

Authentication and Authorization for Mobile Devices

Bachelor of Science Thesis in Software Engineering and Management

NAVID RANJBAR
MAHDI ABDINEJADI

2

The Author grants to Chalmers University of Technology and University of Gothenburg the non-exclusive right to publish
the Work electronically and in a non-commercial purpose make it accessible on the Internet.
The Author warrants that he/she is the author to the Work, and warrants that the Work does not contain text, pictures or other
material that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party (for example a publisher or a company),
acknowledge the third party about this agreement. If the Author has signed a copyright agreement with a third party regarding
the Work, the Author warrants hereby that he/she has obtained any necessary permission from this third party to let Chalmers
University of Technology and University of Gothenburg store the Work electronically and make it accessible on the Internet.

Authentication and Authorization for Mobile Devices

NAVID RANJBAR
MAHDI ABDINEJADI

© NAVID RANJBAR, June 2012.
© MAHDI ABDINEJADI, June 2012.

Examiner: HELENA HOLMSTRÖM OLSSON

University of Gothenburg
Chalmers University of Technology
Department of Computer Science and Engineering
SE-412 96 Göteborg
Sweden
Telephone + 46 (0)31-772 1000

Department of Computer Science and Engineering
Göteborg, Sweden June 2012

3

Authentication and Authorization for Mobile Devices

Navid Ranjbar
Department of Computer Science and Engineering

University of Gothenburg
Gothenburg, Sweden
navid@student.gu.se

Mahdi Abdinejadi
Department of Computer Science and Engineering

University of Gothenburg
Gothenburg, Sweden
m.abdi@student.gu.se

Abstract— Nowadays market demand forces companies to
adapt to mobile technology. For an enterprise company, this
change will bring up security challenges. In this article, we
investigate authentication and authorization aspects of
security. We conduct a case study in Volvo IT in order to
extract their requirements regarding to authentication and
authorization of their current and future mobile applications.
Also we investigate three security protocols: OAuth, OpenID
and SAML to find out to what extent they can satisfy the
challenges and requirements.

Keywords-component; Authentication; Authorization;
Mobility; Mobile Devices; OAuth; OpenID; SAML.

I. INTRODUCTION
Mobile technologies are enabling new form of customers

and business applications (Teng & Helps, 2010). Mobile
businesses on the other hand are boosting enterprise by
providing the easy access to the services for third party
business partners, consultants and customers (Fitzgerald,
2009). Enterprises are adopting mobile technology and
providing to market various applications to increase their
functioning competence by offering customers and
employees greater access to the real-time information
(Unhelkar & Murugesan, 2010).

With advancement of mobile technology, new form of

customers and applications emerged which produces new
challenges for companies. The challenges mainly caused by
integrating to mobile services; in order to get adapted to
mobile advancement, companies should expand the
boundary of their internal services through Internet. This
change will enable mobile devices to get access to services,
which are usually available inside the company through
native mobile applications.

One of the main concerns with mobile technology and

mobile devices is how enterprise companies should deal with
the challenges of security. User experience in mobile devices
could be completely different than what enterprise used to
deal internally. Also enterprise companies are constantly
dealing with the trade-off between making their application
easier to use and making them more secure.

Volvo is one of the companies that are in the process of

coping with the mentioned challenges. They are looking on
different security aspect like authorization and authentication
of mobile users to their backend systems. Thus they want to
investigate different protocols in industry that handle these
challenges. In this article we are going to research three
protocols, which can be implemented for mobile security in
enterprise environments. OAuth is an authorization protocol,
which is in its nature considering mobile client and
application as well as web application and platforms. Also
OpenID is a web based authentication protocol that enables
users to get authenticated through third party identity
providers as well as in-house identity providers. SAML is
another protocol, which deals with the transforming
authentication and authorization information between
security domains. We are mainly trying to answer the
question of: How OAuth, OpenID, and SAML can help
mobile devices in getting secure access to resources and
services from Volvo backend servers?

The remainder of this report is structured as follows: in

section II, we are going to describe what are OAuth,
OpenID, and SAML? How do they work? Section III is
mainly about the research method we used to address the
problems of our case study and which steps we took to
gather our data. Section IV is the place that we present our
analyzed data that we collected during the research period. In
section V we map Volvo requirements with the capabilities
of OAuth, OpenID and SAML and try to figure out in what
extent these protocols can satisfy the requirements of Volvo.
Finally, we are going to conclude and discuss about possible
future works at section VI.

In this article we are going to address only OAuth 2.0,

OpenID 2.0 and SAML 2.0.

II. KNOWLEDGE BASE
Information considered as an asset for individuals and

organizations; so, they try to protect their information assets
from any posing threat (Todorov, 2007). Security methods
help to protect the information. Authentication and

4

authorization are aspects of security and we mainly focus on
them in this article.

