S oOTE:

CHALMERS | {8%)) UNIVERSITY OF GOTHENBURG

Contract Checking for Feldspar

Master of Science Thesis in Computer Sience

Fatemeh Lashkari

Chalmers University of Technology

University of Gothenburg

Department of Computer Science and Engineering
Goteborg, Sweden, March 2012



The Author grants to Chalmers University of Technology and University of Gothenburg
the non-exclusive right to publish the Work electronically and in a non-commercial
purpose make it accessible on the Internet.

The Author warrants that he/she is the author to the Work, and warrants that the Work does
not contain text, pictures or other material that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party (for example a
publisher or a company), acknowledge the third party about this agreement. If the Author
has signed a copyright agreement with a third party regarding the Work, the Author
warrants hereby that he/she has obtained any necessary permission from this third party to
let Chalmers University of Technology and University of Gothenburg store the Work
electronically and make it accessible on the Internet.

Contract Checking for Feldspar
Fatemeh Lashkari
© Fatemeh Lashkari, March 2012.

Examiner: Mary Sheeran
Supervisor: Koen Claessen

Chalmers University of Technology

University of Gothenburg

Department of Computer Science and Engineering
SE-412 96 Goteborg

Sweden

Telephone + 46 (0)31-772 1000

Department of Computer Science and Engineering
Goteborg, Sweden March 2012



Abstract

“Contracts play an important role in the construction of robust software” [13].
Program invariants are expressed in familiar notation with known semantics by
using contracts. Assertions based on contracts has been widely used in proce-
dural and object-oriented languages. Findler and Felleisen presented contracts
to higher-order functional languages and Hinze, Jeuring et al. implemented
contracts for Haskell as a library.

In this thesis, a contract language is introduced and implemented for three
libraries of the functional language Feldspar. Feldspar is a domain specific lan-
guage (DSL) for Digital Signal Processing, embedded in Haskell, and generating
C code. Contracts are written for functions of the Core Array, Vector and Ma-
trix libraries and also for some practical Feldspar functions.

A contract language should create an informative error message to report the
violation and the violator when a contract fails. In this thesis, an error message
specifies the cause of violation by reporting the file name, line number and if
an argument of a function is to blame, this argument is also mentioned in the
error message.

Contract checking can be done statically or dynamically. Static checking concen-
trates on complete checking of limited specifications at compile time. Dynamic
checking focuses on incomplete checking of expressive specifications, and detects
errors during run time. Contracts that are written in this thesis are checked with
a dynamic contract checker. Furthermore, they are tested with QuickCheck, to
ensure that contracts satisfy given properties. The result of these tests shows
that the contracts hold their properties and we cannot find any bugs in the
contracts written; so we conclude that all of the contracts written satisfy their
properties.

The assert function is implemented for the Feldspar language to have contracts
in the language. This assert function is translated to the C assert function which
suggests the opportunity for verifying C program properties with contracts too.
When a contract fails, Feldspar programmers can narrow down the cause of the
violation with the help of a precise error message generated by the contract
checker. During work on this thesis, we found several bugs in the Feldspar
implementation by using the contract checker.



Acknowledgements

I would like to thank my supervisor Koen Claessen, for many inspiring discus-
sions, and the guidance and encouragement that he has given me during my
work with this thesis. The same goes for Emil Axelsson and Anders Persson for
helping me to work with Feldspar Language. Finally, I would like to thank my
examiner, Mary Sheeran, for all help with the report.



Contents

1 Introduction

1.1 Thesisoutline . . . . . . . . . . . e

2 Feldspar
2.1 Working with Feldspar . . . . . ... ... .. ... .. ......

3 Contracts

3.1 Assert . . ...

4 The implementation of Feldspar contracts
4.1 The implementation of Contracts . . . . . . ... ... ... ...

4.2 The implementation of error messages . . . . .. ... ... ...

5 Examples
5.1 Contracts for the Array library . . . . ... ... ... ... ...
5.2  Contracts for the Vector library . . . . . .. ... ... ... ...
5.2.1 Contracts for higher order functions . . . ... ... ...
5.3 Contracts for the Matrix library . . . . .. ... ... ... ...

5.4 Contracts for some Feldspar examples . . . . .. ... ... ...

6 Testing Contracts
6.1 Testing with QuickCheck . . . ... ... ... ... ... ....

7 Related Work

8 Conclusions

10
11

13
13
17

22
22
24
26
27
29

32
33

37

39



Chapter 1

Introduction

Verifying properties of software is one of the main topics in computer science.
The reason is that program errors are common in software systems, and detect-
ing them is difficult and costly [1]. One way to improve software reliability is
to detect errors early and report them precisely during program development;
the use of contracts is one approach to software verification. “A contract in
a programming language is a formal and checkable interface specification that
allows programmers to declare what a function assumes and what a function
guarantees” [1]. Consider the following scenario between the head function and
the function that calls head (from head’s perspective): if you pass me a non
empty vector, I will return its first element. This restriction on the input means
that the head function need not deal with the case for an empty vector.

The object oriented programming community uses contracts widely [1]. Con-
tract is added to higher-order functional languages by Findler and Felleisen. In
this thesis, the use of contracts in a functional embedded domain specific lan-
guage (Feldspar) is explored, building on work on contract checking for Haskell
by Hinze, Jeuring et al. [2].

Contract checking of functions’ properties can be done statically or dynamically.
Static checking focuses on checking all limited specifications. This method de-
tects errors during compile time, but may require complex theorem proving.
Instead, dynamic checking detects errors during run time and does not check all
expressive specifications. Static contract checking is more costly than dynamic
checking for a given function, because contracts may need to be written for
many other functions, in order to permit the necessary proof. Dynamic con-
tract checking needs only to check whether or not the function being checked
obeys its contract in a given run.

Most Digital signal processing (DSP) software is written in low level C; the DSP
algorithms usually work well in C, but moving an application to a different target
platform is expensive and time consuming. The reason is that most of the time
converting an application to different platforms demands that code be rewritten
to preserve optimizations. Instead a high level language could be compiled for
different platforms without sacrificing the performance; therefore writing the



DSP algorithms in this language would be prefect. Note that most DSP targets
only have C compilers; thus a translator to generate C code is necessary for the
higher level language.

Feldspar is a domain specific language (DSL) for Digital Signal Processing,
embedded in Haskell, and generating C code [3]. It is implemented as a deeply
embedded core language, with higher level constructs (such as functions on
vectors) provided as further libraries that translate to core, that is as shallow
embeddings.

A major problem of Feldspar is returning a wrong result from C code when a
function attempts to access an array outside its bounds. For example:

firstElement :: Data [Int32] -> Data Int32
firstElement xs = xs ! O

> c_firstElement []
2536440

The firstElement function takes an array and returns the first element of an input
array. Feldspar converts the firstElement function in Haskell to the firstElement
function in C. The c_firstElement is a command that calls the C compiler for
returning the result of the C version of firstElement function. The result of
the firstElement function is wrong. The C compiler should return an exception
for this kind of situation instead of returning a value from memory. The main
reason for implementing contracts for the Feldspar language is to solve this
problem, so in this thesis the focus of implemented contracts is on the index
and length properties of vectors and arrays.

In addition, the most common error in Feldspar programs that are compiled
with the Haskell compiler is this error:

*** Exception: List.genericIndex: index too large.

This error happens when a user wants to access a location that is not allocated;
such as

let xs = (value []::Data [Int32])
>eval( firstElement xs)
*%* Exception: List.genericIndex: index too large

This error message is not sufficient to explain the reason for aborting the pro-
gram. This gives no information on where in the program the index function (!)
is called with an index outside the bounds of the array or the vector. Assume
the index function is called many times in the program; when this error hap-
pens the programmer does not know which of these functions is to blame. This
question can be answered by defining a contract for the index function, since
the contract reports who causes the violation precisely.

The purpose of this thesis is to investigate contract checking for Feldspar. Im-
plementing contracts for Feldspar starts by studying code examples in order to
discover violations and function properties of the Core.Array, the Vector and



the Matrix libraries in Feldspar. Then, QuickCheck is used to test all written
contracts to ensure that contracts fulfill their properties. In this thesis most
of the contracts focus on index and length restriction of functions in the three
libraries being examined.

To read this thesis, it is assumed that the reader knows Haskell. Feldspar
notation is used throughout the thesis and Feldspar features that are used in this
thesis are described briefly in chapter two. To learn more about this language
the Feldspar tutorial [4] is recommended.

1.1 Thesis outline

The structure of this thesis is as follows:

In chapter two, a brief overview of Feldspar Core Array, Vector and Matrix
libraries is given.

In chapter three, all types of contracts and assert functions are presented.

In chapter four, the implementation of contracts and assert functions for Feldspar
is explained and implementing informative error message for reporting the vio-
lations is described.

In chapter five, some of the contracts that are written for Feldspar library func-
tions and Feldspar practical functions (discrete cosine transform and low pass
filter) are presented.

In chapter six, contract testing methods that are used in this thesis are intro-
duced and applied.

In chapter seven, related works are presented.
In chapter eight, conclusions and future work are discussed.

Contracts for the Core Array, Vector and Matrix libraries are available in ap-
pendix A. Properties for testing all contracts with QuickCheck are available in
appendix B.



Chapter 2

Feldspar

Feldspar (Functional Embedded Language for DSP and PARallelism) is a do-
main specific language embedded for being used with Haskell for programming
DSP algorithms. It is a joint research project between Ericsson AB, Chalmers
University of Technology (Géteborg, Sweden) and Eotvos Lordnd University
(Budapest, Hungary).

Feldspar is built around a core language, which is a purely functional language
on a level of abstraction similar to C. There are a lot of libraries built upon
this core language to give a higher level of abstraction for programming. Pro-
gramming in the core language provides conditions to have more control on the
generated C code. Programming in Feldspar is like programming in Haskell.
For example, the vector library in Feldspar has most functions of Haskell’s
list library. Features such as higher order functions, anonymous functions and
polymorphism are inherited from Haskell. Feldspar also has the same static
and strong type system as Haskell. The core language has a constructor Data
a for all types. Primitive functions in Feldspar act like their equivalent Haskell
functions [3].

(==) :: Eq a => Data a -> Data a -> Data Bool
(+) :: Numeric a => Data a -> Data a -> Data a
max :: Ord a => Data a -> Data a -> Data a

2.1 Working with Feldspar

Feldspar is imported as a normal library in Haskell, which makes it very appro-
priate for Haskell’s programmers. In this thesis, the interpreter GHCi version
7.0.3 is used. This version was supplied with the Haskell Platform [5]. The
Feldspar version is 0.5.0.1 [6, 7], but since it was not released when the project
started, this thesis used an internal development version of Feldspar.

