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Abstract

In protein NMR high dimensional spectra are difficult  to measure because long 
measurement times and low signal to noise. To overcome this barrier fast acquisition 
techniques have been developed. One of these is projection experiments that uses coupled 
evolution periods instead of using independent evolution periods. This reduces 
measurement time dramatically but has constraints in terms of protein size because of low 
signal to noise present in high dimensional spectra. Analyzing these spectra requires 
software tools that can process the convoluted spectra and assign the resulting signals. In 
this thesis a new algorithm is presented for decomposing convoluted spectra using python 
as a model and Fortran routines for steps that are time critical. All test where done on the 
azurin and the ubiquitin protein. and the result is a software tool for resolving projection 
experiments using a new algorithm together with a graphical user interface. 
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Introduction

NMR is a versatile method for solving structural and dynamic problems related to proteins, 
peptides and smaller molecules1 2 and it has become increasingly important since the number 
of expressed proteins have increased3. The technique is based on spin properties in atoms and 
their interaction with a strong external magnetic field. In the strong external field all spins are 
distributed according to Boltzmann statistics. A radio frequency pulse can then tilt all the 
spins in a plane perpendicular to the external magnetic field. Depending on the molecular 
environment the spins induces a different electromagnetic field when precessing in the 
perpendicular field. This analog signal can then be Fourier transformed giving every signal a 
corresponding frequency that can be evaluated in different ways. The different frequencies 
correspond to different parts of the molecule and contains information about the nuclei and 
the surroundings. Assignment in the frequency  is to map every signal to every nucleus in 
every  residue. This can then be used for analysis of the frequency shapes, relaxation studies 
and structure evaluation4.

Protein NMR requires usually the recording of more than two dimensions to resolve all 
frequencies5 6. The adding of dimensions increases measurement time exponentially putting a 
limit to the number of dimensions that can be recorded in an experiment. Because of this, 
alternative techniques have to be developed to shorten measurement time while still trying to 
obtain the same information as in regular NMR protein experiments7  8 . One of these are 
projection decomposition techniques that record experiments in a fast time frame with 
coupled evolutions periods that  gives 2D projection experiments from higher dimensional 
experiments9. A significant time saving is achieved using this technique. Fourier 
transformation of the time domain signals results in linear combinations of frequencies. Now 
the indirect frequency  axis contains the sum or the difference between the two or more 
nucleus instead of a single frequency for every  nuclei. Figure 1 shows a 45 degree projection 
in frequency domain. 

Figure 1. 45 degree projection in a 3D array of data points in frequency domain.

Here Ω now contains information for both Ω1 and Ω2. If the whole cub was going to be 
measured with 100 complex points in the Ω1, Ω2 dimension this experiment would take 13 h. 
A projection with 0, 90, 45 and -45 projection angles would take 13 min with the same 
number of complex points. This time saving would increase even more for 4D and 5D 
experiments. Thus projection decomposition techniques are feasible for reducing 
experimental time in protein NMR spectroscopy10.
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Projection decomposition 

Regular NMR experiments can be described as a summation of time domain signals11 over N 
dimension experiments: 

 (1)                                           

Equation 1 describes how time domain signals can be described as a direct product between 
functions describing the time domain signal. All signals are enumerated by k. Every set of k:s 
are described as components. Every component have N number of shapes that are enumerated 
from 1 to N in formula 2. All valid signals in a spectra are then described by all k. In the case 
of azurin that would correspond to 128. These can be seen in figure 6. Prolines are not shown 
because lack of NH. Fourier transform over all signals in equation 2 gives the corresponding 
equation in frequency domain: 

(2)

This equation describes the corresponding frequencies after Fourier transform of equation 1. 
In multiway decomposition time delays in the mixing time in pules are coupled: 

(3)

Here R are the two relaxation parameters, Ω frequencies of the signal and t  the coupled 
evolution periods. This essentially means that time domain signals now are coupled for 
nucleus in the indirect dimension. With these depending coupling scheme Equation 1 has the 
following form. 

 (4)

Now the indirect signals are multiplied before the direct  dimension. Direct 
multiplication is now done against the direct dimension which is described by the fN function 
where N is the dimensionality of the experiment. Fourier transform of equation 4 gives the 
following expression: 

(5)

e(R1 + iΩ1 )t × e(R2 + iΩ2 )t
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Equation 5 describes how the frequency signals can be described as a convolution between 
the frequencies in the indirect dimension12. The convolution of two functions that are Fourier 
transformed describes an addition or subtraction of the frequencies. This addition of 
frequencies in the indirect dimension creates an turn around of the signal. In equation 5 we 
have a recorded spectra in the right side and a model describing this spectra on the left side. A 
minimization of these two entities forms the basis of projections decomposition:

(6)

In equation 6 noise are not considered. This can sometimes be added by using a Tikhonov 
regulation factor in the equation13. Discrete convolution between two vectors can be described 
as: 

(7)

Equation 7 describes that a ”wraparound” effect will take place when i-j is negative. This 
correspond to a convolution of two frequencies that are outside the spectral sweep width. 
Convolution for 45 degree projections can equivalently be written in the following way:

(8)

The matrix for describing -45 degrees convolution is done by swapping the columns around 
the central column. The matrix vector product Mb is the convolution between two vectors 
where one is described in a matrix form M. This forms the basis for a convolution equation

(9)

where P is convolution between the two vectors. This equation can be used for decomposition 
calculations by using P as the measured spectra and b for the unknown frequency. The M 
matrix is the known frequency expressed in equation 8. By using this it is possible to calculate 
the unknown frequency. Equation system 9 is solved by using nnls, a non negative least 
square solver. The residual is used for estimating the difference between Mb and P.  Equation 
9 where used in all optimization steps. 
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Previous implementations

The first implementations of the decomposition algorithm were called prodecomp and used 
Matlab14 as the language for the implementation. This proved to be slow for larger input of 
data and also could not be used for decomposition of larger spectra. Also no graphical 
interface existed thus making it hard to use for non experts. The two following  
implementations used python with numpy  and scipy libraries15 for numerical calculations. 
These versions was faster than the first matlab implementation and a comparison can be seen 
figure 1 between the Matlab version and the two python versions16:

Figure 2.  Comparison between the three versions of projection implementations. 