A. Authentication
Authentication is the process of proving who really you

are. It often happens at first step of interaction between user
and operating system or any services. Todorov (2007)
mentioned that authentication usually refers to determining
and validating user’s identity. This process should occur
based on one or combination of the three sorts of credentials:
something you have, something you are, something you
know (Windley, 2005). For example, ID and password
combination is something that only an individual knows or
certificate is something that an individual have. The most
common authentication function is ID and password.
Windley (2005) defined strong authentication is an
authentication method that required two or more credentials
like ID/password combination plus certificate.

B. Authorization
“Authorization is the process of determining whether an

already identified and authenticated user is allowed to access
information resources in a specific way.” (Todorov, 2007)

By authorization systems determine the level of access

and right of a user to certain resources or services.
Authorization comes after authentication as a result
authentication is fundamental for authorization; the reason
behind that is user should be proved who is she then system
should assign her right and control access. This chain of
event always happens sequentially unless user’s identity is
not important like public services (Windley, 2005).

User can be authenticated by a specific identity; also she

can apply for authorization under another identity. Such a
request for authorization under another identity to access a
service typically refers as Authentication Identity; and if this
process happens by an application or service acting on behalf
of the user, it called Impersonation. Impersonation can be
permanent or temporary. Impersonation is suitable for
client/server in the way that servers or applications can
access resources on behalf of users. Impersonation also allow
limited access to another user’s services or resources when a
user, application, or service acting on behalf of another user
(Todorov, 2007). Also, Boyd (2012) defined delegated
authorization as transferring access to another user,
application, or service, so that acting user, application, or
service can perform tasks on behalf of the user.

ACCESS CONTROL
“It is important to understand that access control is not a

complete solution for securing a system”
(Sandhu & Samarati, 1994)

It is a process that gives a user, application, or service

defined access right while denying others access (Windley,
2005). In other words, access control limits what a user is
able to do, as well as service or application executing on
behalf of her; so, it would prevent any execution, which end

up with security breach in some degree (Sandhu & Samarati,
1994).

C. OAuth
This section we define common terms and actors in

OAuth authorization protocol as well as brief description of
important OAuth flows of work.

1) What is OAuth

OAuth is an open protocol to allow secure API
authorization in a simple and standard method from desktop,
web and mobile applications. OAuth allows a user to grant
access to an application to perform on behalf of user; this
application can only perform the authorized tasks.

a) Access Token
Access token is a credential that used to access services

or resources; it is a string representation of access allowance
to the resources, which is generated by the grant of resource
owner from the authorization server (Recordon et al., 2012).

b) OAuth Roles
There are several key actors according to (Boyd, 2012) in

the OAuth as follows:
• Resource server: The server, which is hosting user’s

data, which is protected by OAuth.
• Resource owner: The owner of data, in other words

the user of the application.
• Client: The application which makes API request to

get protected resources on behalf of the resource
owner.

• Authorization server: This server gets permission
from resource owner and issues access token to
client for accessing protected resources available on
the resource server.

It is necessary that to register applications with the
authorization servers since API requests need to be properly
identified. The protocol allow this process by the automated
means but most of API providers request manual registration
through filling out a form on their developers website.

After the registrations get completed, identification

provider issues the credentials to the developer. These
credential are: Client ID and Client Secret, which are needed
in order to make the authorization requests. This client
credentials has two main benefits; first in the process of
making authorization request and exchanging authorization
code for access token, this credentials acts as the means of
authenticity of the requests. Second the user experience will
improve during the authorization process by showing to the
user the name and logo of the application that trying to
access to the their resources.

c) Client Types

According to the OAuth Authorization Framework RFC
(Recordon et al., 2012), there are three client profiles
available for OAuth.

5

SERVER SIDE WEB APPLICATION
In this profile the OAuth client is on the web server and

that web server is making the API calls with the permission
of the resource owner with help of a server side
programming language. In this profile the user does not have
access to the client credentials or the access token.

CLIENT SIDE APPLICATION ON THE WEB BROWSER
An OAuth client, in this case, is running on the web

browser, it could be a JavaScript included in web page, a
browser extension or a plugin to the web browser (like an
adobe flash application). Protocol data and credentials are
easily accessible and often visible to the resource owner.

NATIVE APPLICATIONS
It is an OAuth client that is running on a mobile device

and recourse owner is using that client to access her
resources. Client credentials included in the application, can
be extracted, however issued credentials such as access token

or refresh token can be protected. Depending on the platform
the credential can be protected from different application
installed on the device. This profile is the main profile that
we are going to cover in this article.

d) Authorization Flows

Boyd (2012) stated that the core OAuth protocol defines
four primary “grant types” used for obtaining authorization,
also it defines extra mechanisms for additional grant access.
But in this article we are going to cover the two main flows,
which is related to the mobile applications.

