
Designing a User Interface For an End-to-end Secure
Messaging System
Bachelor of Science Thesis in the Programme Software Engineering &

Management

JON KRISTENSEN

University of Gothenburg

Chalmers University of Technology

Department of Computer Science and Engineering

Göteborg, Sweden, June 2012

The Author grants to Chalmers University of Technology and University of Gothenburg

the non-exclusive right to publish the Work electronically and in a non-commercial

purpose make it accessible on the Internet.

The Author warrants that he/she is the author to the Work, and warrants that the Work

does not contain text, pictures or other material that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party (for example a

publisher or a company), acknowledge the third party about this agreement. If the Author

has signed a copyright agreement with a third party regarding the Work, the Author

warrants hereby that he/she has obtained any necessary permission from this third party to

let Chalmers University of Technology and University of Gothenburg store the Work

electronically and make it accessible on the Internet.

Designing a User Interface For an End-to-end Secure Messaging System

Jon Kristensen

© Jon Kristensen June 2012.

Examiner: Helena Holmström Olsson

University of Gothenburg
Chalmers University of Technology
Department of Computer Science and Engineering
SE-412 96 Göteborg
Sweden
Telephone + 46 (0)31-772 1000

Department of Computer Science and Engineering
Göteborg, Sweden June 2012

Designing a User Interface For an End-to-end
Secure Messaging System

Jon Kristensen

June 1, 2012

Abstract
The main goal of the report is to develop a user in-
terface prototype for an easy-to-use, extendable,
end-to-end secure, and privacy-aware web messag-
ing application. We investigate cryptography and
usability for such an application in the context
of JavaScript and XMPP (Extendable Messaging
and Presence Protocol), and develop a set of suit-
able high-level software design suggestions allow-
ing for private communication. Based on these
suggestions, we proceed to develop and test the
usability of a user interface prototype.

1 Introduction
Text messaging software is an important Inter-
net communication tool (Ollmann, 2004); basic
use of online messaging includes identifying peo-
ple who are online and to exchange information
in near-realtime. O'Sullivan (2006) reported that
200 million people use text messaging while at
work. An analysis of text messaging in the �-
nancial sector considers text messaging software
found in 70% of enterprises to be a risk due to
its vulnerabilities (Murphy, 2003), one of which is
information leaks due to insu�cient security ca-
pabilities. Meanwhile, software applications that
are executed through web browsers have become
popular due to the ubiquity of web browsers, the
convenience of using web browsers as clients, and
the possibility to update web applications with-
out repeatedly installing software updates locally
on possibly millions of computers.1

1http://en.wikipedia.org/wiki/Web_application.
Accessed on the 26th of March, 2012.

Auguste Kerckho�s realized already back in the
19th century that a secure communication sys-
tem must be easy to use and require neither men-
tal strain nor the knowledge of a long series of
rules to observe (Kerckho�s, 1883), yet easy-to-
use, secure, and privacy-aware software solutions
remains largely inaccessible today. Messaging on
the web is generally centralized in its nature, and
there is a strong trend of free advertisement ser-
vices, which datamines and analyzes their users at
the cost of their privacy; in April, 2012, Facebook
reported having over 900 million active users2.
In order to try to �ll this gap, we have started

a project aimed at creating an easy-to-use, un-
centralized, free and open source software web
application which enables privacy-aware Internet
messaging. Since it has been argued that usabil-
ity should come before security in order for a se-
cure application to become successful (Gutmann
& Grigg, 2005), we have chosen the following re-
search question: What would an easy-to-use user
interface for a secure chat application look like?
This report provides a high-level communication
and security design for one such application, in-
vestigates what implications the design has on the
user interface, and o�ers the rationale for the con-
struction of a user interface prototype, as well as
the collected results of usability testing of the pro-
totype.
The report is structured as follows. In the next

section, we present the necessary background for
the reader to understand the rest of the report.
In section 3, we present the research question and
method. Section 4 is concerned with discussing
the di�erent cryptographic and communicative

2http://www.pcmag.com/article2/0,2817,2403410,
00.asp. Accessed on 18th of May, 2012.

1

design decisions made. Section 5 maps the design
decisions to user interface requirements, while
Section 6 walks the reader through the user inter-
face rationale. Section 7 summarizes the results
from the usability testing. Section 8 mentions
elaborates around related works, and Section 9
concludes the report.

2 Background
This section elaborates on the technical back-
ground to help prepare the reader for the following
sections. We start by presenting some background
knowledge related to security, the XMPP messag-
ing protocol, and usability.

