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Abstract. While designing an architecture, architects often make as-
sumptions about different factors like execution environment, structural
properties of the artifacts, properties of input/output data etc. Implicit
and invalid assumptions have been identified as a primary reason for
architectural mismatches. Such mismatches cause nightmares to the peo-
ple working at the system integration phase. Today’s complex systems
operate in dynamic and rapidly changing environments. Implicit assump-
tions in the reusable components often make it challenging to adopt
the components in a changed operational domain. If not documented,
assumptions are often forgotten and it is both difficult and expensive to
find them out from previously built software. This paper aims to formally
capture assumptions at the architecture level so that they can be checked
automatically throughout the system development. Automated checking
of assumptions would facilitate a practicable assumption management
system for complex and large-scale software system development with
smooth integration and evolution.

Keywords: assumptions, formal specification, software architecture, in-
tegration, evolution

1 Introduction

Software development for big software systems usually follows the divide-and-
conquer principle by developing an architectural design in the early phases and
subsequently developing the different parts of the architecture independent from
each other. The parts are later taken and integrated with each other. This also
enables a reuse of proven parts of older systems.

This approach is facilitated by a thorough definition of the interfaces of the
different parts. However, still many problems appear in the integration phase.
Those issues are often the result of implicit and/or invalid assumptions by the
developers of the different parts. Invalid assumptions have been reported as the
root cause of system and project failure [1–3]. Our previous work [4] explores
existing challenges of assumptions and their possible areas of use.



Examples of assumptions as given by Garlan et al. [1] have been classified with
respect to the categories Nature of components, Nature of the connectors, Global

architectural structure, and Construction process. Examples of the first kind of
assumptions deal with which components control the control flow or how the
environment will manipulate data managed by a component.

In order to overcome those problems, these implicit assumptions, first, have to
be made explicit and, second, must be formalized in such a way that they are
automatically checkable throughout the software development process. More-
over, assumptions should be already addressed at the architectural level as the
architecture is used for decomposing and later integration as mentioned before.

Several approaches [5–8] have been proposed which either use formal or semi-
formal approaches to manage assumptions. While the semi-formal approaches,
are not usable for automatic checking, the formal approach [5] does not allow to
formalize cross-cutting assumptions which are related to several components but
however focuses on connections between two components.

Our vision for a complete formal assumption management approach is (1) to
develop a meta-model to capture assumptions at different system levels, e.g.,
component, system, system of systems, (2) enrich the components as basic software
building blocks with assumptions, and (3) use these models to identify problems
early in the software development process and throughout the whole system
development process. We specifically focus not only on pairwise assumptions
between components but also on cross-cutting assumptions.

The contribution of this paper is to show that existing real-life assumptions, the
ones described by Garlan et al. [1] which are related to the software architecture,
can be formalized and checked using the Alloy language [9] and the Alloy tool as
the first step towards realizing our vision.

In the next section, we discuss related approaches. Section 3 contains a presenta-
tion of a taxonomy of assumptions including the one that our approach targets.
In Section 4, we present how we formalize assumptions on the architectural level
and check it using the Alloy tool. We conclude in Section 5 and give an outlook
on future work.

2 Related Work

The attempts on modeling assumptions can be divided into two classes that
are formal and semi-formal. By formal, we focus on those modeling approaches
that formalize the statement or fact of an assumption along with its different
attributes e.g., category description, impact, criticality, tractability, states etc.
On the other hand, by semi-formal, we focus on those approaches that describe
the statement of the assumption in natural language but attributes are captured
structurally. Assumptions are informal when they are documented without proper
structure and are completely defined using free text.



The advantage of formally modeled assumptions is that they are potentially
machine-checkable. Even though, semi-formal approaches are not machine-
checkable as the fact/statement of an assumption is in free text, assumptions can
be retrieved/searched by their attributes. For example, in semi-formal approaches,
it would be possible to find, which assumptions might impact a critical component
in the system.

2.1 Formal Approaches

An assumption management framework has been developed by Tirumala [5] who
has developed a language for documenting assumptions formally. The assumptions
and the guarantees for the assumptions are encoded as part of the architectural
components in a way that it is possible to check automatically whether there is
any mismatch between an assumption and its associated guarantee. They have
implemented the framework for the architectural assumptions in the Architecture
Analysis and Design Language (AADL) [10], which is an Architecture Description
Language (ADL).

