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ABSTRACT 
There are 34 million people infected with the HIV-1 virus in the world today. 
Due to increased access to antiretroviral therapy, AIDS related death has 
dropped by 30% since 2005. Optimizing the pharmacotherapy of the HIV-1 
infection is of great importance to reduce adverse effects, reduce viral re-
sistance development and increase the patients’ survival as well as quality of 
life. This thesis presents pharmacometric applications to optimize pharma-
cotherapy of the HIV-1 infection as well as to expedite the clinical drug de-
velopment of new drugs.  

Methods to extrapolate in vitro data to in vivo settings have been applied 
to predict the level of the drug-drug interaction between efavirenz and rifam-
picin as well as to evaluate the current dosage recommendations. Nonlinear 
mixed effects (NLME) models, as implemented in the software NONMEM, 
have been fitted to data from clinical studies to investigate the disease effect 
of HIV-1 on efavirenz pharmacokinetics. Further, NLME modeling and 
simulation was used to evaluate and validate bilirubin as a marker of expo-
sure and adherence in HIV-1 infected patients. Simulation of a mechanistic 
viral dynamics model, describing the interplay between virus and CD4 cells, 
was used to optimize the design and analysis of clinical trials in antiretroviral 
drug development. Model based techniques for hypothesis testing were 
shown to be superior in terms of power compared to traditional statistical 
hypothesis testing.  

In conclusion, model based drug development techniques can be used to 
optimize HIV-1 therapy as well as expedite drug development of novel com-
pounds.       
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SAMMANFATTNING PÅ SVENSKA 
HIV är en virusinfektion som angriper celler viktiga för vårt immunförsvar. I 
dess slutgiltiga stadium, när immunförsvaret är nästintill fullständigt utslaget, 
övergår infektionen i tillståndet som betecknas som AIDS. Sett till antalet 
patienter är HIV/AIDS en sjukdom som främst drabbar de fattigaste delarna 
av världen. Av cirka 34 miljoner HIV-patienter i hela världen bor 23 miljoner 
i Afrika söder om Sahara. 

Denna avhandling syftar till att förbättra användandet av de läkemedel 
som redan finns tillgängliga på ett sätt som är bättre anpassat till individen, 
s.k. individualiserad läkemedelsterapi. Förenklat säger man att det som läke-
medlet gör med kroppen kallas farmakodynamik och det som kroppen gör 
med läkemedlet kallas farmakokinetik. Dessa två begrepp är således centrala i 
individualiseringen av läkemedelsbehandlingen och lika så i denna avhand-
ling. Men hjälp av matematiska modeller beskrivs hur läkemedlet interagerar 
med kroppen dvs. vi kan beskriva både farmakokinetiken och farmakodyna-
miken. Dessa modeller kan vidare användas för att förklara varför vissa per-
soner svarar framgångsrikt på en behandling medan andra inte gör det. Ibland 
kan denna skillnad förklaras av t.ex. genetiska faktorer eller andra läkemedel 
som orsakar ogynnsamma interaktioner. Genom att ta hänsyn till sådana fak-
torer kan man optimera behandlingen efter varje patients förutsättningar. Ett 
sådant exempel är interaktionen mellan HIV-läkemedlet efavirenz och tuber-
kulosläkemedlet rifampicin, där resultat från denna avhandling kan användas 
för att rekommendera hur mycket och för vem efavirenzdosen ska justeras för 
att undervika ogynnsamma effekter av interaktionen. Metodiken i detta arbete 
är av speciellt intresse då denna interaktion kunnat studeras i virtuella patien-
ter i simulerade kliniska studier. På så sätt har anseenliga resurser och tid 
kunnat sparas. Detta är även av stor vikt för utvecklingen av framtida läke-
medel då denna typ av studier är vanliga inom läkemedelsindustrin.  

En annan frågeställning som har studerats är hur man ska övervaka så att 
patienter har tillräckliga läkemedelskoncentrationer i blodet. Nuvarande me-
todik kräver dyr laboratorieutrustning som ofta saknas i länder svårast drab-
bade av HIV/AIDS. Med hjälp av modeller har en kroppsegen substans, 
bilirubin, som kraftigt reagerar på närvaro av HIV-läkemedlet atazanavir 
kunnat användas som en indikator på adekvata läkemedelskoncentrationer i 
blodet. Bilirubin är mycket enkelt att mäta utan dyr utrustning. Resultaten i 
studien har kunnat bekräftas i 222 patienter från Italien, Frankrike och Norge.  

Sammanfattningsvis kan resultat från denna avhandling förbättra vården 
av HIV/AIDS patienter genom att optimera deras behandling, även i de fat-
tigaste delarna av världen. Vidare har resultaten visat nyttan av användandet 
av modeller inom läkemedelsforskning som kan vara av gagn för läkemedels-
industrin.          
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DEFINITIONS IN SHORT 
Pharmacokinetics (PK) What the body does to the drug (1).  

Pharmacodynamics (PD) What the drug does to the body (1). 

Population pharmacokinetics 
(popPK) 

The study of the sources and correlates of 
variability in drug concentrations among 
individuals who are the target patient popu-
lation receiving clinically relevant doses of 
a drug of interest  (2). 

Pharmacometrics  Branch of science concerned with mathe-
matical models of biology, pharmacology, 
disease, and physiology used to describe 
and quantify interactions between xenobiot-
ics and patients, including beneficial effects 
and side effects resultant from such inter-
faces (3). 
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1 INTRODUCTION 
This thesis focuses on quantitative clinical pharmacology as a method to improve 
antiretroviral pharmacotherapy used in the treatment of the HIV-1 infection. In 
quantitative clinical pharmacology one objective is to quantify the determinants 
of drug exposure in man, the relationship between drug exposure and response as 
well as adverse and therapeutic outcomes. It has been said that pharmacometrics 
is the science of quantitative clinical pharmacology is (4). The main tool of 
pharmacometrics is nonlinear mixed effects (NLME) modeling. In NLME mod-
eling, processes related to disease and drugs are represented by mathematical 
equations. A broader definition of pharmacometrics can be found in the defi-
nitions section on page (vii). 

The five Papers in this thesis deal with fundamental questions in clinical 
pharmacology such as how drug-drug interactions should be studied or predicted 
(Papers I and II), development and validation of biomarkers (Papers III and IV) 
and implementations of model based drug development in design and analysis of 
clinical trials (Papers V). The findings in this thesis are thus equally important to 
the optimization of HIV-1 therapy as to clinical drug development in general. 

The chapters in this thesis are organized as follows. Chapter 1 gives a brief in-
troduction to the fundamentals of HIV-1 infection and its pharmacotherapy with 
special emphasis on the role of the drugs investigated in this thesis (efavirenz and 
atazanavir). Chapters 2 and 3 provide some background for Papers I-IV. Chapter 
4 serves to familiarize the reader to the pharmacometric tools and their use in 
clinical pharmacology. Two approaches are introduced and discussed, a) In vitro-
in vivo extrapolation and b) nonlinear mixed effect modeling. The use of model 
based hypothesis testing is also introduced in Chapter 4 along with some back-
ground to Paper V 

The five papers are condensed into five specific questions that this thesis aims 
to answer. These questions are listed in Chapter 5. The methods, results and the 
discussion of individual papers are addressed in Chapters 6, 7 and 8, respective-
ly, while general conclusions from the investigations in this thesis are presented 
in Chapter 9.  

  



Quantitative Clinical Pharmacological Studies on Efavirenz and Atazanavir in The Treatment of 
HIV-1 Infection 

2 

1.1 The HIV/AIDS epidemic 
According to the Global HIV/AIDS response progress report, 2.7 million people 
became infected with HIV-1 in 2010 (5). Although a decline in numbers from the 
year before it is a substantial addition to the 34 million people infected with HIV 
worldwide. Increased availability of highly active antiretroviral treatment 
(HAART) has resulted in a global decrease in deaths related to AIDS. This trend 
is most apparent in sub-Saharan Africa where AIDS related death has decreased 
by 30% since 2005 (5). Although this represents a positive trend, it is estimated 
that only 47% of eligible patients receive HAART treatment in low and middle 
income countries rendering AIDS as one of the largest causes of death in sub-
Saharan Africa (5) (Figure 1). 

Figure 1. Number of people eligible for highly active antiretroviral treatment 
(HAART), dying from AIDS related causes and number of people receiving HAART 
versus time. A decrease in AIDS related death is observed after 2005, due to increased 
availability of HAART(5).  
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1.2 Principles of antiretroviral therapy 
The pharmacotherapy of HIV infection is perhaps best described through the 
viral infection and replication cycle (Figure 2). Virus enters the human body 
through exchange of bodily fluids. While routes of transmission vary between 
different geographical, cultural and economic regions of the world, common 
transmission routes include; unprotected vaginal and anal intercourse, sharing of 
contaminated needles during recreational drug use and mother to infant transmis-
sion (prenatal or postpartum trough breast feeding). Mother to infant transmis-
sion is particularly common in sub-Saharan Africa (5,6).  

During transmission, HIV binds to immune cells expressing the CD4 receptor 
(monocytes, macrophages and T-cell lymphocytes). Co-receptors (CCR5, 
CXCR-4) interact with viral receptors gp120 and gp41 causing conformational 
changes allowing the virion to fuse with the host cell (7,8). This interaction is the 
main target for entry/fusion inhibitors. Currently only two drugs are approved in 
this class and although both drugs prevent entry/fusion of the virus they act on 
different targets. Enfuvirtide, binds to the gp41-gp120-CD4 receptor complex 
preventing fusion of the viron with the host cell while maraviroc is a CCR5 re-
ceptor antagonist (9,10). Enfuvirtide is a peptide hence only available for intra-
venous administration (9). Maraviroc is currently the only drug not targeting the 
virus directly but instead blocking the virus’ access to the host cell. HIV that is 
CXCR-4 tropic or dual tropic is consequently not affected by maraviroc (10).  

After successful fusion with the host cell the virion releases its content of vi-
ral RNA and several viral enzymes including reverse transcriptase (RT), inte-
grase, ribonuclease and protease (7,8). The viral RNA is transcribed into 
complementary DNA (cDNA) by RT. This step in the viral lifecycle poses one of 
the main targets of antiretroviral drugs.  

Nucleoside and nucleotide reverse transcriptase inhibitors (NtRTI and NRTI) 
are pro-drugs that are activated by the host cell through phosphorylation. When 
activated they are structural analogs to endogenous deoxynucleoside triphos-
phates (dNTP) lacking the 3´-OH group necessary to form the 3´-5´ phos-
phodiester bond between the dNTP. This effectively leads to termination of 
reverse transcription (11). This class of drugs constitutes the background therapy 
in HAART.  

Non-nucleoside reverse transcriptase inhibitors (NNRTI) are allosteric inhibi-
tors of reverse transcriptase. Efavirenz is one of the first developed NNRTI and 
is currently recommended as an option for first line therapy. NNRTs are only 
effective against HIV-1 because of the virus-strain specific binding site to RT 
(12) and, like all NNRTIs, efavirenz is sensitive to mutations in the allosteric site 
of reverse transcriptase (11,13). A single change in amino-acid sequence is 
enough to develop resistance. Monotherapy with NNRTIs can lead to resistance 
within a few days or weeks (14). 
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After transcription, cDNA and its complement forms double-stranded viral DNA 
that is transported into the nucleus. Inside the nucleus, the viral enzyme integrase 
integrates the viral DNA into the host genome (7). This step is the target of the 
integrase inhibitor raltegravir which inhibits the integration by binding to the 
integrase-DNA complex. Presence of viral DNA is hence necessary for the drug 
effect (15). The virus remains latent in the genome until activated by transcrip-
tion factors. Once activated, viral RNA and proteins are produced. The viral en-
velope and viral proteins are assembled near the cell membrane (8). Assembled 
virus are pinched of the cell membrane in a process known as budding (16). 

During budding or short after, new virus matures trough cleaving of Gag and 
GagPol polyprotein precursors into mature Gag and Pol proteins. This process is 
mediated by viral protease and is the target for protease inhibitors (PI). PIs like 
atazanavir effectively stop the viral maturations process, resulting in production 
of non-infections virus (16). Protease inhibitors can stop production of infectious 
virus regardless of a cells’ infection stage. While reverse transcriptase inhibitors 
(NNRTI, N(t)RTI) and integrase inhibitors can protect newly infected cells from 
becoming latently infected, they provide no benefit to cells already producing 
new virus (17).  

 

Figure 2. Viral replication cycle of HIV-1 with the sites of action for available an-
tiretroviral agents indicated by the white boxes. 
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1.3 Therapy goals 
Treatment is generally recommended in all patients with an AIDS-defining ill-
ness or if the CD4 cell count reaches below 350 cells/mm3 (18). Eradication of 
the infection has so far not proven feasible due to the longevity of latently infect-
ed CD4 cells. Thus, current treatment goals of antiretroviral therapy are, in addi-
tion to prevent transmission, to reduce the morbidity and increase the duration of 
survival and quality of life (18). To achieve these goals it is necessary to reach 
minimal HIV levels in plasma for as long time as possible. This is usually 
achieved by combination therapy after the during 12-24 weeks of treatment. Op-
timal viral suppression is defined as viral loads below the level of detection for 
the assay, usually <20-75 copies/mL (18). Combinational therapy of 2 NRTIs 
with a PI or NNRTI are recommenced for most patients (13,19) Currently, ad-
herence difficulties are believed to be the main reason for low therapy success 
rate (19). Although, with the introduction of ritonavir boosted PI therapy and the 
NNRTIs adherence rates of >95% are no longer required for viral suppression. 
Moderate adherence rates have been shown to result in successful viral suppres-
sion in most patients (19). 

