
 1

Mapping Reference Architecture on Third Party Mobile Devices
- a Case Study from Volvo IT

BACHELOR OF SCIENCE THESIS IN SOFTWRAE ENGINEERING AND MANAGEMENT

MARYAM SEPASI
ELNAZ SHAHMEHR

University of Gothenburg
Chalmers University of Technology
Department of Computer Science and Engineering
Göteborg, Sweden, June 2012

 2

The Author grants to Chalmers University of Technology and University of Gothenburg the non-
exclusive right to publish the Work electronically and in a non-commercial purpose make it accessible
on the Internet.
The Author warrants that he/she is the author to the Work, and warrants that the Work does not contain
text, pictures or other material that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party (for example a publisher or a
company), acknowledge the third party about this agreement. If the Author has signed a copyright
agreement with a third party regarding the Work, the Author warrants hereby that he/she has obtained
any necessary permission from this third party to let Chalmers University of Technology and University
of Gothenburg store the Work electronically and make it accessible on the Internet.

Mapping Reference Architecture on Third Party Mobile Devices
- a Case Study from Volvo IT

Maryam Sepasi
Elnaz Shahmehr

© Maryam Sepasi, June 2012
© Elnaz Shahmehr, June 2012

Examiner: Helena Holmström Olsson

University of Gothenburg
Chalmers University of Technology
Department of Computer Science and Engineering
SE-412 96 Göteborg
Sweden
Telephone + 46 (0)31-772 1000

[Cover:
an explanatory caption for the (possible) cover picture
with page reference to detailed information in this essay.]

Department of Computer Science and Engineering
Göteborg, Sweden June 2012

 3

Mapping Reference Architecture on Third Party Mobile Devices
- a Case Study from Volvo IT

Maryam Sepasi
Department of Computer Science and Engineering

IT University of Gothenburg
Gothenburg, Sweden

mary.sepasi@student.gu.se

Elnaz Shahmehr
Department of Computer Science and Engineering

IT University of Gothenburg
Gothenburg, Sweden

elnaz.shahmehr@student.gu.se

Abstract— The increasing demands on using mobile
technologies, leads to the raise of lacking the unstructured
mobile applications. Some companies have introduced
guidelines and standards within their organizations to reduce
the problems and augment the consistency between their
software applications and reusing the components in different
systems. This study presents the result of an exploratory case
study at Volvo IT Company where Android and iOS platforms
were mapped to the reference architecture. This paper
presents the results by exploring mapping between the
architectures and building a stand-alone application based on
the obtained architectures. Also this paper can be studied as a
guideline for mapping related mobile platform architecture.

Keywords- Software Architecture, Android Platform, iOS
Platform, Reference Architecture

I. INTRODUCTION
The need of using mobile technology is growing and
becomes more powerful than before. Recently, the utilization
of mobile operating systems has become extensive all over
the world (Teng & Helps, 2010). Also, mobile phones are
becoming a new popular platform for business applications.
The number of users of mobile devices is increasing daily,
and so is the need for efficient mobile data access and mobile
application technology (Natchetoi, Kaufman & Shapiro,
2008). Therefore, the request for complex software
applications in mobile device platforms has increased
dramatically (Gasimov et al., 2010). Recently, since mobile
applications are ubiquitous, many companies are adopting
mobile technologies to increase their operational efficiency
(Unhelkar & Murugesan, 2010). So, enterprise applications
have been developing in different development tracks by
many companies to improve their responsiveness and
competitiveness, capitalize on the mobile revolution, and
meet the new demands of customers (Unhelkar &
Murugesan, 2010).

Although mobile technologies and applications introduce
many new opportunities for enterprises, they also present
new challenges (Unhelkar & Murugesan, 2010). They hold
constraints such as limited power, network bandwidth,
processor speed, and memory (Malek et al., 2009).

Therefore, a traditional approach to enterprise applications
and database design is not suitable for mobile devices
(Natchetoi, Kaufman & Shapiro, 2008). Thus, making new
applications, which do not suffer from the lack of
standardization in their structures, is the new challenge for
developers. A lack of structured mobile applications
increases the cost and makes maintenance difficult.

Most companies have introduced many guidelines and
standards within their organization, which cover different
aspects of software development. For example, architectural
principles, in order to save time, reusing the components,
having more secure software, and raising the consistency
between all the software applications developed in their
system. Also, the companies cannot dictate their customers’
choice in mobile devices; they aim for developing
applications for most of the leading mobile platforms.

Research Question- In this case study, we explore the
challenges for mapping an existing reference architecture to
third party architectures, by investigating the differences
between Volvo IT’s reference architecture, Volvo Group
Target Architecture (VGTA), and the software development
kits for the Android and iOS platforms. It is significant for
Volvo IT to find out if the components of VGTA can be
reused for mobile application development. Therefore, this
research aims to find a specific software architectural pattern
for Android and iOS platforms. On the other hand, the
functionality of the Software Development Kit for Android
and iPhone is investigated and eventually the result will be
mapped to VGTA based on the Volvo Group Architectural
Principles.

This exploratory case study contributes in the following
ways:

(i) By investigating the architectural differences of these
two platforms, in order to assess the challenges of each
platform and the similarities between them, since the
applications must coexist effectively with the other
systems within the organization.

(ii) By evaluating the possibility of having reference
architecture templates for each platform. Accordingly, we
represent the generic reference architecture for Android

 4

and iOS that can be reused in designing the software
architecture of different applications.

(iii) By developing an application for each platform, to
evaluate the existence of the potential problems with the
mappings.

Overview- The rest of the report is organized with the
following sections: Section II introduces the Android and
iOS platform models, the software architecture of each
platform, and the challenges of each operating system. In
section III, the research method used in this exploratory case
study is going to be introduced. At section IV, the result will
be concluded and explanation of the obtained result will be
presented. Section V provides with discussion. Section VI,
introduced the related work of this study and section VII,
concludes the paper and presents the contribution done in
this research.

II. BACKGROUND
This section will introduce the basic information, which
required for this study such as: concept of quality attributes
and software architecture and the relevant mobile platforms.

A. Quality Attributes
Quality attributes are requirements of the system that specify
the system criteria, which apply to evaluate the functionality
of the system, and are separate from the functional
requirements (Microsoft Patterns & Practices Team, 2009a).
A good system and a bad system can be distinguished by the
quality attributes of them. Depending on the requirements,
the architect should consider quality attributes throughout the
design, implementation and deployment process (Bass,
Clements and Kazman, 2003). Quality attributes describe the
properties achieved within the system, for example, the
response time from a user request should be less than 300
ms. Functional requirements often get the most focus in the
development projects, but there are quality attributes, which
drive the architecture. As Bass, Clements and Kazman
(2003) argued, the focus on the software, which performs a
particular function, can introduce some problems later on.
For example, systems are always redesigned not because of
functional requirements, but because of difficulties in
maintaining them, extending them, being hard to use, having
poor performance, and so on. According to Bass, Clements
and Kazman (2003), there are three different categories of
quality attributes, as follows:

• System quality attributes, including runtime and
non-runtime quality attributes such as
maintainability, performance, and security.