In figure 2 three versions of prodecomp are compared with regard to running times and 
number of components. The white and the grey boxes indicate matlab and an early python 
version. The black box was the latest version with improved matrix handling and less memory 
consumption witch made it possible to run larger datasets. However the python version was 
still slow when larger amount of data was used and the whole spectra could not be analyzed at 
the same time. To overcome this the spectra had to be divided into smaller parts for the 
analysis. No external functional calls was made in the two python version and the nnls 
function was translated verbatim from the matlab version. An early C version was developed 
but discarded at an early stage because complex memory  problem when handling matrices. As 
an example of the memory  constraints that occur when calculating a full spectra once instead 
of divide it into smaller parts, consider two projection experiments covering the backbone of a 
protein. Total number of planes would be 38. Assume that every plane would have 800*128 
data points and that  a double precision would be used. Using all planes at  once with no slicing 
would give a matrix of size of 35 Mb. These arrays are then used in a kronecker product 
operation where the resulting plane would be an 102400x128 sized array  and this would slow 
down the computation. By using projection experiments with less dimensionality  this problem 
can be avoided because of only three planes that are used instead of 38 planes.
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Running times

The first step in the development was to profile the previous version of the decomposition 
program. This was done using the cProfile module in python. The data was from two 
backbone experiments on Azurin using all 38 planes with 800 points in the direct dimension 
and 128 points in the indirect dimension. The interval was 742 to 744 points and two 
components where used. A selection of the results are shown in table 1: 

tottime cumtime function

0.455 11.894 prodecomp

2.168 5.364 midmatrix

0.558 3.193 fastnnls

0.971 3.102 roll

1.572 1.586 dot

0.980 0.982 concatenate

Table 1. Selection of profiler results showing the functions that takes most time in the old 
decomposition method. 

The function roll changes array elements along a given axis and midmatrix loops over 
matrices, all used for the creation of the convolution matrix explained further down. Looping 
and matrix multiplication is a bottleneck as so is also fastnnls. To further investigate different 
options a comparison was made between python, C and Fortran to compare running times 
between these with regard to matrix multiplication, looping and nnls in order to replace 
functions to improve performance. As a first  step, matrix multiplication and looping over 
matrix was compared between python, Fortran and C. Randomized square matrices was used 
with sizes from 100 to 5000 in 500 step intervals. These where used for matrix multiplication 
with floating numbers and setting numbers over loops. The result is shown in figure 3: 
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Figure 3. Different runnings times for matrix multiplication.

Here it’s clear that gsl is performing worse than Fortran and numpy. numpy is using Atlas 
library which is an optimized library for numerical calculations. gsl uses gslblas wich is 
slower than the netlib blas implementation. Matrix multiplication is one of the bottlenecks in 
the present implementation of the decomposition software. All three languages that use 
Fortran blas libraries are performing equally well with an slight edge for Fortran. The 
conclusions is that numpy matrix multiplication is fast but calling a Fortran routine will add a 
slightly speed gain. 

Another bottleneck is looping over different elements in a matrix. A comparison with Fortran 
and C showed clearly that python is slower than both these languages. Here a empty n*n 
matrix was used to fill with integers. The different sizes where 100,500,1000...5000. The 
result is shown in figure 4: 
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Figure 4. Different runnings times for looping.

Fortran is the fastest of the three, mostly  because it uses parallel assignment if possible in the 
forall loop that fills a matrix without any specific order. Even though the different between C 
and Fortran was small in absolute numbers, when using several loops in the implementation 
this difference will come to play. The current version uses an in house implemented version of 
fastnnls that  was based on the matlab implementation. This version is compared to nnls from 
scipy and nnls from Fortran with input  matrixes as before, randomized square matrixes where 
used in different sizes. The sizes used where the same as in the previous example. The result 
is shown in figure 5. 
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Here it  is clear that  the numpy version that uses a Fortran 77 routine did not differ from the 
Fortran 90 implementation significantly. Existing version for C did not exist so C was 
excluded from the comparison. A small difference was seen in the range 3500 to 4500, this 
could probably be due to external factors, or an uneven spread of the random numbers 
generated. Another test was to test the main decomposition program against different 
implementations that used C and Fortran routines to compare different running times. Here it 
was seen that C calls via ctypes17 interface improved execution speed to a certain degree but 
also created an unnecessary overhead with regard to arguments passing between the two 
languages. As described below, using linked Fortran object files provided to be a much easier 
solution while still having a significant speed gain compared to python functions. Apart from 
using Fortran routines in the python code instead of c functions a reduction of the number of 
input parameters was necessary  to decrease unnecessary  recalculations. So the initial 
approach was to use one point instead of several points and one component. This was tested  
but it turned out that an increased interval would be more beneficial with a one point 
assumption in every interval. 
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Implementation 

The existing decomposition algorithm suffer from a few drawbacks as mentioned above. 
Three parameters have to be provided to make the decomposition which creates many 
possible combinations witch can introduce erroneous components, i.e crowded spectra with 
many signals that  overlap  may alter the final result. Another problem is when strong signals 
are present close to weak signals. These strong signals are then often present in the 
components of the weaker components, influencing the resulting shapes making it hard to 
distinguish the right shape from the wrong one. A third problem is a lack of a comparing 
criteria for the resulting shapes. All these problems have to be addressed in a modified 
decomposition method and one possible path is to reduce the interval to one point thereby 
reducing the number of parameters to one. The projection experiments used in the previous 
implementation used all possible combinations from the projection experiments in the 
decomposition procedure. This approach created many  planes when the number of 
dimensions increased  to 4 and 5 as described in equation 10:

(10)

Equation 10. The number of planes for a N dimensional projection experiment 
where n is the number of indirect dimensions.

