

University of Gothenburg

Chalmers University of Technology
Department of Computer Science and Engineering

Göteborg, Sweden, June 2012

Improving software comprehension process by Adoption of

Cognitive Theories in large-scale complex software

maintenance
An empirical research of cognitive theories in software maintenance

Bachelor of Science Thesis in the Programme Software Engineering&Management

Peter Chen

Xiaolei, Du

The Author grants to Chalmers University of Technology and University of Gothenburg the non-exclusive

right to publish the Work electronically and in a non-commercial purpose make it accessible on the Internet.

The Author warrants that he/she is the author to the Work, and warrants that the Work does not contain text,

pictures or other material that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party (for example a publisher or a

company), acknowledge the third party about this agreement. If the Author has signed a copyright agreement

with a third party regarding the Work, the Author warrants hereby that he/she has obtained any necessary

permission from this third party to let Chalmers University of Technology and University of Gothenburg

store the Work electronically and make it accessible on the Internet.

Improving software comprehension process by Adoption of Cognitive Theories in

large-scale complex software maintenance

An empirical research of cognitive theories in software maintenance

Peter Chen

Xiaolei Du

© Peter Chen, June 2012.

© Xiaolei Du, June 2012.

Examiner: Helena Holmström Olsson

University of Gothenburg

Chalmers University of Technology

Department of Computer Science and Engineering

SE-412 96 Göteborg

Sweden

Telephone + 46 (0)31-772 1000

[Cover image resource:

http://teresaescrig.com/research-at-stanford-may-lead-to-computers-that-understand-humans/]

Department of Computer Science and Engineering

Göteborg, Sweden June 2012

Improving software comprehension process by

Adoption of Cognitive Theories in large-scale

complex software maintenance

An empirical research of cognitive theories in software maintenance

Peter Chen, Xiaolei Du

 Department of Computer Science,

University of Gothenburg

Abstract

During the software maintenance process software

comprehension is a time-consuming procedure.

Fortunately, there are existing cognitive theories

designed to improve software comprehension process.

In this article, we intend to review six theories and

perform an industrial case study in maintenance of a

complex system. In order to find out whether to adopt

cognitive theories in a specific maintenance task to

improve the process of understanding the software or

not, all six cognitive theories will be evaluated

theoretically and one of them will be adopted in an

industrial case study.

Keywords: software comprehension, program

understanding, cognitive theory, cognitive model

1 Introduction
Software maintenance is an integral part of a

software life cycle. ISO/IEC 14764 (2006), the

international standard for software maintenance,

defines software maintenance as one of the

primary life cycle processes, and describes

maintenance as the process of a software product

undergoing “modification to code and associated

documentation due to a problem or the need for

improvement. The objective is to modify the

existing software product while preserving its

integrity.” Software maintenance is an

evolutionary development process. The term

‘maintenance’ relates to evolution and a

continuance of development activities (D. Jin,

2005). As a kind of evolution, it inevitably

companies with some issues and challenges in

the software change process. One of the key

challenges facing maintainers and maintenance

efforts is comprehension of the system being

maintained, that is, program comprehension or

software understanding. Some activities involved

in software maintenance, such as restructuring

and reengineering, rely heavily on analysis and

comprehension of the complex system structures

and interactions that characterize both legacy

and modern software systems (D. Jin, 2005).

According to ISO/IEC 14764 (2006), program

comprehension is defined in the category

Technical Issues, and refers to how quickly a

software engineer can understand where to make

a change or a correction in a piece of software

which this individual did not develop. Evidently,

program comprehension is a major factor in

providing effective software maintenance and

enabling successful evolution of computer

systems (A. V. Mayhauser et al, 1995). The

importance of program comprehension for

software maintenance is self-evident. Program

comprehension is the essential part of software

maintenance. The program comprehension

process can be very time-consuming, and some

estimate that up to 50% of the software

maintenance effort is spent on understanding the

software system at hand (S. Xu, 2005, W.J.Meng,

2006). In the real world, program comprehension

is a challenge that software engineers face daily.

Especially for organizations who bought their

software from a third party, the maintenance of

the software is always difficult. Therefore, the

technicians of the organization need some

strategies, like appropriate cognitive models and

maintenance tools, to support their maintenance

activities.

T. Reinikainen et al (2007) reveal that software

comprehension is a human-intensive and

typically task-driven activity. During the last few

decades, lots of tools have been developed to

support the software maintainers and analyzers

to build a good understanding on the objective

software system (T. Reinikainen et al, 2007). It

is widely accepted that the tools that support

software analysis and maintenance would go a

long way towards addressing the constraints that

software developers and maintainers work with

on a day-to-day basis (D. Jin, 2005). A multitude

of differences in program characteristics,

programmer ability and software tasks have led

to many diverse theories and research tools (M.

A. Storey, 2005). Although program

comprehension tools share the common goal of

simplifying the task of understanding large

bodies of source code and building an

appropriate representation of system structure,

these tools differ at many levels: from their

appearance to technical details to their

philosophical approach (S. E. Sim et al, 2000).

In actual software maintenance, the application

of different theories, methods and tools will lead

to many diverse results, which include different

mental models of systems and different

representations of system structures. According

to the requirements of specific maintenance tasks

and the maintainers’ abilities, applying a

cognitive model in program comprehension is

possible to improve the efficiency of

maintenance significantly. However, an ideal

approach does not exist. Due to the fact that one

cognitive model is not capable of solving all

issues in software comprehension, hence, how to

choose an appropriate cognitive model for a

specific software maintenance task always

challenges maintainers. That motivates us to

research the adoption of cognitive models and

tools that support large-scale complex

maintenance tasks.

To direct our research, we identify two research

questions: How does the program

comprehension process affect the software

maintenance process? How can a cognitive

model or tool improve the software

comprehension process in a large or complex

software maintenance process? We will also

adopt cognitive theories in a real industrial

project, aiming at verifying the fact that program

comprehension is a crucial factor of success or

failure in software maintenance.

Aiming to answer the research questions, we will

design an industrial case study. The industrial

case study is a maintenance task for a driving

simulator that involves two parties, SAFER

(Vehicle and Traffic Safety Centre) and us. We

will use literature reviews, observations and

interviews as our data collection methods.

During the research process, we intend to review

three traditional and influential cognitive models,

as well as three theories adopted in program

comprehension. The three predominant theories

of cognitive models are Top-down, Bottom-up,

and integrated meta-model (M. P. O’Brien,

2003). These models have been identified and

validated for more than 20 years and A.