Install instructions:



> cabal install feldspar-language
> cabal install feldspar-compiler

In this section, some Feldspar features used in this thesis are briefly described.
The function eval evaluates Feldspar functions. Only functions that are pro-
vided with all of their inputs can be evaluated in this way [3]. The function
value is used to convert a Haskell value into a Feldspar value, so, it can con-
vert a Haskell list into a Feldspar core array [3]. To use Feldspar, import it by
writing import Feldspar in the top of a Haskell source file. For example:

import Feldspar
example = value [2,5,7,8 :: Int32]

>eval (example)
[2,5,7,8]

Core Array

Core arrays are like lists in Haskell. Arrays are created in both parallel and
sequential ways. Setting and getting elements of arrays are implemented as
functions in the core array library.

parallel is a core language function that computes the elements in a core array
independently of each other. The arguments of this function are the length of
the array and a function for computing the value of each index respectively [3].

parallel :: (Type a) =>
Data Length -> (Data Index -> Data a) -> Data [a]

import Feldspar.Core

array = parallel 5 (\i -> (2 + 1))

Vector

The vector library has most functions in the Haskell list library. The only
difference between vectors and core arrays is that generating C code with arrays
allocates memory but constructing C code with vectors allocates memory if the
programmer explicitly forces this. There are two ways to define a vector in
Feldspar. The first is to use the indexed function, which builds a vector from a
length and an index function. The second is to convert a Haskell list to a vector
by using the vector constructor [3]. For example

import Feldspar.Vector

vetl indexed 5 (+2)

vet2 (vector [1..10]:: Vector (Data Int32))



Matrix

A matrix is a vector of vectors in Feldspar; so many functions from the vector
library are usable on matrixes. Only basic matrix operations (like transpose
and matrix multiplication) are implemented in the matrix library [3].

A matrix can be defined by the vector functions or the indexedMat function
which is similar to the indexed function in the vector library. IndexedMat
takes two lengths to determine the dimension of the matrix, and a function for
mapping an index to a value. For example:

import Feldspar.Matrix

mx1 value [[1,2,3]1,09,7,5],[6,4,8]] :: Matrix Int32

indexedMat 3 3 (+)

mx

> eval (mx)
(ro,1,21,11,2,31,[2,3,41]

Loops

One basic difference between programming in Feldspar and programming in
Haskell, is that recursion on Feldspar values is not permitted. Haskell program-
mers usually use recursion to accomplish looping; instead, there are special
functions in Feldspar to achieve this goal, such as forLoop:

forLoop :: Syntax a =>
Data Length -> a -> (Data Index -> a -> a) -> a

The first argument of the forLoop function specifies the exact number of iter-
ations. The second argument is the starting state and the last argument is a
function, which takes an index and the current state, and computes the next
state. The final state is the value which is returned by the function. The
following example shows a function which sums the elements of a vector:

sum :: Vectorl Int32 -> Data Bool
sum v = forLoop (length v) 0 (\i st -> st + v!i)

Here, the v ! notation indexes into the input vector.
condition

The (?) construct returns the first component of the pair if the condition is
true; otherwise the second component of the pair is returned.

(?):: (Syntax a) => Data Bool -> (a,a) -> a



isEven i = (i mod 2 == 0) ? (true,false)

> eval(isEven 124)
true

Compiling

To compile a Feldspar function, the first step is to import the Feldspar.Compiler
module. The compile function can then be used to compile a Feldspar function.
This function has four arguments. The first argument is the Feldspar function
to compile, the second is the name of the output file, the third is the name of
the C function and the last one is compilation options (defaultOptions is used
in this thesis). The defaultOptions generate C code according to the ISO C99
standard. All compilation steps are performed and no loop unrolling is made.

See the user s guide to the Feldspar compiler for more details: http://feldspar.
inf.elte.hu/feldspar/documents

For example, take the following function from Examples/Simple/Matrices.hs
for generating a parallel matrix.

matrixl :: Matrix Index
matrixl = indexed 2 vec
where
vec x = indexed 10 ((+x) . (*10))

>compile matrixl matrix.c matrix defaultOptions

This command writes the C output into a file named matrix.c. In addition,
the generated C code can be written in the Haskell interpreter directly by using
the icompile (interactive compile) function; such as:

>icompile matrixil

#include "feldspar_c99.h"
#include "feldspar_array.h"
#include <stdint.h>
#include <string.h>
#include <math.h>

#include <complex.h>

void test(struct array mem, struct array * outO)
{
setLength(out0, 2);
{
uint32_t iil;
for(il = 0; il < 2; i1 += 1)



{
setLength(&at (struct array, (* out0),il), 10);
{

uint32_t i2;
for(i2 = 0; i2 < 10; i2 += 1)
{

at(uint32_t,at(struct array, (* out0),il),i2) =
((i2 * 10) + il1);



Chapter 3

Contracts

“A contract specifies a desired property of an expression” [2]. A simple contract
is called a comprehension contract and is usually designed in the form {z|e}.
The type of this contract is the same as the type of x and e has Boolean type. A
contract can be viewed as a type [1] and they can have a name. Functions can
take contracts as arguments or return them as results, since contracts are first-
class citizen. For instance, the nonEmpty contract checks that a given vector is
not null in Feldspar.

nonEmpty :: contract (Vector a)
nonEmpty = \ v -> length v > 0

Contracts can be defined for values of arbitrary types, including function types
by using contract comprehensions. Counsider the contract (Af— > f0 > 0)
specifies that 0 is a lower bound of a function-valued expression. Contract
comprehension is restricted by a Boolean expression, so they are not sufficient
to indicate all kinds of property for an expression. Consider the increment
function that only takes a natural number as its argument; this function should
return an output larger than its input. So, the output of the increment function
depends on its input and a contract comprehension is not adequate for this
condition. There must be a contract to specify the domain and codomain of the
increment function.

The dependent function contract is built for solving the above problem and
this contract is usually defined in the form (z : el)— > €2 where el and e2 are
contracts and z represents the arguments to the function [3].

inc ::Data Int32 -> Data Int32
inc = (\n -> n+1)

incCnt :: Contract(Data Int32)
incCnt = (\n -> inc n > n)

In general, a contract combinator for each parametric data type is required [2].
Pair and list data types can be expressed as contract combinators. The dependent

10



product contract is generated by combining two contract with the contract
combinator for pair. The list contract creates a list of contracts by taking a con-
tract on all elements of a list. The And contract combines contracts by using
conjunction on two contracts: ¢l & c2 holds if c1 and c2 hold. The usability
of contracts is increased with conjunction, because programmers can specify
independent properties separately [2]. The last contract is the Any contract
that satisfies any expression. The implementation of the contract data type is
presented in chapter 4.

3.1 Assert

A contract is attached to an expression by using the assert function, such as:

head :: Vectorl a -> Data a
head = assert (notEmpty >->> Any) (\v -> head v)

Assert has following type:
assert :Contract a -> (a—> a)

The nonEmpty is the precondition and Any is the postcondition of the head
function. It means that the head function requires its argument to be a non
empty vector and the output can be anything with type of Data a. These
restrictions are specified for the head function by attaching the contract to the
function with the help of assert function. The details of the code are explained
in the next chapter.

When a contract is attached to an expression, the contract is dynamically mon-
itored at run-time. Assert acts as the identity when the contract is satisfied.
Otherwise, the evaluation is terminated with an error message; the error mes-
sage must report the reason for violation precisely and correctly.

Contracts work in this way: if a contract fails, the error message points to
the cause of violation. A dependent function contract is violated when wrong
arguments are given to the function or the function itself is wrong. For instance,
the decrement function should take a natural number as an argument and return
a natural number.

nat :: Contract (Data Int32)
nat (\i -> i> =0)

dec :: Data Int32 ->Data Int32
dec assert (mat >->> nat) (\x -> x-1)

> eval(dec 1)

0

> eval (dec (-2) )

**x* Exception Exception: Assert failed: contract failed.

11



> eval (dec 0)
**x* Exception Exception: Assert failed: contract failed.

The first contract violation is caused by passing a negative value to the dec
function : its precondition is violated, thus the argument is to blame. In the last
call, the dec function is to blame, because it cannot deliver a natural number,
so its postcondition is violated.

Contracts range from very specific to very general. The nonEmpty contract
checks that the input vector is not null. This contract is a general contract
for the vector library since most functions of this library require a none-empty
argument. On the other hand, a contract may uniquely determine a value.
Consider the function reverse which is supposed to reverse an input vector.

reversed :: Vector (Data a) -> Contract ( Vector (Data a))
reversed = \ xs rxs -> (isReverse xs rxs))

isReverse:: (Type a, Eq a) =>
Vector (Data a) -> Vector (Data a) -> Data Bool
isReverse xs ys = (lenx == leny)&&
forLoop lenx true
(\i result-> result &&
(xs!i ==ys!(leny-1 -i)))

where lenx
leny

length xs
length ys

This contract checks that reverse xs returns the elements of xs in reverse
order by calling the function isReverse.

12



Chapter 4

The implementation of
Feldspar contracts

The contract data type and the assert function are implemented based on the
contract implementation by Hinze, Jeuring et al. [2]. There are some changes
in the definition of the contract data type and in the assert function for using
Feldspar notation; their implementation is explained in section 4.1. The imple-
mentation of an informative error message for reporting contract violations is
presented in section 4.2.

4.1 The implementation of Contracts

All contract types that are explained in chapter three are implemented in
Feldspar. The name of the contract comprehension’s constructor is Prop.

data Contract aT where

Prop ::(aT -> Data Bool) -> Contract aT

Function: :Contract aT-> (aT ->Contract bT)->Contract(aT -> bT)
Pair ::Contract aT-> (aT -> Contract bT)-> Contract(aT, bT)
List ::Contract aT-> Contract [aT]

And ::Contract aT -> Contract aT -> Contract aT

Any ::Contract aT

The implementation of the assert function is presented in the following code.

assert :: Contract aT -> (aT -> aT)

assert (Prop p) a =(p a)? (a,(error "contract failed."))

assert (Function c1 c2) f =(\ x -> (assert (c2 x).f)x).assert cl

assert (Pair cl1 c2)(al, a2)=(\ x -> (x , assert (c2 x) a2))
(assert c1 al)

assert (List c) as map (assert c) as

13



(assert c2 . assert cl ) a
a

assert (And cl c2) a
assert  Any a

In the assert function, only the comprehension contract is checked immediately
based on its definition. In the remaining cases, the contract components are
attached to the related parts of the value to be checked. The checked argument x
is passed to the codomain contract c2 in the Pair and the Function cases. Hence,
unchecked arguments could cause a runtime error in the postcondition [2]; for
instance:

nonEmpty >->> (Prop (\y -> y <head x))

If x is a null vector, the postcondition cause a runtime error because of calling
the head function on the null vector.

The assert function for a prop contract in the above code always returns an
error message, independent of the condition value. The reason for this problem
is the implementation of the conditional in Feldspar. The conditional evaluates
both the if and the then branch, but when one of the branches contains an error
command it returns an error without checking the condition and the creation of
C code is aborted because of this situation. If we assume that the conditionals in
Feldspar do not have this problem, the assert function in Feldspar is translated
to a conditional expression in C code; but this is not our aim for this thesis.
The goal of this thesis is that the assert function in Haskell is converted to the
assert function in C to discover violtions through running C code too. Therefore,
Feldspar needs to have an assert function to support the implementation of
contracts.

One of the Feldspar developers added a module Error to the Core library for
solving these problems. One of The Error module functions is the assertMsg
function that is used in this thesis for implementing the Prop contract. The
function assertMsg only returns an error message that is given as a string to
the function when the condition is false. Also, this function translates the assert
function in Haskell to the C assert function.

assertMsg :: Syntax a => String -> DataBool->a —>a
assertMsg = sugarSym.Assert

The implementation of the assert function for the Prop contract is changed to
the following code

assert (Prop p) a = assertMsg ("contract failed.") (p a) a

The relation between restrictions of a function contract is defined with the
following infix operators.

pre >->> post = Function pre (const post)

pre >>-> post = Function pre post

14



The >>-> is used when the postcondition is not a constant contract [2], such as:

reverse ::(Type a,Eq a) =>
Contract (Vector (Data a) -> Vector (Data a))
reverse = Any >>-> \xs -> Prop(\rxs -> (reversed xs rxs))

The reverse function accepts any vector, so the Any contract is selected for its
precondition. The result of the reverse function must be the reverse of the
input vector; this property is tested with the reversed function. The reversed
function needs the input vector for checking the postcondition of the reverse
function. Therefore, the postcondition of the reverse function is not a constant
contract. In this example both precondition and postcondtion are merged in a
contract with named reverse.

