
	
	

	 	

Research Reports in Software Engineering and Management 2012:01 ISSN 1654-4870

FACTORS INFLUENCING REUSE AND SPEED IN
THREE ORGANIZATIONS

Antonio Martini Department of Computer Science and Engineering
	

	

	

	

	

	

	

	

	

	

	

FACTORS INFLUENCING REUSE AND SPEED IN THREE ORGANIZATIONS

Antonio Martini

© Antonio Martini, 2012

Report no 2012:01

ISSN: 1651-4769

Department of Computer Science and Engineering

Chalmers University of Technology and University of Gothenburg

Chalmers University of Technology
Department of Computer Science and Engineering
SE-412 96 Göteborg
Sweden

Telephone + 46 (0)31-772 5710

Göteborg, Sweden 2012	

	

	

	

Research Reports in Software Engineering and Management No. 2012:01

FACTORS INFLUENCING REUSE AND SPEED
IN THREE ORGANIZATIONS

Antonio Martini
antonio.martini@chalmers.se

Department of Computer Science and Engineering
CHALMERS | University of Gothenburg

Gothenburg, Sweden 2012

FACTORS INFLUENCING REUSE AND SPEED IN THREE
ORGANIZATIONS

Antonio Martini

Introduction

This report supplements the research paper Martini et al, “Inhibitors and Enablers
for Reuse with Speed”. It lists main factors influencing reuse and speed in three
organizations. Factors come from the analysis of a set of 7 interviews, 3 of which
have been used as secondary evidences. The report also includes the interview
protocol of the study.

The factors (F-x) are explained and sometimes organized in categories (C-x) to
provide a better understanding of their relationships and of their context. They
have also been categorized and sorted as inhibitors, enablers, inverse factors and
ambiguous factors, according to the kinds of influence presented in the paper (Fig
1.); categories are shown in the right margin using category abbreviations on the
form YYY-Z with meanings given by Figure 1 below. For further explanations
of the meaning of these categories, please refer to the paper.

	
Figure 1 Kinds of Influence

Figure 2 Improvement Areas

	

Reuse Inhibitors (Case A)

C-1: Coordination Business side – Development side.
F-1. Communication barriers business side – development side
F-2. Different views between business side – development side
F-3. Business side afraid of upfront investment for an SPL
F-4. Business side not aware of SPL benefits
F-5. Customers of different locations don't understand the benefits of

a SPL
F-6. Rush to hit the market (focus only on first deployment speed)

These 6 factors are very connected among them, so we have grouped them
in the cluster C-1: Coordination Business side – Development side. From
many points in the interview is clear that the interviewee (the architect) is
willing to implement an SPL but he is worried about the agreement on the
investment from the business side (F-3). This is also connected with the fact
that the previous attempt to implement it was not successful and the
business side was more focused on the single delivery instead of on the
development of common software among the products. Obviously, this also
means that business side and development side have different views (F-2)
on software development key factors, the former one focusing on 1st
deployment speed (F-6) while the other takes more into account the
replication speed and the benefits of having a common platform (which
leads to F-4). The interviews suggest also the existence of barriers in
communication, since it seems that development side receive orders from
different masters (from different projects (F-7)) rather than being part on the
decisional process on what development strategy would be better to manage
the whole line of products. These factors have obviously a negative effect
on considering reuse practices as important, which means that they hinder
the development of a reuse culture and reuse practices (so they are Reuse
Inhibitors).

F-7. Lack of awareness of the architecture benefits in the business side

This is another factor explicitly mentioned by the architect. To achieve a 1st
deployment speed the management is keen to sacrifice (in terms of budget
and time-resources) the development of a carefully thought architecture.
This hinders reuse practice, since a well-defined architecture would create a
suitable environment for reuse.

F-8. Lack of SPL knowledge in some parts of the organization

(including some developers)

While the architect claims his knowledge and willing of implement a SPL,
this is hindered by the lack of basic concepts, principles and technical skills
throughout the whole organization. This results in decisions (management
side) and implementations (development side) not in accordance with the
SPL principles (and reuse in general).

ICP‐C

BRA‐B

BRA‐B

ARB‐K

ARB‐K

BRA‐B

BRA‐B

ARB‐K

ARB‐K

C-2: Early branching hinders SPL implementation
F-9. Different products initially managed with a branch, then it

became too late to merge the branches into a SPL
F-10. Different products of a SPL ended up to be entirely distinct

products

The architect described how creating an early branch in configuration
management contributed to keep the products separated hindering their
synchronized development and therefore the implementation of reuse
strategies.

