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Abstract

This paper examines power issues for the ADF and four break models (Perron 1989, Zivot 

and Andrews 1992) when the DGP corresponds to one of the break models. Choosing to 

test an incorrect break model can but need not greatly reduce the probability of rejecting 

the null. Break points that are relatively early in the sample period have substantial effects 

of  increasing  power.  For  modest  shifts  in  time  trends,  simply  including  a  time  trend 

without shift in the model preserves power, but not for large time-trend shifts.
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I. Introduction

The researcher can test the unit-root null against a variety of alternative models, including 

the  Augmented  Dickey  Fuller  test  equation  and  several  "break  models"  of  the  type 

explored by Perron (1989) and Zivot and Andrews (1992) and many others after them. 

Below are the standard Augmented Dickey-Fuller model and four common break models: 1

ADF Δ rt=μ+α r t−1+∑ j=1

k
γ j Δ r t− j+ut ,

B1 Δ rt=[μ+Dμ θ]+αr t−1+∑ j=1

k
γ j Δrt− j+u t ,

B2 Δ rt=[μ+Dμ θ]+β t+α r t−1+∑ j=1

k
γ j Δrt− j+u t ,

B3 Δ rt=μ+[βt+Dβϕ(t−T β)]+α r t−1+∑ j=1

k
γ j Δ rt− j+ut ,

B4 Δ rt=[μ+Dμ θ]+[β t+Dβϕ(t−Tβ)]+α r t−1+∑ j=1

k
γ j Δr t− j+u t ,

In formulating her research design, the analyst may test only a single model or may test a 

battery of models. This paper supposes that one of the break models is the Data Generating 

Process and explores the consequences if the researcher chooses to use an incorrect model, 

that is, misspecifies the test equation. 

Power experiments show that if the null is false but a misspecified model is tested, 

the probability  of a  Type II  error  may,  but need not,  be large.  As expected,  the costs 

1 r t  is the variable to be tested under the unit-root null hypothesis,  μ  the mean, β  the coefficient on the 

time trend t , α  the coefficient on the lagged level, the γ j  the coefficients on the lagged changes, Dμ  a 

shift-in-mean dummy, equal to zero for t<Tμ ,  and equal to unity for t≥Tβ ,  Dβ  a shift-in-trend dummy, 

equal to zero for  t≤Tβ ,  and equal to unity for  t≥Tβ ,  θ  and  ϕ  are coefficients on the parameter-shift 

dummies Dμ  and Dβ,  and T b=T μ=Tβ  if the model includes both parameter shifts. In the standard ADF 

used in finance applications, β=ϕ=θ=0.  In B1, β=ϕ=0 ;  in B2, ϕ=0;   in B3, θ = 0; and in B4, φ, β, θ 

are freely fit. In fitting the Break Models, the times of the structural breaks, Tµ and Tβ, are typically estimated, 

using methods pioneered in Zivot and Andrews (1992) and advanced in Perron (1997).  
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depend on the misspecification relative to the true model: in some cases the probability of 

rejection  falls  little  or  actually  rises  compared  to  the  true  model;  in  other  cases  the 

probability falls drastically. Further, the costs of selecting a misspecified model depend on 

the location of the true break in the sample period. The researcher who decides to test only 

a particular specification is testing the null that the data contain a unit root against the joint 

alternative that the data do not contain a unit root and that the researcher has correctly 

selected the model to which the Data Generating Process corresponds or a different model 

with close likelihood of rejecting. 

The  researcher’s  choice  between  models  and  between  estimating  one  versus 

multiple models depends on her objective. If her purpose is to discriminate between the 

unit-root null and a particular alternative model above, perhaps as implied by theory, the 

researcher may test only the particular alternative. If the researcher is interested in whether 

the data contain a unit root but equally in which model corresponds to the DGP, then he 

may estimate multiple models. Even if the results convince the researcher that the data do 

not contain a unit root, he may find it very difficult  to decide among several plausible 

alternatives,  depending  on  which  parameter  shifts,  the  size  of  the  shift,  the  speed  of 

adjustment, the point in the sample period at which the shift occurs and the model that 

corresponds to the DGP.  