Now that the contract language is created for Feldspar, it is time to observe
contracts in action. As an example, the getIx function from Core library takes
an array and an index and returns the value of the index, such as:

>array =parallel 3 (\i -> i+2)
> eval (getIx array 1 )
3

>eval (getlIx array 5)
**x* Exception: List.genericIndex: index too large.

> nullArray = value [] :: Data [Int32]

> eval(getIx nullArray 0)
*** Exception: List.genericIndex: index too large.

The getIx function returns an exception if the index is greater than or equal to
the length of the input array or the array is null . The getIx contract is defined
to prevent this uninformative exception. The preconditions of this function must
check that the input array is not null and that the index is less than the array
length; the getIx postcondition accepts any value. notNullArray, validIndex
and Any contracts evaluate the getIx restrictions respectively.

import Feldspar.Core as F
getIx :: Type a=> Data [a] -> (Data Index -> Data a)
getIx = assert
(notNullArray >>-> (\xs -> validIndex xs >->> Any))

(\ xs x -> F.getIx xs x)

notNullArray :: (Type a,Syntax a) => Contract (Data [a])
notNullArray = Prop(\xs -> (getLength xs)> 0)

validIndex ::Type a=> Data [a]-> Contract (Data Index)
validIndex = (\xs -> Prop (\i -> (getLength xs) > i))

15



The argument of the validIndex contract is the input array that passes from
the notNullArray contract to this contract. The getIx contract is converted
to the following C code that contains the C assert functions for checking this
function critical limitation and reporting the violations.

>icompile (getIx :: Data [Int32] -> Data Index -> Data Int32)

#include "feldspar_c99.h"
#include "feldspar_array.h"
#include <stdint.h>
#include <string.h>
#include <math.h>
#include <stdbool.h>
#include <complex.h>
void test
(struct array mem,struct array vO, uint32_t v1,int32_t * out)

uint32_t e0;

assert ((getLength(v0) > 0));

// {contract failed.}

copyArray (&at (struct array,mem,0), vO);
assert((getLength(at(struct array,mem,0)) > v1));
// { contract failed.}

el = vi;

(* out) = at(int32_t,at(struct array,mem,0),e0);

When the getIx contract is called with the previous failing test cases, the results
are:

>eval(getIx array 5)

*x*% Exception Exception: Assert failed: contract failed
>eval(getIx nullArray 0)

*%* Exception Exception: Assert failed: contract failed

Assert plays the main role in contracts’ implementation, but practical con-
tracts needs to return an error message that indicates the cause of violation
when a contract does not satisfy. However, the assertMsg function returns an
uninformative error message and makes this implementation rather useless for
practical purposes. The error message should point to the source location of
the expression that causes the violation; the location is passed to the assert
and contract functions to enable them to assign blame correctly. The following
section considers the problem of creating accurate error messages.

16



4.2 The implementation of error messages

The implementation of error messages needs some functions and data types for
keeping the source location of a program. The main type in this implementation
is a type Loc that is defined for saving the location of arguments and functions.
Blame assignment contains at least one location for holding a contract compre-
hension violation and two locations for a dependent function contract violation.
In the case of dependent function contract, the argument location is addressed
when the precondition fails and the function’s location is reported when the
postcondition fails. For holding the location of the argument in the former
case, type Locs is passed to the assert function instead of type Loc; type Locs
contains one or more location [1].

infixr :->
newtype aT :-> bT =Fun { apply :: Locs -> aT -> bT }

The type of functions that use the assert function is aT :-> bT, so the expression
(Ax : — > e) is written instead of writing Fun (1s -> x -> e) to simplify
writing contracts.

The type of the Function constructor must be adapted because contracted func-
tions have a distinguished type.

Function ::Contract aT -> (aT -> Contract bT) ->
Contract (aT :-> bT)

The following code shows the complete implementation of the assert function
with blame assignment. The assert function use following functions from the
Blame.lhs file [10] to properly assign blame: the blame function creates the
error message based on the given locations and the symbol +> is a function for
combining two elements of type Locs;

assert :: Contract aT -> (Locs -> aT -> aT)
assert (Prop p) locs a =
assertMsg ("contract failed: "++ blame locs ) (p a) a

assert (Function cl1 c¢2) 1locsf f =
Fun (\locx ->(\x ->(assert (c2 x) locsf.apply f locx)x).
assert c1 (locsf +> locx))

assert (Pair cl c2) 1locs (al, a2)=
(\ b1 -> (b1 , assert (c2 bl) locs a2))
(assert c1 locs al)
assert (List ¢) locs as = map (assert c locs) as
assert (And cl1 c2) locs a (assert c2 locs . assert cl locs) a
assert  Any locs a a

17



The Function contract implementation is explained in this paragraph.

assert (Function c1 c2) 1locsf f =
Fun (\locx ->(\x ->(assert (c2 x) locsf.apply f locx)x).
assert cl1 (locsf +> locx))

Note that locsf are the locations involved in function contract £ and the lo-
cation of function argument is specified with locx (locx has type locs but it
is always a single location). The steps of checking function contract steps are
as follows. First, the precondition c1 is checked; in this part locsf or locx
can be blamed. Then function evaluation may contain extra checking and the
argument location is passed to the function. At the end, locsf is passed to the
postcondition c2 for checking because the checked argument is given to c2 and
only function can cause the violation.

The getIx contract is rewritten to match the new implementation of the contract
and assert functions.

getIx :: Type a=> Data [a] :-> Data Index :-> Data a
getIx = cAssert "getIx"
(notNullArray >>-> (\xs -> validIndex xs >->> Any))
(fun (\ xs-> fun ( \x ->(Feldspar.getIx xs x))))

To demonstrate the effects of these changes, the previous example from section
4.1 is called; the numbers 1 and 2 are given to the function as locations for
arguments.

> eval(apply( apply getIx 1 array ) 2 10)
**x* Exception: Assert failed: contract failed:
the expression labeled ‘2’ is to blame.

> eval(apply( apply getIx 1 nullArray ) 2 0)
*** Exception: Assert failed: contract failed:
the expression labeled ‘1’ is to blame.

The cAssert function is defined to simplify the use of the assert function. The
user give, a string and this function converts the input string to a location and
then calls the assert function.

cAssert s c¢ = assert c¢ (makeloc (Def s))

Blame assignment is implemented for Feldspar by using the Blame.1hs file [10]
from the implementation of contracts for Haskell by Hinze, Jeuring et al [2].
Functions of this file are briefly explained in this report; further information
about this file can be found in section 5 of the Hinze, Jeuring et al. paper [2].
The makeloc function was defined in the Blame.lhs file [10]. This function
changes the type Loc to type Locs, since the assert function input has type
Locs for handling dependent function contracts as explained before.

The fun function is used in the assert function instead of a Fun expression:

18



fun £ = Fun (\ _ x > £ %)

However, applying the fun function in the assert needs to be changed because
for each argument of a function the fun should be written. The Functions class
is created to solve this issue; this class instantiates all sorts of fun instances.
The Functions class can be found in appendix A.

getIx :: Type a=> Data [a] :-> Data Index :-> Data a
getIx = cAssert "getIx"
(notNullArray >>-> (\xs -> validIndex xs >->> Any))
(functions (\ xs x ->( F.getIx xs x)))

When the assert function is called, locations for each contract should be passed
to the assert function and this work is done by the apply functions. However,
this is not practical because for each argument of a function an apply should be
called. As an example, a function with three arguments needs to call the apply
function three times; to avoiding writing apply for function arguments, these
functions are defined:

applyl f loc x = apply f (makeloc (App loc)) x

apply2 f loc x1 x2 = apply (apply £
(makeloc (App loc)) x1) (makeloc (App (loc+1))) x2

apply3 f loc x1 x2 x3 = apply(apply (apply £
(makeloc (App loc)) x1) (makeloc (App (loc+1))) x2)
(makeloc (App (loc+2))) x3

Note that passing the location to the function as an argument is not practi-
cal because, the real source location of a program is needed for reporting the
violation in practice.

One method for accessing the source location of Haskell code is using the C
preprocessor which is used in this thesis. The C preprocessor, known as cpp,
transforms a program before compilation automatically. “Cpp is a standalone
program. It reads a program file containing CPP directives and generates a
program file without CPP directives. In the process, the program is transformed
according to the directives” [11]. The preprocessing language is executed via
directives and macros assist this language to be expanded. Macros are short
form for arbitrary parts of C code. The preprocessor changes the macros with
their definitions throughout the program.

Before useing a macro, it should be defined explicitly with the # define di-
rective; a macro name and the intended extension of the macro are should be
written after the # define directive [12]. There are two kinds of macros. An
object-like macro is an identifier that will be changed by a code fragment.
For example,

#define array_size 100

19



A function-like macro is the second type of macro that is defined like a
function call. When a function-like macro is used the function pointer will
get the address of the real function [12], as in the LOC macro which is explained
in the following paragaraphs.

The standard predefined macros have the same meanings for all machines and
operating systems on which GNU C is being used. Their names all start and
end with double underscores. For instance, “__FILE__ macro expands to the
name of the current input file, in the form of a C string constant” [12]. Such as:

/usr/contract/ContractMacros.h

“_LINE__ macro expands to the current input line number, in the form of a
decimal” [12].

An informative error message can be generated if more details of the source
location are accessible; so the type Loc is changed to hold more information.
The new type Loc contains a file name, line number and number of function
arguments(e.g. arg); the type of number of arg is Maybe Int because this data
only exists for dependent function contracts.

data Loc
= Loc
{ file :: String
, line :: Int
, arg :: Maybe Int
3

In this thesis, __FILE__and __LINE__ macros are used to report an error message.
Macros LOC, assert and three kinds of apply functions are defined for CPP in
the file ContractMacros.h.

#define LOC (makeloc (Loc __FILE LINE__ Nothing))

#define assert assertlLoc LOC
#define applyl applyLocl LOC
#define apply2 applyLoc2 LOC
#define apply3 applyLoc3 LOC

The assert function implementation is changed based on its definition for CPP.

assertloc :: Locs -> Contract a -> a -> a

assertlLoc locs (Prop p) a =
assertMsg ("contract failed: " ++ blame locs ) (p a) a

assertLoc locsf (Function cl c2) f =
Fun(\ locx -> (\ x -> (assertLoc locsf (c2 x)
applyP £ locx) x)
assertLoc (locsf +> locx) cl)

20



assertLoc 1locs (Pair ci1 c2) (al, a2) =
(\ b1 -> (bl , assertLoc locs (c2 bl’) a2))
(assertloc locs ci1 al)

assertloc locs (List c) as = map (assertloc locs ¢ ) as

assertLoc locs (And c1 c2) a =
(assertloc locs c2 . assertlLoc locs cl ) a

assertLoc 1locs Any a=a

The C preprocessor scans the file that its name is mentioned after the #include
directive then continuing work on current file. The order of the output from the
C preprocessor is the output already generated, the included file’s output and
the output from the rest of text after the #include directive [12]. For example,
given a header file to Fcontract.h (contains all written contracts) as follows,

{-# LANGUAGE CPP #-}
# include ContractMacros.h

getIx :: Type a=> Data [a] :-> Data Index :-> Data a

getIx = assert (notNullArray >>-> (\xs -> check xs >->> Any))
(functions Feldspar.getIx)

gtx = apply2 Fcontrac.getIx

The only problem of using the C processor is that the user is not able to call
the apply functions in the Haskell interpreter(GHCi) because macros that are
defined for CPP are not accessible from the Haskell interpreter. To solve this
problem the programer should apply # include ContractMacros.h as a header
of each file that needs to use the apply macro for calling a contract. Note that
CPP reports the source location that calls apply functions, this means whenever
the gtx is called the reported location is Fcontract.hs:113.