2.1 Security
There are two main classes of modern cryptogra-
phy: symmetric-key cryptography and public-key
cryptography (Delfs & Knebl, 2007). Symmetric-
key cryptography uses the same cryptographic
key for both encryption and decryption. Essen-
tially, the symmetric key is shared between the
parties and is used to maintain a private informa-
tion link. One drawback of symmetric-key cryp-
tography is that the keys needs to be exchanged
over a secure channel. Public-key cryptogra-
phy (also called asymmetric cryptography) allows
exchanging keys over an insecure medium, but
leaves the problem of Authentication�verifying
the identity of peers. Other typical security prop-
erties include Con�dentiality (communication is
not understandable to external entities), Integrity
(any alterations to the communication must be
detected by the system), and Replay Protection
(guarantees that copies of previous communica-
tions are identi�able by the system). These prop-
erties will be used as a starting-point for our se-
curity requirements.

2.2 XMPP
XMPP (Extensible Messaging and Presence Pro-
tocol), previously called Jabber, is an decen-
tralized open-standard communications protocol
(Saint-Andre, 2011). XMPP was initially de-
signed for instant messaging, but has since then
been generalized and extended with hundreds

(possibly thousands) of extensions3. XMPP
has been widely deployed across the Inter-
net4. The message primitives of XMPP, stan-
zas, are Message (a push mechanism), Presence
(a publish-subscribe mechanism), and Info/Query
(a request-response mechanism).

2.3 Usability
Yee (2002) o�ers guidelines for usable security.
Some of these guidelines are especially applica-
ble: The path of least resistance (the natural way
to do a task should also be the safest), Explicit
authorization (the user needs to understand that
his or her actions implies granting of authority
when they do), Visibility (the interface should let
the user easily review any active authority rela-
tionships that could a�ect decisions), Revokabil-
ity (allowing the user to revoke authority, when
possible), and Clarity.
On web usability, Krug (2000) argues that

web sites should be self-evident (or at least self-
explanatory), and try to minimize the cognitive
workload (thought) necessary to use the applica-
tion. This can be done through simple language,
making buttons obviously clickable, and making
the system smarter (minimizing the choices for
the user). Krug also elaborates around user be-
haviour. It is mentioned that users generally do
not read pages, rather they mostly skim through
them; users tend to focus on words and phrases
that seems to match the task or interest at hand,
or words hardwires to our nervous systems. Also,
users often satis�ce�choosing the �rst reason-
able option. It is stated that users generally do
not care about how things work, and if they dis-
cover something that gets the job done, they stick
to it. Visually, Krug recommends a clear visi-
ble hierarchy (prominancy related to how impor-
tant it is, large, bold, colours, etc.), while avoid-
ing visual noise. E.B. White's seventeenth rule in
The Element of Style��Omit needless words��
is quoted; �happy talk� and unnecessary instruc-
tions should be removed. The navigation is rec-
ommended to be global and predictable (with mi-

3http://xmpp.org/xmpp-protocols/
xmpp-extensions/. Accessed on the 13th of April,
2012.

4http://xmpp.org/xsf/press/2003-09-22.shtml. Ac-
cessed on the 13th of April, 2012.

2

nor exceptions), and to include a home button.
A site ID or logo should be visible at all times.
The home page should state identity and mission.
Taglines, a welcome burb, teases, timely content,
registration and sign-in information should all be
available from the homepage.
On the other hand, Victor (2006) suggests a

shift away from thinking of usability in terms of
interaction, and instead elaborates around soft-
ware as something that is used for learning (in-
formation software), creating (manipulation soft-
ware) and communicating (where communication
software is treated simply as a combination of in-
formation software and manipulation software).
The �elds of graphic design and industrial de-
sign are suggested as preferable methods for de-
signing applications for these two classes of soft-
ware. According to Victor, manipulation software
should be available, understandable, and comfort-
able (which infers that good manipulation soft-
ware should provide good visualization as well,
which involves graphics design). Manipulation
software displays a model; it shows not only what
can be done, but also what the model is. The
design of manipulation is being concluded as �un-
believably di�cult�, and best avoided, if possible.
On the other hand, information software is used
for learning (�nd information or answers, com-
pare, etc.). The essence of information software
is not functionality, but presentations. Victor ar-
gues that it is not about what the software does,
but what information is relevant for the user,
what questions he or she will ask, and what de-
cisions he or she is trying to make. Software is
�exible in how it displays data, which creates a
unique possibility for context-sensitive informa-
tion graphics, which incorporates who the user is,
and what the user wants to learn at the moment,
and displays the subset of data that the user is
interested in at the moment. Context can be in-
ferred from the environment (current state of the
world), history, and interaction (input from the
user).