A number of papers have discussed issues of power, but with different perspectives 

from this paper's. Perron (1989, 1997) and Zivot and Andrews (1992) discuss the loss of 

power if the researcher must search the data for the break point that gives the optimum 

value of some criterion rather than knowing the break ex ante. They note that if the DGP is 

an ADF, then using a break model as the alternative reduces power. They do not, however, 

discuss power in the case where the DGP is one break model, but the researcher uses a 
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different break model as the alternative.  Kim and Perron (2006) analyze unit-root tests 

where  the  DGP has  a  break  in  time  trend  at  an  unknown point  under  both  null  and 

alternative hypotheses. They show that taking account of this trend break improves power. 

Hecq and Urbain (1993) show that  using  an incorrect  break  date  in  break-model  tests 

causes loss of power (and size distortion). Muller and Elliot (2003) discuss the effect on 

unit-root tests of initial values: an initial value far different from what might be expected 

from the DGP, after "warming up" for say 20 periods, substantially affects the test's power. 

Montañés et  al.  (2005) "study the consequences of an incorrect  selection of the [break 

model]" when the DGP corresponds to a break model. They explore only two break models 

as DGPs;  they use such a  fast  speed of adjustment  and large shifts  in  trend that  their 

simulation results are unrevealing for many practical purposes, for example,  evaluating 

real exchange rates.  

Tables 1, 2 and 3 show power results for: various break-model DGPs, adjustment 

speeds,  parameter  shifts  and location  of  break  in  the sample  period.  (i)  The power  of 

models  if  the  time  of  the  break  is  early  in  the  sample  period,  Tb=30,  is  often  larger, 

sometimes much larger, than if  Tb=75, Tb=120. Reporting the estimated date of the break 

relative to the beginning and end of the sample period is important  to aid the reader's 

evaluation. (ii) If the time trend shifts, models that do not include a time trend, ADF and 

B1 models,  may  have  quite  low power.  (iii)  Conditional  on  the  speed  of  adjustment, 

multiple models are likely to reject when the parameter change is a time-trend shift and the 

model contains a time trend (B2, B3 and B4). As the shift in the time trend increases above 

a certain level, however, the B2 model's power falls sharply  because B2 contains a time 

trend but does not allow for a shift in trend. As might be expected, (iv) ceteris paribus, 

power increases with increases in the speed of adjustment,  and (v) multiple models are 

4



likely to reject when the speed of adjustment is large, as sometimes occurs in practice—see 

below.

II. Small Speed of Adjustment 

The simulation results are presented in Table 1. The Monte Carlo simulations use 100,000 

replications  of 170 observations for each DGP. The first  20 observations  warm up the 

model and are discarded. In the DGP, the breaks in the remaining 150 observations are at 

Tb=30, Tb=75 or Tb=120. Following Perron (1989) and others, for B4 the shifts in mean and 

time trend occur at the same date. 

The power results in Table 1 are representative for the case researchers often face, a 

slow adjustment speed. The initial mean is µ=0 and the mean shift is one standard devia-

tion of the error process. The initial time-trend is β=0.01, meaning 1%/month or 12%/year. 

One time-trend shift is 0.01 (1%/month or 12%/year), or a doubling of trend. A second is 

0.10 (10%/month or 120%/year), a value unlikely save in crises; results for this case are 

useful, however, for exploring effects of large changes. First, for each DGP—correspond-

ing to B1, B2 and two versions each of B3 and B4 models—the total percentage of rejec-

tions falls as  Tb rises from period 30 to 75 to 120. There is a trivial reversal of B2 for 

Tb=75 and Tb=120 periods.  Differences between the estimated and true break points have 

important effects; see Kim et al. (2000) and Montañés et al. (2005). This paper has a differ-

ent focus, however.   In general, for all break models power is sensitive to where the break 

occurs in the data  Tb=30,  Tb=75,  Tb=120, but the models are sensitive in different ways. 

