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ABSTRACT 
This report describes the development and resulting product of a web-based 

editor for a simple programming language. This language is an extension of 

simply typed lambda calculus and labelled bracket notation, with a simple type-

system. Each editing operation will only construct well-typed programs. 

The report is written as a basis for someone with some technical knowledge of 

type-theory and programming, who wants to further develop the application. 

The application and its source code can be accessed on 

http://bonzay.se/dev/master. 

  

http://bonzay.se/dev/master


 

 

 

 
4 

TABLE OF CONTENTS 
1 Introduction ............................................................................................................... 6 

1.1 Purpose ............................................................................................................... 6 

1.2 Objective............................................................................................................. 6 

1.3 Scope and Limitations ...................................................................................... 7 

1.4 Theory ................................................................................................................. 7 

1.4.1 Trees ............................................................................................................ 7 

1.4.2 Types ........................................................................................................... 8 

1.4.3 Web-applications ....................................................................................... 8 

1.4.4 Parsing ......................................................................................................... 9 

1.4.5 Editors ......................................................................................................... 9 

1.4.6 Languages ................................................................................................. 10 

1.4.6.1 Simply typed lambda calculus ............................................................. 10 

1.4.6.2 Labelled bracket notation and XML .................................................. 11 

2 Methods .................................................................................................................... 12 

2.1 Choice of programming Languages .............................................................. 12 

2.2 Development ................................................................................................... 12 

3 Result ........................................................................................................................ 13 

3.1 The Program .................................................................................................... 13 

3.2 Application Usage ........................................................................................... 14 

3.2.1 Example of creating a program ............................................................. 15 

3.3 The language .................................................................................................... 18 

3.3.1 Syntax ........................................................................................................ 18 

3.3.2 Types ......................................................................................................... 19 

3.3.3 Program example ..................................................................................... 19 

3.4 Data storage ..................................................................................................... 19 

3.5 File Structure .................................................................................................... 20 

3.6 Internal representation ................................................................................... 21 

3.6.1 Q-node ...................................................................................................... 21 

3.6.2 Qs ............................................................................................................... 23 

3.7.3 Contexts .................................................................................................... 23 

3.8 HTML representation ..................................................................................... 24 



 

 

 

 
5 

3.9 Parsing and type checking .............................................................................. 24 

3.10 Server side ...................................................................................................... 25 

4 Discussion ................................................................................................................ 26 

4.1 Security .............................................................................................................. 26 

4.2 Further development ...................................................................................... 26 

4.2.1 Complete parser ....................................................................................... 26 

4.2.2 Better type-checker .................................................................................. 26 

4.2.3 Define Concrete syntax .......................................................................... 27 

4.2.4 Dependent functional types ................................................................... 27 

4.2.5 Autocomplete ........................................................................................... 27 

4.2.7 Known bugs ............................................................................................. 28 

5 References ................................................................................................................ 29 

 

  



 

 

 

 
6 

1 INTRODUCTION 
 

1.1 PURPOSE 

The purpose of this work is to develop an editor for a simple language 

incorporating the basic building blocks of XML and the labelled bracket 

notation used by linguists. The editor will run in a browser. It will present the 

objects being edited in different ways (indented text strings, trees). There is a 

simple typing system to this language and each editing operation will only 

construct type correct objects. 

Further developments of this include:  

 flexible notation for concrete syntax (a la GF1) 

 a more advanced typing system (with dependent functional types) 

   - Bengt Nordström, Examiner 

 

1.2 OBJECTIVE 

The editor uses placeholders for incomplete expressions. A placeholder is an 

empty node that only has a type in the abstract syntax tree. The tree is being 

constructed by replacing these placeholders with expressions. Each placeholder 

can be replaced by a node if and only if the typing rules are not violated.  

The application should be able to: 

 Select a node. 

 Replace a selected node with a placeholder (deletion). 

 Replace a selected placeholder with a node (insertion). 

 Create a placeholder. 

 Save the content in the editor. 

 Load the content to the editor. 

The application should also be developed with usability in mind. All 

commands and interactions should be as intuitive and simple as possible. 