3 Research method
In order to answer our research question (What
would an easy-to-use user interface for a secure
chat application look like?), we have to identify

which kind of cryptographic and communication
approaches to use (which a�ects the user inter-
face) as well as designing a user interface proto-
type. When the prototype is �nished, we will per-
form usability testing sessions to gather empirical
and observational data which can be used to guide
us through possible extensions to the user inter-
face.
Usability testing is an iterative process (Krug,

2000). We did start with performing early usabil-
ity testing with simple web mock-ups and even
pen and paper sketches. The results of this test-
ing helped to develop the prototype, and to make
way for the broader, more in-depth testing that is
the subject of the usability testing performed in
this report. Also, we would like to note that even
after the usability test is �nished, we plan to per-
form additional tests on the modi�cations made.
Finally, we will meet as many subjects as seems
necessary, until it appears that no new issues or
suggestions are reported. Refer to Section 7 for
more information about on how we conducted our
usability testing.
There is an overlap between our method and

that of design research (Vaus, 2001), a method
for creating products, services, and systems that
respond to human needs. We try to generate util-
ity value for end-users of our system by �emphat-
ically� collecting and mapping their experiences
and needs. However, as our data collection is
quite limited, so is our synthesis.

4 System design
This section presents the high-level system design
to be realized through the user interface we have
developed. We start by presenting the general sys-
tem requirements, after which two sections elab-
orating around the communication and security
aspects of our system follows.

4.1 General requirements
The goal is to produce a secure text chat client.
Moreover, we have set up the following require-
ments for the system:

End-to-end security No one besides the two
end-users communicating (not even the
server routing the messages) should be able

3

to read or manipulate the conversation. The
communication also needs to be otherwise
secure, depending on what security features
found appropriate.

Extendability While the system will be a text
chat client, the solution must be extendable
and allow for other types of communication
uses, to allow the system to expand into other
areas later.

Uncentralized The system must not rely on one
speci�c server, and users must be allowed to
be spread out over a federation of servers.
Malicious servers must not be able to cause
harm to the rest of the network.

Cross-platform To the extent that it is possi-
ble, the solution should be made available on
di�erent operating systems, as well as smart
phones. However, the �rst platform to be
targeted is the web.

Relatively compartmentalized There are
plans to expand the system into a social
network with lots of additional features. The
text messenger is just one of many planned
features. Also, the chat functionality should
be possible to use by itself.

Free and open source software The system
must be (permissively) free and open source
software, and should not rely on any propri-
etary technologies. This is because we want
to encourage administrators to set up the sys-
tem, and allow programmers to verify that
the system is safe.

User friendly The system must be easy to use,
to be able to compete for the same users
as other popular messengers and social net-
works. End-users of the system should
not have to con�gure any kind of services,
browser settings, �rewalls, and so on.

No plug-ins The system must not rely on Java,
Flash, ActiveX, or any other kind of browser
plug-in which would have to be installed sep-
arately. JavaScript, however, which is not
only supported in all major web browsers,
but also on Android, GNOME 3, Windows
8, iOS, and so on, can be assumed.

4.2 Communication
XMPP is the only protocol identi�ed that ful-
�lls the above mentioned requirements. Other
decentralized communication protocols found are
PSYC and IRC. PSYC could be ruled out quickly
as it is not mature enough and lack proper web
interoperability. While IRC is decentralized and
o�ers Secure DCC for secure client-to-client com-
munications, it requires servers to be trusted, is
not extendable, does not o�er a proper request-
response mechanism, and lacks in web interoper-
ability (Oikarinen, 1993). Thus, XMPP serves as
the basis for communication between users of our
system.
As the Transport Layer Security protocol is

available in the core speci�cation of XMPP, con-
nections between XMPP clients and servers may
easily be secured (Saint-Andre, 2011). How-
ever, the solutions available for securing the
communication between two clients�end-to-end
encryption�are not as accessible. General re-
quirements for end-to-end encryption has been de-
veloped (P. Saint-Andre, 2010). Several XMPP
protocol extensions has been suggested over the
years for end-to-end cryptography (Saint-Andre,
2004; Muldowney, 2006; Paterson, Saint-Andre &
Smith, 2007; Meyer & Saint-Andre, 2009; Miller,
2012). However, the most adopted extension
seems to be a simple implementation of the O�-
the-Record (abbreviated OTR) protocol (Borisov,
Goldberg & Brewer, 2004). Not only is the cryp-
tographic �exibility of version 2 of OTR is lim-
ited, but there are several other drawbacks with
its current usage:

1. Only the body element of the message stanza
(a subset of one of the three XMPP commu-
nication primitives) is encrypted, leaving the
Info/Query and Presence messaging capabil-
ities of XMPP completely unprotected

2. It does not work well if a user is logged into an
account with multiple devices (resources in
XMPP terminology), because the OTR ses-
sion key cannot be negotiated for multiple
endpoints at the same time

3. There is no namespace to, for example, an-
nouncing client support for OTR using the
Service Discovery (Hildebrand, et. al., 2008)

4

extension, enabling XMPP clients to identify
the availability of OTR without querying the
receiving entity with a message

BOSH, or Bidirectional-streams Over Syn-
chronous HTTP, enables XMPP to be used over
HTTP (Paterson et al., 2010; Paterson & Saint-
Andre, 2010).
We are not investigating the low-level protocol

issues further, as they are unlikely to have an im-
pact on the user interface.