The getIx contract is called with the previous examples to show the error
message that is created with help of CPP.

> eval (gtx array 5)
**x*% Exception: Assert failed: contract failed:
the expression Fcontract.hs:113(arg#2) is to blame.

>eval(gtx nullArray O0)

*%* Exception: Assert failed: contract failed:
the expression Fcontract.hs:113(arg#l) is to blame.

21



Chapter 5

Examples

In this chapter some of the contracts written during this thesis are presented in
detail. All contracts written are found in appendix A. The focus of the contracts
written is on Feldspar critical parts (indexing and length functions). The Any
contract is used for checking the output of Feldspar functions because we decide
to trust the output of Feldspar functions. However, we found several bugs in
Feldspar functions during this thesis by defining properties for their outputs; as
an example, the setIx function is explained in the next section.

5.1 Contracts for the Array library

SetIx

The setIx function changes the value of a given index from the array. This
function takes any array so the Any contract is selected for first argument of
the setIx function. The next precondition of the setIx is that the given index
should be less than the length of the array; this property is checked with the
validIndex contract. There is no limitation for the input value so the Any
contract is used for the last argument of this function; the result is not checked
based on our assumption that the output of a Feldspar function is always correct.

setIx :: Type a => Data [a] -> Data Index -> Data a -> Data [a]
The setIx contract is written based on the above description:

setlx :: Type a =>
Data [a] :-> Data Index :-> Data a :-> Data [a]
setIx = assert
(Any >>->(\xs -> validIndex xs >->>Any >->> Any))
(functions F.setIx)

22



stx = apply2 Fcontract.setIx

During testing of this contract, some of the wrong test cases do not fail and
some of the correct test cases return strange results, such as:

array = value [4,2,1,2,3] :: Data [Int32]
wrongTest = Fcontract.stx array 10 12

>eval wrongTest
4,2,1,2,3,12]

correctTest = Fcontract.stx array 0 9

>eval correctTest
[9,4,2,1,2,3]

Fcontract is a file that contains all contracts for functions. Note that if a
contract does not terminate with a wrong test this means the contract does not
check all violations; so instead of the Any contract as postcondition we defined
the equalLenArray contract for checking that the length of the output array is
the same as the input array length. The setIx contract changes to:

setIx :: (Type a,Eq a) =>
Data [a] :-> Data Index :-> Data a :-> Data [a]
setlx = assert
(Any >>->
(\xs -> validIndex xs >->> Any >->> equallenArray xs))
(functions F.setIx)

equallenArray ::(Type a) => Data [a] -> Contract (Data [a])
equallenArray = (\al -> Prop(\a2 ->
(getLength al) == (getLength a2)))

These strange results of testing are reported to the Feldspar developer team and
they have now fixed the setIx bugs.
SetLength

The setLength function changes an array to an array with a desired length.
Note that the given length must be less than or equal to the length of the input
array; otherwise undefined elements are created, such as:

> eval(setLength 10 array)
4,2,1,2,3]

>eval ((setlLength 10 array)! 7)
*** Exception: List.genericIndex: index too large.

23



This property of the setLength function specifies one of its preconditions; the
contract that checks this property is called setLenArray.

The setLength contract is implemented as follows:

setLength :: Type a => Data Length :->Data [a] :-> Data [a]
setlLength = assert
(Any >>-> (\len -> setLenArray len >->> Any))
(functions F.setLength)

>eval (setLength 10 array)
*xx Exception: Assert failed: contract failed:
the expression Fcontract.hs:108(arg#2) is to blame.

The contract violation is caused by passing number 10 as the length of the array
to the setLength function. This number is bigger than the array length, so its
precondition is violated, and hence the second argument is to blame.

5.2 Contracts for the Vector library

ScalarProd

The scalarProd function returns the scalar product of the two vectors. If the
lengths of these vectors are not the same, Feldspar assumes the smaller length
for both vectors. Consider the following example:

v = (vector [12,22,17,9] ::Vectorl Int32)
vl = (vector [2,8,4] ::Vectorl Int32)

> eval(scalarProd v v1)
268

This result is not correct because scalar product is defined only for two input
vectors with the same length in mathematics. The scalarProd contract is
defined for checking this violation and solving this conceptual problem.

Import Feldspar.Vector as V

scalarProd :: (Numeric a,Eq a) =>
Vector (Data a) :-> Vector (Data a) :-> Data a
scalarProd = assert
(Any >>-> (\vl -> validLenVector vl >->> Any))
(functions V.scalarProd)

sclrPrd = apply2 Fcontract.scalarProd

24



validLenVector ::(Type a) =>
Vector (Data a) -> Contract (Vector (Data a))
validLenVector = (\vl -> Prop(\v2 -> (length v1) == (length v2)))

Here, the precondition validLenVector precisely captures the intended seman-
tics of scalar product. Evaluating the above example again with the scalarProd
contract returns the following exception.

>eval(sclPrd v v1)
*%x* Exception: Assert failed: contract failed :
the expression Fcontract.hs:64(arg#2) is to blame.

The second argument is identified as the cause of the contract violation since
the length of v is not equal to the length of the v1.

Maximum

The maximum function returns the biggest number in a vector. This function

fails if the input vector is a null vector.

nullV = (vector[])::Data Int32

>eval (maximum nullV)
*** Exception: List.genericIndex: index too large.

This property should be checked as the precondition of the function. The post-
condition of the maximum function checks the result of the functionand with the
help of the maxed function. maxContract contains both a precondition and a
postcondition of the maximum function.

maximum :: (Eq a,0rd a) => Vector (Data a) :-> Data a
maximum = assert maxContract (functions V.maximum )

mxmn = applyl Fcontract.maximum
maxContract:: (Eq a,0rd a) =>

Contract (Vector (Data a):-> (Data a))
maxContract = nonEmpty >>-> \xs -> Prop(\m -> (maxed xs) == m)
maxed :: (Type a,0rd a) => Vector (Data a) -> Data a

maxed xs = forLoop (length xs) bMax (\i mMax -> max mMax (xs!i))
where bMax = Contract.head xs

Examples of calling maximum contracts are:

>eval (mxmm v1)
8

25



>eval (mxmm nullV)
*xx Exception: Assert failed: contract failed :
the expression Fcontract.hs:64(arg#l) is to blame.

5.2.1 Contracts for higher order functions

fold1

One of the higher order functions in the vector library is foldl. The foldl
function in Feldspar is the same as the foldl function in Haskell. Therefore,
the only limitation for this function is that the input vector must not be null. We
assume that the function parameter to the fold1l does not have any restriction
in order to simplify the contract. However, that function parameter to fold1l
can have contracts to specify its properties like any function.

foldl :: (Type a) =>
(Data a -> Data a -> Data a) :-> Vector (Data a) :-> Data a
foldl = assert (Any >->> nonEmpty >->> Any) (functions V.foldl)

fld = apply2 FContract.foldl
Examples:

>eval(fldl (+) v1)
14

>eval(fldl (+) nullV)
*%x* Exception: Assert failed: contract failed :
the expression Fcontract.hs:89(arg#l) is to blame.

The contract violation is caused by passing a null vector to the fold1l function.

Indexed

The indexed function takes a length to determine the length of the vector, and
an index function which computes the elements based on their index in the
vector. A simple example of using indexed is:

indexed :: (Syntax a) =>
Data Length -> (Data Index -> a) -> Vector a

> eval (indexed 4 (\i -> i+1))
> [1,2,3,4]

This function only has a postcondtion for checking that the vector has the
requested length. The assumption about the indexed function parameter is
similar to that used in the foldl function. Also, the length parameter can be
any number, so it is represented by the Any contract.

26



indexed :: (Syntax a) =>
Data Length :-> (Data Index -> a) :-> Vector a
indexed = assert (Any >>-> (\ len -> Any >->> validlLen len))
(functions V.indexed)

validLen is a contract that checks that two vectors have equal length.

validLen:: (Syntax a ) => Data Length -> Contract (Vector a)
validLen= (\len -> Prop (\v -> length v == len ) )

This contract does not fail for some wrong test cases; instead it goes into an
infinite loop during execution. All test cases that go into an infinite loop have
the same property: a negative number is given as a length value. Since the Data
Length type cannot be a negative number conceptually, the negative number
input is viewed as a very big positive number in the Feldspar implementation.
Therefore, we assume an upper bound for the given length to prevent infinite
loops during execution with positive contract.

indexed :: (Syntax a) =>
Data Length :-> (Data Index -> a) :-> Vector a
indexed = assert
(positive >>-> (\ len -> Any >->> (validLen len)))
(functions V.indexed)

positive :: Contract (Data Length)
positive = Prop(\ i -> i < 2000)

>eval (Fcontract.indxd (-2) (\i -> i+1))
*%* Exception: Assert failed: contract failed :
the expression Fcontract.hs:60(arg#l) is to blame.

The precondition of the indexed function fails because the given length is a
negative number.

5.3 Contracts for the Matrix library

A matrix is defined as a vector of vectors in Feldspar. Consequently, a matrix
in Feldspar may be built of rows of different lengths. We know the number of
columns must be equal in all rows of a matrix in mathematics. For instance
Feldspar allows the definition of the following matrix:

mx = value [[9,0,8],[3,2]] :: Matrix Int32
mx is not a matrix but Feldspar accepts it as a matrix. Therefore, the isMatrix
contract is built for checking that a matrix in Feldspar has the matrix property

based on its definition in mathematics. This contract is used for all functions
in the Matrix library whose input or output is a matrix.

27



isMatrix :: Type a => Contract ( Matrix a)
isMatrix = Prop(\xs -> ismatrix xs)

ismatrix :: Matrix a -> Data Bool
ismatrix xs = foldl (&&) (map (== len) numColumn)
where numColumn = map length xs
len = head numColumn

Multiply two matrices

The mulMat function multiplies two matrices, for example:

mulMat :: (Eq a ,Numeric a) => Matrix a -> Matrix a -> Matrix a

mxl = value [[1,2,3],[9,7,51,[6,4,8]]1 :: Matrix Int32
mx2 value [[9,7]1,[6,8]] :: Matrix Int32

> eval (multMat mxl mx2)
[[21,23],[105,95]]

Note that two matrices can be multiplied in mathematics only if the number of
columns in the first matrix is equal to the number of rows in the second matrix.
Therefore, this result is wrong and the function should return an exception,
because mx1 number of columns is not equal to the mx2 number of rows. The
mulMat contract is defined for solving this problem, with the help of the ismatch
contract. The ismatch contract checks if the number of columns of the first
matrix is the same as the number of rows in the second matrix.

import Feldspar.Matrix as M

mulMat ::(Eq a ,Numeric a) =>
Matrix a :-> Matrix a :-> Matrix a
mulMat = assert (isMatrix >>->
(\mx -> (And isMatrix (isMatch mx)) >->> Any))
(functions M.mulMat)
mlMat = apply2 Fcontract.mulMat

ismatch :: (Eq a ,Numeric a) => Matrix a -> Contract(Matrix a)

ismatch = (\mx1 -> Prop(\mx2 -> (match mxl mx2) ))

match ::(Type a,Eq a)=> Matrix a -> Matrix a -> Data Bool
match mxl mx2 = (length (head mx1)) == (length mx2)

> eval (mlMt mx1l mx2)
*xx Exception: Assert failed: contract failed :
the expression Fcontract.hs:130(arg#2) is to blame.