AUTHORIZATION CODE FLOW
This flow is more appropriate for the server-side web

applications or the mobile applications that have the
application servers, after the resource owner granted access
to her data, authentication code is redirected back to the web
application or the application server as the query parameter
in the URL (Figure 1).

Figure 1. Authorization code flow (Adapted form (Boyd, 2012)

As in figure 1 illustrated, we present the process step by
step:

• Step A: Client, which is the application server in this
case, sends through the user-agent (Browser/mobile
application) client identifier and redirect URL to the
authorization server.

• Step B: Authorization server asks for the
authentication process and user enters her password.

• Step C: After user get authenticated, authorization
server sends back the authorization code to the user
agent, then user agent forwards the authorization
code to the client (application server).

6

• Step D: Client (application server) sends the
authorization code to the authorization server.

• Step E: Authorization server generates the access
token and sends it back to the client.

FLOW PROPERTIES
This flow is more suitable when long lived access tokens

are required; this type of tokens has more accountability
compared to temporary tokens since credentials would not be
required from user as long as the token is valid and the token
is only available to the application server.

IMPILICIT GRANT
This grant access is optimized for the client side web

applications running in browser or mobile applications,
which are not connected to any application servers. The
resource owner grant access to the application and new
access token is immediately passed back to the application
using a hash fragment in the URL (Figure 2).

As in figure 2 illustrated, we describe this flow step by

step:

• Step A: Client, which is mobile device in this case,
sends the client identifier and redirect URL to the
authorization server.

• Step B: Authorization server asks for the
authentication process and user enter her password.

• Step C: Authorization server generates the access
token and sends it back to the user agent.

• Step D: User agent forwards access token to client
(mobile application) and client should save and
optionally protect the access token.

Figure 2. Implicit grant flow (Adapted from (Boyd, 2101))

7

D. OpenID
OpenID is an open protocol for authentication that let

users to apply http(s) URL as identity in a specific website
and extend same URL identity to multiple OpenID enabled
websites. Also, web integrated applications are enabled to
operate upon this identity URL for authentication. This
means that users have control on their credentials without
exposing it to third party (Rehman, 2008). As in figure 3
showed, “Eddie.openid.mydomain.com” is the URL identity
used for OpenID sign in.

Figure 3. URL based authentication with OpenID

Rehman (2008) mentioned that OpenID empower users
to:

• Login to a website or web enabled application
without exposing credentials.

• Let websites to ask users information; and give users
right to choose which information should be send to
third party website over authentication process.

• Determine proper set of information to send to
website based on need.

• Provide single sign on (SSO) authentication option
in multiple applications and websites inside an
organization.

• Incorporate websites and web enabled applications
to OpenID framework in a simple way.

• Reduce the cost for managing and maintaining
authentication solutions of an organization for
consumer.

• Simplify authentication execution for end-user.

OpenID consists of three major components: Customer,

Identity Provider, and User Agent (Rehman, 2008). These
three components communicate and collaborate during
authentication (Figure 4).

OpenID terminology:
• End-user: A person who login to variety of website

by OpenID system.
• Consumer or relay party: Is the actual website that

End-user wants to login.
• Identifier: is a URL that recognizes End-user.
• Identity Provider or IdP: Is the website that End-user

have credentials stored there. This host can identify
user based on matching correct username and
password.

• User Agent: is the web browser that End-user uses.

Figure 4. OpenID components (Adapted from (Rehman, 2008))

OpenID have two mode of communication: dumb and
smart. In dumb mode, Consumer does not keep the track of
state of connection; so, for every login End-user should
follow the whole step of authentication and basically repeat
them. On the other hand, in smart mode, Consumer
maintains the state data and caches shared keys for later
login. So, smart mode can effectively reduce traffic of the
servers when End-users what to login many times (Rehman,
2008).

Dump mode illustrated in figure 5 (Rehman, 2008):
1. End-user visits Consumer web page and wants to

login.
2. The web page requests the Identity Provider URL or

simply provides a list of identifiers to choose for
End-user.

3. Consumer gets information – a web page – from
Identity Provider.

4. Consumer parses the information – HTML
embedded – and detects Identity Provider’s location.
This step is named discovery. Then, Consumer
redirects web page to Identity Provider to get
assertion data by HTTP GET.

4a. Optionally, Consumer can exchange share key with
Identity Provider.

5. End-user logs in to Identity Provider’s web page.
6. Identity Provider sends back – by HTTP GET –

assertion data with signature to Consumer through
browser redirect. It shows authentication success or
failure.

7. In case of successful authentication, Consumer
directly asks Identity Provider for assertion data.
This data can be checked and validated against User
Agent data.