• Business quality attributes, such as costs and
benefits.

• Architecture quality attributes, such as correctness
and conceptual integrity.

B. Software Architecture
Architecture has emerged as a crucial part of the design
process. It covers the constructions of large software systems
(Bass, Clements and Kazman, 2003). The architectural
outlook of the system is usually abstract, filtering away the
system implementation details and focusing on the behavior
and communication of the “black box” components (Bass,
Clements and Kazman, 2003). Similar to many other
constructions, the applications should be created on a solid
foundation. The rapid improvement of the technologies for
mobile applications causes design problems (Mazhelis et al.,
2005). Poor architecture increases the risk of having unstable
software, therefore it either cannot support the current and
future system requirements or it will be difficult to organize
and succeed in a production process (Microsoft Patterns &
Practices Team, 2009a). In order to design a system, three
different success criterions should be considered: user,
system, and business goals. Moreover, these metrics should
come into consideration in different areas of the software
development process (Microsoft Patterns & Practices Team,
2009a).

Nowadays, Software Architecture is developed in the first
stage of planning the software system, which composed a
collection of different desired components. There is no
commonly fixed definition of Software Architecture, but
some agreed characteristics could be observed. Two popular
definitions of architecture are as follows:

• “The software architecture of the program or
computing system is the structure or structures of the
system, which comprise software elements, the
externally visible properties of those elements, and
the relationships among them” (Bass, Clements and
Kazman, 2003).

• Kruchten (2004) refers to the Rational Unified
Process (RUP®) definition that an architecture is
“the set of significant decisions about the
organization of a software system: selection of the
structural elements and their interfaces by which a
system is composed, behavior as specified in
collaborations among those elements, composition
of these structural and behavioral elements into
larger subsystem, architectural style that guides this
organization”1.

Although the explanations are somehow dissimilar, the large
degree of similarities can also be seen, for example, both of
them specify that the behavior and the structure of the
architecture is influenced by the system environment and

1 Based on an original definition by Mary Shaw, expanded in 1995 by Grady Booch,

Kurt Bittner, Philippe Kruchten and Rich Reitman.

 5

their stakeholders (Eeles, 2006). Consequently, the structure
of the system is the most often mentioned and essential
characteristic in the definition of the software architecture.

Architecture can be served as a significant interaction, and
also reasoning, evaluation and development tool for systems.
The requirements of the system are the foundations to design
the architecture, which is the result of a set of business and
technical decisions. Although there are many influences
depending on the environment in which the architecture is
required to perform (Bass, Clements and Kazman, 2003). In
the development process, the requirements make explicit the
anticipated properties of the ultimate system, but not all of
the requirements are concerned directly with those
properties. As Clements et al. (2002) claimed, based on the
different requirements and goals of the system, the assigned
software architect determines if a component can be
considered as a part of the architecture or if it can be left
away.

C. Architectural Styles
An architectural pattern or architectural style is a set of
principles, which provides an abstract framework for
software systems (Microsoft Patterns & Practices Team,
2009a). On the other hand, a solution to a problem in a
framework is a pattern, which includes a basic principle and
construction schema that shape software systems and can
help in reusing the design by making the key solution
available for common problems. Different patterns can be
utilized between distinctive components when designing the
software systems (Buschmann et al., 1996). According to
Microsoft Patterns & Practices Team (2009a), there are
various styles of architecture, which are characterized by
their main focus area characterizes them. This study covers
two architectural patterns, which are common and applicable
for Android and iOS applications.

1) Service Oriented Architecture
Microsoft Patterns & Practices Team (2009a) mentioned that
Service-Oriented Architecture (SOA) is a set of rules and
methodology for designing and developing software, which
allows the functionality of the applications to be provided as
a set of services. These services are loosely coupled because
each of these services uses standard-based interfaces, which
has no or little knowledge of the other services. Services
make a schema available, and use a message-based
interaction across interfaces. The services are application-
scoped and not component or object-based. SOA style uses
different protocols and data formats to transfer data
information, which set the business process in the form of
interoperable services. As Microsoft Patterns & Practices
Team (2009a) claimed the SOA architecture style contains
the following important principles:

• Services are autonomous

• Services are distributable

• Services are loosely coupled

• Services share schema and contract, not class

• Compatibility is based on policy

Likewise, Microsoft Patterns & Practices Team (2009a)
argued that using the SOA architecture style result in the
following key advantages:

• Domain alignment: it means reusing the similar
services with the standard-based interfaces. Thus, it
will make better technology and as a result the cost
will be decreased.

• Abstraction: autonomous services can interact over a
formal and well-defined convention, which delivers
loose coupling and abstraction.

• Interoperability: The provider and consumer of the
service can be constructed and organized on
distinctive platforms, so they can work with each
other without any restricted access.

Therefore, the SOA style can be considered if there is a need
to reuse the appropriate services. Also, it can be used in the
applications that constitute different services with a specific
user interface.

2) MVC Architecture

According to Iulia-Maria & Ciocarlie (2011), there is a way
for disintegrating an application to three modules, which is
the Model-View-Controller (MVC) architecture. The three
modules are: the model, the view and the controller. MVC
was originally used for the graphical user interaction model
of input, processing, and output.

Model: A model demonstrates the application’s data
including the access and operation logic of the data. The
model object similarly includes any data, which is part of the
persistent form of the application. The model releases a
number of services, which should be standard and universal
in order to support different users from different sectors.

Figure 1. MVC Class Structure (Retrieved April 5, 2012, from:

http://msdn.microsoft.com/en-us/library/ff649643.aspx)

 6

Leff and Rayfield (2001) stated that the understanding of
how to control the model’s behavior should not be difficult,
by looking at the model’s public method list. The model
groups linked data and operations together in order to
provide an explicit service. These types of processes bind
and abstract the functionalities of the business processes,
which are being modeled. The model also implements
compound processes inside it by presenting different
approaches to access and bring the state of the model up to
date. The controller accesses the model services in order to
investigate or achieve a change in the model state. When a
state change happens in the model, the model informs the
view.

View: A view takes care of rendering the state of the model.
The demonstration semantics are condensed into the view.
Thus, one can apply one model data for a number of
different users. According to Leff and Rayfield (2001) the
view varies and adjusts itself when a change in the model is
joined to the view, then the view forwards the user inputs to
the controller.