1.4 The role of efavirenz and atazanavir/r 
Efavirenz was the first NNRTI approved for once daily dosing resulting in a de-
creased pill burden for patients. Efavirenz is the preferred choice of NNRTI for 
combination therapy, except in pregnant women during the first trimester (20). 
Efavirenz based regimens are frequently used in resource limited settings due to 
convenient administration, effectiveness and long-term tolerability. No other 
regimen has produced better long term treatment response in randomized clinical 
trials (18,20). Sufficient virological suppression can be achieved with lower de-
gree of adherence with efavirenz and other NNRTI regiments than with protease 
inhibitors (21).  This is attributed to the longer elimination half-life of NNRTI 
compared to PIs (21). 

Up to 55% of patients on an efavirenz based regimen experience CNS side ef-
fects during the first 2-4 weeks of therapy. Commonly occurring side effects in-
clude: dizziness, insomnia, impaired concentration, agitation, amnesia, abnormal 
dreams and hallucinations (22). Generic efavirenz regimens are available in re-
source limited settings at an affordable cost. In 2010 the price for a year’s supply 
of an efavirenz-containing first line regimen for one person was less than 100 
USD, a 50% decrease in price from 2008 (5). Reasonable pricing, alongside the 
proven long term efficacy and safety, make efavirenz a popular treatment in re-
source limited settings.   

In contrast to efavirenz, atazanavir remains unavailable for the vast majority 
of patients. It is estimated that 8% of newly infected patients in USA carry 
NNRTI resistant HIV (23), while virus resistant to PIs is rarely observed in pa-
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tients with virological failure (24). Protease inhibitors are thus an important al-
ternative and atazanavir is one of the preferred PIs in combinational therapy (25). 
Protease inhibitors are frequently administered with ritonavir which acts as a 
pharmacokinetic booster, inhibiting mainly gastric CYP3A4, the main metaboliz-
ing enzyme of PIs, resulting in increased bioavailability of PIs (26). Atazanavir, 
boosted with ritonavir is available for once daily dosing resulting in a lower pill 
burden for patients. The main adverse effect of atazanavir is hyperbilirubinemia, 
but this is rarely a cause for treatment discontinuation (25). 
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2 PHARMACOKINETICS AND 
PHARMACODYNAMICS OF EFAVIRENZ 

Efavirenz is generally well absorbed, reaching peak plasma levels between three 
to five hours after oral dosing. Oral bioavailability is slightly increased by fatty 
meals while the liquid formulations have lower bioavailability compared to tab-
lets/capsules (27). An increase in efavirenz exposure due to fatty food has been 
confirmed in Ugandan patients (28). Efavirenz is highly bound to plasma pro-
teins, mostly albumin (>99%), with a relatively long half-life (40-55 h) at steady 
state (27). The long half-life allows once daily dosing which is thought to result 
in better patient compliance  (21). 

2.1 Efavirenz in vitro and in vivo metabolism 
Efavirenz is mainly eliminated through hepatic metabolism (29). The two main 
metabolites found in plasma are 8-hydroxy-EFZ and 7-hydroxy-EFZ which are 
believed to account for 77.5 and 22.5 % of the overall efavirenz metabolism, 
respectively (30–32). The main mediator of the 8-hydroxy pathway is CYP2B6 
with minor contributions from CYP1A2, CYP3A4, CYP3A5 and CYP2A6, 
while the 7-hydroxy pathway relies on CYP2A6 (31,32). In vitro data also identi-
fies CYP1A6 as a small contributor to efavirenz metabolism (31). A 8,14-
hydroxy-EFZ metabolite has also been identified in vitro and in vivo (29–31). It 
has been suggested that the 8,14-dihydroxy-EFZ metabolite is formed by sec-
ondary oxidation of the 8-hydroxy-EFZ metabolite by CYP2B6 (30,31) although 
new investigations have failed to confirm these findings (32). All three hydroxy 
metabolites are excreted in the urine mainly as glucuronide conjugates and to a 
lesser extent as sulphate conjugates (30). It appears that there is no specific uri-
dine 5'-diphospho-glucuronosyltransferase (UGT) that is responsible for glucu-
ronidation of the hydroxy metabolites but instead a barrage of UGT enzymes 
with unknown individual contribution (33). To a small extent efavirenz is directly 
conjugated by UGT2B7 to form EFZ N-glucuronide (30,31,33). Efavirenz exhib-
its profound auto-induction of CYP2B6 and to a lesser degree of CYP3A4 
(34,35). The metabolic pathways of efavirenz are depicted in Figure 5. 
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Figure 3. Proposed metabolic pathways of efavirenz and its metabolites, based on in vitro 
incubations. References and explanations to abbreviations can be found in section 2.1 of chap-
ter 2.  
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2.2 Efavirenz pharmacogenetics 
Efavirenz displays large interindividual pharmacokinetic variability that is often 
attributed to the highly polymorphic CYP2B6 enzyme. Several single nucleotide 
polymorphisms (SNPs) have been shown to influence the oral clearance (CL/F) 
of efavirenz. Most predominant is the CYP2B6*6 516G→T single nucleotide 
polymorphism which has been associated with a 21% lower CL/F after a single 
dose and up to 75% lower CL/F at steady state in homozygous subjects (36–39). 
Also the 983T→G and 785A→G SNPs have been shown to increase efavirenz 
plasma concentrations (38,40,41). Polymorphism in the CYP2B6 enzyme is 
unevenly distributed among different populations. The highest frequency of the 
516G→T allele is observed in Africans (45.5%) while its spread in the European 
and Asian populations is substantially lower, 21.4 and 17.4%, respectively 
(42,43). In some African populations frequencies of the 516G→T allele are 
observed in up to 71% of the subjects (39). 

Efavirenz pharmacokinetics has also been shown to be affected by genetic 
variation in the adenosine triphosphate-binding cassette, sub-family B, member 1 
(ABCB1) gene coding for P-glycoprotein (38,40). However, there is some disa-
greement about the importance of P-glycoprotein to efavirenz pharmacokinetics 
(44). 

Arab-Alameddine et al. showed the importance of SNP 17163G3T of 
CYP3A4 to CL/F in patients with impaired CYP2B6 (45). Also CYP2A6 along 
with UGT2B7 polymorphisms have been shown to influence CL/F (46), most 
notably in CYP2B6 poor metabolizers (45). 

2.3 Influence of rifampicin on efavirenz 
pharmacokinetics 

HIV infected patients are frequently co-infected with tuberculosis (47). Despite 
the potential to induce several cytochrome P450s, rifampicin is commonly used 
in the treatment of tuberculosis infected HIV-1 patients in Africa. Rifampicin is a 
known inducer of CYP1A2, CYP2B6, CYP2C19, CYP2C8, CYP2C9 and 
CYP3A (48,49). 

Rifampicin has been shown to reduce the area under the concentration-time 
curve (AUC) of efavirenz by 22% (50). Although this decrease in efavirenz ex-
posure is unlikely to be of any clinical significance (51) the question whether  the 
efavirenz dose should be increased in presence of rifampicin has been raised and 
is supported in most guidelines (25). A weight-based cutoff for the dose incre-
ment has been suggested by the US Department of Health and Human Services 
(25). Moreover, in a recent FDA case study, further clinical trials or in silico 
simulations were encouraged to explore the need of a dose increment (52). Re-
cently, some contradicting results have been published, showing inverse effect 
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on efavirenz kinetics by rifampicin resulting in an increase of efavirenz exposure 
(53). These findings remain yet to be explained.  

2.4 Disease effect on efavirenz 
pharmacokinetics 

The pharmacokinetics of drugs are governed by a number of physiological pro-
cesses that may or may not be affected by the HIV-1 infection. Conclusions from 
drug-drug interaction studies or other Phase I studies conducted in healthy volun-
teers may therefore not always be transferable to patients. Several examples of 
drug-drug interaction studies in healthy volunteers where efavirenz is the main 
perpetrator are available in the literature (54–59). A possible difference in phar-
macokinetics between patients and healthy volunteers entails a risk for confound-
ing results from such clinical trials. Furthermore, the traditional phase I trials in 
clinical drug development are conducted in healthy volunteers which may give 
misleading information on drug exposure in the target population, in this case 
HIV-1 patients. 

Difference in CYP activity between HIV-1 patients and healthy volunteers 
has been shown for a number of CYP-isoforms. Recently, Jetter et al. showed a 
50% reduction in CYP3A4 activity in HIV-1 infected patients compared to 
healthy volunteers when administering the CYP3A4 probe drug midazolam. 
(60). Jones et al. observed 90% decreased CYP2D6 activity in HIV-1 infected 
patients compared to healthy volunteers  (61). These findings are supported by 
animal and in vitro studies that showed altered cytochrome P450 and transporter 
protein activity associated with infection and inflammation. These changes ap-
pear to be mediated trough inhibition/destabilization/modulation of cytokine ex-
pression by nitric oxide (60,62–64). 

In addition to changes in CYP-mediated metabolism, HIV-1 infected patients 
have been shown to have elevated and highly variable gastric pH (65). This may 
affect the pharmacokinetics of some protease inhibitors known to have pH de-
pendent absorption (66). Atrophy and/or blunting of the absorptive surface for 
drugs in the gastrointestinal tract may also affect pharmacokinetics of some an-
tiretroviral drugs due to decreased rate and/or extent of absorption (67,68). 

HIV-1 infection is associated with elevated alpha 1-acid glycoprotein, while 
HIV-related wasting syndrome leads to decreased albumin levels (69,70). 
Changes in plasma protein concentration are not expected to alter unbound drug 
concentrations, they may, however, lead to altered total plasma concentrations 
which can increase variability and lead to misinterpretation of plasma concentra-
tion measurements. 
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2.5 Efavirenz exposure response relationship 
The concentration response relationship of efavirenz is not well characterized. 
However, there appears to be a consensus concerning the therapeutic window of 
efavirenz. 

Marzolini et al. investigated 130 HIV-1 infected patients whose plasma con-
centrations were sampled on average (SD) 14 (±2.7) hours after dosing. Ten pa-
tients were found to have plasma exposure below 1 mg/L, five of these patients 
experienced viral failure during the study. Four out of seventeen patients with 
plasma concentrations over 4 mg/L experienced severe central nervous system 
(CNS) adverse events (71), including dizziness, nausea, headache, fatigue, in-
somnia and vomiting (27,71). Plasma concentrations versus presence of CNS 
adverse events as well as virological failure was analyzed with logistic regression 
(71). It was concluded that patients with plasma concentrations below 1 mg/L 
had a higher probability of virological failure compared to those with higher 
plasma concentrations, while patients with plasma concentrations above 4 mg/L 
had higher probability of CNS adverse effects. Similar findings have been ob-
served in other studies (72–74). 
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3 PHARMACOKINETICS AND 
PHARMACODYNAMICS OF 
ATAZANAVIR 

3.1 Atazanavir pharmacokinetics  
Ritonavir boosted atazanavir (atazanavir/r) is rapidly absorbed reaching peak 
plasma concentrations two hours after oral absorption (75,76). The extent of ab-
sorption is highly dependent of pH as well as food intake. Daily intake of the 
proton pump inhibitor omeprazole (20 mg daily) has been shown to reduce 
atazanavir AUC by 42% (66) while atazanavir administration with a light meal 
increased the atazanavir AUC by 70% (76,77). Atazanavir is 89% bound to α1-
acid glycoprotein (AGP) and 86% to albumin (76). Similarly to other protease 
inhibitors, atazanavir is mainly metabolized by CYP3A4 (75–78). Following a 
400 mg dose, it is estimated that 20% and 7% of the drug is recovered unchanged 
in feces and urine, respectively (77). In a population pharmacokinetic study CL/F 
and V/F were estimated to 7.7 L/h and 103 L respectively, resulting in an elimi-
nation half-life of 9.27 hours (75).          

3.2 Bilirubin 
Bilirubin is the degradation product of hemoglobin which is released from dam-
aged or old erythrocytes. Hemoglobin is phagocytized by Kupffer-cells in the 
reticulo-endothelial system of the spleen, liver and bone marrow (79).  The deg-
radation product, bilirubin, is released into the plasma, where it is highly bound 
to albumin. In the liver, unconjugated bilirubin is transported across the hepato-
cyte cell membrane by the organic anion- transporting polypeptide 1B1 (OATP–
1B1. Passive diffusion is also believed to be of importance (80,81). In hepato-
cytes, mono- and diglucuronide are formed by glucoronidation of bilirubin by 
UGT1A1 (82).  

Gilbert’s syndrome is caused by an inherited variation in the promoter region 
or the gene of the UGT1A1 enzyme resulting in reduced amounts of normal pro-
tein and mildly elevated levels of unconjugated bilirubin i.e. hyperbilirubinemia. 
Several variants of the UGT1A1 gene or promoter region are associated with 
Gilbert’s syndrome of which UGT1A1*28 is believed to be the most common. 
Gilbert’s syndrome affects approximately 10% of the Caucasian population (83). 

