensional integral of (4.3) into the set of one dimensional integrals of Proposition
4.2, which may be faster to compute if (N −m+ 1) is large enough.

Since differentiation is allowed inside the integral (4.2), expressions similar to (4.2)
may be obtained for the greeks in case 3.

Note 4.3. Similar Fourier integral formulas could be derived for the extended mar-
ket model discussed in Note 2. Since the returns are not identically distributed, all
N−m different characteristic functions ϕR̃n

(ξ) would have to be evaluated, increas-
ing the computational burden. The approach also works for the Levy-process model
of Note 3.
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Note 4.4. An alternative approach would be to note that due to the independence of
returns, the the density function of

∑N

n=1Rn is given by the inverse Fourier transform

of (ϕRn
)N . Knowing this density, the option price Vt = e−r(T−t)

E[max(
∑N

n=1Rn, Fg)|Ft]
could be computed by numerical integration. However, ϕRn

are not known explicitly
and by (6.1) do not go to zero as |ξ| → ∞, making numerical inversion difficult.

5. Extension to other payoff functions

The methodology used to derive the price formula in Proposition 4.2 can be used
to price other related derivatives.

If C = ∞, the formulas in Proposition 4.2 is not valid. However, by inserting
a large virtual cap C, they can be used to obtain arbitrarily good approximations
and an upper bound of the truncation error is given in Proposition 5.1 below. Here
R̂n = max(Rn, F ) is a truncated return with C = ∞.

Proposition 5.1. Let V C
t and V∞

t be the price of floored cliquet options with local

caps C <∞ and C = ∞ respectively. Then with ∆T = Tn+1 − Tn

V ∞
t − V C

t ≤ 2e−r(T−t)
{

er(Tm−t)c(0, s/s̄, 1 + C, Tm − t, σ, r)

+(N −m)er∆T c(0, 1, 1 + C,∆T, σ, r)
}

.

Proof. Following the first steps of the derivation of Proposition 4.2, the truncation
error can be written as

(V ∞
t − V C

t )/e−r(T−t) = E[max(

N
∑

n=1

R̂n, Fg)|Ft] − E[max(

N
∑

n=1

Rn, Fg)|Ft]

= E[max(R̂t
m +

N
∑

n=m+1

R̂n, Fg − z)

−max(R
t

m +
N

∑

n=m+1

Rn, Fg − z)].

If x ≥ y we have

max(x, a) − max(y, a) =







0, x ≤ a,
x− a, x ≥ a ≥ y,
x− y, y ≥ a.

Using this with X = R̂t
m +

∑N

n=m+1 R̂n, Y = R
t

m +
∑n

n=m+1Rn and a = Fg−z yields

(V∞
t − V C

t )/e−r(T−t) = E[X − a;X ≥ a ≥ Y ] + E[X − Y ;Y ≥ a]

≤ E[X − Y ;X ≥ a ≥ Y ] + E[X − Y ;Y ≥ a]

≤ 2E[X − Y ]

= 2E[(R̂t
m − R

t

m) +

N
∑

n=m+1

R̂n −

N
∑

n=m+1

Rn].
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where the inequality follows from the fact that a ≥ Y on X ≥ a ≥ Y and the
integrands are non-negative. Computing the expectation and identifying the Black-
Scholes call option price formula completes the proof. �

It is also possible to derive a formula similar to that of Proposition 4.2 if a global
cap Cg is added, in which case the holder of the derivative receives

Y = min(max(

N
∑

n=1

Rn, Fg), Cg)

at time T . To see this, note that

Y = min(max(z +R
t

m +
N

∑

n=m+1

Rn, Fg), Cg)

= Fg + ΛA(R̃t
m +

N
∑

n=m+1

R̃n) − ΛA−Cg+Fg
(R̃t

m +

N
∑

n=m+1

R̃n)

and proceed as in the proof of Proposition 4.2. Algebraic manipulations of this
type allow us to price other cliquet-style derivatives that appear on the market, for
example the cliquet with global floor and coupon credit K and the reversed cliquet,
which pay the holder Y = max(

∑N

n=1Rn −K,Fg) and Y = max(Cg +
∑N

n=1R
−
n , Fg)

respectively.

6. Numerical computation of the characteristic functions

To compute the pricing formula given in Proposition 4.2, we must compute the
characteristic functions

E[eiξR̃n ] = eiξ(C−F ) − iξ

∫ C−F

0

Φ

(

an − log(1 + C − x)

bn

)

eiξxdx (6.1)

for each ξ. Due to the rapid oscillation of the integrand inside (6.1) for large ξ,
this would be computationally very heavy if done directly by numerical integration.

The monotonicity and high degree of smoothness of Φ(an−log(1+C−x)
bn

) suggests that

interpolation with complete cubic splines over the interval [0, C−F ] may be a good
idea. Initially this interval is divided into Np equally long subintervals [xn, xn+1],

n = 0, . . . , Np and a cubic polynomial p
(n)
3 (x) = c

(n)
3 x3 + c

(n)
2 x2 + c

(n)
1 x + c

(n)
0 is

assigned to each interval. The coefficients are then chosen such that they interpolate
the function at the spline knots xn, n = 0, . . . , Np + 1 and have continuous first and
second derivatives. In addition, we require that the derivative of the spline and the
function to be interpolated coincide at the endpoints 0 and C−F . For more details
about complete cubic spline construction, see De Boor [6] pp. 53-55.

To summarise, the cubic spline approximation Φ̂ of Φ can be written as

Φ̂

(

a− log(1 + C − x)

b

)

=

Np−1
∑

n=0

χ[xnxn+1](x)p
(n)
3 (x),
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with χ being the indicator function. Replacing Φ by Φ̂ in (6.1) and evaluating the
integrals yield an approximation ϕ̂R̃n

(ξ) of ϕR̃n
(ξ) as

ϕ̂R̃n
(ξ) =

Np−1
∑

n=0

{

c
(n)
3

[

eiξx

(iξ)4
((iξx)3 − 3(iξx)2 + 6iξx− 6)

]xn+1

xn

+c
(n)
2

[

eiξx

(iξ)3
((iξx)2 − 2iξx+ 2)

]xn+1

xn

+c
(n)
1

[

eiξx

(iξ)2
(iξx− 1)

]xn+1

xn

+ c
(n)
0

[

eiξx

iξ

]xn+1

xn

}

.

Despite its horrible appearance, the formula is very fast to evaluate on a computer.
To compute the distribution function of a normal random variable at the spline
knots, a fractional approximation proposed in Hull [10] is used, which promises five
to six correct decimals with little computational effort.

The next proposition states that ϕ̂ converges to ϕ uniformly. We start by stating
a lemma, which proof can be found in De Boor [6] on pp. 68-69.

Lemma 6.1. If f(x) ∈ C(4), h = xn − xn−1 and p3(x) is the cubic spline approxi-

mation of f on [a, b], then

|f ′(x) − p′3(x)| ≤
h3

24
sup

x∈[a,b]

∣

∣

∣

∣

d4f

dx4

∣

∣

∣

∣

.

Proposition 6.2. Let ϕ̂R̃n
(ξ) be the approximation of ϕR̃n

(ξ) and Np the number

of spline intervals of length h = (C − F )/Np. Then ϕ̂ → ϕ uniformly in ξ when

h→ 0. More specifically we have that

|ϕ̂R̃n
(ξ) − ϕR̃n

(ξ)| ≤
h3

24
(C − F ) sup

x∈[0,C−F ]

∣

∣

∣

∣

d4

dx4
Φ

(

a− log(1 + C − x)

b

)
∣

∣

∣

∣

.

Proof. Let E(x) = Φ̂
(

a−log(1+C−x)
b

)

− Φ
(

a−log(1+C−x)
b

)

. Then by Lemma 6.1

|ϕ̂R̃n
(ξ) − ϕR̃n

(ξ)| =

∣

∣

∣

∣

∣

−iξ

[

E(x)
eiξx

iξ

]C−F

0

+ iξ

∫ C−F

0

E ′(x)
eiξx

iξ
dx

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∫ C−F

0

E ′(x)eiξxdx

∣

∣

∣

∣

≤
h3

24
(C − F ) sup

x∈[0,C−F ]

∣

∣

∣

∣

d4

dx4
Φ

(

an − log(1 + C − x)

bn

)
∣

∣

∣

∣

by partial integration. Here we have also used the fact that x = 0 and x = C − F
are points of interpolation with zero error. �

7. A numerical integration scheme

In this section we develop a numerical integration scheme for computation of
the pricing formula in Proposition 4.2, which uses the method for computing the
characteristic functions proposed in Section 6.
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First, the real part of the integrand is even, the imaginary part is odd and the
domain of integration is symmetric we have that

Vt = e−r(T−t)
{

Fg + A2

∫ ∞

−∞

sinc2(
ξA

2
) × ϕR̃t

m
(ξ) ×

(

ϕR̃n
(ξ)

)N−m dξ

2π

}

= e−r(T−t)
{

Fg + A2

∫ ∞

0

sinc2(
ξA

2
) × Re

{

ϕR̃t
m
(ξ) ×

(

ϕR̃n
(ξ)

)N−m }dξ

π

}

.(7.1)

Only having to integrate the real part over half of the domain, reduces the number of
computations by 75%. Since differentiating with respect to a parameter and taking
real parts commute, this type of reduction extends to the computation of the greeks
as well.

In order to compute the price integral numerically, an artificial upper limit of
integration ξ̄ is needed. Characteristic functions have a modulus less or equal to
one which together with the fact that sinc2(Aξ/2) ≥ 0 gives the following estimate
of the truncation error e(ξ̄).

|e(ξmax)| = e−r(T−t)A2
∣

∣

∣

∫ ∞

ξ̄

sinc2(
ξA

2
) × Re

{

ϕR̃t
m

(ξ) × ϕR̃n
(ξ)

}dξ

π

∣

∣

∣

≤ e−r(T−t) 2A

π

∫ ∞

ξ̄A/2

sinc2(x)dx. (7.2)

The integral (7.2) is computed numerically for different values of Aξ̄/2 and presented
in the table below.

Aξ̄/2 10 20 50 100 200 400

∫ ∞

ξ̄A/2
sinc2(x)dx 0.0521 0.0254 0.0099 0.0040 0.0022 0.0010

Table 1: Truncation errors of the integral (7.2).

Denoting the integrand of (7.1) by ψ yields

Vt = e−r(T−t)

{

Fg +
A2

π

∫ ∞

0

ψ(ξ)dξ

}

.

This integral is then truncated at ξ̄, which is set using Table 1 above and approxi-
mated with the well known trapezoid rule of numerical quadrature.

∫ ξ̄

0

ψ(ξ)dξ ≈

N−1
∑

n=0

(

ψ(ξn) + ψ(ξn+1)

2

)

(ξn+1 − ξn).

Instead of placing the nodes ξn uniformly, we try to select them such that the
magnitude of the quadrature error contribution en from each interval [ξn ξn+1] is
bounded by some tolerance level ǫ. Starting at ξ0 = 0, this is done iteratively as
follows.

According to Eriksson et. al. [7], en is bounded by

|en| ≤
(ξn+1 − ξn)3

12
sup

ξ∈[ξn,ξn+1]

|ψ′′(ξ)|.
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If we require |en| < ǫ, a rule for the step length ∆ξn can be obtained as

∆ξn =







12ǫ

sup
ξ∈[ξn,ξn+1]

|ψ′′(ξ)|







1/3

.

The second derivative ψ′′(ξ) is approximated with

ψ′′(ξ) ≈
ψ(ξ + dξ) − 2ψ(ξ) + ψ(ξ − dξ)

(dξ)2

where dξ is some small number. We also replace supξ∈[ξnξn+1] |ψ
′′(ξ)| by |ψ′′(ξn)|,

which is justified if the second derivative does not change too much over the interval
[ξn, ξn+1].

8. Reference methods

In Section 9, the Fourier method proposed in Sections 4 to 7 will be compared
with the following existing pricing methods.

(1) Monte Carlo (MC) simulation using pseudo random numbers.
(2) Quasi Monte Carlo (QMC) using a Fauré sequence.
(3) Partial Differential Equation (PDE) approach using an explicit finite differ-

ence (FD) scheme.

An overview of the usage of Monte Carlo and quasi Monte Carlo methods in Finance
can be found in Boyle et. al. [3] and Boyle et. al. [4] respectively.

The PDE approach may need some explanations. Similar to the case of discrete
Asian options, which is covered in Andreasen [1], it can be proved that the PDE in
Proposition 8.1 below holds for the cliquet option with global floor.

Proposition 8.1. The price Vt = V (t, s, s̄, z) satisfies the partial differential equa-

tion






∂V
∂t

+ σ2s2

2
∂2V
∂s2 + rs∂V

∂s
− rV = 0, Tn−1 ≤ t < Tn

V (TN , s, s̄, z) = max(z, Fg)
V (T−

n , s, s̄, z) = V (Tn, s, s, z + max(min(s/s̄− 1, C), F )), 1 ≤ n ≤ N.

By letting x = log(s/s̄), a PDE with the space dimensions x and z can be derived.
This equation is then solved by an explicit finite difference scheme.

Note 8.2. Both the MC, QMC and PDE methods are directly extendable to the
extended market model discussed in Note 2, without further computational effort.

9. Numerical results

In order to rank the methods, we compare their accuracy for a given time of
computation for two sample derivatives, specified in Table 2 below. They have both
existed on the Swedish market.
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Option T N Fg F C
Cliquet 1 3 years 12 0 -0.05 0.05
Cliquet 2 3 years 36 0 -0.02 0.02

Table 2: Characteristics of two sample cliquet options.

For each option, we compute the price, theta and delta at t = 0 and insert these
into the Black-Scholes PDE in Proposition 8.1 to obtain the gamma for free. For
the Fourier method, the greeks are obtained from evaluation of the integral formulas
obtained by differentiating inside the integral of the pricing formula of Proposition
4.2. Finite difference approximations are used to estimate the greeks in the reference
methods.

We start by giving some pricing examples for different volatilities when r = 0.05.

Option σ V ∆ Θ Γ
Cliquet 1 0.10 0.0952 0.4451 -0.01008 -1.484
Cliquet 1 0.30 0.0566 0.1154 -0.00167 -0.102
Cliquet 1 0.50 0.0426 0.0567 0.00385 -0.0366
Cliquet 2 0.10 0.0717 0.3339 -0.00602 -1.419
Cliquet 2 0.30 0.0401 0.0804 0.00138 -0.0755
Cliquet 2 0.50 0.0300 0.0398 0.00276 -0.0258

Table 3: Prices and Greeks for at t = 0 for Cliquet 1 and 2. The interest rate is r = 0.05
per year

All methods are implemented in the C programming language and compiled to
a DLL file that is called from a test routine written in Python. Computations are
made on a Dell Inspirion 8200 laptop with a 1.6 GHz Pentiumr m4 processor and
a 256 MB RAM.

For the Monte-Carlo and quasi Monte Carlo methods, the standard error esti-
mated from 100 samples has been used to measure accuracy. In order to obtain this
estimate for the quasi Monte Carlo method, a rotation modulo one randomisation
is applied to the original Fauré sequence. This method is described in Tuffin [11],
where it is used in connection with Fauré sequences for the first time.

The implementation of the Fourier method used in these tests allows the usage of
the extended model described in Note 2 of Section 4. A consequence of this is that
all the N characteristic functions have to be evaluated, while an implementation
where only two characteristic functions have to be evaluated, would be much faster.
As remarked in Note 7, the computational effort for the reference methods is not
affected significantly by this extension.

The results shown in Figures 1 to 2 refer to the time needed to compute price,
the delta, the theta.
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Figure 1: Cliquet 1: Price and gamma for the three methods for different volatilities.
Flat interest rate r = 0.05.
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Figure 2: Cliquet 2: Price and gamma for the three methods for different volatilities.
Flat interest rate r = 0.05.
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10. Concluding remarks

Based on the results in Figures 1 to 2, the Fourier integral method outperforms
the Monte Carlo and quasi Monte Carlo methods in these two test cases. Compared
to the finite difference method it seems particularly fast for case when N = 36.
This holds even in the presence of dividends, reset periods of unequal length and
time dependent interest rate and volatility. The efficiency is achieved by converting
the the computation of a multi dimensional integral into the set of one dimensional
integrals.
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PRICING OF SWING OPTIONS IN A MEAN REVERTING

MODEL WITH JUMPS

MATS KJAER

Göteborg University

Abstract. We investigate the pricing of swing options in a model where the
logarithm of the spot price is the sum of a deterministic seasonal trend and an
Ornstein-Uhlenbeck process driven by a jump diffusion.

First we calibrate the model to Nord Pool electricity market data. Second,
the existence of an optimal exercise strategy is proved, and we present a numer-
ical algorithm for computation of the swing option prices. It involves dynamic
programming and the solution of multiple parabolic partial integro-differential
equations by finite differences.

Numerical results show that adding jumps to a diffusion may result in 2-35%
higher swing option prices, depending on the moneyness and timing flexibility of
the option.

1. Introduction

One type of derivative that is common on the electric power and natural gas
markets, is the swing option. It allows flexibility in delivery with respect to both
the timing and amount of energy delivered. For many years, it was available in the
over the counter (OTC) markets, before its complexity was fully understood. This
paper is about the pricing of swing options, with examples taken from the Nord
Pool electricity market. However, the proposed pricing framework is applicable on
other commodity markets as well.

To the best of our knowledge, the first paper on this topic is the 1995 paper by
Thompson [19]. He proposes a lattice based algorithm to price take-or-pay contracts,
which is a simple type of swing option. Generalising this approach, Jaillet, Ronn
and Tompaidis [12] propose a multi-level lattice method to price swing options on
natural gas. They use a trinomial tree discretisation of a continuous time model,
where the logarithm of the spot price is a one-factor mean reverting process driven
by a Wiener process. This is one of the models used by Lucia and Schwartz [14]
to price electricity forwards. Recently, comparably efficient Monte Carlo methods
for American options have been developed. These are applied by Ibáñz [11] in the
context of swing options, also assuming the model by Lucia and Schwartz [14].
A different approach is taken by Dahlgren [5]. He works in a general one-factor
diffusion setting, and shows that under some technical conditions on the drift and

Date: April 26, 2006.
Key words and phrases. Energy derivatives, Swing options, Jump diffusions, parabolic PIDEs,

Finite differences.
JEL classification: C13, C61, C63, C65, G13.
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volatility, the pricing problem can be transformed into solving a set of variational
inequalities.

This paper aims at extending the papers cited above in three directions. First, we
will allow discontinuous spot price trajectories. Second, the amount of electricity to
be delivered is chosen from a closed interval, rather than from a discrete set. Third,
at each exercise date, the swing option holder has to fix a vector of amounts for
multiple deliveries rather than a scalar amount for a single delivery.

More specifically, we use a model by Deng [7], where the logarithm of the spot price
is the sum of a seasonality term and an Ornstein-Uhlenbeck process driven by a jump
diffusion. To start with, we note that in the chosen spot price model, the price of
a simple European derivative is given by the unique solution to a parabolic partial
integro-differential equation (PIDE). Next, we prove the existence of an optimal
exercise strategy, and as in the papers cited above, the proof is based on dynamic
programming. By combining these two results, we obtain a numerical method for
the pricing of swing options. To solve the resulting PIDEs numerically, we modify
an operator splitting finite difference method proposed in Cont and Tankov [4].

For model estimation, we use historical Nord Pool spot price data and employ
a combination of the least squares method presented in Lucia and Schwartz [14],
and the Fourier transform based maximum likelihood approach by Singleton [18].
Traded forwards are used to estimate the market price of risk.