Controller: Mazhelis, Markkula, and Jakobsson (2005)
mentioned that the interception and translation of user inputs
into actions are the main duties of a controller. Then, the
model handles the actions. The selection of the next view,
which is based on the user inputs, and the results of the
model operation are also in the authorities of the controller.

D. Android
Google Android platform is a new generation of the mobile
platforms, which was started by the Open Handset Alliance
consortium on November 12, 20072. It is a software package
or software stack for mobile devices, containing an operating
system, middleware and, main applications. The Software
Development Kit (SDK) of android provides the required
APIs and tools to develop applications using the Java
programming language (Shu et al., 2009). Shu et al. (2009)
mentioned that the Android platform supports a different
kind of user skills, which has improved system graphics,
media support, and a strong browser. For that reason,
Android can be considered as the open, flexible, and
adaptable system development platform. It allows reuse of
components or element’s replacement with making a
database support available.

1) Android Architecture
The architecture and the major components of the Android
platform are shown in Figure 2. As Shu et al. (2009)
mentioned, architecture contains the following different
layers:

2 [Android Software Architecture]. Retrieved April 2, 2012, from:

http://developer.android.com/guide/basics/what-is-android.html

• The red part represents the Linux kernel, which the
Android architecture is based on. Android uses the
Linux kernel as a hardware abstraction layer. The
reason that Android uses the Linux kernel is because
it provides a supported driver model. It also provides
memory management, process management, a
security model, networking, and different core
operating systems for structures, which are robust
and can be improved over time. The next level is
contained native libraries. Everything that is
illustrated in green is written in C/C++. This level
includes a lot of core powers of the Android
platform.

• The next level is Android runtime. The main
component in the Android runtime is the Dalvik
virtual machine. The Android runtime was designed
specifically for Android to meet the needs for
running the embedded environments where you have
limited battery, limited memory, or limited CPU
power.

• The next level is application framework. This is all
written in Java, and the application framework is a
toolkit that all applications can use. These
applications include the core applications that come
from the phone. Developers have full access to the
same framework APIs used by the core applications.
For example, the phone application includes
applications written by Google as well as
applications written by other developers.
Consequently, all the applications use the same
services in the same APIs.

• The final level is core applications. This is where all
the applications get written and it includes SMS
applications, calendar, and so on. Everything in this
level is again using the same framework provided by
the layers below.

2) Developing an Android Application
The first step to develop an Android application is to
decompose the application into the components that are
supported by the Android platform. As Shu et al. (2009)
argued, there are four building blocks to an Android
application. Not each application requires using all of them,
thus the developer should choose what components are
necessary for the application. These four major blocks
contain the following:

• Activity: An activity is essentially a piece of the UI
and typically corresponds to one screen (Shu et al.,
2009). For example, an e-mail application
decomposed to possibly three different major
activities: one activity that lists the e-mails, the
second activity to show the individual mail message,
and the third activity to put together an outgoing e-

 7

mail. It should be mentioned that each activity
usually has a user-interface schema, called a layout.
Developers can define the layout structure and hold
all the elements of the user interface in an XML file
to appear to user3.

• Intent Receiver: An intent receiver is a way, which
applications register some code that will not be
running until it is triggered by some external event.
Therefore, the triggered code in the application
always executes in reaction to an external event.
Consequently, the developer can write some codes
through XML and register it to be woken up and run
when something happens or even works at the
certain time, and so on.

• Service: As Shu et al. (2009) declared, service is a
task that does not have any UI. It is long lived, and
running in the background. For example, a music
player; a user may start playing music from an
activity, piece of UI, but once music is played, the
user can navigate to other parts of user experience.

3 Google. (2012). XML Layouts. Retrieved April 10, 2012, from:

http://developer.android.com/guide/topics/ui/declaring-layout.html

For that reason, the code, which is actually running
through the playlist, and playing song, would be a
service running in the background. So, the user can
connect to it later if they want to move from an
activity to another by binding to the service and
sending and getting messages like skip to the next
song, and so on.

• Content Provider: Applications keep their data in
files, SQLite database, preferences, or any other tool
that makes sense (Shu et al., 2009). It is a component
that allows developer to share data with other
processes or other applications. Any application can
store data, but if they wanted to have that data
available as part of the platform in order to let the
other applications make use of it, the content
provider is a solution for that. As Shu et al. (2009)
stated, Android was designed at the fundamental
level to encourage reusing and replacing
components.

Eclipse: Eclipse is known as an integrated development
environment (IDE) for Java. Eclipse is produced by an Open
Source community at 2001 and is used in several different

Figure 2. Android Architecture. (Retrieved April 12, 2012, from: http://developer.android.com/guide/basics/what-is-android.html).

 8

areas such as a development environment for Java or
Android applications4.

E. iPhone OS Platform
Apple iPhone OS (iOS) is the operating system created by
Apple for all their mobile devices (iPhone, iPad, and iPod
Touch)5. However, applications made for the iPad cannot be
used on the iPhone and iPod Touch. IOS is first released to
market in June 2007 (Hoog & Strzempka, 2011).

The SDK of iOS “enables you to create applications that run
on specific versions of iOS or Mac OS X including versions
different from the one you are developing on. An iOS SDK
consists of frameworks, libraries, header files, and system
tools”6. SDK of iOS contains native applications, which no
longer needs a remote server like web-based applications and
can run on an iPhone such as any built-in applications (Yan
et al., 2011).

1) iOS Architecture
As Wentk (2011) mentioned, iOS architecture is based on
MVC architectural pattern. Based on MVC style, an
application is divided into three components: a data stock
called a model, an interface called a view, and a controller
object that passes data between the model and the view.

Iulia-Maria and Ciocarlie (2011) stated that iOS MVC
suggests rather than make principles compulsory. The
proposal is that the model data should be preserved in
separate objects and possibly in separate custom classes.
However, it still looks unreasonably complex in a simple
application. Wentk (2010) cited that if your data is in a single
array, it is not necessary to take out a data object of the
appDelegate and put it into a separate wrapper object. It
might be more useful in a larger application to keep data in a
separate data-handling class. Nevertheless, the significant
feature of iOS MVC is how the data is processed and made
ready for demonstration by the controller not how the data is
stored.

2) Developing an iOS Application
To develop an iOS application developers need to use
delegation pattern, cocoa framework, and Xcode editor.