28



Transpose

The transpose function exchanges the rows and columns of a matrix. For
example,

transpose :: (Type a,Eq a) => Matrix a -> Matrix a

>eval (transpose mx2)

([9,6]1[7,8]]

The transpose function transposes the rows and the columns of its input matrix.
All these properties are checked with the isTranspose contract.

transpose :: (Type a,Eq a) => Matrix a :-> Matrix a
transpose = assert isTranspose (functions M. transpose )

trnsps = applyl Fcontract.transpose

isTranspose :: (Type a,Eq a)=> Contract(Matrix a -> Matrix a)
isTranspose = ismatrix >>-> (\m ->
Prop(\ tm -> (match m tm) && (match tm m))

> eval (trnsps mx)
*%* Exception: Assert failed: contract failed :
the expression Fcontract.hs:126(arg#l) is to blame.

mx is not a matrix; consequently the isMatrix contract raises the alarm.

5.4 Contracts for some Feldspar examples

In this part, some practical Feldspar functions are presented.
DCT

“The discrete cosine transform (DCT) is a technique for converting a signal into
elementary frequency components” [8]. The DCT is generally used in image
compression [8]. As an example the most common form of the DCT that is
implemented as an example in the Feldspar tutorial with the name of dct2
function is explained here. “DCT is often expressed such that each element
in the output vector is a sum of the input elements multiplied by appropriate
factors” [4]. The dct2 function is implemented in the Feldspar tutorial as a
matrix multiplication, the factors are the elements of the matrix. In this thesis
instead of applying the function indexedMat for implementing this function the
indxMt contract is used to prevent any violation while creating a matrix with
the indexedMat function. The indxMt contract can be found in Appendix A.

29



dct2 :: (Vectorl Float) -> (Vectorl Float)
dct2 xn = mat *** xn
where mat = indxMt (length xn) (length xn)
(\k 1 -> dct2nkl (length xn) k 1)

This function accepts any vector and the length of the output must be equal to
the input vector length; so the contract of dct2 is:

dCT2 :: (Vectorl Float) :-> (Vectorl Float)
dCT2 = assert (Any >>-> (\v -> checkLenVector v))
(functions dct2)

The dct2 function uses the helper function dct2nkl to compute all the values
in the DCT-2n matrix. The dct2nkl function can be found in Appendix A.

low pass filter

The low pass filter is the next example that is explained here. A low-pass filter
is a circuit offering easy passage to low-frequency signals and difficult passage
to higher-frequency signals. The low-pass filter implemented in the Feldspar
tutorial.

lowPassCore :: (Numeric a) =>
Data Index -> Vectorl a -> Vectorl a
lowPassCore k v = take k v ++
replicate (length v - k) O

This function goes into an infinite loop if the input index is bigger than the
input vector length because of the replicate function that is called as a helper
function. There are two possibilities for solving this problem. One method is
to use a contract for the lowPassCore function

lowPassCore ::(Numeric a) =>
Data Index :-> Vectorl a :-> Vectorl a
lowPassCore = assert
(Any >>->(\i -> validIndex i >>->
(\v —> checkLenVector v)))
(functions lowPassCore)

The following contract tests if the given index is less that the vector length

validIndex :: Type a => Data Index -> Contract (Vectorl a)
validIndex = (\i -> Prop (\v -> length v > i))

vf = (vector [7.8]) ::Vectorl Float
> eval(Fcontract.1lPssCr 2 vf)

*** Exception: Assert failed: contract failed:
the expression Fcontract.hs:290(arg#2) is to blame.

30



Another solution is to write a contract for the replicate function and use it in
the lowPassCore function. The replicate contract can be found in Appendix
A; it is called rplct contract.

lowPassCore :: (Numeric a) =>
Data Index -> Vectorl a -> Vectorl a
lowPassCore k v = take k v ++ rplct (length v - k) O

> eval(lowPassCore 2 vf)

*xx Exception: Assert failed: contract failed:
the expression Fcontract.hs:102(arg#1) is to blame.

Both solutions are implemented; however, the error message from the lowPassCore
contract shows the reason for the violation very precisely.

31



Chapter 6

Testing Contracts

A program should not return any unexpected run time error if all functions
in the program satisfy their contracts [1]. There are to check satisfaction of a
contract, static contract checking and dynamic contract checking.

Dynamic contract checking checks contract satisfaction at run time and if any
run time input violates the function’s contract the failure is reported. Note that
dynamic contract checking clarifies where the bug is and the compiler explains
the reason for the bug. Dynamic checking often returns an incomplete result and
detects a violation late; this is because it only checks the data values and code
path of actual execution. For instance, the decrement (dec) function introduced
in section 3.1 obviously does not satisfy its contract (nat :-> nat), although
this fact is not identified until the dec function takes zero as its argument. This
property becomes even more important when the language has higher order
functions. For instance,

f :: (Data Int32 -> Data Int32) -> Data Int32 -> Data Int32
fgx=gx

cntF :: (Data Int32 :-> Data Int32) :-> Data Int32 :-> Data Int32
cntF = assert((nat >->> nat) >->> nat >->> nat) (function f)

applyF = apply2 cntF

The function f takes a function argument of type Data Int32 -> Data Int32.
Detecting contract violations cannot be expected when the f is applied to a
function. We consider the dec function as a function argument for this example.
Violations are discovered when the dec is later applied in the body of £. In the
case where the parameter does not appear in the body, only a negative result
raises the alarm. Consider the following example:

> eval (applyF dec 2)
1

32



> eval(applyF dec 0)
**x*% Exception: Assert failed: contract failed:
the expression Fcontract.hs:12 is to blame.

An error is only detected in the second call, though the first call is also wrong.

Static checking can improve software productivity because it detects errors at
compile time and reduces the cost of correcting such errors [1]. Static checking
avoids runtime overhead but typically involves difficult, often incomplete pro-
gram analyses. “Theorem prover can be used as an assisting tool for static con-
tract checking” [1]. If the static checking of a program succeeds, it means that
the program cannot crash [1]. Static contract checking reports who is to blame
and points to the location of the violation. There is still no compiler that sup-
ports static automatic verification of high-level languages, since these languages
support advanced features (such as higher-order functions, complex recursions,
laziness) to help programmers [1]. Dana N.Xu et al. described a sound and auto-
matic static verification tool for Haskell, that is based on contracts and symbolic
execution. Their approach returns precise blame assignments at compile-time,
in the presence of higher order functions and laziness [1].

In this thesis, a dynamic contract checker for Feldspar is implemented com-
pletely and some of the written contracts are presented in chapter five. Static
contract checking is not implemented; however, a C static contract checker could
be used for checking code generated by the Feldspar language. This is because
Feldspar generates C code and the assert function in Haskell translates to the
assert function in C. Unfortunately, a static checker for C that works correctly
could not be found during this thesis, so we cannot test contracts with a C static
checker.

In practice, contract checking improves conditions for using tools for expressing
and testing general algebraic properties like QuickCheck; so using QuickCheck
for verification of Feldspar can possibly be a lot more effective with the help
of contracts. QuickCheck is an automated and random testing tool for Haskell
programs [9]. In this thesis QuickCheck is used for testing contracts because
dynamic contract checking is not sufficient to prove the correctness of Feldspar
programs.

6.1 Testing with QuickCheck

QuickCheck is an automated testing tool that helps Haskell programmers in
formulating and testing properties of programs [9]. Program properties are de-
fined via a pre/post, algebraic style or are model-based (functions or relations);
note that programmers must specify fixed types for arguments of properties to
prevent overload problems because of polymorphic type for QuickCheck. The
user can specify random test data generators for more complex data structures
with QuickCheck. Properties are passed to the quickCheck function for testing
with randomly generated test cases.

Some of the properties that have been written for Feldspar contracts are pre-

33



sented in the next section, and all properties can be found in Appendix B.

The freezeVector function converts a vector to a core array without any
change in length and values of the vector; the thawVector takes a core ar-
ray and returns a vector with same length and value of the core array. The
freezeVector and the thawVector contracts that can be found in Appendix
A. The former is tested with the following property by calling the quickCheck
function. prop_freezeVector first converts the input vector to a core array and
then this array is transformed to a vector by applying the thawVector contract.
This vector should be equal to the input vector if these contracts act correctly.

prop_freezeVector :: (Type a,Eq a) =>
Vector (Data a) -> Data Bool
prop_freezeVector v = equal v (Fcontract.thwVctr

(Fcontract.frzVctr v))

>quickCheck prop_ freezeVector
+++ OK, passed 100 tests.

The next property that we present here is a property for the foldl contract.
This function takes the sum function as its first parameter.

prop_foldl :: Vectorl Int32 -> Property
prop_foldl v = (eval (f1dl (+) v) P.== P.foldl (+) 0 (eval v))

>quickCheck prop_foldl

**%* Failed! Exception: ’Assert failed: contract failed:
the expression Fcontract.hs:89(arg#2) is to blame.’
(after 1 test):

(]

The first test case fails because of the contract violation; the precondition of
foldl is not satisfied. The error message mentions that the argument of the
function is to blame.

If a test case of quickCheck fails, the counter example that causes this problem
is reported as result. The counter example for prop_foldi is a null vector. Note
that the QuickCheck is used in this thesis for discovering the bugs in the written
contracts to achieve this goal test cases should have correct preconditions. So,
a contract is satisfied if functions passes all tests. The QuickCheck property
language provides conditional properties; the conditional property C ==> P
holds if the property (P) after ==> holds whenever the condition (C) does.
Therefore, test cases which do not satisfy the condition are discarded and gen-
erating test cases does not stop until 100 test have passed or number of test
cases are reached to the overall limitation (1000). In the second case, a message
reports the number of test cases that satisfy the condition and the property is
said to hold in these cases. The ==> function is defined as follows in Feldspar.

34



(===>) :: Testable prop => Data Bool -> prop -> Property
a ===>Db = eval a ==> Db

The fold1 property is written as a conditional property:

prop_foldl :: Vectorl Int32 -> Property
prop_foldl v = notnull v ===>
(eval (fldl (+) v) P.== P.foldl (+) 0 (eval v))

notNull :: Vectorl Int32 -> Data Bool
notNull v = length v > 0O

>quickCheck prop_foldl
+++ OK, passed 100 tests.

The next property has a condition that is seldom satisfied and after generating
1000 test cases only 28 test cases satisfied the condition and the property.

prop_scalarProd :: Vectorl Int32 -> Vectorl Int32 ->Property
prop_scalarProd vl v2 =(length vi== length v2) ===
((Fcontract.sclrPrd v2 v1) == (Fcontract.sclrPrd vl v2))

>quickcheck prop_ scalarProd
*** Gave up! Passed only 28 tests.