8. If assertion information is valid, End-user can login
to Consumer website otherwise the Authentication
fails.

8

Figure 5. OpenID dumb mode (Adapted from (Rehman, 2008))

SMART MODE:
The smart mode is the same process as dump mode

except step seven. At step seven Consumers can check and
verify assertion data, based on the shared key on step 4-A. In
smart mode, step 4A proceeds when Consumer wants to
update caches or obtain it at the first time (Rehman, 2008).

E. SAML
Security Assertion Markup Language (SAML) is an

XML based protocol for transaction of authentication and
authorization information across domain boundaries. SAML
addresses strong trust, high-value transaction, and privacy
requirements for identity management. It enables users,
applications, and services to communicate via XML
messages (Maler & Reed 2008). In the other words, SAML
provides a standard for transaction of user security
information over insecure networks like Internet between
identity provider and service provider domains. It describes
set of rules and syntaxes for identity information transaction
while it is flexible and customizable (Lewis & Lewis, 2009).
As in Figure 6 illustrated, SAML solve the problem of
accessing services and resources of a domain by another
domain’s users and systems; so, user A at domain A
authenticates by authentication server of domain A and uses
services of domain B. SAML ports the trust that domain A
have granted to user A to domain B.

Figure 6. SAML overview

9

SAML defines three roles that are involved in SAML
transactions: asserting party, relying party and subject.
Asserting party is the identity provider that provides the user
information. Relying party trusts assertion information from
the identity provider and provides the services to user.
Subject is the user with the identity that is going to be
transacted (Lewis & Lewis, 2009).

SAML have four components: assertions, protocols,

bindings, and profiles. Each layer of standards is
customizable in order to implement specific organizational
use-cases. SAML assertions get exchanged between SAML
parties (Lewis & Lewis, 2009) - such as transaction between
user A and service B in figure 6. Todorov (2007) mentioned
that SAML have three assertions:

• Authentication: shows user’s successful

authentication to, authentication authority, it also
may contain timestamp, type of credential, and etc.

• Authorization: may contain user’s permission or
access to an object, group membership, or any other
information regarding to resources’ authorization.

• Attribute: contain user’s information like email
address, telephone, and etc.

SAML describes request and response protocols for

communicating between SAML parties; for example, Single
Logout Protocol, within SAML, describes the flow of
request and response in order to logout from all services by
user. Another example is Authentication Request Protocol,
which describes how service provider is able to request
authentication or attribute assertion statement. SAML
bindings map SAML protocols to other network protocols in
order to transport assertion between SAML parties; for
example, HTTP Redirect Binding relies on HTTP redirect
messages to transport SAML assertions. And the last
components of SAML are profiles; these components
determine how assertions, protocols and bindings will
cooperate to provide single sign on. For example Web
Browser SSO Profile uses the authentication request protocol
with any of HTTP redirect, HTTP POST or HTTP Artifact
bindings. Another example is Single logout Profile that uses
the Single Logout Protocol; this profile can logout the user
form all the service providers using one logout function
(Lewis & Lewis, 2009).

III. RESEARCH APPROACH
“A case study examines a phenomenon in its natural

setting, employing multiple methods of data collection to
gather information from one or few entities (people, groups,
or organizations).” (Benbasat et al, 1987)

This research is a case study which we investigate
different authentication and authorization methods in the
context of mobility and security inside the Volvo IT. We
gathered our information from Volvo IT employees. The

context of research is bonded to Volvo; however, we tried to
generalize and extend the foundings to make them suitable
for other enterprise companies.
A. Research Setting

This study is a bachelor thesis, which is done by
collaboration of IT university of Gothenburg and Volvo IT
during ten weeks of research. Volvo IT was interested in
how they can utilize different authentication and
authorization protocols for securing their mobile applications
in future. In this research we focus our investigation on
finding possible relevant requirements regarding to accessing
backend services by mobile devices for Volvo IT.
Additionally, we did not consider financial and other barriers
regarding to implementation of this technology.
B. Research Process

At first step of this research, we focus on the different
architecture styles to detect any relation between them and
mobile security. But, after extensive research on Service
Oriented Architecture, Message Bus Architecture, and Event
Driven Architecture, it turned out that there is not an obvious
relation between them at implementation level; since these
architectural styles are very abstract, any enterprise
implementation of these are usually mixed to provide more
functional and nonfunctional requirements. So, at this
research we tried to bring our arguments and discussions to
the context of Service oriented architecture, which is the
current comment architecture style at Volvo.

Then, we studied related literature, which are aligned to

the area of mobility and security. We started to look for the
security protocols related to the authentication and
authorization. For limiting our study to fit in the limited time
that we had, we chose three protocols (OAuth, OpenID and
SAML) which Volvo were interested in.

Then, we interviewed mobile application developers and

system architects of Volvo IT in order to discover general
requirements of mobile applications and specific
requirements of access control in their systems. In the next
step we collected the entire requirement together and
generated proper requirement list. Finally, we checked
capability of OAuth, OpenID and SAML against generated
requirements; and by that we conclude if these protocols can
add value to Volvo IT or not.