Delegation: Yan et al. (2011) mentioned delegation pattern
is implemented using protocol and is widely used in iPhone
application development. For example, the default delegate
class in all iPhone applications conforms to the

4 Eclipse Foundation. (2012). About the Eclipse Foundation. Retrieved May 5, 2012,

from: http://www.eclipse.org/org/

5 Apple Inc. (2012). IPhone. Retrieved April 22, 2012, from:

http://www.apple.com/iphone/ios/

6 Apple Inc. (2010). Cocoa Fundamental Guide. Retrieved April 2,

2012,from:https://developer.apple.com/library/mac/#documentation/Cocoa/Conceptua

l/CocoaFundamentals/WhatIsCocoa/WhatIsCocoa.html

UIApplicationDelegate protocol. This class can be
customized for application cycle events by implementing the
various methods that UIApplication will call in prescribed
order.

Cocoa: According to Wentk (2011) cocoa is a set of object-
oriented frameworks that provides a runtime environment for
applications running in Mac OS X and iOS. Cocoa is the
famous application environment for Mac OS X and the only
application environment for iOS.

Xcode: According to Piper (2009), “Xcode is Apple's
powerful integrated development environment for creating
great apps for Mac, iPhone, and iPad. Xcode includes the
instruments analysis tool, iOS Simulator, and the latest Mac
OS X and iOS SDKs”. Xcode follows a guideline put down
by Apple and it push limitation on designing the multiple
applications. As “an application can generally only access
files created by that application”, thus “an applications can
access certain other files such as address book data and
photos, but only through APIs specifically designed for that
purpose”7.

F. Volvo IT Documents
In this section, by effort to maintain the Volvo IT’s
intellectual properties, we will describe two internal
documents of Volvo IT.

1) Volvo Group Target Architecture
Volvo IT has created Volvo Group Target Architecture
(VGTA), which is a generic architecture. VGTA also has
been supported by the Volvo Group’s IT Governance. It is an
advanced architecture model including a number of
components, and connectors that funding the components
reliance. It is used as target architecture independent of
platforms. It should be mentioned that VGTA is not
following any specific architectural styles. All of the
software architects at Volvo IT who design the systems in
JavaEE or .Net deal with VGTA. By having VGTA the
system’s maintenance is easier, since this architectural
pattern is universal within a company and it put a perfect
separation between components. Thus the components can
be reused by the other systems.

VGTA Concepts:

An Application is the top-level concept defined by the
reference architecture. The concept of an application is
typically defined by components belonging together and
having the same life cycle. The lifecycle and ownership is
also what defines the border of an application.

An application in turn consists of the following components,
which serve a specific purpose:

7http://developer.apple.com/library/ios/documentation/FileManagement/Conceptual/F

ileSystemProgrammingGUide/FileSystemProgrammingGuide.pdf

 9

• Domain Components: domain components contain
the business rules and the information model
associated with a particular business domain.

• User Interface (UI) Components: UI Components
are responsible for accomplishing a user interface.
This means UI presentation and UI workflow
support functionality.

• Workflow Components: workflow components are
only to be used when a workflow, which spans over
multiple Domain/Proxy/Gateway Components,
needs to be orchestrated. In most cases the workflow
can be implemented in the UI- and Domain
Components and be left out.

• Gateway Components: gateway components expose
services provided by the application externally. It
also transforms the information model from external
to internal format. This component must not contain
business logic.

• Proxy Components: proxy components provide
external services to the application. They also
transform information model from internal to
external format. This component must not contain
business logic.

• Utility Components: utility components hold generic
functionality that may be used by all components of
the application. Utility components do not depend on
any other components of the application. Constants,
common base classes, and common exception types
may reside in this component.

2) Volvo Group Architecture Principle
Volvo Group IT Governance has established 10 architectural
principles based on quality attributes, which are more
important for Volvo IT. These principles should be wisely
applied during the design of new applications. Simplicity in
solutions and work methods, and maintainable solutions are
a number of examples of these values. In designing the

Figure 3. Volvo Reference Architecture

 10

architecture and making decisions, architects should consider
if the decision is well suited to the principles or breaks the
principles. It should be mentioned some of these principles
have contradiction therefore, based on the certain aspect of
the system; these guidelines can support the architect.

III. RESEARCH APPROACH
This section presents the case for this research, which is from
Volvo IT and provides a clear and complete picture of how
this study was done and what steps we were taking in this
study.

A. Research Setting
Two students from IT University of Gothenburg, in
collaboration with Volvo IT, carried out this case study. The
case study is “an empirical method aimed at investigating
contemporary phenomena in their context” (Runeson & Höst
2009, p.12). This research is based on the case study
methodology that focuses on the exploratory type. An
exploratory case study centers on understanding the situation
and finding out the insights within the contributors (Robson
2002).

For designing and developing software applications, Volvo
IT, industrial partner of this study, utilizes some guidelines
and criteria, for instance Volvo Group Target Architecture,
VGTA and Volvo Group Architecture Principles, VGAP that
have used for .NET and JavaEE development process. Volvo
IT develops mobile applications for different platforms and
they still want to use VGTA and VGAP in mobile platforms
as well in order to keep standardization and lead time
reduction within the company. Therefore, the focus of this
study is to come up with specific software architecture for
just two mobile platforms, Android and iOS, which
standardize the designing of mobile applications in these two
platforms. The reason that Android and iPhone platforms are
chosen is the most of the customers of Volvo IT work with
these two platforms.

The stakeholders of this research have verified all of the
outcomes of this study and they have a position as IT
architect, Android developer and iPhone developer experts at
Volvo IT.

B. Research Process
The Research process of this study was split into four phases,
which has been done in several iterations. As depicted in
Figure 4 the research process consist of 4 significant steps,
which are interviews, analysis, problems, and solutions.
These are tightly related steps that collaborate with each
other in numerous repetitions.

In the first iteration and at the early step, we studied the
documents provided to us by the responsible person at the
case study company, Volvo IT. Then, some structured and

semi-structured interview was conducted to find out the
stakeholders opinion. The next step was to discuss the
obtained data and analyze it in order to find the problems,
which was about the architectures should mapped with the
same reference architecture. Thus the problems concerned
the challenges on mapping Android and iOS platform’s
architecture to VGTA. The last step in the first iteration was
to solve the problems that were mapping the architectures. In
the other hand, at this iteration researchers tried to find out
what is going to be problematic, what is going to be
challenging or what is difficult to achieve. Authors went
beyond record and analysis and draw a preliminary
conclusion where they also gave their concern on the
particular situation or concept been addressed. Then, the
researcher came up with the solutions based on the literature
review and the related works and all the collected data and
analyzed data were applied. Literature review supported the
researchers in finding main resources in mobile devices,
software architecture of mobile devices. It also assisted the
authors to disclose the constraints of the architecture of the
mobile applications, which should be reflected to the
research.