F-11. Not sufficient early architectural planning

This is connected with the cluster C-1 explained before. Not planning for
architecture implies not planning for reuse. However, “not sufficient early
architectural planning” has different causes that don’t necessary involves the
lack of resources and understanding from the business side (as explained in
C-1), but could be the consequences, as mentioned in the interview, of
inadequate practices in prioritization and lack of knowledge in architecture
design. Moreover, this is a problem also connected with the implementation
of Agile Methods, which in general are keen to pay less attention to develop
architecture in advance, but focusing on accurate refactor afterwards.
Unfortunately, it seems that usually only the first part of the principle is
implemented (early architectural planning), while refactor post-iteration is
usually not applied due to lack of time, resources and prioritization goals.

F-12. Developers and Architects have an intuitive way of evaluating

costs

Asking for cost evaluation, Developers and Architects have an intuitive way
of evaluating costs and no helpful decision tools. This reduce their
awareness of the benefits that software reuse could bring.

C-3: External Market Constraints against SPL
F-13. Market constraints too strong against the products

synchronization of the SPL
F-14. Different time constraints between different markets

The interviewees stressed their problems in adapting the intended SPL to
markets that are not synchronized. Some of them could require a certain
TTM, while others don’t. However, an important market demanding and
early release could force the focus on the 1st deployment speed (F-7),
strongly hindering the implementation of the SPL (since, as pointed out in
F-11, once a product is branched from the rest it’s very likely that it would
remain independent from the SPL)

	

RPK‐K

PR‐P

ARB‐K

*Context

*Context

Reuse Inhibitors (Case B)

C-4: Projects are too independent
F-15. Few and big projects are not synchronized
F-16. Project-related bugs (even in the same reused component)

The projects are quite isolated, causing a phenomenon called “siloing”:
every decision aims for the local optimum (F-113), and this obviously
hinders the development of common assets among the projects.

F-17. Business side lacks awareness of SPL benefits

See factor F-5.

C-5: Communication Problems Business side – Development side
F-18. Communication barriers business – developers. Evaluation of

costs and feasibility of new features depends on implementation
F-19. Communication barriers business – developers. Wrong

assumptions on what can be reused and adjusted for an
upcoming product (causing inaccurate budget allocation)

These two factors are focused on the communication barriers existing
between the business side and the development side (see also cluster C-1 for
case A). Here the granularity of the factors is finer. The business side made
the customer promises based on wrong assumptions (regarding
implementation issues and reusability of existing software). This is caused
by a lack of consulting of the development side, which cannot give feedback
about the feasibility of the features and about the reusability of the
components. Having wrong estimation hinders the ability of planning for
reuse.

C-6: Reuse implementation
F-20. Reuse not supported from the PL - individual initiative
F-21. No time for product development (project transversal)
F-22. Reuse is not organized
F-23. Too much application of opportunistic reuse

In one of the analyzed sub-case the Product Line Management (PLM) is not
supporting reuse with budget allocation or the introduction and support of
good practices (F-23, F-26). This is a key factor for enhancing reuse, since
PLM would be the right position for evaluating needs across products of the
same line. This reuse Inhibitor is supported also in another interview, where
a PLM has managed to keep the focus on reuse allowing the development of
substantial portion of software (F-78). However, it has to be said that the
latter developed product contained less variability along time, making reuse
much easier. In the former case, reuse was limited to individual initiative:
the effect was that a “light framework” (citing the interviewee) of libraries
was reused occasionally and opportunistically (F-27), which results to be
not very effective in the end. On a wider scope, the interviewee mentioned a

PS‐O

ARB‐K

ICP‐C

ICP‐C

ARB‐K

PS‐O

RPK‐K

RPK‐K

BRA‐B

general lack of time (not included in the resource allocation by the
management, F-23) to work on software shared among projects.

F-24. Budget dedicated only for a specific business goal (0% to

architecture)

This factor is connected with both F-6 and F-7 of case A. The architecture is
not taken in consideration as a business goal (and neither is reuse). This
implies the lack of awareness of benefits of architecture and reuse on the
business side.

F-25. Hard to predict where the variation points will be in many years

It’s difficult to plan reuse when the variation points are unknown. This
factor becomes especially impacting when many years pass between the
developments of two projects involving the same product (context related
problem). The risk is to waste a lot of time on implementing variation points
that will be useless in the next product.

F-26. Loss of knowledge about the reused light framework variation

points created many years before

The practice of reusing a light framework of libraries in an opportunistic
way (see C-6 explanation) led to lose the knowledge of the implemented
variation points.

F-27. Developers too constrained by system engineers on design

The interviewee stressed this point very much. If reuse is not taken in
consideration by System Engineers and their specifications are too specific
on a design level, implementing reuse becomes very hard because of the
mismatch between the different designed systems. At the same time, another
interviewee (a PLM that managed to reuse a substantial part of the software
across different products, see C-6 and F-23 explanation) stressed the same
point as important to implement successful reuse.

F-28. Different favorite languages or tools in the same team

Different favorite languages or different tool chains inhibit reuse. The lack
of compatibility among languages or tools, in fact, makes it harder to adapt
an artifact to a different environment.