 

 

                                                 

1 http://www.grammaticalframework.org/ 

http://www.grammaticalframework.org/
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1.3 SCOPE AND LIMITATIONS 

The application should run in a web-browser, which means that it must work 

for different browsers. This can be a big problem because many of these have 

different engines and will interpret the code differently. In this project, cross-

browsing is not a priority and the application will be developed to work only in 

Google Chrome. The application will still be working on different platforms 

because Google Chrome is available for all major operating systems. 

 

1.4 THEORY 

 

1.4.1 TREES 

A tree is a simple and common way of representing hierarchical data.  A tree is 

built up with nodes. Each node stores some data and has a parent and zero or 

more child nodes. The topmost node is called a root and is most often the 

starting point of operations on the tree. Tree structures are very common in 

Linguistics and Mathematics. For example the mathematical expression 

        

can be represented by the tree in figure 1.1. The parentheses are not present in 

this representation but its meaning is represented by the structure of the nodes. 

 

Fig. 1.1: A tree representation of a mathematical expression 

In computer science, an abstract syntax tree is often used to represent the 

source code of a program. Each node will correspond to a constructor, 

operator or variable of the source code. Its recursive structure makes is simple 

for a computer to read and manipulate the data stored in it. 

The Java program in figure 1.2 will have the abstract syntax tree in figure 1.3 
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if (plus) 

return x + y; 

else 

return x – y; 

Fig. 1.2: A java program 

 
Fig. 1.3: An abstract syntax tree of a simple Java program 

 

1.4.2 TYPES 

“Well-typed programs can’t be blamed.” 

  - Philip Wadler and Robert Bruce Finder [1] 

Most modern programming languages have some kind of type-system. This is a 

system that classifies each expression by a type, and then the type-checker tries 

to prove that no type error has occurred. If a type error is found, the program 

cannot be guaranteed to execute correctly and can often crash because of 

errors. If there are no type errors, the program is said to be “well-typed” and 

this can prevent many execution errors. A type system is used to eliminate 

errors at an early stage during the development. It can also be used to help the 

developer reason about the code and simplify proofs. 

 

1.4.3 WEB-APPLICATIONS 

Every single web-page and web-application on the internet is, by standard, 

structured and built with HTML2. HTML is short for “Hypertext mark-up 

Language” and describes the layout of a web-page. The HTML code is 

constructed with tags that have a number of arguments and children that 

                                                 

2 http://sv.wikipedia.org/wiki/HTML 

http://sv.wikipedia.org/wiki/HTML
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describe both structure and properties for each tag. These tags build a treelike 

structure called the DOM (Document Object Model) tree. HTML has no 

support for programmable functionality or user interaction; therefore another 

language must be used. 

JavaScript is not a standard, but it is by far the most used scripting language 

used to add functionality such as store information, read input from the user 

and manipulate the DOM tree in real time. Normally when the client gets data 

from the server, the web-page needs to be reloaded which takes time and 

JavaScript loses all information stored in the current session. This can be 

solved by making an AJAX3 request. This retrieves information from the server 

in the background, without the page being reloaded. When passing data in this 

way, a Json4 object is very convenient to use. It is a string object that is very 

similar to a map or dictionary. 

 

1.4.4 PARSING 

Parsing is the process of converting the program as a string to an abstract 

syntax tree so the computer can work with it. The process is generally divided 

into two parts (figure 1.4): lexical and syntactic analysis. The first part divides 

the string into a list of tokens where each token represent a meaningful 

symbol. These tokens are passed on to the second part, the parser. Here a tree 

is created to represent the program. 

 

Fig. 1.4: Parsing process 

1.4.5 EDITORS 

To make the development process easier, programmers use special text-editors 

to construct the programs. These editors often have a type-checker and parser 

implemented, so type errors and parse errors can be presented immediately. It 

can also suggest values of functions and variables that are available in the 

program. This is called Autocomplete. Example of such editors is Eclipse5 and 

Microsoft Visual Studio6. 