Second, the probability of the ADF rejecting is zero across all DGPs in Table 2 for Tb=75 

or Tb=120. With a small -α, even a modest parameter shift destroys the power of the ADF. 

(To anticipate  Tables  2 and 3,  however,  the ADF can maintain power if -α is larger.) 
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Third, for the DGPs B3 and B4, the B1 model seldom rejects. Note that ADF and B1 mod-

els contain neither a shift in time trend nor a time trend; even with only a modest shift in 

time trend of 0.01—or 1%/month, implying a doubling of the time trend of 1%/month—

models without a time trend have essentially no power. The B2 model, which contains a 

time trend, has relatively good power across DGPs—save for  Tb=75 and  Tb=120 for the 

DGP B3a with a large time-trend shift of 0.10, or 10%/month. Finding multiple rejections 

is more likely if Tb=30 than if Tb=75=120. In cases where Tb=30 and a model other than the 

ADF rejects, the researcher may choose to believe the DGP corresponds to the model that 

rejects, though perhaps assigning a B2 rejection to a DGP corresponding to B3a, and sus-

pecting that a rejection by B3 arises from a DGP corresponding to say B1, B2 or B4b.  

Rejection frequencies for Tb=75 and Tb=120 

For Tb=75, for any DGP that corresponds to B1, B2, B3b or B4b, the maximum occurs for 

the same model as the DGP. This suggests that in the absence of other information the re-

searcher might take rejection by, say, the B1 model at face value as implying the DGP cor-

responds to B1. For Tb=120, however, in a number of cases the break model corresponding 

to the DGP has lower power than other models. If the DGP corresponds to B1, then the re-

jection frequencies are 7.00% for B1 but 7.16% for B2. If the DGP corresponds to B4b, 

then the B4 frequencies are 6.17% for B3 and 4.19% for B4. In other cases, the model cor-

responding to the DGP has the highest rejection rate but other models have somewhat simi-

lar rates. Thus, the researcher should be wary of assuming that the model that rejects the 

null—or rejects the null most strongly in multiple rejections—corresponds to the DGP. 
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Effects of the location of Tb on the probability of rejection 

(i) Across the four DGPs and five estimating models in Table 1, frequencies tend to vary 

strongly as Tb increases; for example, if the DGP corresponds to B1, then the power for B1 

is 16.74%, 14.97%, 7.00% as Tb rises from 30 to 75 to 120.2 (ii) Related, when the DGP 

corresponds to B2, the power for B3b is 18.91%, 0.63% and 3.29% as  Tb rises; the re-

searcher hence faces smaller danger of having the B3b model “steal” power from the B2 

model if Tb=75 or Tb=120. (iii) If the DGP corresponds to B3b, then rejection frequencies 

for the B3b model for Tb=30=75=120 are close to each other. On balance, the researcher 

who finds a rejection by the B3b model for Tb of 75 or 120 might take this at face value. 

(iii) When the DGP corresponds to B4b, the B4 model has low frequencies of rejection, 

6.48%, 8.15% and 4.19% for  Tb rises from30 to 75 to 120. Further, in the two 'extreme' 

panels—for B3a and B4a—B3 has greater power than B4 for Tb=30 and Tb=120, Thus, in 

finite samples the data often "prefer" a simpler model even if the true underlying model is 

B4b. 3 

III.  Results for Ranges of Adjustment Speeds and Parameter Shifts

In Table 2 (shift in mean) and Table 3 (shift in the time trend), the anomalous results in Ta-

ble 1 persist for Tb=30. For Tb=75 or Tb=120, new results arise. First, from Table 2, if the 