This paper is organised as follows: In Section 2, we briefly discuss how Nord Pool
works, followed by some general mathematical assumptions and notation in Section
3. The spot price model is introduced in Section 4, where derivatives pricing is
also discussed. Section 5 discusses model estimation and Section 6 introduces swing
options. Pricing of these options and a proof of the existence of an optimal exercise
strategy is covered in Section 7. Implementation of the numerical algorithms is the
topic of Section 8, and parameter estimation and swing option pricing results are
presented in Section 9. Finally, Section 10 concludes the paper and gives suggestions
for future research.

2. Nord Pool

The spot market on Nord Pool is an auction based day ahead market, where
suppliers and consumers from the entire Nordic region place bids for each individual
hour during the next day. Bids on eight hour blocks are also allowed. By looking
at where supply meets demand, a so-called system price is calculated for the entire
region. This is not a trivial process since the introduction of block bidding.

The average system price over 24 hours is called the base load price. Most deriv-
atives are written on the base load price, from now on referred to as the spot price.
In particular, forwards for delivery of 1 MWh at a constant load during one day,
one week, one month and longer periods are available. These start trading six days,
seven weeks and five months prior to the first delivery date, and are financially
settled with daily net payments during delivery, making them swaps rather than
forwards. Trading is mainly concentrated to those contracts with longer delivery
periods. In addition, put and call options on these forwards are offered, but their
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liquidity is in general very low. Consequently, potential model calibration proce-
dures do not have access to reliable forward curves or implied volatility surfaces.
More information about Nord Pool is available at http://www.nordpool.com.

3. General assumptions and notation

Before introducing the spot price model, we make some general assumptions of a
mathematical nature and fix some notation.

Let (Ω,F , P ) be a complete probability space equipped with a filtration {Ft}t≥0

satisfying the usual conditions as defined in Protter [17]. We refer to P as the histor-
ical or real world probability measure, and expectations with respect to this measure
are denoted EP . To begin with, the spot price of electricity St, t ≥ 0, is assumed
to be a positive semi-martingale belonging to this filtered probability space, but its
dynamics will be specified further in Section 4. In addition, it is assumed that the
no-arbitrage conditions for the fundamental theorem of asset pricing (see Delbaen
and Schachermayer [6] for details) are fulfilled. Hence there exists at least one risk
neutral probability measure Q. Risk neutral expectations are simply denoted E.

We also introduce the riskless bank account Bt with dynamics

Bt = B0e
rt,

for some fixed r > 0.
Having fixed a risk neutral measure Q, general derivatives pricing theory (see

for example Bingham and Kiesel [3]) shows that the arbitrage free price V (t) of a
derivative paying Y ∈ L1(Ω,FT , Q), Y bounded from below by a constant, at time
T > t, is given by

V (t) = e−r(T−t)
E[Y |Ft]. (3.1)

Forward prices F (t, T ) at time t for delivery at time T ≥ t are defined by

F (t, T ) = E[ST |Ft],

and forward contract prices G(t, T ) by

G(t, T ) = e−r(T−t)(F (t, T ) −K),

where K is the strike price. In the case when St is a Markov process under Q, we
will sometimes write G(t, T, s) and F (t, T, s) to emphasise the dependence on the
current spot price s = St.

4. Spot price model and derivatives pricing

Electric power differs from most other commodities in that at this moment of
writing, it is not possible to store large amounts of electric energy in a feasible
manner. This means that financial derivatives written on spot electricity cannot be
hedged by non-producers. Inelastic demand and absence of stocks to smooth supply
shocks result in a price dynamics characterised by seasonality, mean reversion and
sudden spikes as seen in Figure 1 below. The model introduced in this section tries
to catch some of these features, while still being possible to calibrate in the absence
of a liquid vanilla options market.
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Figure 1: Nord Pool spot price (daily average of system price) from 1 January 2002 to
30 September 30 2004

As a model for St, we will use a slightly modified version of the one presented
by Deng [7], from now on called the Deng-model. Here the spot price follows the
P -dynamics

{

St = exp(f(t) +Xt)
dXt = −αXt−dt+ dLt,

(4.1)

where α > 0 is fixed, f(t) is a deterministic seasonal trend, and Lt is a compensated

jump diffusion belonging to the filtered probability space defined in Section 3. More
specifically, let {Wt}t≥0 be a P−Wiener process, σ > 0 be fixed, and {UJ

t }t≥0 a
compound Poisson process independent of {Wt}t≥0, with jump size density fJ under
P . Then

Lt = σWt + UJ
t − λJEP [J ]t.

In addition, we assume that fJ satisfies
∫

R

e2yfJ(y)dy <∞, (4.2)

which according to Cont and Tankov [4] is sufficient for St to have finite second
moments under P for all t ≥ 0.

Setting λJ = 0 in (4.1) retrieves the model by Lucia and Schwartz [14], from now
on referred to as the LS-model. It will be used as a reference model to study the
impact on swing option prices from the introduction of jumps.
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The solution Xx,t0
t to the SDE (4.1) started at x at time t0 < t is given by

Xx,t0
t = xe−α(t−t0) −

λJEP [J ]

α
(1 − e−α(t−t0)) + σ

∫ t

t0

e−α(t−s)dWs +

Nt
∑

i=Nt0

e−α(t−ti)Ji,

(4.3)
where Nt is the number of jumps of UJ

t in [0, t), Ji the jump sizes and ti the jump
times. The density of Xx,t0

t is generally not known explicitly, but the transform
analysis by Duffie, Filipovic and Schachermayer [8] shows that the conditional char-
acteristic function under P of Xt+τ , τ > 0, given Xt = x is

ϕX
x,t

t+τ

(u) = exp

(

iuxe−ατ −
σ2u2

4α
(1 − e−2ατ )

)

(4.4)

× exp
(

λJ

∫ τ

0

EP

[

exp(iuJe−αs) − (1 + iuJe−αs)
]

)

, u ∈ R.

In most cases the integral inside (4.4) cannot be evaluated in closed form, but has
to be computed numerically. One exception is the two-sided exponential jump size
distribution, with density

fJ(x|λ1, µ1, λ2, µ2) =

{

λ1

λ1+λ2

e−x/µ1

µ1
, x ≥ 0

λ2

λ1+λ2

ex/µ2

µ2
, x < 0.

(4.5)

Here all parameters are positive and λJ = λ1 + λ2. Moreover, (4.4) simplifies to

ϕX
x,t

t+τ

(u) = exp
(

iu{xe−ατ − λ1µ1−λ2µ2

α
(1 − e−ατ )} − σ2u2

4α
(1 − e−2ατ )

)

×
(

1−iuµ1e−ατ

1−iuµ1

)

λ1
α

×
(

1+iuµ2ie−ατ

1+iuµ2

)

λ2
α

, u ∈ R.
(4.6)

Equation (4.6) could be interpreted as UJ
t being the difference between two com-

pound Poisson processes with intensities λ1 and λ2, and exponentially distributed
jump sizes with parameters µ1 and µ2 modelling up and down jumps. In this case,
the moment condition (4.2) translates into µ1, µ2 < 1/2. This is the jump distribu-
tion that we are going to use in this paper.

Even in the LS-model, which is driven by one Wiener process only, the inability to
store spot electricity means that the market is incomplete and Q is not unique. By
the Girsanov Theorem (see Karatzas and Shreve [13] or Protter [17]), one family of
risk neutral measures is characterised by a market price of spot price risk function
of the form λ(t, St). For the sake of analytical tractability, Lucia and Schwartz [14]
choose λ ∈ R constant.

The introduction of jumps makes this class of measures much larger. According
to Theorem 9.6 in Cont and Tankov [4], we may change both the jump intensity and
jump distribution to any distribution absolutely continuous with fJ . We follow the
route taken in Merton [15] for equity derivatives, and do not price jump risk. This
may be a dubious assumption for electricity, but in the absence of liquid vanilla
options, we feel that pricing the jump risk separately would be difficult. Pricing
diffusive risk as in the LS-model gives the Q−dynamics for St as

{

St = exp(f(t) +Xt)

dXt = (−σλ− αXt−)dt+ dL̃t,
(4.7)
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with L̃t = σW̃t + UJ
t − λJEP [J ]t, and W̃t = Wt − λt being a Q−Wiener process.

Another consequence of this choice of Q is that the jump intensity and distribution
are invariant under this change of measure, and hence the condition for St having
second moments under Q is still given by (4.2).

Forward prices are also given by the transform analysis in Duffie, Filipovic, and
Schachermayer [8] as

F (t, T ) = exp
(

f(T ) + (log St − f(t))e−α(T−t)
)

× exp

(

−
σλ

α
(1 − e−α(T−t)) +

σ2

4α
(1 − e−2α(T−t))

)

× exp
(

λJ

∫ T−t

0

E[exp(Je−αs) − (1 + Je−αs)]ds
)

(4.8)

≡ Fseason × Fdiffusion × Fjump,

showing that forward prices are products of three factors originating from the sea-
sonality trend, diffusion and jumps respectively.

In the double exponential model (4.5), (4.8) simplifies to

F (t, T ) = exp
(

f(T ) + (log St − f(t))e−α(T−t)
)

× exp

(

−
σλ

α
(1 − e−α(T−t)) +

σ2

4α
(1 − e−2α(T−t))

)

(4.9)

×

(

1 − µ1e
−α(T−t)

1 − µ1

)

λ1
α

×

(

1 + µ2e
−α(T−t)

1 + µ2

)

λ2
α

× exp

(

−
(λ1µ1 − λ2µ2)

α
(1 − e−α(T−t))

)

.

By (3.1) and the Markov property of Xt, the price at time t ≤ T of a simple
European derivative with payoff Y = H(ST ) satisfies V (t) = V (t, x), with

V (t, x) = e−r(T−t)
E[H(exp(f(T ) +X t,x

T )]. (4.10)

We will conclude this section by giving a Feynman-Kac formula, which states
that V (t, x) in (4.10) is the unique solution to a parabolic partial integro-differential
equation (PIDE). The exact conditions on the payoff H under which this result
holds as well as a proof are given in Appendix A.

Let u be a C1,2 function1 with a bounded first x−derivative. Then u is in the
domain of the operators Dx and Ix defined as

Dxu =
σ2

2

∂2u

∂x2
+ (−σλ− αx)

∂u

∂x
, (4.11)

Ixu = λJ

∫

R

{

u(t, x+ y) − u(t, x) − y
∂u

∂x

}

fJ(y) dy. (4.12)

Moreover, u is in the domain of the infitesimal generator of Xt, which is given by
Lx = Dx + Ix.

1This means that u has one continuous t−derivative and two continuous x−derivatives.
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Under some technical conditions on the payoff function H , the option price (4.10)
is the unique solution to the PIDE

{

∂V
∂t

+ LxV − rV = 0

V (T, x) = H(ef(T )+x).
(4.13)

In the absence of jumps, Lx = Dx, and the PIDE (4.13) reduces to a PDE.

5. Model estimation

In this section we discuss estimation of the model parameters for the Deng and
LS models. We use the paradigm of Lucia and Schwartz [14], where the model is
first estimated under P using historical spot price data, followed by an estimation
of the market price of risk λ from traded forward contracts.

We postulate a periodic seasonal trend of the form

f(t|Θ) = A0 +
N

∑

n=1

An cos(2πfnt+Bn), (5.1)

with the frequencies fn corresponding to cycles with lengths of one year, three
months, one month, one week and three days, capturing the four seasons and the
work week. The parameter vector Θ = (A0, An, Bn)N

n=1 is unknown and is to be
estimated from data.

The stationary covariance function of the logarithm of the spot price Yt = f(t|Θ)+
Xt is given by

Cov(Yt+τ , Yt) = e−ατVar(Yt),

so α is estimated from sample covariances and variances.
Having found α, Θ is estimated by the non-linear least square method proposed

by Lucia and Schwartz [14]. An explicit Euler discretisation of the SDE (4.1) with
yt = log St denoting the sampled process, and time step ∆t =1 day, yields

yt = (1 − α)yt−1 + f(t|Θ) − (1 − α)f(t− 1|Θ) + ǫt, t = 2, . . . , T.

Here T is the sample size and {ǫt}
T
t=2 a sequence of i.i.d. random variables with

mean zero and finite variance. Finally, a least squares estimator can be obtained by
minimising

F (Θ) =
1

T − 1

T
∑

t=2

∣

∣yt −
[

f(t|Θ) − (1 − α)f(t− 1|Θ) + (1 − α)yt−1

]
∣

∣

2

with respect to Θ.
Next we subtract the estimated seasonal function f(t|Θ) from yt = log St, which

leaves us with discrete observations xt of the process Xt. These are used to estimate
the remaining parameters with the maximum likelihood method. Here we note that
the stochastic variables zt ≡ xt+1−xte

−α are i.i.d. in both the LS and Deng models.
From (4.8), we see that in the LS model, these variables are normally distributed

with mean 0 and variance σ2

2α
(1−e−2α). A standard maximum likelihood estimation

is then used to find σ.
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In the Deng model, inverse Fourier transformation of the conditional characteristic
function (4.4) yields

f(xt+1|xt)(x) =

∫

R

eiuxte
−α−iu

λ1µ1−λ2µ2
α

(1−e−α)−σ
2

u
2

4α
(1−e−2α)+

R
1

0
{ϕJ (ue−αs)−1}dse−iux du

2π

=

∫

R

e−iu
λ1µ1−λ2µ2

a
(1−e−α)−σ

2
u
2

4α
(1−e−2α)+

R
1

0
{ϕJ (ue−αs)−1}dse−iu(x−xte

−α)du

2π

≡

∫

R

ϕZ(u)e−iuzt
du

2π
,

where Z is a random variable with the same law as zt, and characteristic function
ϕZ(u) under P .

We may now form the log likelihood function as

L = −
T−1
∑

t=1

log

(
∫

R

ϕZ(u)e−iuzt
du

2π

)

, (5.2)

with α fixed. During the search for the optimal parameters, the Fourier integral
(5.2) is approximated by a discrete Fourier transform, which is then computed by
the FFT-algorithm. The resulting discretely sampled density is then linearly inter-
polated when evaluating the likelihood function. More details about approximation
of continuous Fourier transforms by discrete ones, and the FFT algorithm can be
found in Folland [9]. A similar method is suggested in Singleton [18], but there a
Gauss-Hermite quadrature is used instead of FFT to compute the integrals in (5.2).

It remains to estimate the market price of risk λ. Let F̂ (t, Tk), 1 ≤ k ≤ K be
the market prices of the traded forward prices for delivery of 1 MWh during one
day starting at time Tk. Contracts with longer delivery times may be regarded as a
portfolio of these one day delivery forwards. The market price of risk, estimated at
time t, is then chosen such that

K
∑

k=1

|F̂ (t, Tk) − F (t, Tk)|
2 (5.3)

is minimised. Here F (t, Tk) are the model implied forward prices given by (4.8).

6. Description of swing options

Before defining the payoff of a swing option formally, we give an example of a
swing option payoff.

Example 1. The contract runs for one year. Every Friday, the holder decides
on which days the following week he wants to buy 1 MWh of electricity at 30
EUR/MWh. At least 50 MWh and at most 100 MWh have to be bought in total
during the year. The contract is financially settled with net payments every day.

Example 1 is generalised in Definition 6.1 below.

Definition 6.1. Swing option. A swing option of class P is a financial contract
with the following payoff characteristics.

(1) Maturity date: The contract runs over the period [0, T ].
(2) Strike: The fixed price K EUR/MWh.
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(3) Swing action times: The times when the holder is allowed to make decisions
are denoted by {Tn}

N
n=1, where 0 ≤ T1 < T2 < . . . < TN < T .

(4) Swing action: At each swing action date Tn, the holder decides on the amount
of energy Bd

n MWh to be bought at the fixed price K EUR/MWh over each
of the D periods (T d

n , T
d+1
n ], 1 ≤ d ≤ D. Here Tn = T 1

n < T 2
n < . . . < TD

n =
Tn+1, and TD+1

N = T .
(5) Allowed amounts per period: We assume that Bd

n ∈ O ⊆ [0,∞), where O is
either a closed interval O = [B,B] or a discrete set. This means that the
holder of the swing contract is not allowed to short energy.

(6) Allowed amount in total: The holder may buy at least M MWh and at most
M MWh in total. To be of interest, NDB < M ≤ M < NDB.

(7) Settlement: All swing contracts are financially settled. To reduce the con-
sequences of a default of the counterpart, net payments occur at times T d

n ,
1 ≤ d ≤ D.

In Example 1, D = 7, T d
n is the beginning of day d, and O = {0, 1}. Dahlgren [5],

Jaillet, Ronn and Tompaidis [12] and Ibanz [11] all focus on the case when D = 1.
By setting O = {0, 1}, M = 0, M = 1 and D = 1, we see that Bermudan call
options belong to class P.

There are endless ways of generalising the swing option class P. For example,
one could allow under- or overdrafts at a penalty fee. Making the strike price K
depend on calendar time would also be natural and feasible. Finally, one could have
contracts where the holder is allowed either to sell or to buy energy, thereby creating
a virtual electric energy storage facility.

7. Pricing of swing options

In this section, we show how to price swing options of class P, and derive upper
and lower bounds for these prices. The pricing methodology could easily be modified
to cope with the other types of swing options discussed at the end of Section 6.

Without loss of generality, we assume that B = 0 for the remainder of this paper.
Any swing option with B > 0 may be decomposed into a portfolio of B of each of
the forward contracts G(Tn, T

d
n), 1 ≤ n ≤ N , 1 ≤ d ≤ D, plus a swing option equal

to the original one, but with O replaced by [0, B − B], M by M − NDB, and M
by M −NDB.

Initially, we determine the actual payoff induced by each swing action. A time Tn

decision to buy Bd
n MWh during the period (T d

n , T
d+1
n ] at K EUR/MWh is equivalent

to receiving Bd
n forward contracts G(Tn, T

d
n) which deliver 1 MWh each over this

period at the fixed price K EUR/MWh. Consequently, a swing action is described
by a D−vector {B1

n, . . . , B
D
n } ∈ OD. Below we show how to derive the payoff in the

case when O is a closed interval, but discrete state spaces are dealt with similarly.
By maximising the value of the forward contracts G(Tn, T

d
n) received, it is possible

to condense this vector into one number ∆n =
∑D

d=1B
d
n, representing the amount

of energy bought due to this swing action. The state space, to which ∆n belongs,
is denoted S, and when O = [0, B], we have that S = [0, DB]. Since the forward
contracts received are normally not available on the market, they must be priced
theoretically by (4.9). More specifically, let Ḡd(Tn, s), 1 ≤ d ≤ D, denote the time
Tn prices of the D forward contracts with delivery during (Tn, Tn+1], sorted by their
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theoretical value. Here we employ the convention that d = 1 corresponds to the
most expensive contract. Fixing ∆n ∈ [(k − 1)B, kB), where 1 ≤ k ≤ D, and
buying as much of the most expensive contracts as possible result in a maximised
payoff g of

g(Tn, s,∆n) =
k−1
∑

d=1

BḠk(Tn, s) + [∆n − (k − 1)B]Ḡk(Tn, s). (7.1)

By this construction, g(·, ·,∆) is continuous, piecewise linear and concave, implying
that it attains its maximum and minimum on S. This claim holds trivially for finite
state spaces. Finally, note that the ordering of the forward contracts according
to their theoretical values may change with s, and that if D = 1, g(Tn, s,∆n) =
∆n(s−K).

Under these assumptions, a swing action means choosing ∆n without violating
the contract constraints, and thereby receiving the amount g(Tn, s,∆n). This is
stated formally in Definition 7.1 below.