 

                                                 

3 http://sv.wikipedia.org/wiki/AJAX 
4 http://www.json.org/ 
5 http://www.eclipse.org/ 
6 http://msdn.microsoft.com/en-us/vstudio/aa718325.aspx 

http://sv.wikipedia.org/wiki/AJAX
http://www.json.org/
http://www.eclipse.org/
http://msdn.microsoft.com/en-us/vstudio/aa718325.aspx
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1.4.6 LANGUAGES 

 

1.4.6.1 Simply typed lambda calculus 

Lambda calculus is a very simple, yet powerful, programming language. It is 

Turing complete which means that it can express and evaluate every 

computable function.  

It is very clumsy to write programs in this language, but this is not the main 

reason for it. It was constructed to formalize and study concepts as recursion 

and computability. Its syntax is defined by the BNF in figure 1.5: 

e ::=   X variable 

| e e application 

| \X.e abstraction 

Fig. 1.5: BNF for lambda calculus 

where X is a variable name. 

An extension to this language is to add a simple type system. We need to 

introduce the syntax for types, and change the abstraction expression to 

include this. This is shown in figure 1.6. The typing rules are shown in figure 

1.7. 

e ::=   X variable 

 | e e Application 

| \X:t.e Abstraction 

 

t ::=   T base type 

 | t -> t functional type 

Fig 1.6: BNF for simply typed lambda calculus and the type system 

             

     
             

             

        
 

Fig. 1.7: Typing rules for simply typed lambda calculus 

This language will no longer be Turing complete, but it is guaranteed to always 

terminate. This extension helps the reasoning about types and simplifies 

proofs. 
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1.4.6.2 Labelled bracket notation and XML 

Labelled bracket notation is commonly used by linguistics to; for example, 

name the components of a sentence. Each bracket has a name and some 

arguments. Fig 1.8 shows the English sentence “John hit the ball” divided into 

a sentences base components.  

[sentence [noun John] [verb phrase [verb hit] [noun phase 

[determiner the] [noun ball]]]] 

Fig 1.8: Structure of the sentence “John hit the ball” 

This notation is very similar to XML. A part of the same sentence is shown in 

Fig. 1.9. 

<verb phase> 

 <verb> hit </verb> 

<noun phase> 

<determiner> the </determiner> 

<noun> ball </noun> 

</noun phase> 

</verb phase> 

Fig 1.9: Example of XML 
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2 METHODS 
 

2.1 CHOICE OF PROGRAMMING LANGUAGES 

The whole point of making the editor as a web application is to increase the 

availability so that users can access their programs as long as they have an 

internet connection. This means that a login system is needed to preserve 

confidentiality and integrity. The authentication information and the programs 

need to be stored somewhere, thus a server is needed. 

The Applications is developed using HTML and JavaScript. A JavaScript 

library called jQuery7 was also used. This is a tool that simplifies DOM node 

selections, event handling, AJAX requests and much more. 

The server side was programmed in PHP. This language was chosen because it 

is free, simple and powerful. PHP is also very popular and was run by over two 

million servers all over the world in April 2007 [2]. 

 

2.2 DEVELOPMENT 

The project consists largely of programming. Therefore an iterative and 

incremental approach used. This method is based on building a partial 

application and then expanding it, so start with the basic functionality and then 

refine the application until the goals are reached. This way of developing will 

make it possible to always have a suitable testing environment. 

To test the application a local server called WampServer 8  was used. This 

program is a development environment that installs all required programs 

needed to develop a web application with PHP. 

During the development phase, a versioning program was used to handle all 

code-files and documentation. This helped with backups and to distribute 

everything among all computers that were used. 

 

  

                                                 

7http://jquery.com 
8 http://www.wampserver.com/en/ 

http://jquery.com/
http://www.wampserver.com/en/
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3 RESULT 
The application and its source code can be accessed on 

http://bonzay.se/dev/master. 

 

3.1 THE PROGRAM 

When the application is freshly started, the login screen will appear (figure 3.1). 

This login system was needed to be able to bind saved programs to a user, to 

preserve some level of confidentiality and integrity. If the user has a valid 

username and password, that can be used to login here. In other cases, the user 

can press the demo link, which will let them access the editor but the save and 

load functionality will be disabled. There is currently no support for creating 

usernames except inserting it directly into the database. 