Some of the properties that are written for Feldspar contracts give up their test
case because of using conditional properties to satisfy their precondtions. To
find bugs and redundancy of conditions, we define incorrect pre/ post conditions
for contracts and then call QuickCheck for testing these contracts. All these
contracts should fail during testing. If one of the wrong test cases is passed,
this illustrates that the conditions of the contract are not defined correctly. The
contract nonEmpty checks that the given vector is not null so the length of the
vector must be bigger than zero. The wrong version of this contract checks the
length of the input vector is bigger than or equal to zero. Function quickCheck
is called for the foldl function with the new contract:

>quickCheck prop_foldl
+++ OK, passed 100 tests.

This test passes all 100 tests because of using the notNull condition for gen-
erating random test cases. If this condition is removed from the property, the
quickCheck function fails.

prop_foldl v = (eval (fldl (+) v) P.== P.foldl (+) 0 (eval v))

> quickCheck prop_foldl

*%* Failed! Exception: ’List.genericIndex: index too large.’
(after 1 test):

(]

35



The next example is the minimum contract; the incorrect version of function
mined is defined as

mined :: (Type a,0Ord a) => Vector (Data a) -> Data a
mined xs = forLoop (length xs -1) bMin
(\i mMin -> min mMin (xs!i))
where bMin = head xs

This function does not consider the last value of the list; quickCheck should fail
and report that the function is to blame because the postcondition fails.

>quickCheck prop_minimum

*xx Failed! Exception: ’Assert failed: contract failed:
the expression ./Fcontract.hs:96 is to blame.’

(after 3 tests):

[0,-1]

Using test cases like these, we have checked our Feldspar contracts and found no
bugs. Therefore, we decide to accept that the presented contracts for Feldspar
are correct and valid.

36



Chapter 7

Related Work

Parnas first presented the concept of contracts for software in 1970s. In the
next decade, this idea was developed to design a software based on the concept
of contracts for an object-oriented programming language (Eiffel) by Meyer.
Contracts were implemented for many programming languages (e.g., C, C++,
Java and Scheme [13]). Assert functions are popular and practical in C codes but
this function does not have enough information to report the violation precisely.
“In fact, 60% of the C and C++ entries to the 2005 ICFP programming contest
used assertions, despite the fact that the software was produced for only a single
run and was ignored afterwards” [16].

Contracts for higher-order functional programming were introduced by Findler
and Felleisen [13]. They implemented dynanic contract checking for Scheme.
Their implementation contains blame assignment that reports the location of the
violation without specifying who is to blame. Blume and McAllester presented
a sound and complete model to prove that Findler and Felleisen’s dynamic
contract checker detects all violations and always specifies blame correctly. After
these studies much research was started to answer the questions about the nature
of contracts specially the Any contract.

R.Hinze et al. [2] used generalised algebraic data types to implement contracts
as a library in Haskell. Their implementaion includes contract constructors for
pairs, lists, algebraic data types and a combinator for conjunction. They prove
that algabric properties of contracts provid the conditions for optimizing con-
tracts and showing that a function satisfies its contract. They added the cause
of violation to the blame assignments of Findler and Felleisen’s implementation
to report the reason for a contract failure precisely at run time. Their work has
been the main inspiration for this thesis.

Hybrid contracts combine static and dynamic contract checking to enable pro-
gram verification and error detection. Hybrid contract checking for scheme is
proposed by Flanagan. His implementation discovers a contract failure statically
(whenever possible) and dynamically (only when necessary) [1].

Static contract checker for an advanced functional programming language was
presented by Dana N. Xu et al. [1]. Their symbolic evaluation follows closely the

37



lazy semantics of Haskell. They have proved the soundness of each simplification
rule and given a proof of the soundness of their static contract checking. Their
approach is modular and returns complete and accurate blame assignments at
compile time in the presence of higher order functions and laziness [1].

38



Chapter 8

Conclusions

We have presented the contract comprehension, the dependent function con-
tract, the dependent product contract, the list contract, the And contract and
the Any contract for Feldspar (an embedded language).

The assert function is implemented for these contracts to check them during
run time. To implement the assert function for contracts it is necessary that the
Feldspar language has an assert function because the conditional expressions
don’t work correctly when one of the branches contains an error command.
Also, if the assert function in Haskell is converted to the assert function in C,
we can check contracts with a C static contract checker during compile time.
However, we could not find any C static contract checker that works correctly.
The assert function was implemented and added to the Feldsapr Core library
by the Feldspar developers.

Higher order and first class contracts are introduced and implemented for three
of Feldspar’s libraries (core array, vector and matrix). Furthermore, we have
implemented contracts for some practical examples of Feldspar functions such
as discrete cosine transform and low pass filter in this thesis.

The implementation of contracts solves the following problems in Feldspar.
First, the C compiler returns a wrong answer instead of returning an excep-
tion when an indexed (!) function takes an index bigger than the length of its
input vector. For example, a null vector is passed to the foldl function. Sec-
ond, matrix library has conceptual problems, like a matrix can be defined with
different number of columns. Also, Feldspar’s error message is converted to an
informative error message, since the error message that is created with the help
of a contract reports the expression that causes the violation.

Blame assignment is implemented by using a C preprocessor (CPP) to report
the source location of the program that causes the contract violation. Having
blame assignment point to real source locations is one of the future works of
Typed Contracts for Functional Programming by Hinze, Jeuring et al.

The implementation of the dynamic contract checker is presented via examples
and we have presented several bugs of Feldspar functions that were detected

39



by dynamic contract checking. Also the contracts written were checked with a
testing tool (QuickCheck) to discover bugs in the Feldspar contracts. At the end,
incorrect contracts are implemented and tested with QuickCheck; also, wrong
arguments are passed to the contracts written by defining wrong conditions for
QuickCheck properties. These contracts and test cases are created to ensure
correctness and validation of contracts. All contracts pass the above testing
methods and we decide to accept that the written contracts for Feldspar are
valid and correct.

This thesis left some topics for future work, in particular, the use of template
Haskell for reporting the source location as blaming point in the error message;
this would solve problems of using a C preprocessor. Furthermore, a static
contract checker for Feldspar should be written to allow contract satisfaction
checks at compile time.

40



Bibliography

1]

[9]

Dana N. Xu, Peyton J. Simon, K. Claessen, Static contract checking for
Haskell, ACM, SIGPLAN Not, volume 44, Programming Languages (POPL
’09), 2009.

R. Hinze, J. Jeuring, and A. Loh, Typed Contracts for Functional Program-
ming. In FLOPS 06: Functional and Logic Programming: 8th International
Symposium, pages 208 - 225, Springer LNCS 3945, 2006.

E. Axelsson, K. Claessen, M. Sheeran, J. Svenningsson, D. Engdal, and A.
Persson, The Design and Implementation of Feldspar: an Embedded Lan-
guage for Digital Signal Processing, Springer LNCS 6647, 2011.

E. Axelsson , A. Persson, M. Sheeran, J. Svenningsson, G. Deval, A Tutorial
on Programming in Feldspar. http://feldspar.inf.elte.hu/feldspar/
documents/FeldsparTutorial.pdf, 2011.

The Haskell Platform. http://hackage.haskell.org/platform, March
2012.

The feldspar-language package. http://hackage.haskell.org/package/
feldspar-language, March 2012.

The feldspar-compiler package. http://hackage.haskell.org/package/
feldspar-compiler, March 2012.

Steven W. Smith, The Scientist and Engineer’s Guide to Digital Signal Pro-
cessing, ISBN 0-9660176-6-8, second Edition,California Technical Publish-
ing, 1999.

K. Claessen, J. Hughes, Testing Monadic Code with QuickCheck, ACM, SIG-
PLAN Not, volume 37, 2002.

[10] All codes of Typed Contracts for Functional Programming paper.

http://www.andres-loeh.de/Contracts.html, March 2012.

[11] K. Wansbrough, Macros and Preprocessing in Haskell, third Haskell work-

shop, Paris, France, 1999. The author’s homepage: http://www.lochan.
org/keith/publications/index.html, March 2012.

[12] Richard M. Stallman, Z. Weinberg, The C Preprocessor. gcc.gnu.org/

onlinedocs/cpp.pdf, 2011.

41



[13] Robert B. Findler, M. Felleisen, Contracts for higher-order functions. In
ICFP 02: Proceedings of the seventh ACM SIGPLAN international confer-
ence on Functional programming, pages 48 - 59, New York, NY, USA, ACM
Press, 2002.

[14] M. Nyrenius, D. Ramstrom, Generating Embedded C Code for Digital Sig-
nal Processing, Master of Science Thesis in Computer Science, Department
of Computer Science and Engineering, Chalmers University of Technology,
2011.

[15] Avraham E. Shinnar, Safe and Effective Contracts, PhD thesis of Philoso-
phy in the subject of Computer Science, Harvard University, 2011.

[16] Robert B. Findler, M. Blume, Contracts as Pairs of Projections. In Func-
tional and Logic Programming, pages 226 - 241. Springer LNCS 3945, 2006.

[17] K. Claessen, J. Hughes, QuickCheck: A Lightweight Tool for Random Test-
ing of Haskell Programs, ACM SIGPLAN Notices,35(9). 2000.

[18] Robert B. Findler, M. Blume, M. Felleisen, An investigation of contracts as
projections, Technical Report TR-2004-02, The University of Chicago, 2004.

42



Appendix A

Contract.hs

{-# LANGUAGE TypeOperators,FlexibleContexts,TypeFamilies,GADTs,FlexibleInstances #-}
module Contract where

import qualified Prelude as P
import Blame

import Feldspar

import Feldspar.Vector

import Feldspar.Matrix

Contract
data Contract aT where
Prop :: (Syntax aT) => (aT -> Data Bool) -> Contract aT
Function :: Contract aT -> (aT -> Contract bT) -> Contract (aT :-> bT)
Pair :: (Syntax aT,Syntax bT) => Contract aT ->
(aT -> Contract bT) -> Contract (aT, bT)
List :: (Syntax aT) => Contract aT -> Contract [aT]
And :: Contract aT -> Contract aT -> Contract aT
Any :: Contract aT
fun f = Fun (\ _ x > f x)

(=.) :: Locs -> Maybe Int -> Locs
(NegPos neg pos@(p:ps)) =. v = NegPos neg ((p{arg=v}):ps)

applyLocl 1loc f x
applyLoc2 loc f x1 x2

apply f (loc=. (Just 1)) x
apply (apply f (loc=. (Just 1)) x1)
(loc=. (Just 2)) x2
applyLoc3 loc f x1 x2 x3 = apply (apply (apply f (loc=. (Just 1)) x1)
(loc=. (Just 2)) x2) (loc=. (Just 3)) x3

Assert
assertLoc :: Locs -> Contract a -> a -> a
assertlLoc locs (Prop p) a =
assertMsg ("contract failed: " P.++ blame locs ) (p a) a
assertlLoc locsf (Function cl c2) f = Fun(\ locx -> (\ x’ -> (assertLoc locsf (c2 x’)
apply £ locx) x’)
assertLoc (locsf +> locx) cl )
assertloc locs (Pair ci1 c2) (al, a2) = (\ al’ -> (al’ , assertLoc locs (c2 al’) a2))
(assertLoc locs cl al)
assertLoc locs (List c) as = P.map (assertLoc locs c ) as
assertloc locs (And cl c2) a = (assertLoc locs c2 .assertLoc locs cl ) a
assertlLoc locs Any a = a
infix
infixr :->
newtype aT :-> bT = Fun { apply :: Locs -> aT -> bT }
infixr 4 >->>
pre >->> post = Function pre (const post)
infixr 4 >>->
pre >>-> post = Function pre post