Bilirubin glucuronides are transported by multi-drug resistance protein 2 
(MRP–2) into the hepatic canaliculi (79). Bilirubin is deconjugated and degraded 
by bacterial enzymes to form urobilinogen in the colon. A small amount of uro-
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bilinogen is reabsorbed only to be recirculated by the liver or excreted by the 
kidneys. Unreabsorbed urobilinogen is further metabolized into urobilin and 
stercobilin and excreted in the feces (79)  

3.3 Atazanavir induced hyperbilirubinemia 
Hyperbilirubinemia is commonly observed in patients on an atazanavir/ritonavir 
based antiretroviral treatment, although it is an uncommon cause of treatment 
discontinuation (25). The hyperbilirubinemia is attributed to a concentration-
dependent atazanavir inhibition of UGT1A1 (84). UGT1A1 gene allele*28 has 
been associated with increased risk of hyperbilirubinemia in several studies 
(85,86). 

Recent work has, however, revealed a complex interplay between multiple 
transporters, affecting both atazanavir and bilirubin. Atazanavir has been shown 
to be an inhibitor and a substrate of several OATPs, including 1B1, responsible 
for part of the bilirubin transport into the hepatocyte (80,81,87). Although the 
role of OATP1B1 may not be clear it seems to be of importance for bilirubin 
elevation and possibly atazanavir exposure (88). This has led to discussion on 
which mechanism is most important for the atazanavir-induced hyperbiliru-
binemia (89). The enzymes and transporters involved are depicted in Figure 4. 

 

Figure 4. Illustration of the bilirubin elimination process by the hepatocytes and the suggested 
associated proteins and transporters. Bilirubin can enter the hepatocytes passively (diffusion) and 
actively trough the organic anion-transporting polypeptide (OATP) 1B1. Bilirubin glucuronidation 
is mediated by glucuronosyltransferase (UGT) 1A1. The bilirubin glucuronide is excreted into bile 
canaliculi by multi-drug resistance protein (MRP) 2. Atazanavir is thought to enter the hepatocytes 
passively and to some extent actively by OATP1B1. Atazanavir inhibits UGT1A1 and possibly 
OATP1B1. Atazanavir is a also substrate for p-glycoprotein (P-gp).  
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3.4 Atazanavir exposure response relationship 
The suggested minimum effective concentration (MEC) for atazanavir is 150 
ng/mL or 0.2 µmol/L (18). These recommendations are based on logistic regres-
sion of plasma trough concentration and virological outcome at week 28 of ther-
apy in 51 patients (90). At week 28 of treatment, 37.5% of patients with 
atazanavir concentrations below 0.2 µmol/L were reported to achieve viral sup-
pression in comparison to the 81% of patients with atazanavir concentrations 
>0.2 µmol/L who achieved viral suppression (90).      

3.5 Bilirubin as a marker of atazanavir 
exposure 

Patients with successful virological suppression on atazanavir monotherapy have 
significantly higher bilirubin elevations than those failing the treatment (91). 
Similar direct relationships between atazanavir concentrations and virological 
outcome have not been demonstrated (91). This has led to suggestions that bili-
rubin may be used as a marker of adherence to atazanavir therapy and possibly 
therapeutic outcome (91–95). Petersen et al. identified bilirubin to have 87% 
sensitivity and 63% specificity for prediction of adherence (92). In that study, 
adherence was measured in terms of viral suppression. Patients with successful 
suppression were deemed adherent to therapy while those with unsuccessful sup-
pression were classified as non-adherent (92). An increase in bilirubin concentra-
tion from baseline by 6.84 µmol/L predicted viral suppression with a negative 
predicted value (NPV) and positive predicted value (PPV) of 68% and 86%, re-
spectively. These finding have yet to been confirmed in an external patient popu-
lation. 

Although not routinely recommended, therapeutic drug monitoring (TDM) of 
atazanavir have in some cases shown to improve the ARV therapy (96). Other 
studies have, however, failed to show any benefit (94). The widespread use of 
TDM may in part be hindered by the cost of analytical equipment and availabil-
ity of skilled personnel needed to operate and maintain the equipment. These 
obstacles are largely diminished by the high availability, low cost and simplicity 
of bilirubin assays. 
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4 PHARMACOMETRIC TOOLS IN 
CLINICAL PHARMACOLOGY 

4.1 Impact of pharmacometrics in therapy 
optimization and drug development 

Pharmacometrics is the science of quantitative clinical pharmacology (4). It uti-
lizes mathematical models to quantify the interaction between the xenobiotics 
and humans. Pharmacometrics as part of a model based drug development pro-
gram can reduce size, cost and failure rate of clinical trials (97,98). Pharmaco-
metrics plays an increasing role for support of labeling and approval decisions at 
the U.S. Food and Drug Administration (FDA). Between 2000 and 2008 the 
pharmacometric reviews at FDA were estimated to influence the approval and 
labeling decision in 64% and 67% of cases, respectively (99). 

Pharmacometrics is also gaining recognition for optimization of therapies for 
a variety of poverty related diseases, including but not limited to malaria, tuber-
culosis, human African trypanosomiasis and HIV-1.  

Nonlinear mixed effects (NLME) modeling is the most important tool of 
pharmacometrics. NLME modeling as part of clinical pharmacotherapy was first 
applied to pharmacokinetic analysis. Now the methodology is adapted to include 
analysis on almost any part of human (patho)physiology.     

4.2 Nonlinear mixed effects modeling  
4.2.1 Early applications  
NLME modeling of pharmacokinetic data was first introduced by Lewis B. 
Sheiner, a clinician, and Stuart Beal, a statistician (100). In the 1970’s they 
adapted the NLME modeling technique to utilize therapeutic drug monitoring 
(TDM) data for dose optimization of digoxin and warfarin therapy. Typical data 
from TDM comprised of 2-3 drug concentration measurements per patient, i.e. 
sparse data. Such data was not used in pharmacokinetic analyses as the method-
ology of that time required the use of “rich” concentration-time profiles where 
data often consisted of 3-5 times more observations per subject than number of 
parameters estimated (100). In their pivotal publication Sheiner and colleagues 
showed the benefit of sparse data analysis for dose optimization of digoxin (101). 
Use of sparse data made large pharmacokinetic studies feasible which laid the 
foundation to the field of population pharmacokinetics.  
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The statistical software developed for the digoxin model was later extended into 
the general modeling software, NONMEM (102). Today NONMEM still is the 
most widely used software for analysis of pharmacokinetic and pharmacodynam-
ic data on a population level (103). 

Despite the value of NLME modeling, even now modeling results are some-
times overlooked. Possibly it is the statistical complexity of the subject that hin-
ders its penetration into traditional clinical pharmacology. However, it may not 
be necessary to fully understand all the mathematical aspects of parameter esti-
mation algorithms to take advantage of the results of a NLME analysis. A rudi-
mental understanding of various parts of a NLME model and the ability to 
interpret parameter estimates is often enough to appreciate and understand the 
results. 

4.2.2 Components of a nonlinear mixed effect 
model 

A NLME model can generally be divided into two components: the fixed and the 
random effects, Figure 5. The fixed effect consists of parameters describing the 
underlying structure of the system of interest, e.g. the components of a pharma-
cokinetic model for the typical individual. In its simplest form, a pharmacokinet-
ic model of an intravenously administered drug is defined by Equation 1.  

Where Cp is the predicted drug concentration measured in plasma at time, t, V is 
the volume of distribution and CL is the elimination clearance. The fixed effects 
parameters of this model are thus CL and V. 

In NLME modeling the typical parameter estimates and between subject vari-
ability of those parameters are simultaneously estimated. The between subject 
variability of fixed effects parameters are part of the random effect model, Figure 
5. The relationship between the individual estimates of a model and the estimate 
for the typical individual can be described by Equation 2.  

𝑉𝑖 = 𝑉 ∙ 𝑒𝜂𝑖          Equation 2 

where Vi is the individual estimate of the volume of distribution and V is the 
estimate for the typical individual in the population. The η is a random effect ac-
counting for the individual difference from the typical estimate.  The η estimates 
are normally distributed with the mean of zero and variance of ω2. 

While a quantification of between subject variability is an important part of 
the population approach the true strength of the method is when this variability 
can be explained by some measurable patient factor, a covariate. The relation 
between the individual parameter estimates and covariates such as sex, body-
weight or genetic polymorphism, are quantified in the covariate model, Figure 5. 

𝐶𝑝 =
𝑑𝑑𝑑𝑑
𝑉

∙ 𝑒�− 𝐶𝐿𝑉 ∙𝑡�          Equation 1 



Dinko Rekić 

17 

The difference between males and females in terms of volume of distribution is 
exemplified in Equation 3. 

𝑉𝑖 = 𝑉 ∙ (1 + 𝜃 × 𝑆𝑆𝑆) × 𝑒𝜂𝑖           Equation 3 

In this example θ is the factorial change in the typical volume of distribution in 
females compared to males. Sex is a categorical identifier where e.g. males are 
coded as 0 and females as 1. By attributing some of the between subject variabil-
ity of V to differences in sex one could reduce the estimate of the variance of V 
(ω2) in Equation 2. 

Variability in pharmacokinetics is known to vary with time. Sometimes the 
reason for the variability is known, e.g. change in weight, concomitant medica-
tions or progression of some disease. In such cases one alternative is to treat the 
known factors affecting variability as time-varying covariates (104). Other ap-
proaches are available when the variability is dependent on an unknown or unob-
served covariate. One such approach is the addition of interoccasion variability 
(IOV), Figure 5. If subjects in the study have been observed multiple times per 
occasion and if there are two or more occasions then an IOV model may be justi-
fied. Failure to account for IOV can lead to biased parameter estimates and in-
flated residual variability (105). 

The remaining variability, which is not explained by the random effects mod-
els or covariate models, is lumped into the residual error model, Figure 5. In the 
residual error one accounts for model misspecification, assay error, error in dos-
ing history and sampling time. Many models that account for residual variability 
are possible. One approach is, nonetheless, more popular than others. A model 
consisting of an additive (εadd) and a proportional (εprop) part, with mean of zero 

NLME model 
Fixed 
effects  

Structural 
model  

Covariate 
model 

Random effects 

Between 
subject 

variability 

Inter 
occasion 
variability 

Residual 
variability 

Figure 5. Components of a nonlinear mixed effect (NLME) model.  
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and variance of σ2, is specified in Equation 4. The residual model quantifies the 
remaining difference between the individual predictions (IPRED) and individual 
observations (Y). If either the proportional or the additive part of the model is 
estimated near zero, the model may be reduced to include just one variance com-
ponent. 

𝑌 = IPRED + IPRED ∙ 𝜀𝑝𝑟𝑜𝑝 + 𝜀𝑎𝑑𝑑          Equation 4 

4.3 Mechanistic viral dynamics models  
NLME modeling, first applied to pharmacokinetics, has evolved to include more 
complex systems relevant to human (patho)physiology, such as the interplay 
between HIV-1 virus and CD4 cells.      

Viral dynamics models are mathematical representations of the interaction be-
tween virus, the host cells and the effect drugs exhibit on the interaction. The 
original model describing this type of systems is based on the predator-prey con-
cept introduced in epidemiology by Alfred J. Lotka and Vito Volterra. Lotka and 
Volterra introduced the concepts independently of each other roughly at the same 
time (106). 

The interplay between the virus and the host’s cells is represented by equa-
tions describing the populations of uninfected cells that have the potential to be 
infected (target cells [T]), the already infected cells (I) and the free virus particles 
(V), Equations 10, 11 and 13. Cells that are infected but do not produce virus 
(latently infected [L]) have the potential to become actively infected, Equation 
12. Virus is produced by actively infected cells with the rate of p. Virus can be 
eliminated from body by rate of c or infect uninfected cells with infection rate of 
i. Uninfected cells are born (b), eliminated by natural death rate (d1) or trans-
formed to latently or actively infected cells. The fraction transformed to actively 
infected cells is determined by Fr. Actively infected cells are eliminated with 
death rate of (d2). Latently infected cells can be transformed into actively infect-
ed by activation rate a or eliminated by death rate d3. Drugs can act by inhibiting 
infection or production of infectious virus. In Equations 5 to 8 the inhibitory ef-
fect on infection is represented by INH which can range from 0 (no inhibition) to 
1 (maximum inhibition).  

𝑑𝑇
𝑑𝑆

= 𝑎 − 𝑑1 × 𝑇 − (1 − 𝐼𝑁𝐼) × 𝑖 × 𝑉 × 𝑇 Equation 5 

𝑑𝐴
𝑑𝑆

= 𝐼𝑟 × (1 − 𝐼𝑁𝐼) × 𝑖 × 𝑉 × 𝑇 − 𝑑2 × 𝐴 + 𝑎 × 𝐶 Equation 6 

𝑑𝐶
𝑑𝑆

= (1 − 𝐼𝑟) × (1 − 𝐼𝑁𝐼) × 𝑖 × 𝑉 × 𝑇 − 𝑑3 × 𝐶 − 𝑎 × 𝐶 Equation 7 
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Various versions of this model have been applied to monotherapy studies 
(107,108) as well as large multicenter trials with standard HAART therapy (109). 
In the latter case the INH level was estimated separately for each regiment tested 
(atazanavir/r, efavirenz, lopinavir/r) while in the former case the INH was drug 
concentration dependent.  

4.4 The bottom up approach – in vitro in vivo 
extrapolation 

The focus in in vitro-in vivo extrapolation (IVIVE) lies in prediction of human 
pharmacokinetics and its variability in different populations using in vitro data. 
This methodology can be of great use in drug development where it can narrow 
the bridge between preclinical and clinical drug development. Its applications 
may also save considerable time and resources by investigating the potential for 
drug-drug interactions in virtual populations using in silico trials.  