 
Fig 3.1: Login screen 

When the login is successful, the user comes to the main part of this 

application: the editor itself (figure 3.2). There is a menu with buttons at the 

top, where the user can for example save, load or create a new program. At the 

bottom of the screen, there is a status bar. When a node is selected, this will 

show the type of that node. It will also show information like an error message 

if there is one available. The editor takes up all space between the menu and 

the status bar. 

http://bonzay.se/dev/master
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Fig. 3.2: The editor 

Some keywords cannot be used by the user as a variable name. There words 

are "let", "cons", "Decl", "Ident" and "Type". The first two are keywords used 

to define new constants and create expressions. The last three are used as 

types. These types are used by the application itself and cannot be used by the 

user. 

 

3.2 APPLICATION USAGE 

When developing this application, usability was always in mind. The controls 

are meant to be as intuitive as possible. Many of the keyboard shortcuts are the 

same or similar to other editors. 

The user must make a selection to modify a part of the program. Only one 

selection can be made at one time. A selection is presented with a blue 

background, and is made by either clicking on a node with the mouse or 

jumping between nodes by pressing key-shortcuts. 

The user can move the selection between placeholder by pressing the tab-key. 

If the shift key is hold down at the same time, the order will be reversed. To 

move the selection between all expressions in the program, hold down Ctrl and 

press the left and right arrow keys. 

The space and enter character are normally used to separate words. But since 

this application does not allow the user to edit programs as text strings, these 
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characters will never be used as a valid input from the user. Instead, these keys 

are used to parse the code in the selected placeholder, and if the parsing was 

successful the current placeholder will be replaced with the expression it was 

parsed to. The selection will also be moved to another placeholder if possible. 

If the enter-key was pressed, the editor will create a new placeholder at the 

bottom of the program and set the selection there, and if the space-key was 

pressed, the selection will move to the next placeholder in a textual order. 

After the user has grown custom to this was of editing a program, these 

controls will almost give the user the same flow of typing as in a normal text-

editor. 

The complete set of keyboard shortcuts used in this editor is shown in figure 

3.3 

[SHIFT + ] SPACE If a placeholder is selected, parse the data and 
move the selection. 

ENTER If a placeholder is selected, parse the data and 
create a new placeholder at the bottom of the 
program. 

[SHIFT + ] TAB Move selection to the next placeholder. If 
shift is down, reverse the order. 

CTRL + (LEFT | RIGHT) Move selection through all expressions and 
sub-expressions, backwards and forwards. 

CTRL + S Save 

CTRL + O Open 

(DELETE | BACKSPACE) If a non-placeholder is selected, convert this 
node into a placeholder, removing all its sub-
nodes. 

Fig. 3.3: Keyboard shortcuts 

3.2.1 EXAMPLE OF CREATING A PROGRAM 

Here follows an example of creating the simple program in figure 3.4, using the 

editor. This description is also illustrated step-by-step in figure. 3.5. When 

referring to this figure, the notation “(X.)” is used, where X is the step in the 

figure.  

cons Nat : Set; 

cons Zero : Nat; 

cons Succ : Nat -> Nat; 

let Two : Nat = (Succ (Succ Zero)); 

Fig 3.4: A simple program 

When the application is started the editor will contain one placeholder with 

type ‘Decl’ (1.). This placeholder can be replaced with either the string “cons” 

or “let”. We write ‘cons’ and the press space-key. The editor parses the text, 



 

 

 

 
16 

and creates a ‘Cons’ node which needs two arguments to be valid, so two new 

placeholder is created (2.).The first placeholder will have type ‘Ident’ which 

means that it wants a unique variable name. We name it "Nat" (3.) and press 

space. The other placeholder hat type ‘Type’. We write “Set” here (4.) and 

press enter. This will parse and create a new placeholder with type ‘Decl’ at the 

bottom. 

We continue to build the program similarly to step (11.). Here we want to 

create a constant with a functional type. For this we need to write the 

functional arrow “->” first. This will give us two new placeholders, both with 

type ‘type’ (12.). We can use “Nat” on both of these (14.) and our definition of 

the Natural numbers is complete. 