Definition 7.1. The set of admissible swing action strategies A consists of all se-
quences {∆n}

N
n=1 such that

(1) ∆n ∈ S,
(2) ∆n is ∈ FTn

−measurable,

(3)
∑N

n=1 ∆n ∈ [M,M ].

This definition reflects the fact that the decision must depend on known infor-
mation only. To keep track of whether the constraint (3) above has been broken

or not, we define Zt =
∑j

n=1 ∆n to be the amount of energy bought up to time
t ∈ (Tj, Tj+1]. Since St and Zt are both Markov processes, the swing option value
V (t) satisfies V (t) = V (t, s, z), where s = St and z = Zt.

Before proceeding to to the main pricing theorem, we give upper and lower bounds
on the swing option price V (t, s, z) in Proposition 7.2 below. Here c(t, s, Tn, T

d
n)

denotes the price at time t ≤ Tn of an option that pays

Y = e−r(T d
n−Tn) max(F (Tn, T

d
n) −K, 0)

at time Tn. Due to the affine structure of the model, these option prices may be
computed by evaluating Fourier transforms (see Duffie, Filipovic and Schachermayer
[8] for details).

In analogy with the definition of Ḡd(Tn, s), we introduce ~Gk(Tn, s), where 1 ≤
k ≤ D(N − n), as all the forward contracts maturing in [Tn, TN ], sorted by their
theoretical value. Finally, ⌊x⌋ is the integer part of x ∈ R.

Proposition 7.2. Let Tj−1 ≤ t < Tj, 2 ≤ j ≤ N . Then the swing option price

V (t, s, z) satisfies

V (t, s, z) ≤ B

N
∑

n=j

D
∑

d=1

c(t, s, Tn, T
d
n).

V (t, s, z) ≥ B sup
M∈[M−z,M−z]







⌊M/B̄⌋
∑

k=1

~Gk(Tn, s) + (M/B̄ − ⌊M/B̄⌋) ~G⌊M/B̄⌋+1(Tn, s)
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Proof. Upper bound: Setting M = 0 and M = NBD clearly increases the flexibility
and hence the value of the option. In this case, the optimal strategy is trivial: At
each swing action date Tn, pick B of the forward contracts maturing in [Tn, Tn+1)
with positive value and nothing of the others. This strategy is clearly equivalent to
a portfolio of call options.

Lower bound: This is the value of a strategy which involves fixing the entire
remaining swing action strategy {∆n}

N
n=j at time t, which is clearly suboptimal.

First we fix M ∈ [M − z,M − z], which is the total number of MWh to be bought
in the remaining life of the swing option, [Tj , TN ]. Next, allocate these M MWh in
a feasible manner among the remaining futures, such that the most expensive ones
are chosen. Finally we take the supremum over M . �

We now state and prove the main theorem of this section.

Theorem 7.3. Consider a swing option of class P, and let 1 ≤ j ≤ N . Then the

value V (t, s, z) of this swing option is given by

V (t, s, z) =



























sup
{∆n}

N

n=j
∈A

N
∑

n=j

e−r(Tn−Tj)E
[

g(Tn, STn
,∆n)|FTj

]

, t = Tj,

e−r(Tj−t)
E[V (Tj, STj

, z)|Ft], Tj−1 < t < Tj, j > 1,
t < T1, j = 1.

Moreover, there exists at least one optimal swing action plan {∆∗
n}

N
n=j ∈ A such that

the supremum is attained.

Proof. The claim is trivial in the case of a finite state space O, since the number of
swing action strategies is finite due to the Bermudan structure of the option. Below
we assume that O = [0, B], and prove the claim by backwards induction.
Step 1: The claim holds for j = N . At the last swing action date t = TN , we choose
the allowed swing action ∆N that maximizes the payoff, or

V (TN , s, z) = sup
∆N∈A

g(TN , s,∆N). (7.2)

By the continuity of g(·, ·,∆), the supremum (7.2) is attained by some ∆∗
N on the

compact set S. Note that in general, ∆∗
N = ∆∗

N (s, z). We also have that V (TN , s, z)
is continuous in z. To prove this claim, observe that the definitions of g and Ḡk

imply that

|V (TN , s, z2) − V (TN , s, z1)| ≤ |z2 − z1|Ḡ1(TN , s),

so the continuity follows by letting |z2 − z1| → 0.
For other times t ∈ (TN−1, TN) in this period, we have a European derivative with

payoff V (TN , s, z) at time TN . Consequently,

V (t, s, z) = e−r(TN−t)
E[V (TN , STN

, z)|Ft], (7.3)

by (3.1), proving the claim for n = N .
Step 2: Induction assumption. Let j be arbitrary such that 1 < j < N , and assume
the following:
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(1) V (Tj, s, z) is given by

V (Tj , s, z) = sup
{∆n}

N

n=j
∈A

N
∑

n=j

e−r(Tn−Tj)E
[

g(Tn, STn
,∆n)|FTj

]

. (7.4)

(2) V (Tj, s, z) is continuous in z.
(3) Given s and z, there exists an optimal swing option strategy {∆∗

n}
N
n=j such

that the supremum (7.4) is attained.

Step 3: The claim holds for j − 1, given the induction assumption in Step 2.
When choosing ∆j−1, we receive a payoff of g(Tj−1, s,∆j−1) plus a new swing

option with ∆j−1 fewer exercise rights, and a first swing action date at time Tj .
Combining this with the first assumption of Step 2 yields

V (Tj−1, s, z) = sup
∆j−1∈A

{g(Tj−1, s,∆j−1)

+e−r(Tj−Tj−1)
E[V (Tj , STj

, z + ∆j−1)|FTj−1
]
}

(7.5)

= sup
{∆n}

N

n=j−1
∈A

N
∑

n=j−1

e−r(Tn−Tj)E
[

g(Tn, STn
,∆n)|FTj−1

]

. (7.6)

It remains to prove the continuity of V (Tj−1, s, z) and the existence of a ∆∗
j−1,

such that the supremum (7.5) is attained. The continuity of g(Tj−1, s, z) implies
that these two claims follow if

ψ(z) ≡ E[V (Tj, STj
, z)|FTj−1

]

is continuous. However

|ψ(z2) − ψ(z1)| ≤ E[|V (Tj, STj
, z2) − V (Tj , STj

, z1)||FTj−1
], (7.7)

where the expression inside the expectation (7.7) goes to zero by the induction
assumption in Step 2. The integrand may be bound by twice the upper bound given
in Proposition 7.2 with z = 0, which is integrable. Hence the continuity of ψ follows
by the Dominated Convergence Theorem.

For other times t in this period, we have a European derivative with payoff
V (Tj−1, s, z) at time Tj−1.

The theorem now follows by induction. �

Note that the optimal swing action strategy {∆∗
n}

N
n=1 may not be unique, since

the function g(·, ·,∆) does not have to be monotone.
In order to use the recursive algorithm implicit in the proof of Theorem 7.3, we

need to compute risk neutral conditional expectations of the type (7.3). A simple but
time consuming approach by Ibànz̃ [11], is to use Monte Carlo simulation. However,
by Section 4, it can also be computed by solving the PIDE (4.13) with end condition
H(s) = V (Tn, s, z) for (t, s) ∈ [Tn−1, Tn) × [0,∞) with z fixed.

8. Implementation

In this section we discuss the dynamic programming algorithm induced by the
proof of Theorem 7.3 and the finite difference method used to solve the PIDE (4.13).

In practice, the pricing problem can only be solved for discrete values of (t, s, z).
If the state space O is finite, then the z−variable is already discrete. Otherwise,
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since we know that z ∈ [M,M ], this interval is sampled uniformly at Nz points
zm = m∆z, where ∆z = (M −M)/(Nz − 1) and m = 0, . . . , Nz − 1.

As remarked in Section 4, we use x = Xt rather than s = St as state variable
for the reason of numerical efficiency. We start by truncating x = Xt such that
x ≤ x ≤ x, and this interval is sampled uniformly at Nx points xl similarly to the
z−variable. In the same fashion, each time interval [Tn−1, Tn] between two swing
action dates is sampled at Nt points tk. The spot price sl at time tk is then given
by sl = exp(f(tk) + xl), so the x-grid is uniform, but the s-grid is not. Finally, the
dynamic programming algorithm implicit in the proof of Theorem 7.3 is implemented
as three nested for-loops over the indices n, l,m, where checks are performed in each
iteration to see wether a swing action is admissible or not.

To solve the PIDE (4.13) numerically, we use finite differences. When solving the
PDE arising in the LS-model, we use a standard Crank-Nicholson scheme, which
practical implementation is described in Wilmott [20]. Omitting the index m, and
writing vl

k = V (tk, xl, zm) and vk = (v1
k, . . . , v

Nx

k )T , the resulting linear system of
equations may be written as

A1vk = A2vk+1, (8.1)

where the elements of the matrices A1 and A2 do not depend on time, thus enabling
pre inversion of A1. Here we have assumed that the solution is linear in s at both
boundaries, implying ∂2V

∂s2 = 0, or ∂2V
∂x2 −

∂V
∂x

= 0. Important properties of this method
are unconditional stability and an error proportional to (∆x)2 and (∆t)2.

For the PIDE (4.13) an operator splitting method similar to the one proposed in
Chapter 12:4 of Cont and Tankov [4] is used. The diffusion part

∂V

∂t
+ DxV − rV

is discretised by the Crank-Nicholson method as described above for the LS-model,
whereas the integral operator Ix given in (4.12) is discretised using an explicit
scheme. More specifically, if we define

νn =

∫ ∆x(n+ 1

2
)

∆x(n− 1

2
)

fJ(y)dy,

then Ix may be approximated as

IxV (tk+1, xl, z) = λJ

∫

R

[

V (tk+1, xl + y, z) − V (tk+1, xl, z) − y
∂V

∂x

]

fJ(y) dy

≈ λJ

N
∑

n=−N

[

vl+n
k+1 − vl

k+1 −
n

2
(vl+1

k+1 − vl−1
k+1)

]

νn.

The density fJ is thus truncated at ±N∆x, where we set N such that
∑N

n=−N νn is
close to one. Due to the non-local nature of the integral operator, it may happen
that xn+l

k+1 6∈ [x, x] for some n, implying that extrapolation is necessary outside this

interval. To be consistent with the assumed boundary condition ∂2V
∂x2 − ∂V

∂x
= 0, we

set

vl+n
k+1 =

{

aexl+n + b, xl+n > x,
cexl+n + d, xl+n < x,
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where the unknown coefficients a, b, c and d, are selected to get continuous first
derivatives at x and x respectively. Below we let ve

k+1 denote vk+1 extrapolated by
this procedure.

To summarise, the introduction of jumps transforms the linear system (8.1) into

A1vk = A2vk+1 + Bve
k+1, (8.2)

with A1 and A2 being the same matrices as in (8.1). The matrix B is a dense matrix
such that

B(l, :)ve
k+1 ≈ IxV (tk+1, xl, z),

where B(l, :) denotes the l ’th row of B.

9. Results

In this section we present the estimated model parameters and prices of some
sample swing options.

First the seasonal function and jump diffusion parameters are estimated using the
procedure described in Section 5. The data is daily Nord Pool spot prices over the
period 1 January 2002 to 30 September 2004. To estimate the market price of risk,
the 15 March 2005 closing prices for forwards with delivery during weeks 10 to 15
are used. The estimated parameters are presented in Tables 1 to 2. Model implied
forward curves for both models are displayed in Figure 2 together with the seasonal
part of the forward curve, Fseason, defined in (4.8).

fn f0 = ∞ f1 f2 f3 f4 f5

An 3.3873 0.2930 0.0411 -0.0251 -0.0310 -0.0133
Bn n.a. 0.4063 1.2807 0.9712 0.6386 1.7629

Table 1: The parameters A0 and (An, Bn), 1 ≤ n ≤ 5, of the seasonal function f(t|Θ)
defined in (5.1) estimated by the procedure of Section 5. The frequencies are
f0 = ∞, f1 = 1/365, f2 = 4/365, f3 = 12/365, f4 = 52/365 and f5 = 104/365
cycles per day. The frequency f0 corresponds to the constant A0.

Parameter α σ λ1 µ1 λ2 µ2 λ (MPR)
Lucia-Schwartz 0.0211 0.0711 n.a. n.a. n.a. n.a. 0.0095

Deng 0.0211 0.0370 0.1432 0.0897 0.2355 0.0556 0.0199

Table 2: The parameters α, σ, λ1, µ1, λ2, µ2 of the Deng and LS models togehter with
the market price of spot price risk λ (MPR) estimated by the procedure of
Section 5. The time is measured in days.

In Lucia and Schwartz [14], the model calibration is also made with daily Nord
Pool data. Although the time period and seasonal function are different, they report
α = 0.0140 and σ = 0.086, which is similar to the values reported in Table 2.

Not very surprising, the introduction of jumps results in a smaller diffusive volatil-
ity σ, implying that variance has been transferred from the diffusion to the jumps.
On average, there are one up (Type 1) jump and two down (Type 2) jumps every
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Figure 2: Seasonal part of the forward curve Fseason given in (4.8) and the model implied
forward curves for the LS and Deng models given in (4.9). The spot price on
Jan 1 is s = 40 EUR/MWh. Model parameters from Tables 1 and 2.

week since 1/λ1 ≈ 7 and 1/λ2 ≈ 3.5. Moreover, the up jumps have a mean of
µ1 = 0.0897, which is almost three standard deviations of the diffusive shock over
one day, 0.0370. Consequently, jumps are large and frequent and µ1 and µ2 satisfy
the moment condition (4.2).

Another effect of the introduction of jumps is that the market price of risk rises.
This effect is due to the transfer of variance from the priced volatility, to the un-
priced jumps. To maintain the risk premium, the market price of spot price risk per
unit of volatility has to increase.

In Figure 2 we see that the model implied forward curves and lie practically on
top of each other, and that the risk premium due to uncertainty is about 0.5 EUR.
This suggests that the seasonal function is the factor with the largest impact on
forward prices.

We now turn our attention to the pricing of swing options. Here we use a Matlab-
implementation of the numerical method presented in Section 8. The aim is to
investigate the impact on swing option prices in both models, for different strike
prices K, number of decision dates N , and total allowed amount M . All swing
options run for one year (T = 1) and are priced at t = 0. The model parameter
values all come from Tables 1 and 2, and the continuously compounded interest rate
is r = 3% per annum.

N 2 4 12 52 364
Deng 842 887 1024 1197 1264
LS 841 884 1010 1167 1228

Difference 0.12% 0.34% 1.39% 2.57% 2.93%

Table 3: Dependence on the number of swing action dates N . Current spot price: s = 30
EUR/MWh. Option parameters: M = 0, M = 100, O = {0, 1} and K = 30
EUR/MWh. Model parameters from Tables 1 and 2.
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Figure 3: Dependence on the current spot price for K = 30 EUR/MWh (left) and K =
60 EUR/MWh (right). Option parameters: M = 0, M = 100, N = 52 and
O = {0, 1}. Model parameters from Tables 1 and 2.

M 10 50 100 200 364
Deng 197 774 1197 1518 1559
LS 185 746 1167 1494 1536

Difference 6.49% 3.75% 2.57% 1.61% 1.50%

Table 4: Dependence on M for M = 0. Current spot price: s = 30 EUR/MWh. Option
parameters: N = 52, O = {0, 1} and K = 30 EUR/MWh. Model parameters
from Tables 1 and 2.

M = M 10 50 100 200 364
Deng 193 748 1131 1281 176
LS 181 721 1104 1262 171

Difference 6.63% 3.74% 2.45% 1.51% 2.92%

Table 5: Dependence on M for M = M . Current spot price: s = 30 EUR/MWh. Option
parameters: N = 52, O = {0, 1} and K = 30 EUR/MWh. Model parameters
from Tables 1 and 2.

Figure 3 and Tables 3 to 5 suggest that the introduction of jumps increases the
price of the swing option by 2-6% when K = 30, and by up to 35% when K = 60.
An explanation for this could be the that the fatter tails of the jump diffusion have
a big effect on the price only when the swing option is out of the money. This effect
seems to be larger when the number of exercise rights M is small and the number
swing action dates N is large for a given B. This probably depends on the resulting
higher timing flexibility, which in combination with the mean reversion allows the
holder “to pick the peaks”.

From Table 3, it is evident that swing options with more flexibility in terms of
more swing action dates N , and a non-binding lower limit M , are more expensive.
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Tables 4 and 5 also show that the option value increases with M if M = 0, but
starts to decrease from M around 170 if M = M . Having to buy at an expensive
price clearly decreases the value of the option.

10. Conclusion and final remarks

First we introduced the Lucia-Schwartz and Deng models, and suggested a time-
series approach to their calibration. Estimation results show that jumps are frequent
and of significant magnitude. Moreover, model implied forward prices are dominated
by the seasonality part, which suggests that the seasonal function must be modelled
with great care.

Second, we proved the existence of an optimal swing action strategy and proposed
an algorithm for its computation. The results show that the introduction of jumps
could make swing options 2-7% more expensive if in the money. For out of the money
options, the difference could be up to 35%. Apart from moneyness, the difference
in price between the LS and Deng models seems to depend on the timing flexibility
of the swing actions.

The proof of Theorem 7.3 is generic in the sense that it is not restricted by the
market model used in this paper. Changing the market model basically means
changing the way risk neutral conditional expectations are computed. With this
observation in mind, an interesting extension of this paper would be the pricing
of electricity swing options in more complex spot price models. This could mean
adding spikes, like in Andreasen and Dahlgren [1], making volatility stochastic, as
has been done for equities by Heston [10], or having a stochastic seasonality trend as
suggested by Lucia and Schwartz [14]. The main obstacle for the use of these models
on Nord Pool, is the current lack of liquidity on its forward and options markets,
which makes calibration difficult. However, for swing options on electricity markets
with more liquid derivatives, such an extension would be feasible.

When the dimensionality increases, PDE/PIDE methods become more time con-
suming. Instead, Monte Carlo simulation becomes the method of choice, even for
American contracts, and this is the route taken by Ibáñz [11]. Hence, further de-
velopment of Monte Carlo methods for American options would be another natural
extension of this paper.
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Appendix A. Validity of the Feynman-Kac formula

The reasons why we cannot use the Feynman-Kac results from Bensoussan and
Lions [2] or Cont and Tankov [4] directly are the unbounded coefficient in front
of the first order derivative in Lx in combination with the insufficient regularity of
many financially important payoff functions H .

In order to solve this problem, we change state variable fromXt to Zt ≡ logF (t, T ),
with F (t, T ) given in (4.8). An application of Itô’s Lemma for jump diffusions (see
Protter [17]) gives the Q-dynamics for Zt as

dZt =

(

−
σ2

2
e−2α(T−t) + λJE

[

1 − exp(Je−α(T−t))
]

)

dt

+σe−α(T−t)dW̃t + e−α(T−t)dUJ
t . (A.1)

If we define

σ(t) = σe−α(T−t),

γ(t) = −
σ2(t)

2
− λJ

∫

R

[

exp(ye−α(T−t)) − 1 − ye−α(T−t)
]

fJ(y)dy,
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and let v be a C1,2 function with bounded first z−derivative, the infitesimal generator
Lz of Zt is given by

Lzv =
σ2(t)

2

∂2v

∂z2
+ γ(t)

∂v

∂z

+λJ

∫

R

[

v(t, z + ye−α(T−t)) − v(t, z) − ye−α(T−t)∂v

∂z

]

fJ(y)dy.

Note that the coefficients of Lz only depend on t and are bounded due to the moment
condition (4.2).