This approach was somewhat useful for spectra with low signal to noise but it also extended 
the measurement time considerably. For example, the number of planes for a 5D (n=4) 
experiment are 40, with the last 8 planes having the lowest signal to noise and at the same 
time taking almost half of the total experimental time due to the recording of all 8 
combinations. Low signal to noise could in fact reduce the accuracy of the calculations by 
introducing more noise than signals. By reducing the dimensionality of the spectra from 5D 
and 4D to 3D the measurement time decreases and individual variations can be done with 
different parameters depending on the nuclei measured. With this setup, more experiments are 
required to cover the same set of nuclei recorded for a higher dimensional projection 
experiment and only combinations of two nuclei are used in the algorithm but the signal to 
noise can improve and individual experiments can be adjusted with respect to number of 
scans and indirect points. 

Overall Structure 

The programs used for testing and development of the decomposition algorithm can be 
divided into two parts: python testing programs and final python programs with additional 
Fortran subroutines. Python was used because it supports numerical calculations and 
prototyping and testing can be done very fast compared to other languages and also be able to 
call other languages. The python programs consists of helping programs and develop 
programs. Helping programs are used for different tasks like displaying a spectra or convert 
points to ppm. The develop programs are testing programs used for different calculations. 
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The main programs that was used to try  different decompositions algorithms on a subset of 
the Azurin protein where the following: finalDeco.py, finalDeco.f95, decofunctions.f95, 
conversion.py, readFT2files.py, plotProjections.py. The graphical interface consists of the 
gui3.py program and here ubiquitin was used as test data. Testing data used for developing the 
deco algorithm came from projection experiments made on the protein Azurin18. Two 
different experiments where used that covered the backbone nuclei for two connected 
residues, thus giving information about the current and the previous residue. All 38 planes 
where recorded but only planes containing the N nuclei and a combination of one the other 
nuclei or a single nuclei, X={CO,Cα,Cβ,Hα,Hβ,Cαβ,Hαβ} where used as an input for all 
programs in order to test 3D to 2D backbone projections experiments. In total three planes 
where used: (N+X, N-X, X). The single N plane was used in the final selection. For every test 
a peak representing a residue from different parts of the corresponding 15N-HSQC plane 
where used. Every  plane was displayed using the program plotProjections.py  and in figure 6 
is the 15N-HSQC plane from Azurin used for peak picking.

Figure 6. Corresponding 15N-HSQC projection spectra from azurin used to select different 
residues. Note that side chains and prolines are not present in the projection 15N-HSQC. Units 

on x and y axis are in points.

11



In figure 6 units on the x axis corresponds to direct points while units on the y  axis 
corresponds to indirect points. As can be seen, intensity  differs among the peaks. In a regular 
15N-HSQC spectra these weak peaks would have a much higher intensity due to less 
magnetization transfer steps while in projection experiments signal to noise is reduced which 
influence decomposition calculations negatively. All development and testings where used on 
the following residues from Azurin.

interval x (pts) interval y (pts) residue comment

171 46 46 strong single peak

397 60 34 weak, close to 

395 57 103 strong residue 

377 21 81 strong overlapped peak

343 91 88 isolated glycine

182 13 114 weak isolated 

81 62 38 weaker left most residue

421 95 9 glycine residue

419 27 128 n-terminal

606 55 30 has a close peak to 30

606 67 73 same peak as 55?

601 66 65 same interval as 30

428 54 18 residue in the middle

388 56 84 or 2? strongest peak in spectra

Table 2. Azurin residues used for testing the algorithm. The last residue is ambiguous.

These residues represents different situations (low signal to noise, overlap of other peaks, 
crowded regions) that an algorithm have to be tested against. The testing algorithm used on 
these intervals uses only one fixed interval and one component, one for every  actual residue. 
The rest of the signals can in this case be either signals from neighboring residues or noise 
which is equivalent from the algorithm standpoint. The spectra was recorded using two 
backbone projection experiments covering the current and the previous nuclei. The last 
residue had the strongest signal but lacked a clear reference. This can in fact be an artifact of 
the experiment. The closest reference was residue 84 and 2. The residues where chosen to be 
an representative subset of the total number of residues which where 123 and 5 prolines not 
present in the spectra giving a total of 128 residues. 
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Development