4.3 Security
While researching the security aspects, we found
that the future of cryptography is uncertain in
many ways, especially in what concerns asymmet-
ric cryptography. If computer performance con-
tinues to increase, chances are that current prac-
tical key lengths will become too small. Further-
more, no one knows what the future holds: The
Di�e-Hellman problem (Bao, Deng & Zhu, 2003)
could be solved. There could be a breakthrough
in integrated circuits. A quantum computer could
be realized. The only cipher that seems likely to
(at least in theory) guarantee future-proof secu-
rity is a one-time pad. However, one time pads
has serious drawbacks for practical use: they need
to be perfectly random, distributed to peers prior
to use, and as long as the messages exchanged. It
also has to be kept secret and properly disposed.
There are a number of research papers estimat-

ing the likely security of given key sizes (Smart et
al., 2010; Lenstra, 2004; Barker et al., 2011; Or-
man & Ho�man, 2004; Lenstra & Verheul, 2000).5
Looking at the XMPP end-to-end security re-

quirements mentioned above (Saint-Andre, 2010),
we �nd a set of new protocol security require-
ments:

Trust Allows users to establish trust in each oth-
ers credentials, such as (self-signed) certi�-
cates, a shared secrets, or pre-shared keys.
Note that the protocol must not require a
trust model that is external to the users, such
as a Certi�cate Authority or a web-of-trust.

5A convenient comparison of the security provided by
di�erent key sizes can be done on http://www.keylength.
com/en/compare/.

Perfect Forward Secrecy Communications
must not be revealed if any of the long-lived
(private) keys are compromised. It must
also be possible to periodically change the
decryption (public) keys.

Authentication The parties must possess a cre-
dential which only they are expected to have.
One example of a such credential is identity
coherence through time.

Upgradability To allow for new and improved
versions of the protocol, as well as new en-
cryption algorithms.

Identity Protection The authentication cre-
dentials should not be bound to the XMPP
address (�JID�), so that the peer is not lim-
ited to a speci�c XMPP account, and so that
keys cannot be bound to a speci�c XMPP
account.

Two other relevant properties that are mentioned
is �Usability� (easily deployable, �no more ef-
fort than a one-time out-of-band veri�cation of a
string up to eight alphanumeric characters�) and
E�ciency (good performance in CPU and net-
work constrained environments).
One other security feature that is desirable in

private communication is Forgeability (Borisov,
Goldberg & Brewer, 2004). Forgeability means
that an adversary gaining access to the mes-
sages cannot prove who sent the message, or that
the messages has not been faked or altered. In
fact, even the adversary has the power to do so.
Malleable encryption enables forgeability of tran-
scripts, as well as repudiation of contents and
plausible deniability.
A lot can be learned from the O�-the-Record

protocol, as invented by Borisov, Goldberg &
Brewer (2004):
1. Digital signatures, an element of asymmet-

ric cryptography, can be used to authenticate
the author of a message. However, it would
go against the repudiability property of our
messages to sign them. Instead, the signa-
tures are only used to establish connection
between the peers. This enables long-term
authentication.

2. Asymmetric cryptography (like RSA) is often
used as a hybrid cryptosystem, in which case

5

symmetric key cryptography (such as AES)
is used on top of the asymmetric layer. Es-
tablishing a shared secret in this way allows
for both deniability and performance (Sun,
Du & Chen, 2011). The Di�e-Hellman key
exchange algorithm is an e�ective way that
can be used to produce such a secret (Di�e
& Hellman, 1976). Being cheap, the Di�e-
Hellman exchange allows the peers to re-key
often, which enables Perfect Forward Secrecy
(as long as keys are forgotten). Re-keying
also helps to protect against replay attacks,
as the old keys will no longer be valid.6

3. By deriving Message Authentication Codes
(MACs) from the shared secret (perhaps by
using a one-way hash function), we can pro-
tect the integrity of the messages while at the
same time allowing for forgeability.

It's important to note that, since the initial ver-
sion, O�-the-Record has been extended (Gold-
berg, O�-the-Record Development Team, 2005)
through a couple of protocol enhancements due
to the discovery of certain vulnerabilities (Rai-
mondo, Gennaro & Krawczyk, 2005; Bonneau &
Morrison, 2006). The latest version, OTRv27,
uses the Socialist Millionaires' Protocol to ver-
ify that the routing server is not able to per-
form a man-in-the-middle attack, while avoiding
the need to manually compare cryptographic �n-
gerprints through an outside channel. While it
does require a password/passphrase, it can be rel-
atively simple (natural language can be used); the
adversary will get exactly one guess.
It should be noted that there are standardized

alternatives to these techniques with comparable
requirements, such as ECIES (Shoup, 2001). Fur-
thermore, algorithms can be chained for added
security.
The report does not take the possibility of a

malicious web server into consideration.

6Alternatively, timestamps or IDs can also be used to
protect against replay attacks.

7http://www.cypherpunks.ca/otr/Protocol-v2-3.1.
0.html. Accessed on the 13th of April, 2012.