There are two major differences between our approach and that of Tirumala
[5]. Firstly, we focus on assumptions that target existing architectural artifacts.
Thus, in our approach, an assumption is constructed based on what we already
have in the architecture. If not, we have to add or modify the architecture and
then capture the assumptions. So, in our case, assumptions are tightly coupled
with the architecture. On the other hand, assumptions are loosely coupled with
the architecture in the approach of Tirumala [5]. In that case, an assumption is
primarily based on parameters, which are assumed properties that a component
makes about another component. Examples of such parameters are error rate,
sensing delay, sensing jitter etc., which are not necessarily part of the architecture.

Secondly, we have focus on the cross-cutting nature of assumptions where an
assumption can relate to more than two components and different issues among
them. Tirumala [5] has primarily modeled assumptions pair-wise between two
components. Thus, the composition of an assumption with a guarantee is also
restricted between two components. Let’s take an example assumption ”Compo-
nent X expects that all other components have component Y as a library”. In
our approach, we can model this assumption as a single assumption. However,
the approach of Tirumala would require writing one assumptions for each of
the other components. Hence, removing or modifying such assumptions might
cause inconsistencies in the assumption model. Moreover, certain crosscutting
assumptions are not possible to model in their approach. For example, the as-
sumption ”Component X assumes that all the components having a property P
are completely independent of each other i.e., there is no connection between
them” is not possible to model.



2.2 Semi-Formal Approaches

A simple assumption management system prototype has been developed by
Lewis et al. [6]. The prototype records and extracts assumptions from code
written in Java into a repository. The assumptions are written in the code using
XML and saved into the repository using an assumption extractor. It is possible
to browse and search assumptions with given criteria by using this web-based
assumption management system. A person who acts as a validator, reviews the
stored assumptions. The management system also maintains system and project
related information like users, roles, projects and types of assumptions. This
prototype focuses on the assumptions at the implementation level.

Lago and Vliet [11] developed a meta-model for explicating assumptions in the
software architecture. The model is able to capture assumption dependencies
between the product feature model and the architectural model. They have
discussed the essence of cross-cutting assumptions and worked with a software
product family architecture implementing variability to achieve flexibility. Their
focus was on non-technical (e.g., managerial, organizational), and cross-cutting
assumptions. They introduce the term invariability and argue that invariability
should also be modeled along with variability to let the model express what
cannot be changed. They argued that explicit assumptions modeling would
capture invariability because when assumptions are taken as granted, they act
like constraints that impose limitations on the system organization and behavior.

An assumptions modeling method for explicating assumptions in the AADL
has been developed by Ordibehesht [8]. This modeling method consists of an
assumption specification meta-model for structuring assumptions information and
an assumptions specification approach to specify the meta-model together with
the architecture descriptions. The meta-model contains dependency information
between the assumptions and the architectural components in order to facilitate
traceability.

All the approaches in this subsection capture the statement/fact of an assumption
as free text and, thus, the assumptions are not machine-checkable.

3 Taxonomy of Assumptions

Garlan et al. [1] focused on architectural assumptions. They discuss four main
assumptions categories and some subcategories related to components and con-
nectors that can result in architectural mismatch. The categories are:

– Nature of component: This category describes three subcategories infrastruc-
ture, control model and data model. Infrastructure assumptions are about
the substrate on which the component is built. Control model assumptions
are about which components will control the sequencing of computation and
data model assumptions are about the way data, managed by a component,
would be manipulated by the environment.



– Nature of connectors: Two subcategories of this category are - protocols that
captures assumptions about the characteristics of a connector’s patterns and
interactions and data model that is concerned with the kind of data being
communicated.

– Global architecture structure: This category captures assumption about the
topology of the system communication. It also covers existence, i.e., presence
or absence related assumptions of particular components and connectors.

– Construction process: This category includes assumptions related to the order
in which building blocks are instantiated.

Dewar et al. [12] define assumptions in the context of assumption-based planning.
In a later work, Dewar [13] has classified assumptions into categories - about
problems vs. about solutions, implicit vs. explicit, unaddressed vs. addressed,
non-load-bearing vs. load-bearing, invulnerable vs. vulnerable and one-sided vs.
two-sided. The classification of Dewar [13] is broad in the sense that it covers a wide
variety of assumptions including facts, constraints, design decisions and design
rationales. It should be mentioned that assumptions often overlap requirements,
constraints, and design rationales. A brief description on how assumptions are
related to these concepts, can be found in [4].