Since ST = F (T, T ), the option price V (t, x) in (4.10) may be expressed in terms
of z as

u(t, z) = e−r(T−t)
E[H(exp(Zt,z

T ))] (A.2)

≡ e−r(T−t)
E[h(Zt,z

T ))]. (A.3)

If h is Lipschitz, Proposition 5.3 in Pham [16] yields that the PIDE
{

∂u
∂t

+ Lzu− ru = 0, (t, z) ∈ [0, T ) × R,

u(T, z) = h(z), z ∈ R,
(A.4)

has a unique solution2 u ∈ C1,2([0, T ) × R) ∩ C0([R) given by (A.3).
Next we show that the above result also holds for prices of futures contracts, which

have unbounded payoffs given by h(z) = ez − K. Inserting this payoff into (A.3)
gives u(t, z) = e−r(T−t)(ez − K). This function is C1,2 and trivially solves (A.4).
Furthermore, Theorem 3.3.1 in Lions and Bensoussan [2] ensures the uniqueness
of this solution. By the linearity of Lz, (A.3) is the unique solution to (A.4) for
payoffs h which are linear combinations of futures contract prices and derivatives
with Lipschitz payoffs. This includes call options by the put-call parity.

Finally we wish to switch back to the original state variable x. By (4.8) it is
related to z through the relation

z = f(T ) + xe−α(T−t) −
σλ

α
(1 − e−α(T−t)) +

σ2

4α
(1 − e−2α(T−t))

+λJ

∫ T

t

E[exp(Je−α(T−s)) − (1 + Je−α(T−s))]ds

≡ g(t, x).

Since u ∈ C1,2, we can apply the chain rule to V (t, x) = u(t, g(t, x)), which retrieves
the PIDE (4.13). It also follows that this PIDE also has a unique solution provided
that h is linear combination of futures contracts and derivatives with Lipschitz pay-
offs.
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VALUATION OF A NATURAL GAS STORAGE FACILITY
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Abstract. We investigate the valuation of a natural gas storage facility, where
trading is permitted on both the futures and spot markets simultaneously.

The risk neutral futures curve dynamics is specified directly by an HJM-model,
whereas the intra-month log-spot price is given by an Ornstein-Uhlenbeck process
reverting towards the log-price of the most recently settled futures contract.

We show how to value the storage by dynamic programming and propose a
numerical method for the computation of these values. It is also shown that a
pure “spot-market” strategy creates the highest storage value. However, numer-
ical examples demonstrate that it is often possible to come close to this value
by a strategy involving a large proportion of injections/extractions from futures
contracts. Benefits of using futures contracts include the possibility of at-least-
partially hedging storage operations with the relatively liquid NYMEX natural
gas futures contract.

1. Introduction

Ever since the deregulation of the U. S. natural gas market, this commodity has
been traded on local spot markets connected by a nationwide pipeline system. In
addition, natural gas futures contracts for delivery at Henry Hub, LA., are traded
at the New York Mercantile Exchange (NYMEX). Typically, natural gas is more
expensive in the winter than in the summer, and a storage facility could be one way
of profiting from these price differences. This paper deals with the valuation of such
a storage facility.

Earlier work on this topic by Manoliu [9] uses the swing-option pricing methodol-
ogy proposed by Jaillet, Ronn and Tompaidis [7] for the valuation of a storage facil-
ity. Here transactions are made on a spot market, where the risk-neutral dynamics
of the spot-price logarithm is the sum of a deterministic trend and a one-factor
Ornstein-Uhlenbeck process. Parsons [10] generalises this approach to a two-factor
model, where the mean reversion level is stochastic. Schwartz [11] refers to these
models as Model 1 and 2.

In this paper, the storage owner may inject and extract natural gas on the spot
and futures markets simultaneously. We show that a pure spot-market strategy
similar to the ones proposed in Manoliu [9] and Parsons [10] is the most profitable.
However, we also demonstrate that it is possible to come quite close to this value
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using a trading strategy where most of the natural gas injected or extracted comes
from NYMEX natural gas futures. This approach enables partial hedging using
these relatively liquid contracts.1

To proceed, spot and futures market models need to be specified. Based on
the work of Heath, Jarrow and Morton [4] in the interest-rate area, Cortazar and
Schwartz [2] introduce models for the joint dynamics of commodity futures prices.
We will use this framework with a particular functional specification of the volatility
to model NYMEX futures prices. Since these contracts have delivery periods starting
at the beginning of each calendar month, the spot price process is not entirely
determined by the futures prices. Within each calendar month, we let the spot price
follow the dynamics of Model 1 in Schwartz [11].

It turns out that an important ingredient of the storage valuation is the pricing of
swing options. These options give their holder multiple rights to choose the amount
of the commodity to be delivered at multiple occasions, given some constraints. In
order to price these options, Jaillet, Ronn and Tompaidis [7] suggest a multi-level
tree algorithm, Dahlgren [3] solves multiple variational inequalities, and Ibáñz [6]
uses Monte Carlo simulation. In this paper, the multi-level tree method by Jaillet,
Ronn and Tompaidis [7], the so-called “trinomial forest,” will be utilised.

This paper is organised as follows. Section 2 describes the physical properties
of the storage and Section 3 the operational protocols for the storage facility. The
futures- and spot-price models are specified in Section 4, and their calibration dis-
cussed in Section 5. These models are used for the valuation of the storage, which is
the topic of Sections 6 to 8. Details about the numerical implementation are given
in Section 9 and some numerical valuation examples in Sections 10 to 11. Section
12 contains conclusions and final comments.

2. Physical properties of the storage facility

The storage facility is modeled analogous to a water tank with one inlet and one
outlet, and its properties are specified in Assumption 1 and illustrated in Figure
1. Of course, these assumptions are a simplification of reality, and in Appendix A,
we provide an example of the properties of an existing storage facility. We employ
the market practice and measure quantities of natural gas in British thermal units
(Btu), a measure of energy content equivalent to the SI-unit Joule (J).

Assumption 1. Physical properties of the storage.

(1) The storage facility has a fixed capacity of Q (Btu).
(2) The storage facility has one injection inlet and one extraction outlet. For any

q ∈ [Q,∞), the injection and extraction rates at time t ≥ 0, qi
t (Btu/month)

and qe
t (Btu/month) satisfy qi

t ∈ [0, q] and qe
t ∈ [−q, 0] respectively. Here q is

fixed and does not depend on calendar time, outside temperature or storage
content.

(3) The injection and extraction rates qe
t and qi

t may be changed at most M ≥
q/Q discrete, equidistant times per month. These times are denoted tm,
m ∈ N and consequently the period [tm, tm+1) is of duration 1/M months.

1Hedging intra-month transactions would require access to liquid balance-of-month contracts.
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(4) There are no fixed or variable costs of extraction or injection, except for the
cost of the natural gas itself.

Parts 1 and 2 of Assumption 1 imply that an empty storage may be filled at the
uniform rate qi

t = Q (Btu/month) and a full one emptied at qi
t = −Q (Btu/month).

Furthermore, the controls qi
t and qe

t are right continuous step functions of time,
which are constant over the intervals [tm, tm+1). Below we write qe

m ≡ qe
tm

, qi
m ≡ qi

tm

and with this notation the amount of energy Qt stored at time t ∈ [tm, tm+1) is given
by

Qt = Q0 +
1

M

m−1
∑

k=0

(qi
k − qe

k) + (qi
m − qe

m)(t − tm). (2.1)

For simplicity, we write Qm ≡ Qtm , and the physical constraints of the storage imply
that Qm ∈ [0, Q] must hold for all m.

Figure 1: Important characteristics of the storage tank

3. Operation of the storage facility

Given the properties of the storage facility specified in Assumption 1, we postulate
that the storage owner buys the storage in the summer and sells it in the winter
in order to profit from the summer-winter spread. This behaviour is formalised in
Assumption 2.

Assumption 2. Summer-winter spread strategy.

(1) The storage is filled during exactly one of the summer months June, July or
August, and this is the injection month.

(2) The storage is emptied during exactly one of the winter months December,
January or February and this is the extraction month.
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Note that the terms “fill” (“empty”) only mean that the storage starts empty
(full) at the beginning of the injection (extraction) month and ends up full (empty),
but that these processes do not have to be monotonic. For the remainder of this
paper, and without loss of generality, we assume that futures contracts are perfectly
divisible and that one futures contract delivers Q (Btu) at an even rate during one
calendar month. In Sections 6 to 8, we prove that the storage valuation problem is
indeed scalable.

We also define three modes of operation, which the owner may use to implement
the summer-winter spread strategy of Assumption 2.

Definition 3.1. Benchmark mode of operation.

(1) At June 1, the cheapest of the June, July and August futures contracts
(discounted to June 1 prices) is acquired and the most expensive of the
December, January and February futures contracts (discounted to June 1
prices) is sold short.

Valuation of a storage run in this way is trivial. The next two modes of opera-
tion are more complex and will hopefully result in higher storage values. For the
remainder of this paper, acquisition of a negative number of futures is equivalent to
short selling.

Definition 3.2. Futures market mode of operation.

(1) A particular summer injection month is selected by the acquisition of one
futures contract with delivery that month. This decision may be taken at
any time prior to the maturity of the futures contract.

(2) A particular winter extraction month is selected by shorting one futures con-
tract with delivery that month analogously with the selection of the summer
injection month.

Under the benchmark and futures mode of operation, the storage is injected/extracted
by the delivery from the chosen futures contract. This is physically feasible since
q ≥ Q by Assumption 1. However, if q > Q, these strategies may not use the full
flexibility of the storage. One way of achieving this would be to inject/extract from
the spot and futures markets simultaneously, as as described in Definition 3.3.

Definition 3.3. Extended mode of operation.

(1) A particular summer injection month is selected by the acquisition of

βs ∈

[

−
q − Q

Q
,

q

Q

]

futures contracts with delivery that month. This also implies that the net

amount bought on the spot market during that month must equal (1−βs)Q
(Btu). The decision may be taken at any time prior to the maturity of the
futures contract.

(2) A particular winter injection month is selected by the acquisition of

βw ∈

[

−
q

Q
,
q − Q

Q

]

futures contracts with delivery that month. This also implies that the net

amount bought on the spot market that month must equal (−1 − βw)Q
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(BTU). The decision may be taken at any time prior to the maturity of the
futures contract.

(3) Spot market transactions are made in accordance with Assumptions 1 to 2.
In particular, this means that the decision about how much to sell or buy on
the spot market during the period [tm, tm+1) is taken at time tm.

When βs = 0 and βw = 0, we only have spot market transactions, which is the
situation described in Manoliu [9] and Parsons [10]. The situation βs = 1, βw = −1,
and abstaining from spot market transactions, is equivalent to the Futures mode of
operation.

Before being able to value a storage operated in either of these modes, we need
specify the futures- and spot-price dynamics.

4. Spot and futures price models

Let (Ω,F , {Ft}0≤t≤T , P ) be a filtered probability space, where Ft is the P−completion
of the natural filtration σ(Zu, 0 ≤ u ≤ t) of the I-dimensional Wiener process Zt.
For simplicity we choose P to be the risk-neutral probability measure, and the ex-
pectation operator with respect to this measure is denoted E. We introduce the
risk-free bank account Bt with dynamics

Bt = B0e
rt, (4.1)

for some fixed r > 0. In addition to this riskfree account, there is a futures market
specified in Assumption 3 defined on the probability space introduced above.

Assumption 3. Futures market.

(1) There are I futures contracts for delivery during the calendar months 1 to
I. Calendar month i begins at time Ti.

(2) The futures price F i
t , t ≤ Ti, for delivery during [Ti, Ti+1) follows the P−dynamics

dF i
t

F i
t

= σie
−αi(Ti−t)dW i

t , 0 ≤ t ≤ Ti. (4.2)

Here σi > 0, αi > 0, and W i
t is a one-dimensional Wiener process.

(3) Cov(W i
t , W

j
t ) = ρijt, 1 ≤ i, j ≤ I. The ρij’s are elements of an I × I corre-

lation matrix C, which satisfies the conditions required by such a matrix.

In this model, the price process of each futures contract has its specific volatility
σi and decay rate αi. Note that if we set αi = 0, the Black model introduced in
Black [1] is retrieved.

For t1 ≤ t2 ≤ Ti, the SDE (4.2) has the solution

F i
t2

= F i
t1

exp

{

−
σ2

i

4αi

e−2αiTi(e2αit2 − e2αit1) + σi

∫ t2

t1

e−αi(Ti−u)dW i
u

}

. (4.3)

Consequently, if min {Ti, Tj} ≥ t2, log(F i
t2
/F i

t1
) and log(F j

t2
/F j

t1
) have a bivariate

normal distribution with mean vector µ(t1, t2) and covariance matrix C(t1, t2) with
elements

µi(t1, t2) = −
σ2

i

4αi

e−2αiTi(e2αit2 − eαit1), (4.4)

Cij(t1, t2) = ρij

σiσj

αi + αj

e−αiTie−αjTj

(

e(αi+αj)t2 − e(αi+αj)t1
)

, (4.5)
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for i, j ∈ {1, . . . , I}. Finally, it can be shown that the correlation between log(F i
t2
/F i

t1
)

and log(F j
t2
/F j

t1
) equals ρij in the limit when |t2 − t1| → 0.

The futures market specified above is sufficient to perform a valuation of a storage
facility operated in the futures market mode. In the extended mode, a spot market
model must first be specified. By Assumption 2, spot market transactions are made
only during the injection and extraction months, implying that we do not need to
compare spot prices across months. Thus it suffices to specify the spot price within
each month separately.

Assumption 4. Intra month spot market.

(1) For Ti ≤ t < Ti+1, the spot price Si
t follows the P−dynamics

{

Si
t = exp [f (t) + Xt]

dXt = −α̂iXt dt + σ̂i dW i
t , XTi

= 0,
(4.6)

where f(t) is a deterministic function, α̂i > 0, σ̂i > 0 and W i
t the Wiener

process used to drive F i
t .

(2) For Ti ≤ t < Ti+1, the spot price parameters of month i are related to the
futures price parameters of this month through the relations

α̂i = αi,

σ̂i = σi

α̂i(Ti+1 − Ti)

1 − exp [−α̂i(Ti+1 − Ti)]
,

which implies σ̂i > σi. A detailed motivation for this assumption is found in
Appendix B.

(3) At the beginning of the month, E[Si
t |FTi

] = er(tm−Ti)F i
Ti

for Ti ≤ t < Ti+1,
meaning that the discounted initial intra month futures curve is flat.

(4) Let tm be the times when the storage operator could change the injection
and extraction rates, introduced in Part 3 of Assumption 1. A spot market
deal clocked at time tm = Ti + m/M is delivered at an even rate during
[tm, tm+1) at the price Si

tm
.

Absence of arbitrage implies that spot and futures prices are related through the
relation

F i
t =

1

M
E

[

M−1
∑

m=0

e−r(tm−Ti)Si
tm

∣

∣

∣
Ft

]

, (4.7)

which holds for any choice of α̂i > 0 and σ̂i > 0 by Part 3 of Assumption 4. This
is the reason why these parameters have to be specified separately in Part 2 of
Assumption 4. Moreover, for Ti−1 ≤ t < Ti the seasonal function f(t) is given by

f(t) = log F i
Ti

+ r(t − Ti) −
σ̂2

i

4α̂i

[

1 − e−2α̂i(t−Ti)
]

, (4.8)

so

Si
t = F i

Ti
exp

(

r(t − Ti) −
σ̂2

i

4α̂i

[

1 − e−2α̂i(t−Ti)
]

+ σ̂i

∫ t

Ti

e−α̂i(t−u)dW i
u

)

. (4.9)
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5. Model calibration

Let indices i, j refer to calendar months with i = 1 being January. For the
estimation of the futures market parameters, we simplify matters by assuming a
structure of the correlation matrix and constant parameters within each season, i.e.

αi = αs, σi = σs, i = 6, 7, 8,
αi = αw, σi = σw, i = 12, 1, 2,
ρij = exp(−λs|Ti − Tj |), λs > 0, i, j = 6, 7, 8,
ρij = exp(−λw|Ti − Tj |), λw > 0, i, j = 12, 1, 2.

We estimate λs and λw by fitting the functional form exp(−λ|Ti − Tj|) to a sample
correlation matrix in the least squares sense. This functional form will generate
a valid correlation matrix since it is the autocorrelation function of a stationary
Ornstein-Uhlenbeck process with mean reversion parameter λ > 0. Summer and
winter sample correlation matrices are estimated from historical log-returns. The
data used is NYMEX closing prices from the six month period before the first
contract of the season matures (Jan 1 to May 27 for the summer, June 1 to Nov 27
for the winter). We compute correlation matrices for the years 2003 and 2004 and
use the average matrix as target for the least squares fitting.

Results are shown in Table 1 below.

summer Jun Jul Aug
Jun 1.0000 0.9785 0.9574
Jul 0.9785 1.0000 0.9785
Aug 0.9574 0.9785 1.0000

winter Dec Jan Feb
Dec 1.0000 0.9844 0.9690
Jan 0.9844 1.0000 0.9844
Feb 0.9690 0.9844 1.0000

Table 1: Estimated summer and winter correlation matrices. Least squares estimation
result: λs = 0.2610 and λw = 0.1887. The unit is per annum.

Having obtained the correlation matrices, we estimate αs, αw, σs and σw from
Nymex futures option prices. In the Bloomberg information system, the price of an
option on the futures contract for month i is quoted in terms of its Black implied
volatility σ̄i, which is related to the parameters of our model through the expression

σ2
i

2αi

[

1 − e−2αi(Ti−t)
]

= σ̄2
i (Ti − t), (5.1)

with Ti being the maturity of the option and t < Ti the date of quotation.
The estimation procedure for (αs, σs) and (αw, σw) may now be described with

the following steps:

(1) Take monthly implied volatilities for the eight most recent months for the
three contracts.

(2) Estimate (α, σ) from Equation 5.1 above in the least squares sense (two
unknowns, twenty four equations).

(3) Fix α, but refit σ using Equation 5.1 with α and the most recent Black im-
plied volatilities. This ensures a best fit to the most recent implied volatili-
ties.
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Since the valuation date of our storage is May 31, 2005, Black implied volatilities
sampled on the last trading day of each month from September 2004 to April 2005
for the summer months and March 2004 to October 2004 for the winter months. The
results are displayed in Table 2 below. Here σLS refers to the volatility obtained
from the least squares estimation in Step 2 of the estimation procedure and σ to the
recalculated volatility from Step 3.

Season α σLS σ

summer 1.151 0.439 0.385
winter 1.468 0.600 0.675

Table 2: The parameters of the futures price model estimated from Black implied volatil-
ities obtained from Bloomberg’s. The unit is per annum.

From Table 2 we see that both volatilities and mean reversion factors are higher
during the winter than the summer. This could be attributable to the fact that the
demand peak of natural gas occurs in the winter.

6. Valuation - futures market mode of operation

In this section we derive the value of a storage run in the futures market mode
defined in Definition 3.2.

Futures prices refer to payments occurring at the start of delivery of the contract.
In particular, they are P−martingales, which together with properties of the max-
function imply that there is no reward for early acquisition of a particular contract.
Thus a necessary condition for optimality may be formulated verbally as:

“Do nothing until the beginning of the summer/winter season. Then,

at the beginning of each calendar month, decide whether to buy/short

the prompt month contract or waiting.”