V. Mayrhauser et al suggests that applying them

in software comprehension process could help

software engineer to understand the source code

(A. V. Mayrhauser et al, 1995). The three

program comprehension theories proposed in the

past 10 years. They are based on different

theories and utilize various methodologies;

hence, they have distinct application contexts,

that is, they are not suitable for all maintenance

tasks. Through the review of these theories, we

will summarize the prominent characteristics of

various cognitive theories, including three

traditional cognitive models and three new

fashion cognitive theories. We will observe the

maintenance process before and after adopting a

cognitive theory in software maintenance.

Through interviewing the engineer involved in

our research, we collect the opinions of

practitioners for cognitive theory adopting. The

data derived from our cognitive theory review,

observation and interview is the evidence to

support the claim that cognitive theories

effectively improve software maintenance

through improving program comprehension. The

industrial case study we conducted reflects how

the human factor influences the adoption of

cognitive theory. Depending on these evidences,

we will summarize some suggestions which

should be useful to the latter maintainers when

they are looking for tools supporting in cognitive

process of software comprehension.

This paper is organized as follows. In SECTION

2, we introduce the theoretical framework built

in the process of our literature review. Research

from other authors about these six cognitive

comprehension models and tools will be

articulated in this section. In SECTION 3, we

will describe our research approach to solve our

research question, including research setting,

research process, data collection, data analysis

and limitations. In SECTION 4, we will present

our research result from both the literature study

and the empirical study. In SECTION 5, we will

discuss the results for our empirical study based

on the theoretical findings from literature and

come up with some practical principles to

maintainers. In SECTION 6, we will conclude

our research and describe further research.

2 Theoretical frameworks
2.1 Program comprehension process and

model

T. J. Biggerstaff et al (1993) defines program

comprehension as: “A person understands a

program when he or she is able to explain the

program, its structure, its behavior, its effects on

its operation context, and its relationships to its

application domain in terms that are qualitatively

different from the tokens used to construct the

source code of the program”. In order to properly

maintain a software system, maintainers have to

fully comprehend this software they intend to

maintain, or partially comprehend the software

in case of specific maintenance task. If this

knowledge is not readily available, they are

faced with the challenging task of gaining an

understanding of the system’s inner workings (S.

G. M. Cornelissen, 2009). This process is known

as program comprehension.

There are abundant cognitive models that have

been developed to support program

comprehension. M. P. O’Brien (2003) states that

although these models differ significantly in

their emphasis, they all consist of four common

elements, namely, a knowledge base, a mental

model, external representation, and some form of

assimilation process. M. P. O’Brien (2003) also

explicitly defines these components in his report.

External representations are any ‘external’

views available in assisting the programmer

when comprehending code, and are probably in

form of software documentation, the source code

itself, expert advice from other programmers

familiar with the problem domain, or indeed, any

other source code similar to the code under

observation. Knowledge base can be defined as

the programmer’s accumulated knowledge

before they attempt to understand the code and it

will gradually expand in the comprehension

process. The assimilation process is the actual

strategy, which the programmer employs to

comprehend the source code. A Mental model is

a developer's mental representation of the

program to be understood and describes a

maintainer’s current understanding of a software

system. Program comprehension is typically

referred to as the process involved in

constructing an appropriate mental model of a

software system to be maintained (B.

Shneiderman, 1980, R. Brooks, 1983). Using the

knowledge base, mental model, and external

representations, the assimilation process

continuously updates and augments the

programmer’s mental model (M. P. O’Brien,

2003).

Mental models are built and updated using actual

strategies in the assimilation process, like

adoption of cognitive models. The cognitive

models are one of our emphases in this paper and

they describe both the cognitive processes and

the information structures needed to create a

mental model (M. A. Storey, 2006).

2.2 A review of cognitive theories
In this section, we intend to review three

cognitive models, Top-down, Bottom-up,

Integrated meta-model, and three program

comprehension theories created by authors in

the recent 10 years; Behavior-based model,

Context-driven model and the Two-dimensional

model.

2.2.1 Cognitive models

Bottom-up, top-down, and the integrated model

are the three major theories of program

comprehension that try to model both the

activities and the process involved in creating the

mental models for comprehension tasks (W. J.

Meng et al, 2006).

First and foremost, we introduce several

concepts to assist us in understanding the models.

Plans are knowledge elements for developing

and validating expectations, interpretations, and

inferences; they capture the comprehender’s

attention during the program understanding task

(A. V. Mayrhauser et al, 1995). Beacons are

recognizable, familiar features in the code that

act as cues to the presence of certain structures

(M. A. Storey, 2006). Shallow reasoning is a

dynamic strategy in program comprehension. It

does so without in-depth analysis and it has been

adopted by many experts when they recognize

familiar plans.

Top-down
Soloway and Ehrlich (1984) introduced a top-

down model, and observed in their research that

understanding in a top-down manner is

appropriate when the practitioners are familiar

with the source code or type of source code.

Top-down understanding is typically adopted

when the code or type of code is familiar.

Theoretically, new code could be understood

entirely in a top-down manner if the programmer

had already mastered code that performed the

same task and was structured in exactly the same

way (A. V. Mayrhauser et al, 1995). A.

V. Mayrhauser et al (1995) define top-down

model is goal-oriented, in sense of the mental

model contains a hierarchy of goals and

plans. Rules of programming and beacons help

decompose goals into plans and plans into lower

level plans. Typically, shallow reasoning builds

the connections between the hierarchical

components. Brooks (1983) theorizes that

hypotheses drive the cognition process in top-

down model and the direction of further

investigation. Understanding is complete when

the mental model contains a complete hierarchy

of hypotheses (A. V. Mayrhauser et al, 1995). A

programmer first defines a hypothesis that

describes the program, and then verifies it.

Further hypotheses may be required in order to

build up a hierarchy of hypotheses for

verification. M. A. Storey (2006) defines top-

down model that programmers understand a

complete program in a top-down manner where

the comprehension process is one of

reconstructing knowledge about the domain of

the program and mapping this knowledge to the

source code.

Bottom-up
The bottom-up theory of program

comprehension assumes that programmers first

read code statements and then mentally chunk or

group these statements into higher level

abstractions. These abstractions (chunks) are

aggregated further until a high-level

understanding of the program is attained (B.

Shneiderman et al, 1979).

Pennington (1987) suggests that programmers

should build at least two mental models in the

comprehension process. He found that when

programmers or maintainers are unfamiliar with

source code, they will build an elementary

mental representation, called program model.

This program model is a control-flow program

abstraction and built from bottom up via beacons

(A. V. Mayrhauser et al, 1995). After the

program model is constructed, another model,

situation model, is built from the bottom up, and

based on the knowledge of real world domains,

such as generic operating system structure and

functionality for the operating system domain (A.