2 Related, Kim et al. (2000) discuss how break points early in the sample lead to size distortions. Often  
researchers  trim samples to avoid problems from early and late  break points.  Note that  if  the sample is 
trimmed by 15% at each end, it becomes approximately 23 to 128, including both Tb = 30 and Tb = 120.
3 The small rejection rates for B4 and Tb=120 recur in repeated simulations. Rejections rates of less than 5% 
appear to arise because the iterative search for the break point is not very accurate.  Montañés et al. (2005) 
discuss,  with  theoretical  and  simulation  results,  how  selection  of  an  incorrect  break  date  affects  the  
asymptotic and finite-sample distributions of the test statistic under the alternative. A note below discusses 
the fact  that  they use (a)  a  100% speed of  adjustment and (b)  generally  extreme parameter  shifts,  their 
simulations are unrevealing for many practical purposes, for example, evaluating real exchange rates. 
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DGP is the B1 model, for a relatively small shift in mean of one standard deviation, the 

power results depend crucially on -α. For -α=0.05, the power of the B1 alternative is only 

14.97% for  Tb=75 and 7.00% for  Tb=120. For a DGP corresponding to B1, other models 

have substantially lower power, save for the B2 model for Tb=120. Second, for -α=0.30 or 

(even more strongly) α=-0.50, all models have good power. Taken together, these two re-

sults suggest that multiple rejections in the face of mean shifts are unlikely unless -α is rel-

atively large. As is intuitive, the ADF has no or minimal power in Table 2 unless -α is 

large enough to offset the misspecification from omitting the shift in mean. This is not 

quite conclusive because the important issue is the probability that, conditional on a model 

rejecting, one or more additional models reject. Table 5 addresses the issue of conditional 

probabilities for -α=0.05%.   

Table 3 focuses on a DGP corresponding to the B3 model and examines three time-

trend shifts: very large 0.10 (10%/month, 120%/year), small 0.005 or 0.001 (0.50%/month, 

6%/year,  or  0.1%/month,  1.2%/year)  and  very  small  0.00001  (0.001%/month, 

0.012%/year). First, for  α=-0.05 models that do not include a time trend (ADF and B1) 

have very poor power no matter  the magnitude  of the time-trend shift.  The B2 model 

contains a time trend, but has low power for the largest time-trend shift for  Tb=75 and 

Tb=120 (but substantial power for  Tb=30). For the two smaller time-trend shifts, B2 has 

power comparable to B3 or B4 for all three Tb values. Second, for  larger  α of -0.20 and 

-0.30,  power  is  good  for  all  models  if  the  time-trend  shift  is  quite  small,  0.00001 

(0.001%/month,). As the time-trend shift increases from 0.0001 (0.01%/month) to 0.001 

(0.10%/month) to 0.005 (0.50%/month) for -α=0.20 the power of the ADF and B1 models 

declines monotonically, but the power of the B2, B3 and B4 models stays much the same.
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Adjustment speeds of 20% to 50% per period 

Often  the  researcher  faces  slow adjustment  speeds.  Relatively  large  adjustment  speeds 

sometimes arise in practice, however. For example,  Maican and Sweeney (2012) report 

significant estimated adjustment speeds for nine Central and Eastern European countries, 

where the largest significant estimate for each country for -α is:4 

Bulgaria   Czech R.  Estonia   Hungary  Latvia   Lithuania Romania Slovakia  Slovenia

0.548        0.294        0.093      0.264       0.033    0.043       0.303       0.411       0.339 

Six of the nine estimates correspond to values of -α explored in Tables 2 and 3. For a 

selection of cases, examples of the effects of fast adjustment speeds (-α large) or large 

mean shifts (θ  large) are shown in Table 2. Once again, the time at which the break occurs 

(Tb) often has important effects on results. In cases (4) and (5) in Table 2, the shift in mean 

is  the  base-case shift  1.00 (equal  to  one standard deviation  of  the  error  process).  The 

increase  in  -α from 0.30  to  0.50  raises  the  rejection  rates  for  all  of  the  models,  but 

particularly those which were not already close to 100%. In models B2 and B4, -α =0.30 

but the shift in mean is 1.00 in case (4) and 2.00 in case (2). The larger shift in mean raises 

the rejection rate in the three models which include time trends (B2, B3, B4), but reduces it 

for B1 and ADF; the lack of a time trend becomes more serious the larger is the mean shift. 