Lewis et al. [6] have presented a classification of assumptions from the viewpoint
of the software developers while they are coding. The assumptions types are
control, environment, data, usage, and convention. Steingruebl and Peterson [14]
support the classification of Lewis et al. [6] and suggest adding detailed level, e.g.
checklist under the major assumption types. They also mention security as an
assumption type. A classification of three assumptions classes are presented by
Lago and Vliet [11], motivated by the general information system literature. Their
study focuses on the architectural assumptions which are technical, organizational,
and managerial. Spiegel et al. [15] identify three major classes of constraints
that are based on the types of object attributes in the constraints (invariant vs.
dynamic) and on the object scope of the constraints (one vs. many) that are
invariant, dynamic, and inter-object.

Tirumala [5] classifies assumptions based on three dimensions namely time-frame,
criticality and abstraction. Three assumption types static, system configurations

and dynamic are described under time-frame. The validity of static assumptions
remains the same during the lifetime of the software. However, validity can be
changed as the system evolves. For the system configuration assumptions, validity
does not change during a single execution of the system; though, validity can
be changed between different executions. Dynamic assumptions are those whose
validity might be changed during the system’s execution.

King and Turnitsa [16] mentioned some possible assumptions classes, which are
intension vs. Extension, primary vs. Derivative, joint vs. Disjoint with others,

exogenous vs. Endogenous, deterministic vs. Probabilistic, and controllable vs.
Non-controllable.

Assumptions can also be classified according to their state e.g., unchecked vs.
checked, invalid vs. valid, conflicting, and mismatched.



This study focuses on the classification proposed by Garlan et al. [1] because the
classification is based on the structural relations between architectural artifacts
with a focus on component based software systems which fits well to our vision
of assumption management on an architectural level.

4 Formalizing Assumptions

We have taken the assumptions stated by Garlan et al. [1]. The assumptions
were identified in an attempt to develop a system Aesop with extensive use of
existing piece of software. Aesop is an environment-generating system that was
constructed to produce a custom design environment from a set of architectural
style descriptions given as input. The basic idea of Aesop is to support creating
new architectural styles and then use them to create architectural design. Styles
are configured with the generated environment in such a way that it guides
the designer in making decision about the architectural design. Aesop offers
shared infrastructure which consists of different tools and packages providing
basic support service for architectural design. The shared infrastructure includes
Interviews - a graphical user interface for the modification and creation of new
design; OBST - an object-oriented database for storing the designs; SoftBench -
an event-based tool-integration framework to enable integrating new tools (e.g.,
compilers, analysis tools etc.) easily; MIG (Mach RPC Interface Generator) -
an RPC stub generator. The estimated development time of the system was
six months and one person-year. But in reality, after two years and about five
person-years, only a prototype of the system was build, which was sluggish and
difficult to maintain. Mismatched architectural assumptions were identified as
the primary cause of the problems.

The discussed assumptions are primarily concerned with the reuse of the four
standard pieces of software i.e., Interviews, OBST, SoftBench, and MIG. Since
MIG and SoftBench are related to communication, they are described as connec-
tors by Garlan et al. [1]. However, we have modeled them as components since
they are standard software packages.

A brief description of the assumption categories are given in Section 3 and
detailed description of the assumptions and their categories can be found in [1].
The selected assumptions and the problems occurred due to them are briefly
described below.

– Category: Nature of component

– Subcategory: Infrastructure

– – Assm NoCom Infra: SoftBench broadcast message Server assumed that
all other components would have a graphical user interface (GUI). Thus,
SoftBench uses the X library to provide communication primitives. In reality,
tools like compilers, design-manipulation utilities etc. did not have their own
GUI and they had to include the X library as subcomponent in order to
avoid communication problems.



– Subcategory: Control model

– – Assm NoCom CM: Communication events are dealt by three packages
named SoftBench, Interviews, and MIG. These packages use an event loop for
this purpose. The details of the communication substrate are encapsulated
by the event loops. These details help a developer to structure a component’s
interactions with its environment around a set of callback modules. However,
event loops used by the different packages are not identical and none of
the control loops is compatible with the others. SoftBench realizes its main
thread of control on the X Intrinsics package. On the other hand, the event
loop in Interviews is implemented directly in terms of Xlib routines where
the event loop is an object-based abstraction. A handcrafted loop for the
server to wait for Mach messages is used by MIG.
This assumption was mainly about which part of the software held the main
thread of control. But as the components used different types of event loops,
it was not possible to bridge different event-control regimes by using an event
gateway. The primary reason of this problem arises due to the incompatibility
of the different event loops.