5 User interface implications
Below is a discussion about di�erent ways the
above �ndings will a�ect the user interface. This
is part of our contribution. We will discuss au-
thentication, the concept of trust, and a possi-
bly obtrusive requirement for generating entropy
sources.

5.1 Authentication
XMPP supports SASL (Simple Authentication
and Security Layer), to which several authen-
tication methods are available. SCRAM-SHA-
1 (Salted Challenge Response Authentication
Mechanism) is the only authentication method
that is mandatory-to-implement in the core spec-
i�cation of XMPP (Saint-Andre, 2011). It does
not enable adversaries with access to authentica-
tion databases to extract the password and im-
personate the user (Newman et al., 2010). How-
ever, using passwords is a trade-o� between us-
ability and security; while it is well known that
users tends to choose weak passwords, forcing
users to use a more secure method (such as
authenticating using certi�cates through SASL-
EXTERNAL) would likely result in a usability
catastrophe.
Note that authentication is not required in all

cases. SASL-ANONYMOUS can be used to al-
low users to communicate without authentication.
(Furthermore, trace information may be used to
track users between browser sessions if the server
supports it (Saint-Andre, 2009), and it is found
to be appropriate.) However, seeing remembering
contacts is a �must have� feature for most mes-
saging use cases.

5.2 Establishment of trust
In order to prevent the server to impersonate both
users and perform a man-in-the-middle attack,
some kind of out-of-band authentication unfor-
tunately seems to be necessary. As mentioned
above, one option would be to have a simple
shared password that the routing server can be
assumed not to be able to guess on one attempt
(per authentication).
Another (more secure) way would be to man-

ually verify the signature �ngerprint. For exam-

6

ple, users could print their �ngerprint on business
cards or a similar item.
A third way would be to distribute �les con-

taining the signature �le or hash. Note that
HTML �le uploads cannot be used, as the server
should not be able to manipulate the signa-
ture/certi�cate. Fortunately, HTML5 provides
two �les API (Application Programming Inter-
face)s that can be used to both read (Ran-
ganathan & Sicking, 2011) and write (Uhrhane
et al., 2012) local �les.

5.3 Entropy sources
For added security around the random entropy
sources, we want to make the random byte se-
quence less predictable. Cryptocat8 requires the
user to type randomly on his or her keyboard for
a couple of seconds upon establishing a session.
Doing this may or may not be necessary for us
later. So far in our implementation, we believe
that we could unobtrusively record any mouse
movement, keyboard input (release times, input
characters), browser-settings, local time, and so
on, while the user signs in. The Fortuna RNG
algorithm (Schneier, Ferguson & Kohno, 2010) is
one way to combine these sources.

5.4 Third-party APIs
Note that no external JavaScript should be al-
lowed, as any script can override the random gen-
erator functions and make the cryptography de-
terministic and insecure. This prohibits us to use
certain third-party functionality, such as certain
APIs of semantic web applications and social net-
works.

6 The user interface
This sections describes how we applied the above
mentioned usability guidelines and security fea-
tures to our user interface. This is part of our
contribution.

8https://crypto.cat/. Accessed the 19th of May.

6.1 Home page
At the home page (the very �rst page that is
shown), new users might want to learn about the
site or create an account. Regular users signs in,
or are automatically redirected to the �inside� of
the site if their session is remembered.
Also, as mentioned above, new users will need

to be aware of the fact that their communication
will never be entirely secure. We discuss this dur-
ing both the tour as well as during the creation of
an account.
All of these actions have been made available:

For users that wants to sign in anonymously,
an accordion widget o�ers an alternative sign in
form.

Upon signing in, a new key pair and a certi�-
cate may need to be calculated. Since this may
take a while, and users often are impatient, we
provide a dialog to assure the user that the appli-
cation has not stopped working. Also, we utilize

7

asynchronous JavaScript execution not to make it
appear that the browser has crashed.

6.2 Contacts list
Looking at the contact list, there are a number of
questions the user could ask:

• Who are my contacts?

• Who are on-line?

• What contacts has been trusted?

The proposed contact list answers these questions,
and more.

It is alphabetically sorted so that the user easily
can look up a speci�c contact. We show on-line
contacts �rst, as they are most likely to be rele-
vant to the user. Initiating a chat is as straight-
forward as clicking on a contact. We show a
checkmark-like icon for secure contacts, and a an-
other warning triangle-like icon for insecure con-
tacts. Hovering over the icon will display the
necessary information, which is otherwise hidden
from view.

We do enable a context menu of contact-speci�c
actions, accessible through right-clicking. How-
ever, since not everyone has the possibility to
right-click, and since right-click may not be an ob-
vious possibility (since right-clicking in browsers
usually has a di�erent meaning), we have a gear
icon as an alternative for accessing this context
menu. As we currently mostly focus on the se-
curity features, the list of actions displayed only
o�ers to options.