V. Mayrhauser et al, 1995). The theory which

interpret the program in a bottom up manner is

labeled as bottom-up theory, in other words,

understanding is built by reading the code then

mentally chunking or grouping these lines of

code into higher-level abstractions, (A.

V. Mayrhauser et al, 1995, M. P. O’Brien, 2003).

Letovsky et al (1986) also introduced the

bottom-up theory, in which programmers gather

together small chunks of source code in order to

build up higher levels of abstraction, which are

recursively grouped to produce a high level

comprehension of a program (S. Xu, 2005).

Integrated meta-model
Von Mayrhauser and Vans (1993) observed that

program comprehension is, in fact, neither a

simple top-down nor a bottom-up process (S.C.

Xu, 2005). A. V. Mayhauser and A. M. Vans

(1995) developed a multilevel theory, which is

known as the integrated model. This integrated

meta-model evolved from the experiments

carried out by von Mayrhauser and Vans, which

concluded that programmers use a combination

of assimilation processes when understanding

software (M. P. O’Brien, 2003). They found in

the experiment that, a combination of approaches

becomes necessary for understanding large

and/or complex systems. Therefore, the

integrated model combines the top-down

understanding of Soloway & Ehrlich (1984) with

the bottom-up understanding of Pennington

(1987). Pennington’s bottom-up model consists

of two sub-models, program model and situation

model, which described in preceding contents.

Pennington (1987) defines program model is

programmers’ first mental representation when

code is completely new to them and it is a

control-flow program abstraction. He also

mentions the situation model is built based on

knowledge of real world domain, such as generic

operation system structure, and it would be

completed once program goal is reached.

Consequently, the programmer using integrated

model actually switch among the three

postulated areas or models (domain model,

situation model, and program model) (S. Xu,

2005). Their integrated model consists of four

major components: top-down, situation,

program models and the knowledge base (A.

V. Mayrhauser et al, 1995). The first three

components describe the comprehension

processes used to create mental representations

at various levels of abstraction and the fourth

component describes the knowledge base needed

to perform a comprehension process (M. A.

Storey, 2006). According to the familiarity of the

source code and program application,

maintainers can choose to invoke top-down

model or bottom-up model as a starting point. M.

A. Storey (2006) mentioned that when the code

is familiar, top-down model can incorporate

domain knowledge as a starting point for

formulating hypotheses, otherwise, bottom-up

model can be invoked and its program model

serves as a control-flow abstraction. The

situation model is the consequent when

maintainers chose a bottom-up model and

describes data-flow and functional abstractions.

The knowledge represents the programmer's

current knowledge and is used to store new and

inferred knowledge, which support maintainers

to build these three cognitive models (M. A.

Storey, 2006).

2.2.1 New fashion theories

We will introduce three new fashion cognitive

theories in this section. Comparing with

traditional models, these theories have not been

adopted in practice very common; however, they

can be used to solve some specific problem in

program comprehension relying on their

predominant characteristics.

Behavioral IDE
Software maintainers are on their own in

deciphering the dynamic behavior of the system,

which is of primary concern in order to

successfully understand the system and its

design (R. Bayer et al, 2008). As R. Bayer and A.

E. Milewski (2008) claimed, a possible solution

to the problem of behavioral design feedback in

IDEs is to center the design of an IDE on a

cognitive model that represents a system in terms

of its behavior instead of its structure, or in other

words, create a behavioral IDE.

R. Bayer and A. E. Milewski introduced a

prototype behavioral IDE that is capable to

illustrate behavior design information in graphics

and facilitates software maintainers more easily

understand how a system works and locate

relevant source code without documentations.

This IDE named Dynamo is a Java-based

IDE that utilizes a behavioral representation of

the system and this behavioral representation

comes in the form of use cases and object

interactions and sequenced events.

Distinguishing with traditional way in which

users interactive with source code through

navigating the tree of files and packages within

projects, R. Bayer and A. E. Milewski use

sequence diagram in Dynamo IDE, which allows

the user to navigate a software system via its

behaviors, or use cases. They believe Sequence

diagrams have been shown to be a highly

efficient and quickly comprehended way to

represent the behavioral view of a software

system (R. Bayer et al, 2008). R. Bayer and A. E.

Milewski stated that promoting the use of a

mental strategy for system comprehension and

problem solving is beneficial to the maintenance

process, as it reduces wasted time searching

through irrelevant source code. Consequently,

they suggested the user of Dynamo should use a

top-down cognitive model for solving

maintenance tasks.

Context-driven process model
Current program comprehension research

focuses mainly on developing better techniques

and tools to tackle specific aspects of the

comprehension problem, however, these

techniques and tools are commonly not

integrated with each other, due to a lack of

integration standards or difficulties to share

services among tools (W. J. Meng et al, 2006). It

is result in maintainers do not know how these

techniques and tools can collaboratively support

a specific program comprehension task and face

a specific comprehension task without any

guidance. W. J. Meng et al (2006) are not only

motivated by this need to synthesize these

different information and knowledge resources

utilized within a formal framework, but also to

provide maintainers with a context during the

program comprehension process itself. They

introduce a formal process model that stresses an

active approach to guide users (software

maintainers and developers) to overcome this

lack of context sensitivity while solving a

comprehension task.

In their research, they utilize ontology to

constitute the content of mental model. W. J.

Meng et al (2006) claim that ontologies are often

used as a formal explicit way of specifying the

concepts and relationships in a domain of

understanding. Another crucial element is

Description Logic (DL), a knowledge

representation formalism, which is used as a

standard ontology language. W. J. Meng et al

(2006) use ontologies and Description Logics to

formally model the major information resources

used in program comprehension and their

interrelationships. In their model, ontological

representation is used to model the information

resources and the story-driven approach is used

to model the interaction between users and the

process context. In particular, W. J. Meng et al

(2006) describe that the integration of resource

representation and interaction must be supported

by the structure and content of the ontological

knowledge base.

Furthermore, W. J. Meng et al (2006) extend

these models with an additional context sensitive

support, a story driven approach. The story

representation is an intuitive visual metaphor,

and providing the maintainer with guidance on

the use of different information resources to

accomplish a particular task. W. J. Meng et al

(2006) claim that story approach is capable to

address three major issues, a) A metaphor that is

familiar to users, b) A context that matches

closely a comprehension process and therefore,

can be used in actively guiding users while

solving comprehension problems, and c) Stories

can be expressed through different media, e.g.

text, images, animation or other multi-media

techniques.