– Category: Nature of connectors

– Subcategory: Protocols

– – Assm NoConn Protocol: Two types of interactions namely notify sta-
tus as broadcast, and request/reply pair are provided by the SoftBench
Broadcast Message Server. Even though these two interaction types are not
compatible, SoftBench assumes that they are compatible and attempts to
handle both of them uniformly. However, since these two interaction types
were not compatible, other tools communicating through SoftBench had to
introduce concurrency even though sequential programming is enough and
easy to implement such a case. As a solution to this problem, MIG (Mach
RPC) replaced SoftBench for the database interaction because it was the
most critical and heavily used communication link in the Aesop system.

– Subcategory: Data models

– Assm NoConn DM: MIG (Mach RPC) and SoftBench are two commu-
nication mechanisms. A C-based Model is provided by the MIG where in
a C-based model, data is exchanged through procedure calls and data is
realized based on C constructs and Arrays. On the other hand, SoftBench
communicates data in the form of ASCII strings.
Both MIG and SoftBench had different assumptions about the data models.
MIG assumes that other tools would have C-based model and SoftBench
assumes that most communication will be in the form of ASCII strings
(i.e., about files and the data contained in them). To solve this problem,
translation routines and intermediate interfaces were introduced between
different models. However, translating every database call resulted in a huge
overhead, which was the most critical performance bottleneck in the system.

– Category: Global architecture structure

– Assm GAS: OBST makes an assumption that the other tools are only
connected with OBST and they are not directly connected to each other.
In other words, all the tools are independent of each other and it views



any concurrency among components as conflict. In order to enforce this
assumption, OBST handled incoming requests one at a time. However, in
reality, this assumption was invalid because other components had connections
between them. In such a scheme, problem occurs when a component tries
to release a resource to another component while the first component has
not completed its task. In the Aesop system, the mechanism of OBST did
not allow when a component tried to release the database to a corresponding
component.

An assumption of the category nature of component with subcategory infras-
tructure has not been modeled because it deals with performance issues. We
have not considered the data model assumption, which is the subcategory of the
nature of component category due to the reason that this assumption is more
implementation related rather than architecture. The other assumption that we
have not modeled is of category construction process, which is a process related
assumption.

The development of Aesop system by Garlan et al. [1] encountered six main
problems while integrating the four subsystems, which we have mentioned as com-
ponents and described earlier in this section. It is very interesting that virtually
all of these problems occurred because of architectural mismatch due to invalid
assumptions. If the assumptions were captured along with the components by the
component developers, an early analysis of the system, in terms of assumptions,
could have been performed to check the applicability of the components. In
this way, modeling assumptions can help performing early analysis revealing
architectural defects that would obviously help measuring the complexity of the
project, checking the appropriateness of certain reusable components, and making
better estimation of project time and cost.

4.1 Capturing the Architecture

We have used the Alloy [9] language to model the architecture and the assumptions.
It is a declarative language influenced by Z specification language. Models in
Alloy are amenable to fully automatic semantic analysis. Alloy expressions are
based on first order logic and analysis of the expressions is performed by SAT
solvers. In order to be fully automated, Alloy sacrifices the complete proof of
a system’s correctness and instead, tries to find counterexamples of the system
showing constraints violation within a limited scope [9].

The meta-model that we have used to build the architecture, is very simple and
it fits well within the scope of the selected assumptions. We could select a rich
meta-model specific to an architecture modeling language but for simplicity, we
have kept it simple. The meta-model of the architecture is depicted in Fig. 1 in
UML notation.

As Fig. 1 shows, ArchitecturalElement is the top most class that can refer to
any other classes in the meta-model. CommunicationProtocol and DataModel



classes, extended from ArchitecturalElement, captures communication protocol
and data model related information. The compatibility association maps both
of the classes to themselves with multiplicity one to many. The Connector

class captures the connections between components. The Component class may
represent software components/tools. A component can be connected to zero
to more other components as depicted by connected to association. However, a
connector must be connected to at least one component and can be connected to
at most two components. The associations subcomponent, communication protocol

and communication data model respectively show that a component may have
zero to many Components as subcomponents, CommunicationProtocols and
DataModels.

Fig. 1. The architecture meta-model

Listing 1.1 shows the meta-model in Alloy syntax. In Alloy, all data types, even
sets, scalars, tuples, everything is a relation. However, Alloy can be interpreted as
object-oriented (OO) languages like C++/Java, which is helpful to understand
an Alloy model at a glance. However, OO often leads to wrong understanding and
implementation of Alloy thus, it is important to understand Alloy in terms of sets,
elements, and relations among sets and elements. For a high level understanding,
here, we briefly state how to read the second sig and fact statement of Listing
1.1 in OO terminologies.

