
Space-Safe Transformations and
Usage Analysis for
Call-by-Need Languages

Jörgen Gustavsson

Department of Computing Science

CHALMERS UNIVERSITY OF TECHNOLOGY
GÖTEBORG UNIVERSITY
Göteborg Sweden 2001

Thesis for the Degree of Doctor of Philosophy

Space-Safe Transformations and

Usage Analysis for

Call-by-Need Languages

Jörgen Gustavsson

Department of Computing Science
Chalmers University of Technology and Göteborg University

SE-412 96 Göteborg, Sweden
Göteborg, May 2001

Space-Safe Transformations and Usage Analysis for Call-by-Need Languages

J�orgen Gustavsson

ISBN 91-628-4866-6

 J�orgen Gustavsson, 2001

Computing Science

Chalmers University of Technology and G�oteborg University

SE-412 96 G�oteborg, Sweden

Printed at Chalmers, G�oteborg, 2001

Abstract

This thesis is concerned with the resource consumption of lazy functional languages.

It touches upon two aspects: how to reason about the space-safety of program

transformations, and how to apply usage analysis for compiler optimisation. The

thesis is a collection of articles.

In the �rst paper we study the notion of space improvement. We say that that

a program fragment is space improved by another if and only if when we replace

the former by the latter in any whole program the space behaviour is improved.

We will refer to the induced equivalence as space equivalence.

We show that many of the extensional equivalences that lazy functional lan-

guages enjoy carry over as space equivalences, and we demonstrate that the space

improvement theory can be used to show space properties of some interesting small

programs. We also show that many extensionally equivalent program fragments

are (sometimes surprisingly) not space equivalent by giving examples of whole pro-

grams where the asymptotic space behaviour changes if one replaces a program

fragment by the another extensionally equivalent one.

An example of a transformation that is not a space equivalence in general is

the inlining of function calls, i.e., replacing a function call with a copy of the body

of the function with the arguments substituted for the formal parameters. In the

second paper of thesis we study a class of automatic methods called usage analyses

which can infer that an argument to a function is used at most once, and show that

usage analyses can be used to guarantee the work and space safety of inlining.

Another application of usage analysis is compiler optimisation. In particular

usage analysis can be used to avoid unnecessary closure updates. In the third

paper of the thesis we present a usage analysis for this purpose which also provides

additional information which can be used to optimise the bookkeeping of updates

by avoiding unnecessary update marker checks.

In the fourth paper of the thesis we present a context sensitive usage analysis

based on bounded usage polymorphic types. To implement the analysis e�ciently

we introduce a new form of constraint and in the �fth paper we show how the new

form of constraints can be solved. The techniques can be applied not only to usage

analysis but also to similar analyses. As an example of such, we present a ow

analysis with ow subtyping, ow polymorphism and ow-polymorphic recursion,

and show how it can be implemented in O(n

3

) time where n is the size of the

explicitly typed program.

Keywords: lazy functional languages, equational theory, improvement theory,

garbage collection, space use, space-equivalence, space-safety, work-safety, inlin-

ing, program analysis, usage analysis, sharing analysis, context sensitive, constraint

solving.

This thesis contains �ve papers. They are based on ideas and results described in

the following publications and reports:

1. A Type Based Sharing Analysis for Update Avoidance and Optimisation. In

the Proceedings of the International Conference on Functional Programming,

September, 1998, ACM Press.

2. A Type Based Sharing Analysis for Update Avoidance and Optimisation. Li-

centiate thesis, G�oteborg University, May, 1999.

3. A Foundation for Space-Safe Transformations of Call-by-Need Programs. With

David Sands. In the Proceedings of the Workshop on Higher Order Oper-

ational Techniques in Semantics, September 1999, volume 26 of Electronic

Notes in Theoretical Computer Science. Elsevier, 1999.

4. A Usage Analysis with Bounded Polymorphism and Subtyping. With Josef

Svenningsson. In the Proceedings of the Workshop on Implementation of

Functional Languages, September 2000, Lecture Notes in Computer Science,

volume 2011, Springer Verlag.

5. Constraint Abstractions. With Josef Svenningsson. In the the Proceedings

of Symposium on Programs as Data Objects II, May 2001. To appear in

Lecture Notes in Computer Science, volume 2053, Springer Verlag.

6. Possibilities and Limitations of Call-by-Need Space Improvement. With David

Sands. To appear in the Proceedings of the International Conference on

Functional Programming, September, 2001, ACM Press.

The �rst paper in this thesis uni�es and expands on 3 and 6. The second paper is

based on material in 3. The third paper is a reprint of 2 which is based on 1. The

forth paper is a reprint of 4 and the �fth paper is a reprint of 5.

Contents

Overview of the thesis . 1

Paper I: Space Safe Transformations of Call-by-Need Programs . . 7

Paper II: On Usage Analyses for Work and Space Safe Inlining . . 95

Paper III: A Type Based Sharing Analysis for Update Avoidance

and Optimisation . 117

Paper IV: A Usage Analysis with Bounded Usage Polymorphism

and Subtyping . 247

Paper V: Constraint Abstractions 269

Acknowledgements

First of all I would like to thank my great supervisor David Sands. You

have always taken the time to discuss with me whenever I have wanted to,

even if it happened to be on a late Friday afternoon. Without your bright

mind, good advice and encouragement I wouldn't have been able to �nish

this thesis. Thanks also for sometimes putting a little bit of pressure on me.

I de�nitely needed that occasionally.

I would also like to thank John Hughes who was my supervisor during

the �rst years of my PhD studies. John was also the one who got me into

functional programming and who inspired me to apply for a PhD position

{ a choice I am very happy I made. Thanks John!

I would also like to thank Josef Svenningsson, my coauthor on the forth

and �fth paper in this thesis. It has been very inspiring to work with you.

Thanks also to Johan Agat, Koen Claessen, Karl-Filip Fax�en, Andrew

Moran, Simon Peyton Jones, Jakob Rehof, Andrei Sabelfeld, Peter Sestoft,

Josef Svenningsson, Jan Smith, Makoto Takeyama and Keith Wansbrough

for discussions and feedback on the material in the thesis.

Working at the department of computing science has been great fun and

I would like to thank everybody for the good time I have had here. Special

thanks to Johan Agat, Ana Bove and Koen Claessen.

I would also like to thank my family and friends for contributing to my

life outside the department. Finally, I would like to thank Birgit Grohe. I

am very grateful for your love and support.

An overview of the thesis

This thesis is a collection of papers, each of them a self contained document.

This part provides an overview of the papers and tries to present the contribution

of the thesis in a manner accessible to a reader with a general background in

computer science. It also provides connections between the di�erent papers in

the thesis.

The thesis is concerned with lazy functional programming languages, a class

of programming languages which provides powerful mechanisms for abstraction

making programs small and succinct. We will make no attempt to explain

and argue the bene�ts of functional languages in this thesis, but take them for

granted. In fact parts of the thesis can be seen as a critique of functional lan-

guages. For a reader who is interested in why functional programming should

matter, Hughes article is warmly recommended [Hug89]. In the remainder of

this overview we assume no prior knowledge of functional languages, but for the

rest of the thesis some basic knowledge of functional programming is a prereq-

uisite. A good introductory textbook for a reader with a general background in

computer science is [Bir98].

It is often said that an advantage of lazy functional languages is that it is

(relatively) easy to reason about functional programs { both formally and infor-

mally. One reason is that (purely) functional languages are free of side e�ects :

if you call a function it is guaranteed that the function has no e�ects besides

returning a result. It can neither manipulate global variables nor perform any

input or output such as writing to the hard disk.

A consequence is that functional languages enjoys rich equational theories.

An equational theory is a notion of equivalence between program fragments.

Equational theories can be de�ned in numerous di�erent ways but they all

satisfy the intuitive property that if two program fragments are equivalent one

may replace one with the other in any whole program without changing the

outcome of running the program.

An equational theory provides an excellent tool for reasoning about programs

because it allows a program to be step-wised transformed by replacing fragments

of the program with other equivalent program fragments. In this way it is often

possible to show that a (presumably) more e�cient but complicated program is

equivalent to an ine�cient but simple one. Some people advocate it as a good

programming methodology to �rst write simple and ine�cient programs and

then (semi-automatically) derive more e�cient ones [PS83, PP96].

Even if only few programmers actually reason about their programs formally

1

or derive them, some knowledge of the equational theory can be very helpful in

an informal argument for why a program works.

Reasoning about space

It is also often said about lazy functional languages that it is notoriously di�cult

to reason formally and informally about the time and space consumption of a

program. One reason is that time and space consumption can be thought of as a

kind of side e�ect: besides returning a result, a function uses up time and space.

Another reason is that in a lazy functional language, arguments to functions are

evaluated (i.e., computed) only when needed. So in a function call f M , the

computation of the argument M is performed only if, and when, f requires the

value of its argument. To reason about the time it takes to evaluate a function

call it is of course crucial to know whether the argument is computed or not.

To reason about memory consumption it is even more subtle because it then

also matters when the argument is evaluated. For example, if a computation is

postponed a large data structure may have to be kept in memory for a long time.

An additional complication is that most implementations of lazy languages also

ensure that if an argument is computed it is not subsequently recomputed should

its value be required again. We will refer to languages implemented in this way

as call-by-need languages.

When programmers are required to reason about the e�ciency of their pro-

grams, the traditional equational theories fall short since they are concerned

only with the outcome of programs and not with their time and memory con-

sumption. If we replace a program fragment by another equivalent one it may

radically change the time and space behaviour of the program. One says that

the traditional equational theories are only concerned with the extensional be-

haviour of programs but ignores their intentional behaviour. Thus the tradi-

tional equational theories cannot be used for proving e�ciency properties and

they provide no intuition which aids informal reasoning about time and space

consumption.

Recently, Moran and Sands de�ned and investigated an equational theory

for a call-by-need language which takes the time consumption of programs into

account [MS99]. In the �rst paper of this thesis we take the next step and

investigate an equational theory of a call-by-need language which takes the

memory usage of programs into account. The goal of the study was to develop

techniques for formal reasoning about space usage but we also hope that our

work may increase the general understanding of space usage and aid informal

reasoning.

To reason formally about space use we need to precisely de�ne how much

memory a program uses up when it is executed. We base our de�nition on an

operational semantics which is a precise mathematical de�nition which speci�es

in a step-wise manner how a program should be executed. In particular, our

de�nition speci�es how much memory is allocated in each execution step, and

when it can be reclaimed and reused. In the remainder of this overview we

assume no prior knowledge of operational semantics but for the rest of the thesis,

2

knowledge of operational semantics is assumed. An introduction to operational

semantics can be found in [Win93].

With a space-aware operational semantics at hand, we can de�ne two pro-

gram fragments to be space equivalent if and only if we may replace one with the

other in any whole program without changing the asymptotic amount of space

used by the program. We are interested in the asymptotic amount of space

rather than the absolute amount for the same reason one is usually interested in

the asymptotic computational complexity of an algorithm rather than the abso-

lute number of computation steps. We also de�ne a corresponding asymmetric

notion and say that that a program fragment is space improved by another if

and only if when we replace the former by the latter in any whole program the

space behaviour is improved.

An equational theory de�ned in this way is called an operational theory

because the notion of equivalence is de�ned in terms of the operational semantics

rather than in an axiomatic way by giving rules that specify when two programs

fragments should be considered equivalent. Operational theories have become

increasingly popular and the work in this thesis relies on techniques that have

been developed quite recently. A good survey of these techniques can be found

in [GP98].

Having de�ned a notion of space equivalence in this way, the question is

whether there are any interesting space equivalences. Are any of the equiva-

lences that functional languages enjoy also space equivalences? Is the equational

theory rich enough to be useful? In the �rst paper in this thesis we show that

many of the normal equivalences do carry over as space equivalences and we

demonstrate that the equational theory can be used to show space properties of

some interesting (but small) programs. We also show that many extensionally

equivalent program fragments are (sometimes surprisingly) not space equivalent

by giving examples of whole programs where the asymptotic space behaviour

changes if one replaces a program fragment by the another extensionally equiv-

alent one.

Usage analyses for work and space safe inlining

The work by Moran and Sands on reasoning about time and the work in this

thesis on reasoning about space show that there are many interesting time and

space equivalences. But some of the extensional equivalences do not carry over

to the time and space aware theories. An example, and the subject of the second

paper in the thesis, is the inlining of function calls, i.e., replacing a function

call with a copy of the body of the function with the arguments substituted for

the formal parameters. For example, inlining a call square M to the squaring

function yields M �M (assuming that the body of square x is x � x) and it

is an example of a transformation which can change the asymptotic time and

space behaviour of some programs. The intuitive explanation of why this may

happen (the second paper of this thesis provides a more detailed and technical

explanation) is that in M �M , we evaluate M twice but call-by-need ensures

that when evaluating squareM the argument M is evaluated only once.

3

But inlining does not always change the time and space behaviour of a pro-

gram. Whether it does, depends on the function that is called, which arguments

are passed and how the result of the function is used. In short it may depend

on the entire program. Thus to show that inlining is work and space safe (i.e.,

preserves the time and space behaviour of the program) may involve reason-

ing about the entire program rather than reasoning locally about the program

fragment that is modi�ed.

Turner, Wadler and Mossin [TWM95] proposed to use usage analyses (some-

times also called sharing analyses) to decide if inlining is work-safe. Usage

analyses are automatic techniques for deciding when an argument is used at

most once and the idea is that it should be safe to inline a function call if the

arguments are used at most once. Whether an argument is used at most once

may depend on the entire program, so usage analyses are inherently global. The

more recent usage analyses have been proved correct in the sense that when the

analysis claims that an argument is used at most once then it is indeed the case.

But despite the fact that Turner et al discuss inlining in some detail, as far as

we are aware, it has remained an open problem to actually prove that any of the

usage analyses in the litterature guarantee work-safety. Another question (one

which to our knowledge has not even been posed) is whether usage analyses

might also guarantee space safety.

In the second paper of this thesis, rather than showing work and space

safety for any particular usage analysis, we pose the question: can the intuitive

semantic criteria \used at most once" guarantee work and space safety? The

paper provides the answer that with a slight strengthening (see the second paper

in the thesis for the details) the used-at-most-once criteria can indeed guarantee

both work and space safety.

Usage analysis for complier back-end optimisation

The topic of the third paper in the thesis is a usage analysis, i.e., an automatic

method for determining how many times the argument to a function is used.

Although it can be used to guarantee work and space-safe inlining, as described

in the previous section, the focus of the third paper is another application of

usage analysis: optimisations in a compiler back-end.

1

To understand how usage analysis can be used to optimise the back-end

of a compiler it is necessary to know a little bit about how call-by-need is

implemented. Recall that, in call-by-need, arguments to functions are evaluated

only if needed and at most once. It is implemented as follows. When a function

call f M is executed, a representation of the expression M (and the parts of

the environment to which it refers) is built in memory. This representation is

called a closure forM . After the closure has been built, the function f is called

with a pointer to the closure as the argument. When (if at all) the value of

1

Chronological note: The reason for why the third paper doesn't mention inlining is that

it is a reprint of the author's licentiate thesis which was written before the second paper, and

at that time it was not clear to us whether the analysis could actually guarantee work and

space-safe inlining.

4

M is required the expression represented by the closure is evaluated. After the

evaluation has �nished the closure is updated (i.e., overwritten) with the result

of the evaluation, so that if the value of M is required again it need not to be

reevaluated. But if the value ofM is not needed again the update of the closure

is unnecessary. Usage analysis can be used to avoid these unnecessary updates

by statically (i.e., at compile time) determining that the value of a closure will

be required at most once.

Besides the cost of performing updates there is also a cost associated with

the bookkeeping of updates, that is keeping track of when and where to update.

The usage analysis in the third paper also provides information which allows the

bookkeeping cost of the update machinery to be reduced. To understand this

aspect of the analysis it is necessary to know details of how the bookkeeping

machinery is implemented and we refer the interested reader to the third paper

of this thesis.

It is important to note that our usage analysis can not always say that

an argument is used is used at most once even if it is actually the case. It

happens that the analysis comes to the conclusion that it \doesn't know". The

reason is that it is an undecidable property and thus any automatic method

must approximate and sometimes yield the \don't know" answer. Automatic

methods for inferring properties of program are often called program analyses

or static analyses. In the third paper we assume some basic knowledge in the

area of program analysis, especially type based program analysis. An thorough

introduction to this topics can be found in [NNH99].