This condition together with backwards induction yield the value Vs(t) of the
summer injection operations as

Vs(T8) = −F 8
T8

, (6.1)

Vs(T7) = max{−F 7
T7

,−e−r(T8−T7)F 8
T7
}, (6.2)

Vs(T6) = max{−F 6
T6

, e−r(T7−T6)E[Vs(T7)|FT6
]}, (6.3)

= max{−F 6
T6

, e−r(T7−T6)E[max{−F 7
T7

,−e−r(T8−T7)F 8
T7
}|FT6

]}, (6.4)

Vs(t) = e−r(T6−t)
E[Vs(T6)|Ft], t ≤ T6. (6.5)
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This value is negative and is simply the cost of filling the storage in an optimal
manner. Similar reasoning gives the value Vw(t) of the winter extraction as

Vw(T2) = F 2
T2

, (6.6)

Vw(T1) = max{F 1
T1

, e−r(T2−T1)F 2
T1
}, (6.7)

Vw(T12) = max{F 12
T12

, e−r(T1−T12)
E[max{F 1

T1
, e−r(T2−T1)F 2

T1
}|FT12

]}, (6.8)

Vw(t) = e−r(T12−t)
E[Vw(T12)|Ft], t ≤ T12. (6.9)

The expressions (6.3) and (6.8) can be computed analytically by Lemma 6.1 below.
Here Φ(x) is the distribution function of a normally distributed random variable.

Lemma 6.1. Let c1, c2 ∈ R and consider a derivative with payoff

Y = max{c1F
i+1
Ti+1

, c2F
i+2
Ti+1

}

at time Ti+1. If F i+1
t and F i+2

t follow the risk-neutral dynamics specified in Assump-

tion 3, the price Vex(t), t < Ti+1, of this derivative is given by

Vex(t) =























c1e
−r(Ti+1−t)F i+1

t Φ(D) + c2e
−r(Ti+1−t)F i+2

t Φ(Σ − D), c1 > 0, c2 > 0,

c1e
−r(Ti+1−t)F i+1

t Φ(−D) + c2e
−r(Ti+1−t)F i+2

t Φ(D − Σ), c1 < 0, c2 < 0,

e−r(Ti+1−t) max{c1F
i+1
t , c2F

i+2
t }, c1 ≥ 0 ≥ c2 or

c1 ≤ 0 ≤ c2,

where

Σ2 = Ci+1,i+1(t, Ti+1) + Ci+1,i+1(t, Ti+1) − 2Ci+1,i+2(t, Ti+1),

D =
− log

(

c2F
i+2
t /c1F

i+1
t

)

+ Σ2/2

Σ
.

Here the covariance matrix elements Cij(t, T ) above are given in (4.5).

The proof is found in Appendix C.1. Unfortunately, it does not seem possible
to derive analytical expressions for Vs(t), t < T6 and Vw(t), t < T12. Instead, the
conditional expectations (6.5) and (6.9) are computed by Monte Carlo simulation:
We use the explicit expressions (6.3) and (6.8) of the payoff together with the known
elements of the mean vector (4.3) and covariance matrix (4.4) of the joint futures
price distribution.

Finally, expressions (6.1) to (6.9) yield Vs and Vw homogeneous of degree one
with respect to scaling of Q as long as q ≥ Q. In particular, this means that the
assumption that one futures contract fills the storage in one month could be made
without loss of generality. Finally, by (4.3), storage values are also homogenous
of degree one when the current futures prices {F 6

t , F 7
t , F 8

t } and {F 12
t , F 1

t , F 2
t } are

multiplied by some common factor.

7. Valuation of swing options

In order to prepare for the valuation of a storage run in the extended mode, we
briefly discuss the pricing of swing options. More details about the pricing of such
options may be found in Jaillet, Ronn and Tompaidis [7] or Dahlgren [3].

Let ∆m ∈ R be the net amount bought (∆m ≥ 0) or sold (∆m ≤ 0) on the
spot market during [tm, tm+1). Since it is never optimal to buy and sell on the spot
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market during the same period, the flow from the β futures contracts together with
the sequence {∆m}

M−1
m=0 is sufficient to describe the operation of a storage run in

the extended mode. The set of physically possible spot market strategies given a
particular β is defined in Definition 7.1.

Definition 7.1. The set of physically possible spot market strategies P(β) consists
of all sequences {∆m}

M−1
m=0 such that

1. β ∈

[

−

(

q − Q

Q

)

,
q

Q

]

in summer, β ∈

[

−
q

Q
,

(

q − Q

Q

)]

in winter,

2. ∆m ∈

[

−
q

M
,

(

q − βQ

M

)]

for β ≥ 0, ∆m ∈

[

−

(

q + βQ

M

)

,
q

M

]

for β < 0,

3. QN =
∑N

m=0(∆m + βQ/M) ∈ [0, Q], N = 1, . . . , M − 1,

4.
∑M−1

m=0 ∆m = (1 − β)Q in summer,
∑M−1

m=0 ∆m = (−1 − β)Q in winter.

Condition 4 of Definition 7.1 simply says that the storage is empty at the beginning
of the summer injection month and full at the end and that we have the opposite
situation for the winter extraction month.

A financial contract that allows its holder to choose when and how much of a
commodity to buy or deliver, without violating a set of pre-specified rules, is called
a swing option. The class of swing options encountered in this paper is described
formally in Definition 7.2.

Definition 7.2. A swing option of class S(β) for swing month i with M exercise
opportunities tm = Ti + m/M , m ∈ {1, . . . , M}, allows the holder, at each tm to
choose ∆m ∈ P(β). The holder thereby immediately receives the amount Ym =
−∆mSi

tm
.

By Definition 7.2, there is one type of swing option for the summer and one for
the winter for each β. Requiring that ∆m is chosen at time tm, leads to the following
definition of the set of admissible spot market strategies A(β).

Definition 7.3. The set of admissible spot market strategies A(β) consists of all
sequences {∆m}

M−1
m=0 ∈ P(β) such that ∆m ∈ Ftm .

The spot price s = Si
t and storage level Q = Qt are both Markov processes, so

the value process SWi
t, Ti ≤ t ≤ Ti+1 of a swing option of class S(β) satisfies

SWi
t = SWi(t, s, Q), (7.1)

for any fixed and feasible β.
Below, we price a summer swing option is priced; the winter swing option is priced

analogously, and all results derived in this section hold for the winter swing option
as well.
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The core of the valuation is the Bellman equation

SWi(tM , s, Q) = 0, (7.2)

SWi(tm, s, Q) = sup
∆m∈A(β)

{

− ∆ms + e−r(tm+1−tm)
E[SWi(tm+1, S

i
tm+1

, Qm+1)|Ftm ]
}

,

with Qm+1 = Q + ∆m + βQ/M being the storage content at time tm+1 given the
swing action ∆m and the flow from the β futures contracts. Also, the storage is full
at the end of the injection month. Since the payoff Ym = −∆mStm is continuous
in ∆m, and ∆m belongs to a closed and bounded set, the supremum is attained by
some ∆∗

m, which in general depends on tm, Stm and Q.
Repeating (7.2) until m = 0 yields

SWi(t0, s, 0) = sup
{∆m}

M−1

m=0
∈A(β)

M−1
∑

m=0

e−r(tm−t0)
E[−∆mSi

tm
|Ft0 ], (7.3)

where we recall that the storage tank is empty before the beginning of the summer
injection month. Prior to the start of the swing month, i.e. if t ≤ Ti, we have

SWi
t = e−r(Ti−t)

E[SWi(t0, S
i
t0
, 0)|Ft] (7.4)

= e−r(Ti−t)
E[SWi(t0, F

i
Ti

, 0)|Ft] (7.5)

= SWi(t, F i
t , 0), (7.6)

by general derivatives pricing theory and the fact that Si
t0

= F i
Ti

by (4.9). A number
of useful properties of swing option prices are collected in Proposition 7.4 below,
which proof is found in Appendix C.2.

Proposition 7.4. Let Si
t follow the spot price dynamics (4.9). Then the following

properties hold for the price SWi
t of a class S(β) swing option:

(1) The swing option price SWi
t is homogeneous of degree one with respect to

scaling of Q and q by a common factor.

(2) For t ≤ Ti we have that

SWi(t, F i
t , Q0) = kiF

i
t ,

where ki ≡ SWi(t0, 1, Q) is deterministic and only depends on the market

and storage parameters α̂i, r, σ̂i, ,|Ti+1 − Ti|, β, Q, q and M .

(3) Let σ̂i = 0 and/or α̂i = 0. Then

SWi(t0, F
i
Ti

, Q0) =

{

(−1 + β)F t
Ti

, (summer),
(1 + β)F t

Ti
, (winter).

.

The constant ki ≡ SWi(t0, 1, Q) is computed by the recurrence relation (7.2), and
the details of the numerical implementation are discussed in Section 9.

8. Valuation - extended mode of operation

In this mode of operation, the storage owner must decide which month is to be the
injection or extraction month, as well as how many futures to buy and sell during this
month. As a consequence of this decision, the owner receives β futures contracts
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plus a swing option of class S(β) for that particular month. More specifically, if
deciding for month i at time t ≤ Ti, the owner receives the amount Yi given by

Yi = −βe−r(Ti−t)F i
t + SWi

t(β)

= (−βe−r(Ti−t) + ki(β))F i
t (8.1)

≡ ci(β)F i
t (8.2)

where (8.1) follows by Part 2 of Proposition 7.4. Arguments similar to the ones used
at the beginning of Section 6 implies that there is no reward for early decisions.

First, assume that β is fixed. Then arguments similar to the ones used in Section
6 to derive (6.1) to (6.9) give the value Vs of the summer injection as

Vs(T8) = c8(β)F 8
T8

, (8.3)

Vs(T7) = max
{

c7(β)F 7
T7

, e−r(T8−T7)c8(β)F 8
T7

}

, (8.4)

Vs(T6) = max
{

c6(β)F 6
T6

, e−r(T7−T6)E[Vs(T7)|FT6
]
}

, (8.5)

Vs(t) = e−r(T6−t)
E[Vs(T6)|Ft], t ≤ T6, (8.6)

with analogous expressions being valid for the winter extraction value Vw(t). Again,
from Section 6 we note that (8.5) may be evaluated analytically by Lemma 6.1, and
Part 1 of Proposition 7.4 tells us that the valuation problem is scalable in Q and q.

Expressions (8.3) to (8.6) give one storage value for each feasible β. In Proposition
8.1 below, we show that β = 0 is always an optimal choice for both the summer
injection and winter extraction.

Proposition 8.1. Let β be as in Definition 7.1. Then Vs(t), t ≤ T8 and Vw(t),
t ≤ T2, are maximised for β = 0.

Proof. A portfolio of β futures plus an S(β) swing option may be viewed as a swing

option, which set of admissible spot market strategies Â(β) consists of all sequences

{̂∆m}
M−1
m=0 such that

1. ̂∆m ∈

[

−

(

q − βQ

M

)

,
q

M

]

when β ≥ 0, ̂∆m ∈

[

−
q

M
,

(

q + βQ

M

)]

when β < 0,

2. QN =
∑N

m=0 ∆̂m ∈ [0, Q], N = 1, . . . , M − 1,

3.
∑M−1

m=0 ∆̂m = Q in summer,
∑M−1

m=0 ∆̂m = −Q in winter).

The admissible spot market strategies {∆m}
M−1
m=0 of an S(0) swing option satisfy

Points 2 and 3 above, but with Point 1 replaced by ∆m ∈ [−q/M, q/M ]. Thus

A(0) ⊇ Â(β), with equality if β = 0, which concludes the proof. �

Proposition 8.1 tells us that choosing to take part of the injection/extraction
from a futures contract, reduces the storage flexibility. Hence making all injec-
tions/extractions on the spot market maximises the storage value. Note that this
result did not use any properties about our spot- and futures price models. Thus it
holds for any market model, provided that the no-arbitrage condition 4.7 holds.

What Proposition 8.1 does not tell us, is how much value is lost by choosing
β 6= 0. We investigate that numerically in Section 11.



VALUATION OF A NATURAL GAS STORAGE FACILITY 13

9. Numerical implementation

In this section we start by discussing the implementation of the Monte Carlo
valuation computation of expressions (6.5) and (8.6). The swing option valuation is
also described in more detail.

Given the current futures price vector Ft ≡ (F n
t , F n+1

t , F n+2
t ), the risk-neutral

distribution of FTi
= (F n

Ti
, F i+1

Ti
, F i+2

Ti
) is joint log-normal with mean vector µ and

covariance matrix C specified in (4.3) to (4.4). We start by letting C = UDUT be

the eigenvalue decomposition of the symmetric matrix C, and define A = UD1/2,
which exists since C is positive semi definite. Then the Monte Carlo algorithm may
be described with the following steps.

(1) Generate a 3×1 vector x of i.i.d. N(0, 1) random variables and let y = µ+Ax.
The vector y has mean µ and covariance matrix C.

(2) Compute the simulated futures prices as FTi
= Ft exp(y), where the multi-

plication and exponential function are interpreted componentwise.
(3) Compute a simulated payoff V by inserting the simulated futures prices into

the analytical expressions for Vs(T6) and Vw(T12). Compute the total value
as the sum and save the value.

(4) Repeat Nsim times, compute the sample average and discount.

The homogeneity of the max-function would allow the use one of the three futures
contracts as a numeraire, which would reduce the dimensionality from three to two.
In our application however, computational speed is not critical, so we refrain from
doing this improvement.

We now turn to the implementation of the swing option valuation. Here we only
show how a summer swing option of class S(0) is implemented, with the other types
are treated analogously.

First, the state variables (t, S, Q) are discretised. The storage level Q is discretised
as Qk = kQ/K with k ∈ {0, . . . , K}. A discrete swing action may then be written
∆m = δmQ/K, δm ∈ {k1, . . . , k2} for some integers k1 ≤ k2. Here we assume that
Q, q, M and K are chosen such that all extremal swing actions belong to this
discrete set of swing actions. The rationale for capturing these bang-bang strategies
is discussed briefly in Note 9.1 below.

Following Jaillet, Ronn and Tompaidis [7], Xt = log St − f(t) is used as state
variable and this stochastic process is discretised into a trinomial tree. We let
the time grid coincide with the opportunities tm, so the time step ∆t satisfies
∆t = tm+1 − tm = 1/M months. The x-discretisation at time tm is xl = l∆x
for l ∈ {−m, . . . , +m}, and by (4.6) the spot price grid at time tm becomes sl =
exp [f(tm) + xl], where f(t) is given in Equation (4.8). Hull and White [5] show that

∆x = σ̂i

√
3∆t optimises accuracy while maintaining stability, and with this choice,

the risk neutral transition probabilities from xl become











pl
d = 1

6
+ α̂i

√
∆t

σ̂i

√
3

xl Down,

pl
s = 2

3
Same,

pl
u = 1

6
− α̂i

√
∆t

σ̂i

√
3

xl Up.

(9.1)
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The discrete version of the Bellman equation (7.3) now becomes

SWi(tM , sl, QK) = 0

SWi(tm, sl, Qk) = max
δm∈A

{

− δmQ/Ksl +
1

1 + r∆t

[

pl
dSWi(tm+1, sl−1, Qk+δm

) +

pl
sSWi(tm+1, sl, Qk+δm

) + pl
uSWi(tm+1, sl+1, Qk+δm

)
]}

, (9.2)

Equation (9.2) may be implemented with nested for-loops over the indices m, k, l,
where checks are made in each iteration if the spot market transaction ∆m = δm∆Q
is feasible or not.

Note 9.1. The reason for including the extremal swing actions is that numerical
experiments suggest that most, but not all swing actions are extremal. This indicates
that not truncating these swing options could be a good heuristic for reducing the
Q−discretisation error.

10. Valuation examples - swing options

In this section we investigate how the summer and winter swing options of class
S(0) depend on some model and storage parameters. To compute the prices, a
Matlab implementation of the numerical swing option pricing method described in
Section 9 is used. The specific storage and model parameters together with the
valuation results are shown in Table 3 and in Figure 2 below.

σ̂i\α̂i 0.0 1.0 2.0 3.0
0.0 -10000 -10000 -10000 -10000
0.3 -10000 -9996 -9984 -9976
0.6 -10000 -9983 -9967 -9952
0.9 -10000 -9979 -9951 -9928

σ̂i\α̂i 0.0 1.0 2.0 3.0
0.0 10000 10000 10000 10000
0.3 10000 10008 10016 10024
0.6 10000 10017 10033 10048
0.9 10000 10025 10049 10071

Table 3: The dollar price at the beginning of the summer (left) and winter (right) swing
options of class S(0) for different values of σ̂i and α̂i (annualised). Market
parameters: F

i
Ti

= $10, 000 USD, r = 0.03 (per annum). Storage parameters:

Q = 104 (mmBtu), q = 2Q (Btu/month), M = 30, and K = 100 levels.
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summer, β = 0 winter, β = 0

1 1.2 1.4 1.6 1.8 2
−10005

−10000

−9995
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−9970
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Figure 2: Dependence on q for the summer and winter swing options of class S(0). Mar-
ket parameters: F

i
Ti

= $10, 000, r = 0.03 (per annum), α̂i = 2.0 (per annum)

and σ̂i = 0.6 (per annum). Storage parameters: Q = 104 (mmBtu), M = 30,
K = 100 levels.

The results in Table 3 show that the swing option prices increase with α̂i for fixed
σ̂i and with σ̂i for fixed α̂i. A large value of α̂i means that today’s spot price will
have a greater impact on future spot prices, making prediction easier. Conversely,
if α̂i = 0, impact of the current spot price on future spot prices is minimal, and the
proof of Proposition 7.4 shows that any feasible strategy is optimal.

A larger value of σ̂i increases the probability of large spot prices, which also creates
larger trading gains.

As expected, Figure 1 reveals that the value of all four types of swing options
increase with q, but the rate of this increase decreases.

11. Valuation examples - storage operations

Now we to the valuation of the storage operations. First we investigate how
the summer and winter storage values on June 1 depend on model and storage
parameters in the different modes of operation defined in Section 3. In light of
Proposition 8.1, we use β = 0 for the extended mode, meaning that all transactions
are on the spot market exclusively. However, we will also try β = 1 for the summer
and β = −1 for the winter in order to see how much storage value is lost by using
futures.

The Monte Carlo computations of the June 1 value of the winter operations use
the same 3 × 106 pseudo random numbers for all examples. Results are given in
Tables 4 to 7.
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Mode αi = 0.0 αi = 1.0 αi = 2.0 αi = 3.0 αi = 4.0
σi = 0.0 B -9950 -9950 -9950 -9950 -9950

F -9950 -9950 -9950 -9950 -9950
E(β = 0) -9950 -9950 -9950 -9950 -9950
E(β = 1) -9950 -9950 -9950 -9950 -9950

σi = 0.3 B -9950 -9950 -9950 -9950 -9950
F -9885 -9887 -9881 -9872 -9862
E(β = 0) -9985 -9878 -9863 -9845 -9826
E(β = 1) -9985 -9878 -9864 -9846 -9827

σi = 0.6 B -9950 -9950 -9950 -9950 -9950
F -9809 -9812 -9800 -9782 -9762
E(β = 0) -9809 -9795 -9765 -9729 -9691
E(β = 1) -9985 -9895 -9766 -9731 -9693

σi = 0.9 B -9950 -9950 -9950 -9950 -9950
F -9733 -9737 -9719 -9692 -9662
E(β = 0) -9773 -9711 -9667 -9613 -9556
E(β = 1) -9773 -9812 -9669 -9616 -9580

Table 4: June 1 dollar value of the summer injection for different values of annualised σi

and αi. Here B=Benchmark, F=Futures market mode, and E=Extended mode.
Parameters: F

6
T6

= F
7
T6

= F
8
T6

= 10000 USD, r = 0.03 (per annum), λ = 0.3

(per annum), M = 30, Q = 104 (mmBtu), q = 2Q (Btu/month), and K = 100
levels.