Sig (signature) statement is used to define set (i.e., class in OO). So, Component
is a class extended from superclass ArchitecturalElement. subcomponent is a field
of Component pointing to zero to many Components. The fact statement is
used to capture constraints. In fact about component connector, cm and cn are
instances of class Component and Connector. Dot (.) is used to access a field. So,
cm.connected to would return something of type Connector.

Two fact statements in Listing 1.1 model constraints about Component and
Connector. Of them, about connector says that a connector can not exist without
being connected to a Component and it can be connected to maximum two
Components. Fact about component connector says that if there is a connection



from a Component to a Connector then there must be a connection from that
Connector to the Component and vice versa.

ab s t r a c t s i g Arch i tec tura lE lement {}
ab s t r a c t s i g Component extends Arch i tectura lE lement {

subcomponent : s e t Component ,
connected to : s e t Connector ,
communicat ion protoco l : s e t CommunicationProtocol ,
communication data model : s e t DataModel

}
ab s t r a c t s i g Connector extends Arch i tec tura lE lement {

connected to : s e t Component
}
f a c t about connector {

a l l cn : Connector | cn . connected to != none
a l l cn : Connector | #cn . connected to =< 2

}
f a c t about component connector {

a l l cm : Component | a l l cn : Connector | ( cn in cm.
connected to imp l i e s cm in cn . connected to ) &&

(cm in cn . connected to imp l i e s cn in cm. connected to )
}
ab s t r a c t s i g CommunicationProtocol extends

Arch i tec tura lE lement {
c ompa t i b i l i t y : s e t CommunicationProtocol

}
ab s t r a c t s i g DataModel extends Arch i tec tura lE lement {

c ompa t i b i l i t y : s e t DataModel
}

Listing 1.1. Meta model of the architecture in Alloy

The complete model along with the instance-model of the architecture is
available online at http://www.cse.chalmers.se/~abmd/onlinematerials/

Garlan_Assumptions_Model.als. Fig. 2 shows an instance of the architecture
modeled in Alloy. The instance model in Fig. 2 shows that there are total five
components (SoftBench, OBST, Interviews, MIG and XLibrary), three connec-
tors (CN1, CN2 and CN4 ), seven communication protocols of them three of type
EventLoop (OBA Xlib, MachMessage and XIntrinsic), two of type DataModel

(CBasedModel and ASCIIString) and two CommunicationProtocol (BroadcastNo-
tifyStatus and RequestReplyPair). The compatibility relations in the communica-
tion protocols are represented as text instead of arrows. XLibrary is a component
that is possessed by SoftBench and Interviews as subcomponent. SoftBench is
the most highly connected component that has two CommunicationProtocol, a
communication DataModel and an EventLoop. It is also connected to OBST and
Interviews components respectively via CN1 and CN2 connectors. MIG defines a
communication DataModel and a CommunicationProtocol, and is also connected
to Interviews. OBST is the least connected component that does not define any
communication protocol or DataModel.



Fig. 2. An instance of the architecture modeled in Alloy

4.2 Capturing and Checking Assumptions

Alloy assertions are used to capture the assumptions. Then these assumptions
are checked using check statements. Alloy check yields possible counterexamples
revealing mismatches of an assumption with the modeled architecture. If an
assumption is valid, a counterexample associated with that assumption indicates
problem(s) in the architecture. On the contrary, if we find that the case identified
by the counterexample is valid then the assumption itself is invalid. If there is no
counterexample generated from an assumption then both the architecture and
the assumption is valid.

Among the assumptions, some are general that can be used without necessarily
modifying the assumption in a changed composition of the architecture. Thus
they are easy to maintain and reusable. Other assumptions are application specific

that might require modification of the assumption in a new composition of the
architecture. For example, assumptions Assm NoCom CM in Listing 1.3 and
Assm NoConn DM in Listing 1.5 are general as they can be reused in any
composition of the architecture constructed following the same meta-model. On
the other hand, Assm NoCom Infra in Listing 1.2, Assm NoConn Protocol in
Listing 1.4 and Assm GAS in Listing 1.6 are application specific that are only
applicable for the specific cases.

The rest of this subsection describes the captured assumptions and the coun-
terexamples resulting from them. The counterexamples are checked with respect
to the instance model of the architecture as shown in Fig. 2.