Accordingly, the second set of iteration was conducted;
therefore the second set of interviews was conducted to see
how does the solutions fit or what the stakeholders think
about the solutions. At that point, the researchers came up to
develop the applications for the mobile platforms. The
application’s requirements were the main problem at this
stage. Then by developing the applications, the problems
solved. Following that we verified them by having the third
interviews. Consequently, the iteration is terminated due to
the time limitation and getting solutions. Eventually, the
stakeholders assess the outcome of this research study. If the
stakeholders recommend any improvement that are out of the
scope of the research study, it could be consider as a future
work of this research.

Figure 4. Research Process

 11

C. Data Collection
The collected data was mainly gathered from structured and
semi-structured interviews. First, we came up with the
relevant questions and then divided into different groups
according to the roles of interviewee to be interviewed. The
first set of interviews was used to come up with the core of
the concept and architecture, the second group to evaluate
the mapped architectures and add more required thing. As a
result, the second set of interviews was conducted where
interviewees evaluate the architectures of two mobile
platforms. The third set of the interviews was presented to
see how the applications reflect the architecture and the
evaluation of the implementation part.

It should be mentioned that some of these interviews were
recorded and saved in audio files to be analyzed further. At
the same time the researchers took notes in shared files.

D. Data Analysis Process
As Runeson & Höst (2009) pointed out because the case
study research method is a flexible methodology, therefore
the qualitative data analysis is generally used for this
method. Keeping a clear sequence of the evidence while
obtaining the outcome is the main purpose of this analysis.
As Runeson and Höst (2009) argued, having analyzing data
and the data collection in parallel keeps a clear chain of
evidence and there is required to apply systematic analysis
techniques. Hence in this study, the analysis carried out with
the data collection because the approach of this research is
flexible and new vision may is found within the data
analysis. Collecting the new data and updating the interview
questions can investigate these new vision and insights. The
data analysis followed a format. The format consisted of
three parts: (i) Share notes and recording, (ii) Analysis, and
(iii) Summarize. Here are definitions the various parts of the
data analysis done:

(i) Share notes and recording: The person who
interviewed the interviewee ensured that an appropriate
interpretation of the recorded interview was collected.

(ii) Analysis: After sharing the data an interpretation of
the data into a meaningful content, which is then related
to the objective of the project. This is rather not the same
thing as record since we draw connection between ideas
gathered from the interactive sections.

(iii) Summarize: Authors went beyond record and
analysis and draw a preliminary conclusion where we
also gave our concern on the particular situation or
concept been addressed.

Since there were two persons carrying out the data collection
at the same time, and anticipating the need to carry out a
comparative analysis, it is important that the interpretive data
follow a common format. After collecting the data, an
interpretation of the data into a meaningful content, which is

then related to the objective of the project, has been done.
We draw connection between ideas gathered from the
interactive section.

E. Proof of concept application
Part Order System (POS) is an example application within
Volvo IT Company that the software architect deals with to
check the validity of their designed architectures. POS
application is not a system to go to the production phase. It
has been used to prove the correctness of the upcoming
architectures for JavaEE and .Net platforms. Therefore we
developed POS application to validate the suggestion
architecture in Android and iOS platforms.

In comparison with VGTA, POS included domain, which is
contained part and order entities with a database of different
parts and orders. It also contained graphical user interface
with process component for ordering to present to the users.

F. Limitation
One of the limitations in this research was that there were not
any related works regarding the mapping architectures in the
academic databases for example Google scholar8 and IEEE
Xplore9. In order to accomplish an organized searching
process, appropriate keywords were selected such as
mapping reference architecture, mapping based on reference
architecture, mapping mobile software architecture. There
were not any related works, maybe because it is proprietary
and no companies want to show their reference architectures
in public. In a strategy to minimize this limitation, we had to
interview different expert architects from Volvo IT staff as
well as IT university of Gothenburg and got some details
about architectural components in different architecture.

Another limitation to this study is that we could not work on
an application, which communicate with different
applications. As mentioned in section II.E.2, iOS guidelines
tool pushes limitations and do not allow the developers to
build mobile applications, which interconnect with each
other.

In addition, due to the research limitation of this study, we
just introduced two quality attributes, maintainability and
loose coupling among both of mapping architectures and
narrowed them down to a two choices, which is one of the
limitations of this study.

IV. SOLUTIONS
As shown in Figure 5, stage (i) consists of interviewees who
are experts on the software architecture. This step contains
the interview process, data collected from the interviews, and

8 http://scholar.google.com/

9 http://ieeexplore.ieee.org/Xplore/home.jsp?tag=1

 12

the construction of mapping the architectures, which is the
primary objective of this study. The suggested reference
architecture is affected by the both VGTA and VGAP. As
mentioned in section II.F.2, the VGAP is a set of quality
attributes principles that influence the building design
process in the final architecture. In this study, not all of these
principles are addressed, since some of them are not
specified in the system requirements and also are not
important for the stakeholders of this research. Eventually,
the recommended architectures were proven and validated by
the interviewees from Volvo IT. Step (ii) presented the
relation of the suggested architectures with the developed
application. In this step by considering the VGAP and the
requirements of the system that were given by stakeholders,
the implementations of the POS applications have been done.
Therefore step (ii) is tightly related to the proposed
architecture in step (i) and the final application corresponds
to VGTA as well. The corresponding stakeholders who are
experts in each platform prove the effectiveness of each
application.

In this section the templates that present generic reference
architectures are discussed. The authors believe that these
templates can help the developers to develop the proper
applications based on the templates. As depicted in Figures 6
and 7, these guidelines consist of several components and
each of them represents the different groups of functionality.
The architectures are defined by following the Android and
iOS architectural models in VGTA to satisfy the need of the
standardization design for various mobile applications within
a company. Each expressed component in the architecture
framework has its own particular transformation rules related
to each mobile platform.

By building the applications, the authors achieved the
confirmation of the right structure of the suggested
architectures. The stakeholders of this study did the ultimate
verification of this work. We developed a Part Order System
(POS) mobile application in each platform to validate the
related architecture. The detailed information of the
application requirements cannot be shared by considering the
restriction of sharing the belongings of the Volvo Company.

A. Android and VGTA
As presented in Figure 6, the building blocks of the Android
application architecture are compared to VGTA components.
Both architectures are similar to each other in some parts,
since each of them consists of several components and
relations between them. As mentioned in section II.D,
Android SDK components interact with one or more
components through the services that are published by the
other components. Integration between components should
be done in an organized way, where the types of the
components and hierarchal aspects must be considered. In
general Android architecture follows SOA architectural
pattern, but since the stand-alone application framework is
structured similar to the common Model-View-Controller
architectural style. By presenting the similarities between the
VGTA and Android architecture, we supply the rationale
behind the mapping of these architectures.