C. Data Collection
Interviews were the source of data that we gathered at

Volvo IT. We have conducted four unstructured (Myers &
Newman, 2007) interviews at Volvo IT. We had an interview
with the mobile developers of Volvo, which gives us insight
on major challenges of getting access control over the
backend services of Volvo. The other interviews were mostly
focused at discovering various scenarios in which these
protocols can be suitable for Volvo IT. Since those

10

interviews were unstructured, we try to take note and gather
related data at interview sessions.

D. Data Analysis
Our collected data was analyzed using Qualitative Data

Analysis; we applied a process of collecting interview notes,
analyzing notes, extracting initial requirements, investigation
and studying new topics which emerged from previous
interviews, plan for the next interview and refining our
requirement list after each interview. After every interview
the notes were put together in order to sync the outcome on
each interview, then we tried to find relevant information;
these information led us to a specific requirement and,
consequently, to form the initial list of requirements. Also,
we extracted new topics and areas, which needed to be
investigated to fill the knowledge gap; furthermore, those
topics and areas helped us to detect and remove unrelated
data and requirements. As a result of this process, we keep
the requirements within the scope of research. Finally, after
the last interview, we collect all the requirements to form the
final requirement list.

E. Research Limitations
Based on the fact that OAuth is a new protocol for

handling access control there is not enough published
material and article to investigate. Only few large enterprise
like Google and facebook already have this technology in
place for their systems and this technology, at the time being,
is not adapted really well on the enterprise companies except
major software developer (OAuth, 2011).

The other limitation for this research was related to the

fact that Volvo is not adapted to the mobile industry in a
proper way; because of that they do not have guideline and
principal documents regarding to mobile developments. As a
result, we could not include internal documents of Volvo in
our research. So, we faced a hard time extracting the
requirements.

Other specification was unclear and the scope was wide

at first stage of research. At the beginning, we wanted to find
the suitable combination of software architectures and
security methods for mobile devices. Given that, we
investigated software architectures like Service Oriented
Architecture, Message Bus Architecture, and Event Driven
Architecture. First, these architectures were wide area to
investigate. Second, implementations of those architectures
in enterprises were more or less mixture of them. So, our
finding indicates that there is not any relation between
security methods and architectures style in the case of Volvo.

IV. REQUIREMENTS
In this section we are going to present the requirements

that we extracted from data analysis. We divided the

requirements to two categories: security and usability
requirements.
A. Security Requirements

This section concerned with the requirements that
fulfilling them improves the security of the system.

1) Requirement 1 (Limited access rights)

One of the security concerns, mentioned by two Volvo
architects, was that a mobile application should provides a
method to implement access control to backend services; in
the other words, authorizing users. Due to authorization
access level for users, some services should be accessible
and others should be inaccessible. So, the system should
provide a list of services to the mobile application based on
the user’s access rights.

2) Requriement 2 (Shared mobile device between

employees)
There are some organization working with Volvo that

using Volvo mobile applications and services. These
organizations are using Volvo services on an organization’s
mobile devices that are shared between their employees.
These employees might have variety of access right to use
Volvo services; it is a security concern for Volvo to prevent
unauthorized user to access resources on behalf of another
user.

3) Requirment 3 (Authentication without storing

credentials)
One of Volvo IT architects mentioned that it is difficult

for Volvo IT to keep all mobile users’ credentials in Volvo
IT databases. Currently, Volvo has some mobile applications
and planning to deploy more applications to public. So,
Volvo is seeking for a way to authenticate and authorize
users without registering their credentials. One solution is
relying on credentials of another company, which is suitable
for more public backend services. So, system should be able
to authenticate and authorize users based on credentials of
either Volvo IT or another company.

4) Requiremet 4 (Authorization of third party

applications)
In one of the interviews an architect from Volvo

mentioned due to the rapid growth in mobile industry, in
future, Volvo wants to facilitate the potential of using third
party organizations to develop mobile applications for them.
Therefore Volvo needs to find a way to grant third party
developers accessing their backend services in a secure way
in order to let them utilize Volvo’s resources and services.

5) Requrirement 5 (Single logout)

Since there is more than one mobile service, user needs
to login to different services. So, whenever user wants to log
out, she should log out from all services that she was using.
There is a possibility that user may forget to logout from all
services; this poses a security risk. So, system should be able

11

to logout the user from all services when she logout from any
service.

B. Usability Requirements
This section concerned with the requirements that

fulfilling them improves the user experience of the system,
which are, still related to the authentication, authorization
and general security issues.

1) Requirement 6 (Long lived access)

Applications should not ask for credentials each time the
user opens it. It should have an internal mechanism to save
the state of connection with the backend servers. This will
prevent annoying password prompt every time the user
reopen the application.