F-29. Consultancy lacks of competences

Connected with F-9. The interviewee highlights the lack of competence as a
reuse inhibitor. In the specific case, a small component has to be completely
rewritten because of the poor implementation. The interviewee then
specifies that this is usually a problem derived from working with
consultants, who often don’t have the competence for a specific task.

BRA‐B

VM‐A

VM‐A

ICP‐C

TEC‐K

CWS‐K

RPK‐K

F-30. Non-flexible data structures hinder reuse

The interviewee explains a situation in which [language name] data-
structures are not flexible and therefore not easily extensible (every time a
new field is added everything has to be recompiled).

F-31. Not explicative documentation hinders understanding the code

The interviewee stressed the importance of the “quality” of the
documentation, i.e. well written to help understanding the code, rather than
on its volume and on the details on describing the code.

	

DOC‐C

Reuse Inhibitors (Case C)

C-7: Products Synchronization to adopt a shared component
F-32. Different platforms in different products
F-33. Internal interface exposure (slight documentation provided)
F-34. One of the products was very old and stable: it had to replace the

working part with the new common component
F-35. One of the products had a longstanding, dated process of

verification and validation which suffered when applied to the
new component

A shared component has been adopted by three existing products. The
products had different platforms, and especially for one of them this created
problems. The variability was not limited to features but spread also to the
platform adaptation (F-35), which decreased the common part resulting in
extra-work, extra-communication and extra-issues. One of them was the
exposure of an internal interface (F-36). For one of the products, in order to
address some issues during the product adaptation (F-37), had to access an
internal interface, supposed to be used only inside the teams. The
documentation for such interface was scarce, therefore a lot of extra
communication took place. The mentioned product, being old and stable,
had a longstanding, dated process of verification and validation, which
suffered when applied to the new component: for example, they had many
test cases to be carried out manually. Since the common component had to
be integrated, this meant that a lot of test cases had to be changed and
adapted and new ones had to be written and carried out manually.

F-36. After the forced introduction of the common component, projects

were afraid to integrate new common components because of the
unpleasant experience

This is the interviewee’s perception (common component development unit)
about the reasons why they have communication problems with the
receiving products. After the problems caused by other descripted factors
(i.e. C-7), other projects were disincentivized to accept the same approach to
reuse. Moreover, the adoption of the shared component was a decision
coming from “higher plans” and appeared more like a forced obligation
rather than an agreed solution.

	

AI‐A

VM‐A

AI‐A

VV‐P

ICP‐C

Speed Inhibitors (Case A)

F-37. Long warming up periods for consultancy

Complexity of the system (F-62), tool, and lack of detailed documentation
(see F-115) cause a long (1-2 years) warming up period for consultancy.

F-38. Lack of support for changing interfaces

The interviewee mentions that they have decision support, i.e. for bugs
fixing, but they don’t have decision support for changing interfaces, which
is crucial for SPL.

F-39. Test team delay caused by lack of early integration tests

Early integration tests are not in place enough (too waterfall-like), slowing
down the test process.

F-40. Testers located in separate team

The interviewee mentions many disadvantages of having testers located in a
separate team. Speed is inhibited, since the early integration tests are less
implemented, causing a lot of re-work to integrate the individual parts of the
system.

	

CWS‐K

ICP‐C

VV‐P

VV‐P

Speed Inhibitors (Case B)

F-41. Standard project structure don’t fit some kinds of projects

The standard structure for projects is designed for the substantial ones, but
cause overkill for small projects.

F-42. Customized agile shift from waterfall process, but still not

completely in place

The shift from the waterfall process to Agile methods is partial, since only
some practices have been implemented. The interviewee perceives this as an
issue for reaching the right speed.

F-43. Focus on product scope instead of on time of deployment - long

iterations

A negative practice for speed is to assign a considerable workload to
developers without prioritizing, causing in fact long iterations. The
conversation suggests that this is usually done to assure that they have their
work and do not have to be managed for a (relative) long time. This practice
postpones checkpoints, causing the early implementation of non-important
features which impact 1st deployment speed.

Speed Inhibitors (Case C)

F-44. Decisions from systemization take long time

The development unit responsible for the shared component had to wait a
long time before receiving the specification from system engineers. As for
the causes of this, the interviewee suggests the presence of a considerable
amount of variability to satisfy many customers (not necessarily connected
with the developed component).

C-8: Projects synchronization on the common component
F-45. Synchronization problems between the projects to adopt the

common component
F-46. Lack of will from some projects to adopt the common component
F-47. Communication barriers of the common component development

unit with the integrating projects
F-48. Very long decision process for the common component to be

accepted in all projects

The development of the component required a lot of communication and
synchronization among the different projects. Different requests and
availability caused many delays (F-50, F-53). The interviewee expresses her
perception of a lack of will from some projects to adopt the common
component (F-51), which created barriers in communication (F-52).
Probable causes for these were the fact that some of the products already

PS‐O

AG‐P

PR‐P

ICP‐C

PCF‐C

PCF‐C

ICP‐C

PCF‐C

had in place another working component with similar functionalities (F-71,
F-112) and that the projects were forced to integrate the component (F-72,
F-39).