IVIVE utilizes the increased understanding of pharmacokinetics and by which 
mechanism covariates such as pharmacogenetics, sex, age, body weight, concur-
rent medication, renal impairment etc., can influence drug exposure in man to a 
priori estimate the effects of covariates in study populations (110,111). 

This approach relies on in vitro methods to estimate parameters such as logP, 
in vitro intrinsic CL, plasma protein binding and others. These parameters are 
then extrapolated to in vivo on a population level. The IVIVE method is for this 
reason referred to as “the bottom up approach” as opposed to NLME modeling 
which in some cases can be referred to as the “top down approach”. 

4.4.1 Components of the in vitro-in vivo extrapola-
tion model 

The IVIVE model can be described as a union of three (sometimes four) compo-
nents (110–112).  

1) The structural model. A physiologically based pharmacokinetic 
model describing the various tissues in man connected by the 
circulatory system.  

2) The system specific parameters. Parameters describing human 
physiology relevant to pharmacokinetics which are independent 
of the studied drug.  

3) The drug specific parameters. Parameters specific to the investi-
gated drug.  

𝑑𝑉
𝑑𝑆

= 𝑆 × 𝐴 − 𝑎 × 𝑉 Equation 8 
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Parameters describing the execution and simulation of a particular study design 
are sometimes referred to as a forth component of the IVIVE model (112). A 
recent review of physiologically based pharmacokinetic modeling by Rowland et 
al. can provide interested readers with extensive information about the first com-
ponent of the IVIVE model (112). Here, the main focus lies in distinction be-
tween the drug and the system specific parameters and their effect on 
pharmacokinetic variability. Hepatic clearance (CLH), will serve as an example 
due to its complexity and its importance to drug exposure in man. 

Assuming the well-stirred model (113),  unbound drug enters the hepatocytes 
through a passive process determined by the hepatic blood perfusion and is thus 
available for metabolism. The determinants of CLH are thus the fraction of the 
drug unbound in blood (fu), unbound intrinsic metabolic clearance (CLuint) and 
hepatic blood flow (QH), Equation 9. 

𝐶𝐶𝐻 =
QH × CLuint × fu
QH + CLuint × fu

          Equation 9 

Variability in hepatic blood flow, which is a function of cardiac output, is greatly 
explained by interindividual differences in body size and age (110). Additionally, 
external factors such as food intake, posture and physical activity are known to 
add to intra- and interindividual variability of cardiac output (110). Unless phar-
macologically affected by the investigated drug, QH is a pure system specific 
parameter. If the product of fu and CLuint is much larger than QH i.e. extraction 
ratio (EH)2 is over 0.7, CLH can be approximated to liver blood flow (114), Equa-
tion 10. In such cases the limiting factor to the hepatic elimination is hepatic 
blood flow rendering hepatic clearance relatively insensitive to changes in plas-
ma protein binding or induction/inhibition of hepatic eliminating enzymes. Mor-
phine, verapamil and cocaine are drugs known to be administered intravenously 
with a high extraction rate and mainly eliminated by hepatic metabolism (115).  

The fraction of drug bound in blood is determined by both system and drug spe-
cific parameters (110). System parameters include the amount of circulating 
erythrocytes and various plasma proteins while the drug’s affinity to proteins and 
erythrocytes is a drug specific parameter dependent on the physiochemical prop-
erties of the compound (110,111). Affinity to plasma protein can be measured or 
predicted in silico (116). Variation in hematocrit and plasma proteins due to sex, 
age, disease etc. can be accounted for in the IVIVE model. Recently, Ohtani et 
al. showed the influence of hematocrit on the clearance of tacrolimus using an 
IVIVE model (117). 

                                                      
2 Extraction ratio is defined as the ratio of the rate of elimination to the rate of presentation (114). 

When EH >0.7 𝐶𝐶𝐻 ≈ QH Equation 10 
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Unbound intrinsic clearance is a measure of the total hepatic capacity to 
metabolize the drug of interest. For low extraction drugs (EH<0.3) i.e. when QH is 
larger than the product of fu and CLuint, Equation 9 can be reduced to Equation 
11.  

Diazepam and warfarin are drug exhibiting a low extraction rate, known to be 
administered intravenously and are mainly eliminated through hepatic metabo-
lism (115). It is nevertheless important to clarify that oral elimination clearance 
(CLpo) is dependent on intrinsic clearance and fraction unbound in blood irre-
spective of low or high extraction rate, Equation 12.  
When EH 0.3< or >0.7 

and CL≈CLH, Fabs=1 
𝐶𝐶𝑝𝑜 ≈ CLuint × fu          Equation 12 

4.4.2 Prediction of intrinsic hepatic clearance 
Intrinsic hepatic clearance is perhaps the most complex and pivotal parameter 
that needs to be accounted for if one wishes to predict pharmacokinetic proper-
ties of a drug by the use of an IVIVE model. Intrinsic hepatic clearance can be 
expressed as the ratio of the maximum metabolizing rate (Vmax) and the Michae-
lis Menten constant (Km) of all metabolizing enzymes when concentration of 
drug is lower than Km (110). Under such conditions, Vmax and Km can be experi-
mentally determined by use of liver microsomes, hepatocytes or recombinantly 
(rh) expressed enzymes (110,118). Using recombinantly expressed enzymes, 
experimentally determined intrinsic clearance for a system can be extrapolated to 
total liver intrinsic clearance by Equation 13 (110,119).  

where j is the CYP isoform; i is the metabolic pathway, MPPGL is the amount of 
microsomal protein per gram of liver, CYPj abundance is the amount (pmol) of 
the j isoform per mg of microsomal protein, LW is liver weight and ISEF stands 
for inter system extrapolation factor. ISEFs are factors that correct for the differ-
ence in activity per unit enzyme between recombinant and native human enzyme 
(118). 

 In the case where Vmax and Km are determined, the only true drug specific pa-
rameter seems to be Km, which is inversely proportional to the affinity of the 
drug to the metabolizing enzyme. Other parameters in the equation are system 
specific. In the case of ISEF, the parameter is specific to an in vitro system while 
CYPj abundance, MPPGL and LW are specific to human physiology. 

When EH <0.3 𝐶𝐶𝐻 ≈ CLuint × fu          Equation 11 

𝐶𝐶𝑖𝑛𝑡 = ����𝐼𝐼𝐼𝐼𝑗𝑖 ×
𝑉max 𝑖(𝑟ℎ𝐶𝐶𝐶 𝑖) × 𝐶𝐶𝐶𝑗𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

𝐾𝑚 𝑖�𝑟ℎ𝐶𝐶𝐶𝑗�

𝑛

𝑗=𝑖

�
𝑛

𝑗=𝑖

� × 𝑀𝑀𝑀𝑀𝑀 × 𝐿𝐿 

         Equation 13 
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4.4.3 Prediction of variability in intrinsic hepatic 
clearance 

Perhaps equally important to predicting intrinsic CL in man is the prediction of 
the variability as well as its determinants. Equation 13 allows for introduction of 
physiological meaningful variability through several of its parameters. 

The relationships of determinants and the variability of parameters can some-
times be complex. Age is an influential determinant or covariate for variability in 
CYP abundance as well as MPPGL and LW (111). MPPGL increases from birth 
to a peak value of 40 mg/g at age 28. At age 65 this value has decreased by ap-
proximately 25% to 29 mg/g (120). When examining all non-adult populations, 
age is the main determinant for body weight and height which provides a relation 
to liver weight through body surface area (BSA) (121). Liver weight is related to 
BSA by the following equation, LW=0722∙BSA1.176. Japanese subjects are found 
to deviate from Caucasians by having 19% larger livers for a given bodyweight 
(121). 

CYP abundance can, beside age, incorporate variability due to genetic poly-
morphism, ethnicity, sex and external inducers. Females have been shown to 
have significantly higher CYP3A4 abundance compared to males, 113 vs 75 
pmol/mg (122). 

Polycyclic aromatic hydrocarbons in cigarette smoke are known inducers of 
CYP1A2 through the aryl hydrocarbon receptor/Ah receptor nuclear translocator 
(AhR/Arnt) (123). The relation between the number of cigarettes smoked and the 
hepatic CYP1A2 abundance was recently quantified. Heavy smokers (>20 ciga-
rettes per day) where estimated to have a 1.8 fold increase in CYP1A2 abun-
dance relative to non-smokers (124). In this particular publication, the authors 
used a NLME model to quantify the relationship between smoking and caffeine 
clearance in order to estimate the influence of smoking on CYP1A2 abundance. 
Since both the bottom up and the top down techniques were used, this method is 
referred to as the middle out approach. 

Ethnicity is a significant factor for explaining variable distributions of genetic 
polymorphisms in man. For example, the frequency of the CYP2B6*6 allele is 
highly variable with ethnicity in some African population up to 45.5% while its 
spread in European and Asian populations is substantially lower, 21.4 and 17.4%, 
respectively (42,43). 

In conclusion, knowledge of fundamental pharmacokinetics as well as human 
physiology can be used to predict not only the typical population estimates of 
pharmacokinetic parameters but also their variability due to genetic, physiologi-
cal, and demographic variables. Combining the top down to the bottom up ap-
proach can allow creation of more mechanistic models that not only describe a 
single study but also predict variability in a larger population. 
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4.5 IVIVE versus NLMEM 
IVIVE should not be seen as an alternative to nonlinear mixed effects modeling 
but rather as its compliment. The versatility of NLME modeling has led to its 
application to all stages of drug development, from first-time-in-man studies to 
post marketing phase IV trials. NLME modeling allows pharmacokinetics to be 
linked with pharmacodynamics of biomarkers as well as hard endpoints. Models 
can be used to simulate clinical trials sometimes to support clinically untested 
doses (125). Additionally, modeling can lead to increased understanding of the 
disease separating the target population from non-responsive patient subpopula-
tions (98). In contrast to IVIVE where current focus is on pharmacokinetics, 
NLME modeling can be seamlessly adapted to complex systems ranging from 
highly mechanistic platform models such at the glucose-insulin model for type II 
diabetes (126) to complex but empirical Markov models of drugs effect on sleep 
stages (127).           

4.6 Model based design and analysis of phase 
II HIV-1 trials  

4.6.1 Framework of phase II trials in antiretroviral 
drug development 

Phase IIa trials serve to show the clinical efficacy of drug candidates in clinical 
development i.e. proof of concept (POC). Additionally, these trials help to identi-
fy the dose to be tested in Phase IIb (107). Whereas Phase IIb HIV-1 trials can be 
relatively large (70-80 patients/arm) and long (24-48 weeks) phase IIa trial are 
small (8-11 subject/arm) and short (10 days of therapy) (128–132). In phase IIa, 
the drug candidate is administered without concomitant backbone therapy (128–
132). The risks of resistance development in monotherapy are justified by the 
need to quantify the relation between dose/concentration and antiretroviral re-
sponse (133). Monotherapy trials are nevertheless recommended to be as short as 
possible (133). To discriminate between several active doses and to aid in dose 
selection for phase IIb trials, European Medicines Agency (EMA) recommends 
comparison against active control (133).  

The typical mean study endpoint is the mean change HIV-RNA levels from 
baseline and a single time point, usually at the end of treatment or at nadir.  De-
spite the relative homogeneity in the study designs of phase IIa trials, there ap-
pears to be no consensus on which statistical test is most appropriate to test POC, 
Table 1. 
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Table 1. Characteristics of recent phase IIa HIV-1 trials 

Reference Primary endpoint Statistic used Number of 
arms Placebo 

(132) Mean change in HIV-
RNA (log10) at day 11 

Williams step-
down test 

10 (8-9 pa-
tients/arm) 

2 placebo arms a  
(4 and 12 pa-
tients/arm) 

(131) Mean change in HIV-
RNA (log10) at day 8 

Mann–Whitney 
U 5 (n=9) 1 (n=11) 

(128) Mean change in HIV-
RNA (log10) at day 8 Model based 8 (n=6) 1 (n=6) 

(129) Mean change in HIV-
RNA (log10) at day 9 

ANCOVA and t-
test 5 (n=9) 1 (n=12) 

a pooled placebo arms from two studies 

4.7 Power of clinical trials  
The cost of clinical trials is approximately proportional to enrolled number of 
subjects, excluding some fixed costs (134). Determining the required number of 
subjects is based on the power to detect a clinically relevant and statistically sig-
nificant improvement in the treated compared to the placebo group. This im-
provement is often set to a mean difference corresponding to a p-value below 
0.05. Besides method of analysis, statistical power is influenced by the type I 
error, standard deviation of the variable and the sample size. Increasing type I 
error would result in an increased power but also an increased risk of falsely re-
jecting the null hypothesis, i.e. the drug is thought to have an effect when no ef-
fect is present. Reducing the standard deviation of the samples is sometimes 
possible with stringent inclusion criteria for trials; this approach is often indirect-
ly applied in early phases of drug development. Possible consequence of this 
approach is loss of gained knowledge about interindividual variability in early 
drug development due to too homogenous patient populations. And, finally, in-
creasing the sample size is possibly the most costly method to increase the power 
of the study. The choice of statistical method to analyze the effect size poses 
therefore an opportunity to influence study power with minimal effect on cost 
and knowledge gained. 