Assm NoCom Infra In this assumption, the SoftBench component assumes
that other components connected to SoftBench would use XLibrary as subcom-
ponent. The assumption modeled in Alloy is shown in Listing 1.2, which can
be equivalently read in natural language as - If a Component is connected to

SoftBench via a Connector then the Component must have XLibrary as subcom-

ponent.

Among the components, Interview and OBST are connected to SoftBench where
Interviews possesses XLibrary as subcomponent but OBST does not, which is a
violation of this assumption. When this assumption is checked, a counterexample
depicting the violation (e.g., mismatch) of this assumption is reported by Alloy
as shown in Fig. 3. The Assm NoCom Infra cm tag in OBST in Fig. 3 says that
being an instance of cm of type Component in Listing 1.2, OBST violates the
assert statement Assm NoCom Infra i.e., the assumption.

a s s e r t Assm NoCom Infra {
a l l cm : Component | one sb : SoftBench | one x l : XLibrary |

sb in cm. connected to . connected to imp l i e s cm .
subcomponent = x l

}

Listing 1.2. Assumption Assm NoCom Infra

Fig. 3. Counterexample of Assm NoCom Infra assumption

Assm NoCom CM This assumption relates three components SoftBench, In-
terviews and MIG which use different versions of EventLoop CommunicationPro-

tocol. We have modeled this assumption in terms of the compatibility of different



EventLoop used by the components, which is shown in Listing 1.3. In natural
language, the modeled assumption can be read as - if two Components are con-

nected via a Connector and one of them has EventLoop CommunicationProtocol

then both of the Components must have EventLoop protocols that are compatible

to each other.

The checking of assumption Assm NoCom CM reports three unique counterex-
amples between the components SoftBench - OBST, SoftBench - Interviews, and
Interviews - MIG. However, the total number of reported counterexample is ten
because the Alloy checker finds similar situations that violate the assumption
with different instances of cm1, cm2 and el. It is noticeable that even though
OBST does not define any EventLoop, the communication between OBST and
SoftBench has been identified as a violation of this assumption since SoftBench

defines EventLoop. Fig. 4 shows a counterexample of Assm NoCom CM this
assumption. The counterexample expresses that SoftBench, and Interviews, being
instances of respectively cm1, and cm2, have violate the assumption because
there does not exist any EventLoop between the components that is compatible
to both of the components.

a s s e r t Assm NoCom CM {
a l l cm1 , cm2 : Component | a l l e l : EventLoop |
( ( cm1 in cm2 . connected to . connected to−cm2 | |
cm2 in cm1 . connected to . connected to−cm1) &&
( e l in cm1 . communicat ion protoco l | |
e l in cm2 . communicat ion protoco l ) ) imp l i e s
( e l in cm1 . communicat ion protoco l . c ompa t i b i l i t y &&
e l in cm2 . communicat ion protoco l . c ompa t i b i l i t y )

}

Listing 1.3. Assumption Assm NoCom CM

Assm NoConn Protocol SoftBench provides two interaction types Broadcast-
NotifyStatus and RequestReplyPair. However, SoftBench assumes that these two
interactions are compatible where in reality they are not. Listing 1.4 shows the
assumption in Alloy, which can be read in natural language as - BroadcastNoti-
fyStatus CommunicationProtocol is compatible to RequestReplyPair Communica-

tionProtocol

Fig. 5 shows the counter example of this assumption that explains that there
does not exist any CommunicationProtocol cp that is compatible to both Broad-

castNotifyStatus and RequestReplyPair.

a s s e r t Assm NoConn Protocol {
some cp : CommunicationProtocol | cp in

BroadcastNot i fyStatus . c ompa t i b i l i t y && cp in
RequestReplyPair . c ompa t i b i l i t y

}

Listing 1.4. Assumption Assm NoConn Protocol



Fig. 4. Counterexample of Assm NoCom CM assumption

Fig. 5. Counterexample of Assm NoConn Protocol assumption

Assm NoConn DM SoftBench and MIG implements two types of data models
for communication with other components because they assume that other
components would communicate with the same data models that they have
implemented. The assumption modeled in Alloy is shown in Listing 1.5 that
can be read in natural language as - if two Components are connected via a

Connector and one of them specifies a communication DataModel then both of

the Components must have DataModel that are compatible to each other.