F-49. Text documents as artifacts from the systemization

The interviewee mentions the use of not appropriate documents for
specifications.

F-50. Lack of use cases

The architect of the unit developing the shared component recognizes the
issue of not utilizing use cases.

C-9: Integration of the Common Component
F-51. Validation of integration of the functional independent

components consumes a lot of time
F-52. Time-consuming match of the pre-existent abstract model with

the real equipment
F-53. Layer architecture against functional domain of the component

caused delays in verification and validation of the component
against all the layers

F-54. Difficult integration of the common component into different
architectures of different projects

Validation and integration of the component was particularly slow. In fact,
the component was developed as a functional one in order to start a process
to switch from a layer-oriented architecture to a functional-oriented one (F-
73). The component had to be adapted to the existing architecture, and part
of the validation time had to be spent on matching the pre-existing abstract
model with the real equipment of the component.

	

ICP‐C

VV‐P

VV‐P

VV‐P

AI‐A

VV‐P AI‐A

AI‐A

Bi‐Inhibitors (Case A)

F-55. Big complex model, hard for new employees and new consultants

to understand if the functionalities are already implemented

The dimensions of the product (and of the model) hinder the recognition of
a specific functionality: if a new employer or a consultant want to reuse it,
they first have to look for it, which takes a lot of time.

C-10: Distributed teams coordination
F-56. Problems with the attitudes and values of distributed teams
F-57. Satellite unit is “invisible” and not directly controlled
F-58. Satellite unit auto prioritizes, have different masters (different

goals)

When covering the outsource topic, the interviewee mentioned that when a
satellite team has different attitudes and values with respect to the teams
working in house, this usually created a lot of problems in synchronizing
priorities, coordinating work and agreeing on interfaces. In fact, the satellite
unit followed different masters and therefore auto-prioritized its work. This
is a problem when align the roadmaps and to coordinate for a reuse strategy
that involves satellite units and to drive the unit to implement the most
important features.

F-59. Consultancy has knowledge of others’ ways of working but don't

have specific knowledge of the product.

One issue mentioned by the architect was that sometimes consultants bring
new and interesting ideas coming from their background in other
organizations, but they lack the specific knowledge of the product. This
hinders reuse because the domain knowledge is important to understand
well what can be designed to be reused and what is not. Besides, the lack of
specific knowledge causes a long warming-up period and sometimes poor
implementation choices (F-29).

	

CWS‐K

CWS‐K

OUT‐O

OUT‐O PCF‐C

PCF‐C

OUT‐O

Bi‐Inhibitors (Case B)

F-60. Developers and system engineers not co-located – problems in

requirements agreement

System engineers were not co-located creating many problems.
Requirements are delivered instead of communicated and discussed, and
clarifications regarding some of them are usually more difficult if the
responsible is not available. Speed is inhibited, since it can happen that
some non-important requirements are fulfilled causing a lot of extra-work.
Reuse is inhibited, too, since system engineers’ design should include
software reusability as a criterion, which is a knowledge coming from the
software development side.

F-61. Lack of incentives on reuse – hour-based wage doesn’t incentive

reuse

The interviewee finds that hour based wage doesn’t incentive reuse. In fact,
reuse practices decrease the working hours of employees, who don’t have
any reason to avoid it.

F-62. Lack of prioritized backlog

A prioritized backlog is necessary to focus on the right features for the 1st
deployment speed. Moreover, it is important to incentivize architecture
work in order implement reuse.

F-63. Processes were chosen to fit project management, developers

would prefer a different way of working

The interviewee’s perception is that the processes were chosen without
trying to follow developers’ ways of working, hindering their speed (for
example, forcing too much administrative documenting) and not promoting
reuse.

	

ICP‐C

BRA‐B

PR‐P

AG‐P

Bi‐Inhibitors (Case C)

C-11: Common component Variability Management
F-64. Variability management – agreement problems between

projects and common component on the delivered feature set
F-65. Variability management – projects had to verify unused features
F-66. Variability management – lack of feature management
F-67. Lack of hardware variability management
F-68. Lack of variability modeling

The shared component was designed with the same features for every
product. No variability modeling was used (F-58). The internal customers
(products) didn’t agree on the desired common set of features (F-56), for
example because they didn’t want to test functionalities that they didn’t use
(F-57), the amount of communication and frictions was increased.

F-69. A common component between the different products was forced,

so other projects didn't really want to use it.

See cluster C-8 and F-38. This factor has been categorized as Bi-Inhibitor
because, given the other mentioned factors, forcing the integration of the
common component produced both speed and reuse issues.