Applying the model based approach to analyze clinical trials has been demon-
strated to increase the power to detect true differences. The utility lies in the abil-
ity to use longitudinal analysis, combining all observations from all subjects and 
dose levels in a simultaneous analysis and also including missing data due to 
dropout (135). A statistical method that increases the power of the study can re-
duce cost as well as unnecessary exposure to untested new treatments (134). 
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4.8 Model based hypothesis testing and 
power calculation 

4.8.1 Stochastic simulations and re-estimations 
The objective function value (OFV) is a global measure of goodness-of-fit of a 
model and is proportional to -2 times the log of the likelihood of the data. Phar-
macometric or model based hypothesis testing can be based on the log likelihood 
ratio (LR) test of the difference in OFV between two nested models. The full 
model assumes an existing drug effect [H1], while the reduced model assumes no 
drug effect [H0], where H0 and H1 correspond to the null (no difference between 
groups: μ1 = μ2) and the alternative hypothesis (difference between groups: μ1 ≠ 
μ2), respectively. The difference in objective function (ΔOFV), or log-likelihood 
ratio, is assumed to follow the χ2 distribution. The null hypothesis can be rejected 
if the drop in OFV exceeds a predetermined significance level (often 0.05) for 
the corresponding difference in degrees of freedom (Δdf). The Δdf is determined 
by the difference of estimated number of parameter in the full and the reduced 
model. 

Stochastic simulation and re-estimation (SSE) can hence be used for calcula-
tion of statistical power. A large number of trials e.g. one thousand are simulated 
with the full model, in which assumptions about the drug effect and its variability 
are made. Both the reduced and the full model are fitted to the simulated trials. 
Power is calculated as the proportion of trials where the full model has signifi-
cantly lower OFV compared to the reduced model (n), Equation 14. The proce-
dure is repeated for every sample size one wishes to calculate power for. 

SSE can be a time-consuming endeavor for large models, sometimes spanning 
over several months. Further, a correction for type I error inflation has to be 
made in cases where the sample size is small (136,137). 

4.8.2 Monte-Carlo Mapped Power 
With the introduction of Monte-Carlo Mapped Power method by Vong et al., the 
speed of power calculations has significantly increased (138). Instead of simulat-
ing and re-estimating a large number of datasets, a single very large study is sim-
ulated (with the full model) and re-estimated (with the full and the reduced 
model). The sum of individual OFVs (iOFV) is equal to the total OFV (Equation 
15). The difference between iOFVs of the full and the reduced model is equiva-
lent to total ΔOFV, Equation 16. 

𝑃𝑃𝑃𝑃𝑃 =
∑ �∆𝑂𝑂𝑂 ≥ 𝜒20.05(𝑑𝑑)�

𝑛
𝑁
𝑛=1

𝑁
           Equation 14 
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Individual ΔOFVs are computed from the two estimations and resampled 10 000 
times for each sample size. The fraction of the 10 000 samples where the iΔOFV 
is greater than the threshold level, defined by the number of df and significance 
level, is the power for that sample size. 

In addition to improvement in speed, adjustment for type I error is no longer 
needed (138). Previously, the MCMP method has successfully been applied to a 
number of pharmacokinetic and pharmacodynamic examples (138,139). 

𝑂𝑂𝑂 = �𝑖𝑖𝑖𝑖𝑗

𝑛

𝑗=1

          Equation 15 

∆𝑂𝑂𝑂 = �𝑖𝑖𝑖𝑖𝑗𝐹𝑈𝐿𝐿 −�𝑖𝑖𝑖𝑖𝑗𝑅𝐸𝐷𝑈𝐶𝐸𝐷

𝑛

𝑗=1

𝑛

𝑗=1

          Equation 16 
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5 AIMS OF THE THESIS 
The overall aim of this thesis was 1) to improve the treatment of the HIV-1 infec-
tion by optimization and individualization of antiretroviral pharmacotherapy and 
2) to shown the benefits of pharmacometrics, as part of model based drug devel-
opment, for the design, analysis and interpretations of clinical trials and their 
outcomes. This is exemplified by quantitative analyses of efavirenz and ataza-
navir treatments as well as simulations of phase II HIV-1 trials. The five papers 
in this thesis aim to answer the following questions.  

 
1. Can an in vitro-in vivo extrapolation model be used to assess 

the current recommendations when efavirenz is co-
administered with rifampicin? (Paper I) 
 

2. What is the influence of the HIV-1 infection of the pharma-
cokinetics of efavirenz? (Paper II) 
 

3. What is the quantitative relationship between atazanavir 
plasma concentrations and bilirubin elevations in patients? 
(Paper III) 
 

4. Is bilirubin a good tool for assessing atazanavir exposure 
and adherence in HIV-1 infected patients? (Paper IV) 

 
5. What are the benefits of a model based drug development 

approach in terms of sample size, analysis and interpretation 
of results in Phase II HIV-1 trials? (Paper V)  
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6 PATIENTS AND METHODS 

6.1 Paper I – Efavirenz and rifampicin 
6.1.1 In Vitro-In vivo extrapolation 
The general methodology of in vitro-in vivo extrapolation has been described in 
the introduction of this thesis (section 4.4). The physiologically based simulator, 
Simcyp version 8.2 (140) (Simcyp™ Ltd, Sheffield, UK), was used for IVIVE of 
efavirenz and rifampicin pharmacokinetics and simulation of their interaction. 

Parameters needed for the efavirenz IVIVE model were found in literature, 
obtained through in silico prediction or estimated using data provided in the lit-
erature (Table 2). Parameters associated with rifampicin pharmacokinetics and 
induction properties were largely provided by the software with the exception of 
rifampicin’s influence on CYP2B6 which were estimated from Faucette et al. 
(141). When parameter estimates were not directly provided by the literature the 
experimental data was obtained from tables or digitalized from graphs by graph 
digitalizing software. Obtained data was subsequently modeled using WinNonlin 
vesion 5.2 (Pharsight Co., Mountain View, CA, USA). 

The efavirenz volume of distribution (3.33 L/kg) was scaled from rat to man 
by allometric scaling and together with LogP used as input for prediction of tis-
sue partitioning constants (Kp), as proposed by Jansson et al (142). The predicted 
Kp values for the various tissues were as follow: lung: 63.3, heart: 5.25, kidney: 
3.87, brain: 4.57, spleen: 0.67, gut: 1.54, liver: 3.70, bone: 0.54, muscle: 0.67, 
skin: 0.85 and fat: 12.6. 

6.1.2 Model validation  
Before any prediction in regards to the interaction between efavirenz and rifam-
picin could be done, the efavirenz model was validated against data from three 
clinical studies. The first study was a single dose study in 121 Ugandan healthy 
volunteers. The other two studies were conducted in patients in Zimbabwe 
(n=74) and Sweden/Norway (n=76) at steady-state (38,39,94). Ethical approval 
for the Ugandan study was given by the Uganda National Council of Science and 
Technology. The second study from Zimbabwe was approved by ethics commit-
tees at the Medical Research Council of Zimbabwe and by the Joint Parirenyatwa 
Hospital and College of Health Science Research, Harare. The third study was 
approved by an independent ethics committee and the Swedish Medical Products 
Agency.  

Simulations were performed where the three studies were emulated in terms 
of age, sex and frequency of slow metabolizers. The resulting plasma concentra-
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tion-time curves were visually compared. Derived pharmacokinetic parameters 
(Cmax, Tmax, CL/F and AUC) of the single dose study were compared to those of 
the corresponding simulation study.  

The level of efavirenz autoinduction was evaluated by comparison to clinical 
estimates of efavirenz CL/F at steady state. The extent of rifampicin influence on 
efavirenz CL/F was likewise compared to clinical estimates. 

6.1.3 Simulation of interaction 
Once validated, the model was used to simulate an efavirenz dose adjustment 
from 600 to 800 mg in a population of 400 virtual patients. The 400 patients 
were stratified based on CYP2B6 phenotype (slow vs. extensive metabolizer) 
and body weight (below or above 50 kg). Each stratum consisted of 100 patients. 
Two scenarios were simulated in each stratum: 600 mg of efavirenz with and 
without rifampicin and 800 mg efavirenz with and without rifampicin. Slow and 
extensive metabolizers were predefined in the Simcyp software by CYP2B6 
abundance levels (SM=6, EM=17 pmol∙(mg protein) -1, respectively. The magni-
tude of the interaction was evaluated based on CL/F, Cmax, Ctrough and AUC at 
steady state. 
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Table 2.  Simcyp input parameters 

Efavirenz input parameters Value Variability  
(CV%) Comments and references 

MW 315.67  (22) 
LogP 5.4  (143) 
B:P ratio 0.74  (144) 
Plasma fu 0.0112  Predicted by Simcyp 
Caco-2 permeability ( 10-6 cm/s ) 8.92  (145) 
fu (Gut) 1  Assumed 
Main binding protein Albumin  (22) 
fu(mic) 0.3  Predicted (146) 
fu(hep) 0.063  (147) 
rCYP 3A4 Vmax (pmol/min/pmol 
3A4) 0.16  Baculovirus ISEF (31) 

rCYP 3A4 Km (μM) 23.5  Baculovirus ISEF (31) 
rCYP 3A5 Vmax (pmol/min/pmol 
3A5) 0.6  Baculovirus ISEF (31) 

rCYP 3A5 Km (μM) 19.1  Baculovirus ISEF (31) 
rCYP 1A2 Vmax (pmol/min/pmol 
1A2) 0.6  Baculovirus ISEF (31) 

rCYP 1A2 Km (μM) 8.3  Baculovirus ISEF (31) 
rCYP 2B6 Vmax (pmol/min/pmol 
2B6) 3.5  Baculovirus ISEF (31) 

rCYP 2B6 Km (μM) 6.4  Baculovirus ISEF (31) 

rCYP 2A6 Vmax (pmol/min/pmol 
2A6) 1.08  

Converted from 
Vmax(HLM) (32) as 
proposed by (118) 

rCYP 2A6 Km (μM) 14.7  (32) 
UGT2B7 Vmax (pmol/min/mg) 1.5  (148) 
UGT2B7 Km (μM) 16.1  (148) 

CYP 3A4 Indmax  6.45 18.6 Digitalized data (147) 
modeled together with (35) 

CYP3A4 IndC50 (μM) 3.93 52.5 Digitalized data (147) 
modeled together with (35) 

CYP 2B6 Indmax    5.76 13.7 Modeled from (34) 
CYP 2B6 IndC50 (μM) 0.82 71.9 Modeled from (34) 

Rifampicin input parameters Value Variabilitya 
(CV%) Comments and references 

CYP2B6 Indmax  8.5b 30 (141) 
CYP2B6 IndC50 (μM) 1.17 30 (141) 
fu (hep) 0.419  (147) 
a Default Simcyp setting,Indmax Maximal fold induction over vehicle (1 = no induction).b mean value (n=2), 
Vmax Maximum rate of metabolism, fu(mic) fraction unbound in microsomes, Km Michaelis-Menten constant, 
ISEF Inter System Extrapolation Factor, plasma fu unbpund fraction in plasma, B:P ratio Blood:Plasma 
concentration ratio, MW molecular wheight, Log P logaritm of octanol:water ratio 
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6.2 Paper II – Efavirenz pharmacokinetics and 
HIV/AIDS  

6.2.1 Study design 
The objective of this study was to investigate potential differences in the phar-
macokinetics of efavirenz in healthy volunteers versus HIV-1 patients. Efavirenz 
plasma concentration in 29 treatment naïve HIV-1 patients was measured pre-
dose and 1, 2, 3, 4, 6, 8, 16 and 24 hours after the first dose of 600 mg. All pa-
tients received zidovudine/lamivudine (150/300 mg) as backbone therapy. 
Additionally, all patients were administered cotrimoxazole (trimethoprim 
/sulfamethoxazole) during the study period. Included patients were eligible for 
ARV treatment, based on CD4+ cell count. 

Data from the HIV-1 patients was merged with data from a previously pub-
lished pharmacokinetic study on efavirenz pharmacokinetics in healthy volun-
teers (38). Plasma from 32 healthy volunteers was collected and efavirenz 
concentrations quantified at 0, 1, 2, 4, 8, 24, 48 and 72 hours after a single dose 
of efavirenz (600 mg). Potential pharmacogenetics, demographic and biochemi-
cal covariates were specified a priori. 

Ethical approvals were obtained from the Uganda National Council of Sci-
ence and Technology (Kampala, Uganda) and Karolinska Institutet (Stockholm, 
Sweden). All participants gave written informed consent. 

6.2.2 Model development 
A two-compartment model with sequential zero- to first order absorption 
previously used to describe efavirenz pharmacokinetics in healthy volunteers was 
used as a starting point (38). Clearance and volume of distribution parameters 
where allometrically scaled for body weight (BW) and centered to the median 
BW. The scaling factor was fixed to ¾ and 1 for clearance parameters and 
volumes, respectively (149).  

Models with 1 or 3 compartments were used to challenge the initial 2-
compartment model. A variety of absorption models were tested, including a 
transit compartment absorption model (150). Between-subject variability was 
initially tested for all pharmacokinetic parameters but only kept if they were es-
timated with reasonable precision and resulted in reduction of the objective func-
tion value.  