43



infixr 9 ‘of

f ‘o‘g = \a—>f (ga)

infixl 3 &
(&) = And

functions
class Functions a
where
type Funs a
functions :: a -> Funs a

instance Functions b => Functions (a ->b)
where
type Funs (a->b) = a :-> Funs b
functions f = fun (\x -> functions (f x))

instance Functions (Data a)
where
type Funs (Data a) = Data a
functions x = x

instance Functions (Vector a)
where
type Funs (Vector a) = Vector a
functions x = x

instance (Functions a, Functions b) => Functions (a,b)

where
type Funs (a,b) = (Funs a, Funs b)
functions (x,y) = (functions x, functions y)

Feldspar contracts
nat:: Contract (Data Int32)
nat = Prop(\i -> i >=0)

positive :: Contract (Data Length)
positive = Prop(\ i -> i < 2000)

contracts for Array library

notNullArry :: (Type a) => Contract (Data [al)
notNullArry = Prop(\xs -> (getLength xs)> 0)

validIndex ::Type a=> Data [a]l-> Contract (Data Index)
validIndex = (\xs -> Prop (\i -> (getLength xs) > i))

setLenArray :: Type a => Data Length -> Contract (Data [a])
setLenArray = (\len -> Prop(\a -> ((getLength a)>=len )))

validLenArray :: (Type a) => Data [a] -> Contract (Data [al)
validLenArray = (\al ->
Prop(\a2 -> (getLength al) == (getLength a2)))

contracts for Vector library

nonEmpty :: Syntax a => Contract (Vector a)
nonEmpty = Prop(\xs ->(length xs)> 0)

validLen :: (Syntax a ) => Data Length -> Contract (Vector a)
validLen = (\len -> Prop (\v -> (length v == len)))

bound ::Vector a -> Contract (Data Index)
bound =(\xs -> Prop (\i -> (length xs) > i))

validLenVector :: (Syntax a) => Vector a -> Contract (Vector a)
validLenVector = (\vl -> Prop(\v2 -> (length v1) == (length v2)))

validLenV :: (Syntax a,Syntax b) => Vector a -> Contract (Vector b)
validLenV = (\v1 -> Prop(\v2 -> (length v1) == (length v2)))

reversed :: (Type a,Eq a) =>
Contract (Vector (Data a) :-> Vector (Data a))

44



reversed = Any >>-> \xs -> Prop(\rxs -> (isReversed xs rxs))

isReversed :: (Type a,Eq a) =>
Vector (Data a) -> Vector (Data a) -> Data Bool
isReversed xs ys= (lenx == leny)&&

forLoop lenx true
(\i result-> result && (xs!i ==ys!(leny-1 -i)))
where lenx = length xs
leny = length ys

get :: (Type a,Eq a) => Data Index -> Data a -> Contract(Data [a])
get = (\i a -> Prop(\rs-> (getIx rs i)== a))

equal :: (Type a,Eq a) =>
Vector (Data a) -> Vector (Data a) -> Data Bool
equal xs ys = (length xs == length ys) &&
fold (&&) true (zipWith (==) xs ys)

maxContract :: (Eq a,0rd a) =>Contract (Vector (Data a):-> (Data a))
maxContract = nonEmpty >>-> \xs -> Prop(\m -> (maxed xs) == m)
maxed :: (Type a,0rd a) => Vector (Data a) -> Data a

maxed xs = forLoop (length xs) bMax (\i mMax -> max mMax (xs!i))
where bMax = head xs

minContract :: (Eq a,0rd a) =>

Contract (Vector (Data a):-> (Data a))
minContract = nonEmpty >>-> \xs -> Prop(\m -> (mined xs) == m)
mined :: (Type a,0rd a) => Vector (Data a) -> Data a

mined xs = forLoop (length xs) bMin (\i mMin -> min mMin (xs!i))
where bMin = head xs

sameLength :: Type a => Vector (Data a) -> Contract (Data [a])
sameLength = (\v -> Prop (\a -> (length v) == (getLength a)))

samelen :: Type a => Data [a] -> Contract (Vector (Data a))
sameLen = (\a -> Prop (\v -> (length v) == (getLength a)))

contracts for Matrix library

isMatrix :: Type a => Contract ( Matrix a)
isMatrix = Prop(\xs -> ismatrix xs)

ismatrix :: Matrix a -> Data Bool
ismatrix xs = (length numColumn >0) && fold (&&) true
(map (== head numColumn) numColumn )
where numColumn = map length xs

validInput ::Type a => Contract(Data [[al])
validInput = Prop(\aa -> isValid aa)

isValid :: Type a=> Data [[al] -> Data Bool
isValid aa = forLoop (getLength aa) true
(\i result -> result && (getLength (aa!i))== col)
where col = getLength(aa!0)

isTranspose :: (Type a,Eq a)=> Matrix a -> Contract(Matrix a)
isTranspose = \m -> Prop(\ tm -> condition(length tm ==0)
true ((match m tm) && (match tm m)))

match ::(Type a,Eq a)=> Matrix a -> Matrix a -> Data Bool
match mxl mx2 = (length (head mx1)) ==(length mx2)

isMatch :: (Eq a ,Numeric a) => Matrix a -> Contract(Matrix a)
isMatch = (\mx1 -> Prop(\mx2 -> (match mx1 mx2) ))

boundry :: Type a => Data Length —> Data Length ->Contract (Data [[all)
boundry = \row col -> Prop (\a -> (getLength a >= row)&&
(getLength (a!0) >= col))

diagonalPrp :: (Type a) => Contract (Matrix a)
diagonalPrp = Prop (\mx -> (ismatrix mx) && length(head mx) >= length (mx))

45



notNullMatrix :: (Type a) => Contract (Matrix a)
notNullMatrix = Prop (\mx -> (length mx == 0) 7

(false ,((length(head mx)==0)? (false, true))))

search:

validOutput :: Vectorl a -> Contract (Data Index)
validOutput = (\v ->

Prop (\i-> (i< length v) || (i == length v+100)))

isPow2 ::
isPow2 = Prop(\v -> ispow2 (length v))

Fft

Contract (Vectorl (Complex Float))

ispow2 :: Data Length -> Data Bool
ispow2 x = x .&. (x-1) ==
Fcontract.hs

{-# LANGUAGE CPP,TypeOperators,GADTs,FlexibleContexts ,NoMonomorphismRestriction #-}
module Fcontract where

#includ

e

"assert.h"

import Control.Arrow ((&&&))

import Contract

import qualified Prelude as P

import Blame

import Feldspar as F

import qualified Feldspar.Core

import Feldspar.Vector as V

import Feldspar.Matrix as M

import Feldspar.Compiler --hiding(setLength)
import FFT as T

vector

freezeVector:: Type a => Vector (Data a) :-> Data [al

freezeVector

frzVctr

assert (Any >>-> (\v -> sameLength v)) (functions V.freezeVector)
= applyl Fcontract.freezeVector

thawVector :: Type a => Data [a] :-> Vector (Data a)
thawVector = assert (Any >>-> (\a -> samelen a)) (functions V.thawVector)

thwVctr = applyl Fcontract.thawVector

indexed :: (Syntax a) => Data Length :-> (Data Index -> a) :-> Vector a

indexed = assert (positive >>-> (\ len -> Any >->> (validLen len))) (functions V.indexed)
indxd = apply2 Fcontract.indexed

scalarProd :: (Numeric a,Eq a) => Vector (Data a) :-> Vector (Data a) :-> Data a
scalarProd = assert (Any >>-> (\vl -> validLenVector vl >->> Any)) (functions V.scalarProd)
sclrPrd = apply2 Fcontract.scalarProd

head :: Syntax a => Vector a :-> a

head = assert (nonEmpty >->> Any) (fun (\x -> (V.head x)))

hd = applyl Fcontract.head

last :: Syntax a => Vector a :-> a

last = assert (nonEmpty >->> Any) (fun (\x -> (V.last x)))

1st = applyl Fcontract.last

tail :: Syntax a => Vector a :-> Vector a

tail = assert (Any >->> Any) (functions V.tail)

tl = applyl Fcontract.tail

maximum (Eq a,0rd a) => Vector (Data a) :-> Data a

maximum assert maxContract (functions V.maximum )

mxmm applyl Fcontract.maximum

minimum (0rd a,Eq a)=> Vector (Data a) :-> Data a

minimum = assert minContract (functions V.minimum )

46



mnmm = applyl Fcontract.minimum

reverse ::(Eq aT,Type aT) => Vector (Data aT) :-> Vector (Data aT)

reverse = assert reversed (functions V.reverse)

rvrs = applyl Fcontract.reverse

foldl :: (Type a) => (Data a -> Data a -> Data a) :-> Vector (Data a) :-> Data a
foldl = assert (Any >->> nonEmpty >->> Any) (functions V.foldl )

fldl = apply2 Fcontract.foldl

= assert (Any >>->(\xs -> validIndex xs >>->(\i -> Any>>-> (\a -> (get i a))))) (functions F.setIx)

(isMatrix >>-> (\mx -> (And isMatrix (isMatch mx)) >->> Any)) (functions M.mulMat)

: Type a => Data Length :-> Data Length :-> (Data Index -> Data Index -> Data a):-> Matrix a

replicate :: Data Length :-> a :-> Vector a
replicate = assert (positive >->> Any >->> Any) (functions V.replicate)
rplct = apply2 Fcontract.replicate

array
setLength :: Type a => Data Length :->Data [a] :-> Data [a]
setLength = assert (positive >>-> (\len -> setLenArray len >->> Any)) (functions F.setLength)
stLngth = apply2 Fcontract.setLength
getIx :: Type a=> Data [a] :-> Data Index :-> Data a
getIx = assert (nullarray >>-> (\xs -> validIndex xs >->> Any)) (functions F.getIx)
gtx = apply2 Fcontract.getIx
setIx (Type a,Eq a) => Data [a] :-> Data Index :-> Data a :-> Data [a]
setlx
stx = apply3 Fcontract.setIx

matrix
freezeMatrix :: Type a => Matrix a :-> Data [[all
freezeMatrix = assert (isMatrix >->> Any) (functions M.freezeMatrix)
frzMtrx = applyl Fcontract.freezeMatrix
thawMatrix :: Type a => Data [[al] :-> Matrix a
thawMatrix = assert (validInput>->>isMatrix) (functions M.thawMatrix )
unfrzMtrx = applyl Fcontract.thawMatrix
transpose (Type a,Eq a) => Matrix a :-> Matrix a
transpose = assert (Any >>-> (\m -> isTranspose m)) (functions M.transpose )
trnsps = applyl Fcontract.transpose
mulMat (Eq a ,Numeric a) => Matrix a :-> Matrix a :-> Matrix a
mulMat = assert
mlMt = apply2 Fcontract.mulMat
diagonal : Type a => Matrix a :-> Vector (Data a)
diagonal = assert((And notNullMatrix diagonalPrp) >->> Any) (functions M.diagonal)
dgnl = applyl Fcontract.diagonal
indexedMat
indexedMat =

assert(positive>->> positive >->> Any >->> isMatrix) (functions M.indexedMat)
indxdMt = apply3 Fcontract.indexedMat

test

-- connot use Fcontract.ScalarProd because of inits have different length vectors

convolution ::