F-70. “White box” specification from systemization

The interviewee mentioned how System Engineers usually delivered over-
detailed specification documents (“white box”): this way, architects and
designers were usually constrained, struggling to plan reusable artifacts.

	

VM‐A

VM‐A

PCF‐C

VM‐A

VM‐A

ICP‐C

ICP‐C

Reuse Enablers (Case A)

F-71. Reuse of models

Both interviewees state that the reuse is carried out with models and clearly
imply that modeling is a good reuse practice.

F-72. Different backlogs for functionalities and architecture

Architecture work is prioritized and not left aside. This is important to
support reuse.

F-73. Use models to handle variability

Models are also used to handle variability. This helps organizing the
common parts and recognizing reusable software.

RPK‐K

PR‐P

VM‐A

Reuse Enablers (Case B)

F-74. Frequent meetings and agreement between Developers and

System Engineers discussing the benefits of Reuse (different unit)

 The interviewee, having different roles such as developer, architect
and product line management, revealed that part of the system has
been successfully reused. He stressed the importance of having a
good and continuous discussion between developers and system
engineers. When asked, he also said that the practice of continuous
communication needed much time (more than 10 years) to become
effective. Moreover, it’s clear from this interview that the Product
Line Manager has supported reuse. This is on the same line of what
has been said another interviewee from case B (see cluster C-6, F-
30).

	

ICP‐C

ARB‐K

Reuse Enablers (Case C)

F-75. Long term plan: having more common components integrated in

the different products

The interviewee revealed that the common component has been the first of a
planned process to switch from a layer-oriented architecture to a functional
components-oriented one (more reuse friendly). Many issues related to case
C can be viewed under this light: somewhere the process had to be started to
support future reuse, and probably this was a first step to promote the
switch, which means that the problems may disappear or decrease when a
different environment has set up. This may suggest that the introduction of
reuse may require a long process to be effectively supported.

C-12: Successful platform variability handling
F-76. Variability - different adaptors for different platforms of the

projects
F-77. Product B and product C using the same platform

Three products adopted the common component. Two of them (that we
called B and C) used the same one (F-80), helping the integration of the
shared software, while A used a different one, which caused problems (see
also cluster C-7). However, the platform side variability in the common
component was well managed, with the introduction of platform-adaptors
(even though there were drawbacks, see C-7).

F-78. Successfully integration of the common component

The eventual integration of the common component showed that the
strategy was successful, even though some approaches caused (especially)
speed problems (see C-7 and C-11). However, this doesn’t necessary mean
that the those approaches cannot be changed to improve speed without
hindering effective reuse.

F-79. Variability management - build time scripts to include the code

Even though variability management lacked in general (see F-40, C-9),
build-time scripts were used to include the code.

	

ARB‐K

VM‐A

AI‐A

AI‐A

VM‐A

Speed Enablers (Case A)

F-80. Co-located teams

For both the interviewees the co-location is an important factor for speed,
especially to avoid frictions, synchronization delays and communication
problems.

F-81. Weekly prioritization of the functionalities with the customer

The Agile principle of continuously consulting the customer has been
implemented, which helps the teams to focus on the key features.

F-82. Short period problem dealing

The interviewees mention some Agile approaches whose implementation is
still in progress. Those practices should help to quickly deal with problems.
Some examples are daily meetings, daily deliveries to testers and the goal of
having spread releases during the iteration (8-10 weeks).

	

AG‐P

PR‐P

AG‐P

Speed Enablers (Case B)

F-83. Changing programming language improved productivity

The interviewee mentioned the decision to switch from Ada to Java, which
increased the productivity of the developers.

Speed Enablers (Case C)

C-12: Agile environment supported implementation speed
F-84. Cross-functional teams
F-85. Informal roles, knowledge sharing
F-86. Teams have the same responsibilities, same backlogs
F-87. Very short time of implementation

The interviewee praised the implementation of some Agile methods (F-89,
90, 91). In fact, the implementation time was very short (F-93).

F-88. Common component architecture free from other projects

The unit developing the common component had the freedom to use its
preferred architecture. This was a good choice for the fast implementation,
even though created integration problems. However, it has to be viewed in
the light of F-79.

	

TEC‐K

AG‐P

AG‐P

PR‐P

TEK‐K

AI‐A

Bi‐Enablers (Case A)

F-89. Incentive from management side to developers’ proactivity:

communication of small improvement through meetings

The interviewed product line manager revealed that the management side is
encouraging developers to communicate every small improvement that can
be implemented. This is connected also with

F-90. Model driven code generation

The interviewees were quite convinced that code generation was a good
practice both for speed and reuse.

	

ICP‐C

RPK‐K TEC‐K

Bi‐Enablers (Case B)

F-91. Open Source products easier to manage than outsourced

component

The interviewee was very pleased by his experience with open source
components. Support was always very fast and effective, and obviously it
saved time from developing the same component in house. He mentioned
these benefits also in comparison with outsourcing.