At step (15.), a ‘let’ declaration needs three arguments to be valid so three new 

placeholders is added (16.). The first two are the same as a ‘cons’ declaration, 

but the third one (placeholder number 15) is a bit different. This expression 

will have the type that is defined by placeholder number 14. As long as 

placeholder number 14 is not parsed correctly, placeholder number 15s type 

will be unknown, and the parser can’t parse it. We give it type “Nat” (18.). In 

step (19.) we write it “Succ”. This have type “Nat -> Nat” which means that it 

will have type “Nat” when applied to an expression with type “Nat”, Therefor 

the editor will add a placeholder for this. Similar to step (21.) where the 

application is finished. 
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1. {}1 

2. cons {}2 : {}3; 

3. cons Nat : {}3; 

4. cons Nat : Set; 

5. cons Nat : Set; 

{}4 

6. cons Nat : Set; 

cons {}5 : {}6; 

7. cons Nat : Set; 

cons Zero : {}6; 

8. cons Nat : Set; 

cons Zero : Nat; 

9. cons Nat : Set; 

cons Zero : Nat; 

{}7 

10. cons Nat : Set; 

cons Zero : Nat; 

cons {}8 : {}9; 

11. cons Nat : Set; 

cons Zero : Nat; 

cons Succ : {}9; 

12. cons Nat : Set; 

cons Zero : Nat; 

cons Succ : {}10 -> 

{}11; 

13. cons Nat : Set; 

cons Zero : Nat; 

cons Succ : Nat -> 

{}11; 

14. cons Nat : Set; 

cons Zero : Nat; 

cons Succ : Nat -> 

Nat; 

15. cons Nat : Set; 

cons Zero : Nat; 

cons Succ : Nat -> 

Nat; 

{}12 

16. cons Nat : Set; 

cons Zero : Nat; 

cons Succ : Nat -> 

Nat; 

let {}13 : {}14 = 

{}15; 

17. cons Nat : Set; 

cons Zero : Nat; 

cons Succ : Nat -> 

Nat; 

let Two : {}14 = 

{}15; 

18. cons Nat : Set; 

cons Zero : Nat; 

cons Succ : Nat -> 

Nat; 

let Two : Nat = 

{}15; 

19. cons Nat : Set; 

cons Zero : Nat; 

cons Succ : Nat -> 

Nat; 

let Two : Nat = 

(Succ {}16); 

20. cons Nat : Set; 

cons Zero : Nat; 

cons Succ : Nat -> 

Nat; 

let Two : Nat = 

(Succ (Succ {}17)); 

21. cons Nat : Set; 

cons Zero : Nat; 

cons Succ : Nat -> 

Nat; 

let Two : Nat = 

(Succ (Succ Zero)); 

Fig 3.5: A step-by-step example of the process of creating a program 
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3.3 THE LANGUAGE 

The editor is developed to handle one simple language. This language is an 

extension of Simply Typed Lambda Calculus [3] and labelled bracket notation 

[4]. 

 

3.3.1 SYNTAX 

This language will form a program that consists of a list of declarations. Each 

declaration is either a ‘let’ or a ‘cons’ expression, and have the general shape 

shown in figure 3.6. 

decl ::=   cons i : t; Constant declaration 

 | let i : t = e; Let declaration 

Fig. 3.6: syntax of declarations 

where i is an unique name and the type t is either ‘Set’ or an expression that 

has type ‘Set’. e is an expression that must have type t. The syntax for 

expressions is formed by the BNF in figure 3.7. 

e ::=   i  Constant 

| (i [e])  Application 

| \ i : t . e Abstraction 

Fig. 3.7: syntax of expressions 

Figure 3.8 shows the concrete syntax in a notation based on the one used by 

GF9  

Program. Prg ::= [Decl] 

DCons. Decl ::= "cons" Ident ":" Type ";" 

DLet. Decl ::= "let" Ident ":" Type "=" Exp ";" 

TId. Type ::= Ident 

TFun. Type ::= Type "->" Type 

TApp. Type ::= "(" Ident [Exp] ")" 