The first assumption was to use peak picked N and NH shifts for all projections that contained 
the N nucleus. This assumes that the peak picker can correctly  peak pick all valid residues 
neglecting side chains that are present in a regular 15N-HSQC and that the shift variations is 
very small between the N shifts of all the involved planes. There exists different peak pickers 
for NMR spectra. The one used here was nmrDraw which is a part of the nmrPipe software 
package19. This peak picker uses different symmetry criteria to determine peaks from noise 
and threshold levels can be adjusted to decrease or increase number of valid peaks. All valid 
peaks are identified by their (x,y) coordinates in the direct and the indirect dimension. By 
using a fixed peak an assumption is made that the picked peak is considered valid for all 
subsequent calculations, NH peak is the same for all planes. For every signal a vector N is 
initialized to zero except the peak picked N point  that is set to one. For every peak picked 
point a set of points is used, i.e if the selected point is 171 (residue 46) in the direct dimension 
then a range from 169 to 173 points in direct dimension are used for the calculation. The slice 
defined have to be reasonably small otherwise overlapping strong neighboring signals will 
disturb the calculation. A fixed N also increases the correctness of the calculation because it 
doesn’t have to be optimized. This vector is then used for generating the M matrix by using 
equation 8. The matrix for calculating negative projection angles (-45 degrees) is then done 
by shifting all columns in matrix M around the mid vertical column. This matrix is here called 
Mn. By setting the known signal to one and the rest of the signals in the vector to zero gives 
an M matrix that merely shifts the convolution spectra (N±X) to the right position. it also 
enhances the signal. When constructing the M matrix all points has to be shifted half of the 
indirect dimension points, i.e 64 points for a spectra with 128 points in indirect  dimension. 
This ”wrap around” effect takes care of the folding of the spectra, an effect caused when a 
larger sweep  width is used than the final sweep width in the indirect dimension. When 
developing the algorithm, a first approach was to construct another vector for all signals 
except the ones for the specific residue. If the signal vector is called fs and the rest of the 
signals fn then slice c1=fs+fn would be composed of the right signal and the rest  of the signals 
would be considered to be noise or other signals. This noise plus the rest signals vector fn 
would then be used to subtract all signals except the selected from the spectra, i.e one 
calculation for the actual signal and one for the rest of the signals. Further test concluded that 
this was not a useful strategy  because only a limited number of points where shifted. Also the 
projection N+X and N-X are used to construct convolution matrices that are used in the 
calculation for X presented in equation 10 below. All four matrices are used to determine b in 
equation 9 by using the nnls algorithm. Note that the corresponding signal in b, the unknown 
in equation 9 corresponding to the unknown signal X in the projections, have the same 
position when using either M or Mn, i.e the 45 and -45 projection. But the rest of the signals 
are not always the same. Signals from other peaks have different positions than the actual 
signal as long as they are not to close to the current signal. This increases the chance to 
identify the current signal from the rest of the signals. In equation 5, a set components are 
used to describe the projection spectra. By  using just one component this is can thought of 
that one component describes the signal and the rest describes the noise or signals from 
neighboring peaks. The use of one point in for the indirect dimension requires well picked 
peak, otherwise the calculation can easily be misleading and give erroneous results.  
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Modified algorithm deco

The flowchart describing the overall procedure is presented below. The only parameters used 
are the width of the direct dimension witch is set to a default of 5 points. The whole 15N-
HSQC is divided into slices which correspond to the number of expected residues. Thus, 
every  residue has a x coordinate and a y coordinate corresponding to the direct dimension and 
the indirect dimension respectively. The direct dimension usually  correspond to the NH nuclei 
while the indirect  dimension can be as single nuclei or a combination of both nuclei N and X 
where X is one of the other nuclei in the experiment, for example X=CO in the N±CO 
projection experiment. The combination can be either a 45 degree projection (N+X) or a -45 
projection (N-X). This approach reduces the former parameters that required an interval 
definition and also the number of components. The former algorithm used an alternative least 
square approach20 21 which required the above parameters and also a Tikhonov regularization 
factor. Tikhonov regularization factors are used when there is a large fraction of missing data 
but it  can also create distortion in data22. At present deco uses no regularization factor since 
signal intensity  from the N signal is changed initially by setting an N vector with a signal of 
intensity one and the rest is set to zero. The overall flowchart is described in figure 8:

Figure 8. Flowchart describing the general algorithm for decomposition. conv is a function 
that returns the convolution matrix for an input vector and comp compares two vectors.

Input:
projection spectra   

P={N±X,X}
N,NH coordinates

initialise res,pres
normalize spectra P

set b=N±X
set M=conv(N)

iterate while res<pres

res>pres?

use Xn for 
shape 

selection

no

yes

pres=res
set (res,Xn)=nnls(M,b)

set b=M*Xn*N±X

for i=0.1..0.9

comp(Xn,X)<i?

set X[s]=0
set b[s]=0

for s in length of Xn

Set Nc=Xn*conv(b)
normalise Nc

r=comp(Nc,N)

append r to 
solution

sort solution 
and select 
the best 
shape

yes

no
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The first step  in the deco algorithm is to normalize all spectra and to remove negative peaks. 
The removal of negative peaks is done because the nnls algorithm cannot handle negative 
input values. Normalization is used to make it easier to handle intensities that has a large 
spread in intensities and may reduce the importance of the missing Tikhonov regularization 
factor. The current  and the previous residual values are also initialized. A default value of 5 
points is used as a preliminary initialization for the width of the direct dimension. The interval 
defined can be changed depending on the type of protein used, i.e large proteins with a lot of 
overlapping peaks may require a smaller interval. The convolution matrices M  and Mn are 
determined from the N peak. The iteration step  is terminated when the current residual is 
higher than the previous residual. In the iteration a new b vector is calculated using the 
calculated Xn vector and the original N±X vector. This is used as an input for the nnls and a 
new Xn and a residual is calculated as long as the residual is less than the previous calculated. 
A final selection procedure is then done to select the most probable peak. The details of the 
iteration is described below in figure 9.  