2) Requirement 7 (Single sign on)

For a group of applications using the same identity
provider, user should receive prompt for credentials only
once. If a user opens an application and provides her
credentials to the identity provider, she should not asked
again for credentials from another application which is using
the same identity provider for accessing services on backend.
This concept is known as the single sign on.

3) Requirment 8 (Revoke application access)

Typically, there are many applications that are
authenticated and authorized by a single user; such a user
should be able to cut off any application’s access, to her
resources whenever she wants.

V. DISCUSSION
In this section we are going to describe whether the

above requirements could be addressed by the presented
protocols’ capabilities or not. This information can be used
by Volvo or other enterprise to grasp a better understanding
on which areas these protocols can be helpful for them; This
understanding help them to make a decision whether or not
to utilizing these technologies into their systems. The below
requirements are in the same order as they presented in
section IV.
A. Limited access rights

Based on the presented information on section II, OAuth
is a protocol that covers delegated authorization; with this
protocol you can authorize a mobile client or web application
to use resources or connect to APIs on behalf of the resource
owner. However, this protocol is not capable to provide and
generate the list of services based on rights of the users.
OpenID is an authentication protocol therefore it cannot act
as the access control mechanism. Also SAML is a protocol
for transferring authentication and authorization between
different domains and it can only transfer the authorization
decision, which has already been made. This requirement
can be met by Role-Based Access Control systems (Windley,
2005) which none of mentioned security methods are
capable.

B. Shared mobile device between employees
This requirement is beyond the scope of these protocols,

it emphasizes on the security risk of the mobile devices,
which can be physically shared. Due to nature of the
problem, physical risk of security, OAuth, OpenID and
SAML are not the security methods to utilize as the solution.
However, biometric authentication (Windley, 2005; Tuyls et
al., 2005) may implement in mobile devices to solve the
problem; this strong authentication still can be implemented
allied with OAuth and SAML.
C. Authentication without storing credentials

This requirement is related to the situation that Volvo
wants to have some services available to the public, but they
also want to have a sort of authentication without going
through the process of registering users. In this case one
solution to this problem could trust another identity provider
to authenticate the users. In order to do that Volvo should
develop their application with the ability to stand as the
client concept in OAuth and get the identity credentials like
id and email from the external identity provider like
facebook or Google. In other words this kind of applications
prompt users to give them access to their basic credential
through other organizational credential databases (Boyd,
2012).

Another way to address this requirement is through

OpenID protocol. OpenID enables authentication from an
identity provider, which is running by another organization.
Users can enter their OpenID URL, which they obtained,
from another organization (i.e. facebook or Google) to enter
the applications that has been created by Volvo (Rehman,
2008). This enables the user to login with their preferred
identity provider and give to the Volvo the advantage of not
storing every user’s credentials. However they should
consider the reliability of the identity providers that they are
going to trust. We are not going to cover that which
organization is suitable for Volvo to trust because this matter
is out of scope of this research.
D. Authorization of third party applications

The first impact of third party developer to the system is
the potential security breach; when a user inputs her
credentials to the third party application in order to access
Volvo backend services, such credentials may store, in an
unsecure way, to mobile device. To avoid this problem
OAuth suggest a solution.

OAuth suggest that the third party application, should not

have resource owner’s credentials unless there is high degree
of trust between resource owner and client (Like official
applications). If there is not high degree of trust between
client and resource owner, client can get an access token to
access the resources instead of resource owner’s credentials.
However, without OAuth, client must access to resource
owner’s credentials in order to access resources and services;
with the access token in OAuth, there is no need to store
resource owner’s credentials for later authorization

12

(Recordon et al., 2012). As in figure 7 illustrated, access
token goes to the resource server instead of credentials.

Figure 7. Simple OAuth flow (Adapted from (LeBlanc, 2011))

Furthermore, OAuth suggests setting up an application

server in order to improve the security. As we mentioned in
OAuth flow section, there are two types of flows -
Authorization code and implicit grant - that can be
implemented in this case. The Authorization code has
significant security improvement compared to implicit grant.

This improvements lie in the ability to hide the access token
from user agent, since the token is stored on the application
server, user agent cannot access it. As a result of that, there is
no risk of token exposure by user agent. On the other hand,
implicit grant improve efficiency due to deducted number of
round trips to get access token. Therefore, usability should
be overweight the security to justify implicit grant
implementation otherwise Authorization Code should be
implemented (Recordon et al., 2012). Because of evolving
third party developers that are not fully trusted by Volvo, in
the process of mobile application development, Volvo can
take benefit of OAuth by implementing Authentication Code
flow that provide more security.
E. Single logout

The only protocol that can meet this requirement is
SAML. After an application has authenticated to an identity
provider, a session may be established between that
application and the identity provider. In this case, identity
provider may issue assertions to service provider also the
identity provider can act as the session authority as well. If a
system or user wants to logout, it can be satisfied with single
logout profile of SAML. For this protocol <LogoutRequest>
and <LogoutResponse> messages are defined (Hughes et al.,
2005). In figure 8, sequential requests and responses to
logout from all service are illustrated.