As described in section II.C.2, the model module represents
the application’s data, the link’s data, and also operations
between them in order to provide an explicit service. Similar
to this, the model in the Android application is also data or
data storage. It can act like a local database in a device. In
addition, as stated in section II.F.1 domain components in
VGTA cover information model and rules related to that
model. Therefore, the model module in the Android
architecture should basically be the full domain components
in VGTA and it will help make the domain model stronger,
since it will decrease the need of using the different
processes to deal with different objects. For example, in the
POS application if the user wants to review the items in the
cart, they can click on the “Edit cart” button and it triggers
an event in the application. The application gets the
appropriate data from the database and creates the required
data to be sent back to the user.

According to definition of the view module in section II.C.2,
it detects the state and accomplishes the demonstration of the
information in the screen. Similarly the view module in
Android, called layouts, is the part of the application
responsible for rendering the screen and GUI. This contains
the UI components and handles events for them. For
example, the view module in the POS application might
contain a component that indicates the list of user orders.
User can interact with this layer and this layer activates
actions that in turn are sent to the application functions.
Based on the MVC style the controller is part of the
application that reacts to external events. Likewise, based on
the activities explanation in section II.D.2, activities cover
the functionalities of the corresponding screens and take care
of the logic that should be accomplished. In addition,
activities prepare model that requires to be shown to view
module.

There were a couple of challenges to come up with mapping
the View and Controller modules to the User Interface (UI)
module in VGTA. It all comes down to how we perceive

Figure 5. Building Construction

 13

Android activity class. Is it a controller or is it a view? As
mentioned before, the actual activity class does not extend
Android’s View class, but it handles displaying a window to
the user and also handles the events of that window.
Therefore, by using this mapping, the controller will actually
be a view controller. Since it is controlling and displaying
the window to the user with additional view components that
developers can add to it, and it also controls events for
several activity life cycle events. Because of this we have
found that this mapping is a perfect fit to VGTA. By
decoupling the model from the view and controller, we could
support separate lifecycles between domain components and
the UI. Therefore we could fulfill the loose coupling and
increase the maintainability quality attributes.

B. File structure in Android
implementation

Based on the suggested architecture and the requirements of
the POS application, we have built an application for the
Android platform. This construction represents the

components of the suggested architecture for Android within
the Android application anatomy boundary.

As mentioned in chapter II.D, Android SDK includes the
main classes which developers should to manage while
developing the applications. The POS application follows the
mapped architecture and the architecture enables a clear
division of the GUI part development from the development
of the business logic (model) and distinguishes them.
Building nice GUI needs different abilities than the
developers have. Consequently, this suggested architecture is
more suitable for GUI designers. Obviously, it would be
better if a graphical designer design a GUI and a developer
writes code and the logic behind the interface. But, the
suggested architecture for Android overcomes this
contradiction by clearly separating responsibilities. Since
two persons worked on the application, so they could
separate the GUI and logic part and work in separate area.

The POS application consists of the different folders and
packages. As depicted in Figure 8, the most important
folders in developing the Android application are the src and
res folder and developers just deal with these two folders.

Figure 6. Android and VGTA

 14

As it shown in Figure 7, the authors considered the Android
applications in two sections, Codes and Res. All off the text,
pictures, and sound are broken out of the code in to the
resource folder that is referenced in to the class Res. The
packages consist of different classes. The Eclipse plug-in
editor is used for developing the POS application for The
Android platform. Since the POS application follows the
mapped architecture, so some of the packages depend on
each other, but each one exists on its own entities and
performances a specific role. Each one is a unique building
block, which helps the behavior of the entire application.
Based on the mapped architecture, these different types of
packages serve a distinct purpose and have a different
lifecycle, which defines how theirs components is created
and destroyed. The main challenges to follow the

architecture was that in Eclipse Editor, developers cannot
make the custom design for packaging codes and the entire
written code packages place in the src folder. But, as
mentioned above Android provides an alternative UI
construction model: XML-based layout files which can be
placed in the UIComponents section in the VGTA. As
depicted in the Figure 8, the layout folder includes the entire
GUI in XML files that it enables to better separate the
presentation of the application from the codes, which control
the behavior. So, it meets the loose-coupling requirements
and simplifies maintainability. As mentioned before, the
activity classes in Android handled displaying the windows
to the user and the logic behind the interface. As depicted in
Figure 8, all of the activity classes placed in the UI package.
As adapter objects acts as a bridge between the UI and the
domains, and provide access to the data, they act like a
database manager in VGTA and are therefore placed in the
domain component.

As depicted in Figure 8, we have not mapped anything to
workflow, since we do not have an example of an application
where there is a need to utilize the workflow. As mentioned
in section II.F.1, there is no need to have a workflow until
there is more than one domain component.

By following the suggested structure, a change from
requirements will not affect complete source codes.
Consequently, the suggested framework is proved and
verified with the POS application.

Figure 8. Android implementation Design

Figure 7. Android Build Design

 15

C. iOS and VGTA
Figure 9 depicted how MVC architecture in the iOS platform
is mapped with VGTA. The main quality attributes, which
are considered for this mapping, are the same as the
introduced quality attributes for Android platform. Since
maintainability and loose coupling are the important quality
attributes for Volvo reference architecture.

As mentioned in section II.E.1, in iOS architecture the view
module displays data from the application’s model and the
UIView component is the parent class for display objects on
the iOS. Furthermore, as section II.F.1 shows, UI
components in VGTA reference architecture are responsible
for user interface demonstration. Therefore the UIView
component acts like the UI component in VGTA. For
example, View component in POS application contains a
table with the list of parts. Then the part can be shown to the
user. Accordingly, like a UI Process Component in VGTA, a
UIViewController does not have a GUI; it simply
coordinates the display of a UIView. Thus the actual pictures
are going to need to be done in a UIView. In addition, the
UIView is responsible for recognizing touches, gestures, and
so on. That is where it ends though; the actual reaction of the
program should be up to the UIViewController. Moreover, in
section II.F.1, VGTA presents the UIProcess, which supports
the functionality of components. Therefore these similarities

supply the rationale behind the mapping of these
architectures.

The model module in MVC architecture in iOS demonstrates
the application’s data including the access and operation
logic of the data. As argued before, the VGTA domain
contains the business rules and the information model as
well, so we mapped the model module into the iOS
architecture that encapsulates the specific data into an
application. It also defines the logic and computation that
manipulate and process the data with the model presented in
VGTA. For example, there are parts and order entities in the
POS application and each of them have different attributes
like ID, price, and store.