Multi-dimensional cognitive model
S. Xu (2005) proposes a cognitive model for

program comprehension which integrates

constructivist theory and the Bloom’s taxonomy

of cognitive domain to form a two-dimensional

model. There are six learning levels in Bloom’s

taxonomy of cognitive domain, Knowledge,

Comprehension, Application, Analysis,

Synthesis, and Evaluation. S. Xu (2005)

described the constructivist learning theory as

the learners actively and incrementally

constructs their knowledge based on the

preliminary knowledge. According to the

existing theory, the two main activities are

assimilation that describes how learners deal

with new knowledge, and accommodation that

shows how learners reorganize their existing

knowledge. In order to describe assimilation and

accommodation better, V. Rajlich and S. Xu

(2003) subdivide these two activities as four

processes, Positive assimilation and Negative

assimilation, as well as Positive accommodation

and Negative accommodation. In their future

research, they named these four sub-processes

respectively as Absorption and Denial, as well as

Reorganization and Expulsion.

The two-dimensional cognitive model consists of

three components: Input, Cognitive process and

Output. S. Xu (2005) defined that Input refers to

the program to be understood or modified

including the source code and documentation

and programmers’ existing knowledge and

expertise, as well as Output contains the program

with new functionalities, new documentation and

new knowledge gained during the learning

process. S. Xu (2005) defines cognitive process

is composed of four activities at six Bloom

learning levels, in other words, program

comprehension is a learning process that enables

the reconstruction of knowledge from program

domain to design and task domain, with four

cognitive activities at different learning levels.

S. Xu (2005) names this new model as a learning

model due to the model stem from the existing

constructivist learning theory and program

comprehension itself is actually a learning

process. He also states that this learning model

emphasizes the importance of cognitive

processes in developing their activities based on

the existing program and the earlier knowledge

of the programmers, which are fundamental in

both knowledge and program performance.

3 Research method

This section describes the approach we took to

conduct our research, as well as how the data

was collected and analyzed. In the last part we

illustrated limitations of this article.

3.1 Research background and setting

SAFER, Vehicle and Traffic Safety Centre at

Chalmers is a joint research unit where 24

partners from the Swedish automotive industry,

academia and authorities cooperate to make a

center of excellence within the field of vehicle

and traffic safety (http://www.chalmers.se/safer).

In 2006, SAFER introduced STISIM Drive for

car safety analysis. STISIM Drive, a fully

interactive, PC-based driving simulator with

unlimited customization potential, is ideal for a

wide range of research and development

applications concerning the driver, the vehicle,

and the environment (road, traffic, pedestrians,

visibility, etc.), drugs & pharmaceutical

assessment and novice and professional driver

training applications. Since the software was

developed by an American company, and there

is lack of Nordic virtual environments, thus

SAFER simulator lab intends to implement some

Nordic environment models as external libraries

for STISIM Drive. SAFER purchased a software

tool, Open Module Programming (OMP) that is

able to construct external models for diverse

environment visualization. The main goal of our

task is to help SAFER implementing Nordic

environments into their driving simulator. This

maintenance task serves as the context of

empirical study in our research. Our research is

mainly conducted in the phase of maintenance

planning and studies the adoption of program

comprehension strategies and tools in context of

complex software maintenance.

There are researches showing that software

comprehension issues can lead to software

maintenance slow down. (T. J. Biggerstaff et al.,

1993; S. G. M. Cornelissen, 2009; M. P. O’Brien

2003; B. Shneiderman, 1980; R. Brooks, 1983;

M. A. Storey, 2006). The research question of

this paper is to find how can appropriate

cognitive model or tool improve the software

comprehension process in a large or complex

software maintenance process? We approached

this question from two perspectives: first of all,

we reviewed literatures from previous research

to find importance of software comprehension

process and what causes the slowdown.

Secondly, we performed an industrial case study

together with an engineer from SAFER, and we

interviewed the engineer after the case study.

The results of the industrial case study are used

to verify whether the theoretical solution can be

adopted in practical problems.

3.2 Research Process

The research process consists of both a literature

review and empirical research. In literature

review, we found several papers about the

importance of software comprehension during

software maintenance. (T. J. Biggerstaff et al.,

1993; S. G. M. Cornelissen, 2009; M. P. O’Brien

2003; B. Shneiderman, 1980; R. Brooks, 1983;

M. A. Storey, 2006). Then we explored different

existing cognitive models that can be applied to

improve software comprehension problems.

After we read through all the articles we found,

we have identified six cognitive models that are

relevant to our maintenance task. Moreover, the

characteristics and capabilities of each model is

analyzed to verify whether the cognitive model

improve the software comprehension or not.

After the literature review, we started the

industrial case study together with SAFER.

During the industrial case study, the same

maintenance task is given to the engineer from

SAFER, they performed the maintenance task

first time without introducing the cognitive

model and then after some discussion and

analysis they performed the maintenance task

again with the cognitive model in mind, and we

assisted and observed their performance. The

content of the maintenance task was to replace

three current building models in the driving

simulator with three Nordic style building

models.

When they have finished the tasks first time, we

get together and discuss the difficulties and the

problems that occurred during the maintenance

process. After all the feedback of results and

experience were gathered, we reviewed six

cognitive models together with SAFER,

evaluated the cognitive model that is most

suitable to solve the difficulties and problems

during the maintenance process. The second time,

we helped SAFER to operate the same

maintenance task again, this time we applied

suitable cognitive model; we guided and

participated in the maintenance process. During

the process, relevant data are recorded while

performing the maintenance tasks together with

SAFER’s engineer. After they have finished the

task second time, we gathered all data related to

the changes in behaviors between first time and

second time in terms of maintenance

performance. Finally, we interviewed the

engineers who participate in the industrial case

study, several questions have been asked related

to their experiences before and after adopting

cognitive model.

3.3 Data Collection

The information gathered from literature review

are collected through research papers related to

cognitive models, and the data for industrial case

study are collected through observation and

interview of SAFER’s engineer. Techniques we

used to collect literature data are key words

search using search engines, such as

SpringerLink, IEEE Xplore, Elsevier and ACM.

We tried to collect and read parts that are related

to our topic. The data from empirical research

were collected through observation and

experience gained during maintenance task

performance before and after the introduction of

the cognitive model.

3.4 Data Analysis

3.4.1 Literature review

When collecting research papers related to

importance of comprehension and cognitive

model, we used key words such as software

comprehension, cognitive model, improve

software maintenance etc. The opinions from all

collected research papers are used to discuss

whether cognitive model improve software

comprehension process or not.