Contacts can be permanent or anonymous; in
the unlikely case that the user has any anony-
mous contacts, they are shown �rst, as they are
more likely to be interacted with than your regu-
lar contacts, and because they could be missed if
they are put in the bottom.

6.3 Trust
Upon selecting �Establish trust� (or as part of the
process of adding a contact), the user is o�ered
to provide a credential to establish trust to the
contact. There are three options available. This
time, we use an accordion that is not expanded,
in order not to be biased towards one option, or
to confuse the user.
The �rst method, providing a shared secret

password, is unique in that it authorizes the users
both ways.

8

The second method allows the user to verify a
signature code (perhaps from a business card).

The third option simply allows the user to use
a local �le.

The own signature code is always present at the
top of the page.

7 Usability testing results
The usability testing was carried out with one user
at the time being shown a user interface and asked
to either �gure out what it is, or to try to use it to
perform the key tasks of the system. In total, four
people participated in the tests, which were con-
ducted over four separate sessions. We avoided
discussing the site beforehand, and only told the
users that it was an application for securely chat-
ting. We took notes during the sessions, and tried
to probe for the thoughts of the tester. We also
tried out all the tests before the usability testing
started. Finally, the test was followed up by a
semi-structured interview where the thoughts of
the interviewee on the security aspects of the ap-
plication were being discussed.
The results from the four usability testing ses-

sions follows. First o�, we discuss the general lay-
out of the page. Secondly, we discuss the testers
thoughts on the overall security concept.

7.1 Layout
The home page was generally appreciated. How-
ever, the testers reported that the �Sign in� box
was the �rst thing that they saw, being that they
look at a page from left to right (as well as top
to bottom). One tester said that removing the
border around the box would make it more dis-
tinguishable, being the main alternative for most
users. One tester would have preferred to instead
have the �Sign in� box to the right. Also, the
�What is Yabasta?�9 box was suggested to be
moved to the top by two of the testers.
The �Learn more� heading did not catch many

of the users attention, and one user suggested that
it could be more on point, like �What is Yabasta?�.
The text under the heading could be shortened,
and could prepare users for the fact that trust will
have to be established by saying something like
�Once setup with your friends, Yabasta enables
secure communication...�. Also, if the heading is
renamed, the �Take Our Tour� button could be
rephrased to �Learn more�, one tester suggested.
The option to sign in anonymously was consid-

ered visible enough across all the testers except for
one, which thought that it could be more distin-

9Yabasta is the working name of the system.

9

guishable, perhaps by using an icon or a di�erent
colour or font. The temporary alias label was not
distinguished from the rest of the text, according
to two of the four testers.
There appeared to be few problems with the

contact list. The icons (online status, checkmarks
and warning icon) was very noticeable, and the
testers, upon not understanding what the check-
mark and warning icons meant, immediately hov-
ered the mouse pointer over the icon and read
(and appreciated) the tooltip text (though the on-
line status text could have been shorter). How-
ever, some of the testers pointed out that the
warning icon could instruct the user to (left-)click
on it to read more about or con�gure the trust.
Two of the testers wanted to single-click for ini-
tiating a conversation with a contact, while two
users initially tried to double-click.
While the users considered the �Establish trust�

dialog to clearly display three options, there were
some conceptual issues (see below).

7.2 The security concept
The concept of �trust� was a little confusing to
the testers. The users suspected that it was a ne-
cessity for secure communication, but would have
preferred the term to be more on-point. The word
�identity� seemed to be key; one user suggested
labeling a trusted contact �Identity veri�ed�; an-
other user suggested �Identity con�rmed�. One
tester thought the term was confusing without
having any suggestion, and one tester thought the
term �trust� was su�cient.
The di�erence between using a shared secret

password and verifying a signature code was not
obvious to any of the users. �Is this the pass-
word I use to login?�, one of the testers asked.
Also, three of the testers could not understand
how they would know what the signature code
was, and how they could determine whether or
not it was correct.
Overall, there was a consensus that while our

three methods of establishing trust were decent,
they need more work.
One user suggested that the code, being a hex-

based hash, could be made shorter by utilizing
more letters of the alphabet.

8 Related works
To the best of our knowledge, nobody has devel-
oped a user interface or research around it for an
end-to-end secure application with requirements
like ours. However, there is two secure messaging
applications that we have taken a look at: Pidgin-
OTR and Cryptocat.
Pidgin-OTR is a plug-in for the free cross-

platform native instant messenger Pidgin. It was
usability tested by Stedman, Yoshida & Gold-
berg (2008). The study showed the importance of
users using it correctly (also mentioned in the se-
cure usability requirements of Yee (2002)). It also
showed that there is a limitation in the shared se-
cret method; some users stated that the shared
secret method was too di�cult to use, and that
it might deter users from using OTR. Establish-
ing a shared secrets also proved to be especially
di�cult for contacts that are not friends.
Cryptocat is a free and open source web ap-