The stepwise covariate model building tool implemented in the PsN  package 
(151) was used for forward covariate selection and backward deletion in an au-
tomated fashion. Inclusion criteria for the forward step was a reduction in OFV 
corresponding to a p-value of ≤0.05 while the backward deletion criteria was 
more stringent where covariates were only kept if their deletion resulted in an 
OFV increased corresponding to a p-value of ≤0.01. Final covariate relationships 



Quantitative Clinical Pharmacological Studies on Efavirenz and Atazanavir in The Treatment of 
HIV-1 Infection 

32 

had to reduce the estimated between subject variability. The 95% confidence 
interval of the final covariate was required not to include zero for continuous and 
one for categorical covariates. 

6.2.3 Data analysis 
The general methodology of NLME modeling has been described in section 4.2.  

Modeling software NONMEM, version VI (Icon Development Solutions, El-
licott City, MD, USA) was used to fit nonlinear mixed effects models (152). The 
first-order conditional estimation method with interaction was used (FOCE-I). 
Models were discriminated using the OFV criteria, precision of parameter esti-
mates and goodness of fit plots. Auxiliary software e.g. Census 1.1 (153), Xpose 
4.0 (154), PsN (151) and Spotfire software (Tibico Software, Somerville, MA, 
USA) was used for data evaluation, graphics, handling of output files, model 
evaluation and covariate modeling. 

6.3 Paper III - Atazanavir and bilirubin  
6.3.1 Study design 
The present work included the atazanavir/ritonavir arm of the previously pub-
lished NORTHIV study (93,94,109). In brief, the NORTHIV study was a ran-
domized, multicenter, open-label trial with three arms (efavirenz, 
lopinavir/ritonavir and atazanavir/ritonavir) conducted in Sweden and Norway. 
The atazanavir/ritonavir arm consisted of 82 treatment naïve patients. The back-
bone therapy was allowed to vary according to clinical practice. In addition to 
patients’ demographics, this analysis included atazanavir plasma concentrations 
and bilirubin observations up to three years after study enrolment at 5 occasions 
(weeks: 4, 12, 48, 96 and 144 after enrollment). In total, 361 bilirubin concentra-
tions and 200 atazanavir steady state plasma samples were available. 

The NORTHIV study protocol was approved by the Research Ethics Commit-
tee of the University of Gothenburg, the Regional Committees for Medical Re-
search Ethics in Norway and the Swedish Medical Products Agency. All patients 
provided a signed informed consent prior to enrolment. 

6.3.2 Model development 
A previously developed and validated model for atazanavir/ritonavir pharmaco-
kinetics was used as an initial starting point (75). The atazanavir plasma concen-
trations were transformed into their natural logarithms. Due to limited number of 
plasma samples in the absorption phase, the lag-time and the first order absorp-
tion rate constant had to be fixed to literature values (75). Estimated pharmaco-
kinetic parameters were scaled by patients’ bodyweights and centered to the 
population median bodyweight (70kg). The scaling factor was a priori fixed to 1 
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for volumes and at ¾ for clearance (149). Between-subject variability of parame-
ter estimates was initially estimated for all pharmacokinetic parameters, but only 
kept if estimated with adequate precision and resulted in a significant drop in 
objective function value. Correlation between variably of fixed structural param-
eters was evaluated. 

The final pharmacokinetic model was fixed and allowed to drive the bilirubin 
response in the pharmacodynamic models tested. Individual atazanavir observa-
tions were kept in the dataset. The concentration dependent inhibition of biliru-
bin conjugation was explored with multiple pharmacodynamic models, including 
the direct effect model, bio-phase distribution model and various indirect re-
sponse models. Estimates of (uninhibited) bilirubin half-life from the final PKPD 
model were compared to estimates found in literature (155).  

6.3.3 Simulations with the final model 
(Deterministic) 

The final PKPD model was implemented into the Berkeley Madonna software 
(156). Three non-adherence scenarios were simulated where the typical patient 
misses one, two or three atazanavir doses.  

Further, the pharmacokinetic model was fixed to result in atazanavir trough 
concentrations at the minimum effective concentration (MEC) of 0.2 µmol/L. 
The influence of baseline bilirubin concentrations (ranging from the lowest to the 
highest observed) on the trough concentrations of bilirubin at steady state was 
simulated. The various baseline values and their corresponding trough bilirubin 
concentrations at steady state were used to construct the atazanavir-bilirubin 
nomogram with the intention to be of use for detection of suboptimal exposure or 
non-adherence.  

6.3.4 Data analysis 
Procedures and the software used were identical to those used in paper II as de-
scribed by section 7.2.3 Data analysis, with addition of Piraña as NONMEM 
project managing software (157) and Berkeley Madonna (156) used for simula-
tion. 
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6.4 Paper IV – Validation of the atazanavir 
nomogram 

6.4.1 Study design 
The external validation dataset consisted of patients from Italy, Norway and 
France. The Italian patients were part of the therapeutic drug monitoring pro-
grams at the University of Torino. Both ritonavir boosted (n=56) and unboosted 
(n=56) patients were included but analyzed separately. All patients were on a 
300/100 mg QD atazanavir/ritonavir regimen except two who were on a 200 and 
400 mg QD based regimen, respectively. The unboosted patients’ regimen varied 
from 200 mg BID to 400 mg QD. The backbone therapy was allowed to vary 
according to clinical practice. The bilirubin steady state samples were collected 
on average at 09:23 (±1:05) am, while baseline samples were collected between 
8:00 and 11:00 am. Approximately 23% of the Italian cohort was coinfected with 
hepatitis B/C.  

The data for the Norwegian patients was extracted from the Thematic Bi-
obank “Infectious Diseases”. All patients (n=76) were part of the HIV monitor-
ing program at Oslo University Hospital where they were allocated to an 
atazanavir/ritonavir (300/100 mg QD) containing regimen. The backbone therapy 
varied according to clinical practice.  The average times for bilirubin baseline 
and steady state sampling was 10:13 am (±1:38) and 09:44 (±1:22) am, respec-
tively. 

The French patients were part of the ANRS 134 -COPHAR 3 study (158). Of 
the 35 patient recruited to the study, one was excluded from this analysis due to a 
missing bilirubin baseline measurement. The patients were administered ataza-
navir/ritonavir (300/100 mg QD) and tenofovir/emtricitabine (245/200 mg) for 
24 weeks. Matching bilirubin and atazanavir observations were available at 
weeks 4, 8, 16, and 24. On average the samples were collected 18.27 hours after 
dose. Hepatitis B/C was an exclusion criterion of the trial.  

6.4.2 Application of the nomogram 
The nomogram was applied to the bilirubin observations of the patients. Patients 
who were identified by the nomogram to have suboptimal atazanavir exposure 
were labeled as positive. If the prediction was correct or incorrect they were 
identified as true positive (TP) or false positive (FP), respectively. True negative 
(TN) and false negative (FN) observations were labeled and identified in the 
same manner. The nomogram’s predictive properties were described in terms of 
specificity, sensitivity, accuracy, negative predictive value and positive predictive 
value, as defined in Table 3. 
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6.4.3 Simulation of non-adherence (Stochastic) 
Stochastic simulations were used to determine if the nomogram could be used to 
detect periods of non-adherence in patients. The main difference from previous 
simulations based on this model is the introduction of random components (inter 
individual variability and residual error). Similar to the previous simulations: 
three scenarios (Scenarios 1-3) of non-adherence were evaluated. In Scenarios 1 
to 3, 10% of the simulated patients (n=1000) were non-adherent for one, two or 
three consecutive days. In each of the simulated scenarios the patient were sam-
pled at three sampling events (Event 1a, 1b and 2). Event 1a was at 24 hours af-
ter the period of non-adherence; Event 2 was 48 hours after the period of non-
adherence; Event 1b was 25 hours after the period of non-adherence just after a 
patient self-administers an atazanavir dose without informing the clinical staff. 
The purpose of Event 2b is to conceal the non-adherence period by being adher-
ent just before a sampling event. The scenarios and events are illustrated in Fig-
ure 6.   

The nomogram identified a patient as non-adherent if the bilirubin concentra-
tion indicated an atazanavir exposure below MEC. Simulated atazanavir concen-
trations were used in a similar manner to identify the non-adherent patients. The 
two methods were evaluated based on the metrics in Table 3. All simulations 
were performed in NONMEM 7.12 (152) (ICON Development Solutions, Ellicot 
City, MD, USA) with the aid of PsN (151,159).  

 
 

Table 3. Equations and interpretations of the metrics used to describe the predictive properties 
of the nomogram.  

Equation  Interpretation 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑇𝑁
𝑇𝑁+𝐹𝑃

   
Specificity of the nomogram is the probability 
of a true negative result when the atazanavir 
sample is over MEC. 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑇𝑃
𝑇𝑃+𝐹𝑁

  
Sensitivity of the nomogram is the probability 
of a true positive result when the atazanavir 
sample is under MEC 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 𝑇𝑃+𝑇𝑁
𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁

  Accuracy is the proportion of all correctly 
predicted observations for the nomogram.  

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑣𝑣𝑣𝑣𝑣 = 𝑇𝑁
𝑇𝑁+𝐹𝑁

  NPV is the probability of a negative test to be 
true negative 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑣𝑣𝑣𝑣𝑣 = 𝑇𝑃
𝑇𝑃+𝐹𝑃

  PPV is the probability of a positive test to be 
true positive 

MEC: minimum effective concentration (0.2 µmol/L), TP: true positive, TN: true negative, FP: false posi-
tive, FN: false negative, NPV: negative predictive value, PPV: positive predictive value    
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6.5 Paper V – Phase II HIV-1 trials 
6.5.1 HIV-1 dynamics model 
A previously developed model of HIV-1 dynamics was used for all the simula-
tions in this work (107,108). The model was briefly introduced in Section 4.3. 
When simulated, estimates of the viral parameters and their variability were 
fixed according to previously reported values (108,109).    

6.5.2 Simulation of dose-finding/POC study 
The dose-finding/POC study was assumed to consist of 4 dose arms and 1 place-
bo arm. Based on literature, Table 1, a typical Phase IIa trial was simulated 
where the patients were treated for 10 days and followed up to 40 days after 
treatment initiation. The drug effect was dose dependent and assumed to inhibit 
the infection of CD4+ cells (Equation 17). The maximum level of infection inhi-
bition (INH) was assumed to be 1. The dose resulting in 50% of maximum inhi-
bition (ED50) was arbitrary set to 4 units. The tested doses (0.5, 2, 8 and 20) 
resulted in INH levels of 0.11, 0.33, 0.67 and 0.83, respectively. The viral load 
was simulated daily up to day 13 and thereafter at days 15, 19, 22, 25 and 40 
(132).  

Figure 6. Study design for the simulation based validation. The crosses represent 
days of non-adherence to atazanavir while the ellipsoids represent administered dos-
es. The dashed lines represent sampling/monitoring events. Event 1a: patients are 
monitored/sampled 24 hours after a period of non-adherence. Event 1b: patients are 
monitored/sampled 1 hour after an atazanavir dose event following a period of non-
adherence. Event 2: patients are monitored/sampled 48 hours after a period of non-
adherence. 
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The power to establish POC was calculated for various sample sizes based on t-
test, ANOVA and the MCMP method. The null hypothesis [H0] for the t-test was: 
the highest or the lowest tested dose results in the same mean viral load at day 10 
as the placebo arm while [H0] for ANOVA assumed same mean viral load at day 
10 for all arms including placebo. The null hypothesis [H0] for the MCMP meth-
od was: There is no significant dose response relationship (INH=0). The MCMP 
method has been described in detail in section 4.8.2.  

6.5.3 Simulation of a comparison of investigational 
drug and active competitor 

The settings of a phase II trial were used to identify the smallest difference in 
treatment effect possible to detect applying the HIV-1 dynamics model. The 
study sampling schedule was identical to the one of the dose-finding/POC trial. 
An Investigational drug (I.D.), with INH set to 0.61 resulting in a decrease in 
viral load of 1.32 log10 copies/mL at day 10 of monotherapy, was compared 
against a hypothetical competitor in four scenarios where the competitor varied 
in efficacy. The competitor (C), with INH set to 0.67, 0.74, 0.83 and 0.92, result-
ed in in 5, 10, 15, and 20% larger viral load drop than the investigational drug in 
the various scenarios (1-4), (Figure 7).  

The competitor was compared against the investigated drug once for each 
scenario. The null hypothesis stated that the investigated drug and the competitor 
did not differ in terms of INH. Number of subjects in each arm needed to reach 
80 and 90% power was investigated with the MCMP method. The simulation 
dataset consisted of 2500 individuals in each arm. For comparison, the power to 
detect a difference in the viral load from baseline and day 10 between the inves-
tigated drug and the competitor in any of the four scenarios was calculated based 
on a two-sided, unpaired t-test (p≤0.05). 

𝐼𝐼𝐼 =
𝐷𝐷𝐷𝐷

𝐸𝐸50 + 𝐷𝐷𝐷𝐷
          Equation 17 
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Simulations and re-estimation of simulated data were performed using the 
NONMEM software version 7.12 (152). The MCMP methods as well as the SSE 
method implemented in PsN version 3.4 were used (151,159). Xpose (154) and 
Piraña (157) was used for handling of model and model output files. Power cal-
culations based on the t-test and ANOVA was computed using the pwr package 
implemented in R (2.14.1). 