3.4.2 Industrial case study

The data from industrial case study was analyzed

by measuring the time taken of the maintenance

task before and after we introduced the cognitive

model to SAFER’s engineer. To decide which

model is most suitable for the maintenance task

in SAFER, we analyzed the characteristics and

capabilities of each model together with

SAFER’s engineers according to the difficulties

and problems of the maintenance task. Later, we

interviewed two of the SAFER’s engineers, and

asked their opinion of the differences before and

after the introduction of cognitive model. All this

information was used to discuss if the cognitive

model could improve the software

comprehension process in large-scale complex

software maintenance.

3.5 Research limitation

The main limitation in our research is resource

limitation, including time and human resource.

Because SAFER bought their driving simulator

from a third party, there are lack of technicians

we can interview with, and the time to do

STISIM Drive maintenance task is just about

two and half month. There is limited time budget

and human resource during the research process,

thus we cannot perform any experiment to verify

whether adopting cognitive in software

maintenance is more effective than maintain

without cognitive model. Moreover, STISIM

Drive has many limitations for extensibility of

the software, e.g. the building models in the

software are encrypted by a third party.

4 Data
This section shows some empirical data

collected during the industrial case study.

4.1 Interview Data

As we have described in research process section,

we performed an interview with engineers from

SAFER. A one-to-one interview was performed

and involved the main maintainer of SAFER’s

simulation lab.

Through the interview, we found out that

programming skill is not the most important

issue we concerned in our industrial case study.

The main maintainer from SAFER has basic

knowledge of the programming languages used

in driving simulator maintenance. In the case of

lacking of programming skill, the maintenance

process indeed improved after adopting

cognitive model.

While SAFER was performing the maintenance

task at first time without any guidelines, the task

became very difficult to carry out. The comment

from main maintainer: “We were totally lost,

and don’t know where to start with. The

structure of the software is quite complicated,

and the user manual is very time-consuming to

read. Thus, it was impossible for us to complete

the task on time.”

The major issue in the maintenance task is lack

of understanding of software structure. Thus, the

main maintainer states that it was difficult for

them to figure out what should be changed, and

how to change it without a good understanding

of software structure. If they entirely understand

the structure of the software, the maintenance

task would be much easier for them to carry out.

Finally, we found that cognitive model is indeed

helpful for SAFER’s engineers, because after we

introduced cognitive model to them, they

understood the software structure much better

than before, and figured out how to complete the

maintenance task. The main maintainer said: “I

think the model helped us understanding the

structure of the driving simulator better. After

you guys presented the cognitive model, we kind

of understood where module we should make a

change and which file should be override by new

file. Besides, we had some experiences gained

from the first time; hence, the maintenance task

became much easier for us.”

4.2 Cognitive Model Analysis Data

Hypothesis-driven model is one form of top-

down cognitive model, which is a mature and

verified theory for program comprehension.

Maintainers normally select top-down model

since they are part of familiar with the source

code. In our case, we began with top-down

model and developed using an as-need strategy

(M. A. Storey, 2005). As-needed strategy refers

to the programmer only focuses on the code

sections related to the specific task at hand and

does not study the dynamic relationships in

much detail at all (M. P. O’Brien, 2003).

STISIM Driving simulator is a complex and

huge system, but we just focus on environment

visualization and model building. In accordance

with our needs, we established some goals in our

maintenance task, and searched for the relevant

modules to support these goals. Hypothesis is the

main clue to guide conjecture of sub-goals and to

build a hierarchy of goals. Through verifying of

hypotheses and refining of goals, we had a goals

hierarchy in hand (see Figure 1). It indicated the

completion of goals hierarchy that every sub-

goal is supported by one or more beacons. The

sections of code would be reorganized to serve

as beacons in the model. In realization of sub-

goals and accumulation of reorganize beacons,

domain model and program model would be

built gradually. After analyzing and refining the

goals, we identified code sections or functions

that serve as beacons to support for

corresponding sub-goals (see Table 1).

The main problem of SAFER‘s maintenance task

is they spend too much time in software

comprehension process, because the engineer

from SAFER don’t know the software structure

of their driving simulator. The solution to

improve software comprehension in SAFER’s

driving simulator is adopting cognitive model in

comprehension process. SAFER’s driving

simulator, is programmed in Visual Basic and its

models are constructed in C++. Because we are

familiar with the semantic and syntax of Visual

Basic and C++, thus after literature review, we

have identified hypothesis-driven top-down

model (HDTD model) proposed by Brooks

(1983) can be adopted to improve program

comprehension issue at SAFER.

Top-down strategy served as dynamic process

strategy and comprehensive manner in the

research. Our maintenance is an extension and

complement of main functionality and can be

defined as a perfective maintenance. After

analyzed the comprehend task, we attempted to

build a high level structure model as software

comprehension strategy in STISIM Driving

maintenance eventually.

Figure 1 Goals Hierarch

In term of sub-goals and beacons, we had an

external library development. This development

is an abstraction of STISIM Drive and it is

designed to display the relevant features and

characteristics of system that we studied, and

modified. Framing as a software comprehension

model, this representation serves as the mental

model and the process described above is the

assimilation process. The external representation

is a low level structure of STISIM Drive (see

Figure 2) provided in product development

documents. Together with existing knowledge

base, we managed to create Nordic building

models and adopt them to SAFER’s driving

simulator.

Figure 2 Low level structure of STISIM Drive

Goals(from high

to low)

 Beacons

Driving

Environment

Visualization

Surrounding

visualization

Scenario

design

Scenario

configuration

Scenario Definition Language(SDL)

programming

 Component

models loading
Dim Tools As New

TJRWinToolsCls(Create an instance of

the graphics object)

Dim Graphics As New

TJR3DGraphics(Create an instance of

the terrain object)

 Model library

building

 Component

models design

AddNew, ControlInputs, Dynamics,

Handle Crash…

Table 1 Sub-goals and corresponding beacon

5 Discussion
In this section, we will discuss our research

focus in two different perspectives, which are

also the questions directed the research. The

arguments supported our discussion are the

evidences gained from theoretical review and the

data collected from industrial case study.

5.1 How does the program comprehension

process affect the software maintenance

process?

Theoretically, the significance of program

comprehension for software maintenance is self-

evident. We admit that the degree of program

comprehension, to great extent, determines the

quality, even success of software maintenance.

That is, where to make the changes and how to

make the changes depends on how well the

software maintainers comprehend the software.

Program comprehension is a core activity in

software maintenance. If a program is not

comprehended well, it will seriously impede the

process of the maintenance project, which

involves third-party or external maintainers, and

obviously this will lead to some negative results.

The most direct consequence is the growth of the

maintenance life cycle. Additionally the software

performance and stability might be reducing. In

our research, we observed how SAFER’s

engineers maintained the STISIM Drive

simulator. Their maintenance process is very

struggling and time-consuming. A main reason is

SAFER’s engineers were not aware of their

problem in program comprehension.