Still, in going from case (2) to case (3), the increase in -α gives 100% rejection rates for all 

models; when the shift in mean is 2.00, the substantial misspecification of the ADF is more 

than offset by the larger -α=0.50. 

For shifts in time trend, comparing the results for a small shift of 0.00001 for -α = 
4 As is frequent in the literature, these results are unadjusted for the well-known downward bias in estimates  
of roots and thus upward bias in adjustment speed, or for bias from the time aggregation of prices. 
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0.05 and -α = 0.30 shows a huge effect on rejection frequencies. For Cases 5, 6 and 7 in 

Table 3,  where -α=0.20 and the shifts  in trend increase as 0.0001, 0.001 to 0.005, the 

rejection rates are essentially the same, as 72.78, 72.81 to 72.98 for Tb=75 (and the same is 

true for Tb=30 and Tb=120). The speed of adjustment dominates the results, not the size of 

the trend shift. Across the same increases in the trend shift, for Tb=75 the rejection rates for 

ADF fall as 12.58, 7.35 to 0.50 and for the B1 as 35.08, 30.64 to 14.27. Both ADF and B1 

omit time trends and shifts in trends; as the shift increases, the large speed of adjustment is  

less and less able to offset the effect on rejections frequencies of the omission of the time 

trend and shift in trend.                                                          

Extreme adjustment speeds and parameter shifts in other work

In power investigations, Montañés et al. (2005, pp. 52-55) assume α=-1.00, that is, 100% 

adjustment per period and a root of (1+α)=0. This extreme α, and extreme values in three 

of their four parameter shifts, render many of their power simulation results uninformative 

for case commonly encountered encountered in practice where -α is small and shifts are 

not extreme. In their simulations, when the DGP corresponds to B3 but B2 is instead fit, 

there are very few rejections (pp. 54-55) because of the interaction  of –α=1.00 and the 

shifts in the time trend are so extreme (either 100% or 300% per period, as opposed to this 

paper’s shifts of 1% or 10% per period). When the DGP corresponds to B4, both B2 and 

B3 have low power, again because of the interaction of -α=1.00 and the extreme shifts in 

time trend and, in one case, a shift in mean of ten standard deviations of the error process. 

At the other extreme in Montañés et al., when the DGP corresponds to B2 and the mean 

shift  is one standard deviation of 1.0, the B3 and B4 break models reject at very high 
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levels, over 70% in most cases and over 90% in some cases (Table 1, p. 53). Their mean  

shift corresponds to that in Table 3 here, where rejection rates are much lower.5 

IV. Conditional Rejection: Rejections by Multiple Alternative Models  

Results in Table 4 show how frequencies of conditional rejection for  -α=5% and  Tb=75 

depend on the model to which the DGP corresponds.  For the DGP corresponding to B1, 

the power of B1 is 14.97% [see the (power) row], or the null is rejected in 14.97% of the 

replications. The conditional frequency of B2 rejecting is 25.38%. Similarly, for the DGP 

corresponding to B2, the B2 model  has power of 6.17 % and the B4 model  rejects  in 

36.63%, of the replications in which the B2 rejects. For the B3 models, B4 conditional 

rejections range from approximately 40% to 50%; B2 rejections are negligible for B3a but 

approximately 25% for B3b. For B4 models,  B3 conditional rejections are  66.02% and 

5.767% for B4a and B4b, and B2 conditional rejections are 9.97% and 10.80%. 

V. Conclusions

If the DGP corresponds to one of the break models, the likelihood of correctly rejecting the 

unit-root null in many cases turns importantly on correct specification of the alternative. 