EId. Exp ::= Ident 

EApp. Exp ::= "(" Ident [Exp] ")" 

EAbs. Exp ::= "(\" Ident ":" Type "." Exp) 

Ident. Ident ::= MATCH /^[A-z_]{1}([A-z_]|[0-

9])*'*$/i 

Fig. 3.8 Concrete syntax 

 

                                                 

9 http://www.grammaticalframework.org/ 

http://www.grammaticalframework.org/
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3.3.2 TYPES 

There are two ground types and one functional type. The ground types are ‘Set’ 

or an expression. The functional type is a binary function that takes two other 

types as arguments. the syntax of types are shown in figure 3.9. 

t ::=   Set Set 

 | e Expression 

 | t -> t Functional 

Fig. 3.9: Syntax for types 

The typing rules are shown in figure 3.10: 

         
              

       

       
              

                        

            
 

 

                             

         
              

               

          
 

Fig. 3.10: Typing rules 

3.3.3 PROGRAM EXAMPLE 

Figure 3.11 shows an example of a program that can be created in this editor. 

cons Nat : Set; 

cons Zero : Nat; 

cons Succ : Nat -> Nat; 

let Two : Nat = (Succ (Succ Zero)); 

cons List : Set -> Set; 

cons Nil : List Nat; 

cons Cons’ : Nat -> List Nat -> Nat; 

let Nats : List Nat = 

Cons’ Zero (Cons’ (Succ Zero) Nil); 

let AddZerotoList : List Nat -> List Nat = 

(\a : (List Nat). (Cons’ Zero a)); 

Fig. 3.11: An example program 

3.4 DATA STORAGE 

When developing programs the most intuitive way to store the programs 

would be to store them as files. This is not the way it is done in this 

application. Because all files would be stored on the server and only be 

presented to the user via the editor, these files would never be visible to the 

user. 
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A MySQL 10  database was chosen to store the programs instead. It was 

convenient to have the programs and the authentication information at the 

same place. A database also provides easy functionality for searching for, 

extracting, overwriting and inserting information. 

The structure of the tables in the database is shown in figure 3.12. 

 

 

Fig 3.12: Structure of database tables 

When the application stores a program, the history is stored rather than the 

content of the program. This is made to make the saving and loading much 

easier. The application logs all successful commands and when saving, this 

information is converted into a string. This string is constructed in such a way 

that it makes it very easy to retrieve every command in the right order. 

 

3.5 FILE STRUCTURE 

The application consists of a number of files, which are dependent on each 

other in one of the following ways: 

 HTML frameset 

 HTML script source 

 AJAX request 

 PHP require 

These dependencies can also be seen in figure 3.13. 

                                                 

10 http://www.mysql.com/ 

http://www.mysql.com/
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All PHP files in the application should in some way include the "pre.php" file. 

This file contains some code and operations that initialize the usage of PHP 

like connections to the database and starting a session for temporary data 

storage. It also contains functions for checking the authentication etc.  

If a file requires authentication, this check is done right after the initialization is 

finished. If the login is successful the file will continue to execute, in other 

cases the file will stop executing and instead present the login form. 

A web server will by default return the file named “index”, if no special file was 

requested. So the starting point for this application is the “index.php". This file 

contains a frameset with three frames: menu, status and editor. 

The heart of the application is the editor.js file. This is where the abstract 

syntax tree and functions for manipulating it is contained. Files that are used 

via an Ajax request are in the Ajax folder. These files will only print its result as 

a Json object. 

 

Fig. 3.13: File dependencies 

 

3.6 INTERNAL REPRESENTATION 

 

3.6.1 Q-NODE 

A Q-node is a JavaScript object that describes a node of the abstract syntax 

tree. This object is simply a data holder and does not contain any functions for 

manipulation. It has the name Q-node rather than just 'node' to not confuse it 

with nodes in the HTML DOM Node tree. The definition of this object is 

shown in figure 3.14. 
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var Q = function (number, nodeType) { 

 this.number = number; 

 this.numberPH = null; 

 this.nodeType = nodeType; 

 this.type = false; 

 this.down = new Array(); 

 this.up = null; 

} 

Fig. 3.14: JavaScript definition of a Q-node 

Each Q-node must have a nodeType. This describes how the node is used 

when, for example, printing it. The values this property can take are deduced 

from the concrete syntax. All possibilities for this are shown in figure 3.15. 