F-92. Reuse of the design for small components

The interviewee mentioned a small component that he wanted to reuse. A
consultant had developed it in a dated language, and the result was poor.
However, the design was clear and easy to understand (also because of the
limited size of the component), so the interviewee decided to recode it in a
newer language, but following the design. In the end, the coding part
resulted to be very quick. This can be considered as a good reuse practice:
reusing the design for small components could result in having the
advantages of reuse at a relative low cost in terms of speed.

	

OUT‐O

RPK‐K

Bi‐Enablers (Case C)

F-93. Developers have the will to take part in the systemization

The developer with the architect role revealed that the development unit
would like to participate in the systemization to give their contribute and at
the same time to give suggestions from their point of view.

F-94. The common component uses only a small part of the platform

functionalities - not affected by platform changes

The common component doesn’t rely heavily on the platform
functionalities, having a small amount of dependencies from it. Changes on
the platform don’t affect the component much, and it doesn’t require to be
adjusted, saving extra-work.

F-95. Successful integration in product C - no previous similar

component to be replaced

The integration of the common component in product C did not cause
problems. This suggests that if the same strategy would be chosen in future,
the approach could be successful.

	

ICP‐C

AI‐A

AI‐A

Reuse Enablers & Speed Inhibitors (Case A)

F-96. Functionality requests from different projects

Receiving functionalities specification from different projects helps
planning for reuse. However, if the projects are not well coordinated and
synchronized (depending also on the markets), this practice brings a high
penalty in terms of speed. On the contrary, focusing in the 1st deployment
speed for one project could obstruct the application of reuse practices.

	

PCF‐C

Reuse Enablers & Speed Inhibitors (Case B)

F-97. Conservative mindset, tend to keep old assets – this often needs

extra code to handle it

The interviewee mentions a certain conservative mindset present in the
company that tends to keep old assets. This in theory would help reusing,
but in fact it often means extra code to handle old code.

F-98. Massive use of documentation

Large amount of documentation helps reuse, however it takes time to be
written, and it’s usually difficult to produce it in the right way much time
after the development.

	

PCF‐C

DOC‐C

Speed Enablers & Reuse Inhibitors (Case A)

C-13: Prioritization determines the focus of the team
F-99. Architectural improvements are done by the most available and /

or most skilled developers
F-100. Customer functionalities preferred by developers over

architecture
F-101. Relocation of developers from other tasks to follow customer

prioritization

The management of human resources has an impact on reuse and speed. In
case A we can observe a high focus on speed (especially the 1st deployment
speed): F-104 shows that architectural improvements are left to the most
skilled developers, when available, otherwise only to the available ones
(also suggested by F-106). Furthermore, developers like more to work on
customer functionalities rather than on architecture (F-105).

F-102. Short lifecycle of the product

The lifecycle of the product is around 7 years. Thus, the focus is pointed on
the fast delivery (1st development speed) rather than on the maintenance-
related advantages given by reuse.

	

PR‐P

PR‐P

PR‐P

*Context

Speed Enablers & Reuse Inhibitors (Case B)

F-103. Risk in planning reusable components - lost time for the first

client and having the wrong variation points in the future

The interviewee identifies this way of thinking in his environment. If they
plan a reusable component very well they have to detract time from the first
delivery to gain in future assets. Moreover, variation points could be wrong
and the asset could result to be non-reusable.

	

VM‐A

Reuse Enablers & Inhibitors (Case B)

C-14: Reuse practice: a light framework of libraries
F-104. Reuse of a light framework of utilities extracted from the

previous project
F-105. Problems splitting reused framework
F-106. The reuse of a light framework leads to have a lot of copy paste

A light framework (for example a set of libraries) has been extracted from a
product to be reused and expanded in a successive one (F-109). However,
after some applications of this schema, the framework grows wild, which
means that it has to be split and re-organized. This risk to nullify the
advantages gained so far (F-110).

	

RPK‐K

RPK‐K

RPK‐K

Reuse Enablers & Inhibitors (Case C)

F-107. First common component shared among several products –

component already present in some of the products

See explanation in C-8, F-79 and C-11.

	

ARB‐K

Speed Enablers & Inhibitors (Case B)

F-108. Problems with team synchronization - low inter-team

communication (very independent teams)

Teams are very independent. This decreases the amount of communication
(and the problems derived, such as delays, synchronization), but at the same
time they pay a “fee” at integration level. It’s hard to say which one is
impacting speed more, even though the interviewee seems keen to prefer
early communication.

	

ICP‐C

Other Ambiguous Factors (Case A)

F-109. Some components outsourced

The experience of the interviewees with outsourced component is mixed.
Outsourcing avoids in-house development, which is good for speed.
However, communication is often a problem, slowing down the process
anyway. As mentioned in F-12, C-10 and F-96, other problems derive from
outsourcing. The advantages in term of reuse are dependent on the kind of
component outsourced.