Using the correct specification is more likely to be important in “hard cases” frequently 

encountered in empirical work, where the speed of adjustment is small (the root is large) 

and the shift in mean or in time trend is moderate. The researcher might choose to test the 

5  For a mean shift of 10, the rejection rates in Montañés et al. depend strongly on the location of the break 
point used for estimation versus the true break point, measured by their ξ. 
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null for only one alternative in hope of preserving size but can go far astray unless the 

alternative chosen corresponds to the DGP. On the one hand, if the researcher misspecifies 

the alternative—a mistake unknowable in advance—then he may severely reduce power 

and thus importantly increase the probability of a Type II error. On the other hand, the 

model  corresponding  to  the  DGP may  not  have  maximum power.  In  interpreting  test 

results, it is valuable to know whether multiple models reject the null on the given data set.  

Some pairs of rejections are more likely than others when the null is false, depending on 

parameter shifts, time of the parameter shift in the sample period, speed of adjustment. etc. 

To avoid testing more than one alternative, the researcher may examine the data 

carefully  before  choosing  an  alternative,  including  using  various  forms  of  statistical 

analysis, and may read in detail discussions of the period's history in hopes of finding clues 

to  which  alternative  to  choose.  Of  course,  these  data  explorations  use  up  degrees  of 

freedom, just as does running preliminary regressions to find break points, etc. Moreover, 

experimentation on actual data and on simulated data shows that the researcher may still 

easily choose a misspecification, with the costs that entails.

These considerations suggest that it is useful to run a battery of unit-root tests, to 

avoid overlooking the DGP model and to achieve good power. If the researcher does so, of 

course he should carefully document and discuss which models he explored and any pre-

test exploration done to select alternatives. Indeed, for any series where there is a serious 

likelihood that a break model best fits the data, the researcher might as a matter of course 

run the battery and report results, much as common descriptive statistics are reported. 
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Table 1. Power of five models across DGPs for break models, in percent a

Case B1 B2 B3a B3b B4a B4b Av.

θ 1.00 1.00 - - 1.00 1.00 of  row
ϕ - - 0.10 0.01 0.10 0.01 ∑ /6
α 0.05 0.05 0.05 0.05 0.05 0.05

Tb=30

ADF 17.06 7.13 0.00 0.00 0.00 0.28 6.12

B1 16.74 1.51 0.00 0.00 0.00 0.03 4.57

B2 4.95 4.84 84.74 10.49 90.55 5.29 6.39

B3 18.50 18.91 87.38 9.58 90.13 17.51 16.13

B4 5.86 6.17 64.86 8.45 71.30 6.48 6.65

Tb=75

ADF 0.00 0.00 0.00 0.00 0.00 0.00 0.00

B1 14.97 3.85 0.00 0.00 0.00 0.45 4.87

B2 5.97 6.17 0.40 6.57 10.65 3.37 5.52

B3 0.68 0.63 61.47 10.30 89.28 1.31 3.23

B4 3.53 3.42 24.55 8.11 100.00 8.15 4.52

Tb=120

ADF 0.00 0.00 0.00 0.00 0.00 0.00 0.00

B1 7.00 0.51 0.00 0.00 0.00 0.31 1.96

B2 7.16 6.80 0.00 7.40 0.00 2.26 5.91

B3 3.35 3.29 25.46 10.30 64.11 6.17 5.55

B4 3.39 3.50 4.29 7.81 21.73 4.19 4.72

Notes: Each entry in the block is the percent of the simulations in which the model rejects the null at the 5% 
significance  level  for  the  values  of  θ ,  ϕ  used.  The  simulations  are  for  50,000 replications.  Each 
replication follows one of the break models with no lags, a speed of adjustment of - α  = 0.05 [root of (1 + 
α ) = 0.95], a mean of zero ( μ=0 ), a time trend of 1% per month ( β = 0.010), a shift in mean of θ  and 

a  shift  in  trend  of  ϕ  in  the  column heading.  The increments  are  ut  ∼  N(0,  1),  each  series  is  170 
observations,  the  series  is  “warmed  up”  with  20  observations,  and  the  models  are  estimated  over  the 
remaining 150 observations. For each replication, each model is estimated without lags because the DGP 
contains no lags. The row for the model that corresponds to the DGP is in bold in each block; the largest 
entry in each column in the bloc is in bold italic (unless the DGP model's entry is largest). Each entry in the 
column "Av. of row (Σ/6)" is the simple average of the frequencies in that row for rejection under the four 
DGPs, B1, B2, B3b and B4b. The entry in the  Σ column, compared to the entries in the row, allows the 
reader to see the DGPs that are more or less likely to generate a rejection by the model in that row. 