Context sensitive usage analysis

A weakness of the usage analysis presented in the third paper is that it is not

context sensitive in the following sense. If a function is called in several di�erent

places then the nature of the calls may be di�erent. For example the results

of the function calls may be used di�erently. But the analysis in the third

paper lumps these calls together as if they were one. As a result the analysis

answers with \don't know" more often than one might hope. As programs get

larger it becomes more and more common that a function is called at numerous

places. As a result the precision of the analysis degrades as programs grow.

This problem is the subject of the forth and the �fth paper of the thesis.

In the forth paper we de�ne a usage analysis which is context sensitive and

therefore is more precise than the analysis in the third paper (but it does not

provide information for optimising the bookkeeping of updates).

Context sensitive analyses provides more accurate answers so it might not

come as a surprise that they are also more computationally expensive. The

subject of the �fth paper is how the usage analysis in the forth paper can be

implemented e�ciently. It is a separate paper because the techniques applies

not only to usage analysis but also to other similar analyses. As an example of

such a similar analysis, we present a ow analysis which is a program analysis

that (for example) tries to predict where a value computed at a certain point in

the program is used.

5

References

[Bir98] Richard Bird. Introduction to Functional Programming using Haskell.

Prentice Hall, 1998.

[GP98] A. D. Gordon and A. M. Pitts, editors. Higher Order Operational

Techniques in Semantics. Cambridge University Press, 1998.

[Hug89] J. Hughes. Why Functional Programming Matters. Computer Jour-

nal, 32(2):98{107, 1989.

[MS99] Andrew Moran and David Sands. Improvement in a lazy context: An

operational theory for call-by-need. In Proc. POPL'99, pages 43{56.

ACM Press, January 1999.

[NNH99] Flemming Nielson, Hanne Riis Nielson, and Chris Hankin. Principles

of Program Analysis. Springer Verlag, 1999.

[PP96] A. Pettorossi and M. Proietti. Rules and Strategies for Trans-

forming Functional and Logic Programs. ACM Computing Surveys,

28(2):360{414, 1996.

[PS83] H. Partsch and R. Steinbruggen. Program Transformation Systems.

ACM Computing Surveys, 15(3):199{236, 1983.

[TWM95] D. N. Turner, P. Wadler, and C. Mossin. Once upon a type. In Proc.

FPCA'95, pages 1{11. ACM Press, June 1995.

[Win93] Glynn Winskel. The Formal Semantics of Programming Languages:

an Introduction. MIT Press, 1993.

6

Paper I

Space Safe Transformations of Call-by-Need

Programs

Space Safe Transformations of Call-by-Need

Programs

J�orgen Gustavsson David Sands

Abstract

We introduce a space-improvement relation on programs which guar-

antees that whenever M is improved by N , replacement of M by N in

a program can never lead to asymptotically worse space (heap or stack)

behaviour, for a particular model of garbage collection. This study takes

place in the context of a call-by-need programming language. For lan-

guages implemented using call-by-need, e.g, Haskell, space behaviour is

notoriously di�cult to predict and analyse, and even innocent-looking

equivalences like x+ y = y + x can change the asymptotic space require-

ments of some programs. Despite this, we establish a fairly rich collection

of improvement laws, with the help of a context lemma for a �ner-grained

improvement relation, strong space improvement. We also show that the

asymptotic space improvement relation is semantically badly behaved, but

that the theory of strong space improvement possesses a �xed-point in-

duction theorem which permits the derivation of improvement properties

for recursive de�nitions. With the help of this tool we explore the land-

scape of space improvement by considering a range of classical program

transformations seeking the answers to the following questions: is the

improvement relation inhabited by interesting program transformations?

and, if so, how might they be established?

1

.

1 Introduction

The space-usage of lazy functional programs is perhaps the most thorny problem

facing programmers using languages such as Haskell. Almost all programmers

unable to predict or control the space behaviour of their lazy programs. Even

the most advanced programmers, who are able to visualise the space use of their

programs, complain that the \state-of-the-art" compilers introduce space-leaks

into programs that they believe ought to be space-e�cient.

In recent years a successful line of research into pro�ling tools for lazy func-

tional languages [RW93, RR96] has greatly improved a programmer's chances

of locating sources of space leaks. But apart from a few high-level operational

semantics which claim to model space behaviour, to the best of our knowledge

1

This paper subsumes its predecessors [GS99, GS01]

9

there have been no formal/theoretical/semantics-based approaches to reasoning

about space behaviour of programs.

Rather than tackling the problem of determining the absolute space be-

haviour of a program, in this paper we study notions of relative space e�ciency.

We pose the question: when is it space-safe to replace one program fragment

by another? To this end we introduce a space-improvement relation on terms,

which guarantees that whenever M is improved by N , replacement of M by

N in a program can never lead to asymptotically worse space (heap or stack)

behaviour, for a particular model of computation and garbage collection.

The fact that we only aim to prevent asymptotic worsening might seem rather

weak. One reason is that we (wish to) work with high-level semantic models of

space behaviour, so it is not meaningful for us to make stronger claims. Another

reason is that asymptotic changes in space behaviour are not at all unusual. (We

consider such an example below.)

Why is the space behaviour of lazy functional programs di�cult to pre-

dict? One reason is of course that all memory management is automatic, cou-

pled with the fact that the heap allocation rate of functional programs is very

high; just about everything lives in the heap. A second reason is that the non-

strict evaluation order that is required by the language speci�cation means that

computation-order bears no obvious relation to textual structure of code. The

third, and perhaps most subtle reason is that all realistic implementations of

lazy languages use call-by-need. Call-by-need optimises call-by-name by ensur-

ing that when evaluating a given function application, arguments are evaluated

at most once. The e�ect of sharing is to reduce { often dramatically { the time

required to execute a program. But the e�ect of this additional sharing on the

space behaviour is to prolong the lifetime of data, and this is often at the cost

of space.

As an illustration of some of these problems, consider one of the most in-

nocent of the extensional equivalences that functional programming languages

enjoy: x + y = y + x. In a lazy functional language the transformation is not

space safe; there are programs for which this innocent-looking transformation

will change their space complexity. Now consider the following family of Haskell

programs, indexed by some integer n:

let xs = [1::n] ; x = head xs ; y = last xs

in x+ y

If addition is evaluated from left-to-right then this program runs in constant

space. First x is evaluated to obtain 1, then y is evaluated, which involves

constructing and traversing the entire list [1::n]. Fortunately, the combination

of lazy evaluation, tail recursion and garbage collection guarantees that as this

list is constructed and traversed it can also be garbage collected, and thus the

computation requires only constant space. But if x + y is replaced by y + x

the space required is O(n). This is because when y builds and traverses the list

[1::n], the elements cannot be garbage-collected because the whole list is still

10

live via the occurrence of xs in the body of x. So we can conclude that replacing

x + y by y + x can give an asymptotic change in space behaviour { i.e., there

is no constant which bounds the potential worsening in space when this law is

applied in an arbitrary context. So our theory of improvement will not relate

this particular pair of terms.

Expressions that fall outside our improvement theory are easy to �nd (see

e.g., [PJ87] for more tricky examples), but given the example above it is not im-

mediately clear that there are any interesting transformations which are space

improvements. This paper seeks an answer to the following questions: is the

improvement relation inhabited by interesting program transformations, and,

if so, how might they be established? For example, is the associativity prop-

erty of list concatenation a space improvement in either direction? Are typical

tail recursion optimisations space safe? In this article we show that there are

indeed many valid basic space-improvement laws. For example, the beta-var

transformation between (�x:M) y and M [

y

=

x

] is shown to be a space improve-

ment if y occurs in M [

y

=

x

]. But basic laws are not enough. With the basic laws

alone it is not possible to show any improvements beyond those obtainable by

composing the basic laws. To reason about recursive de�nitions we provide a

�xed-point induction theorem for a �ner-grained relation strong space improve-

ment. The reason to introduce the �ner-grained notion is that the asymptotic

space improvement relation, is semantically badly behaved, it is discontinuous

with respect to �nite unfoldings.

With the help of this tool we explore the landscape of space improvement

by considering a range of classical program transformations, and uncovering a

number of fundamental limitations to what can be achieved by local improve-

ment.

Overview The remainder of the article is organised as follows. Section 2

gives the syntax and operational semantics of our language. Section 3 de�nes

what we mean by the space-use of programs, in terms of a de�nition of garbage

collection for abstract-machine con�gurations. We informally argue the ways

in which this de�nition agrees with lower-level models, and mention a number

of subtle choices and variations in actual implementation methods. Section 4

de�nes the main improvement relation, weak improvement, and presents the ba-

sic properties of this relation. Section 5 describes a �ner-grained improvement

relation, strong improvement, and establishes a context lemma and a �xed-point

induction principle. Section 6 applies the theory to investigate a range of trans-

formations. Section 7 gives the proof of the context lemma. Section 8 gives

the proofs of some selected basic laws. Section 9 describes related work. Sec-

tion 10 concludes and proposes future work. Appendix A and Appendix B

considers two language extensions: unboxed integers and pattern-bindings.

11

2 Operational Semantics

Our language is an untyped lambda calculus with recursive lets, structured data,

case expressions, a strictness combinator, bounded integers (ranged over by n

and m) with addition and a zero test. In appendix B we extend the language

with patterns bindings in let expressions. We work with a restricted syntax in

which arguments to functions (including constructors) are always variables:

L;M;N ::= x j �x:M jM x j c ~x j seqM N

j n jM +N j add

n

M j iszeroM

j let f~x =

~

Mg in N j case M of fc

i

~x

i

�N

i

g

The syntactic restriction is now rather standard, following its use in core lan-

guage of the Glasgow Haskell compiler, e.g., [PJPS96, PJS98], and in [Lau93,

Ses97]. In examples we will sometimes use unrestricted applicationMN as syn-

tactic sugar for let fx = Ng in M x where x is a fresh variable. Similarly for

constructor expressions.

All constructors have a �xed arity, and are assumed to be saturated. By

c ~x we mean c x

1

� � � x

n

. The only values are lambda expressions, fully-applied

constructors and integers. Throughout, x; y; z etc., will range over variables, c

over constructor names, and V and W over values (�x:M j c ~x j n). We will

write

let f~x =

~

Mg in N

as a shorthand for let fx

1

=M

1

; : : : ; x

n

=M

n

g in N where the ~x are distinct,

the order of bindings is not syntactically signi�cant, and the ~x are considered

bound in N and the

~

M (so our lets are recursive). We will use � to range over

a set of such distinct bindings. Similarly we write

case M of fc

i

~x

i

�N

i

g

for

case M of fc

1

~x

1

�N

1

j � � � jc

m

~x

m

�N

m

g

where each ~x

i

is a vector of distinct variables, and the c

i

are distinct construc-

tors. In addition, we will sometimes write alts as an abbreviation for case

alternatives fc

i

~x

i

�N

i

g.

Our integers are bounded (i.e., for an integer n, MININT � n � MAXINT)

so that they can be represented in constant space. For simplicity, no exception

occurs at overow. Instead the result wraps as in e.g., C. The functions add

n

are

included for convenience in the de�nition of the abstract machine, and represent

an intermediate step in the addition of n to a term.

We have included a strictness combinator seqM N which �rst evalaluatesM ,

throws away the result and then continues with N . The strictness combinator

12

is necessary to de�ne space e�cient versions of some functions, such as the sum

function with a strict accumulator (see Section 6).

The only kind of substitution that we consider is variable for variable, with

� ranging over such substitutions. The simultaneous substitution of one vector

of variables for another will be written M [

~y

=

~x

], where the ~x are assumed to be

distinct (but the ~y need not be).

2.1 The Abstract Machine

The semantics presented in this section is essentially Sestoft's \mark 1" abstract

machine for laziness [Ses97]. Transitions are over con�gurations consisting of

a heap, containing bindings, the expression currently being evaluated, and a

stack. We write h�; M; S i for the abstract machine con�guration with heap

�, expression M , and stack S and we will use � and � to range over such

con�gurations. A heap is a set of bindings; we denote the empty heap by ;, and

the addition of a group of fresh bindings ~x =

~

M to a heap � by juxtaposition:

�f~x =

~

Mg. The stack written b : S will denote the stack S with b pushed on

the top. The empty stack is denoted by �.

Stack elements are either:

� a reduction context, or

� an update marker #x, indicating that the result of the current computa-

tion should be bound to the variable x in the heap.

The reduction contexts on the stack are shallow contexts containing a single

hole in a \reduction" position - i.e. in a position where the current computation

is being performed. They are de�ned as:

R ::=[�]x j case [�] of fc

i

~x

i

�N

i

g j seq [�]M j

[�] +M j add

n

[�] j iszero [�]

We will refer to the set of variables bound by � as dom�, and to the set of

variables marked for update in a stack S as domS. Update markers should be

thought of as binding occurrences of variables. A con�guration is well-formed

if dom� and domS are disjoint. We write dom(�; S) for their union. For a

con�guration h�; M; S i to be closed, any free variables in �, M , and S must

be contained in dom(�; S). The free variables of a term M will be denoted

FV(M); for a vector of terms

~

M , we will write FV(

~

M).

The abstract machine semantics is presented in Figure 1; we implicitly re-

strict the de�nition to well-formed closed con�gurations.

The �rst group of rules are the standard call-by-need rules. Rules (Lookup)

and (Update) concern evaluation of variables. To begin evaluation of x, we

remove the binding x = M from the heap and start evaluating M , with x,

marked for update, pushed onto the stack. Rule (Update) applies when this

13

h�fx =Mg; x; S i ! h�; M; #x : S i (Lookup)

h�; V; #x : S i ! h�fx = V g; V; S i (Update)

h�; let �

0

in N; S i ! h��

0

; N; S i (Letrec)

h�; R[M]; S i ! h�; M; R : S i (Push)

h�; V; R : S i ! h�; M; S i if R[V] M (Reduce)

(�x:M) y M [

y

=

x

]

case c

j

~y of fc

i

~x

i

�M

i

g M

j

[

~y

=

~x

j

]

seqV M M

m+N add

m

N

add

m

n pm+ nq

iszerom

(

true if m = 0

false otherwise

Figure 1: Abstract machine semantics

evaluation is �nished, and we may update the heap with the new binding for x.

Rule (Letrec) adds a set of bindings to the heap.

The basic computation rules are captured by the (Push) and (Reduce) rules

schemas. The rule (Push) allows us to get to the heart of the evaluation by

\unwinding" a shallow reduction context. When the term to be evaluated is a

value and there is a reduction context on the stack, the (Reduce) rule is applied.

3 Space Use and Garbage Collection

A desired property of our model of space-use is that it is true to actual imple-

mentations. Unfortunately, di�erent abstract machines and garbage collection

strategies di�er in their asymptotic space behaviour. Consider for example an

application of the function

f = �x:let y = f y in y

using some of the main Haskell implementations.

2

This runs in constant space

under HUGS'98 and GHC 4.01, but runs out of stack in hbc 0.9999.5a, and

in some older versions of GHC. Later in this section we will try to explain the

di�erences.

2

www.haskell.org/implementations.html

14

Given the di�erent space behaviours of di�erent implementations there is

no hope that we can construct a theory which applies to all implementations.

Although we will choose a particular model of space use we believe that most

of the results and techniques developed in this paper can be adapted to any

reasonable model. Later in this section we discuss some of the subtle ways in

which di�erent abstract machines and implementations described in the liter-

ature di�er from our model and each other. Bakewell and Runciman [BR00a]

focus on techniques for comparing di�erent evaluators.

Another point of dispute is whether to distinguish between heap and stack

space. Many implementations allocate separate memory for the heap and the

stack, but in principle the stack and the heap can share the same memory. So,

should a transformation which trades heap for stack, or vice versa, be rejected?

And do such transformation show up \in practice"? We focus mainly on a theory

which keeps stack and heap usage separate. However, we will see examples of

transformations which usefully trade stack for heap.

3.1 Measuring space

We measure the heap space occupied by a con�guration by counting the number

of bindings in the heap and the number of update markers on the stack. We

count update markers on the stack as also occupying heap space, since in a typ-

ical implementation an update marker refers to a so-called \blackhole closure"

in the heap { a placeholder where the update eventually will take place. We

will count every binding as occupying one unit of space.

In practice the size of a binding varies since a binding is typically represented

by a tag or a code pointer plus an environment with one entry for every free

variable. However, the right hand side of every binding is a (possibly renamed)

subexpression of the original program, (a property of the semantics sometimes

called semi-compositionality) so counting it as occupying one unit of space gives

a measure which is within a constant factor (depending only on the program

size) of the actual space used. Integers are an exception to this claim, but recall

that our integers are bounded so they can also be represented in a constant

amount of space.