Theoretically, there exist various aspects

affecting program comprehension, making it an

inherently complex and difficult problem to

address. W. J. Meng et al (2006) identify some

of the major issues that will markedly affect the

comprehension process. They include: the user’s

comprehension ability; the characteristics of the

software system to be comprehended; the

comprehension task to be performed; the tools

and software artifacts (e.g. source code,

documentation) available to support the

comprehension process. Software artifacts

include source code and all documentations. As

dealing with source code involves a mental

mapping between the system’s code and its

behavior, large amounts of source code are

difficult to interpret directly because they result

in a cognitive overload on the part of the

maintainer. As a consequence, program

comprehension is a rather time-consuming

activity: research indicates that some 40% to

60% of the maintenance effort is devoted to

understanding the software to be modified

(SWEBOK, 2004). In SAFER, the same thing

happened. Those four aspects affect their

comprehension process. Firstly, SAFER’s

engineers did not have any successful

experiences of maintaining this US simulator.

Secondly, SAFER is just an end user of STISIM

Drive simulator, in another word, they do use it

but do not understand it very well. They did not

have relevant knowledge background of this

product, such as what kind of software to be

maintained and to be comprehended, and

software characteristics represent the software’s

application domain, size and complexity,

programming language and architecture, and so

on. Thirdly, in our observation, we found out

SAFER’s maintainers had a big problem in

program comprehension. Thus, they did not

know how to perform the maintenance task.

Finally, SAFER is just a user so they did not

need to cope with any software artifacts except

the user manual. Unsurprisingly, SAFER’s

maintainers are stuck in software maintenance

because of the bad comprehension of their

product. That obviously reflects how important a

good comprehension of maintained software for

the achievement of success.

Program comprehension is a cognitive process

and refers to activities human do understanding,

conceptualizing, and reasoning about software.

In this regard, a crucial aim of tools for software

comprehension is to assist and improve human

thinking processes. Simply put, software

comprehension tool are considered “good” if

they support human cognition (A. Walenstein,

2002). We take it for granted that maintainers

seek supporting to cognitive tools in the

comprehension process of software maintenance.

5.2 How can a cognitive model or tool

improve the software comprehension process

in a large or complex software maintenance

process?

5.2.1 Literature Review Findings

We conducted a theoretical analysis on various

cognitive models in our industrial case study and

aimed on finding an appropriate solution for our

specific task. A. V. Mayrhauser et al (1995)

proposed three models of evaluation criteria,

static structures incorporating, dynamic process

representation, and experimental validation

degree. They said that a static structure

incorporating refers to “does the model

incorporate static structures that represent

persistent knowledge and the system’s current

mental representation?” Dynamic process

representation refers to “does the model

represent dynamic processes that build the

mental representation using knowledge?” The

last one, experimental validation degree refers to

“the extent each model validated by

experiments.”

Improving the software comprehension

process in traditional ways
We detected the mapping way of top-down

model is from problem domain to programming

domain or from strategic plan to implementation

plan. The intermediate domain is the tactic plan.

The dynamic process is only one direction, from

top to bottom. The emphases of top-down

models differ from one form to another. Brooks’

model (1983) is the prototype of our model, and

differs from other models in that all changes to

the current system representation are driven by

hypothesis (A. V. Mayrhauser et al, 1995).

However, M. P. O’Brien presents the main

limitation with this theory. It is that the model

over-emphasizes the ‘top-down’ approach to

comprehension, dismissing other strategies as

‘degenerative processes’. It does not take into

account, programmers who are inexperienced in

the domain, who cannot use ‘top-down’

comprehension as they are lacking the

knowledge to formulate the hypotheses in the

first place. The knowledge base is always

undefined in Brooks’ cognitive model.

Integrated meta-model combines the top-down

understanding of Soloway, Adelson, and

Ehrlich3 with the bottom-up understanding of

Pennington, hence, its dynamic process follows

both top-down and bottom-up manner. As we

mentioned in previous section, the integrated

meta-model has four components, domain model,

program model, situation model, and knowledge

base. A. V. Mayrhauser et al (1995) said the

knowledge base furnishes the process with

information related to the comprehension task

and stores any new and inferred knowledge.

Other three component models may be active

during the comprehension process and

maintainers are able to switch between all three

sub-models randomly. Top-down comes into

effect predominately when the code is familiar.

When the code is unfamiliar, maintainers can

switch to bottom-up model. The most striking

feature is self-evident, which is integrated meta-

model supports frequent switching between top-

down and bottom-up (M. P. O’Brien, 2003, M. A.

Storey, 2005). M. P. O’Brien (2003) claims that

the integrated meta-model has been used to

identify the sequences of activities carried out to

accomplish a comprehension goal and to

understand how these are aggregated into higher-

level processes. These can form the basis for

identifying information needs during program

comprehension and to define useful tool

capabilities.

Comparing with top-down cognitive theory, the

bottom-up model provides more details and

describes the specific of cognition process and

knowledge (A. V. Mayrhauser et al, 1995).

Comprehension is built from the bottom up, and

abstract concepts are formed by chunking

together low-level information, accordingly, it is

lack of higher level knowledge structure, such as

design or application-domain knowledge (A.

V. Mayrhauser et al, 1995, M. P. O’Brien, 2003).

Pennington’s model is a typical bottom-up

cognition model. It contains mechanisms for

abstraction. These mechanisms facilitate

maintainers building the metal representation

from control-flow abstraction to data-flow

abstraction (M. A. Storey, 2005). As we

mentioned before, Pennington suggest

maintainers build at least two models in the

comprehension process, program model and

situation model. Control-flow abstraction of

program, which captures the sequence of

operations, is referred to construct a program

model and is developed through chunking of

microstructures in text (statement, control

structures and relationships) into macrostructures

(text structure abstractions) (M. A. Storey, 2005).

A situation model is developed after the program

model is fully assimilated. This model is a

detailed representation of situation and helps

maintainers understand a program, which

includes knowledge about data-flow abstractions

and functional abstractions (M. P. O’Brien, 2003,

M. A. Storey, 2005). However, O’Brien states

that building this mental model is a time

consuming effort, as it is constrained by the

limited capacity of working memory.

New ways improve comprehension process

The behavioral IDE, Dynamo, is the foundation

of a possible solution of program comprehension.

It is capable of representing the design

information of system in term of its behavior

rather than its structure. Dynamo is developed by

R. Bayer and A. E. Milewski (2008) and its main

advantage claimed by R. Bayer et al is more

easily and more quickly to gain a grasp of the

software system they are maintaining, thus

reducing time and cost of software maintenance.