Mode αi = 0.0 αi = 1.0 αi = 2.0 αi = 3.0 αi = 4.0
σi = 0.0 B 9851 9851 9851 9851 9851

F 9851 9851 9851 9851 9851
E(β = 0) 9851 9851 9851 9851 9851
E(β = −1) 9851 9851 9851 9851 9851

σi = 0.3 B 9851 9851 9851 9851 9851
F 10152 10090 10077 10078 10083
E(β = 0) 10152 10100 10095 10105 10119
E(β = −1) 10152 10100 10095 10004 10118

σi = 0.6 B 9851 9851 9851 9851 9851
F 10479 10356 10329 10330 10339
E(β = 0) 10479 10375 10365 10386 10414
E(β = −1) 10479 10374 10364 10384 10412

σi = 0.9 B 9851 9851 9851 9851 9851
F 10806 10623 10508 10583 10597
E(β = 0) 10806 10651 10637 10669 10713
E(β = −1) 10806 10650 10636 10666 10709

Table 5: June 1 dollar value of the winter extraction for different values of annualised σi

and αi. Here B = Benchmark, F = Futures market, E = Extended. Parameters:
F

6
T6

= F
7
T6

= F
8
T6

= $10000, r = 0.03 (per annum), λ = 0.3 (per annum),

M = 30, Q = 104 (mmBtu), q = 2Q (Btu/month), and K = 100 levels.
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Parameters Mode q/Q = 1.0 q/Q = 1.2 q/Q = 1.4 q/Q = 1.6 q/Q = 1.8
σi = 0.0 E(β = 0) -9950 -9950 -9950 -9950 -9950
αi = 0.0 E(β = 1) -9950 -9950 -9950 -9950 -9950
σi = 0.3 E(β = 0) -9887 -9884 -9882 -9880 -9879
αi = 1.0 E(β = 1) -9887 -9984 -9882 -9881 -9879
σi = 0.3 E(β = 0) -9872 -9864 -9857 -9852 -9848
αi = 3.0 E(β = 1) -9872 -9864 -9858 -9853 -9949
σi = 0.9 E(β = 0) -9737 -9729 -9723 -9718 -9714
αi = 1.0 E(β = 1) -9737 -9729 -9723 -9719 -9715
σi = 0.9 E(β = 0) -9691 -9667 -9649 -9635 -9623
αi = 3.0 E(β = 1) -9691 -9667 -9650 -9636 -9625

Table 6: June 1 dollar value of the summer injection for different values of q and combi-
nations of αi and σi. Here S=Spot market and C=Combined mode of operation.
Parameters: F

6
T6

= F
7
T6

= F
8
T6

= 10000 USD, r = 0.03 (per annum), λ = 0.3

(per annum), M = 30, Q = 104 mmBTU, and K = 100 levels.

Parameters Mode q/Q = 1.0 q/Q = 1.2 q/Q = 1.4 q/Q = 1.6 q/Q = 1.8
σi = 0.0 E(β = 0) 9851 9851 9851 9851 9851
αi = 0.0 E(β = −1) 9851 9851 9851 9851 9851
σi = 0.3 E(β = 0) 10091 10094 10096 10097 10099
αi = 1.0 E(β = −1) 10091 10094 10096 10097 10098
σi = 0.3 E(β = 0) 10078 10087 10093 10098 10102
αi = 3.0 E(β = −1) 10078 10086 10092 10097 10101
σi = 0.9 E(β = 0) 10623 10632 10639 10644 10648
αi = 1.0 E(β = −1) 10623 10632 10638 10643 10647
σi = 0.9 E(β = 0) 10584 10610 10630 10646 10659
αi = 3.0 E(β = −1) 10584 10609 10629 10644 10656

Table 7: June 1 dollar value of the winter extraction for different values of q and combi-
nations of αi and σi. Here S=Spot market and C=Combined mode of operation.
Parameters: F

6
T6

= F
7
T6

= F
8
T6

= 10000 USD, r = 0.03 (per annum), λ = 0.3

(per annum), M = 30, Q = 104 mmBTU, and K = 100 levels.

As expected by Proposition 8.1, Tables 4 to 7 show that the extended mode with
β = 0 is the most valuable, but the differences compared to the βs = 1, βw = −1
strategy are minimal for all parameter values. Not less interesting, the futures mode
is competitive roughly when αi is less than 1.5 or the storage flexibility q/Q is less
than 1.2 to 1.6.

As expected, higher volatility in terms of large σi yields higher values. Finally,
the marginal value increase caused by increasing q increases with increasing values
of αi and σi.

We conclude this section by performing a valuation of the storage using the model
parameters from Tables 1 to 2 in Section 5.
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Mode Vs Vw Vs + Vw

Benchmark -6264 7793 1528
Futures market -6229 8085 1856
Extended, βs = 0, βw = 0 -6221 8109 1888
Extended, β = 1, βw = −1 -6222 8108 1887

Table 8: May 27, 2005 dollar values of the summer and winter operations for all modes
when the model parameters are taken from Tables 1 to 2. May 27, 2005 futures
prices: F

6
T6

= 6315, F
7
T6

= 6280, F
8
T6

= 6350, F
12
T6

= 7600, F
1
T6

= 7920, F
2
T6

=

7950. Other parameters: r = 0.03 (per annum), M = 30, Q = 104 (mmBtu),
q/Q = 2, K = 100 levels.

Here the differences between the three modes are quite small. The most important
takeaway from Table 8 however, is the importance of taking the decision of summer
injection or winter extraction based on some kind of dynamic optimisation approach.
This increases the storage value by 20% compared to the static benchmark approach.

12. Concluding remarks

We define three modes of operation of a natural gas storage facility and prove
that a pure spot-market strategy creates the highest storage value.

However, we also demonstrate that it is often possible to come very close to this
value by a combined spot-futures strategy, where the net injection/extraction from
the spot market over the injection/extraction month is zero. For some market and
storage parameters, including the ones we estimated from real market data, the pure
futures market mode is also competitive.

One advantage with the combined spot-futures strategy is that NYMEX futures
could be used for partial hedging. In the futures mode, using our complete futures
model, the hedging could even be perfect.

Our approach is by far the most general one. One could extend the injec-
tion/extraction month to the entire summer/winter periods, or starting operations
(futures or extended mode) during the now passive Spring and Autumn months.
This would lead to a further increase of the storage value.

If the results of this paper were to be used in an actual storage valuation, Assump-
tion 1 would have to be extended to incorporate the features of a real facility outlined
in Appendix A. Our valuation framework of Sections 6 to 8 could be extended to
hold under these assumptions as well. In this case, it is likely that the futures mode
of operation becomes even more competitive, since injection/extraction at an even
rate minimises the total flow and hence reduces the losses.
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[6] A. Ibáñz. Valuation by simulation of contingent claims with multiple early exercise opportu-
nities. Mathematical Finance, 14(2):223–248, 2004.

[7] P. Jaillet, E. Ronn, and S. Tompaidis. Valuation of commodity-based swing options. Manage-

ment Science, 50(7):909–921, 2004.
[8] W. Magrabe. The value of an option to exchange one asset for another. Journal of Finance,

33:177–186, 1978.
[9] M. Manoliu. Storage options valuation using multilevel trees and calendar spreads. Interna-

tional Journal of Theoretical and Applied Finance, 7(4):425–464, 2004.
[10] C. Parsons. Valuaing commodity storage contracts: A two-factor tree approach. Preprint

WTM Energy Software LLC, 2005.
[11] E. Schwartz. The stochastic behavior of commodity prices: implications for valuation and

hedging. Journal of Finance, 52(3):923–972, July 1997.

Appendix A. A sample natural gas storage facility

The characteristics of this natural gas storage is supplied by Dr. Kevin G. Kindall,
Commercial Division, ConocoPhillips.

(1) Capacity: Q = 106 (mmBtu).
(2) Maximal injection rate: The maximal injection rate qi depend on the storage

level Q according to the following table:

Q/Q qi(Btu/month)

0-50% 0.167Q
50-100% 0.140Q

(3) Maximal extraction rate: The maximal extraction rate qe depend on the
storage level Q according to the following table:

Q/Q qe(Btu/month)

0-10% 0.250Q
10-16% 0.333Q
16-30% 0.375Q
30-35% 0.475Q
30-35% 0.500Q

(4) Injection and extraction rate changes: Usually done on a daily basis.
(5) Costs: Injection cost: 2.18c/mmBTU, extraction cost: 1.95c/mmBTU. Due

to leakage, 3.59% of the injected but none of the extracted volume is lost.

The analytical framework of Sections 2, 6, 7 and 8 could be extended to incorporate
these features without much difficulty.

Appendix B. Motivation of the assumptions about σ̂i and α̂i

Consider Model 1 in Schwartz [11], in which the risk neutral dynamics of the spot
price St for t ≥ 0 is given by

{

St = exp [f(t) + Xt]
dXt = −α̂Xt dt + σ̂ dWt, X0 = 0,

(B.1)
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with α̂ > 0, σ̂ > 0 and f(t) deterministic for t ≥ 0. Our spot price Si
t for month

i, introduced in Assumption 4, follows (B.1) for Ti ≤ t < Ti+1, but is not defined
for other times. This means that we are not allowed to compare spot prices across
months, and as a consequence we cannot find a relationship between the spot- and
futures-market parameters. Nevertheless, we think that the similarities between
(B.1) and our model are so great that we make the following assumption.

The relationship between the spot- and futures-market parameters for our spot

price model is the same as for the model (B.1).

This relationship is derived as follows. Let tm = Ti +m(Ti+1 −Ti)/M , t ≤ tm and
write

Gtm
t = exp

{

f(tm) + [log St − f(t)] e−α̂(tm−t) +
σ̂2

4α̂

[

1 − e−2α̂(tm−t)
]

}

.

Then by Schwartz [11]

F i
t =

1

M

M−1
∑

m=0

e−r(tm−t0)Gtm
t (B.2)

≡ h(t, St), (B.3)

for t ≤ Ti. By (B.2), h is a continuous and strictly increasing function of St for each
t, which implies that h has a well defined inverse St = h−1(t, F i

t ). An application of
Itô’s Lemma to (B.2) and some rearranging yield

dF i
t

F i
t

= σ̂e−α̂(Ti−t)

(

∑M−1
m=0 e−(r+α)(tm−t0)Gtm

t
∑M−1

m=0 e−r(tm−t0)Gtm
t

)

dWt

≡ σ̂e−α̂(Ti−t)β(t, F i
t )dWt. (B.4)

Here the definition of the function β is enabled by the fact that h is invertible.
Moreover, β(t, F i

t ) ∈ (0, 1), but since it is not constant, F i
t is not log-normal. In the

case when the terms e−r(tm−t0)Gtm
t are all equal, we obtain

β =
M−1
∑

m=0

e−α(tm−t0) (B.5)

≈
1 − exp(−α̂(Ti+1 − Ti))

α̂(Ti+1 − Ti)
, (B.6)

where the sum on the first line is approximated by an integral. Setting β(t, F i
t ) = β

in (B.4) yields an approximate risk neutral dynamics for F i
t as

dF i
t

F i
t

= βσ̂e−α̂(Ti−t)dWt. (B.7)

If, on the other hand, we had started with prescribing that the risk neutral dy-
namics for F i

t is given by

dF i
t

F i
t

= σe−α(Ti−t)dWt, (B.8)
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a comparison between (B.7) and (B.8) gives

α = α̂

σ = βσ̂.

In the Black model, when α̂ = 0, β(t, F i
t ) = 1, implying that σ̂ = σ in this case.

Appendix C. Proofs

C.1. Proof of Lemma 6.1.

Proof. The case when c1 and c2 do not have the same sign is trivial.
If c1 and c2 are of equal sign, the pricing formulas are derived by a change of

numeraire approach similar to the one used by Magrabe [8]. This includes rewriting
the payoff Y as

Y = max{c1F
i+1
Ti+1

, c2F
i+2
Ti+1

}

= F i+1
Ti+1

max

{

c1, c2

F i+2
Ti+1

F i+1
Ti+1

}

.

Using the futures price F i+1
t as numeraire and letting Ŷ = Y/F i+1

Ti+1
and F̂t =

F i+2
t /F i+1

t yield

Ŷ = max
{

c1, c2F̂Ti+1

}

.

By (4.5), log(F̂Ti+1
/F̂t) is a random variable with variance

Σ2(t, Ti+1) = Ci+1,i+1(t, Ti+1) + Ci+2,i+2(t, Ti+1) − 2Ci+1,i+2(t, Ti+1),

so if X denotes a standard normal random variable, we have that

F̂T = F̂t exp

(

−
1

2
Σ2(t, Ti+1) + Σ(t, Ti+1)X

)

under the equivalent martingale measure P̂ implied by the chosen numeraire. Fur-
thermore, under this numeraire, the exchange option value is given by

V̂ex(t) = Ê[Ŷ |Ft],

where Ê is the expectation with respect to P̂ . Assuming c1 ≥ 0 and c2 ≥ 0 and
proceeding similarly to the derivation of the Black-Scholes call option formula yield

V̂ex(t) = c1Φ(D) + c2F̂tΦ(Σ − D),

with

D =
− log

(

c2F i+2
t

c1F i+1
t

)

+ 1
2
Σ2

Σ
.

Finally, switching back to the bank account Bt as numeraire, and recalling that
F

Ti+1

t refers to a payment occurring at time Ti+1 give us the pricing formula

Vex(t) = c2e
−r(Ti+1−t)F i+1

t Φ(D) + c2e
−r(Ti+1−t)F i+2

t Φ(Σ − D).

The case when c1 < 0, c2 < 0 is proved analogously. �

C.2. Proof of Proposition 7.4.
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Part 1. If we multiply Q and q by the same factor κ > 0, it follows by Definition
7.1, that all physically possible swing actions ∆m ∈ P(β) are multiplied by κ as
well. Inserting κ∆m into the Bellman equation (7.2) proves the claim.

Part 2. By (4.9), St is linear in F i
Ti

if started at time t0, so (7.3) may be rewritten
as

SWi(t0, F
i
Ti

, Q0) = F i
Ti

sup
{∆m}M−1

m=0
∈A(β)

M−1
∑

m=0

e−r(tm−t0)
E[∆m(Si

tm
/F i

Ti
)|Ft0]

= SWi(t0, 1, Q)F i
Ti

≡ kiF
i
Ti

,

where ki only depends on model and storage parameters but not on the futures
price. Consequently we have for t ≤ Ti

SWi(t, F i
t , Q0) = E[SWi(t0, F

i
Ti

, Q0)|Ft]

= kiF
i
t .

Part 3. By (4.9), e−r(t−t0)Si
t , t ≥ t0 is a P−martingale for σ̂i = 0 and/or α̂i = 0.

Consequently, the discrete time gains process Yn, n = 0, . . . , M − 1 defined as

Yn =

n
∑

m=0

−∆me−r(tm−t0)Si
tm

,

is a P−martingale, implying that every feasible spot market strategy {∆m}
M−1
m=0 ∈

A(β) is optimal. Fixing one such strategy, plugging it into (7.3) and using the no-
arbitrage condition (4.7) complete the proof.
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MODELLING THE CORRELATION MATRIX OF NATURAL GAS

FUTURES RETURNS

MATS KJAER AND EHUD RONN

Göteborg University & The University of Texas at Austin

Abstract. We specify and estimate two types of parsimonious models of the
correlation matrix of natural gas futures returns. The first uses a correlation
function to generate the matrix, and the second one employs a factor analytic
approach.

There are two important findings. First, there is a distinct drop in correlation
between two futures contracts for every April month located between their two
maturities. Our suggested models are able to reproduce this effect, which we also
explain in micro-economic terms. Second, examples suggest that three to five
parameters are sufficient to obtain a good fit to an 18 × 18 sample correlation
matrix.

1. Introduction

Natural gas futures contracts for delivery at Henry Hub, LA., have been traded
on the New York Mercantile Exchange (NYMEX) since April 1990. These futures
contracts are currently amongst the most actively-traded commodity contracts, at-
tracting hedgers as well as speculators.

Activities such as portfolio selection, Value-at-Risk (VaR) calculation and exotic
option pricing often involve estimation of the correlation matrix between returns
of futures of different maturities. Typically, the first estimator to consider for this
task is the historical sample correlation matrix (SCM). However, having M futures
contracts means that 1

2
M(M − 1) parameters need to be estimated. Pourmahdi [9]

reports that the SCM is unstable for large M , and that rather large sample sizes
are required in order to obtain acceptable confidence intervals.

In this paper we propose and evaluate some parsimonious correlation matrix mod-
els for natural gas futures returns. The aim is to reproduce the most important styl-
ised facts of the SCM, using far fewer parameters. Most of the factors that govern
demand and supply — such as weather patterns, number of end users, extraction
infrastructure and storage capacity — do not change substantially from one year
to the next. Thus we believe that volatilities do change from year to year, but
that correlations may be more stable and possible to describe with some suitable
mathematical functions.

Date: April 25, 2006.
Key words and phrases. Correlation matrix modelling, Futures price modelling, Factor analysis,

Least squares estimation, Maximum likelihood estimation.
JEL classification: C13, C51.
Mats Kjaer’s visit to UT Austin was supported by: The University of Texas at Austin, The

Knut & Alice Wallensberg Foundation, and the Dr. Marcus Wallenberg Foundation.
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To the best of our knowledge, no papers have previously been published on the
correlation structure for a commodity, such as natural gas, with a seasonal demand
or supply. We believe that our results are particulary helpful for economic agents
who seek a parsimonious method of calculating Value-at-Risk (VAR) of a portfolio.
There are two main contributions of this paper. First, we are able to obtain a
good fit of an 18 × 18 sample correlation matrix with models using three to five
parameters. Second, we explain the distinct drop in correlation found between two
futures contacts for each April month located between their maturities. Most of our
proposed models are capable of reproducing this drop.

For non-seasonal commodities and interest rates, research has focused on so-called
factor-analytic models. Here the first three factors are commonly known as level,

slope and curvature, and they generate most of the correlation structure. This three-
factor phenomenon has been observed for interest rates (Rebonato [10]), copper
futures (Cortazar and Schwartz [3]) and crude oil futures (Schwartz [11]). Longstaff
et. al. [7] use this observation and historical LIBOR rates to estimate the historical
factors, and fit the factor weights such that the mean squared error between model
implied and market swaption prices is minimised.

In research fields such as geophysics, meteorology, statistics, engineering, social
sciences and medicine, the literature concerning correlation modelling is vast. Apart
from the factor-analytic approach described above, several other classes of methods
are available. We will employ the correlation-function modeling approach, where
the correlation matrix elements are specified directly from a correlation function of
some stochastic process.

Most research work has been done for stationary1 correlation functions, and Buell
[2] and Stein [12] provide methods for their contruction, as well as libraries of such
functions. Dunsmuir and Nott [4] show how to derive non-stationary correlation
functions from stationary ones and apply this to the modeling of the power output
from an array of wind mills.

We will specify a continuous-time model for the joint dynamics of futures prices,
and propose some nested non-stationary correlation function and factor-analytic
models. First, the model parameters of the individual futures prices are estimated
separately with the Maximum Likelihood (ML) method. Second, the correlation
matrix models are estimated with both the Un-weighted Least Squares (ULS) and
ML methods. Jöreskog [5] discusses the properties of the ML method in this context.
Finally, we compute confidence intervals for the estimated parameters, and perform
tests to evaluate the models.

This paper is organised as follows. Section 2 specifies the joint futures price
dynamics. The data format and quality is discussed in Section 3 and some stylised
facts of the sample correlation matrix are given in Section 4. This is followed by
the specification of the correlation function and historical factor models in Section
5, and their estimation and evaluation in Section 6. Estimation and test results are
presented in Section 7 and Section 8 contains conclusions and final remarks.2

1The correlation function C(m, n), with m, n ∈ Z, is called stationary if C(m, n) = C(m+k, n+
k) for k ∈ Z.