We measure stack space by simply counting the number of elements on the

stack, so an update marker will be viewed as occupying both heap and stack

space. In practice every element on the stack does not occupy the same amount

of space, but again, semi-compositionality of the abstract machine assures that

our measure is within a program-size-dependent constant factor. The size of a

con�guration, written j�j is a pair (h; s) where h and s is the amount of heap

and stack respectively occupied by the the con�guration.

15

3.2 Garbage collection

We cannot reason about space usage without modelling garbage collection. Dur-

ing a computation, garbage collection allows us to decrease the amount of space

used by a con�guration. It is modelled simply by the removal of any number of

bindings and update markers from the heap and the stack respectively, providing

that the con�guration remains closed.

De�nition 3.1 (GC)

Garbage collection can be applied to a closed con�guration � to obtain �

0

,

written � m �

0

if and only if �

0

is closed, and can be obtained from � by

removing zero or more bindings and update markers from the heap and the

stack respectively.

This is an accessibility-based de�nition as found in e.g., the gc-reduction rule of

[MH98]. The removal of update-markers from the stack is not surprising given

that they are viewed as the binding occurrences of the variables in question.

We are now ready to de�ne what it means for a computation to be possible

in certain �xed amount of space.

De�nition 3.2 (Convergence in �xed space)

1. �!

(h;s)

�

0

def

= �! �

0

and j�j � (h; s).

2. _

(h;s)

_

def

= the reexive and transitive closure of the relational composition

of !

(h;s)

and m.

3. �+

(h;s)

def

= 9�; V:� _

(h;s)

_ h�; V; � i and jh�; V; � ij � (h; s).

4. M+

(h;s)

def

= h ;; M; � i+

(h;s)

:

We read M+

(h;s)

as M can converge within (h; s) space, i.e., the maximum

heap, and stack is less than or equal to h and s respectively. Note that, with

this de�nition, if a binding is garbage collected immediately after it has been

allocated it does not account for any space. In real implementations the binding

would of course momentarily take up one unit of space even if it is garbage

collected immediately. However, our model is within a constant factor.

3.3 Some subtleties

Di�erent implementations vary in their space behaviour in a number of rather

subtle ways. We will discuss some of those points below and how they relate to

our particular space model.

16

Environment trimming Our abstract machine is based on substitution of

variables for variables, but lower level abstract machines are usually based on

environments [Ses97]. To avoid space leaks in environment-based machines it is

crucial to remove redundant bindings from environments on the stack. This is

sometimes called environment trimming [Ses97] or stack stubbing [PJ92]. Some

implementations do not properly trim environments and programs like

f x y = case g x of alts ;

where there is no occurence of x in alts , can lead to space leaks because a

reference to x is kept on the stack during the evaluation of g x [R�oj95]. Our def-

inition of space is consistent with an environment machine which does perform

environment trimming.

Blackholing In our abstract machine, the lookup rule removes the binding

from the heap while it is being evaluated. This corresponds to so called \black

holing" in real implementations where the closure is overwritten with a special

\black hole closure" without free variables [PJ92]. In some early implementa-

tions the closure was instead left untouched in the heap [RW93, Jon92]. This

has the e�ect that the garbage collector can not reclaim space that the free

variables of the closure hangs on to.

Garbage collection of update markers In our model we allow for the

garbage collection of update markers which allows our example from the begin-

ning of this section, an application of f

f = �x:let y = f y in y;

to run in constant space { as it does in HUGS'98 and GHC 4.01, but not in hbc

0.9999.5a, or in some older versions of GHC. The collection of update markers

could explain the di�erent behaviours of the implementations but it can also

be explained by the implementations shortcutting update marker chains. We

explain this trick later in this section.

Avoiding value copying When running

let x = 1 + 2; y = id x in y +M

in our abstract machine we will end up with both x and y bound to 3 in the

heap. Some implementations would instead bind x to 3 and create an indirection

y 7! x from y to x (or vice versa). If this is combined with a garbage collector

which can shortcut indirections (by in this case replacing all occurrences of y

with x and removing y 7! x) then space can be saved. This can only reduce

the total space used by a constant factor, but it can have a quite dramatic

e�ect in practice [RW93]. However since our space model is only adequate up

17

to constant factors anyway, this is not a serious drawback of our space model.

For implementations that create indirections in this way it is important that

the garbage collector can shortcut indirections. Otherwise not much would be

gained, and in our example, the space for x cannot be reclaimed before y 7! x

is reclaimed, thus possibly increasing the space used (although we believe the

additional space is within a constant factor). Since our abstract machine does

not create indirections (other than those which occur textually in the program)

we have not included shortcutting of indirections in our garbage collector.

Shortcutting update marker chains Sometimes two or more update mark-

ers, say #x and #y, end up on top of each other on the stack. Then both x

and y will eventually be updated with the same value or, in implementations

which introduce indirections, one will be indirected to the other. One can pre-

clude this situation by never pushing update markers on top of each other: if

#x is already on the stack, an indirection y 7! x is created instead of pushing

#y. When this is combined with garbage collection of indirections, the e�ect is

similar to the combined e�ect of garbage collection of update markers, avoiding

value copying and garbage collecting indirections. As far as we know this trick

has not been documented, but a variation of it is used in the GHC compiler

3

where the garbage collector removes update markers pushed on top of each other

by indirection one to the other.

Pattern bindings Patterns in let bindings like

let (x; y) =M in N

are an important feature of real lazy languages such as Haskell. They might be

encoded in our language in the following manner

let p =M;x = fst p; y = snd p in N

This encoding seems to be used in, for example HUGS'98, but can lead to un-

desirable space behaviours for some functions [Hug83] (see Section 6, case study

6, for an example). Intriguingly, pattern bindings are linked to the intensional

expressiveness of the language. Hughes has argued that it is impossible to de�ne

a certain function split , which splits the input into the �rst line and the rest, in

a space e�cient way using a particular lazy evaluator similar to ours [Hug83].

There have been several proposals to solve this problem due to Hughes [Hug83],

Wadler [Wad87] and Sparud [Spa93]. We discuss their proposals in some de-

tail in Section 6. Sparud's suggestion was to have pattern bindings as a �rst

class construct which the evaluator treats in a space e�cient manner. We have

adopted Sparud's proposal as an extension to our language. The semantics is in

Appendix B. With this extension it is possible to de�ne split space e�ciently.

3

Simon Peyton Jones, Personal communication, June 1999.

18

4 Weak Space Improvement

In the previous section we de�ned a notion of space which we believe is realistic

in the sense that an actual implementation (using our reasonably aggressive

garbage collection) will require space within a constant factor of our abstract

measure, where the constant depends on the size of the program to be executed.

In this section we de�ne space improvement within a constant factor { what

we will simply refer to asWeak Improvement { which says that ifM is improved

by N , replacing M by N in any program context will never lead to more than

a constant factor worsening in space behaviour, where the constant factor is

independent of the context.

The starting point for an operational theory is usually an approximation

and an equivalence de�ned in terms of program contexts. Program contexts

are usually introduced as \programs with holes", the intention being that an

expression is to be \plugged into" all of the holes in the context. The central

idea is that to compare the behaviour of two terms one should compare their

behaviour in all program contexts.

We will use contexts such that holes may not occur in argument positions of

an application or a constructor, for if this were the case, then �lling a hole (with

a non variable) would violate the syntax since it could yield a non-restricted

application. Contexts may contain zero or more occurrences of the hole, and as

usual the operation of �lling a hole with a term can cause variables in the term

to become captured. We will use C and D to range over contexts. The grammar

of contexts is as follows.

C;D ::= [�] j x j �x:C j Cx j c ~x j seqCD

j n j C+ D j add

n

C j iszeroC

j let f~x =

~

Cg in D j case C of fc

i

~x

i

� D

i

g

De�nition 4.1 (Weak Improvement)

We say that M is weakly improved by N , written M

B

�

N , if there exists a

linear function f 2 N ! N such that for all C, � such that C[M�] and C[N�]

are closed,

C[M�]+

(h;s)

=) C[N�]+

(f(h);f(s))

:

So M

B

�

N means that N never takes up more than a constant factor more

space than M (but it might still use non-constant factor less space).

Note that we compare the behaviour of all substitution instances of the

two terms in all program contexts rather than comparing the two terms in all

program contexts. As a result weak improvement is closed under substitution

by de�ntion { a very useful property. We believe that the two de�nitions are

equivalent but we have failed to prove it.

We write M

CB

�

N to mean that M

B

�

N and N

B

�

M .

19

Proposition 4.2 (Precongruence)

B

�

is a precongruence { i.e., it is a transitive and reexive relation which is

preserved by contexts.

Proof. The proof of all but transitivity is immediate. Transitivity follows from

the fact that the composition of any two linear functions is linear. 2

4.1 Limitations of Weak Improvement

In this section we address some inherent limitations of weak improvement which

serves as the motivation for studying a stronger notion of space improvement in

the next section. As these are negative results we will not prove them in detail

but we sketch the proofs since we think they provide important insight into the

nature of weak improvement.

The Free Variable Restriction The �rst limitation is fundamental, and

highlights the signi�cance of free variables in this theory:

Theorem 4.3 (Free Variable Restriction)

If FV(M) 6� FV(N) then M

7

�

N

Proof. (Sketch) Suppose that M

B

�

N . Then there exits a linear function

f which bounds the extra space required to compute with N instead of M .

Assume, towards a contradiction, that there exists a variable x such that x 2

FV(N) but x 62 FV(M). Without loss of generality we can assume that FV(N) =

fxg and FV(M) = ; (since by congruence of

B

�

we can wrap a context around

M and N which ensures this property). Now consider the context C:

let traverse = �xs:case xs of

nil � 1

h : t � traverse t

count = �n: case iszero n of

true � nil

false � let a = n� 1

r = count a

in n : r

x = count k

z = [�]

in traverse x+ (�y:1)z

where : is an in�x cons constructor. Recall that + evaluates its arguments

from left to right. It can be seen (we omit a formal proof, which would be

somewhat tedious) that C[M] evaluates in constant space, independent of k.

This is because the list count k can be garbage collected as it is traversed.

However C[N] requires space proportional to k, since there is a (dead code)

20

reference to x which prevents any of the list from being collected until it has

been completely constructed. Since we can make k arbitrarily large we cannot

have M

B

�

N . 2

The sketch proof above relies on unbounded integers. A similar example can

be constructed using just a �nite set of constructors and a logarithmic-space

encoding of k.

Failure of the Context Lemma A standard result for any operational the-

ory is a context lemma [Mil77]. A context lemma in this case would establish

that to prove thatM is weakly improved by N , one only needs to compare their

behaviour with respect to a much smaller set of contexts, namely the context

which immediately need to evaluate their holes.

Despite our e�orts we were not able to prove the context lemma. The reason

is that the context lemma, as we envisage it, does not hold for weak improve-

ment:

Theorem 4.4 (Failure of the context lemma)

There exist termsM and N with FV(M) � FV(N) and a linear function f such

that for every �, S and �,

h�; M�; S i+

(h;s)

=) h�; N�; S i+

(f(h);f(s))

;

but where M

7

�

N .

Proof. (Sketch) The result follows from the fact that

M

7

�

let fy = xg in M [

y

=

x

]:

Intuitively, this improvement cannot hold because if we apply the transformation

in the body of a recursive function it could lead to repeated allocations of the

binding for y which builds up a chain of closures. And the chain may grow with

the depth of the recursion. But we can show that for every � and S

h�; M; S i+

(h;s)

=)

h�; let fy = xg in M [

y

=

x

]; S i+

(h+1;s+1)

:

The reason is simply that the modi�ed term is executed exactly once so the

binding may only be allocated once and thus can not lead to an arbitrary dif-

ference in space use. Thus the context lemma cannot hold since then we would

have M

B

�

let fy = xg in M [

y

=

x

] which is not the case. 2

21

Fixed Point Approximation It is typical in semantics to characterise re-

cursion in terms of the \�nite approximations" of recursive de�nitions. This

approach is built in to the Scott-style denotational semantics approach where

recursion is modelled by a least �xed point construction. The essence of this

approach can be expressed in a purely operational setting. See e.g. [Smi92,

MST96].

The natural formulation of the least �xed-point property also fails to hold

for weak improvement. To make this claim precise we de�ne the notion of the

space-faithful n'th unwinding of a recursive de�nition. Let V range over value-

contexts. We denote the n'th unwinding of a call to a function f in the context

let ff = V[f]g in C[�]. by let ff = V[f]g in C[f

n

]. The details of the construction

are given in Section 5. We are now ready to state our discontinuity result.

Theorem 4.5 (Syntactic Discontinuity of

B

�

)

It is not always the case that let ff = V[f]g in C[f] is the least upper bound of

the chain

let ff = V[f]g in C[f

0

]

B

�

let ff = V[f]g in C[f

1

]

B

�

: : :

Intuitively, syntactic continuity fails for the same reason as the context lemma.

This is refelected in the similarity of the two proofs.

Proof. (Sketch) It is possible to the sketch the proof of our claim without

the exact de�nition of space-faithful �nite unwindings. For this proof sketch we

assume that there are unbounded integers in our language. The actual proof has

to use an logarithmic encoding of unbounded integers through a list of bounded

integers. The starting point of our proof sketch is the following two contextually

equivalent de�nitions of a function f .

f = �x:�y:if x � 0 then 1 else f (x� 1) y

f = �x:�y:if x � 0 then 1 else let fy

0

= yg in f (x� 1) y

0

The functions simply counts down their �rst argument until it is less or equal

to zero and then returns one. The di�erence between them is that the second

one builds a chain of bindings in the heap of length proportional to the depth

of the recursion. As a result the second function can use arbitrary more heap

depending on the value of the �rst argument so we can conclude that

let ff = V

0

[f]g in f

7

�

let ff = V

1

[f]g in f

where V

0

and V

1

refers to the bodies of the �rst and the second de�nition

respectively.

4

However even though the functions have asymptoticly di�erent

4

Note that this would not be true if we had not assumed unbounded integers since then

the recursion depth would not exceed the largest integer.

22

space behaviours the �nite unwindings of the two functions are related. More

speci�cly, for every n,

let ff = V

0

[f]g in f

n

CB

�

let ff = V

1

[f]g in f

n

:

The explanation is that a terminating computation which involves the n'th un-

winding can not call the unwinding with a �rst argument greater than n. As

a result the di�erence in space between the unwindings of the two de�nitions

can not be greater than n so it is bounded by a constant. The fact that each

unwinding of the two functions are related means that the chains of unwind-

ings of the two de�nitions are identical up to

CB

�

. So let ff = V

0

[f]g in f and

let ff = V

1

[f]g in f can not both be least upper bounds of their respective

chains since it would imply let ff = V

0

[f]g in f

CB

�

let ff = V

1

[f]g in f which

contradicts our earlier conclusion. 2

5 Strong Improvement

The failure of the context lemma and the �xed-point approximation property

gives a very concrete motivation for studying a stronger relation, strong im-

provement :

De�nition 5.1 (Strong improvement)

M is strongly improved by N , written M

B

�

N , if for all C, � such that C[M�]

and C[N�] are closed,

C[M�]+

(h;s)

=) C[N�]+

(h;s)

:

We write M

CB

�

N to mean that M

B

�

N and N

B

�

M .

Although the de�nition of strong improvement is somewhat arbitrary { since

it deals with constant factors for a high-level abstract machine { it provides a

practical means to establish weak improvement laws, since whenever M

B

�

N

then clearly M

B

�

N . In this section we present some basic laws of strong im-

provement, and our key technical results: a context lemma and a �xed-point

approximation theorem for establishing improvement properties of recursive def-

initions. The �xed-point approximation theorem for strong improvement cou-

pled with the fact that �xed point induction fails for weak improvement puts

strong improvement in focus { most of our calculations will concern strong im-

provement.

5.1 A Context Lemma

For strong improvement we have established a context lemma [Mil77]: to prove

that M is strongly improved by N , one only needs to compare their behaviour

with respect to a much smaller set of contexts, namely the context which im-

mediately need to evaluate their holes.

23

Lemma 5.2 (Context Lemma)

For all M and N such that FV(M) � FV(N), if for all �, S and �,

h�; M�; S i+

h;s

=) h�; N�; S i+

h;s

then M

B

�

N .