Dynamo facilitates maintainers to navigate a

software system via its behaviors or use cases;

hence, R. Bayer et al apply UML sequence

diagrams to display the visual representation of

behaviors and corresponding interactions

between objects. This is a predominant

characteristic of a behavior-based IDE. The

reason stated by R. Bayer et al is that sequence

diagrams have been shown to be a highly

efficient and quickly comprehended way to

represent the behavioral view of a software

system. The features of Dynamo include

zooming and scrolling. Most importantly,

Dynamo is very interactive, since maintainers

can easily shift between a behavioral

representation of a system and its source code

structure. One interesting point of view R. Bayer

et al (2008) identified in their experiment is

adopting an IDE with sequence diagram forces

maintainers to use a strong and consistent

strategy for program comprehension in software

maintenance. Based on experimental results, R.

Bayer et al suggest Dynamo users to use the top-

down model in the maintenance process. The

shortage of behavior-based cognitive solutions is

evident like its strength. Even though Dynamo is

active and flexible as R. Bayer et al (2008)

described; it cannot illustrate structural

information in higher level, like classes and

functions. In addition, the study just focuses on

software maintenance of simple systems, thus,

utility of such approaches for more complex

maintenance tasks or large-scale system should

be explored (Bayer et al 2008).

W. J. Meng et al (2006) define their context-

driven model as a formal process model to

support the comprehension of software systems

by using Ontology and Description Logic. The

process itself is supported by two main

components, the ontology manager and its query

Interface and the story manager. They state their

approach differs from existing work by

providing a uniform ontological representation

of the different information resources, including

the context-sensitive user interaction with the

comprehension process and the ability to reason

across these knowledge resources. In other word,

this ontological representation is a formal

description that integrated all information

resources and their interactions. The relevant

information resources include Task, User, Tools,

Artifacts, and Software, Documents, and

Historical data. W. J. Meng et al (2006)

summarize the competence of their context-

driven process model in two aspects, serving as

complementary to these ongoing tool integration

efforts, and providing a formal ontological

representation that supports reasoning across

knowledge sources and provides context support

and guidance during the comprehension process

itself.

S. Xu’s (2005) multi-dimensional cognitive

model has two core theories, constructivist

learning theory and Bloom’s taxonomy of

cognitive domain. Comparing with top-down

model or bottom-up model, S. Xu (2005) claims

that multi-dimensional model is more complete

and detailed. It explains all the program

comprehension processes by integrating both

top-down and bottom-up models. It also

classifies the cognitive activity during program

comprehension into four activities, absorption,

denial, reorganization and expulsion (S. Xu,

2005). In this way, maintainers are facilitated to

get and to comprehend the knowledge so as to

synthesize information and to generate

hypotheses.

Summary of cognitive theories
The strengths and the drawbacks of diverse

cognitive theories and models limit its adoption

in program comprehension. Every theory or

model has their own features and it is probably

suitable for a kind of case or appropriate to cope

with a sort of specific task. We concentrate on

the theories and models, which are elaborated in

Theoretical Framework, and their striking

capabilities and limitations. We will analyze and

summarize these cognitive theories.

Top-down cognitive model is driven by

hypothesis, whereas, the mental representation

could be changed or updated by other means –

for instance, novice maintainers may resort to a

bottom-up model because of hypotheses fail or

they may attempt to a strategy-driven method,

like opportunistic strategy (A. V. Mayrhauser et

al, 1995, M. P. O’Brien, 2003). A.

V. Mayrhauser et al (1995) concludes that both

top-down and bottom-up use a matching process

between what is already known (knowledge

structures) and the artifact under study, and no

one model accounts for all behavior as

programmers understand unfamiliar code. They

also claim the integrated meta-model responds to

the cognition needs for large software systems,

accordingly, top-down and bottom-up are

applicable for small scale code experiments and

maintenance. It combines relevant portions of

the other models and adds behaviors not found in

them-for example, when a programmer switches

between top-down and bottom-up code

comprehension. Multi-dimensional cognitive

model explains the cognitive activities in detail

and it can also be applied in different cases (S.

Xu, 2005). Other two cognitive theories,

behavior-based model and context-base process

model rely on the specific case or maintenance

task much more. Von Mayrhauser and Vans

(1998) claimed that, the models used may vary

depending on the tasks and the programmers’

command of knowledge on domains and

programming, therefore, maintainers can adopt

these two theories in accordance with needs and

models’ characteristics. Naturally, program

comprehension is a goal-oriented and

hypothesis-driven problem-solving process.

5.2.2 Industrial Case Study Findings

Interview findings

Through one to one interview with the main

maintainer from SAFER, we find out that the

cognitive model helped the software

comprehension of the driving simulator in

SAFER. However, we noticed some aspects

through interview that might affect the result of

adopt cognitive model in software maintenance.

First of all, we perform the maintenance task the

first time without cognitive mode, and then

perform the same task again after cognitive

model has been introduced. This can affect the

result, because at the second time, user has the

experience of deal with the same task even

without cognitive model.

Secondly, the programming skill of SAFER’s

engineer is quite basic. At the second time, we

guide them to perform the maintenance task

during the process, which can affect the result.

Since we have better programming skills than

SAFER’s engineers.

Thirdly, the maintenance task in our industrial

case study can be solved by adopting cognitive

mode, but it might not be that easy to find

appropriate cognitive model for every software

maintenance task. Sometimes it requires much

higher programming skills for the maintainer.

Finally, there are some limitations of our

industrial case study findings, but through one to

one interview with SAFER’s main maintainer,

we noticed that the cognitive model in this case

definitely improved understanding of the

software structure. This means, the cognitive

indeed shorten the time consumption of software

comprehension process.

Model analysis findings

W. J. Meng et al (2006) mentioned that the

comprehension task to be performed is a major

issue affecting program comprehension process.

In our industrial study, we adopt top-down

model into our maintenance task. According to

A. V. Mayrhauser et al, new code could be

understood entirely in a top-down manner if the

programmer had already mastered code that

performed the same task and was structured in

exactly the same way. The goal of our

maintenance task is to adopt Nordic environment

into the current driving simulator, thus we sort

out the structure of the software and looked into

the current land terrain, building and traffic sign

models. By study the mechanism of current

models, our maintenance task become much

easier, since we already understand how current

models are build and structured, we can just

create new models with Nordic environment by

ourselves.

Supported by HDTD model, we partially

comprehended the software rather than to fully

understand the whole program. We successfully

detected the place to be changed through using

of goals hierarchy so that the maintenance time-

consuming was reduced remarkably. The result

of applying a cognitive model seems to have

improved the software comprehension process a

great deal. The time taken before introducing

cognitive models to SAFER, took them many

hours to achieve the result, but after we have

introduced the cognitive model, the time taken of

the same maintenance task become about half

hour to one hour for each task.