// input
projections={N+X,N-X,X}, peaks coordinates {x,y}

for every N at position x,y:

// setup parameters
set N vector to zero and set N[y] to one 
set M,Mn=convolution matrix for vector[N]
initialize x1,x2={x-2 to x+2}

for xi=x1 to x2:
  

// initialization: 
1. normalize projections[N+X] and projections[N-X] at position xi
2. set vectors temp1,b1=projection[N+X] and temp2,b2=projection[N-X]
3. initialize res=99 and pres=100

// optimization
while res<pres

1. set pres=res
2. copy projection[N+X]=b1 and projection[N-X]=b2
3. set Gn,T=convolution matrix for: projection[N+X] and projection[N-X]
4. set Mtot={Gn,T,M,Mn}
5. set b={N,N,projection[N+X],projection[N-X]}
// using equation 10 as an input for nnlsf
6. set Xn[xi],res=nnlsf(Mtot,b)
7. set b1=dot(M,Xn)*temp1 and b2=dot(M,Xn)*temp2

15



// selection
initialize final as list

for i=0.1 to 0.9
for s=1 to length of vector Xn 
// using equation 11,12 in the comparison 

1. set c=comp(Xn,X[x1 to x2]) in the direct dimension
if c< i 

set Xn[:,s]=0 and X[:,s]=0

// using equations 13 for final comparison 
2. set bb=dot(transpose(Xn),N[x1 to x2])
3. set Nc=convolution matrix for b1*bb + b2*bb
4. normalize Nc
5. comp(Nc,N) and append score to final list 

6. sort final
7. select entry with highest score from final

Figure 9. Different parts of the algorithm

The setup parameter is the y  determined peak position from the 15N-HSQC. The y  index is set 
to one in a vector initialized to zeros. This vector is then used to construct the M and Mn 
convolution vector used in equation 9. The range for the interval is also determined, default is 
5 points i.e x-2 to x+2 points. Then for every xi in the interval all three spectra X,N+X and N-
X are normalized and all negative values are set to zero. Copies of N+X and N-X are made 
because in the optimization step they will be changed for every iteration but the also the 
original ones are used in some steps to multiply the newly calculated. Finally  current  residual 
res and the previous residual pres are initialized. This concludes the initialization step. The 
optimization step is an iteration that terminates when the current residual is higher than the 
current one. For every iteration X is calculated using nnlsf with the current projections N+X 
and N-X. The resulting calculated X is then used to calculate a new N+X and N-X projection 
using equations 8 and 9. These new projections are then multiplied by the original ones to get 
rid of unwanted peaks and noise. A new nnls is now calculated and if the residual is lover than 
the previous calculated a new set of N+X and N-X projections are calculated that replace the 
former projections. The loop terminates when the current residual is higher than previous 
calculated. This is then repeated for every  slice of the interval. A final step is to compare 
every  shape in the resulting matrix with direct dimension shape of N. The matrix input for 
nnlsf is presented below in equation 10. All matrixes on the left side are the Mtot and the right 
side are the Ntot in figure 9. 
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(10)

 Equation 10. Matrices describing the input for the nnls calculation.

As seen in equation 10, there are four NxN sized matrices that contains the two combined 
projections Gn (N+X) and T (N-X) and M and Mn. The first two convolution matrices contains the 
convoluted spectra with the combinations N+X and N-X while the last two convolution 
matrices contains the N vector used for calculating the X initialized from the HSQC 
experiment. All NxN convolution matrices are set up according to equation 8. The size of the 
unknown vector in is the size of the indirect dimension of the processed spectra and it is 
normally an exponent of two. For example, with an indirect dimension of 128 points the right 
side matrices becomes 512x128 and the left side 512x1. The unknown vector X is then of size 
128x1. This unknown vector form the unknown shape in the convolution equation. The 
known shapes on the right side of equation 10 are the two N shapes and the two projection 
shapes. All this is then used in this second step for the nnls algorithm to calculate the 
unknown shape X out of several possible shapes. The result is X and a residual for the 
optimization process. The result is the unknown shape calculated using the X,N+X and N-X 
spectra and the N vector. This is repeated for every x in the range and all calculated X are 
collected. At this stage the final matrix has the shape 5x128 containing a solution for every 
interval in the five points range. This matrix is now used to select the final shape with by 
using cos similarity as in equation 11.
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(11)

Equation 11. Cos similarity between two vectors. The numerator contains the dot product 
between vector v1 and v2 and the denominator are the norm of the two vectors.

The selection is done by first multiplying the calculated Xn shape with the original X plane to 
get a final shape in the direct dimension as seen in equation 12. This shape is now compared 
to all rows of the X plane using cos similarity.

(12)  

 

Equation 12. Comparing every row on the Xn matrix with the calculated row. S(i) represents 
every column in the Xn matrix

Cos similarity  gives a value between -1 and 1 where -1 and 1 are perfect match and 0 is no 
match. by comparing all shapes in the original X plane a qualitative value gives information 
how good the decomposition has been. A set of values are used in increasing order from 0.1 to 
0.9 and for every shape that have a lesser value than the current is then set to zero. This is a 
way of removing shapes that are not valid. A final matrix is then calculated with matrixes in 
equitation 13 that represent the Nc shape. This Nc is then compared to the original N that was 
constructed using the peak picker earlier. Finally  the selected value that  has the highest value 
is chosen as the final shape. 
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(13)

Equation 13. The three matrices used for the final comparison. Xn is compared to fN2 and the 
best score is used to pick the final shaped

Programs

finalDeco.py: this program contains the main algorithm for the decomposition plus additional 
programs for testing data. The implementation is in python with special calls to Fortran 
routines for faster execution. Input are projections in npy format for decomposition. Output is 
a plot with the resulting decomposition. 