The proof requires a degree of technical machinery so we postpone it to Section 7.

The context lemma gives us a way to prove basic laws of weak and strong

improvement. To prove, for example, (restricted) beta-reduction (�x:M) y

B

�

M [

y

=

x

] we will show the stronger property: (�x:M) y

B

�

M [

y

=

x

]: The context

lemma makes this property very easy to establish (see Section 8.1 for a detailed

proof of a generalised statement). The converse direction also holds within a

constant factor under the assumption that y occurs free in M [

y

=

x

]. The only

di�erence when going from the right-hand side to the left is that the left hand

side will momentarily use up one stack unit more than the right-hand side.

In order to express the latter property using the more precise improvement

theory, we need some space analogue of the time-tick from [MS99a]. In fact, we

will use several kinds of \tick", which we we call the space gadgets.

5.2 The Space Gadgets

The space gadgets are syntactic means to represent and control the space prop-

erties of terms. They play a crucial role in strong improvement calculations.

We describe each gadget in turn.

Dummy References The use of dummy references allows one to make as-

sertions about, and to modify the liveness properties of variables. To this end

we introduce the following notational extension, terms of the form

X

M where

X is a multiset of variables. The construct is representable in the language and

is de�ned thus

f~xg

M

def

= let f~y = ~xg in M where ~y are fresh.

Hence

X

M behaves as M but in addition holds on to the variables in X until

the evaluation of M starts.

Dummy references can express certain liveness properties. For example, if

C[M]

B

�

C[

fyg

M] then we know that y is still live at the occurrence ofM . Among

other things we will use dummy references to control the life time of dummy

bindings, i.e., bindings which play no rôle in the term but to take up space. To

add dummy bindings is harmless in the weak theory as long as their life time is

coupled to another binding.

Lemma 5.3 (Dummy Binding Introduction)

let fx =Mg in N

CB

�

let fz =
; x =

fzg

Mg in N; if z is fresh

24

Proof. We only sketch the right-way improvement. The left-way improvement

follows in a similar manner. For arbitraryC and � such that C[(let fx =Mg inN)�]

is closed, assume

C[(let fx =Mg in N)�]+

n

(h;s)

:

By induction over the length of the computation we construct the corresponding

transition sequence for C[(let fz =
; x =

fzg

Mg in N)�]+

n

(h;s)

maintaining the

invariant that for each instance of the binding for z there is a corresponding

instance of the binding for x. Thus the computation can take up at most twice

the amount of heap space. 2

Spikes Spikes are amortisation device which allow us to represent a very short-

lived space usage { a spike in the space-usage pro�le. Spikes come in two

varieties, heap spikes and stack spikes. The stack spike is de�ned thus

g

M

def

= case true of ftrue�Mg

It has the short-lived e�ect of increasing the stack usage by one unit, at the

moment that M is about to be evaluated. The heap spike is the heap analogue

of the stack spike; it momentarily increases the size of the heap at the point in

time when the term is ready to be evaluated.

f

M

def

= let x =
 in

fxg

M where x is fresh

To see how spikes are used, consider how we prove (restricted) beta-expansion,

M [

y

=

x

]

B

�

(�x:M) y if y 2 FV(M [

y

=

x

]):

The di�erence between the terms is that the right hand side will momentarily

use up one stack unit more than the right-hand side. We can compensate for it

with a stack spike and prove that

g

M [

y

=

x

]

B

�

(�x:M) y if y 2 FV(M [

y

=

x

]):

which is easy using the context lemma (see Section 8.1 for a detailed proof of a

generalised statement). All that is left is to establish that spike introduction is

harmless in the weak theory:

Lemma 5.4 (Spike Introduction)

1. M

CB

�

g

M

2. M

CB

�

f

M

The proof is analogous to that for time ticks in [MS99a].

25

Weights The most complex gadgets are the weights

5

. Weights are more in-

volved because they cannot be de�ned in terms of existing language constructs,

but must be added as a collection of term-annotations with a specially de�ned

space-semantics.

In our de�nition of space use we count every entity on the stack or on the

heap as occupying exactly one unit of space, a choice justi�ed by our desire to

ultimately reason about asymptotic behaviour. But it turns out to be crucial to

be able to selectively choose exactly how much space each entity shall account

for { i.e., what the weight of the entity should be. Consider, for example, the

following weak equivalence law for reduction contexts (de�ned in Section 2.1

and ranged over by R):

R[case M of fpat

i

�N

i

g]

CB

�

case M of fpat

i

�R[N

i

]g

It is not a strong space equivalence since the left hand side takes up more space:

whileM is being evaluated, both R and the case-alternatives take up stack space

(2 units of space). In the right hand side, while M is being evaluated there is

just a single set of case alternatives (1 unit of stack space). We can compensate

for this, and simplify our calculations, if we count the case in the right hand

side as occupying two units of stack, which we denote by the following weight

annotation:

R[case M of fpat

i

�N

i

g]

CB

�

2

case M of fpat

i

�R[N

i

]g

This is not the only form of weight, but before we consider further examples we

will give the semantics of weights.

We will annotate every entity on the heap and the stack with a weight

w � 0. Binding occurrences of variables, including update markers (which

are considered to take up both heap and stack space) are annotated with two

weights, one for the heap and one for the stack. The space consumption of each

entity is given by the following:

j

w

v

x =M j = (v; 0) j

w

Rj = (0; w) j#

w

v

xj = (v; w)

So the upper weight of the binder is the stack weight, incurred when the update

marker is on the stack; the lower weight is the heap weight { the size of the

binding on the heap.

Note that weights may be zero so we can specify that an entity shouldn't

be counted for at all. An entity without a weight annotation will now be taken

as shorthand for a weight of 1. The weight on bindings and stack elements

originate from annotation in the program. Our annotated term language is

L;M;N ::= x j �x:M j

w

(M x) j c ~x j

w

(seqM N)

j n j

w

0

(M +

w

1

N) j

w

(add

n

M) j

w

(iszeroM)

j let f

v

i

w

i

x

i

=M

i

g

i2I

in N

j

w

(case M of fc

i

~x

i

�N

i

g):

5

A generalisation of the ballasts from [GS99].

26

h�f

v

w

x =Mg; x; S i ! h�; M; #

v

w

x : S i (Lookup)

h�; V; #

v

w

x : S i ! h�f

v

w

x = V g; V; S i (Update)

h�; let �

0

in N; S i ! h��

0

; N; S i (Letrec)

h�;

w

R[M]; S i ! h�; M;

w

R : S i (Push)

h�; V;

w

R : S i ! h�; M; S i if R[V] M (Reduce)

(�x:M) y M [

y

=

x

]

case c

j

~y of fc

i

~x

i

�M

i

g M

j

[

~y

=

~x

j

]

seqV M M

m+

w

N

w

(add

m

N)

add

m

n pm+ nq

iszerom

(

true if m = 0

false otherwise

Figure 2: Abstract machine semantics with weights

In Figure 2 we have extended the abstract machine rules with weights.

Of course, weights have no intrinsic interest for programmers { they are a

bookkeeping mechanism which we use to syntactically account for certain forms

of space usage. As with spikes, a crucial property of weights is that they increase

space use in the strong theory but do not change space behaviour by more than

a constant factor:

Lemma 5.5

If w � w

0

and v � v

0

then

1.

w

R[M]

B

�

w

0

R[M].

2.

w

(M +

v

N)

B

�

w

0

(M +

v

0

N).

3. let �f

w

v

x =Mg in N

B

�

let �f

w

0

v

0

x =Mg in N .

Proof. We only sketch the proof of 1 the others follow similarly. Assume

w � w

0

. For arbitrary C and � such that C[

w

R[M]�] is closed, assume

C[

w

R[M]�]+

n

(h;s)

:

By induction over the length of the computation we construct the correspond-

ing transition sequence for C[

w

0

R[M]�]+

n

(h;s)

maintaining the invariant that the

27

weights in con�gurations are less or equal to the weights in the original transi-

tion sequence. 2

Lemma 5.6

For v; w > 0,

1. R[M]

CB

�

w

R[M].

2. (M +N)

CB

�

w

(M +

v

N).

3. let �fx =Mg in N

CB

�

let �f

w

v

x =Mg in N .

Proof. The proof is very similar to the proof of the previous lemma but main-

tains the invariant that the weights in the constructed transition sequence is

within the constant factor. 2

Zero weights or \balloons" play a special role, and must be handled with

care. A zero weight permits costs to be hidden. This is very useful in strong im-

provement calculations since it cuts down signi�cantly on the \noise" of weight

bookkeeping. However, adding zero-weights is potentially unsound, since we

might end up hiding an asymptotic amount of space usage. In other words,

we cannot arbitrarily introduce zero weights in the weak improvement theory

(c.f. Lemma 5.6). There are two ways in which we can justify zero-weight in-

troduction. The �rst is if an entity is short-lived so that it can't a�ect the

asymptotic space behaviour. We will heavily use two instances of this: that the

weight of a stack frame associated with an application of a known function can

be ignored and that the update marker weight of a value binding can be safely

ignored. This is because its lifetime on the stack is only one computation step.

Lemma 5.7 (Balloon introduction)

1. (�x:M) y

CB

�

0

((�x:M) y)

2. let fx = V g in N

CB

�

let f

0

x = V g in N

We will use zero-weights on applications often so we introduce an abbreviation

and write M � x for

0

(M x). The zero weights on applications cuts down signif-

icantly on the \noise" from spikes in strong improvement calculations because

of the law

(�x:M) � y

CB

�

M [

y

=

x

] if y 2 FV(M [

y

=

x

]):

The law is a strong space equivalence and we do not need a spike to compensate

for the short-lived entity on the stack because it doesn't account for any space.

With this law we can prove part 1 of Lemma 5.7 under the additional assumption

that y 2 FV(M [

y

=

x

]). With the laws presented in Section 5.3 it easy to lift the

restriction. The proof is by a simple calculation:

(�x:M) y

CB

�

g

M [

y

=

x

]

CB

�

M [

y

=

x

]

CB

�

(�x:M) � y

28

The second way that we introduce zero weights is via a \top-level" assump-

tion. It is safe to introduce zero weights to bindings which will not be allocated

multiply. Unfortunately this is not a property that holds in all contexts, but

is still reasonable. For example, functions from a standard library are typically

allocated just once { i.e. they are top level de�nitions. If a function is de�ned

at top-level then setting heap-weight to zero can have at most a constant factor

e�ect:

Lemma 5.8

For every � there exist k such that for every M , if let f�g in M+

(h;s)

then

let f�g inM+

(h+k;s)

, where � is the result of setting all heap weights on bindings

in � to zero.

Proof. By induction over the length of the computation 2

To see why we need zero heap weights on bindings consider the problem of

showing an improvement of the form

for every C,

let �ff = V; g =Wg in C[f x]

CB

�

let �ff = V; g =Wg in C[g x]:

The statement is typically not true even if f and g have the same space be-

haviour. The argument is similar to the proof of the free variable restriction

theorem for weak improvement: f x holds on to a reference to f but g x holds

on to a reference to g. Suppose we construct a context C such that C never

evaluates the hole and holds on to f but not g. Then C[f x] holds on to only f

but C[g x] holds on to f and g and can thus prevent the garbage collection of

g. It does not necessarily lead to a di�erent space behaviour though: if there,

for example, is a reference to g in the body of f or in a function f refers to

then g cannot be collected in any case. But for many de�nitions of f and g the

argument is valid and the desired improvement does not hold. Our pragmatic

solution is to instead prove an improvement of the form

for every C,

let �f

0

f = V;

0

g =Wg in C[f x]

CB

�

let �f

0

f = V;

0

g =Wg in C[g x]

where we have put a zero heap weight on the bindings for f and g. The im-

provement can be applied in any context but ultimately the zero weight has to

be justi�ed in some way. For example by f and g being top level de�nitions in

the program in question.

Finally, we note that with the help of weights we can increase the size of the

stack and heap spikes:

w
g

M

def

=

w

case true of ftrue�Mg

w

f

M

def

= let

w

x =
 in

fxg

M where x is fresh

29

5.3 Laws of strong improvement

Now that we have our space gadgets we will use them to state a collection of

laws for strong improvement. Like any other contextual program ordering, it

is not recursively enumerable, so any such collection is inevitably somewhat ad

hoc. In presenting the laws, we will follow the standard free-variable convention

[Bar81] that all bound variables in the statement of a law are distinct, and that

they are disjoint from the free variables. Later, in Section 8, when we have

introduced some technical machinery we will prove some of the laws in detail.

Reduction The most fundamental law is reduction:

w

R[V]

CB

�

w
g
X

N if R[V] N and FV(R[V]) = FV(

X

N) (reduction)

which subsumes the beta-reduction law presented earlier. Recall that the spike

w

g

in the right hand side is there to make up for the additional stack used in

the left hand side. A key property of the law is that it can be applied even if

we discard variables when we perform the redex because we may compensate

through dummy references in X . In practice, redexes which discards variables

often shows up in reductions of case expressions. For example if we reduce

case x : xs of fnil�M; y : ys �Ng

the free variables of M is lost so we must put them in X in order to apply the

law. With reduction we can prove part 1 of Lemma 5.7, i.e., that

(�x:M) y

CB

�

(�x:M) � y

without the additional side condition that y 2 FV(M [

y

=

x

]). The derivation goes

as follows.

(�x:M) y

CB

�

g
fyg

M [

y

=

x

]

CB

�

0
g
fyg

M [

y

=

x

]

CB

�

(�x:M) � y

Unfolding For unfolding of values we have the following weak space equiva-

lence.

let �f

v

w

x = V g in C[x]

CB

�

let �f

v

w

x = V g in C[

fxg

V]

The dummy reference to x in the right hand side is there to ensure that the

binding for x is not garbage collected earlier because of the unfolding. However

the transformation is not a strong improvement because the left hand side may

momentarily use v extra units of stack. The stack use comes from the update

marker with weight v that is pushed on the stack when x is looked up. Because

x is bound to a value the update marker is short-lived so it may seem as if it

could be modelled by a spike in the right hand side of the law. However, the

update marker may be garbage collected if there are no other occurrences of

30

x. If so the update marker need not account for any space. For this reason

we cannot compensate for the update marker by adding a spike to the right

hand side. Instead we can show the weak improvement by �rst showing the two

strong improvements

let �f

v

w

x = V g in C[x]

B

�

let �f

v

w

x = V g in C[

fxg

V]; (unfold)

and

let �f

v

w

x = V g in C[x]

C

�

let �f

v

w

x = V g in C[

fxgv
g

V]: (fold)

and then use the spike introduction lemma (Lemma 5.4).

In calculations it is a nuisance to have two rules { to show an equivalence

we may need to make two derivations, one in each direction. However, in some

special cases we have a strong equivalence. One such case is when the update

marker weight is zero so that it does not take up any space. In this case the

two improvements turns into an equivalence.

let �f

0

w

x = V g in C[x]

CB

�

let �f

0

w

x = V g in C[

fxg

V]

Another case is when the de�nition of x is recursive. Then the update marker

cannot be garbage collected so we can compensate with a stack spike in the

right hand side:

let �f

v

w

x = V g in C[x]

CB

�

let �f

v

w

x = V g in C[

v
g

V] if x 2 FV(V)

Note also that there is no need to keep a dummy reference to x in the right

hand side because x 2 FV(V). Our last rule for unfolding is for bindings with a

zero stack weight and a zero heap weight.

let �f

0

0

x = V g in C[x]

CB

�

let �f

0

0

x = V g in C[V]

In this rule there is no need for a dummy reference to x in the right hand side,

because the binding takes up no space. This is the rule that we will use mostly in

actual strong improvement calculations because most unfolding steps concerns

unfolding a top-level de�nition. We have collected the unfolding rules in Figure

3.