plication. Cryptocat seems to have an elaborate
secure model (Kobeissi, 2012), but it does not of-
fer permanent accounts or contact lists. It also
does not o�er the extendable features of XMPP,
or have a permissive open source software license.
Jøsang et al. (2007) argues that, while some au-

thors state that theoretical security does not have
to be compromised if usability aspects are consid-
ered in the beginning of the system development
life cycle, some security building blocks are iner-
ently unsuitable for designing user friendly secu-
rity solutions. They argue that sometimes it is
necessary to invent radially new security build-
ing blocks in order to archive secure and user
friendly systems. (They also list a number of
useful security action and security conclusion us-
ability principles that can be incorporated into
a risk assessment process.) It can be argued that
our three identity veri�cation methods (password,
signature, and certi�cate �le) are simply not user
friendly enough, and that we will need to take a
step back and re-think the security of those parts
of our system.
For more formal usability testing, the Heuris-

tic Evaluation usability test method (Molich &
Nielsen, 1990) can be used. It utilizes a small set
of evaluators to examine a system and compare it
to prede�ned usability principles. Another formal
approach is the Cognitive Walkthrough method

10

(Preece et al., 1994), in which the system is an-
alyzed and basic tasks of the user is described
as (use case) scenarios. These scenarios contain
what the user knows, what goals and subgoals the
user has, and what his or her motivation is. We
considered our system to be simple enough in or-
der to motivate these methods.
A case study for usability in secure e-mail com-

munication reached the conclusion that the best
way (second to a face-to-face meet) to exchange
a signature today (not necessarily in a couple of
years) would be to do so over a phone call (Kapa-
dia, 2007).

9 Conclusions
We started of designing a user interface prototype
for private messaging web application, where our
two primary quality attributes were security and
usability. Our security model was designed to not
only cover the features that are usually implied for
secure systems, but also deniability�the impossi-
bility for anyone to prove that a user has written
any given message. (However, it should be men-
tioned that security is a very complicated subject,
and that there no such thing as a completely se-
cure system. Also, we do not take the possibility
of a malicious web server into consideration.)
There was one particular challenge: We had

problems �nding a way to easily allow users of
our systems to verify each others identities. Our
solution consisted of three di�erent methods: A
shared secret (a password that can be relatively
simple), veri�cation of a signature string (that
may be public), and usage of a certi�cate �le.
We also found that we needed a more secure en-

tropy (�randomness source�) for JavaScript, and
that remote JavaScript �le inclusion should be
prohibited in order to not allow third parties to
override the JavaScript randomness functions.
We moved on to conduct usability testing for

this prototype, in which we received valuable feed-
back. The testers were somewhat satis�ed with
our identity veri�cation methods, but more re-
search is necessary to make them even easier to
use. This is consistent with the conclusions of
a usability study of a somewhat similar system,
Pidgin-OTR.
Future research could include �nding a more

usable method for contact identi�cation, investi-
gating how encryption keys could be backed up
or moved between devices, as well as identifying a
more secure (yet user-friendly) alternative to (the
relatively weak) sign-in passwords. Another sub-
ject for further research could be the (low-level)
design an XMPP extension dealing with deniable
end-to-end communication.

References
• Barker, E., et al., 2011. Recommendation for
Key Management � Part 1. NIST Special
Publication 800-57.

• Bonneau, J., Morrison, A., 2006. Finite-
State Security Analysis of OTR Version 2.

• Delfs, H., Knebl H., 2007. Introduction to
Cryptography�Principles and Applications.
Second Edition. Springer.

• Di�e W., Hellman, M., 1977. New Direc-
tions in Cryptography. IEEE Transactions on
Information Theory.

• Gutmann, P., Grigg, I., 2005. Security Us-
ability. CryptoCorner.

• Jøsang et al., 2007. Security Usability Princi-
ples for Vulnerability Analysis and Risk As-
sessment. 23rd Annual Computer Security
Applications Conference.

• Kapadia, A., 2007. A Case (Study) For Us-
ability in Secure Email Communication. Se-
cure Systems.

• Kerckho�s, A., 1883. La Cryptographie Mili-
taire. J. des Sciences Militaries, vol. IX, Jan.
1883.

• Kobeissi, N., 2012. Cryptocat Pro-
tocol Speci�cation. Version 1.4,
07/05/2012. <https://project.
crypto.cat/documents/spec/spec-
rev1.4.pdf> [Accessed 18 April, 2012]

• Krug, S, 2000. Don't Make Me Think! A
Common Sense Approach to Web Usability.

11

• Lenstra, A., K., 2004. Key Lengths Contri-
bution to The Handbook of Information Se-
curity.