decofunctions.f95: contains Fortran functions fdot1, mvec, fconv, normalise and nnlsf. fdot1 
takes as input two matrices and performs matrix multiplication, mvec multiplies two vectors 
element wise. fconv takes a vector, a square matrix, the size of the vector and an integer as an 
input. Output is a square matrix that contains the convolution matrix used in the nnlsf 
calculation. The convolution matrix can also be set to a -45 degrees projection by shifting all 
columns around the middle column. This is done if n is set to 1. normalise takes a vector as an 
input and normalize the vector and removes all elements that  are negative. finally, nnlsf is the 
nonegative square solver implemented in Fortran 90, based on the algorithm proposed by 
Charles L. Lawson and Richard J. Hanson23. Note that the nnls used in numpy is based on the 
same authors24 from a revision of the original book. 

plotProjections.py: this program reads spectrum and displays their contour levels using 
matplotlib25. input is a complete list of projections and output is a contour map. Apart from 
the contour map is a cross section of a slice of the spectra. This program is used for visual 
inspection of the spectra. Contour levels are usually between 0.1 and 1 but can be changed 
depending on the sensitivity of the spectrum. The spectrum has to be in npy numpy format.  
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readFT2files.py: a program that reads spectrum in nmrPipe FT2 format and converts them to 
numpy arrays that are used for decomposition and display of spectra. 512 bytes of header 
information has to be extracted first. 

conversion.py: converts points to ppm for different nuclei

gui3.py: this is the graphical user interface program and it contains several functions. Most 
functions concerns the graphical functionality  and the functions that are used for 
decomposition are the same as in finalDeco.py

finalDeco.f95: this program was developed to replace the whole decomposition with fortran 
code. Unfortunately very strange errors made it hard to continue to develop this version. 
Therefore it is not used and it is not contained in the source appendix. 
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Evaluation 

The code used for the following residues is in the supplementary  material. All listed residues 
reference26  shifts where compared to the calculated results. The peak picking was made by 
inspection, i.e to confirm that the shape contained the closest peak to the reference. Normally, 
final peak picking is done after the sequential assignment is done. In that stage, information 
from the current and the previous residue are available which creates less ambiguity in the 
final assignment. The result for the peaks presented above are presented in table 3:

Res. CO Cα Cβ Hα Hβ Cαb Hαβ

47 176.31 54.84 44.88 4.74 2.66/2.42 57.14/39.66 7.3/3.32/2.39

calc. 176.18 55.94 38.47 4.77 4.18/5.18 55.94/38.47 7.24/3.27/2.36

34 175.17 61.61 69.9 5.08 4.1/3.89 56.59/48.17 5.41/2.0/0.99

calc. 175.14 60.47 34.58 5.03 4.05/2.03 56.59/48.17 5.35/1.96/0.99

103 175.29 58.42 38.59 4.63 1.90/1.78 57.18/46.61 4.51/2.05/1.1

calc. 176.56 58.53 37.17 4.51 2.16/1.90 59.17/32.00 4.44/2.16/--

81 175.62 67.72 42.57 3.71 1.12 66.47/35.52 3.92/2.34

calc. 174.36 66.29 26.17 3.66 2.55 65.00/33.94 3.92/2.29

88 175.93 45.44 -- 4.09 -- 64.13/46.14 4.89/2.20

calc. 175.92 43.64 -- 4.05 -- 63.70/-- 4.83/--

114 174.01 61.77 43.62 3.47 2.68/2.48 66.3/71.9 4.59/4.95

calc. 173.98 60.47 42.35 3.46 2.62/2.49 --/70.82 --/4.96

38 173.80 57.37 46.46 4.98 2.75/2.6 47.7 5.03

calc. 173.85 55.94 44.94 5.48 2.75/2.55 46.23 5.03

9 175.93 48.46 -- 5.19 -- 57.52/35.73 5.3/1.73/1.63

calc. 180.06 47.52 -- 5.35 -- 55.94/63.70 5.22/1.32/1.64

128 175.69 61.65 39.40 4.35 1.73/1.62 57.95/48.24 5.15/1.67/1.34

calc. 175.66 60.47 37.82 4.31 1.71/1.64 57.23/46.88 5.22/1.64/1.32

30 172.78 65.19 75.39 5.11 3.33 60.35/46.89 4.91/2.0/1.61

calc. 171.26 49.47 41.05 5.67 2.35 55.94/-- 5.41/3.27/2.23

73 175.53 58.02 50.53 4.57 1.35/1.16 65.04/38.71 3.66/3.09/2.44

calc. 175.40 55.94 48.82 4.31 1.31/12 63.06/34.58 3.98/3.07/2.43

65 178.31 57.59 22.68 4.21 1.57 63.83/36.18 4.04/2.49/2.27
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Res. CO Cα Cβ Hα Hβ Cαb Hαβ

calc. 178.25 55.94 21.00 4.18 1.51 62.41/34.58 3.98/2.36/2.23

18 171.88 56.5 43.72 5.16 3.23/3.17 63.87/73.56 4.78/4.19

calc. 171.78 55.94 47.53 5.16 2.49/3.14 --/72.12 4.70/4.18

84 173.03 65.34 76.00 4.81 5.22 58.32/36.44 6.2/3.44/3.33

calc. 173.33 54.00 21.64 4.05 1.45 54.00/21.64 --/4.05/1.38

Table 3. Results for the algorithm used on the previous residues. Reference ppm are on top 
and calculated numbers below. Residues 9 and 88 are glycines which lacks Hβ and Cβ are 

marked with a ’--’ symbol which also marks missing peaks. 