Rules for let We have collected the rules for manipulating let-expressions in

Figure 4. The �rst law

let f

v

w

x =Mg in x

CB

�

w
f

M; (let-elim)

eliminates a let-expression. We use it intensively in calculations where a function

takes a non-value as an argument { recall that when N is not a variable an

application M N is syntactic sugar for let fx = Ng in M x so all arguments to

functions are bound in a let-expression. If the argument is a value we can use

31

let �f

v

w

x = V g in C[x]

B

�

let �f

v

w

x = V g in C[

fxg

V]

let �f

v

w

x = V g in C[x]

C

�

let �f

v

w

x = V g in C[

fxgv
g

V]

let �f

v

w

x = V g in C[x]

CB

�

let �f

v

w

x = V g in C[

v

g

V] if x 2 FV(V)

let �f

0

w

x = V g in C[x]

CB

�

let �f

0

w

x = V g in C[

fxg

V]

let �f

0

0

x = V g in C[x]

CB

�

let �f

0

0

x = V g in C[V]

Figure 3: Unfolding laws.

one of the rule for unfolding a value but if it is not a value we are left with

let-elim. To get the opportunity to apply the law we need to oat the let to

the place of use. The laws let-R, let-atten, let-let , let-alts , let-let' , let-alts'

are for this purpose. The laws are quite restricted because when we move a

let it may lead to later or earlier allocation. For example in let-let , let-alts ,

let-let' , let-alts' we can delay the allocation of the bindings in � only if we

compensate and allocate the bindings in � earlier. To be able to apply the

rules we often need to introduce allocations of dummy bindings which we oat

around to compensate for the oating of the other bindings (see Section 6 for

some examples). Another restriction on oating lets is that if a function uses an

argument twice it will typically not be possible to oat the corresponding let to

both places since it could lead to a duplication of computation { which often is

not space safe. The exception is if the two uses are in two di�erent branch of a

case expression. Then we can often use let-alts or let-alts' . Also, if the binding

binds a value we may copy the binding and oat one copy to each place. The

rules value-merge, value-copy , value-merge' , value-copy' allows value bindings

to be copied or merged. Finally, the rule

let ��

0

in M

CB

�

X

let f�g in M

if FV(let ��

0

in M) = FV(

X

let f�g in M) (gc)

allows bindings in lets to be removed analogous to garbage collection. Note that

it is implicit by the free variable convention that we cannot remove bindings

which there is a reference to because it would cause a bound variable to become

free. If we remove a binding that has free variables then we must take care

to compensate by putting the free variables in X so that both sides have the

same free variables. Otherwise, by the free variable restriction theorem the two

terms cannot be space equivalent. The rule empty-let let us remove an empty

let which can be the result of applying the garbage collection rule.

32

let f

v

w

x =Mg in x

CB

�

w

f

M (let-elim)

let � in

w

R[M]

CB

�

w

R[let � in M] if dom� � FV(M) (let-R)

let � in let � in M

CB

�

let �� in M if dom� � FV(M) (let-atten)

let �f

v

w

x = let � in Mg in N (let-let)

CB

�

let �f

v

w

x = let � in Mg in N

if dom� [dom� � FV(M), and j�j = j�j

let � in

w

case M of fpat

i

� let � in N

i

g (let-alts)

CB

�

let � in

w

case M of fpat

i

� let � in N

i

g

if dom� [dom� � FV(N

i

), and j�j = j�j

let �f

v

w

x =Mg in N

CB

�

let �f

v

w

x =

dom�

let � in Mg in N (let-let')

if dom� � FV(M), and j�j = j�j

let � in

w

case M of fpat

i

�N

i

g (let-alts')

CB

�

let � in

w

case M of fpat

i

�

dom�

let � in N

i

g

if dom� � FV(N

i

), j�j = j�j

let �fx = V; y = V g in M

B

�

let �[

x

=

y

]fx = V [

x

=

y

]g in M [

x

=

y

] (value-merge)

let �fx = V; y = V g in M

C

�

let �[

x

=

y

]f

2

x = V [

x

=

y

]g in M [

x

=

y

] (value-copy)

let �fx = let fy = V g in V g in M

B

�

let �fx = V [

x

=

y

]g in M (value-merge')

let �fx = let fy = V g in V g in M

C

�

let �f

2

x = V [

x

=

y

]g in M (value-copy')

let ��

0

in M

CB

�

X

let � in M (gc)

if FV(let ��

0

in M) = FV(

X

let f�g in M)

let fg in N

CB

�

N (empty-let)

Figure 4: Laws for lets.

33

w

R[

v

case M of fpat

i

�N

i

g] (R-case)

CB

�

w+v

case M of fpat

i

�

w

R[N

i

]g

case x of falts; c ~y � D[x]g (case-unfold)

B

�

case x of falts; c ~y � D[

fxg

c ~y]g

let f

v

w

x =Mg in C[case x of falts; c ~y � D[x]g] (case-fold)

C

�

let f

v

w

x =Mg in C[case x of falts; c ~y � D[

fxgv
g

c ~y]g]

Figure 5: Laws for case.

Rules for case In Figure 5 we have collected some rules for case-expressions.

The �rst law

w

R[

v

case M of fpat

i

�N

i

g]

CB

�

w+v

case M of fpat

i

�

w

R[N

i

]g (R-case)

is a generalisation of the classical case-of-case rule. It allows an arbitrary re-

duction context to be oated into the branches of a case. Note that we have to

add extra weight on the case in the right hand side to make the rule a strong

improvement. Consider the next law:

case x of falts; c ~y � D[x]g

B

�

case x of falts; c ~y � D[

fxg

c ~y]g (case-unfold)

If a variable x is scrutinised by a case expression and x occurs in one of the

branches we may replace the x in the branch with the value corresponding to

the pattern in the branch provided we keep a dummy reference to x. Note

that it is not possible to extend the rule to case expressions which scrutinise

an arbitrary term N because it would potentially introduce additional sharing

of computation which can lead to an asymptotically di�erent space behaviour.

The next rule case-fold is an adaption of case-unfold where the improvement

goes in the other direction. These two rules su�er from the same problem due

to the update marker as unfold and fold . Just like for unfold and fold , if the

update marker weight on the binding for x is zero the two rules coincide into

an equivalence.

Rules for
 In Figure 6 we have collected some laws for the divergent term

let fx = xg in x which we denote by
. These laws are used extensively when

establishing the base case in a proof based on �xed point induction.

The Spike Algebra Spikes are a nuisance in calculations with strong im-

provement { they often get in the way of applying other rules. The Spike

Algebra in Figure 7 lets us eliminate and move away spikes. In calculations we

will sometimes silently apply the Spike Algebra.

34

X

B

�

M if FV(M) � X

let �fx =

X

g in N

B

�

let �fx =Mg in N if FV(M) � X [fxg

R[
]

CB

�

FV(R)

let � in

X

CB

�

Y

 if Y = FV(let � in

X

)

w

g

CB

�

w
f

CB

�

let �f

v

w

x =
g in C[x]

CB

�

let �f

v

w

x =
g in C[

fxg

]

Figure 6: Rules for
.

The Dummy Reference Algebra Just like spikes, dummy references, in-

troduced by for example reduction, often get in the way in calculations. The

Dummy Reference Algebra in Figure 8 provides rules for eliminating and moving

dummy references.

5.4 Fixed-Point Induction

In this section we introduce the least �xed-point property for strong improve-

ment, which will provide the principal tool for reasoning about the relative space

behaviour of recursive functions, a simple form of �xed-point induction.

Space-faithful unwindings We start at the bottom. A consequence of The-

orem 4.3 is that there is no bottom element in the space-ordering relation, since

divergent terms containing di�erent numbers of free variables are not cost equiv-

alent { simply because when placed in a program context, their free variables

can a�ect the amount of live data, and hence the space. The more free variables

a divergent term contains the more space it can retain, and hence the lower in

the improvement ordering it sits. This is signi�cant when we de�ne the notion

of a chain of �nite unwindings of a recursive de�nition. Usually the �rst ap-

proximation in such a chain is the bottom element but here we need to start

from a divergent term with the right amount of free variables.

We are now ready to de�ne precisely the space-faithful �nite unwindings of

a recursive de�nition.

De�nition 5.9 (Finite Unwindings)

Let V be a value context with at least one occurrence of the hole. We de�ne

35

w

R[

v

g

M]

CB

�

w+v

g

w

R[M]

w

R[

v
f

M]

CB

�

v
f
w

R[M]

let � in

v
g

M

CB

�

v
g

let � in M if dom� � FV(M)

let � in

v
f

M

CB

�

v+j�j
f

let � in M if dom� � FV(M)

w

case M of fpat

i

�

w

g

N

i

g

CB

�

w

case M of fpat

i

�N

i

g

w
g
v
g

M

CB

�

v
g

M if w � v

w
f
v
f

M

CB

�

v
f

M if w � v

w
g
Xw

g

M

CB

�

w
g
X

M

w

f

Xw

f

M

CB

�

w

f

X

M

w

f

v

g

M

CB

�

v

g

w

f

M

w
g
v
g

M

CB

�

v
g
w
g

M

w
f
v
f

M

CB

�

v
f
w
f

M

w

g

M

B

�

M

w
f

M

B

�

M

Figure 7: The Spike Algebra.

w

R[

X

M]

CB

�

w
g
Xw

R[M]

let � in

X

M

CB

�

j�j

f

X

let � in M if dom� � FV(M)

let �f

w

0

x = V g in C[

fxg

M]

CB

�

let �f

w

0

x = V g in C[

FV(V)nfxg

M]

w

R[

X

M]

CB

�

w

R[M] if X � FV(R)

;

M

CB

�

M

X[Y

M

CB

�

X

M if Y � FV(M)

XY

M

CB

�

X[Y

M

X

M

B

�

M

Figure 8: The Dummy Reference Algebra.

36

let f

w

v

f = V[f]g in C[f

n

] inductively by the following clauses.

let f

w

v

f = V[f]g in C[f

0

]

def

= let f

w

v

f = V[f]g in C[

ffg

]

let f

w

v

f = V[f]g in C[f

n+1

]

def

= let f

w

v

f = V[f]g in C[

wg

V[f

n

]]

Syntactic Continuity Using the laws about
 and the laws of unfolding it

is easy to show that the approximations form an improvement chain: For all

0 � i < j

let f

w

v

f = V[f]g in C[f

i

]

B

�

let f

w

v

f = V[f]g in C[f

j

]

and that let f

w

v

f = V[f]g in C[f] is an upper bound of the chain - i.e., for all i,

let f

w

v

f = V[f]g in C[f

i

]

B

�

let f

w

v

f = V[f]g in C[f].

The crucial property of strong improvement is that the relation is continuous

with respect to unwinding of recursion. The de�nition of f is the least upper

bound of this chain.

Theorem 5.10 (Syntactic Continuity)

let f

w

v

f = V[f]g in C[f]

B

�

M () 8n: let f

w

v

f = V[f]g in C[f

n

]

B

�

M

This theorem forms the basis of the �xed-point induction technique which we

spell out at the end of Section 5.5. In the rest of this section we develop the

proof of Theorem 5.10. The reader less interested in the proof can safely move

on to Section 5.5.

Before we proceed with the proof we need to introduce the following notation.

We write jCj � n if all the holes in C are at a syntactic depth of at least n.

So, for example, j[�]xj � 1 and j[�]j � 0. The following lemma captures the

intuition that a computation of length n cannot depend on a subterm which is

at a syntactic depth greater than n.

Lemma 5.11

If C[M]+

n

(h;s)

, jCj > n and FV(N) � FV(M) then

C[N]+

n

(h;s)

:

Proof. The lemma is proved by induction over n. In every computation step

we can go at most one level deeper in the term so we maintain the invariant

that the term we want to replace is always at a deeper level than the length of

the remaining computation. 2

From Lemma 5.11 we can show that in a computation of length n we can safely

replace a function call with its n'th unwinding:

Lemma 5.12

For every C

0

, if C

0

[let f

w

v

f = V[f]g in C[f]�]+

n

(h;s)

then

C

0

[let f

w

v

f = V[f]g in C[f

n

]�]+

n

(h;s)

37

Proof. Assume the premise. By repeatedly applying the unwinding rule for

recursive de�nitions,

let f

w

v

x = V g in C[x]

CB

�

let f

w

v

x = V g in C[

wg

V] if x 2 FV(V)

we know that

let f

w

v

f = V[f]g in C[f]

CB

�

let f

w

v

f = V[f]g in C[D

n

[f]]

where D is

wg

V[�]. Thus from the premise we have that

C

0

[let f

w

v

f = V[f]g in C[D

n

[f]]�]+

(h;s)

and from the work on time improvements by Moran and Sands [MS99a] we know

that it terminates in n steps. Note that jC

0

[let f

w

v

f = V[f]g in C[D

n

[�]]�]j > n

and FV(

ffg

) � FV(f) so by Lemma 5.11 we may replace f by

ffg

:

C

0

[let f

w

v

f = V[f]g in C[D

n

[

ffg

]]�] � C

0

[let f

w

v

f = V[f]g in C[f

n

]�]+

n

(h;s)

:

2

We are now ready to prove Theorem 5.10.

Proof. The right-way implication follows from that for every n,

let f

w

v

f = V[f]g in C[f

n

]

B

�

let f

w

v

f = V[f]g in C[f]:

Consider the left-way implication. Assume the premise. We are required to

show that let f

w

v

f = V[f]g in C[f]

B

�

M , that is, we need to show that for all C

0

,

� such that C

0

[let f

w

v

f = V[f]g in C[f]�] and C

0

[M�] are closed,

C

0

[let f

w

v

f = V[f]g in C[f]�]+

(h;s)

=) C

0

[M�]+

(h;s)

:

Thus assume C

0

[let f

w

v

f = V[f]g in C[f]�]+

(h;s)

in n steps. By Lemma 5.12 we

may replace f by its n'th unwinding:

C

0

[let f

w

v

f = V[f]g in C[f

n

]�]+

(h;s)

:

so from the main assumption we can conclude

C

0

[M�]+

(h;s)

as required. 2

38

5.5 Derivations in Context

We will often express properties which are relative to a �xed set of function

de�nitions. It is cumbersome to carry such de�nitions in explicit let-terms, so

we adopt a useful notation for derivations in context:

De�nition 5.13

We write � `M

B

�

N as an abbreviation for the following property: For all �

0

,

C and �, if

� dom�

0

\ dom� = ;,

� CV(C) \ (dom� [FV(�)) = ; and

� dom� \ (dom� [FV(�)) = ;,

then let f��

0

g in C[M�]

B

�

let f��

0

g in C[N�].

We will write a derivation

� `M

0

B

�

M

1

B

�

M

2

B

�

: : :

to mean � ` M

0

B

�

M

1

and � ` M

1

B

�

M

2

and so on. These contextual

judgements satisfy a number of simple properties which facilitate their use.

Proposition 5.14

The following proof rules are sound:

�

M

B

�

N

� `M

B

�

N

�

� `M

B

�

N � ` N

B

�

L

� `M

B

�

L

�

� `M

B

�

N dom�

0

\ dom� = ;

��

0

`M

B

�

N

�

� `M

B

�

N CV(C) \ (dom� [FV(�)) = ;

� ` C[M]

B

�

C[N]

�

� `M

B

�

N dom� \ (dom� [FV(�)) = ;

� `M�

B

�

N�

�

FV(V) \ CV(C) = ;

�f

0

0

f = V g ` C[f]

CB

�

C[V]

With the above notation and properties we have the following simple corol-

lary of syntactic continuity, expressed in an informal natural-deduction style.

39

Corollary 5.15 (Fixed point induction)

The following proof rule is sound:

� ` C[f

0

]

B

�

M 8n

0

@

� ` C[f

n

]

B

�

M

.

.

.

� ` C[f

n+1

]

B

�

M

1

A

� ` C[f]

B

�

M

That is to say, if we can establish � ` C[f

0

]

B

�

M and that under the assumption

that � ` C[f

n

]

B

�

M for some arbitrary n we can show � ` C[f

n+1

]

B

�

M , then

it holds that � ` C[f]

B

�

M .

6 Case Studies

Armed with a means to establish improvement properties for recursive functions,

in the rest of this paper we will investigate the possibilities and limitations of

space improvement.

The requirement is that transformed programs should improve on the space

behaviour in all contexts. Are there any interesting transformations which are

space improvements? In this section we present examples of some standard

program transformations, and show how space improvement can be established

using the tools from the previous sections. The results are not all positive; we

will also show that there are many transformations that are not space improve-

ments.

Case Study 1: Cyclic Structures

We will start with a very simple and intuitive space improvement which serves,

above all else, to illustrate the use of the �xed-point induction method. We

will show that the cyclic data structure xs = x : xs improves on the non-cyclic

structure that is generated by repeat x where repeat is de�ned as

repeat = �x:let fys = repeat xg in x : ys :

Using �xed-point induction we will prove a strong improvement property from

which the desired weak improvement follows directly.

Proposition 6.1

Let � be f

0

0

repeat = �x:let fys = repeat xg in x : ysg Then

� ` let fxs = repeat xg in M

B

�

let fxs = x : xsg in M:

40

Proof. We proceed by �xed-point induction over the de�nition of repeat . The

following derivation shows the base case.