F-110. Lack of detailed documentation

See also F42, F-103, F-41 and F-34. Detailed documentation takes time to
be written, could improve reuse but only if well explaining the code, and
could also decrease the warm-up process for new employees and
consultants.

F-111. Improvements depend on leaders mindset (open to listen and
recognize strengths and weaknesses)

This is an “in vivo” quotation from an interviewee from the case A. He was
stressing the attention on the importance of a leader when new or improved
practices have to be implemented. This is especially important when there
are small teams and it would be desirable to introduce cost- and speed-
effective practices that require coordination (like reuse).

F-112. The same people implement functionalities and architectural

improvements

The pros and cons in terms of speed and reuse are many and blurred. In case
A, the interviewees said that the same people are developing customer-
oriented functionalities and architectural improvements: in fact, there is not
a clear distribution of such responsibilities. As mentioned in C-13, this has
mainly a good effect on speed and not on reuse. However, having both
knowledge (features and architecture) and a careful prioritization
mechanism (internal or external) could really help to implement reusable
software.

	

OUT‐O

DOC‐C

AG‐P

ICP‐C

Other Ambiguous Factors (Case B)

F-113. Projects focused on the local optimum

Many factors in case B are connected with this trend cited by the
interviewees (F-20-24). The right evaluation of costs and the budgets
allocation are obviously very important to reach business goals, and the
local optimum is the first step. Interviews show that a broader view is
necessary to understand the importance of reuse, which could increase the
local expenses and the 1st deployment speed of the current projects, but
would be important to decrease costs and speed afterwards (of the same
project and of the others). At the same time, speed is very important, and 1st
deployment speed could be decisive also to keep a good relationship with
the customers.

F-114. Documentation slows code improvement

The interviewee mentioned this factor as improvement inhibitor. The idea is
that, once a substantial amount of documentation has been written for some
software, it’s difficult to change the code to improve it if the developer has
to rewrite a lot of documentation. The categorization is motivated by both
negative and positive influence in reuse: in fact, less improvement means
less chances that a piece of software is adjusted for reusability. At the same
time, as specified before, a well-documented functionality enhances its
future reuse. As for speed, documentation slows down the 1st deployment
speed (and included improvements), but has a positive impact on the time
spent on warming up for new employers and consultants (reducing the 1st
deployment speed) as well as on the time necessary to find and reuse a
functionality in opportunistic reuse.

PS‐O

DOC‐C

Reuse with Speed – Interview Protocol
	
INTERVIEW	GUIDELINES	
PRIMARY	QUESTIONS	
FOLLOWUP	QUESTIONS	
 What is Being Reused
 Effects of Reuse
 Reuse => Reduced Speed
 The Reuse Ecosystem
 Modes of Reuse
 Organizational Boundaries Influence on Reuse / Speed
 Engineering Communication Infrastructures Influence on Reuse / Speed

INTERVIEW	GUIDELINES		
	
These interview guidelines are based on template provided by “Washington School
Research Center”

The protocols that follow include open-ended interview questions and a number of
subject areas to keep in mind. If these areas are not addressed by the open-ended
responses, some of the suggested probes might be helpful.
The purpose of probes in interviews is to enable the person being interviewed to be as
informative as possible in their responses. They are neutral prompts that encourage
additional information, but do not suggest specific answers. Some examples of probes
are “How is that?” or “In what ways?” and so on.
The protocols below include some follow-up questions that might be helpful for
obtaining further information when probes do not result in covering the areas.
Since follow-up questions should touch on whatever the interviewee has already
said, there is no best way of phrasing them. These are only suggestions.

INTERVIEW	CHECKLIST	
• Start each interview with a statement ensuring confidentiality. That interview will be
recorded, what will happen to the recording (transcription by you), who will be able
to see the recording (only you and the research team), and how it is going to be stored
(on password protected USB disks not connected to the University network).

• Have the informant sign an agreement form. (See sep. document.)

• Interview one project in each organization (Volvo, Ericsson, Saab)

• For each project, interview one line-manager (or equivalent role) and one team-
leader (or equivalent role).

• Plan for 1h with the informant, but allow yourself at least one more hour (to make
room or continued discussion.)

• Plan an additional hour directly after the interview to write down your thoughts, and
to add meta-data to a case-study database

• Always test the technical equipment. (Recording device, before the interview and
during the interview. Test your laptop as backup.)

• This is basically an inductive approach. Don’t be too focused in questions—ask
general, open-ended questions.

• Start interview with general questions about role and experience from agile methods
and experiences from reuse. (This makes the informant more comfortable, and is
important in analyzing answers later.)

• Use 2 or 3 open-ended questions to get the interview started.

• Bring along an easily navigable presentation with suggestive pictures and questions.

• Develop three or four questions that ‘get at’ each of the phenomena.