2In Appendix A, we provide proofs of the important positive semi-definiteness of our models.
We also provide the reader with a toolbox, that permit verification of positive semi-definiteness of
models other than the ones used in this paper.
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2. Futures price model

Let (Ω,F , {Ft}0≤t≤T , P ) be a filtered probability space, where Ft is the P -com-
pletion of the natural filtration σ(Zu, 0 ≤ u ≤ t) of the M-dimensional Wiener
process Zt. Here P is the real world probability measure, and expectations with
respect to this measure are denoted by E. On this probability space, we introduce
M futures contracts for delivery during the calendar months 1 to M . Here calendar
month m begins at time Tm and under P , the futures price F m

t , 0 ≤ t ≤ Tm, for
delivery during (Tm, Tm+1] follows the SDE

dFm
t

F m
t

= µmdt + σme−αm(Tm−t)dW m
t , (2.1)

where µm ∈ R, σm > 0, αm ∈ R, and W m
t is a one-dimensional Wiener process.

Furthermore, Cov(W m
t , W n

t ) = C(m, n)t, where C(m, n) is an element of an M ×M
correlation matrix C. In other words,

(1) C is symmetric and positive semi-definite.
(2) C(m, m) = 1 and C(m, n) ∈ [−1, 1], 1 ≤ m, n ≤ M .

If αm = 0 in (2.1), the model introduced in Black [1] is retrieved. It serves as the
benchmark model for pricing vanilla futures options.

Next we define the log-returns of F m
t as

Rmt ≡ log(F m
t /Fm

t−∆t),

which by (2.1) are normally distributed. If ∆t is “small” the mean and variance of
Rmt are given by

E[Rmt] =

[

µm −
σ2

m

2
e−2αm(Tm−t)

]

∆t, (2.2)

Var (Rmt) = σ2
me−2αm(Tm−t)∆t, (2.3)

respectively, and it follows that

Corr (Rms, Rmt) = δst,

Corr (Rmt, Rnt) = C(m, n),

where δst is the Kronecker delta. Furthermore, we define standardised returns xmt

as

xmt =
Rmt − E[Rmt]
√

Var (Rmt)
. (2.4)

If we write xt = (x1t, . . . , xMt), then {xt}
∞
t=0 is an i.i.d. sequence of normally dis-

tributed random variables with mean zero and covariance matrix C, which is the
matrix that we are going to model. 3

3Correlation only captures linear dependencies. More general dependence structures can created
using copula techniques and Nielsen [8] provides an overview of this topic. The methods proposed
in this paper may be viewed as special case of a time dependent Gaussian copula approach.
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3. The data

We will use daily closing prices from NYMEX to compute daily log returns, and we
employ the convention of labelling contracts by their delivery month. For example,
“Jan06” refers to the futures contract with delivery in January 2006. Currently
NYMEX offers futures contracts for 72 consecutive months, and in Figure 1 we
give an example of a futures curve. Clearly, this is a seasonal commodity, caused
by a combination of the relative difficulty of storing natural gas, and the increased
demand during the winter months. This suggests that the correlation matrix could
be non-stationary.

Inspection of daily trading volumes reveals that the contracts with delivery more
than 18 – 24 months away have poor liquidity. Nevertheless, NYMEX also posts
closing prices for illiquid contracts, and in Figure 2 below we illustrate the potential
danger of using these for estimation purposes. We would expect the Jan09 – Dec09
correlation to be close to unity, since we find it unlikely that there is any information
available to the market that would permit discrimination between two contracts
maturing four and five years into the future. This is not the case in Figure 2
however, though there are very few trades in the 2009-year contracts during 2004.

With the above observation in mind, we will estimate our correlation matrices
from M = 18 consecutive contracts. Since we expect the correlation matrix to be
non-stationary, the delivery months of the contracts must stay fixed, and we use one
year of daily closing prices prior to the maturity of the first contract. The data sets
used in this paper are specified in Table 1 below, where T denotes the sample size.
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Figure 1: Nymex closing prices in USD/mmBtu for the Jan03 to Dec05 contracts on
December 05, 2002.
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Figure 2: Scatter plots of daily 2004 log-returns (246 samples) for the Jan05-Dec05 (left)
and Jan09-Dec09 (right) contract pairs. The sample correlation coefficient for
the Jan05-Dec05 contracts is 0.8939 and for the Jan09-Dec09 contracts 0.8730.

Data set First contract Last contract Data sampling period T
DS1 Jan03 Jun04 Jan 2002 - Dec 2002 246
DS2 Apr03 Sep04 Apr 2002 - Mar 2003 246
DS3 Jul03 Dec04 Jul 2002 - Jun 2003 246
DS4 Oct03 Mar05 Oct 2002 - Sep 2003 246
DS5 Jan04 Jun05 Jan 2003 - Dec 2003 246
DS6 Apr04 Sep05 Apr 2003 - Mar 2004 246
DS7 Jul04 Dec05 Jul 2003 - Jun 2004 246
DS8 Oct04 Mar06 Oct 2003 - Sep 2004 246
DS9 Jan05 Jul05 Jan 2004 - Dec 2004 246

Table 1: The data sets used in this paper. The sample size T equals the number of
trading days during the sample period minus one.

4. Stylised facts of sample correlations

The aim of this section is to provide an empirical study of the sample correlation
matrix, which will be useful for understanding the intuition behind the parsimonious
models introduced in Section 5.

In Figures 3 and 4, we display the sample correlation matrix S of the standardised
returns {xt}

T
t=1 computed from the data set DS5. Here we have estimated µm, αm

and σm in (2.1) from the log-returns {Rmt}
T
t=1 by standard maximum likelihood

estimation, and computed the standardised returns {xmt}
T
t=1 from (2.4).
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Figure 3: Contour plot of the sample correlaton matrix of standardised returns computed
from DS5.

Jan04 Apr04 Jul04 Oct04 Jan05 Apr05
0.4

0.5

0.6

0.7

0.8

0.9

1

Correlation pair month

C
or

re
la

tio
n

Jan04

Jan04 Apr04 Jul04 Oct04 Jan05 Apr05
0.4

0.5

0.6

0.7

0.8

0.9

1

Correlation pair month

C
or

re
la

tio
n

Jul04

Figure 4: Sample correlation of standardised returns between the Jan04 (left) and the
Jul04 (right) contracts and the other contracts of DS5.

Some of the most prominent features observed in this Figures 3 and 4 sample
are listed in Stylised Facts 1 (SF1) below. They are also present in the sample
correlation matrices of standardised returns computed from the other data sets of
Table 1, which we do not display due to limited space.
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Stylised Facts 1. Shorter dated contracts correlations.

(1) The function S(m, n) is decreasing in |m − n|.
(2) The function S(m, n) is non-negative.
(3) The correlations S(m, m + k), with m fixed, has a downward jump every

time m + k passes an April month. This means that S is non-stationary.
(4) The decay between successive Aprils does not occur at a uniform rate.

Although Section 3 emphasised that NYMEX natural gas futures trading is heav-
ily concentrated to the first M =18-24 contracts, there may arise a need to model
correlations among longer dated contracts. For example, this could be a part of
computing the VaR of an over the counter (OTC) transaction, or when evaluating
investments in natural gas extraction infrastructure. In this case financial intuition
suggest that that the following Stylised Facts 2 (SF2) should hold.

Stylised Facts 2. Longer dated contracts correlations.

(1) limk→∞ S(m + k, n + k) = 1 for fixed m, n. Information about two futures
contracts with distant maturities is the same.

(2) limk→∞ S(m, m + k) = A ∈ [0, 1]. Correlations between a close by and a
distant futures pair need not go to zero.

Next, we perform a factor analysis of the sample correlation matrix of standardised
returns of our data sets. The results are displayed in Table 2 and Figures 5 and 6
below.

Factor 1 2 3 4
DS1 93.82% 4.95% 0.69% 0.26%
DS2 92.16% 5.68% 1.04% 0.56%
DS3 89.18% 8.98% 0.80% 0.44%
DS4 88.60% 8.42% 1.60% 0.44%
DS5 86.25% 9.12% 2.61% 1.02%
DS6 88.91% 9.06% 1.02% 0.32%
DS7 91.57% 7.14% 0.46% 0.40%
DS8 91.24% 6.54% 0.99% 0.69%
DS9 94.69% 3.59% 1.00% 0.46%

Table 2: Distribution of variance among the first four factors of the sample correlation
matrix of standardised returns. Data sets: DS1 to DS9. Software used: Mat-
lab’s pcacov function.
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Figure 5: The first three factors for the sample correlation matrix S (left) and a fitted
stationary correlation matrix C (right) of standardised returns computed from
DS5. Here the elements of C are given by C(m,n) = exp(−θ̄|m − n|). The
parameter θ̄ is the ULS estimator to be introduced in Section 6. Software used:
Matlab’s pcacov and fminsearch functions.
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Figure 6: The first four factors of the sample correlation matrix of standardised returns.
Data sets: DS1, DS5 and DS9. Software used: Matlab’s pcacov function.
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Figures 5 and 6 and Table 2 suggest that Stylised Facts 3 (SF3) below should
hold for the factors.

Stylised Facts 3. Factor analysis.

(1) The first three factors explain more than 97% of the total variance, and the
distribution of variance among the first two factors is quite stable over time
(Table 2).

(2) The first three factors may be interpreted as level, slope and curvature, and
they are quite stable over time (Figure 6).

(3) The slope and curvature factors of the SCM appear to be perturbed versions
of the corresponding factors of a fitted stationary correlation matrix (Figure
5).

5. Structured models of the correlation matrix

In this section, we introduce the correlation function (CM) and factor analytic
(FM) model classes of C. We will write C(θ) to emphasise that the elements of this
matrix depend on a parameter vector θ.

Starting with the correlation function models, and inspired by Stylised Facts 1,
we define the function NA(m, n) as the number of April months between calendar
months m and n. Here we use the convention that NA(m, m) = 0, and that for a
fixed m, NA(m, m + k) increases as m + k goes from April to May. Having done
this, we specify three nested correlation functions in Definition 5.1 below.

Definition 5.1. Correlation function models. The correlation function models
CM1, CM2 and CM3, have correlation matrices C1, C2, C3 respectively, with ele-
ments given by the correlation functions

C1(m, n) = exp [−θ1|m − n|] , θ1 ≥ 0,

C2(m, n) = exp [−θ1|m − n| − θ3NA(m, n)] , θ1 ≥ 0, θ3 ≥ 0,

C3(m, n) = exp
[

−θ1|m − n| − θ2|m − n|2 − θ3NA(m, n)
]

, θ1 ≥ 0, θ2 ≥ 0 θ3 ≥ 0,

respectively.

In Proposition A.2 in Appendix A, we prove that the functions of Definition 5.1
are positive semi-definite. By comparing Stylised Facts 1 with Definition 5.1, it
follows that CM1 is able to reproduce SF1(1) and SF1(2), CM2 SF1(1) to SF1(3),
and CM3 SF1(1) to SF1(4) respectively. Since we only rely on data from M = 18
maturities, we will not try to model Stylised Facts 2.

The main advantages of the correlation function models are that they are easy to
understand, and that they allow inter- and extrapolation to non-traded maturities
provided that one believes that this makes economical sense. Given a particular
functional form, the main difficulty is to prove positive semi-definiteness.4 An alter-
native approach is to check positive semi-definiteness ex-post, and set all negative
eigenvalues to zero. Rebonato [10] reports that this procedure alters the matrix ele-
ments very little, because the data seems to ensure that only the smallest eigenvalues
by magnitude are negative.

4In Appendix A, we collect a number of techniques for creating valid correlation functions, which
could serve as a toolbox for readers who wish to create their own correlation function models.
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We now turn our attention to the factor analytic models. First we will fit a struc-
tured covariance matrix Σ(θ) to data, and obtain C(θ) from Σ(θ) by normalisation.
The rationale for this procedure is explained at the end of this section.

Assume that we intend to model the correlation matrix of a particular data set
with sample correlation matrix S. By Stylised Facts 3 the first three factors change
relatively little from year to year. Inspired by this, we first compute a historical
sample correlation matrix Sh from past data. Due to the April-hump perturbation
in the second and third factors shown in Figure 6, it is important that Sh contains
correlations between futures contracts maturing the same calendar months as those
used to compute S. For the data sets of Table 1, this means that Sh and S could
be computed from the first and second parts of the data set. Alternatively, Sh can
be computed from DS1 and S from DS5 and so on, which is the approach taken in
this paper.

By the Spectral Theorem, Sh may be decomposed as

Sh = UDUT , (5.1)

where by convention column one of the orthogonal matrix U corresponds to the
level, column two to the slope and so on. The factor analytic models introduced in
Definition 5.2 below is a standard class of models used in many papers, for example
Jöreskog [5] and Lee [6].

Definition 5.2. Factor analytic model of order Mf . Let 1 ≤ Mf ≤ M , and let Vh

be an M × Mf matrix containing the first Mf columns of the matrix U given in
(5.1). Moreover, let Ψ be an Mf × Mf diagonal matrix with elements

Ψ(m, m) = θ2
m, θm ∈ R, 1 ≤ m ≤ Mf .

Finally if ǫ ∈ R and I denotes the M × M identity matrix, then the factor analytic
model of order Mf is given by

Σ = VhΨVT
h + ǫ2I.

Below we will write FMi for a historical factor model with Mf = i factors. From
Definition 5.2 it follows that the parameter vector θ = (θ1, . . . , θMf

, ǫ) is to be
estimated from the sample correlation matrix S of standardised returns.

The resulting covariance matrix Σ is positive semi-definite by construction and
if ǫ2 > 0, then it is positive definite and hence non-singular. These properties also
hold for the correlation matrix C obtained by normalising Σ.

Requiring Σ to to be a correlation matrix from the beginning would lead to
complicated constraints on the parameters, and avoiding this is the rationale for
first fitting Σ and then normalising to get C. Note that even though Σ is the best
fit to data in some metric, this does not have to hold for C. Since C and Σ are
close however, we think that the impact of the normalisation on the goodness of fit
will be small.

Unlike the correlation function models, the factor analytic models cannot be in-
terpolated or extrapolated.
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6. Model estimation and evaluation

To estimate the models proposed in Section 5, we will use the maximum likelihood
(ML) and Un-weighted least squares (ULS) methods, both available under these
names in software packages like SAS.

As a pre-processing step, we compute standardised returns from actual returns
using expressions (2.2) to (2.4). Here the parameters µm, αm and σm are computed
by maximum likelihood estimation. Finally, the sample correlation matrix S is
computed from these standardised returns. By this two-step procedure, we ensure
that the marginal distribution of a particular futures contract is not affected by
whether the contract is considered alone or as part of a portfolio.

By Jöreskog [5], the ML estimator θ̂, provided it exists, is the vector θ̂ that
minimises

L(θ) = log |C(θ)| + tr{SC−1(θ)}, (6.1)

where | · | and tr denote the determinant and trace of a square matrix respectively.
The ULS estimator θ̄ on the other hand, if it exists, minimises

F (θ) =
1

2
tr{(S− C(θ))2} (6.2)

=
1

2

M
∑

m=1

M
∑

n=1

|Smn − Cmn(θ)|2,

which is half of the squared the Fröbenius norm of S − C. In (6.1) and (6.1), the
correlation matrix C(θ) may be replaced by the covariance matrix Σ(θ) if a factor
analytic model is to be estimated.

If C(θ) is a reasonably good description of the data, θ̂ and θ̄ should be close.
Otherwise the functional forms (6.1) and (6.2) of L(θ) and F (θ) suggest that the
ULS method could be more robust if C(θ) is close to being singular.

For the ML method, Jöreskog [5] gives asymptotic confidence intervals of θ̂ based
on the Fisher information matrix. Moreover, an incremental likelihood ratio (LR)
test may be used to test whether adding another parameter improves the fit signifi-
cantly or not. More specifically, let HA be the hypothesis that the data comes from
a model with an NA-dimensional parameter vector θA, and H0 that it comes from a
sub-model of HA with N0 < NA free parameters θ0. Then under H0, with T being
the sample size,

ZML = T
[

L(θ̂0) − L(θ̂A)
]

follows a χ2 distribution with NA − N0 degrees of freedom.
To the best of our knowledge, there are no known asymptotic confidence intervals

or distributions available for

ZULS = F (θ̄A) − F (θ̄0)

obtained from the ULS method. Instead, we use Monte-Carlo simulation according
to Algorithm 1 below.

Algorithm 1. Simulation based confidence intervals and hypothesis tests.

(1) Estimate θ̄0 from data by minimising (6.2).
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(2) Simulate T independent samples of a normally distributed return vector xt

with mean zero and covariance matrix C(θ̄0).
(3) Re-estimate θ̄0 and store the value as θ̄0,n.
(4) Estimate θ̄A,n of the complex model, using the same simulated data. Com-

pute ZULS(n) = F (θ̄0,n) − F (θ̄A,n), and store the value.
(5) Repeat steps 2 to 4 Nsim times in order to obtain an empirical distribution of

θ̄0 and ZULS. This distribution is finally used to compute confidence intervals
and perform tests.

The actual minimisation of (6.1) and (6.2) is done numerically by Matlab’s
fminsearch routine, which uses a Nelder-Mead algorithm for multi-dimensional un-
constrained optimisation.

7. Results

In this section, estimation and hypothesis test results are presented for the corre-
lation function and factor analytic models.

For the factor-analytic models, the ML and ULS estimates are very similar, so we
only report the former. Unfortunately, this is not the case for the correlation function
models, where the ML method performs poorly compared to the ULS method, when
used with the data sets of Table 1. Since the ML-method is capable of estimating
these models with simulated data, we are led to think that this failure is caused by
a combination of model mis-specification and C being close to singular. Replacing
the ML-method by the Generalised Least Squares (GLS) method by Lee [6] does not
improve matters. With these observations in mind, we only report ULS-estimates
for the correlation function models. To obtain confidence intervals and perform
hypothesis testing, Algorithm 1 is used with Nsim = 104 simulations.

First we test if we could reject the hypothesis that the data is generated by any
of our models. This is done by performing Test 1, described below.

Test 1:

H0: The data is generated by our model with N0 parameters.
HA: The data is generated by the sample correlation matrix.

For the factor analytic models, Test 1 is performed before the normalisation to a
correlation matrix.

For the correlation function models CM1, CM2 and CM3, Test 1 is repeated for
the data sets DS1 to DS9. The test statistic is ZULS and Algorithm 1 is used with
Nsim = 104 simulations in order to simulate its distribution given H0. For the factor
analytic models FM2, FM3 and FM4, the test is repeated only for the data sets DS5
to DS9, since DS1 to DS4 are used to compute the historical factors. Here we employ
a standard LR-test, which means that the test statistic ZML is approximately χ2

distributed with 1
2
M(M − 1) − (Mf + 1) degrees of freedom. Here M = 18 and

Mf = 2, 3 or 4 depending on the order of the model.
Second we investigate if expanding a model by adding a parameter improves the

fit by performing Test 2 below.
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Test 2:

H0: The data is generated by one of our models with N0 parameters.
HA: The data is generated by one of our models with NA = N0 + 1 parameters,

such that H0 is a sub-model of HA.

For the correlation function models this means that we test whether adding θ3 to
CM1 and θ2 to CM3, thereby creating CM2 and CM3 from CM1 and CM2, improves
the fit significantly or not. The test statistic is again ZULS and Algorithm 1 with
Nsim = 104 simulations is used to simulate its distribution given H0. These tests
are repeated for the data sets DS1 to DS9. Given the particular functional form of
the correlation function models of Definition 5.1, Test 2 is equivalent to a test where
H0 is the hypothesis that the added parameter is zero, and HA that it is non-zero.