a Shift in Mean: One Standard Deviation = 1.00. Shift in Time Trends: 0.10 → 10%/mth. 0.01 → 1%/mth. 
General Break Model, B4, shift in mean, shift in coefficient on time trend:

Δ r t=[μ+Dμθ]+[βt+Dβϕ(t−T β)]+α r t−1+∑j=1

k
γ j Δ r t− j+ut .     
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 Table 2. Power of various alternatives, in percent.  DGP: B1

Case          1           2            3           4           5

θ 1.00 1.00 1.00 2.00 2.00
α -0.05 -0.30 -0.50 -0.30 -0.50

Tb=30

ADF 17.06 100.00 100.00 99.32 100.00

B1 16.74 97.85 100.00 99.53 100.00

B2 4.95 97.44 100.00 98.83 100.00

B3 18.50 98.78 100.0 99.31 100.00

B4 5.86 94.95 100.00 97.06 100.00

Tb=75

ADF 0.00 ← 81.10 100.00 0.050 ← 90.18

B1 14.97 97.80 100.00 99.46 100.00

B2 5.97 97.18 100.00 98.49 100.00

B3 0.68 ← 86.86 100.00 26.73 ← 99.70

B4 3.53 94.44 100.00 96.50 100.00

Tb=120

ADF 0.00 77.12 100.00 0.000 83.62

B1 7.00 97.97 100.00 99.33 100.00

B2 7.16 97.74 100.00 98.90 100.00

B3 3.35 88.32 100.00 31.29 ← 99.78

B4 3.39 94.17 100.00 94.98 100.00

Notes: Each entry in the block is the percent of the simulations in which the model 
rejects the null at the 5% significance level for each of the values of α  used. The 
simulations are for 50,000 replications. Each replication follows the B1 with no lags, a 
mean of zero ( μ  = 0), a time trend of zero ( β  = 0), a shift in mean of θ  in the column 
heading and the α  in the column heading. The increments are ut  ∼  N(0, 1), each 
series is 170 observations, the series is “warmed up” with 20 observations, and the 
models are estimated over the remaining 150 observations. For each replication, each 
model is estimated without lags because the DGP contains no lags. The row for the DGP 
model is in bold in each block; the entry is each column in the bloc that is the largest 
(unless the DGP model's entry is largest) is in bold italic.
Mean Shifts: One Standard Deviation = 1.00. General Break Model, B4: Shift in mean, 
shift in coefficient on time trend

 Δ r t=[μ+Dμθ]+[βt+Dβϕ(t−T β)]+α r t−1+∑j=1

k
γ j Δ r t− j+ut .  
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Table 3. Power of various alternatives, in percent.  DGP: B3

Case 1 2 3 4 5 6 7
ϕ      0.100     0.001   0.00001   0.00001     0.0001       0.001     0.005
α    -0.05    -0.05  -0.05    -0.30     -0.20     -0.20    -0.20