Figure 8. Single logout sequence diagram

13

F. Long-lived access
OAuth covers this requirement in two different ways; one

way is by issuing the access token with long life span, which
grant access to the resources and services even an unlimited
access. The other way is through refresh token. There is a
security problem with the first way and having one-time
long-lived access tokens, and that is because the OAuth
typically uses bearer tokens without signature to connect to
APIs. Also most of the time an OAuth token may provide
access to multiple APIs, compromise of a token can give the
attacker access to multiple services and could be an
extensive security threat for the system.

On the other hand, refresh tokens reduce the security

vulnerability of the system; in case a token is compromised
then the token is going to expire and new token is going to
be replaced by it. This process is accomplished with an
HTTP POST request and with sending the refresh token
(Boyd, 2012).
G. Single sign on

Both OpenID and SAML provide solutions for SSO. As
in section II.D mentioned, OpenID have two modes to
handle SSO. In OpenID, Identity provider is the only service
that user should sign on; given that, user can access other
backend services offering by other consumers without
signing on.

SAML have similar solution to this requirement as

followed (Hughes et al., 2005):
1. User send a HTTP request to service provider
2. Service provider resolve the identity provider
3. Service provider send a <AuthnRequest> message to

identity provider
4. Identity provider identify the user (Authenticate the

user or use existing session)
5. Identity provider send the <Response> to service

provider
6. Based on the <Response> service provider deny or

grant the access to user

H. Revoke application access
OAuth has the advantage over the basic authorization

method based on the fact of having tokens instead of
password.

 In the basic authorization, which uses the password for
accessing the APIs and resources of backend, the problem is
by giving password, the only way for user to revoke access
to her resources on the backend is to change the password.
And if user has multiple applications using one service
endpoint, then after changing password, to revoke one of the
application’s accesses to her resources then she should
provide new password for all the other applications that she
wants to still have access to her resources. This is obviously

spoiling the user experience; they want to have an easy way
to cut the access of an application to a resources or services.

In OAuth, because the access is made through tokens and

not passwords, when a user wants to revoke an application’s
access, the only thing that system need to do is to discard
that specific token which grants access to that application
(Boyd, 2012).
I. Discussion Summary

The overall picture of what these protocols can satisfy in
term of requirements of section IV is presented in Table 1.
The first two requirements (limited access right and shared
mobile device between employees) are the ones that none of
the protocols can handle. But for the rest of requirements we
have at least one protocol to satisfy them. Therefore in order
to satisfy the maximum functionality, a combination of these
protocols could be the solution. There are some projects that
are combining OAuth to OpenID or SAML; for example
OpenID Connect is a combination of OpenID authentication
method with OAuth capabilities (AB/Connect Work Group,
2012). At another project, Developerforce is combining
SAML and OAuth (Developerforce, 2012). Since those
projects are in the initial stage of development and because
of the low reliability we are not going to investigate them.
But they could be considered for the future solutions.

OAuth is not a full security solution for enterprise but it

can handle delegate authorization in a secure way. It is
suitable for enterprise companies that have numerous mobile
applications or mobile users. That’s why; OAuth is mainly
used by social websites like Google and Facebook. There is
still a gap between implementation and standardization - at
the time of composing this paper; OAuth 2.0 still is a RFC
draft (Recordon et al., 2012). Yet, some companies are using
the implementation based on the draft version currently
(OAuth, 2011).

Furthermore, OpenID is web friendly protocol that

provides a solution for SSO; OpenID can be implemented
and integrated to mobile web enabled applications. SAML
also have solution for SSO. However, SAML is more
enterprise friendly, provides more security, and is more
compatible with other security methods, on the other hand
OpenID bring more simplicity and scalability (Maler &
Reed, 2008). So, these two protocols can be implemented
and utilized for securing mobile devices according to the
specific use case.

VI. CONCLUSION AND FUTURE WORKS
Providing backend service to new mobile user is bring up

some issues to enterprises; most important issue is how to
secure these services to mobile devices over the insecure
network like internet. This problems and issues are mainly
related to authentication and authorization aspects of
security. How can a user get authenticated outside the trusted
domain and how services and resources should be accessible

14

by user and in what level? These are the questions that
should be taken into consideration in order to securing
mobile devices integration to enterprise backend services.

To answer the research question, we investigated three

protocols that bring security to the process of integrating
mobile devices, to enterprise backend services. OAuth,
SAML, and OpenID are protocols that have defined set of
rules for authentication and authorization. We performed a
case study at Volvo in order to find out to what extent these
protocols can satisfy the requirements of Volvo regarding to
providing their services for mobile devices. We found eight
requirements, which are categorized into user experience and
security.