� ` let fxs = repeat

0

xg in M

� (de�nition of unwindings)

let fxs =

frepeatg

xg in M

B

�

(the dummy reference algebra)

let fxs =
xg in M

CB

�

(rules for
)

let fxs =

fxg

g in)

B

�

(rules for
)

let fxs = x : xsg in M

And this derivation shows the inductive step.

� ` let fxs = repeat

n+1

xg in M

� (de�nition of unwindings)

let fxs =

0

g

(�x:let fys = repeat

n

xg in x : ys)xg in M

CB

�

(the spike algebra)

let fxs = (�x:let fys = repeat

n

xg in x : ys)xg in M

CB

�

(reduction)

let fxs =

g

let fys = repeat

n

xg in x : ysg in M

B

�

(the spike algebra)

let fxs = let fys = repeat

n

xg in x : ysg in M

B

�

(ih)

let fxs = let fys = x : ysg in x : ysg in M

B

�

(value-merge')

let fxs = x : xsg in M

2

Case Study 2: Intermediate Data Structures

Our next example concerns intermediate data structures produced by a de�ni-

tion of the Haskell prelude function any .

6

The function takes two arguments: a

6

The example and its space properties were discussed on the Haskell mailing list in January

2001 (www.haskell.org).

41

predicate p and a list xs and tests whether any of the elements of the list ful�ls

the predicate. The function can be de�ned in a direct recursive style:

any p xs = case xs of

nil� false

y : ys � p y jj any p ys

where jj is the in�x logical or operator. However in the Haskell report [PJHA

+

99]

any is de�ned in an elegant combinator style:

any

0

p = or � map p

where or is de�ned as

or = foldr (jj) false

and map, foldr and false are top-level de�nitions de�ned as usual. Apart from

the stylistic di�erences, there is a key operational di�erence between the two

de�nitions. The latter, when applied to p and xs, builds a list map p xs. Inter-

estingly, several discussions on the Haskell mailing list where concerned about

the e�ciency of the latter de�nition. In particular, that the construction of

the list would lead to a space leak proportional to the length of the list. The

replies on the mailing list were of two kinds. The �rst kind emphasised that

the de�nition in the Haskell report should be seen as a speci�cation (a reference

implementation) of only the extensional behaviour of any . A particular code

distribution would be free to provide the presumably more e�cient de�nition of

any . A clever compiler might even automatically derive it using deforestation

[Wad90]. The second kind of reply appealed to the folklore of call-by-need: the

list is only an intermediate data structures and the two de�nitions have the

same asymptotic space behaviour. The following result con�rms the folklore.

Proposition 6.2

� ` any p xs

CB

�

any

0

p xs

where � contains the de�nitions of any and any

0

(and the de�nitions of the

other functions they rely on).

The relevance of the result is twofold. Firstly, the de�nition in the Haskell

report is at most a constant factor worse than the direct recursive de�nition so

it serves perfectly well as a reference implementation with respect to space use.

Secondly, a compiler which replaces the latter de�nition with the former doesn't

risk to introduce a space leak in some weird case. This might seem obvious at

�rst thought but having worked with space improvement for a while we have

learnt to not jump to such conclusions. See case study 3, 5 and 6 for some

examples that failed in contrast to our initial intuition.

Let us sketch the proof of Proposition 6.2. As you would expect the proof

is via a strong improvement. However the proof is considerably more involved

42

than our previous example because we cannot show the strong improvement

� ` any p xs

CB

�

any

0

p xs

because any and any

0

uses di�erent amounts of space { although the di�erence

is within a constant factor. The solution is to introduce alternative de�nitions

of any and any

0

which we will call any

a

and any

0

a

respectively such that

� ` any p xs

CB

�

any

a

� p � xs

CB

�

any

0

a

� p � xs

CB

�

any

0

p xs:

To come up with the de�nitions of any

a

and any

0

a

is non trivial and requires

some creativity and/or hard work. Our experience has led us to the following

methodology: We modify the original de�nitions in a way such that

� the modi�ed de�nitions are weakly equivalent to the original de�nitions,

and

� we can show it just using the laws of weak improvement without the need

of �xed-point induction.

The modi�cations are of two kinds:

� First, wherever it can be justi�ed, we put in zero weights on short-lived

structures such as arguments to known functions. This reduces the \noise"

from the computations and is sometimes necessary to make the de�nitions

strongly equivalent. It also vastly simpli�es the proof of the strong im-

provement since it eliminates lots of spikes that would otherwise clutter

the derivations.

� Second, more di�cult step: whenever the two original de�nitions have

a di�erent space behaviour modulo \noise", we level them up by adding

spikes, dummy bindings and extra weights. However when we do this we

have to be careful to not increase space use by more than a constant factor.

Let us return to our example. In the �rst step we add zero weight on all

applications of known functions. We make these modi�cations also to foldr ,

map and or which are called by any

0

. We call the modi�ed de�nitions foldr

a

,

map

a

and or

a

respectively. The second step is to add dummy space use to any

to make it take up as much space as any

0

. Recall the de�nition of any :

any = �p:�xs :case xs of

nil� false

y : ys � (jj) (p y) (any p ys)

We modify the de�nition as follows.

any

a

= �p:�xs :

f
2

case xs of

nil�

g

false

y : ys �

g

let z =

in (jj) � (p � y) � (

fzg

(any � p � ys))

43

There are two interesting modi�cations. The �rst one is the extra weight on

the case expression, which compensates for the extra stack space used by any

0

;

for any

0

to scrutinise the head of its input xs it calls or with the argument

map p xs and or passes the argument to foldr . Then, foldr pushes a stack-

frame and forces the computation of its input map p xs. In turn, map pushes

a stack-frame and forces the computation of xs. Thus two stack-frames have

been pushed onto the stack. The extra weight on the case in any

a

mimics this

behaviour. From Lemma 5.6 we know that the extra weight can make any

a

use

up at most a constant factor more stack than any .

The other interesting modi�cation is the dummy binding of z in the cons-

branch of any

a

. The dummy binding lives until any �p �ys or if it never happens

when the closure that holds any � p � ys becomes garbage. We get this e�ect

because of the dummy reference to z. The dummy binding is there to mimic

the space used up by the list map p xs which any

0

constructs. It is worth noting

that although the list is an intermediate data structure it is not necessarily

short-lived. It will stay in memory during the evaluation of p y which can be

arbitrarily long and which may even call any

0

itself. But the extra structure can

not change the asymptotic space behaviour because there are other structures

in the heap which are at least as long lived. This is not easy to see from the

de�nition of any

0

but if we spell out the de�ntion of any

a

without syntactic

sugar

any

a

= �p:�xs :

f

2

case xs of

nil�

g

false

y : ys �

g

let z =

a = p � y

b =

fzg

any

a

� p � ys

in (jj) � a � b

we can see that the dummy binding that mimics the structure cannot live longer

than the binding b (Lemma 5.3). With these appropriate de�nitions of any

a

and any

0

a

it is straightforward to show

� ` any p xs

CB

�

any

a

� p � xs

and

� ` any

0

a

� p � xs

CB

�

any

0

p xs:

as outlined above. It remains to show that

� ` any

a

� p � xs

CB

�

any

0

a

� p � xs

which requires a substantial e�ort although it is quite straightforward as we will

show below.

44

Proof. Since any

0

a

is not directly recursively de�ned we �rst note that

� ` any

0

a

� p � xs

CB

�

foldr

a

� (jj) � false � (map

a

� p � xs)

so we can reason via the �nite unwindings of foldr

a

. We will show by induction

over n that for every n,

any

n

a

� p � xs

CB

�

foldr

n

a

� (jj) � false � (map

a

� p � xs)

and the result then follows by continuity. In the base case we need to show that

� `

fany

a

g

 � p � xs

CB

�

ffoldr

a

g

 � (jj) � false � (map

a

� p � xs):

The derivation is straightforward and has been omitted. We just want to note

that the strong improvement holds only because the bindings for the top-level

functions in � have zero weight so a reference to a top-level function can't hold

on to any space. Now let us consider the inductive step. We are required to

show that

any

n+1

a

� p � xs

CB

�

foldr

n+1

a

� (jj) � false � (map

a

� p � xs)

under the assumption that

any

n

a

� p � xs

CB

�

foldr

n

a

� (jj) � false � (map

a

� p � xs):

Rather than starting from any

n+1

a

�p �xs and deriving foldr

n+1

a

�(jj) �false �(map

a

�

p � xs) we do the opposite. We have found that it is often easiest to start with

the de�nition with the least number of \space gadgets" which usually is the

de�nition that without the gadgets would require most space. In this way it is

often possible to derive which gadgets are required in the cheaper de�nition to

make the de�nitions strongly space equivalent. The derivation is as follows.

� ` foldr

n+1

a

� (jj) � false �

�

map

a

� p � xs

�

As a �rst step we eliminate the syntactic sugar in the application so that we

can apply the rules for reduction:

�

let ys= map

a

� p � xs

in foldr

n+1

a

� (jj) � false � ys

CB

�

(reduction etc.)

let ys= map

a

� p � xs

in case ys of

branches of foldr

n+1

a

�

0

45

Note that, because we have put zero weights on the applications the reduction

leaves no spikes behind. The next step is to oat the let binding to its use and

eliminate it:

CB

�

(let-R)

case

�

let ys = map

a

� p � xs

in ys

�

of

branches of foldr

n+1

a

�

0

CB

�

(let-elim)

case

1f

�

map

a

� p � xs

�

of

branches of foldr

n+1

a

�

0

The elimination of the let leaves a heap spike behind. Spikes are a nuisance and

therefore we try to eliminate them by attaching zero weights whereever possible.

At this point it may seem as if we could have put a zero heap weight on the

binding we eliminated because it is clearly short lived. But if we do so it turns

out that the induction hypothesis is not of the right form. In this case the spike

poses little problem and we just oat it away and then reduce the call to map:

CB

�

(spike algebra)

1f

case map

a

� p � xs of

branches of foldr

n+1

a

�

0

CB

�

(reduction etc.)

1f

case

0

@

case xs of

nil�nil-branch of map

a

�

1

b : bs � cons-branch of map

a

�

1

1

A

of

branches of foldr

n+1

a

�

0

Next, we apply the case of case transformation step. Note that it leads to

an extra weight on the case expression which explains the extra weight in the

de�nition of any

a

. This is an example of how we may derive the gadgets we

need in the gadget versions.

CB

�

(R-case)

1f
2

case xs of

nil� case nil-branch of map

a

�

1

of

branches of foldr

n+1

a

�

0

b : bs � case cons-branch of map

a

�

1

of

branches of foldr

n+1

a

�

0

46

We proceed with the derivation in the nil-branch:

�

1f
2

case xs of

nil� case nil of

branches of foldr

n+1

a

�

0

b : bs � case cons-branch of map

a

�

1

of

branches of foldr

n+1

a

�

0

CB

�

(reduction)

1f

2

case xs of

nil�

1g

f(jj);foldr

a

g

false

b : bs � case cons-branch of map

a

�

1

of

branches of foldr

n+1

a

�

0

Note how the reduction leaves dummy references behind. The references occured

in the cons-branch which was discarded. However they refer to zero weight top-

level de�ntions so we may discard them:

CB

�

(dummy reference algebra)

1f

2

case xs of

nil�

1g

false

b : bs � case cons-branch of map

a

�

1

of

branches of foldr

n+1

a

�

0

�

1f
2

case xs of

nil�nil-branch of any

n+1

a

�

2

b : bs � case cons-branch of map

a

�

1

of

branches of foldr

n+1

a

�

0

We proceed with the derivation in the cons-branch.

�

1f
2

case xs of

nil�nil-branch of any

n+1

a

�

2

b : bs � case

�

p � b

�

:

�

map

a

� p � bs

�

of

branches of foldr

n+1

a

�

0

47

At this point it may be tempting to apply a rule for reduction to reduce the

case expression. But it is absolutely crucial to note that we are using syntactic

sugar in the constructor application. Our laws can only be applied to terms

without syntactic sugar. Indeed the constructor application is not even a value

but syntactic sugar for a let-expression:

�

1f

2

case xs of

nil�nil-branch of any

n+1

a

�

2

b : bs � case

0

@

let c = p � b

cs = map

a

� p � bs

in c : cs

1

A

of

branches of foldr

n+1

a

�

0

It is now apperent that we must oat the lets away before we can perform the

reduction.

CB

�

(let-R)

1f
2

case xs of

nil�nil-branch of any

n+1

a

�

2

b : bs � let c = p � b

cs = map

a

� p � bs

in case c : cs of

branches of foldr

n+1

a

�

0

CB

�

(reduction)

1f
2

case xs of

nil�nil-branch of any

n+1

a

�

2

b : bs � let c = p � b

cs = map

a

� p � bs

in

1g

let ds = foldr

n

a

� (jj) � false � cs

in (jj) � c � ds

48

We are now at a point when we have performed all \natural" transformation

steps. To �gure out what to do next it is helpful to recall the induction hypto-

hesis: any

n

a

� p � xs

CB

�

foldr

n

a

� (jj) � false � (map

a

� p � xs): To be able to apply the

induction hypotheis we need to get the term in this form. We start by moving

away the spike and then we oat the lets around:

CB

�

(spike algebra)

1f

2

case xs of

nil�nil-branch of any

n+1

a

�

2

b : bs �

1g

let c = p � b

cs = map

a

� p � bs

in let ds = foldr

n

a

� (jj) � false � cs

in (jj) � c � ds

CB

�

(let-atten)

1f
2

case xs of

nil�nil-branch of any

n+1

a

�

2

b : bs �

1g

let c = p � b

cs = map

a

� p � bs

ds = foldr

n

a

� (jj) � false � cs

in (jj) � c � ds

CB

�

(let-atten)

1f
2

case xs of

nil�nil-branch of any

n+1

a

�

2

b : bs �

1g

let cs = map

a

� p � bs

ds = foldr

n

a

� (jj) � false � cs

in let c = p � b

in (jj) � c � ds

We are now about to oat the binding for cs into the binding for ds. This may

lead to arbitrarily delayed allocation so we need to compensate by a dummy

binding.

CB

�

(let-let')

1f

2

case xs of

nil�nil-branch of any

n+1

a

�

2

b : bs �

1g

let z =

ds =

fzg

let cs = map

a

� p � bs

in foldr

n

a

� (jj) � false � cs

in let c = p � b

in (jj) � c � ds

49

We introduce syntactic sugar:

�

1f
2

case xs of

nil�nil-branch of any

n+1

a

�

2

b : bs �

1g

let z =

ds =

fzg

foldr

n

a

� (jj) � false �

�

map

a

� p � bs

�

in let c = p � b

in (jj) � c � ds

We are �nally at the point where we can apply the induction hypothesis:

CB

�

1f
2

case xs of

nil�nil-branch of any

n+1

a

�

2

b : bs �

1g

let z =

ds =

fzg

�

any

n

a

� p � bs

�

in let c = p � b

in (jj) � c � ds

It only remains to wrap things up. We need to oat the lets to the right places

so we can introduce the syntactic sugar:

CB

�

(let-R)

1f
2

case xs of

nil�nil-branch of any

n+1

a

�

2

b : bs �

1g

let z =

ds =

fzg

�

any

n

a

� p � bs

�

in

�

let c = p � b

in (jj) � c

�

� ds

�

1f
2

case xs of

nil�nil-branch of any

n+1

a

�

2

b : bs �

1g

let z =

ds =

fzg

�

any

n

a

� p � bs

�

in (jj) �

�

p � b

�

� ds

CB

�

(let-atten)

1f

2

case xs of

nil�nil-branch of any

n+1

a

�

2

b : bs �

1g

let z =

in let ds =

fzg

�

any

n

a

� p � bs

�

in (jj) �

�

p � b

�

� ds

50

�

1f

2

case xs of

nil�nil-branch of any

n+1

a

�

2

b : bs �

1g

let z =

in (jj) �

�

p � b

�

�

fzg

�

any

n

a

� p � bs

�

We have now got to the de�nition of any

a

:

�

1f
2

case xs of

nil�nil-branch of any

n+1

a

�

2

b : bs � cons-branch of any

n+1

a

�

2

so it only remains to expand the redexes.

CB

�

(reduction etc.)

any

n+1

a

� p � xs

2

The plethora of spikes, dummy references, dummy bindings and weights that

are necessary in the derivations make the process of constructing derivations like

this one extremely error prone. We found it necessary to develop a simple tool

to formally check derivations, and the steps of this derivation have been veri�ed

in this way.