Figure 7. Viral load drop at day 10 of monotherapy verses drug effect (INH). The 
solid black line is the predicted response curve for all levels of INH. The solid grey 
line is the investigational drug (I.D.); the grey dashed lines the competitor (C) result-
ing in 5, 10, 15 and 20% larger drops in viral load at day 10 than I.D. in the four 
scenarios (1-4). 
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7 RESULTS  

7.1 Efavirenz and rifampicin (Paper I) 
The IVIVE model adequately predicted efavirenz disposition and its interindi-
vidual variability after a single dose and at steady state (Figure 8). Prediction was 
improved when the frequency of poor metabolizers was matched to the observed 
frequency in the emulated study (39) (Figure 8, bottom). At steady state, efavi-
renz CL/F was predicted to 9.9 L/h, in close agreement to the observed literature 
estimate of 9.4 L/h (39).  
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Figure 8 Simulated and observed efavi-
renz concentration-time profiles after 
single (top) and repeated (middle and 
bottom) dosing of 600 mg. The full lines 
represent the mean and 5th and 95th per-
centile of the observed systemic concen-
tration. The dashed lines represent the 
mean and 5th and 95th percentile of the 
predicted systemic concentrations in 100 
simulated individuals. The circles in top 
figure represent  observed concentrations 
from a single dose study in Ugandan pa-
tients (38). The circles (middle and bot-
tom) and diamonds (middle) represent  
observed plasma concentrations from 
Zimbabwean and Swedish/Norwegian 
patients respectively (39,94). In the top 
and the middle figures a default frequen-
cy of slow CYP2B6 metabolizers (11 %) 
is assumed. In the bottom figure the bold 
and narrow dashed lines represent Simcyp 
predictions with frequencies of poor me-
tabolizers of 71 and 11 %, respectively.    
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The influence of rifampicin on efavirenz clearance at steady state was somewhat 
underpredicted (12.6 L/h) compared to the literature estimate (17.2 L/h) (160). 
The reduction in efavirenz exposure at steady state in presence of rifampicin was  
predicted at 16% [95% CI: 13-19] in agreement with literature estimates 22% 
(50).  

Simulations of an efavirenz dose increment in presence of rifampicin for ex-
tensive and slow CYP2B6 metabolizers, above or below 50 kg bodyweight, are 
depicted in Figure 9. Extensive metabolizers (>50 kg), predicted to have the low-
est efavirenz exposure (AUC), were predicted to have the largest decrease in 
efavirenz AUC due to rifampicin induction, Figure 9. When the efavirenz dose 
was increased to 800 mg and rifampicin was co-administered the efavirenz AUC 
normalized to levels observed when 600 mg efavirenz is given without the influ-
ence of rifampicin. Slow metabolizers under 50 kg were predicted to have the 
largest exposure to efavirenz. That exposure increased even further when efavi-
renz dose was adjusted to 800 mg with concomitantly administered rifampicin.    
  

Figure 9. Simulated mean efavirenz steady state AUC with and without concomitant 
rifampicin grouped according to bodyweight and CYP2B6 phenotype. The open bars 
show the median efavirenz steady state AUC without concomitant rifampicin while 
the shaded bars show the median efavirenz steady state AUC when co-administered 
with rifampicin. 
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7.2 Efavirenz pharmacokinetics and HIV/AIDS 
(Paper II) 

Single dose efavirenz pharmacokinetics in HIV/AIDS patients and healthy vol-
unteers were described by a two compartment model with the absorption de-
scribed by transit compartments. The additive part of the combined additive and 
proportional residual model was study specific. Final model parameters are tabu-
lated in Table 4. Although multiple covariates were identified in the forward in-
clusion step, only two remained after the backward deletion step. Females were 
estimated to have a 108% (95% CI: 53-163) increase in peripheral volume of 
distribution compared to males. The increased volume of distribution resulted in 
doubling of the terminal half-life in females, Table 5. HIV/AIDS patients were 
estimated to have 30% (95% CI: 19-41) lower relative bioavailability (Frel) com-
pared to healthy volunteers. The inclusion of sex and disease status as covariates 
reduced the unexplained variability in Vp and Frel from 48 to 20% and 30 to 21%, 
respectively. When adjusted for difference in Frel and body weight, CL/F was 
estimated at 3.73 and 5.31 L/h for a 70 kg healthy volunteer and HIV/AIDS pa-
tient, respectively. 
 

Table 4. Parameter estimates for the final model, scaled to a 60 kg subject.  

Parameter Estimate  
[RSE %] 

IIV CV %  
[RSE %] 

CL/F (L/h) 3.32 [6.51] 17.7 [29.6] 
Vc /F(L) 21.9 [23.8] 115.0 [16.9] 
Vp /F(L) 149 [9.33] 19.7 [46.8] 
Effect of sex on Vp/F (L) (females 
compared to males) 

+108% [26.9]  

Q/F (L/h) 21.4 [10.6] 0  (fixed) 
ka(h-1) 0.248 [16.3] 45.3 [14.5] 
MTT(h-1) 1.11 [12.0] 78.0 [11.8] 
NN(n) 6.52 [17.3] 0  (fixed) 
Frel 1 (fixed) 20.9 [29.1] 
Effect of HIV/AIDS on Frel (Patients 
compared to healthy volunteers) 

-29.7 [19.0]  

Proportional residual error (CV %) 14.2 [11.1]  
Additive residual error patients 
(mg/L) 

0.28 [13.7]  

Additive residual error healthy 
volunteers (mg/L) 

0.12 [24.8]  

CL/F: oral clearance, CV: coefficient of variation, Frel: relative bioavailability, which was fixed at 1 in 
healthy subject, IIV: interindividual variability, ka: first- order absorption rate constant, MTT:  mean transit 
time, NN:  estimated number of theoretical transit absorption compartments, Q/F: intercompartmental 
clearance, RSE: relative standard error, V1/F: volume of distribution of the central compartment after oral 
administration, V2/F: volume of distribution of the peripheral compartment after oral administration. 
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Table 5. Secondary parameters of the final model for typical male and female subjects.  

Parameter Male  Female 
 Healthy 

volunteer  
HIV/AIDS 

patient 
 Healthy 

volunteer 
HIV/AIDS 

patient 
AUC(0-24 hours) 

a
 (h∙mg/L) 60 47  48 36 

T½, 
b
  (hours)  40 40  78 78 

AUC: area under the concentration time curve, T½: elimination half-life. a  Based on median weight: 
male patients (65 kg), male healthy volunteers (65 kg), female  patients (52 kg) and female healthy 
volunteers (57 kg).b Scaled to a 60 kg subject.  
 

7.3 Atazanavir and bilirubin (Paper III) 
Atazanavir pharmacokinetics were described by a one compartment model with 
an absorption lag-time (0.96 hours) and absorption rate constant (3.4 hour-1), 
fixed according to literature values (75). The atazanavir concentration-dependent 
inhibition of bilirubin elimination was described by an indirect response model 
type II (161). In Equation 18: B denotes the bilirubin concentration in blood, kin 
is the zero-order constant for bilirubin production, and kout is first-order elimina-
tion rate constant of bilirubin. The first order elimination constant (kout) of biliru-
bin was inhibited by atazanavir plasma concentration (Cp) by Einh, according to 
Equation 19.  

The fraction of inhibition is dependent on the maximum possible inhibition Imax, 
Cp and the concentration of atazanavir resulting in 50% of Imax (IC50). Parameters 
of the final model are tabulated in Table 6. The average steady state concentra-
tion of atazanavir was estimated at 2.75 µmol/L and resulted in an 82% inhibi-
tion of kout. The elimination half-life of bilirubin was estimated at 8.2 hours 
(range: 5.4-10.8 hours), based on the average, minimum and maximum atazanav-
ir concentration at steady state for the typical patient. The inhibited and uninhib-
ited bilirubin half-lifes were computed with Equation 20. The Einh was fixed to 0 
in the uninhibited case. The uninhibited bilirubin half-life (1.64 hours) was in the 
same magnitude as estimates of the dominant beta phase half-life of radiolabeled 
bilirubin found in the literature, 1.16 hours (155).  

𝑑𝑑
𝑑𝑑

= 𝑘𝑖𝑛 − 𝑘𝑜𝑢𝑡 ∙ [1 − 𝐸𝑖𝑛ℎ] ∙ 𝐵          Equation 18 

𝐸𝑖𝑛ℎ =
𝐼𝑚𝑎𝑥 ∙  𝐶𝑝
𝐼𝐼50 + 𝐶𝑝

 Equation 19 

𝑡½ =
ln 2

𝑘𝑜𝑢𝑡 ∙ [1 − 𝐸𝑖𝑛ℎ] 
         Equation 20 
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7.3.1 Simulations of non-adherence (Deterministic)  
Deterministic simulations with the typical parameter estimates of the final model 
were used to investigate the influence of non-adherence on the bilirubin concen-
tration in blood. A single missed dose of atazanavir resulted in average bilirubin 
concentration decrease from 35 to 13 µmol/L. Two and three consecutive missed 
doses resulted in a bilirubin concentration close to (8.2 µmol/L) or at the estimat-
ed baseline level (7.8 µmol/L). The simulation model above was used to simulate 
an atazanavir pharmacokinetic profile resulting in Ctrough at the MEC of 0.2 
µmol/L. The bilirubin trough concentrations for that specific atazanavir PK pro-
file were then simulated. Bilirubin concentrations at various baseline concentra-
tions versus bilirubin trough concentrations constitute the proposed nomogram, 
Figure 10. The black area represents results from individuals with suboptimal 
atazanavir exposure (below MEC), while the white area represents bilirubin con-
centration corresponding to atazanavir exposure above MEC.  

Table 6. Parameter estimates of the final pharmacokinetic and pharmacodynamic 
models describing atazanavir and its influence on bilirubin in HIV/AIDS patients. 

  Parameter  Estimate  IIV, %CV 

    (95% CI)  (RSE %) 
       PK model Lag-time (h)  0.96a   

  ka (h-1)  3.4a   

  V/F (L)  93.6 (62-125)  53.1 (43.6) 

  CL/F (L/h)  6.47 (5.39-7.55)  43.8 (19.5) 

  Correlation     

  p(CL/F, V/F)  0.290   

  Residual error     

  σprop (%)  51.0 (42.7-59.3)   
       PD model Baseline (μmol/L)  7.69 (6.99-8.39)  32.6 (20.2) 

  kout (h-1)  0.420 (0.36-0.48)   
  Imax (%)  91.0 (87-94)   
  IC50 (μmol/l)  0.30 (0.24-0.37)   
  Residual error     
  σprop (%)  39.4 (35.5-43.3)   
  σadd (μmol/l)  2.39 (1.96-2.82)   
ka: absorption rate constant, V/F: volume of distribution, CL/F: clearance, p: correlation 
coefficient, σprop: proportional residual variability, kout: fractional turnover rate, Imax: maxi-
mum inhibition constant, IC50 concentration resulting in 50% of Imax, σadd: additive residu-
al error, IIV:  inter-individual variability.  a fixed according to (75). 
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7.4 Validation of the atazanavir bilirubin 
nomogram (Paper IV) 

The nomogram was validated in three external cohorts on a ritonavir boosted 
atazanavir based HAART regiment. The data from the cohorts is superimposed 
on the nomogram in Figure 11. The predictive properties of the nomogram are 
shown in Table 7. In general, the nomogram showed high probability of predict-
ing a negative result when the atazanavir concentration is truly over MEC (speci-
ficity: 91% [95% CI: 87-94]). The negative predictive value i.e. the probability 

Figure 10. The atazanavir-bilirubin nomogram. The black area represents bilirubin steady state 
levels associated with atazanavir exposure below the minimal effective concentration (MEC) of 
0.2 μmol/L. The white area represents bilirubin levels associated with atazanavir concentrations 
over MEC. Results of the external validation are superimposed on the nomogram. The percent-
ages and the confidence intervals (95% CI) in the white and the black area represent the proba-
bility of nomogram to be correct when predicting an observation to be above or below MEC, 
respectively, results from Paper IV.  
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of a true negative result for all observations characterized as over MEC, was also 
high (NPV: 97% [95% CI: 95-99]). The positive predictive value was lower than 
NPV for all cohorts, especially so for the Italian cohort on a ritonavir boosted 
atazanavir treatment. This is due to the high number of false positive samples in 
the Italian cohort compared to the others (Figure 11 C).  

The nomogram was also validated in an Italian cohort on an unboosted ataza-
navir based HAART treatment. The predictive properties of the nomogram in 
terms of NPV were significantly lower in the unboosted compared to the boosted 
cohorts (NPVunboosted: 70% [95% CI: 57-80] versus NPVtotal boosted: 97% [95% CI: 
95-99]). NPV and PPV for the combined analysis of all cohorts on a ritonavir 
boosted atazanavir regiment are shown in the white and the black area of the 
nomogram in Figure 10, respectively.   