The average of the differences between the calculated values and the reference is presented in 
table 4. The last row is with the the last residue removed. 

CO Cα Cβ Hα Hβ Cαβ Hαβ

0.65 2.98 11.42 0.19 0.62/1.57 1.5/5.09 0.1/0.2/1.19

0.67 2.34 8.11 0.14 0.38/1.4 1.28/4.34 0.11/0.16/0.06

Table 4. Average differences between calculated and reference values with all residues on first 
row and with the last residue removed on the last row. 

The average comparison in table 4 shows that CO had a good average while Cβ was not good.   
Hα was neither good or bad while Hβ was worse. Overall was Cβ and Hβ worse than Cα and 
Hα. The reason for this can probably partly be explained by  bad experimental conditions. One 
reason is also the ambiguity  for the last residue and the results changed to the better when 
removing the last residue but not as much as expected. A detailed analysis is done below. 

As can be seen in table 3, the result for the 14 selected CO nuclei are in good agreement with 
the reference values with an average value of 0.66 witch is slightly above a threshold of 0.5 
ppm. The exception is residue 30. Residue 30 is close but not whitin a 0.5 ppm threshold and 
has a peak that is very  close and can in fact be the same peak. The CO often gives strong 
signal in relation to other nuclei mostly because a strong one bond coupling constant thus 
making it the easiest to calculate of the backbone nuclei. An example of the result of the 
calculation for residue 9 can be seen in figure 13. The uppermost shape is the resulting CO 
peak that is selected by  multiplying the third shape that is from the single projection on the 
slice interval x. By multiplying the resulting shape with the projection the N shape can be 
obtained and this can be used as an aid to see that the calculation is correct. 
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Figure 13. Four shapes that describes the CO and the N nuclei at interval 421. The N shape is 
at 95 which can be clearly seen in the second panel. 

In figure 13 there are at least four shapes representing slices at point 491. The bottom panel 
show the different N nuclei. The present is at position 95, representing residue 9, a glycine. At 
least 8 other are present in the panel. The second panel represent the N shape calculated with 
N+CO and N-CO convolutions using the obtained result of the CO shape from the 
decomposition. Here it is clear that the right shape indeed is at point 95. The third panel 
shows the number of possible CO shapes from the convolution calculation. Six peaks are 
present. The final panel shows the resulting CO shape. This shape is then used to calculate the 
N shape in order to check that the result is correct. 

For the Cα nuclei the result was slightly different. Most residues are out of a 0.5 ppm 
threshold, a threshold normally used for good comparison. One reason for this is that signal to 
noise ratio is less than in the CO spectra that have the highest signal to noise ratio. Especially 
peaks that have a low signal to noise give a lot o signals in the calculation. All these signals 
can make it hard to select the right peak. The shapes identification for Cα is also complicated 
by the fact that a Cα peak from the pervious residue is present. This peak is usually with less 
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intensity but not always. This is because of the type of experiment done and it is also true for 
Cβ and Hβ. Normally a final peak picking is done when the final backbone sequence is 
determined, then the Cαβ and Hαβ plus statistical values can be used to increase the shape 
identification. Another source of error are lack of curve fitting which can shift  the ppm 
slightly. 

Residue 46 and 38 are the rightmost and leftmost residues respectively and they should be 
easy for the algorithm to resolve because they lack neighboring signals that affects the 
decomposition. However, Cβ and Hβ did not resolve well for residue 46. This was probably 
because the highest intensity  of the Cβ shape was wrong. This can be the fault  of 
measurement errors. The same argument applies the erroneous Hβ. So the algorithm presented 
the right result but wrong measurement gave errors. Residue 38 gave better result  although 
the N intensity was weaker than residue 46 intensity. Strong intensity in the N shape doesn’t 
have to imply that  the rest of the intensity are strong, relaxation effects can reduce the signal 
for different nuclei whitin a residue. In some places one shape is missing and this can occur 
when the resolution in the experiment is low and two signals are very close to each other. 
Significant differences between in table 2 can partly  be explained by spectral errors and low 
signal to noise. One exception is the last residue that have the strongest N intensity  of all 
peaks and still has only CO correct  in table 2. This remarkable result is probably  because it  is 
wrong reference or it is an artifact. Residue 34 had a clear miss on the Cβ but this peak was 
actually present with a lower threshold although a lot of other peaks where also present. The 
same argument is valid for Hβ, here present as a very  low intensity  peak while the strongest 
one is clearly wrong. CO for 103 is slightly wrong but  the correct peak is present but with a 
very low intensity. A very  weak Cα was present for the Cαβ shape. For residue 81 the Cβ was 
totally  of, here possibly because a strong signal was close to the right signal and this was also 
true for Hβ. Both Cβ and Hβ where missing in residue 87 possible due to weak signals. Hα on 
residue 38 was very weak and thus could be considered an artifact. Hβ for the previous 
residue was very weak compared to the strongest peak but could be peak picked with the help 
of the previous residue. Glycine residue 9 proved to be very complicated to resolve with a 
clear miss for the CO shape. A lot of signals where present in the CO plane and the wrong one 
was picked by the algorithm. Hα was present but with a very low signal making it hard to 
pick. Also the previous residue gave errors. residue 30 had problems with Cα and Cβ as well 
as the rest of the residues. Notable is that the comparison score was quite low, 0.21, for this 
residue. CO for residue 73 was weak but still present. Also the comparison score showed low 
values, 0.08, indicating wrong shapes. Residue 18 Cβ was weak but  present. The previous Hα 
and Hβ was very weak. The last residue on the list is probably an artifact, the signal i 
significant stronger than the rest of the signals and it doesn’t fit  into any residue in the 
reference list. 