Tb=30

ADF 0.00 0.01 0.02 86.10 11.96 6.17 0.15

B1 0.00 0.06 0.19 93.02 34.34 28.75 7.37

B2 84.74 10.32 10.06 98.27 73.39 73.18 73.46

B3 87.38 8.37 8.16 98.81 73.11 72.55 72.42

B4 64.86 9.16 9.11 97.28 67.94 68.08 67.57

Tb=75

ADF 0.00 0.00 0.01 86.77 12.58 7.35 0.50

B1 0.00 0.14 0.10 92.81 35.08 30.64 14.27

B2 0.40 9.93 10.09 98.36 73.47 73.84 73.72

B3 61.47 8.42 8.33 98.76 72.78 72.81 72.98

B4 24.55 9.11 9.15 97.04 68.03 68.28 67.64

Tb=120

ADF 0.00 0.00 0.00 86.08 12.55 10.80 3.60

B1 0.00 0.08 0.12 92.95 35.57 33.59 22.68

B2 0.00 9.77 10.08 98.66 73.76 74.02 73.76

B3 25.46 8.48 8.18 98.95 73.06 72.95 72.76

B4 4.29 8.54 9.33 97.60 67.24 67.73 67.93

Notes: Each entry in the block is the percent of the simulations in which the model rejects the null at the 5% 
significance level for each of the values of α used. The simulations are for 50,000 replications. Each 
replication follows the B1 with no lags, a mean of zero ( μ  = 0), a time trend of zero ( β  = 0), a shift in 
mean of ϕ  in the column heading and the α  in the column heading. The increments are ut ∼  N(0, 1), 
each series is 170 observations, the series is “warmed up” with 20 observations, and the models are 
estimated over the remaining 150 observations. For each replication, each model is estimated without lags 
because the DGP contains no lags. The row for the DGP model is in bold in each block; the entry is each 
column in the bloc that is the largest (unless the DGP model's entry is largest) is in bold italic. 
Time-trend shifts: 0.100 (10%/month), 0.005 (0.5%/month), 0.001 (0.1%/month), 0.0001 (0.01%/month), 
0.00001 (0.001%/month).
 General Break Model, B4: Shift in mean, shift in coefficient on time trend

Δ r t=[μ+Dμθ]+[βt+Dβϕ(t−T β)]+α r t−1+∑j=1

k
γ j Δ r t− j+ut .
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Table 4: Frequency of conditional rejections across five models,for DGPs 
corresponding to break models ( Tb=75 )

Case B1 B2 B3a B3b B4a B4b

θ      1.00      1.00         -        -        1.00   1.00
ϕ       -        -      0.10     0.01        0.10   0.01
α     -0.05     -0.05     -0.05    -0.05      -0.05 -0.05

ADF     0.00      0.00      0.00     0.00        0.00   0.00

B1  [14.97] ≠     12.48      0.00     0.00        0.00   0.00

B2   25.38    [6.17] ≠      0.76   24.85        9.97 10.80

B3     0.00     4.05  [61.47] ≠  [10.30] ≠      66.02 66.02

B4   11.49   36.63     39.60     48.48 [100.00] ≠  [8.15] ≠

Notes: Each entry in the block is the percent of the simulations in which the model corresponding to the 
DGP rejects the null at the 5% significance level and the other models, taken one-by-one, also rejects the 
null. In the case where the DGP corresponds to the model B1, The entry in this column in brackets [14.97] 
is the percentage of times (from Table 2) that the B1 model rejects. In the column for the B1 model, 
conditional on the B1 model rejecting, the B2 model rejects 25.38 percent of the time. The simulations are 
for 50,000 replications. Each replication follows one of the four break models with no lags, a mean of zero (
μ = 0) and a time trend of 1%/month ( β  = 0.01); a shift in mean θ , a shift in the time trend ϕ  and α = 

0.50. The break point is at date T b=75 . The increments are ut  ∼  N(0, 1), each series is 170 observations, 
the series is “warmed up” with 20 observations, and the models are estimated over the remaining 150 
observations. For each replication, each model is estimated without lags because the DGP contains no lags. 
≠  Figures in brackets are the percentages of rejections from Table 2 for T b=75 .  

Time-trend shifts: 0.10 (10%/month) for B3a and B4a, and 0.01 (1.0%/month) for B3b and B4b.   

Mean shifts: One standard deviation = 1.00

General Break Model, B4, shift in mean, shift in coefficient on time trend,

 Δ r t=[μ+Dμθ]+[βt+Dβϕ(t−T β)]+α r t−1+∑j=1

k
γ j Δ r t− j+ut .
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