Vectorl Float -> Vectorl Float -> Vectorl Float

convolution kernel input = map ((V.scalarProd kernel) . rvrs) $ inits input

convolutionC ::

convolutionC
cnvltn

Vectorl Float :-> Vectorl Float :-> Vectorl Float

= assert (Any >->> Any >>-> (\v -> validLen (length v +1))) (functions convolution)

apply2 convolutionC

ort

-- Bubble sort (permute)

bubbleSort
bubbleSort v
where len

:: Vectorl Int32 -> Vectorl Int32

= forLoop len v inner

= length

inner i nv =

bubb
swap

le j nv’
a il i2

v

forLoop (len-1) nv bubble

(av’!j > nv’!(j+1)) ?((V.thawVector $ swap (V.freezeVector nv’) j (j+1)), nv’)
F.setIx (F.setIx a il (F.getIx a i2)) i2 (F.getIx a il)

47



ordered :: (Type a,0rd a) => Vectorl a -> Data Bool
ordered v = fold (&&) true (V.zipWith (<=) v (V.tail v))

sort = Prop(\sx -> ordered sx)

bubblesort :: Vectorl Int32 :-> Vectorl Int32
bubblesort = assert (Any >->> sort) (functions bubbleSort)
bbblsrt = applyl Fcontract.bubblesort

bubbleSort2 :: Vectorl Int32 -> Vectorl Int32
bubbleSort2 v = forLoop len v inner
where len = length v -1
inner i nv = forLoop (len-2) nv bubble
bubble j nv’ = (av’!j > nv’!(j+1)) ? (swap2 nv’ j (j+1), nv’)
swap2 v il i2 = permute (\1 i -> (i == i1) 7 (i2, (i == i2) ? (i1, i))) v

bubblesort2 :: Vectorl Int32 :-> Vectorl Int32
bubblesort2 = assert (Any >->> sort) (functions bubbleSort2)
bbblsrt2 = applyl Fcontract.bubblesort2

earch
--linear search

search ::(0rd a,Eq a) => Vectorl a -> Data a -> Data Index
search v key = forLoop (len) (len+100) (\i s -> (listl! i)? (i,s))
where listl = (map (==key) v)
len = length listl

searchCnt :: (Ord a,Eq a) => Vectorl a :-> Data a :-> Data Index
searchCnt = assert (Any >>-> (\v ->Any >->> validOutput v)) (functions search)
srchCnt = apply2 Fcontract.searchCnt

-- binary search

binarySearch :: Data WordN -> Vectorl WordN -> Data Index
binarySearch key v = fst $ forLoop iters (0,len-1) f
where len = length v
iters = ceiling $ logBase 2 $ i2f len
f _ (low,high) =(v!d == key) ? ((d, d), ((key < v!d) ? ((low, d-1), (d+1, high))))
where d = (low + high) ‘div‘ 2

searchB :: Data WordN :-> Vectorl WordN :-> Data Index
searchB = assert (Any >->> sort >->> Any) (functions binarySearch)
srchB = apply2 searchB

DCT

-- Discrete Cosine Transform type 2
dct2 :: (Vectorl Float) -> (Vectorl Float)
dct2 xn = mat **¥* xn
where
mat = M.indexedMat (length xn) (length xn) (\k 1 -> dct2nkl (length xn) k 1)

dcT2 :: (Vectorl Float) :-> (Vectorl Float)
dCT2 = assert (Any >>-> (\v -> validLenVector v)) (functions dct2)
applydct2 = applyl dCT2

-- Helper function defining all the values in the DCT-2n matrix
dct2nkl :: Data Length -> Data WordN -> Data WordN -> Data Float
dct2nkl n k 1 = cos ( (k’ *(2%1’ +1)*pi)/(2%n’) )

where
n’ = i2f n
k> = i2f k
1’ = i2f 1

dct2NKL :: Data Length :-> Data WordN :-> Data WordN :-> Data Float
dct2NKL = assert (positive >->> Any >->> Any >->> Any) (functions dct2nkl)
applydct2nkl = apply3 dct2NKL

Low-pass filter

lowPassCore :: (Numeric a) => Data Index -> Vectorl a -> Vectorl a
lowPassCore k v = take k v ++ V.replicate (length v - k) 0

48



1PassCore ::(Numeric a) => Data Index :-> Vectorl a :-> Vectorl a
1PassCore = assert (Any >>->(\i -> validIndexs i >>-> (\v -> validLenVector v)) ) (functions lowPassCore)
lwPssCr = apply2 1PassCore

lowPass :: Data Index -> Vectorl Float -> Vectorl Float
lowPass k = frequencyTrans (lwPssCr k)

frequencyTrans :: (Vectorl (Complex Float) -> Vectorl (Complex Float))
-> Vectorl Float
-> Vectorl Float
frequencyTrans innerFunction v = map realPart $ ifft
$ innerFunction
$ fft $ map (\a -> complex a 0) v

FFT

ffT :: Vectorl (Complex Float) :-> Vectorl (Complex Float)
ffT = assert(isPow2 >->> Any ) (functions fft)
applyfft = applyl ffT

49



Appendix B

{-# LANGUAGE CPP,TypeOperators,FlexibleContexts,TypeFamilies,GADTs,FlexibleInstances,UndecidableInstances,NoMonomorphismRestric
module Test where
#include "assert.h"

import Contract

import Blame

import Feldspar as F

import qualified Prelude as P
import Feldspar.Vector as V
import Test.QuickCheck

import Fcontract as C

import Feldspar.Matrix as M
import System.Random

import Insrtsort

Generate Length
deriving instance Random Length

instance Arbitrary (Data Length) where
arbitrary = natural

natural :: Gen (Data Length)
natural = do i <- choose(0,2000)
return (value i)

Helper Functions

validIndexs ::(Type a) => Data Index -> Data Index -> Contract(Vector (Data a))
validIndexs = (\r ¢ -> Prop (\v -> ((r~2)*(c"2) )== (length v)))

nullMat mx = (length mx == 0) ? (false ,((length(V.head mx)==0)7 (false, true)))
integer n = n >= 0

notnull v = (length v) > 0

notempty xs = (getLength xs >0)

correctIndex xs i = (F.getLength xs > 1)&& (i>= 0 )

notnullMatrix mx = condition (length mx == 0) false (notnull (V.head mx))

equalArray :: (Type a,Eq a)=>Data [a] -> Data [a] -> Data Bool
equalArray ax ay = (getLength ax == getLength ay) 7(checkNull , false)
where checkNull = (getLength ax == 0) ? (true, (checkEq ax ay))
checkEq ax ay = forLoop (getLength ax) true (\i result -> result && (F.getIx ax i)== ( F.getIx ay i))

prop_eqArray :: Data [Int32] -> Data [Int32] -> Data Bool
prop_egqArray al a2 = equalArray al a2 == equalArray a2 al

Vector Library
prop_freezeVector :: Vector (Data Int32) -> Data Bool

prop_freezeVector v = equal v (applyl C.thawVector(applyl C.freezeVector v))
xx v = equal v (applyl C.thawVector(applyl C.freezeVector v))

prop_thawVector :: Data [Int32] -> Data Bool
prop_thawVector v = equalArray v (C.frzVctr(C.thwVctr v))

50



prop_indexed :: Data Length -> Data Bool
prop_indexed i = (length (apply2 C.indexed i id) == i)

prop_scalarProd :: Vectorl Int32 -> Vectorl Int32 -> Property
prop_scalarProd vl v2 = (length vl == length v2) ===> ((apply2 C.scalarProd v2 v1) == (apply2 C.scalarProd vl v2))

prop_head :: Vectorl Int32 -> Property
prop_head xs = notnull xs ===> (C.hd xs == (!) xs 0)

prop_last :: Vectorl Int32 -> Property

prop_last xs = notnull xs ===>(C.lst xs == C.hd (C.rvrs xs) )

prop_taill = eval (V.tail :: Vectorl Int32 -> Vectorl Int32) === eval (V.drop 1 :: Vectorl Int32 -> Vectorl Int32)
prop_maximum :: Vectorl Int32 -> Property

prop_maximum xs = notnull xs ===> ( C.mxmm xs == C.lst (insertionSort xs))

prop_minimum :: Vectorl Int32 -> Property

prop_minimum xs = notnull xs ===> (fldl (&) (V.map ( >= (mnmm xs)) xs))

prop_reverse :: Vectorl Int32 -> Data Bool

prop_reverse xs = equal xs $ V.reverse $ V.reverse xs

prop_foldl :: Vectorl Int32 -> Property
prop_foldl v = notnull v ===> (eval (f1d1 (+) v) P.== P.foldll (+)(eval v))

prop_replicate ::Data Length -> Vectorl Int32 -> Data Bool
prop_replicate len a = ((length rpV == len) && equalAll)
where rpV = apply2 C.replicate len a

equalAll= forLoop (length a) true (\i result -> result && equal a (rpV! i) )

Core.Array Library

prop_setLength :: Data Length -> Data[Int32] -> Property
prop_setLength len xs = (len <= getLength xs )===> ( (len == getLength output) && equality)
where
output = F.setLength len xs
equality = forLoop len true (\i result -> result && (output !i == xs!i))
prop_getIx :: Data[Int32] -> Data Index -> Property
prop_getIx xs i = (correctIndex xs i && notempty xs)===>( ( C.gtx xs i) == xs!i)
prop_setIx :: Data[Int32] -> Data Index -> Data Int32 -> Property
prop_setIx xs i key = (correctIndex xs i && notempty xs)===> (( output! i) == key && before && after)

where output= F.setIx xs i key
before = forLoop i true (\j result -> result && (output !j == xs!j))
after = forLoop (getLength xs -(i+1)) true (\j result -> result && (output !(j+ index) == xs!(j+ index)))
where index = (i+1)

Matrix Library

prop_freezeMatrix :: Matrix Int32 -> Property
prop_freezeMatrix mx = notnull mx ===> equalMatrix (applyl C.thawMatrix(applyl C.freezeMatrix mx)) mx
where types = mx :: Matrix Int32

equalMatrix mxl mx2 = (length mx1 == length mx2)? (notNull,false)
where notNull = ( length mx1 == 0) ?(true, iteration mx1l mx2)
iteration mxl mx2 = forLoop (length mx1) true (\i result -> result && equal (mx1 ! i)(mx2 ! i))

prop_transpose :: Matrix Int32 -> Property
prop_transpose mx = ( ismatrix mx) ===>(equalMatrix mx $ C.trnsps $ C.trnsps mx)
prop_diagonal :: Matrix Int32 -> Property

prop_diagonal mx = (ismatrix mx && nullMat mx) ===> (length mx == length (C.dgnl mx))
prop_indexedMat :: Data Length -> Data Length -> Property
prop_indexedMat r ¢ = (r<2000 && r > 0 && c >0 && c < 2000 ) ===> ( (length newMt == r) && (length (C.hd newMt) == c) && ismatr

where f = (\ij > 1)
newMt = C.indxdMt r c f
Sort
prop_bubblesort :: Vectorl Int32 -> Data Bool

prop_bubblesort v = equal (applyl C.bubblesort v) (insertionSort v)

51



LowPassCore

prop_lowPassCore i v = ((length result == length v ) && (equal (take i result) (take i v)))
where types = v :: Vectorl Int32

result = apply2 1PassCore i v

52



	Cover_page_GU__Chalmers.pdf
	Master of Science Thesis in Computer Sience

	thesis1