Test 2 applied to the factor analytic models tests if adding a factor improves the
fit significantly, or alternatively if the added parameter θMf +1 is non-zero. This is
repeated for the expansion from FM2 to FM3 and from FM3 to FM4, for the data
sets DS5 to DS9 separately. We employ a standard LR-test, which means that the
test statistic is ZML is approximately χ2 distributed with one degree of freedom.

Test 1 reports p−values less than 0.02 for all models and data sets. In other
words, none of the data sets is likely to have been generated by any of our models.

Test 2 reports p−values less than 0.01 for all models and data sets, rejecting H0

at the 99% level. Consequently, all of our added model parameters are significant,
and this result is backed up by visual inspection of the fitted correlation models in
Figures 7 and 12 below. The more complex the model is, the better the visual fit.

Next we display the estimated parameter values for the correlation function (CM1,
CM2 and CM3) and factor analytic (FM2, FM3 and FM4) models together with
95% confidence intervals. For the factor analytic models, we choose to present the
diagonal elements of Ψ, θ2

m, rather than θm.

DS θ1

DS1 0.0118 [0.0097,0.0143]
DS2 0.0127 [0.0103,0.0157]
DS3 0.0183 [0.0148,0.0225]
DS4 0.0213 [0.0173,0.0262]
DS5 0.0242 [0.0197,0.0297]
DS6 0.0209 [0.0169,0.0259]
DS7 0.0154 [0.0124,0.0189]
DS8 0.0155 [0.0125,0.0192]
DS9 0.0109 [0.0088,0.0136]

Table 3: The estimated model parameter θ̄1 of CM1 (introduced in Definition 5.1).
Method of estimation: ULS. Two sided 95% confidence intervals computed by
Algorithm 1 with Nsim = 104 simulations. Data sets: DS1 to DS9.
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DS θ1 θ3

DS1 0.0084 [0.0067,0.0106] 0.0364 [0.0261,0.0479]
DS2 0.0109 [0.0085,0.0135] 0.0240 [0.0114,0.0396]
DS3 0.0133 [0.0107,0.0163] 0.0590 [0.0384,0.0830]
DS4 0.0181 [0.0143,0.0227] 0.0434 [0.0195,0.0708]
DS5 0.0170 [0.0134,0.0211] 0.0790 [0.0575,0.1037]
DS6 0.0156 [0.0125,0.0191] 0.0714 [0.0473,0.1051]
DS7 0.0104 [0.0083,0.0127] 0.0599 [0.0418,0.0812]
DS8 0.0102 [0.0080,0.0126] 0.0714 [0.0500,0.0963]
DS9 0.0057 [0.0045,0.0071] 0.0567 [0.0439,0.0731]

Table 4: The estimated model parameters θ̄1 and θ̄3 of CM2 (introduced in Definition
5.1). Method of estimation: ULS. Two sided 95% confidence intervals computed
by Algorithm 1 with Nsim = 104 simulations. Data sets: DS1 to DS9.

DS θ1 θ2 θ3

DS1 0.0005 [0.0001,0.0015] 0.00088 [0.00062,0.00110] 0.0300 [0.0217,0.0393]
DS2 0.0049 [0.0038,0.0064] 0.00057 [0.00038,0.00081] 0.0249 [0.0123,0.0402]
DS3 0.0072 [0.0058,0.0089] 0.00057 [0.00032,0.00087] 0.0615 [0.0416,0.0842]
DS4 0.0114 [0.0089,0.0142] 0.00066 [0.00034,0.00107] 0.0438 [0.0215,0.0694]
DS5 0.0070 [0.0043,0.0099] 0.00106 [0.00061,0.00159] 0.0717 [0.0524,0.0939]
DS6 0.0063 [0.0044,0.0085] 0.00092 [0.00059,0.00133] 0.0710 [0.0456,0.1007]
DS7 0.0049 [0.0039,0.0061] 0.00051 [0.00030,0.00074] 0.0624 [0.0441,0.0831]
DS8 0.0036 [0.0023,0.0050] 0.00064 [0.00039,0.00091] 0.0712 [0.0483,0.0990]
DS9 0.0016 [0.0005,0.0028] 0.00043 [0.00042,0.00062] 0.0531 [0.0411,0.0681]

Table 5: The estimated model parameters θ̄1, θ̄2 and θ̄3 of CM3 (introduced in Definition
5.1). Method of estimation: ULS. Two sided 95% confidence intervals computed
by Algorithm 1 with Nsim = 104 simulations. Data sets: DS1 to DS9.

DS θ̂2
1 θ̂2

2 ǫ
DS5 15.84 [13.85,17.81] 1.41 [1.23,1.59] 0.214 [0.211,0.217]
DS6 16.14 [14.12,18.16] 1.48 [1.29,1.66] 0.159 [0.156,0.161]
DS7 16.61 [14.53,18.68] 1.18 [1.03,1.33] 0.126 [0.124,0.128]
DS8 16.60 [14.52,18.68] 1.09 [0.95,1.23] 0.147 [0.146,0.148]
DS9 16.99 [14.86,19.11] 0.67 [0.58,0.76] 0.150 [0.148,0.153]

Table 6: The estimated model parameters θ̂
2
1, θ̂

2
2 and ǫ of FM2 (introduced in Definition

5.2). Method of estimation: ML. Two sided 95% confidence intervals from
asymptotic ML-theory. Data sets: DS5 to DS9.
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DS θ̂2
1 θ̂2

2 θ̂2
3

DS5 15.84 [13.85,17.81] 1.41 [1.23,1.59] 0.351 [0.305,0.398]
DS6 16.14 [14.12,18.16] 1.48 [1.29,1.66] 0.185 [0.160,0.209]
DS7 16.61 [14.53,18.68] 1.18 [1.03,1.33] 0.080 [0.062,0.084]
DS8 16.60 [14.52,18.68] 1.09 [0.95,1.23] 0.125 [0.107,0.142]
DS9 16.99 [14.86,19.11] 0.67 [0.58,0.76] 0.203 [0.176,0.229]

DS ǫ
DS5 0.155 [0.152,0.157]
DS6 0.117 [0.115,0.119]
DS7 0.106 [0.104,0.108]
DS8 0.117 [0.116,0.119]
DS9 0.100 [0.099,0.101]

Table 7: The estimated model parameters θ̂
2
1, θ̂

2
2, θ̂

2
3 and ǫ of FM3 (introduced in Defini-

tion 5.2). Method of estimation: ML. Two sided 95% confidence intervals from
asymptotic ML-theory. Data sets: DS5 to DS9.

DS θ̂2
1 θ̂2

2 θ̂2
3 θ̂4

DS5 15.84 [13.85,17.81] 1.41 [1.23,1.59] 0.351 [0.305,0.398] 0.164 [0.142,0.187]
DS6 16.14 [14.12,18.16] 1.48 [1.29,1.66] 0.185 [0.160,0.209] 0.049 [0.041,0.056]
DS7 16.61 [14.53,18.68] 1.18 [1.03,1.33] 0.080 [0.062,0.084] 0.075 [0.065,0.085]
DS8 16.60 [14.52,18.68] 1.09 [0.95,1.23] 0.125 [0.107,0.142] 0.033 [0.027,0.038]
DS9 16.99 [14.86,19.11] 0.67 [0.58,0.76] 0.203 [0.176,0.229] 0.084 [0.073,0.095]

DS ǫ
DS5 0.114 [0.112,0.116]
DS6 0.102 [0.100,0.104]
DS7 0.079 [0.078,0.080]
DS8 0.108 [0.106,0.110]
DS9 0.066 [0.065,0.067]

Table 8: The estimated model parameters θ̂
2
1, θ̂

2
2, θ̂

2
3, θ̂

2
4 and ǫ of FM4 (introduced in

Definition 5.2). Method of estimation: ML. Two sided 95% confidence intervals
from asymptotic ML-theory. Data sets: DS5 to DS9.

The parameters of the correlation function models presented in Tables 3 to 5 are
not particularly stable across data sets. For the factor analytic models, Tables 6 to
8 show that the parameter θ̂1 related to the level factor is quite stable, but that the
stability of the other parameters deteriorates gradually as the order of the factor
increases.

Tables 6 to 8 also show that expanding a given factor analytic model FMi by
adding a factor does not change the values of (θ̂1, . . . , θ̂i). This is expected given the
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orthogonality of the columns of Vh, the least squares form (6.2) of F (θ) and that
the ML- and and ULS estimates are very similar for the factor analytic models.

In order to compare the methods, the least squares errors F (θ̄) defined in (6.2)
are given in Table 9 below for DS5 to DS9. Recall that the ML and ULS estimates
of the factor analytic models are very similar. For the factor analytic models, we
compute F (θ̄) after we have normalised the estimated covariance matrix in order to
make it a correlation matrix.

DS5 DS6 DS7 DS8 DS9
CM1 0.257 0.187 0.103 0.166 0.120
CM2 0.110 0.095 0.043 0.067 0.030
CM3 0.035 0.033 0.022 0.033 0.014
FM2 0.107 0.040 0.013 0.084 0.055
FM3 0.044 0.027 0.008 0.083 0.029
FM4 0.027 0.027 0.004 0.083 0.027

Table 9: Fitting error F (θ̄) for the models CM1, CM2, CM3, FM2, FM3 and FM4 (in-
troduced in Definitions 5.1 and 5.2). Data sets: DS5 to DS9.

Table 9 reveals that for both classes of methods, adding an extra parameter
often reduces the error by about 50%. Moreover FM4 is the best performing model
followed by FM3 and CM3 on a shared second place. When comparing models
with a given number of parameters, CM3 has the smallest errors. For some data
sets FM3 and FM4 have the same least square error, apparently contradicting the
results of Test 2. This is caused by the fact that Test 2 is performed on the fitted
covariance matrix Σ before the normalisation, whereas the fitting errors of Table
9 are computed from C after the normalisation. Obviously, the post-normalisation
procedure needed for the factor analytic models could make the fit sub-optimal.

When comparing models, visual inspection of the fits is a good complement to the
least squares errors of Table 9. For this purpose, parts of the sample and estimated
correlation matrices of DS5 are shown in Figures 7 to 12 below.
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Figure 7: Some sample correlations (SCM) of standardised returns plotted together with
fitted model correlations for CM1 (Introduced in Definition 5.1). Estimation
method: ULS. Data: DS5. Correlation pairs: All contracts of DS5 with Jan04
(top left), Apr04 (top right), Jul04 (middle left), Oct04 (middle right), Jan05
(bottom left) and Apr05 (bottom right) contracts. The x-axis shows the lag
in months between the contract in the title and the other contract in the
correlation pair.
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Figure 8: Some sample correlations (SCM) of standardised returns plotted together with
fitted model correlations for CM2 (Introduced in Definition 5.1). Estimation
method: ULS. Data: DS5. Correlation pairs: All contracts of DS5 with Jan04
(top left), Apr04 (top right), Jul04 (middle left), Oct04 (middle right), Jan05
(bottom left) and Apr05 (bottom right) contracts. The x-axis shows the lag
in months between the contract in the title and the other contract in the
correlation pair.
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Figure 9: Some sample correlations (SCM) of standardised returns plotted together with
fitted model correlations for CM3(Introduced in Definition 5.1). Estimation
method: ULS. Data: DS5. Correlation pairs: All contracts of DS5 with Jan04
(top left), Apr04 (top right), Jul04 (middle left), Oct04 (middle right), Jan05
(bottom left) and Apr05 (bottom right) contracts. The x-axis shows the lag
in months between the contract in the title and the other contract in the
correlation pair.
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Figure 10: Some sample correlations (SCM) of standardised returns plotted together
with fitted model correlations for FM2(Introduced in Definition 5.2). Esti-
mation method: ML. Data: DS5. Correlation pairs: All contracts of DS5
with Jan04 (top left), Apr04 (top right), Jul04 (middle left), Oct04 (middle
right), Jan05 (bottom left) and Apr05 (bottom right) contracts. The x-axis
shows the lag in months between the contract in the title and the other
contract in the correlation pair.
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Figure 11: Some sample correlations (SCM) of standardised returns plotted together
with fitted model correlations for FM3(Introduced in Definition 5.2). Esti-
mation method: ML. Data: DS5. Correlation pairs: All contracts of DS5
with Jan04 (top left), Apr04 (top right), Jul04 (middle left), Oct04 (middle
right), Jan05 (bottom left) and Apr05 (bottom right) contracts. The x-axis
shows the lag in months between the contract in the title and the other
contract in the correlation pair.
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Figure 12: Some sample correlations (SCM) of standardised returns plotted together
with fitted model correlations for FM4(Introduced in Definition 5.2). Esti-
mation method: ML. Data: DS5. Correlation pairs: All contracts of DS5
with Jan04 (top left), Apr04 (top right), Jul04 (middle left), Oct04 (middle
right), Jan05 (bottom left) and Apr05 (bottom right) contracts. The x-axis
shows the lag in months between the contract in the title and the other
contract in the correlation pair.
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Figures 7 to 12 show that the visual fit is improved when an extra parameter is
added. According to our opinion, FM4 offers the best visual fit, followed by CM3
and FM3 on a shared second place.

The most significant non-stationary feature of the sample correlation matrix dis-
played in Figures 3 and 7 to 12 is the drop in correlation between two contracts,
which occurs for each April month located between the two maturities (“the April

drop”). This effect could be caused by the typical shape of the futures curve (see
Figure 1) and the cost of storage. More specifically, let T1 < T2 be two maturities,
and assume that the demand and price of F (t, T2) increases. Under some conditions
storage owners may find it profitable to go long F (t, T1), short F (t, T2), and hedge
by storing the gas delivered from F (t, T1). In absence of arbitrage, the total effect is
that the demand and price increase of F (t, T2) causes a demand and price increase
of F (t, T1). Consequently, the prices move together, which creates correlation be-
tween the contracts. Considering the shape of the futures curve given in Figure 1,
with the winter (December to March) contracts being more expensive than the other
contracts, this kind of transaction is very unlikely to be profitable if T1 and T2 are
on either side of an April month. No one buys expensive gas in the winter and sells
it cheap in the Spring or Summer. Buying the gas even earlier does not make sense
either, since it would still be more profitable to sell it during the winter. Besides
that, the storage costs would be high. To conclude, the “extra” correlation caused
by inter-temporal substitution as described above is absent if the two maturities of a
correlation pair has an April month located between them. This explains the drop.

Test 2 for CM1 vs. CM2 has a p−value of 0.01, so explicitly modelling the April
drop effect improves the fit significantly. Furthermore, Tables 4 and 5 show that the
95% confidence interval for the parameter θ2 is well above zero for CM2 and CM3.
The same tables also show that θ2 has roughly the same value for CM2 and CM3,
indicating that this parameter indeed captures an actual drop.

Figures 10 to 12 reveal that the factor analytic models reproduce the April drop
effect automatically. This is not surprising since it is a cyclical effect and we use
historical factors computed from contracts maturing one year earlier. Consequently
it is crucial to compute the historical factors from contracts maturing the same
calendar months as the contracts for which one wishes to model the correlation
matrix.

8. Concluding remarks

We have specified and estimated some hierarchical correlation function and factor
analytic models of the correlation matrix for natural gas futures returns. Statistical
tests, least squares errors and visual inspection all show that the more complex the
model, the better the fit.

The most important non-stationary effect present in the sample correlation matrix
is the April drop effect, which is caused by the shape of the futures curve and the
cost of storage. Most of our models are capable of reproducing this effect.

Whether to choose a correlation function or a factor analytic model is to some
extent a matter of personal taste. Our correlation function models are very simple
and may be extrapolated outside the range of the maturities used for their estima-
tion. They also perform better than factor analytic models for a given number of
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model parameters. Due to the requirement of positive semi-definiteness however, it
is not straightforward to find a valid extension of CM3 which could compete with
FM4 in terms of mean squared error. Moreover, correlation function models could
prove difficult to apply to other commodities. First, the stylised facts of the sample
correlations to be modelled must be identified. Second, a suitable functional form
that reproduce these stylised facts must be found. Third, these functional forms
must prove to yield a positive semi-definite matrix. If the stylised facts are more
complex than the April drop effect, this may be difficult.

Factor analytic models on the other hand, accomplish this three step procedure
automatically, provided that the stylised facts are either stationary or seasonal.
The fit of the covariance matrix may always be improved by adding another factor,
although this may occasionally not improve the fit of the correlation matrix after
normalisation. Drawbacks of the factor analytic models include that they are maybe
not as simple as the correlation function models and cannot be extrapolated.

To conclude, we believe that the correlations of the fitted CM3, FM3 and FM4
models are close enough to the sample correlations in order to be useful. Economic
agents who seek a parsimonious way of calculating Value-at-Risk (VAR) of a port-
folio or to price a derivative with many underlying futures contracts could benefit
from using the results presented in this paper.

One extension of this paper would be to model cross-commodity correlations, like
natural gas and crude oil. Another would be to use copulas to investigate whether
correlation is a good way to model dependence or not.
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Appendix A. Proofs

In this appendix we prove that the functions CM1 to CM3 introduced in Definition
5.1 are proper correlation functions. This result is given in Proposition A.2 below,
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which relies on Lemma A.1. This lemma is also of independent interest when proving
positive semi-definiteness of candidate correlation functions other than the ones used
in this paper.

Lemma A.1. The following statements hold.

(1) Let θ ≥ 0 and 0 < α ≤ 2. Then

C(m, n) = exp(−θ|m − n|α)

is a correlation function.

(2) Let {Ck(m, n)}K
k=1 be a set of correlation functions, and {αk}

K
k=1 a set of

non-negative weights summing to one. Then

C(m, n) =
K

∑

k=1

αkCk(m, n)

and

C(m, n) =
K
∏

k=1

Ck(m, n)

are correlation functions.

(3) Let C1(m, n), C2(m, n) be correlation functions and g be a deterministic

function such that g(n) ∈ [0, 1]. Then

C(m, n) = [g(m)g(n)]1/2 C1(m, n) + {[1 − g(m)] [1 − g(n)]}1/2 C2(m, n)

is a correlation function.

(4) Let C(m, n) = ρ(|m − n|) be a stationary correlation function and h be a

function such that h : N → N. Then

C(m, n) = ρ [|h(m) − h(n)|]

is a correlation function.

Proof. Part 1: see Stein [12]. Part 2, Claim 1: This is immediate from the de-
finition of a correlation function. Part 2, Claim 2: Let Xn and Yn be two in-
dependent and standardised stochastic processes. Then compute the correlation
function of the process Z(n) = X(n)Y (n). Part 3: Again consider two independent
and standardised processes Xn and Yn, with correlation functions C1(m, n) and

C2(m, n) respectively. Then Zn =
√

g(n)Xn +
√

1 − g(n)Yn has the desired corre-
lation function. Part 4: Let X(n) be a stationary process with correlation function
C(m, n) = ρ(|m − n|) and define Y (n) = X(h(n)). Then Y (n) is a (not neces-
sarily uniform or monotone!) re-sampling of X(n), and has the desired correlation
function. �

Apart from the exponential family of stationary correlation functions introduced
in Part 1 of Lemma A.1, several other families of stationary correlation functions
exist. These include, but are not limited to, the Buell and Matérn families described
in Buell [2] and Stein [12] respectively.

Proposition A.2. The models CM1 to CM3 introduced in Definition 5.1, are cor-

relation functions.



26 MATS KJAER AND EHUD RONN

Proof. This Proposition follows almost directly from Lemma A.1, in particular the
second claim of Part 2. To prove that C(m, n) = e−θNA(m,n) is a correlation function,
apply of Part 3 of Lemma A.1 with C(m, n) = exp(−θ|m − n|) and let h(n) be an
integer valued step function that increases by one each April. �
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