Summary

In the maintenance task, we interviewed

SAFER’s engineer about their opinion of using

cognitive models. The result of the interview

seems that, they do think the cognitive model we

introduced is quite helpful. Because, even

though they do not understand much about

programming, but the cognitive model helped

them to understand the behavior pattern of the

software itself, thus it is much easier to find the

specific part of code and modify them. In terms

of data collected from observation, participation,

discussion and interview, we are able conclude

that the comprehension process is improved by

adopting a cognitive model. The time-consuming

on diagnosis and integration is reduced

significantly, and the life-cycle of maintenance is

shortened as well.

6 Conclusions and future work
Large-scale complex software maintenance

process usually takes quite a lot of time, mainly

due to the comprehension process. The goal of

this paper is trying to show that adopting the

relevant cognitive model as a guideline in the

comprehension process could speed up the large-

scale complex software maintenance process.

Through the literature study, we found

theoretical proof from several authors (T. J.

Biggerstaff et al 1993, S. G. M. Cornelissen,

2009, M. P. O’Brien 2003, B. Shneiderman,

1980, R. Brooks, 1983, M. A. Storey, 2006) to

show that software comprehension play a very

important role in the software maintenance

process; also, a cognitive model helps people

understand the software structure and behavior

better. The maintenance task in our case study is

large-scale complex software maintenance. In

this empirical study, we found that adopting the

relevant cognitive model from the theoretical

finding could shorten the large-scale complex

maintenance task process.

These findings allowed us to give the following

suggestion to maintainers of software:

 Always bear software comprehension in

mind first while dealing with software

maintenance issues.

 Read how others use cognitive models

in software maintenance before the start

of the maintenance process.

 Analyze different cognitive models and

become familiar with them before

planning the maintenance task.

 Find relevant cognitive models by

analyzing the characteristics of the

model and how well it suits the

maintenance problem you have.

 In addition, we suggest maintainers

adopt an as-need strategy in small scale

or functional maintenance.

In the future, we would like to complete our

evaluation in both a theoretical way and an

empirical way and to conduct empirical research

aiming to verify the effectiveness of cognitive

theories. We believe this paper is a very useful

reference for people who are experiencing

comprehension problems in a software

maintenance task. However, the comprehension

issues vary from case to case, thus not all the

comprehension issues can be solved with one

cognitive model, and sometimes people need to

define their own cognitive model to overcome

issues that cannot be resolved with existing

cognitive models.

Acknowledgement:
Sincere thanks for comments, feedback and

encouragement from Helena Holmström Olsson

and Björn Olsson while writing this paper.

REFERENCE

Bayer, R., Milewski, A. E., 2008. Improving

Software Maintenance Efficiency With

Behavior-Based Cognitive Models. IEEE

International Conference on Systems, Man and

Cybernetics.

Biggerstaff, T. J., Mitbander, B. G., Webster, D.,

1993. The Concept Assignment Problem in

Program Understanding. Proc. International

Conference on Software Engineering.

Brooks, R., 1983. Towards a theory of the

comprehension of computer programs. Int. J. of

Man-Machine Studies, pp. 543-554.

Cornelissen, S. G. M., 2009. Evaluating

Dynamic Analysis Techniques for Program

Comprehension. pp. 13-15.

Guide to the Software Engineering Body of

Knowledge, 2004, SWEBOK.

ISO/IEC 14764 IEEE Standard, 2006. Standard

for Software Engineering - Software Life Cycle

Processes - Maintenance, Software & Systems

Engineering Standards. Committee of the IEEE

Computer Society

Jin, D., 2005. Design Issues for Software

Analysis and Maintenance Tools. 13th IEEE

International Workshop on Software Technology

and Engineering Practice. University of

Manitoba.

Letovsky, S., Soloway, E., 1986. Delocalized

plans and program comprehension. IEEE

Software, 19(3), pp. 41 - 48.

Mayhauser, A. V., Vans, A. M., 1995. Program

Comprehension During Software Maintenance

and Evolution. IEEE Computer, pp. 44-55.

Mayrhauser, A. V., Vans, A. M., 1998. Program

understanding behavior during adaptation of

large scale software. 6th International Workshop

on Program Comprehension.

Meng, W. J., Rilling, J., Zhang, Y. G., Witte, R.,

Mudur, S., Charland, P., 2006. A Context-Driven

Software Comprehension Process Model. IEEE

Workshop on Software Evolvability.

O’Brien, M. P., 2003. Software Comprehension

– A Review & Research Direction. Technical

Report, University of Limerick.

Pennington, N., 1987. Comprehension Strategies

in Programming. Proc. Second Workshop

Empirical Studies of Programmers, Ablex

Publishing, pp. 100-112.

Rajlich, V., Xu, S., 2003. Analogy of

Incremental Program Development and

Constructivist Learning. 2nd IEEE Int. Conf. On

Cognitive Informatics, pp. 98 – 105.

Reinikainen, T., Hammouda, I., Laiho, J.,

Koskimies, K., Systä, T., 2007. Software

Comprehension through Concern-based Queries.

15th IEEE International Conference on Program

Comprehension, Tampere University of

Technology & Nokia Research Center.

Shneiderman, B., 1980. Software Psychology:

Human Factors in Computer and Information

Systems. Winthrop Pub.

Shneiderman, B., Mayer R., 1979.

Syntactic/semantic interactions in programmer

behavior: A model and experimental results.

International Journal of Computer and

Information Sciences, pp. 219-238.

Sim, S. E., Storey, M. A., 2000. A Structured

Demonstration of Program Comprehension

Tools. IEEE Computer, pp. 184-193.

Soloway, E., Ehrlich, K., 1984. Empirical studies

of programming knowledge. IEEE Transactions

on Software Engineering, pp. 595-609.

Storey, M. A., 2005. Theories, Methods and

Tools in Program Comprehension: Past, Present

and Future. 13th International Workshop on

Program Comprehension, University of Victoria.

Von Mayrhauser, A. V., Vans, A. M., 1993.

From program comprehension to tool

requirements for an industrial environment. 2
nd

Workshop on Program Comprehension, pp. 78-

86.

Walenstein, A., 2002. Theory-based Analysis of

Cognitive Support in Software Comprehension

Tools. 10th International Workshop on Program

Comprehension (IWPC’02).

Xu, S., 2005. A Cognitive Model for Program

Comprehension. Third ACIS International

Conference on Software Engineering Research,

Management and Applications.