Case Study 3: Trading Stack for Heap

This case study is about the associativity of append, (++). It is interesting

because it is an example of a transformation that can increase heap usage with

more than a constant factor so it falls outside of

CB

�

. However the transforma-

tion can only lead to a constant factor di�erence in the total amount of space

used. The reason is that in all cases where the amount of heap increases, a

corresponding amount of stack space is used already.

To make this claim precise we de�ne a relaxed version of

B

�

, which allows

stack space to be traded for heap space:

De�nition 6.3 (Stack Weak Improvement)

We say that M is stack weakly improved by N , written M

I

�

N , if there exists

a linear function f 2 N! N such that for all C, � such that C[M�] and C[N�]

are closed,

C[M�]+

(h;s)

=) C[N�]+

(h

0

;s

0

)

:

for some h

0

and s

0

such that s

0

� f(s) and h

0

+ s

0

� f(h+ s).

51

We can now state an improvement property of append:

Proposition 6.4

(xs++ ys)++ zs

CI

�

xs++(ys++ zs):

Note that the relaxed relation is only required in one direction. But it is the

direction that one most often would like to use when applying this equivalence

{ it can lead to an asymptotic speedup in some contexts. We will see such an

example later.

Now let us outline the proof of Proposition 6.4. We will follow the method-

ology from the previous example and come up with modi�ed versions of append

for which we can establish a strong improvement. We will need four di�erent

versions, one for each occurrence of append, which we call ++

a

; : : : ;++

d

. The

strong improvement part of the proposition turns out to be valuable in its own

right (see case study 4) so we spell it out here.

Lemma 6.5

� ` let fps = (++

a

) � xs � ysg in (++

b

) � ps � zs

CB

�

let fqs = (++

d

) � ys � zsg in (++

c

) � xs � qs

We have stated the lemma without syntactic sugar. We have found that this

is often the �rst step towards an intuition about space use. Indeed, it is now

explicit that the terms allocate space in the heap before they call the append

function. How long lived are these bindings? Clearly, the binding for ps in

the left hand side of the improvement is very short lived: ++

b

immediately

evaluates its �rst argument and then there is no remaining references to ps.

However in the right hand side the binding for qs may live for a long time. To

compensate for this and make the strong improvement hold we have added a

dummy allocation in the de�nition of ++

a

:

(++

a

) = �as :�bs :let z =

in case as of

nil�

fzg

f

bs

c : cs �

fzg

let ds = (++

a

) � cs � bs

in c : ds

The dummy binding is allocated just before the case expression is executed,

and lives until just after a branch has been selected. Thus the lifetime of the

binding matches the lifetime of the stackframe pushed for the case expression.

The binding exactly compensates for the di�erent heap behaviours of the original

functions. There is also a di�erence in stack usage between (xs++ ys)++ zs and

xs++(ys++ zs). This di�erence is of a similar nature to the di�erence between

52

any and any

0

from our previous case study. We need to put an extra weight on

the case in ++

c

:

(++

c

) = �as :�bs :

2

case as of

nil� bs

c : cs � let ds = (++

c

) � cs � bs

in c : ds

For ++

b

and ++

d

the modi�cations are minor and only involves zero weights on

short lived stack elements. With these de�nitions at hand it is not di�cult to

show Lemma 6.5 although the derivations are lengthy.

It easy to see that the modi�cations in ++

c

and ++

d

are within a constant

factor of the original de�nition of append (Lemma 5.6 etc.), so we have

� ` let fqs = (++

d

) � ys � zsg in (++

c

) � xs � qs

CB

�

xs++(ys++ zs):

To show Proposition 6.4 it remains to show that

� ` (xs++ ys)++ zs

CI

�

let fps = (++

a

) � xs � ysg in (++

b

) � as � zs:

The di�culty lies in the dummy binding in the de�nition of ++

a

. Recall that

the lifetime of the dummy binding precisely matches the lifetime of the stack

frame pushed by the case. Such a binding can at most double the total amount

of space use { hence it is within a constant factor as stated by this lemma.

Lemma 6.6

case M of fpat

i

� N

i

g

CI

�

let fz =
g in case M of fpat

i

�

fzg

N

i

g

This completes the proof sketch of Proposition 6.4.

In the beginning of this section we made another claim which partly moti-

vated the introduction of a new relation, namely that the transformation can

lead to an asymptotic increase in heap usage. The following family of contexts,

indexed by k shows that � ` (xs++ ys)++ zs

7

�

xs++(ys++ zs) by exhibiting a

di�erence in heap behaviour which grows with k.

let g k ys zs = if k = 0

then nil

else let fxs = g (k � 1) ys zsg in [�]

in g k nil nil

To get an intuition consider the case when k = 3. If we plug (xs++ ys)++ zs

into the hole the evaluation can be thought of as evaluating

((((((nil++ ys)++ zs)++ ys)++ zs)++ ys)++ zs):

53

The computation will require stack but no heap, except for the closures for ys

and zs (which is created once and for all) and the short lived closures used to

hold the �rst arguments to append and g. If we instead plug xs++(ys++ zs)

into the hole the computation can be thought of as evaluating

((nil++(ys++ zs))++(ys++ zs))++(ys++ zs)

which will require 3 heap closures for the 3 occurrences of (ys++ zs). When we

increase k the di�erence in heap usage increases and there is no constant which

bounds the di�erence so we have � ` (xs++ ys)++ zs

7

�

xs++(ys++ zs).

Case Study 4: Tail Recursion

This case study is about tail recursion { a transformation very much aimed at

improvement in space behaviour. But tail recursive transformations may also

improve time complexity and this case study is about such an example. Consider

the naive de�nition of a function that reverses a list:

reverse xs = case xs of

nil� nil

y : ys � reverse ys++[y]

The function uses up stack proportional to the length of the list and it also

su�ers from a quadratic time complexity due to the repeated applications of

append. The cure is well-known: transform the function to a tail recursive

accumulating parameter de�nition:

reverse

0

xs = rev [] xs

rev as xs = case xs of

nil� nil

y : ys � rev (y : as) ys

The tail recursive reverse

0

has a linear time complexity and the following result

con�rms our hopes about it's space use.

Proposition 6.7

� ` reverse xs

B

�

reverse

0

xs

We will not go into any details about the proof of this proposition but com-

ment on one aspect of the proof. In a proof of contextual equivalence of the

two de�nitions it is helpful to fall back on a result about the associativity of

append. Proposition 6.4 provides such a result of weak improvement but it

is useless for our proof of Proposition 6.7 because our proof relies on strong

improvement. Instead we use the strong improvement in Lemma 6.5. It com-

plicates matters because Lemma 6.5 refers to four di�erent \gadget-versions"

++

a

: : : ++

d

of append. This illustrates a general problem: when working with

strong improvement we cannot rely on weak improvement results.

54

Case Study 5: Strict Accumulating Parameters

This case study is about an example where a tail recursion transformation alone

does not solve the problem but where we also need a transformation step guided

by strictness information.

Consider the naive de�nition of sum.

sum xs = case xs of

nil� 0

y : ys � y + sumys

The de�nition su�ers from the same problem as the naive de�nition of reverse

{ it requires stack proportional to the length of the input list. At �rst it may

appear that a plain tail recursion transformation would do the job:

sum

0

xs = asum 0 xs

asum a xs = case xs of

nil� a

y : ys � let a

0

= a + y

in asum a

0

ys

But sum

0

still uses stack proportional to the length of its argument: Because of

lazy evaluation, the evaluation of a+ y, in the recursive call of asum , is delayed

until required. As a result a chain of closures representing the sum builds up

in the heap and when the computation is forced it takes up stack proportional

to the length of the input list. The next transformation step hinges on the fact

that asum is strict in the accumulating parameter and forces the accumulator

to be computed in each step of the recursion:

sum

00

xs = asum 0 xs

asum

0

a xs = case xs of

nil� a

y : ys � let a

0

= a + y

in seqa

0

(asum

0

a

0

ys)

This is the kind of transformation that a complier with a strictness analyser

typically performs. But strictness transformations in general are dangerous

from the point of view of space use because they may change evaluation order.

Consider, for example the strict function �y:�x:x+y. A compiler with strictness

analysis might well change the order of the evaluation of the arguments, and

from the example in the introduction it should be clear why this is not a space

improvement.

Indeed, it happens in this case also: asum will traverse the entire spine of its

input before evaluating any of its elements, but asum

0

will evaluate the elements

as it traverses the list. The following family of contexts (indexed by k) explores

55

the di�erence in evaluation order to show that � ` sum

0

xs

7

�

sum

00

xs :

let f a = nil

ys = fromto 1 k

xs = (traverse ys) : (f ys)

in [�]

where traverse is a function that traverses a list and returns 0.

It seems that any transformation which changes the evaluation order of ar-

guments or free variables (or their substructures) can never be a space improve-

ment. At this point it seems that all is lost. However, it is still possible to use

strictness transformations as a part of a transformation if it is combined with

another transformation step which inverts the change made by the strictness

phase. This is exactly what happens in this case study! The transformation

from sum to sum

0

that introduced the accumulating parameter also changes

the evaluation order: sum evaluates the elements of its input as it traverses the

list but sum

0

traverses the entire spine of the list �rst. As a result this individual

transformation step is not space safe either, i.e., � ` sum xs

7

�

sum

0

xs , which

can be shown by a family of contexts similar in spirit to the one above. But

taken together the transformations as a whole do not change evaluation order

and moreover can be shown to be space safe:

Proposition 6.8

� ` sum xs

I

�

sum

00

xs

The proof is along the lines of the previous proofs where we add gadgets to

sum to obtain:

sum

a

xs = let z =

in case xs of

nil�

fzg

0

y : ys � let w =

in

3g

fzg3

(y +

fwg

sum

a

� ys)

The calculation steps in the proof have also been checked by our tool. It is worth

noting that we found it very useful in the course of the proof to employ explicit

constructs for boxing and unboxing of integers in the language. This allows

the proof and the required basic laws to be more �ne-grained. The usefulness

of these language constructs when performing program transformation is also

noted by Peyton Jones and Launchbury [PJL91].

Case Study 6: Tupling

Tupling is the name of a set of program transformation that bring together

computations over the same input [Pet77, Chi93]. Tupling transformations can

56

dramatically reduce the amount of space and time required. Consider for ex-

ample the naive function to compute the average value of the elements of a

list:

average xs = sum xs=length xs:

The function requires linear space even if sum and length are space-e�cient tail

recursive functions. The reason is that (assuming = evaluates from left to right)

while sum traverses (the lazily produced) input list, the call to length holds on to

a reference to the start of the list so the entire list will be live. Another example

which su�ers from the same problem is the naive de�nition of the function split

which splits a list of characters into two lists, one containing the �rst line, and

one containing what remains after the �rst (if any) newline character:

split xs = (beforeNewline xs ; afterNewline xs)

where beforeNewline and afterNewline are de�ned in the obvious way. A solu-

tion to the space problems could be to tuple the computations, i.e., to simul-

taneously compute the �rst line and the remainder by a single traversal of the

input list. Such a function can be de�ned as follows.

split

0

xs = case xs of

nil� (nil; nil)

y : ys � if y = newline

then (nil; ys)

else let p = split

0

ys

in (y : (fst p); snd p)

Note that split

0

, in contrast to split , is strict. However, this de�nition doesn't

solve the problem. The reason is the use of the projections fst p and snd p. Due

to lazy evaluation, the projections are not evaluated until needed and therefore

hold on to the reference to p, which in turn holds on to both the results of the

recursive call. As a result, we have combined not only the computations but

also the lifetimes of the two results.

Intriguingly, this problem appears to be linked to the intensional expressive-

ness of the language. Hughes has argued that it is impossible to de�ne split in a

space e�cient way using a particular lazy evaluator [Hug83]. He proposed a so-

lution involving combinators for explicit parallelism and synchronisation. With

these language primitives the original de�nition of split can be made e�cient

by having just the right degree of parallelism. Another proposal, due to Wadler

[Wad87], is to solve the problem by extending the garbage collector. Whenever

the garbage collector encounters a term of the form fst p where p is bound to an

evaluated pair, it may perform the reduction of the projection. A more recent

proposal is due to Sparud [Spa93]. He proposes to treat pattern bindings in let

expressions specially. A pattern binding in a let expression takes the form

let fc ~x =Mg in N:

57

Prior to Sparud's proposal, these kind of bindings were thought of as mere

syntactic sugar and a compiler (e.g. [Aug87]) would typically translate it into

the following

let fp =M;x

1

= �

c

1

p; : : : ; x

n

= �

c

n

pg in N

which reintroduces the \dangerous" projections.

Sparud's proposal was to have pattern bindings as a �rst class construct

which the evaluator treats in a space e�cient manner. We have adopted Sparud's

proposal because we think it is the most natural and because it leads to a reason-

ably well behaved space theory. Implementing Wadler's proposal in our model

of garbage collection would destroy many of the nice properties of our theory.

For example, beta-expansion would no longer be space safe, because it may

result in the elimination of a \garbage collector redex".

We have formalised Sparuds proposal as an extension to our language. The

extension can be found in Appendix B. With pattern bindings at hand we can

rewrite split

0

as follows.

split

00

xs = case xs of

nil� (nil; nil)

y : ys � if y = newline

then (nil; ys)

else let (ps ; qs) = split

00

ys

in (y : ps; qs)

So, what is the relation between the di�erent versions of split? Let us start with

the relation between split

0

and split

00

where we have that � ` split

0

xs

B

�

split

00

xs.

It follows directly from the following lemma.

Lemma 6.9

let f

2

p =Mg in C[fst p][snd p]

B

�

let f(x; y) =Mg in C[x][y] if p 62 FV(M;C)

The lemma says that it always space safe to use pattern bindings instead of

projections. So what about split and split

00

? Convinced that

� ` let f(x; y) = split xsg in M

B

�

let f(x; y) = split

00

xsg in M

we spent considerable e�ort trying to prove it only to realise that it is not the

case. The family of contexts that distinguishes between split xs and split

00

xs

is somewhat involved so we found it better to present the intuition about why

split

00

xs in some contexts may use more space than split xs.

Consider a context where the second component of the pair is used before the

�rst, i.e., a program which processes the second line of its input before the �rst.

58

In that case the tupling has the e�ect that the spine of the list representing the

�rst line of input is constructed before it is needed (in our de�nition of split

00

this

allocation is hidden in the syntactic sugar). This in itself does not lead to a non

constant factor worsening if the spine of the input list may be garbage collected.

But what if it can't? Consider a program which processes its second line of input

repeatedly and selects the line from the input by repeatedly applying split

00

to

the input. Suppose also that it keeps references to the di�erent copies of the

�rst line that is constructed. Such a context, however unlikely in practice, would

show that � ` split xs

7

�

split

00

xs .

This have lead us to the general observation that tupling of computations

which need to allocate space in order to produce its output are unlikely to be

space improvements, although we have not been able to make this statement

more precise.

Another observation, at this point maybe not surprising, is that tupling

transformations which change the order in which inputs (or the substructures

thereof) are traversed are unlikely to be space improvements. The tupling of

the sum and the length of a list is an example of this. In a context where

the length of the list is needed before the sum, the untupled de�nition would

traverse the spine of the list before any of the elements, but the tupled de�nition

would force the computation of the elements as it traverses the list. These

two observations have made us rather pessimistic about showing that tupled

function improve on their untupled counterparts. However, in contexts which

are guaranteed to require the result of the tupled computation in a speci�c

order the situation may be di�erent. For example, we believe that for average

0

de�ned using a tupled computation of the sum and the length we would have

� ` average xs

B

�

average

0

xs) because the functions (due to the evaluation order

of =) requires the sum before the length.

7 Proof of the Context Lemma

In this section we prove the context lemma of strong improvement { our key

technical vehicle for establishing laws of improvement. We will also introduce

some technical machinery which will be useful also in the proofs of some of the

laws of strong improvement in Section 8.