Figure 11. The bilirubin nomogram applied on Norwegian (A), French (B), ritonavir boosted 
Italian (C) and unboosted Italian (D) patients. Observations below the full line are predicted to 
correspond to atazanavir concentrations below the minimal effective concentration (MEC) of 0.2 
μmol/L (150 ng/ml). The white and the colored points denote correct and incorrect predictions, 
respectively. 
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Table 7. Summary of the bilirubin nomogram’s predictive properties in various HIV-1 patient populations   

  
Italian  French Norwegian Total 

Boosted ATZ Boosted ATZ Boosted ATZ Boosted ATZ 
Parameter Value 95% CI Value 95% CI Value 95% CI Value 95% CI 
Specificity 0.81 (0.71-0.89) 0.95 (0.91-0.99) 0.92 (0.85-0.97) 0.91 (0.87-0.94) 
Sensitivity 0.25 (0.01-0.80) 0.55 (0.21-0.86) 1 (0.28-1.00) 0.59 (0.33-0.82) 
Accuracy  0.79 (0.68-0.87) 0.93 (0.87-0.97) 0.93 (0.86-0.97) 0.89 (0.85-0.92) 
PPV 0.06 (0.002-0.3) 0.5 (0.19-0.81) 0.36 (0.11-0.69) 0.27 (0.14-0.44) 
NPV 0.96 (0.88-0.99) 0.97 (0.92-0.99) 1 (0.94-1.00) 0.97 (0.95-0.99) 
PPV: positive predictive value, NPV: negative predictive value, CI: Confidence interval, ATZ: atazanavir 
  

7.4.1 Simulation of non-adherence (Stochastic)  
Two methods for predicting non-adherence were evaluated using the previously 
developed stochastic PKPD model (Paper III). Method one was based on the 
nomogram and method two was based on direct measurement of the atazanavir 
plasma concentration. Figure 12 shows the performance metrics of the nomo-
gram and the direct plasma measurements. There was no difference in the per-
formance in the three scenarios. There were, however, large differences in 
performance between the different sampling events. In terms of NPV: at Event1a, 
direct atazanavir measurement was slightly better than the nomogram although 
both methods performed adequately with NPV >98%. At event 2, the nomogram 
and direct atazanavir measurement performed equally. At Event 1b, where the 
patient is trying to conceal the period of non-adherence by taking an atazanavir 
dose 1 hour before sampling, the nomogram had a significantly higher NPV than 
direct atazanavir measurement. In terms of PPV, direct atazanavir measurement 
predicted non-adherence well at Event 1a and 1b. At Event 2, both the methods 
showed poor performance. Performance metrics for all scenarios and event are 
shown in Figure 12.  
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Figure 12. Summary of predictive proper-
ties of the bilirubin nomogram (circles) and 
atazanavir drug monitoring (triangles) based 
on simulations of 1000 virtual patients. The 
circles represent median while the bars 
represent the 95% confidence interval. Col-
ors red and blue represent the atazanavir 
concentration measurement and bilirubin, 
respectively. PPV: positive predictive value, 
NPV: negative predictive value. The scenar-
ios and the events are explained in the 
methods section. 
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7.5 Phase II HIV-1 trials (Paper V) 
A simulation of the dose-response relationship for each of the tested doses is 
shown in Figure 13. The mean (±SD) drop in viral load at day 10 was 0.31 
(±0.31), 0.85 (±34), 1.38 (±0.32) and 1.56 (±0.30) log10 copies/mL for the tested 
doses. Using the model based approach, 5 patients (1 per arm) was sufficient to 
detect a significant dose-response relationship in the POC/dose-finding trial with 
>99% power. To reach >99% power based on the t-test where the highest dose is 
compared to the placebo arm, 15 patients (3 per arm) were required. The same 
sample size (3 patients per arm) was required using ANOVA where the mean 
viral load drop at day 10 for all arms is compared (Table 8). 

The sample size of 5 patients (1 per arm) resulted in insufficient precision in 
ED50 (relative standard error [RSE]: 45.2%), based on SSE (1000 samples). A 
sample size of 3 patients per arm is necessary to estimate ED50 with reasonable 
bias (5.4%) and precision (RSE: 25.7%).  

 
 

Figure 13. The simulated dataset used for power calculations of the POC trial with 
the MCMP method. The panels represent the tested doses including placebo; the solid 
black line is the median; the grey area is the 90% prediction interval; 1000 individu-
als are simulated in each arm.  
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Table 8. Total sample size and power for showing a dose-response relationship for the model based drug 
development approach (MBDD) and the traditional statistical approach (two-sided, unpaired t-test and 
ANOVA) for a 5 armed (including placebo) trial design. Numbers in parenthesis are number of patients per 
arm. 

Power (%) MBDD t-test lowest dose t-test highest dose ANOVA 
80 5 (1) 85 (17) 10 (2) 10 (2) 
90 5 (1) 115 (23) 15 (3) 15 (3) 
99 5 (1) 195 (39) 15 (3) 15 (3) 

    
Results from the comparison of a hypothetical investigational drug against the 
active competitor in the four scenarios are shown in Figure 14. The smallest dif-
ference in treatment effect that is possible to detect, with 80% power, using the 
MBDD approach and a sample size of 20 (10 patients per arm) is 20%. The 
treatment effect is here defined as drop in viral load at day 10 of monotherapy. 
Using a t-test a sample size of 68 patients (34 per arm) is required to detect the 
same effect size with 80% power, Figure 14.  The difference in required sample 
size for the t-test and the MBDD approach and was 3.4, 3.9, 3.3, and 3.3 fold for 
a difference in effect of 20, 15, 10 and 5%.  
 
 

 

Figure 14. Number of patients per arm (2 arms) needed to detect various differences 
in treatment effect between the investigated compound and active competitors at 80% 
(circles) and 90% (squares) power based on a Model Based Drug Development ap-
proach (MBDD) and two-sided unpaired t-test, respectively.  
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8 DISCUSSION 
The father of modern medicine, Sir William Osler (1849-1919) once said: “The 
good physician treats the disease; the great physician treats the patient who has 
the disease.” Today we refer to this approach as personalized medicine. This the-
sis aims to optimize and individualize antiretroviral pharmacotherapy for the 
treatment of HIV-1 infection by investigating various aspects of the treatment 
such as drug-drug interaction, disease effect on pharmacokinetics and drug con-
centration monitoring. The pharmacotherapy in resource limited settings has 
been given special emphasis throughout most of the papers in this thesis. In addi-
tion the thesis exemplifies how the development of new treatment options and 
clinical drug development programs can be informed and expedited using phar-
macometrics and model based tools. 

In paper I, the most appropriate action is investigated when a CYP P450 in-
ducing drug (rifampicin) is given concomitantly to an efavirenz-containing an-
tiretroviral regiment. Previous dosage recommendations counteracting this 
interaction were based on inadequate clinical support. Furthermore, the FDA 
encouraged in silico simulations to evaluate current recommendations (52). By 
use of in silico methods (IVIVE), which rely solely on non-human data, various 
doses were tested on different virtual subpopulations, e.g. slow and extensive 
metabolizers as well as patients below or above 50 kg of body weight. The re-
sults indicated that the recommended efavirenz dose increment in patients over 
50 kg bodyweight is appropriate in presence of rifampicin. The methodology 
used allowed a virtual study to be conducted avoiding a large clinical trial in a 
not easily recruited population (slow metabolizer, <50 kg), saving considerable 
time and resources. Additionally, the IVIVE method also allowed virtual investi-
gation of appropriate doses without any risks to patients. This concept is poten-
tially of great use in phase I of drug development where it can aid the prediction 
of exposure in man as well as predict drug-drug interactions based on preclinical 
data. 

The immune system of HIV-1 infected patients is under severe strain which 
can ultimately lead to the immunodeficiency syndrome known as AIDS. Oppor-
tunistic infections and virus induced cancers may require the patients to be treat-
ed with multiple concomitant drugs, increasing the risk of metabolic drug-drug 
interactions. Drug-drug interactions can be predicted from in vitro data as shown 
in paper I. It is, however, more common to study the suspected interaction in a 
clinical trial. Moreover, due to ethical aspects, as well as for other reasons, these 
trials are often conducted in healthy volunteers rather than in HIV-1 patients. 
One important assumption is that the pharmacokinetics of the interacting drugs 
does not differ between patients and healthy volunteers. That assumption is chal-
lenged in paper II where difference in efavirenz pharmacokinetics between 
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healthy volunteers and HIV-1 patients were investigated by NLME. Any substan-
tial difference in exposure between patients and healthy volunteers may lead to 
under- or overprediction of the investigated interaction. The results in paper II 
show that patients have approximately 30% lower exposure than healthy volun-
teers which demonstrates the need of clinical trials in the target population rather 
than in healthy volunteers. In addition to drug-drug interaction trials, potential 
difference in exposure between healthy volunteers and patients can be of im-
portance in all phase I trials conducted in healthy volunteers. Caution should be 
taken when results from healthy volunteers are extrapolated to the target popula-
tions that can potentially differ in exposure.     

Aside from drug-drug interactions, other factors may lead to suboptimal ex-
posure in patients e.g. non-adherence. The large pill burden associated with the 
pharmacotherapy of HIV-1 and the treatment of other concomitant infections and 
conditions may decrease patients motivation to adhere to therapy (162) and thus 
affect patients’ drug exposure. As adherence is an important cause of treatment 
success, regular assessment and documentation of adherence are recommended 
(13).  

Drug exposure can be directly determined by measuring the drug concentra-
tion in plasma i.e. therapeutic drug monitoring. Unfortunately this approach re-
quires access to costly equipment as well as highly trained personnel. 
Additionally it may take considerable time for the sample to be analyzed and 
interpreted. These obstacles may pose a challenge, especially so in resource lim-
ited settings. The atazanavir-bilirubin nomogram in Paper III was developed with 
these obstacles in mind.  

Hyperbilirubinemia is caused by atazanavir concentration-dependent inhibi-
tion of bilirubin conjugation. The nomogram itself is a practical adaptation of a 
semi mechanistic nonlinear mixed effects model of that inhibition. Bilirubin con-
centration measurements are required for the use of the nomogram. These can be 
obtained using an inexpensive bilirubin meter that can be operated with minimal 
training. Recent bilirubin meter models are handheld, trans-cutaneous and battery 
powered, eliminating the need of a continuous power source. Trans-cutaneous 
and plasma measurements of bilirubin have been shown to be well correlated 
(163). The use of transcutaneous, battery powered bilirubin meters can in a mat-
ter of seconds inform the clinician about a patient’s atazanavir exposure without 
the need of hospital settings.      

The nomogram was successfully validated in three external patient popula-
tions from Italy, France and Norway, Paper IV, where the credibility of the nega-
tive observations was high (NPV: 97% [95% CI: 91-99]). Additional simulations 
showed that the nomogram could detect ongoing non-adherence in patients. The 
atazanavir-bilirubin nomogram offers clinicians a valuable, rapid, accurate, inex-
pensive and easy to use tool to access suboptimal exposure in patients whatever 
the cause. 
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Patients and clinicians depend on the resources of the pharmaceutical industry 
to develop safe and efficacious medicines. These resources are not endless and 
need to be used rationally. Investigational drugs that are not likely to reach the 
market need to be discontinued as early as possible so that resources can be redi-
rected towards other projects. To achieve this, clinical trials need to be designed 
and analyzed using all available knowledge about the disease and the drug so that 
development teams can make informed decisions about the future of the investi-
gational drug. The knowledge about the drug and the disease should preferably 
be as integrated as possible e.g. a mechanistic mathematical representation of the 
drug-disease interaction. In Paper V, a simplified mathematical representation of 
HIV-1 and CD4 cells and their interaction is used to explore the settings of Phase 
II monotherapy HIV-1 trials. Two main questions were investigated: 1) can the 
number of patients required to show a significant dose response relationship be 
reduced using a MBDD approach, compared to traditional analysis (t-
test/ANOVA) and 2) can additional knowledge be gained about the investiga-
tional drug’s performance relative to competitors, within the fixed design of 
phase II monotherapy trials (with regards to sample size and study duration). 
Knowledge about an investigational drug’s performance against competitors on 
the market or in development can be used to inform decisions about future de-
velopment of that compound. By reducing study size or by increasing knowledge 
about a drugs performance at an early stage of drug development, costs can be 
reduced. Additionally, effective use of clinical trials can reduce the number of 
patients treated with an investigational drug with possible unknown adverse ef-
fects.  

In conclusion this thesis demonstrates the utility of pharmacometric tools as 
implemented in model based drug development as well as in optimization of ex-
isting therapies for the HIV-1 infection. This is exemplified from various angles 
e.g. prediction of exposure and drug-drug interactions, disease influence on 
pharmacokinetics, development and validation of biomarkers as well as optimiz-
ing design and analysis of clinical studies.  
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9  CONCLUSION 
The general conclusions of this thesis are that pharmacometric methods can im-
prove the pharmacotherapy of the HIV-1 infection as well as expedite clinical 
drug development. This is exemplified from various angles in the five Papers that 
constitute this thesis.   
 

The specific findings were: 
− Efavirenz dose should be increased to 800 mg when concom-

itantly administered with rifampicin in patients above 50 kg 
of bodyweight. 
 

− Results from drug-drug interactions in healthy volunteers 
where efavirenz is the perpetrator may be confounded by the 
difference in efavirenz relative bioavailability (Frel) between 
healthy volunteers and HIV/AIDS patients. HIV/AIDS pa-
tients had 30% lower Frel than healthy volunteers.  

 
− The atazanavir concentration-dependent inhibition of biliru-

bin conjugation was described by a semi mechanistic nonlin-
ear mixed effects model. A nomogram aimed to predict sub-
optimal atazanavir/r exposure in patients was created based 
on the developed model.       

 
− The atazanavir-bilirubin nomogram was validated in several 

external populations. Further, it offers clinicians a rapid, ac-
curate, inexpensive and easy to use tool to access suboptimal 
exposure and non-adherence in patients whatever the cause. 

 
− Model based hypothesis testing allows a 3-fold reduction in 

sample size for proof of concept in HIV-1 II monotherapy 
trials.  
 

− Compared to traditional hypothesis testing, model based hy-
pothesis testing required 3.4-fold smaller sample size to de-
tect a difference of 20% or more in treatment effect in phase 
II HIV-1 monotherapy trials.   
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