Performance 

The interfaces used for accessing C and Fortran functions from python where ctype and f2py.  
cyype uses conversion modules for converting python implicit python types to corresponding 
c types. The C functions are then called via dynamically linked shared files. Fortran 
subroutines are called as shared object files. The type conversion between pythons 
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dynamically typed types and Fortran statically typed types are done via the f2py  interface.  
The Fortran subroutines can then be used as a python module using the import statement. All 
three languages uses scientific libraries based on lappack. Python uses scipy/numpy, C gnu 
scientific libraries27  and Fortran Lapac28. Fortran also have inbuilt libraries that handle 
different matrix manipulations. 

The first implementation used ctypes for accessing functions that was slow in the python 
implementation. These required conversion between the different types to be used in C 
programs and thus created an unnecessary overhead. Thus this approach was dropped in favor 
of f2py witch creates shared object files that can be loaded at execution time. Type conversion 
is minimal and both simple types and combined types as in matrices can be handled easily. 
Five python functions were replaced with the following Fortran functions: fdot1, mvec, fconv, 
nnlsf and normalise. Table 5 shows the performance difference between the pure python 
implementation and the modified implementation using Fortran functions calls. Input was the 
71 residues protein ubiquitin29 and the gui interface was used. First test was on a stationary 
computer and the second test was on a notebook with a dual core processor 1.8 MHz. 

cumulative/s decompose decomposeF95

stationary

notebook

6.003 4.755

21.861 5.482

Table 5. Comparison between a pure python implementation and an implementation with 
Fortran function calls on a stationary computer and a laptop

As can be seen in the table, performance was improved using Fortran functions calls in both 
computers but the difference is significantly smaller for the stationary computer then the 
laptop. This means that a computer of todays standard probably would notice small 
differences on a protein of the size of ubiquitin but with larger proteins the advantage of using 
Fortran calls would still be present.  

Graphical interface

A graphical user interface (gui) was developed to ease the handling of spectra and 
decomposition. This gui was written in wxPython30, a graphical library written in python used 
for developing platform independent graphical interfaces. The gui is used a tool to convert, 
display, decompose and assign projection experiments. All programs that are part  of the gui 
are listed below. A short description of the program is given here. 

1. First the input data from the experiment must be converted and loaded. The supported 
format are FT files. These files come from the nmrPipe processing package. nmrPipe are 
used as a processing tool for NMR data and also as a visualizing tool. The corresponded 
15N-HSQC has to be peak picked in nmrDraw and a peak list have to be generated that can 
be used in the gui. Last, an text file generated from the experiment containing parameters 
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from the experiment have to be loaded and converted. When the peak list is loaded a 
spreadsheet is generated with the residues and the corresponding nucleus. The resulting 
shifts will be inserted in this list when the planes are decomposed using the deco algorithm 
and these shifts can be changed manually as well. 

2.  The peak list is projected onto the 15N-HSQC plane and both pts and ppm are shown in the 
lower part  of the gui. Also the spectra can be zoomed and the thresholds levels can be 
changed by using the scroll wheel of the mouse. This spectrum is good to have at  hands 
when analyzing the projections. 

3. Decomposition is started either from the menu or from a menu button. The decomposition 
is done over the whole region defined from the peak list. The algorithm used is described 
above. The resulting automatically picked peaks are displayed in the spreadsheet when the 
decomposition is done. When clicking on a cell the resulting decomposition is displayed. 

4. Individual residues can be recalculated by first changing their coordinates in the 15N-HSQC 
spectrum and then clicking on the toolbar and choose single calculation.

5. The final peak list can then be used for a sequence assignment and subsequently a final  
peak assignment.  

Figure 14. Graphical interface for deco
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  Conclusions

Deconvolution of projected experiments usually requires several parameters for analysis, 
interval and number of components are usually required. These parameters make the 
deconvolution complex and requires a lot of testing before a final interval with a suitable 
number of components. Also confusing is the fact that components can be used to describe 
noise or signals. In my approach I consider only one signal at a time and all the rest are 
considered noise or other neighboring signals. Every  interval has a length of five points and 
this together with the one signal assumption removes the three parameters. The real 
difficulties in this approach was to separate signals from noise in very dense regions. One of 
the considerations is that  the expected signal can be lost in several projections, thus making it 
difficult to find the signal. When going from 5D,4D to 3D in effect only  four planes can be 
used, {N,N+X,N-X,X}. The first step  here was to use the peak picked information by 
selecting the picked peak and remove all other signals for N. This approach can compensate 
for the loss of information to some extent. The inaccuracy in some of the shapes emphasizes 
the importance of having really good spectra so information is kept as consistent as possible 
between the experiments. 

The final programs used here represent only a subset  of the programs used for testing and 
optimization, several different algorithms where tried to extract the results from the 
decompositions with varying results. One mistake was to optimize against CO first and then 
go on to the rest of the nuclei because CO has a much stronger signal intensity and thus gave 
much better result than the rest of the nuclei. This made the process slower because of the 
false assumption that  the algorithm worked well for the other residues. One other approach 
was to replace the whole decompose algorithm with a fortran module and this was tested but 
very strange memory  related errors turned up and therefore this was abandoned. The speed 
gain for this is also questionable. Developing in wxPython was very time efficient and the 
underlying calls to matplotlib did not create any difficulties. The choice of fortran functions 
over c functions can be recommended when doing numerical calculations in python because 
of the easy argument transfer without any explicit type conversion. 

Finally I think this algorithm is worthwhile to continue with and that it is suitable for proteins 
of smaller size with a sufficient large signal to noise. 
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