The check of this assumption results in three unique counterexamples out of total
six where two of them are shown Fig. 6. Counterexample 1 in Fig. 6 shows that
MIG and Interviews, being instances of cm1 and cm2 respectively, violate the
assumption Assm NoConn DM, because, there does not exist any DataModel

between MIG and Interviews that is compatible to both of them. Counterexample



2 shows the violation of the assumption between the components SoftBench -

OBST.

a s s e r t Assm NoConn DM {
a l l cm1 , cm2 : Component | a l l dm: DataModel |
( ( cm1 in cm2 . connected to . connected to−cm2 | |
cm2 in cm1 . connected to . connected to−cm1) &&
(dm in cm1 . communication data model | |
dm in cm2 . communication data model ) ) imp l i e s
(dm in cm1 . communication data model . c ompa t i b i l i t y &&
dm in cm2 . communication data model . c ompa t i b i l i t y )

}

Listing 1.5. Assumption Assm NoConn DM

Fig. 6. Counterexamples of Assm NoConn DM assumption

Assm GAS OBST assumes that the composition of the components forms
a star-topology where OBST remains in the center keeping connections with
other components. Listing 1.6 shows the assumption that can be read in natural
language as - components are only connected to OBST via connectors.

Within the selected scope of the architecture, OBST is only connected with
SoftBench. Thus, all other connections among the other components are coun-
terexamples of this assumption as shown in Fig 7. Counterexample 1 in Fig 7
shows that SoftBench, being an instance of cm, violates the Assm GAS assump-
tion because it is connected to a component (i.e., Interviews) in addition to



OBST. Counterexample 2 and 3 shows that MIG and Interviews are connected
to components other than OBST.

a s s e r t Assm GAS {
a l l cm : (Component − OBST) | ( (cm . connected to ) .

connected to − cm − OBST) = none
}

Listing 1.6. Assumption Assm GAS

Fig. 7. Counterexamples of Assm GAS assumption

5 Conclusions and Future Work

In this paper, we have presented an approach to formally capture architectural
assumptions that are amenable to fully automated check. We have focused
on the cross-cutting nature of assumptions and modeled them using the Alloy
language. The assumptions are selected from a study by Garlan et al. [1] reporting
assumptions identified from a real project and categorizing them according to
factors related to components and connectors.

The modeled assumptions are checked with Alloy tool, which is a checker based
on SAT solvers. When checked, the assumptions show counterexamples depicting
violation of the assumptions with the architecture i.e., mismatch in the archi-
tecture. The counterexamples have correctly explored every single mismatch in
the architecture related to associated assumptions. Thus, reuse of components
can highly benefit from capturing assumptions formally and it can provide early
feedback on the architecture.



The proposed approach supports capturing general/high-level assumptions, which
are less dependant on specific instances of architectural artifacts. Thus, they
are both reusable and easy to maintain. It also supports capturing application-
specific assumptions, those are more dependant on specific instances. In general,
our approach supports capturing assumptions about the architectural structure
including relations/connections among different artifacts.

This study is the first step of our vision to develop a holistic assumption man-
agement framework that would support identifying assumptions, capturing and
managing assumptions and automated checking of them. In this study, we have
worked with a very simple architecture meta-model that fits within the scope of
the selected assumptions. Our future work includes, developing an enriched meta-
model to capture assumptions at different system levels (e.g., component, system,
etc.), enrich the components as basic software building blocks with assumptions,
and develop tool supporting automated extraction of assumptions from existing
system or ongoing system development, automated analysis of the assumptions
revealing early defects in the architecture and providing early feedback about
the design.
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A Appendix: Complete Model in Alloy

ab s t r a c t s i g Arch i tec tura lE lement
{}

ab s t r a c t s i g Component extends Arch i tectura lE lement
{

subcomponent : s e t Component ,
connected to : s e t Connector ,
communicat ion protoco l : s e t CommunicationProtocol ,
communication data model : s e t DataModel

}

ab s t r a c t s i g Connector extends Arch i tec tura lE lement
{

connected to : s e t Component
}

f a c t about connector
{

a l l cn : Connector | cn . connected to != none
a l l cn : Connector | #cn . connected to =< 2

}

f a c t about component connector
{

a l l cm : Component | a l l cn : Connector | ( cn in cm.
connected to imp l i e s cm in cn . connected to ) &&

(cm in cn . connected to imp l i e s cn in cm. connected to )
}

//−−−−−−−−−−− Communication Pro toco l s −−−−−−−−−−−−−−
ab s t r a c t s i g CommunicationProtocol extends