The "number" property is a unique number that is used to select and identify 

each node. These numbers are only used internally, and the user will never see 

them. What the user does see is the "numberPH". This is visible beside every 

placeholder. This value is incremented, so for each placeholder that is created, 

this will be one higher. 

All of nodes arguments (children or sub nodes) are stored in the “down” 

property. The value of this is an array, for which the elements are dependent 

on the value of the “nodeType” property. Each element in this array does not 

contain the Q-node under it, but rather the number of that Q-node. 

The "type" property expresses what type that node has. This puts a constraint 

on what expression it can be replaced with. 

nodeType  down[0] down[1] down[2] 

DCons  Ident Type 

DLet  Ident Type Exp 

TId  Ident 

TFun  Type Type 

TApp  Ident Exp 

EId  Ident 

EApp  Ident Exp 

EAbs  Ident Type Exp 

Ident  String 

PH   

Fig 3.15: nodeTypes and their argument. 
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3.6.2 QS 

This is a list of Q-nodes that describes the complete program that is currently 

active in the editor as an adjacency list. Each Q-node object in this list will 

have the same number as its index in the list. In this way, it will be very easy to 

find a Q-node given a number. 

The simple program in figure 3.16 that defines the natural numbers will have 

the Qs list shown in figure 3.17 

Cons Nat : Set; 

Cons Zero : Nat; 

Cons Succ : Nat -> Nat; 

Fig. 3.16: A program defining the natural numbers 

 

Qlist NodeType Down 

0: Ident [“Set”] 

1: Cons [1 2] 

2: Ident [“Nat”] 

3: Type [0] 

4: Cons [5 6] 

5: Ident [“Zero”] 

6: Type [2] 

7: Con [8 9]  

8: Ident [“Succ”]  

9: Type [10 11] 

10: Type [2] 

11: Type  [2] 

Fig. 3.17: The Qs-list of the program defined in figure. 3.16 

 

3.7.3 CONTEXTS 

The application has two types of contexts. One global context and one list of 

local contexts. The global context keeps track of all variables and their type for 

all declaration nodes in the program. This type of variable can be accessed 

from everywhere in the program. The local context contains the same 

information, but only for abstraction nodes. These variables can only be 

accessed in a sub node of that abstraction node. 
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3.8 HTML REPRESENTATION 

The abstract syntax tree is presented to the user encoded into a HTML string. 

A placeholder node will be translated to the HTML code in figure 3.18. 

 

<span class=”Q ph” id=”Q_[N]”>{ 

<span contenteditable=”true” class=”ph_edit” 

id=”Qedit_[N]”> 

</span> 

}[NPH]</span> 

Fig.3.18: HTML representation of a placeholder 

where [N] and [NPH] correspond to the “number” and “numberPH” 

property respectively. The inner span element has the attribute 

contenteditabe=”true”, which makes it possible for the user to edit 

the text inside this element. This means that the user can only edit the text 

inside these placeholders. The id and class attributes described a unique 

number just this element, and also what classes this belongs to. This 

information is used when pretty-printing and selecting nodes in the editor. 

All other nodes except the placeholder have the same general structure, so they 

will be translated to the HTML code in figure 3.19. 

<span class=”Q” id=”Q_[N]”>[…]</span> 

Fig. 3.19: HTML representation of a node 

where [N] correspond to the "number" property of the node. The text inside 

this span, where the [...] is, is dependent on what nodeType that node has. 

For example, a node with nodeType "DCons" will be translated into the 

HTML code in figure 3.20. 

Cons <b>[...]</b> : <i>[...]</i>; 

Fig. 3.20: HTML representation of a “DCons” node 

where both [...] are a recursive call to the pretty print method for each of the 

two arguments defined in the down property. 