• Meyer, D., Saint-Andre, P., 2009. XTLS:
End-to-End Encryption for the Exten-
sible Messaging and Presence Protocol
(XMPP) Using Transport Layer Security
(TLS). Network Working Group. Avail-
able at: <http://tools.ietf.org/html/
draft-meyer-xmpp-e2e-encryption-02>
[Accessed 17 April, 2012]

• Miller, M., 2012. End-to-End Object Encryp-
tion for the Extensible Messaging and Pres-
ence Protocol (XMPP). Internet Engineering
Task Force. Available at <http://tools.
ietf.org/html/draft-miller-xmpp-e2e-
00> [Accessed 13 April, 2012]

• Molich, R., Nielsen, J., 1990. Improving
a Human-Computer Dialogue. Communica-
tions of the ACM, March 1990.

• Muldowney, T., 2006. XEP-0027:
Current Jabber OpenPGP Usage.
XMPP Standards Foundation.
<http://xmpp.org/extensions/xep
-0027.html> [Accessed 17 April, 2012]

• Murphy, D., 2003. Instant message
security�Analysis of Cerulean Studios' Tril-
lian Application. SANS Institute.

• Nikita, B., Goldberg, I., Brewer, S., 2004.
O�-the-Record Communication, or, Why Not
To Use PGP. WPES'04.

• Oikarinen, J., 1993. RFC 1459: Internet Re-
lay Chat Protocol. Network Working Group.
Available at: <https://tools.ietf.org/
html/rfc1459>. [Accessed 21 April, 2012]

• Ollman, G., 2004. Securing against the threat
of instant messengers. Network Security,
Vol. 2004, March 2004.

• Orman, H., Ho�man, P., 2004. RFC 3766:
Determining Strengths For Public Keys Used
For Exchanging Symmetric Keys.

• O'Sullivan, S., 2006. Instant messaging vs.
instant compromise. Network Security, Vol.
2006, Issue 7, July 2006.

• Paterson, I., Saint-Andre, P., Smith, D.,
2007. XEP-0116: Encrypted Session
Negotiation. XMPP Standards Foun-
dation. <http://xmpp.org/extensions/
xep-0116.html> [Accessed 17 April, 2012]

• Preece, J. et al., 1994. Human-Computer In-
teracction. Addison-Wesley.

• Raimondo, M., D., Gennaro, R., Krawczyk,
H., 2005. Secure O�-the-Record Messaging.
WPES'05.

• Ranganathan, A., Sicking, J., 2012. File
API � W3C Editor's Draft 7 May 2012.
<http://dev.w3.org/2006/webapi/
FileAPI/> [Accessed 14 April, 2012]

• Saint-Andre, P., 2004. End-to-End Sign-
ing and Object Encryption for the Ex-
tensible Messaging and Presence Protocol
(XMPP). The XMPP Standards Founda-
tion. Available at: <http://xmpp.org/
rfcs/rfc3923.html> [Accessed 13 April,
2012]

• Saint-Andre, P., 2009. XEP-0175: Best
Practices for Use of SASL ANONYMOUS.
XMPP Standards Foundation. <http://
xmpp.org/extensions/xep-0175.html>
[Accessed 11 May, 2012]

• Saint-Andre, P., 2010. Requirements for
End-to-End Encryption in the Extensible
Messaging and Presence Protocol (XMPP).
Internet Engineering Task Force. Available
at: <http://tools.ietf.org/id/draft-
ietf-xmpp-e2e-requirements-01.txt>
[Accessed 17 May, 2012]

• Saint-Andre, P., 2011. RFC 6120: Extensible
Messaging and Presence Protocol (XMPP):
Core. Internet Engineering Task Force.
Available at: <http://tools.ietf.org/
html/rfc6120> [Accessed 13 April, 2012]

• Schneier, B., Ferguson, N., Kohno, T., 2010.
Cryptography Engineering. 1st ed. John Wi-
ley & Sons.

• Shoup, V., 2001. A Proposal for an ISO
Standard for Public Key Encryption (version
2.1).

12

• Smart, N., 2011. ECRYPT II Yearly Report
on Algorithms and Keysizes (2010-2011).
Revision 1.0 30.

• Stedman, R., Yoshida, K., Goldberg, I., 2008.
A User Study of O�-the-Record Messaging.
Symposium On Usable Privacy and Security
(SOUPS) 2008, July 23�25, 2008.

• Uhrhane, E., et al., 2012. File API:
Writer. W3C Working Draft 17
April 2012. <http://www.w3.org/TR/
file-writer-api/> [Accessed 14 April,
2012]

• Vaus, D., A., 2001. Research design in social
research. Volume 10. SAGE.

• Verheul, E., R., Lenstra, A., K., 2000. Se-
lecting Cryptographic Key Sizes.

• Victor, B., 2000. Magic Ink � Information
Software and the Graphical Interface.

• Yee, K. P., 2002. User Interaction Design
for Secure Systems. Proc. 4th Int'l Conf.
Information and Communications Security.
Springer-Verlag.

13

	Bachelor of Science Thesis in the Programme Software Engineering & Management
	Jon Kristensen