• If you already covered a question in your discussion, don’t ask it again; rathert
summarize what the informant already said, and ask if there’s something else to add
on that topic.

• Use same questions at each site: major questions, followed by minor ones

• PROBE (i.e. what things have you been doing in the past that allow you to...; use
follow up questions (i.e. ‘You haven’t mentioned...’,)

• Bring along a .ppt with thought-provoking pictures, such as current WoW,
envisioned WoW. Metaforic pictures (such as the one from Gulliver’s travels) are
very effective in probing

• Be ready to show pictures with key phenomena studied if the informants asks;
precisely what do you mean by reuse / speed /other phenomena. (This presentation
grows gradually.)

PRIMARY	QUESTIONS	
1. Tell me about your role.

2. Q: What experiences do you have from reuse?

Probes:
a) What processes did you use? (Ask an example?) [PROCESSES]
b) How formal were these process? [FORMAL]
c) How strictly were they followed? [STRICTLY]

d) How was variability managed? [VARIABILITY]
e) How did you decide what to reuse? (see also 8) [OPPORTUNITIES,

DECISION TOOL]

f) How did you manage backward compatibility? [BACKWARD COMP.]

g) What tools did you use to manage reuse? [TOOLS]
h) Did you have some tool to show you economical consequences of your chosen
reuse technique? [DECISION, ECONOMIC, TOOL]

i) How successful were the projects? [SUCCESS]
j) What step will be next? [NEXT STEP]
k) What is the “lesson learned”? [LESSON LEARNED]

3. Q: What experiences do you have from agile methods?

Probes:
a) At which scale were methods used? [SCALE]
b) How long were the sprints? [SPRINTS LENGHT]

c) How did a team development roadmap influence other team’s roadmap (time
consuming)? [ALIGNEMENT ROADMAP]

d) How was LSV managed? [LSV, LATEST SYSTEM VERSION]

e) How did the team prioritize their work? Did you have any problems with that?
 [WORK PRIOR., INFLEX./INERTIA]

f) Did teams act somehow in an unpredictable way?

 [UNPREDICTABLE ADOPTION]

g) What was the role of architecture? [ARCHITECTURE]
h) How was architecture documentation represented? [ARCH. DOC.]

i) How was intra-team communication organized? [INTRA-TEAM COM.]
j) Inter-team communication? [INTER-TEAM COM.]

k) Let’s say that a team needed a change that involved other teams: how did they act?
 [ENFORCE CHANGES]

4. What challenges do you see in having reuse within the context of <whatever
method is in use at site>?

5. What challenges do you see in increasing speed in the context of <whatever
method is in use at site>?

6. Here is a list of improvement areas in which we have recognized challenges in
combining reuse and speed.

7. Q: What challenges in combining reuse with speed do you see in these areas?

8. Q: What challenges, in these areas, do you think that others may see?

9. Q: Can you think of further improvement areas (important to increased reuse
and speed) that are overlooked in this picture?

10. Final Question Q: Is there anything else you would like to add?

FOLLOWUP	QUESTIONS	
	
Specific areas for follow-up questions
(N.B.: These are leading question, but good probing for further details.
Only to be used to dig deeper, not to provoke a course change.)

What	is	Being	Reused?	
You mentioned that X (= Components, Subsystems, etc.) is reused. Are you aware of
any other things reuse, e.g.,
�	

	
	
	 	

Effects	of	Reuse
This picture shows an idealized form of reuse.
Can you comment on how this falls out in practice? (The Black Bars are
organizational boundaries.)	
	

	
�	
	 	

Reuse	leading	to	Reduced	Speed	
SPLE	=>	Reduced	Agility	=>	Reduced	Speed	for	New	Product	Offer	
You mentioned that SPLE/Reuse/XXX may hinder agility. Can you further elaborate
on that? Could you elaborate on that on the basis of this picture?	
	

	
	
	 	

Reuse	Ecosystem
You mentioned various forms of reuse (i.e., X,Y), were used. How do they relate to
the following picture?	
	

	
	

	 	

Reuse	Modes	of	reuse	for	software	components	
You mentioned that reuse changed throughout a lifecycle. How do changes relate to
the following picture?
Can you recognize some forms of reuse not present in this picture?	
	

	
	
	 	

Organizational	Boundaries	Influence on	Speed	
You mentioned that reuse is hindered by X. How does that relate to this picture?

Seeing this picture, are there any other things that you can think of that reduce speed?
Inter- and Intra-Organizational Boundaries Influence on Speed
You mentioned that speed is hindered by X. How does that relate to this picture? How
does that relate to this picture? <Picture Above>
Seeing this picture, are there any other things that you can think of that inhibit or
restrict reuse?	
	
	
	 	

Communication	Infrastructures	Influence	on	Reuse	
You mentioned communication between X and Y to be a major inhibitor for speed /
reuse? Could you elaborate on that on the basis of this	picture.	
	