None of the security methods can meet all of the

requirements. However, there are possibilities of combining
these security methods together to meet more requirements.
These combinations need more research and study as a future
research. For requirement one, Role Based Access Control
system is the solution for limited access control (Windley,
2005). To meet this requirement with others, we suggest to
investigation of what protocol can support Role Based
Access Control and if they can be combined with SAML,
OAuth, and OpenID. Another area to research is requirement
2, how mobile devices that are shared between employees of
an organization can be authenticated and authorized. One
area for future investigation could be biometric
authentication for meeting this requirement (Windley, 2005;
Tuyls et al., 2005). Finally for finding suitable solution for
Volvo we suggest to perform another investigation on
financial and implementation barriers that we have not
considered in this article.

REFERENCES
AB/Connect Work Group | OpenID. (n.d.). Retrieved May 2, 2012, from
http://openid.net/wg/connect/

Benbasat, I., Goldstein, D. K., & Mead, M. (1987). The Case Research
Strategy in Studies of Information Systems. MIS Quarterly, 11(3), 369–
386.

Boyd, R. (2012). Getting Started with OAuth 2.0 (2012th-02 ed.). O’Reilly
Media.

Developerforce.com. (n.d.). Single Sign-On for Desktop and Mobile
Applications using SAML and OAuth - developer.force.com. Retrieved

May 20, 2012, from http://wiki.developerforce.com/page/Single_Sign-
On_for_Desktop_and_Mobile_Applications_using_SAML_and_OAuth

Fitzgerald, J. (2009). Managing mobile devices. Computer Fraud &
Security, 2009(4), 18–19.

Hughes, J., Cantor, S., Hodges, J., Hirsch, F., Mishra, P., Philpott, R., &
Maler, E. (2005, March). Profiles for the OASIS Security Assertion
Markup Language (SAML) V2.0. Retrieved from http://saml.xml.org/saml-
specifications

LeBlanc, J. (2011). Programming Social Applications: Building Viral
Experiences with OpenSocial, OAuth, OpenID, and Distributed Web
Frameworks (1st ed.). O’Reilly Media.

Lewis, K. D., & Lewis, J. E. (2009). Web Single Sign-On Authentication
Using SAML. International Journal of Computer Science Issues (IJCSI), 2,
41–48.

Maler, E., & Reed, D. (2008). The Venn of Identity: Options and Issues in
Federated Identity Management. Security Privacy, IEEE, 6(2), 16 –23.

Myers, M. D., & Newman, M. (2007). The qualitative interview in IS
research: Examining the craft. Information and Organization, 17(1), 2–26.
doi:10.1016/j.infoandorg.2006.11.001

OAuth / OAuth 2. (2011, July). Retrieved May 26, 2012, from
http://wiki.oauth.net/w/page/25236487/OAuth%202

Recordon, D., Hardt, D., & Hammer-Lahav, E. (2012, May). The OAuth
2.0 Authorization Framework. Retrieved May 18, 2012, from
http://tools.ietf.org/html/draft-ietf-oauth-v2-26

Rehman, R. U. (2008). Get Ready for Openid (1st ed.). Conformix
Technologies Inc.

Sandhu, R. S., & Samarati, P. (1994). Access control: principle and
practice. Communications Magazine, IEEE, 32(9), 40 –48.

Teng, C.-C., & Helps, R. (2010). Mobile Application Development:
Essential New Directions for IT. Information Technology: New
Generations (ITNG), 2010 Seventh International Conference on (pp. 471 –
475).

Todorov, D. (2007). Mechanics of user identification and authentication.
Auerbach Publications.

Tuyls, P., Akkermans, A., Kevenaar, T., Schrijen, G.-J., Bazen, A., &
Veldhuis, R. (2005). Practical Biometric Authentication with Template
Protection. In T. Kanade, A. Jain, & N. Ratha (Eds.), Audio- and Video-
Based Biometric Person Authentication, Lecture Notes in Computer
Science (Vol. 3546, pp. 1–53). Springer Berlin / Heidelberg.

TABLE 1. COMPARISION BETWEEN OAUTH, OPENID AND SAML AGAINST THE REQUIREMETNS

 Req 1 Req 2 Req 3 Req 4 Req 5 Req 6 Req 7 Req 8

OAuth ✗ ✗ ✔ ✔ ✗ ✔ ✗ ✔

OpenID ✗ ✗ ✔ ✗ ✗ ✗ ✔ ✗

SAML ✗ ✗ ✗ ✗ ✔ ✗ ✔ ✗

15

Unhelkar, B., & Murugesan, S. (2010). The Enterprise Mobile Applications
Development Framework. IT Professional, 12(3), 33 –39.

Windley, P. J. (2005). Digital Identity (1st ed.). O’Reilly Media.