It should be considered that the direction of these delegations
is very important, because we wanted to be able to notify the
controller about this delegation mechanism. For example, if
some changes happen in the domain it can notify the
controller that there has been a change and in the other
direction when something changes in user interface we want
to notify the controller that something has changed, so the
controller is in the center and communicates in both
directions. As depicted in Figure 9, the direction of the user
action is down to the controller then the controller sends the
update request to the Model.

Figure 9. iOS and VGTA

 16

D. File structure for iOS implementation
Figure 10 depicts the structure of POS application
implementation in iOS platform based on VGTA. This
construct also presents how similar the structure of VGTA
and iOS reference architectures is.

As mentioned in chapter II.E.2, an Xcode developer tool
provides everything that a developer requires to create
application. Xcode is tightly integrated with CoCoa
framework; therefore we used this environment to develop
the POS application. Since this tool is flexible in a way of
packaging the codes, it helped us to organize the packages
based on their design schema. So we had no limitation to
accomplish what we wanted to build. Therefore developers
could have domain modules with all the entities, UI package,
Proxy, and supporting files. These supporting files include
the appDelegate that is described before. We attempted to
consider appDelegate to be outside the VGTA because it is
mainly class structure that Apple is promoting it to set up the
application’s structures in a good way and the case study
company wanted to use the code in the other application and
follow their own structure. But we should choose the
appDelegate because it is the way to drive the framework,

since the appDelegate only helped us to achieve the Apple
feature around the suggested framework. As depicted in the
Figure 9, the views and the view controllers extend from
appDelegate, PartManager, and corresponding entities.
Therefore the appDelegate is one way to transfer the data
from domain to view controller.

As we did not worry about the workflow in the implantation
Android application, we do not have an example on the iOS
side where we actually need to use the workflow as well.

 As depicted in Figure 10, the header file .h is where to
declare different parts of your program. In this file, you will
only declare the functions and global variables and .m
(implementation file), which take care of the implementation
part of all methods that are declared in the .h file of the
program.

As mentioned in section II.E, iOS SDK is designed based on
MVC design pattern. Thus, all the views always exist with a
view controller object. Although the developer can mix the
data model with MVC roles, the best way is to keep the
division between roles. These separations increase the loose
coupling of the objects and maintainability of the system.

Figure 10. iOS Build Design

 17

V. REFLECTION
This study set out to explore the challenges of mapping the
existing reference architecture to the Android and iOS
application architectures, to increase the consistency among
distinctive applications. In this section, based on the author
experience, some differences were found between the iOS
and Android platforms will be described. While there are a
lot of similarities between foundamental parts of Apple iOS
and Android OS applications, there is a striking difference
between architectural decisions on the application
infrastructure layer made by the researchers of both OSs.
Apple utilized Objective-C as a programming language and a
runtime for iOS applications. Android applications are
strikingly different in this aspect: they are written in Java,
which is very different programming language than
Objective-C. During the research, it was found that Apple
tends to do every thing in their own special “Apple” way.
The main problem that Android OS architects have to deal
with is that Google does not control the hardware
manufacture. Apple does not have this problem as iOS only
runs on Apple-built hardware and they are in a complete
control of it.

We gave a rationale concerning service-oriented approach
for having different applications on both Android and iOS
platforms. We obtained some key challenges of having
several applications. As mentioned before, and as La and
Kim (2010) argued, since mobile applications implemented
on the mobile devices and the mobile devices themselves
have limitations on their resources, mobile applications have
inherited limitations and features, which do not appear in
conventional software applications. By considering the
Android OS and iOS features and the building blocks of
them, we derived a conclusion that Android applications can
communicate with each other with a service-oriented
approach to develop mobile applications. As stated in section
II.C.1, SOA allows the functionality of the applications to
provide services to interact with each other. Also, as
mentioned in section II.D.2, Content Provider in Android
applications allows the applications to share data and connect
to the other applications. By considering this feature,
common and reusable functionalities can be modeled as a
service and can be deployed by the content provider to the
other applications. Therefore developing the complex and
large applications is simpler on the Android platform.
Whereas, iOS platform acts differently and reflects the
different levels of openness of each application. iOS runs all
applications as the same user and limits the interaction
between applications. The iOS applications follow the MVC
architectures and MVC architecture allows applications to
interact with each other, but the developing tool, Xcode does
not permit this freedom. It means that developers are not
allowed to extend or modify the applications (Anvaari,
2010).

Based on section II.F.1, transforming data to the external
services outside the application is done through the Proxy
and Gateway components. As the scope of this study is
limited to stand-alone applications, there is no need to
consider Proxy and Gateway components in mapping the
architectures and building the applications and it can be
considered as a continuation of this work.

VI. RELATED WORK
To the best of our knowledge there is no related work on this
topic. But in relation to the investigation of generic reference
architectures, Torkabadi (2011) studied the feasibility of
generic reference architecture for mobile devices by mapping
reference models and architectural patterns. She investigated
architectural artifacts, which are used at Volvo IT in different
development tracks in order to find out the generic reference
architecture templates for all mobile platforms. Her
investigation discloses that it is not feasible to build a generic
reference architecture that outfits all mobile applications’
requirements. Thus, she exemplified four different mobile
application scenarios and analyzed how to construct
reference architecture for each of them.

Also, Autosar can be seen as one initiative to overcome the
difficulties concerning diverging architectures. Within the
automotive industry there are a lot of developers and
subcontractors who share hardware. By having a common
standard for the interfaces between different components, it
is possible to ignore the different underlying architectures,
since they are hidden behind the interfaces. Thus it means
that a component can be replaced by another as long as they
fulfill the same interface. Therefore, Autosar tried to hide
differences between the architectures that agreed upon
interface. The main difference is that they share the interface
but VGTA does not share its interface with Android and
Android does not share its interface with iOS, and there is no
communication between these different arichtectures in our
case. Therefore, there is a big difference between how it is
done in Autosar and this research.

VII. CONCLUSION
This study set out to investigate the challenges of mapping
Volvo IT’s reference architecture, Volvo Group Target
Architecture (VGTA), to the third party architectures,
software development kits for the Android and iOS
platforms.

To respond to the research question by investigating the
related information and by studying the components of each
architecture and the design process of them, we have found
the architectural differences of Android and iPhone
platforms and assessed the challenges of each platform and
the similarities between them. So based on the similarities
and the logic, explained in section IV, we mapped the

 18

Android and iOS architectures to the existing reference
architecture. Subsequently, based on the mapped
architecture, an application for each platform was developed
to evaluate the existence of the potential problems with the
reference architectures.

By means of interviews, we obtained the company’s point of
view on how their system works, information from the
literature review, and the outcomes from interviews, which
were connected together based on the evaluation of the result
and interviewee comments. In addition, we clarified a
connection between the background and characteristics
expected from each platform. For example, as mentioned in
section II, we explained the components of the VGTA and
how it is used within Volvo IT Company and in section IV,
Android and iOS components compare to the VGTA
components to get the better output.