 

3.9 PARSING AND TYPE CHECKING 

The parser for this application only works on one word at the time, which is 

one placeholder at the time.  



 

 

 

 
25 

Figure 3.21 is a somewhat simplified diagram of the parsing process. In this 

figure, Q is the placeholder being parsed, and input is the string. All the 

createX methods on the right side of the figure convert a placeholder into a 

the given Q-node. This function also handles all its sub nodes. For example the 

createDCons method creates two new placeholders, one with type Ident 

and one with Type. 

The typecheck-function can have three different results. If the result is a 

Boolean value, this describes whether the type is correct or not. In other cases, 

an expression will be returned. This will mean that the type will be correct if 

the input is applied to the returned expression. 

 

Fig. 3.21: Flow diagram of the parsing process 

 

3.10 SERVER SIDE 

The server main functionality is to store and handle the authentication 

information and the programs. The login information is stored in a session, 

which is a temporary storage that lasts as long as the web browser is open.   
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4 DISCUSSION 
 

4.1 SECURITY 

The security of the application was not the most prioritized during this project. 

Some basic functionality has been added to ensure some level of security, but if 

a hacker really wanted to make a mess, it wouldn't be that hard. The login 

system encrypts each password with a MD5-function before sending it to the 

server for verification. MD5 is not considered to be secure anymore, but it still 

prevents a hacker to see the password as clear text if he is using a packet 

sniffing software. When storing the password in the database, it is further 

encrypted using SHA1-function and a salt. A salt is a randomly generated 

string that prevents the hacker to find the password using a dictionary search. 

In the end, the password is stored in the database like this: 

salt + SHA1(salt + MD5(PASSWORD)) 

 

When saving and loading a program, the data is sent with clear text to the 

server and no security can be ensured. 

 

4.2 FURTHER DEVELOPMENT 

As the program is now, all functionality that was intended does exist. But there 

are some things that could make the program better in terms of usability. 

 

4.2.1 COMPLETE PARSER 

The parser can only take one word at the time and parse this according to the 

type. This can be improved to make the application be able to parse an entire 

expression at one time. This feature would make it possible to copy programs 

as a string from a text document into the editor, and make the editor 

understand it. 

 

4.2.2 BETTER TYPE-CHECKER 

The type checker works the same way as the parser do, on one expression at 

the time. In order to make the parser be able to parse a whole expression, the 

type-checker also needs to be improved to handle many expressions at once. 
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4.2.3 DEFINE CONCRETE SYNTAX 

One of the extra goals was to create the application is such a way that the 

concrete syntax could be defined by the user, and in this way be able to present 

the program to the user in other ways. It would for example be possible to 

define an infix notation for some constants so the expression 

+ 2 3 

could instead be written as 

2 + 3 

which is much more readable and recognizable to the human. 

 

4.2.4 DEPENDENT FUNCTIONAL TYPES 

The second extra goal was to introduce a more advanced type system. This 

would make the application be able to express much more generic and 

complex programs.  

Figure 4.1 shows an example that could be expressed with dependent 

functional types. 

Vec : Nat -> Set 

Nil : (Vec Zero)  

Cons : (N <- Nat) -> Nat -> Vec N -> Vec (Succ N) 

Fig. 4.1: A possible way of defining a vector 

 

4.2.5 AUTOCOMPLETE 

Many editors that has an autocomplete functionality. This can be very useful 

when the programs get bigger, and number of variable names that is used 

grows.  

Autocomplete functionality in this editor would need to check the typing 

information and then suggest all expressions that can follow the rules. 
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4.2.7 KNOWN BUGS 

Here is a list of known bugs that was discovered, but not fixed because of time 

and complexity reasons. 

 It is possible to construct a program that does not follow the type 

rules. This is because the type-checker does not check the whole 

program when something has been changed. When removing a node 

with type ‘type’, all nodes that are dependent on this will be erroneous, 

and this will not be visible to the user. A way of solving this could be 

to implement the improvement of the type-checker in section 4.2.2 and 

every time a node was deleted, the type-checker would check the whole 

program and highlight all erroneous nodes, and force the user to 

update these so that no type-rules are violated. 
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