Arch i tec tura lE lement
{



c ompa t i b i l i t y : s e t CommunicationProtocol
}
ab s t r a c t s i g EventLoop extends CommunicationProtocol
{}

one s i g X In t r i n s i c extends EventLoop
{}
{

c ompa t i b i l i t y = XIn t r i n s i c
}

one s i g OBA Xlib extends EventLoop
{}
{

c ompa t i b i l i t y = OBA Xlib
}

one s i g MachMessage extends EventLoop
{}
{

c ompa t i b i l i t y = MachMessage
}

one s i g BroadcastNot i fyStatus extends CommunicationProtocol
{}
{

c ompa t i b i l i t y = BroadcastNot i fyStatus
}

one s i g RequestReplyPair extends CommunicationProtocol
{}
{

c ompa t i b i l i t y = RequestReplyPair
}

//−−−−−−−−−−−−−−−− DataModel −−−−−−−−−−−−−−−−−−−−−−−−−
ab s t r a c t s i g DataModel extends Arch i tec tura lE lement
{

c ompa t i b i l i t y : s e t DataModel
}

one s i g CBasedModel extends DataModel
{}
{

c ompa t i b i l i t y = CBasedModel
}

one s i g ASCIIString extends DataModel
{}
{



c ompa t i b i l i t y = ASCIIString
}

//−−−−−−−−−−−−−−−−−−−−− Connectors −−−−−−−−−−−−−−−−−−−−
one s i g CN1 extends Connector
{}
{

connected to =OBST + SoftBench
}

one s i g CN2 extends Connector
{}
{

connected to = Int e rv i ews + SoftBench
}

one s i g CN4 extends Connector
{}
{

connected to = Int e rv i ews + MIG
}

//−−−−−−−−−−−−−−−−−−− Components −−−−−−−−−−−−−−−−−−−−−
one s i g XLibrary extends Component
{}
{

connected to = none
subcomponent = none
communicat ion protoco l = none
communication data model = none

}

one s i g OBST extends Component
{}
{

connected to = CN1
subcomponent = none
communicat ion protoco l = none
communication data model = none

}

one s i g In t e rv i ews extends Component
{}
{

connected to = CN2 + CN4
subcomponent = XLibrary
communicat ion protoco l= OBA Xlib
communication data model = none

}



one s i g MIG extends Component
{}
{

connected to = CN4
subcomponent = none
communicat ion protoco l = MachMessage
communication data model = CBasedModel

}

one s i g SoftBench extends Component
{ }
{

connected to = CN1 + CN2
subcomponent = XLibrary
communicat ion protoco l = XIn t r i n s i c + BroadcastNot i fyStatus

+ RequestReplyPair
communication data model = ASCIIString

}

//−−−−−−−− Assumptions as As s e r t i on s −−−−−−−−−−−−−−
a s s e r t Assm NoCom Infra
{

a l l cm : Component | one sb : SoftBench | one x l : XLibrary |
sb in cm. connected to . connected to imp l i e s cm .

subcomponent = x l
}

a s s e r t Assm NoCom CM
{

a l l cm1 , cm2 : Component | a l l e l : EventLoop |
( ( cm1 in cm2 . connected to . connected to−cm2 | | cm2 in cm1 .

connected to . connected to−cm1) &&
( e l in cm1 . communicat ion protoco l | | e l in cm2 .

communicat ion protoco l ) ) imp l i e s
( e l in cm1 . communicat ion protoco l . c ompa t i b i l i t y && e l in

cm2 . communicat ion protoco l . c ompa t i b i l i t y )
}

a s s e r t Assm NoConn Protocol
{

some cp : CommunicationProtocol | cp in
BroadcastNot i fyStatus . c ompa t i b i l i t y && cp in
RequestReplyPair . c ompa t i b i l i t y

}

a s s e r t Assm NoConn DM
{

a l l cm1 , cm2 : Component | a l l dm: DataModel |
( ( cm1 in cm2 . connected to . connected to−cm2 | | cm2 in cm1 .

connected to . connected to−cm1) &&



(dm in cm1 . communication data model | | dm in cm2 .
communication data model ) ) imp l i e s

(dm in cm1 . communication data model . c ompa t i b i l i t y && dm in
cm2 . communication data model . c ompa t i b i l i t y )

}

a s s e r t Assm GAS
{

a l l cm : (Component − OBST) | ( (cm . connected to ) .
connected to − cm − OBST) = none

}

//−−−−−−−−−−−−−−−− Checks −−−−−−−−−−−−−−−−−−−−−−−
check Assm NoCom Infra
check Assm NoCom CM
check Assm NoConn Protocol
check Assm NoConn DM
check Assm GAS

//−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
pred show ( ) {}

run show

Listing 1.7. Complete model in Alloy