We have focused on effective development of application
processes by using the reference architecture at Volvo IT.
The ability to save time, reusing the components and
domains in different systems, and raising the consistency
between all the software applications developed in
production implies that our findings are likely important to
developers and architects who are involved in building an
applications, because our mapping is based on VGTA. Also,
as mentioned in section II.F.1, it enables applications with
reusing domains in various applications. By implementing
the POS application we have found the benefit of using the
reference architecture can be maintained while developing
applications for third parties.

In terms of future research, we suggest a deeper investigation
on the other quality attributes and research how they can
fulfill all the architectural principles of Volvo IT. It may also
be interesting to research the possibility of multiple
applications in each platform, and investigate the challenges
of communication between them. In addition, it would be
perfect to consider other mobile platforms, such as
Windows, Blackberry, and Symbian to find out the
differences of them compared to Android and iOS, and also
study challenges of mapping them to the reference
architecture. Moreover, other companies that have similar
architectural products to the involved reference architecture
in this study can adjust their existing reference architecture
with the result of this research.

ACKNOWLEDGEMENT
The authors would especially like to thank Micael Andersson
and Håkan Burden for their constants supervision, advice,
and feedback; Per-Anton Westbom, Stephen White and
Samaneh Tork Abadi at Volvo IT for their excellent
contribution to this research; Jason Brim for his valuable
time and technical support; and also Helena Holmström
Olsson, Carl Magnus Olsson, and Lars Pareto at IT
University of Gothenburg. Finally many thanks to Solmaz

Shahmehr, Asrin Javaheri and Mahdi Saadati for their very
kind support throughout this study.

REFERENCES:
Anvaari, M. (2010). Architectural Support for Openness in Mobile

Software Platforms, Master’s thesis, University of Gothenburg,
Gothenburg, Sweden.

Bass, L., Clements, P. & Kazman, R. (2003). Software
Architecture in Practice (2nd ed.). Boston, MA, USA:
Addison-Wesley.

Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P. & Stal,
M. (1996). Pattern- Oriented Software Architecture, Volume 1,
A System of Patterns. Chichester, UK: Wiley.

Clements, P., Bachmann, F., Bass, L., Garlan, D., Ivers, J., Little,
R., Nord, R., & Stafford, J. (2002). Documenting Software
Architectures: Views and Beyond. Boston, MA, USA:Addison-
Wesley.

Eeles, P. (2006). Characteristics of a software architect. The
Rational Edge, IBM Resource.

Gasimov, A., Tan, C. H., Phang, C. W., & Sutanto, J. (2010).
Visiting Mobile Application Development: What, How and
Where. Mobile Business and Global Mobility Roundtable
(ICMB-GMR) (pp. 74- 81). Athens, Greece: IEEE.

Hoog, A., & Strzempka, K. (2011). IPhone and IOS Forensics:
Investigation, Analysis and Mobile Security for Apple IPhone,
IPad and IOS Devices. Elsevier.

Iulia-Maria, T., & Ciocarlie, H. (2011). Best practices in iPhone
programming: Model-view-controller architecture #x2014;
Carousel component development. EUROCON - International
Conference on Computer as a Tool (EUROCON), 2011 IEEE
(pp. 1 –4). doi:10.1109/EUROCON.2011.5929308

La, H. J., & Kim, S. D. (2010). Balanced MVC Architecture for
Developing Service-Based Mobile Applications. e-Business
Engineering (ICEBE), 2010 IEEE 7th International
Conference on (pp. 292 –299). doi:10.1109/ICEBE.2010.70

Leff, A., & Rayfield, J. T. (2001). Web-application development
using the Model/View/Controller design pattern. Enterprise
Distributed Object Computing Conference, 2001. EDOC ’01.
Proceedings. Fifth IEEE International (pp. 118 –127).
doi:10.1109/EDOC.2001.950428

Mazhelis, O., Markkula, J., & Jakobsson, M. (2005). Specifying
Patterns for Mobile Application Domain Using General
Architectural Components. In Bomarius, F., & Komi- Sirvi, S.
(Eds.), Proceedings of the 6th International Conference on
Product Focused Software Process Improvement (Profes2005),
LNCS 3547, (pp. 157-172). Berlin, Germany: Springer-Verlag.

Malek, S., Edwards, G., Brun, Y., Ta- jalli, H., Garcia, J., Krka, I.,
Medvidovic, N., Mikic- Rakic, M., & Sukhatme, G.S. (2009).
An Architecture- Driven Software Mobility Framework.
Journal of Systems and Software, 83(6), 972-989.

 19

Microsoft Patterns & Practices Team (2009a). Microsoft R
Application Architecture Guide (2nd ed.). n.p., USA:Microsoft
Press.

Natchetoi, Y., Kaufman, V., & Shapiro, A. (2008). Service-
Oriented Architecture for Mobile Applications. Proceedings of
the 1st international workshop on Software architectures and
mobility/ International Conference on Software Engineering
(pp. 27-32). Leipzig, Germany: ACM.

Kruchten, P (2004). Anontology of architectural design decisions
in software intensive systems. In 2nd Groningen Workshop on
Software Variability, (pp. 54–61)

Robson C (2002) Real World Research. Blackwell, (2nd edition)

Runeson, P., & Höst, M. (2009). Guidelines for conducting and
reporting case study research in software engineering.
Empirical Software Engineering, 14(2), 131---­‐‑164.

Shu, X., Du, Z., & Chen, R. (2009). Research on Mobile Location
Service Design Based on Android. Wireless Communications,
Networking and Mobile Computing, 2009. WiCom ’09. 5th
International Conference on (pp. 1 –4).
doi:10.1109/WICOM.2009.5302615

Torkabadi S. (2011). Towards a Generic Reference Architecture
for Mobile Applications, Bachelor's thesis for bachelor's
degree, University of Gothenburg, Chalmers University of
Technology, Gothenburg, Sweden.

Teng, Ch., & Helps, R. (2010). Mobile Application Development:
Essential New Directions for IT. Information Technology:
New Generations (ITNG) (pp. 471-475). Las Vegas, NV:
IEEE.

Unhelkar, B., & Murugesan, S. (2010). The Enterprise Mobile
Applications De- velopment Framework. IT Professional, IEEE
Computer Society, 12(3), 33-39.

Wentk, R. (2010). Cocoa. John Wiley & Sons.

Wentk, R. (2011). Xcode 4. John Wiley & Sons.

Yan, B., Becker, D., & Hecker, C. (2011). An effective way of
introducing iPhone application development to undergraduate
students. J. Comput. Sci. Coll., 26(5), 166–173