7.1 Generalised Contexts

Before we can proceed with the proof we need to generalise the notion of contexts

and extend our semantics to computation with contexts. We use a second-order

syntax for contexts which is due to Pitts [Pit94]. A detailed account of this

approach can be found in [San98]. Generalised contexts may have several holes

each of which may occur zero of more times. To distinguish between the di�erent

holes we use hole variables ranged over by �. The holes also take a di�erent form

59

� ~x[

�~y:M

=

�

]

def

= M [

~x

=

~y

]

x[

�

=

�

]

def

= x

(�x:M)[

�

=

�

]

def

= �x:M[

�

=

�

] if x 62 FV(�)

Mx[

�

=

�

]

def

= M[

�

=

�

]x

n[

�

=

�

]

def

= n

(M+ N)[

�

=

�

]

def

= M[

�

=

�

] + N[

�

=

�

]

(add

n

M)[

�

=

�

]

def

= add

n

M[

�

=

�

]

(iszeroM)[

�

=

�

]

def

= iszeroM[

�

=

�

]

(seqMN)[

�

=

�

]

def

= seqM[

�

=

�

]N[

�

=

�

]

(let f~x =

~

Mg in N)[

�

=

�

]

def

= let f~x =

~

M[

�

=

�

]g in N[

�

=

�

] if f~xg \ FV(�) = ;

(case M of fc

i

~x

i

� N

i

g)[

�

=

�

]

def

= case M[

�

=

�

] of fc

i

~x

i

� N

i

[

�

=

�

]g if f~x

i

g \ FV(�) = ;

Figure 9: Hole �lling for generalised contexts.

in generalised contexts: instead of plain holes [�], in generalised contexts each

occurrence of a hole � is applied to a vector of variables: � ~x. The grammar of

generalised context is

L;M;N ::= � ~x

j x j �x:M j

w

(Mx) j c ~x j

w

(seqMN)

j n j

w

0

(M+

w

1

N) j

w

(add

n

M) j

w

(iszeroM)

j let f

v

i

w

i

x

i

= M

i

g

i2I

in N

j

w

(case M of fc

i

~x

i

� N

i

g):

Each hole variable � has a �xed arity n and at each occurrence � must be applied

to a vector of length n. We will identify generalised contexts up to the renaming

of bound variables. For conventional contexts �-conversion doesn't make any

sense which is the primary reason for why they are not appropriate for the

technical development in this paper.

A hole can be �lled with a plug which is an abstraction of the form �~y:M .

We will let � range over plugs and the arity of a plug �~y:M is the length of ~y.

When plugging �~y:M into a hole � ~x with the same arity the result is the term

M [

~x

=

~y

]. We will write M[

�

=

�

] for the operation of �lling all the occurrences of

the hole � in M with the plug �. The de�nition is analogous to the de�nition

of ordinary non-capturing substitution and is in Figure 9. Analogously to term

contexts, we have heap contexts � and stack contexts S which are heaps and

stack with holes. A stack context consists of update markers and reduction

contexts with holes { reduction context contexts if you like. They are de�ned

60

h�f

v

w

x = Mg; x; S i ! h�; M; #

v

w

x : S i (Lookup)

h�; V; #

v

w

x : S i ! h�f

v

w

x = Vg; V; S i (Update)

h�; let �

0

in N; S i ! h��

0

; N; S i (Letrec)

h�;

w

R[M]; S i ! h�; M;

w

R : S i (Push)

h�; V;

w

R : S i ! h�; M; S i if R[V] M (Reduce)

(�x:M) y M[

y

=

x

]

case c

j

~y of fc

i

~x

i

� M

i

g M

j

[

~y

=

~x

j

]

m+

w

N

w

add

m

N

add

m

n pm+ nq

iszerom

(

true if m = 0

false otherwise

seqVM M

Figure 10: Abstract machine semantics for contexts

thus.

R ::=[�]x j case [�] of fc

i

~x

i

� N

i

g j seq [�]M j

[�] + M j add

n

[�] j iszero [�]

We will also have abstract machine con�gurations with holes and let � and �

range over such con�guration contexts.

7.2 Computing with contexts

In Figure 10 we have lifted the de�nition of the abstract machine to con�guration

contexts. A key property is that hole �lling commutes with transitions:

Lemma 7.1

If �! � then �[

�

=

�

]! �[

�

=

�

].

Proof. By inspection of the rules. 2

We have arrived to the de�nition of the abstract machine simply by replacing

all occurrences of � with �, M with M and so on, in the original de�nition. In

[San98] Sands argues that for a certain form of syntax oriented de�nitions, this

will always result in relations which commute with hole-�lling, by virtue of the

representation of contexts.

61

However, our accessibility-based de�nition of garbage collection does not

�t that format. Recall that garbage collection is the removal of bindings and

update markers such that the con�guration remains closed. Thus the de�nition

relies on the notion of free variables. How can we lift the de�nition of free

variables to contexts? Our de�nition, which we think is the only reasonable

one, have the clause

FV(� ~x) = f~xg:

This de�nition does not commute with hole �lling. For example:

FV(� x y) = fx; yg

but

FV(� x y[

�x

0

y

0

:y

0

+ z

=

�

]) = FV(y + z) = fy; zg:

As the example illustrates the de�nition fails to commute for two reason: �rstly

the plug may contain free variables (z in our example) and secondly the plug may

ignore some of its arguments (x in our example). To make hole-�lling commute

with garbage collection we need to restrict which plugs can be plugged in. If we

restrict the plug to have no free variables, then the free variables of a context

is always a superset of the free variables after �lling the hole:

Lemma 7.2

For every closed plug �, FV(M) � FV(M[

�

=

�

]).

Proof. By induction over the structure of M. 2

This restriction is enough for hole-�lling to commute with garbage collection:

Lemma 7.3

For a closed plug �, if �m � then �[

�

=

�

]m �[

�

=

�

].

Proof. Immediate by lemma 7.3. 2

It is a simple consequence that, for closed plugs, hole-�lling commutes with

computation:

Lemma 7.4

For every closed plug �,

� if �_

n

(h;s)

� then �[

�

=

�

]_

n

(h;s)

�[

�

=

�

],

� if �+

(h;s)

then �[

�

=

�

]+

(h;s)

.

Proof. By induction over the length of the computation. 2

62

The restriction to closed plugs is not enough to ensure that the free variables

of a context coincides with the free variables after �lling the hole. With the

additional restriction that a plug uses all its arguments, we say that such a plug

is linear, we get the desired property:

Lemma 7.5

For a closed linear plug �, FV(M) = FV(M[

�

=

�

]).

Proof. By induction over the structure of M. 2

The additional restriction is necessary for the Uniform Computation lemma.

Lemma 7.6 (Uniform Computation)

For every closed linear plug �, if �[

�

=

�

]+

n

(h;s)

then

� either �+

n

(h;s)

,

� or there exists m, �, ~x and S such that

{ �_

m

(h;s)

h�; � ~x; S i and

{ h�; � ~x; S i[

�

=

�

]+

n�m

(h;s)

.

Proof. By induction over the length of the computation. 2

The signi�cance of the lemma is that either a computation doesn't depend

on a subterm or if it does the computation can run until the subterm is in

the evaluation position of the con�guration. The restriction to linear plugs is

necessary because otherwise the con�guration context may hold on to additional

references and thus possibly require more space.

7.3 An Auxiliary Lemma

On the way to the proof of the context lemma we will show the following aux-

iliary lemma which contains most of the technical di�culties.

Lemma 7.7

For every closed linear plug �~x:M , and closed plug �~x:N , if for all �, S, �,

h�; M�; S i+

(h;s)

=) h�; N�; S i+

(h;s)

then for all �, S and � such that � and S may contain � but no other hole,

h�; M�; S i[

�~x:M

=

�

]+

(h;s)

=) h�; N�; S i[

�~x:N

=

�

]+

(h;s)

63

Proof. Assume the premise. We will show by induction over n that, for all �,

S and � such that � and S contains no hole but �,

h�; M�; S i[

�~x:M

=

�

]+

n

(h;s)

=) h�; N�; S i[

�~x:N

=

�

]+

(h;s)

:

Thus assume

h�; M�; S i[

�~x:M

=

�

]+

n

(h;s)

:

By the Uniform Computation Lemma we know that either

h�; M�; S i+

n

(h;s)

;

or there exists m, �, ~y and T such that

h�; M�; S i_

m

(h;s)

h�; � ~y; T i

and

h�; � ~y; T i[

�~x:M

=

�

]+

n�m

(h;s)

:

We will �rst show that in either case

h�; M�; S i[

�~x:N

=

�

]+

(h;s)

:

In the �rst case it follows immediately by �lling the hole with �~x:N . Consider

the second case. Note that

h�; � ~y; T i[

�~x:M

=

�

] � h�; M [

~y

=

~x

]; T i[

�~x:M

=

�

]

so we have that

h�; M [

~y

=

~x

]; T i[

�~x:M

=

�

]+

n�m

(h;s)

:

We also have that m > 0 since h�; M�; S i 6� h�; � ~y; T i so we can apply the

induction hypothesis which yields

h�; N [

~y

=

~x

]; T i[

�~x:N

=

�

]+

(h;s)

:

From h�; M�; S i_

m

(h;s)

h�; � ~y; T i it follows by hole �lling that

h�; M�; S i[

�~x:N

=

�

]_

m

(h;s)

h�; � ~y; T i[

�~x:N

=

�

]

so we can conclude that also in the second case we have

h�; M�; S i[

�~x:N

=

�

]+

(h;s)

:

Note that

h�; M�; S i[

�~x:N

=

�

] � h�[

�~x:N

=

�

]; M�; S[

�~x:N

=

�

] i

64

and since � is the only hole in � and S we can apply the main assumption which

gives

h�[

�~x:N

=

�

]; N�; S[

�~x:N

=

�

] i+

(h;s)

:

We conclude the proof by noting that

h�[

�~x:N

=

�

]; N�; S[

�~x:N

=

�

] i � h�; N�; S i[

�~x:N

=

�

]

so we have shown what is required. 2

7.4 The context lemma

Before we proceed with the proof we restate the context lemma.

Lemma 7.8 (context lemma)

For all M and N such that FV(M) � FV(N), if for all �, S and �,

h�; M�; S i+

(h;s)

=) h�; N�; S i+

(h;s)

then M

B

�

N .

Proof. Assume the premise. Let ~x be a vector with the free variables of M .

Then �~x:M is a closed linear plug. Also, since FV(M) � FV(N), �~x:N is a

closed plug. Now given arbitrary conventional context C and � such that C[M�]

and C[N�] are closed, and

C[M�]+

n

(h;s)

:

We will start by representing the �lling of the hole in a conventional context

by the �lling of a hole in a generalised context. Let [

~y

=

~x

] be the restriction of

� to the domain f~xg so that M� � M [

~y

=

~x

] and N� � N [

~y

=

~x

]. Also, let M be

the generalised context which is the result of �lling all occurrences of the hole

[�] in the conventional context C with � ~y (The details of this operation is given

in [San98]). It is easy to show that

C[M�] � M[

�~x:M

=

�

]

and

C[N�] � M[

�~x:N

=

�

]:

So we have represented the operation of �lling the hole in a conventional context

by a generalised context. It is worth noting that this construction di�ers from

the one in [San98] which doesn't result in linear nor closed plugs. With this

construction we can proceed with the main argument. Recall that

C[M�]+

n

(h;s)

;

65

so

h ;; M; � i[

�~x:M

=

�

]+

n

(h;s)

:

We know by the Uniform Computation Lemma that, either

h ;; M; � i+

n

(h;s)

or there exists m, �, ~z, S such that

h ;; M; � i_

m

(h;s)

h�; � ~z; S i

and

h�; � ~z; S i[

�~x:M

=

�

]+

n�m

(h;s)

:

In the �rst case the required result follows by �lling the hole with �~x:N . Con-

sider the second case. Note that

h�; � ~z; S i[

�~x:M

=

�

] � h�; M [

~z

=

~x

]; S i[

�~x:M

=

�

]

so it follows by Lemma 7.7 that

h�; N [

~z

=

~x

]; S i[

�~x:N

=

�

]+

(h;s)

By �lling the hole in h ;; M; � i_

m

(h;s)

h�; � ~z; S i with �~x:N we know that

h ;; M; � i[

�~x:N

=

�

]_

m

(h;s)

h�; � ~z; S i[

�~x:N

=

�

] � h�; N [

~z

=

~x

]; S i[

�~x:N

=

�

]+

(h;s)

which concludes the proof of the context lemma. 2

8 Proofs of Selected Laws

In this section we present detailed proofs of some laws of strong improvement.

We have chosen to present the proofs of the laws reduction, let-R, R-case, let-

alts and let-let . The �rst two represent the majority of laws which can be

proved with the help of the context lemma in a rather straightforward manner.

The other three present additional di�culties and require additional technical

machinery.

8.1 Proof of reduction

In this section we present the proof of the most fundamental law of strong

improvement:

w

R[V]

CB

�

w

g

X

N if R[V] N and FV(R[V]) = FV(

X

N) (reduction)

The context lemma makes the law very easy to establish. It is easy because

when the two terms are placed in the evaluation position of a con�guration the

respective con�gurations reduces to the same con�guration up to garbage in a

few steps.

66

The right-way improvement We start with the right-way improvement,

i.e.,

w

R[V]

B

�

w
g
X

N if R[V] N and FV(R[V]) = FV(

X

N) ;

which is the easiest.

Proof. Assume the side conditions i.e., that

R[V] N

and

FV(R[V]) = FV(

X

N):

By the context lemma it is enough to show that for all �

0

, S

0

and �,

h�

0

;

w

R[V]�; S

0

i+

(h;s)

=) h�

0

; (

w

g

X

N)�; S

0

i+

(h;s)

:

Thus assume

h�

0

;

w

R[V]�; S

0

i+

(h;s)

i.e., that

h�

0

;

w

R[V]�; S

0

i

!

(h;s)

h�

0

; V �;

w

R� : S

0

i

m h�

1

; V �;

w

R� : S

1

i

!

(h;s)

h�

1

; N�; S

1

i

m h�

2

; N�; S

2

i+

(h;s)

:

It follows immediately by the de�nition of transitions and garbage collection,

using FV(R[V]) = FV(

X

N), that

h�

0

; (

w

g

X

N)�; S

0

i

� h�

0

; (

w

case true of ftrue�

X

Ng)�; S

0

i

! h�

0

; true;

w

case [�] of ftrue� (

X

N)�g : S

0

i

m h�

1

; true;

w

case [�] of ftrue� (

X

N)�g : S

1

i

! h�

1

; (

X

N)�; S

1

i

m h�

1

; (

X

N)�; S

1

i

� h�

1

; (let f~y = ~xg in N)�; S

1

i where X = f~xg and ~y fresh

! h�

1

f~y = ~x�g; N�; S

1

i

m h�

2

; N�; S

2

i+

(h;s)

:

Note that

X

N is de�ned in terms of a let expression which allocates a set of

bindings which we have used above. The bindings can be collected immediately

so they do not present any di�culty in this case. We will see that when we

prove the left-way improvement they lead to a small complication. It remains

67

to show that the con�gurations in the transition sequence uses at most (h; s)

space. For the �rst con�guration we have

jh�

0

; (

w
g
X

N)�; S

0

ij = jh�

0

;

w

R[V]�; S

0

ij � (h; s);

for the second

jh�

1

;

w

true;

w

case [�] of ftrue� (

X

N)�g : S

1

ij

= jh�

1

; V �;

w

R� : S

1

ij � (h; s);

and for the third

jh�

1

; (

X

N)�; S

1

ij < jh�

1

; V �;

w

R� : S

1

ij � (h; s):

Thus

h�

0

; (

w

g

X

N)�; S

0

i+

(h;s)

as required. 2

The left-way improvement The left-way improvement

w

R[V]

C

�

w

g

X

N if R[V] N and FV(R[V]) = FV(

X

N)

presents a small complication because of the way we have de�ned

f~xg

M :

f~xg

M

def

= let f~y = ~xg in M where ~y are fresh.

The bindings that are allocated by the let can be garbage collected immediately

and if so they do not take up space. But garbage collection is non-deterministic

so they may be kept. So if we compute with h�;

w

g

X

N; S i there may be no

way for h�;

w

R[V]; S i to reduce to an identical con�guration because there

is no way to introduce the additional garbage. To deal with this we need the

following lemma.

Lemma 8.1

If �+

(h;s)

and �m �

0

then �

0

+

(h;s)

.

Proof. The lemma is proved by induction over the length of the computation.

In each step we need to show that the missing garbage does not e�ect the

transition. A subtlety is that garbage in the stack, i.e., dead update markers,

can e�ect transitions: the computation with � may perform some updates which

�

0

can't. But these updates always yields bindings which are garbage so they

can't e�ect the outcome of the computation. 2

With this lemma we are ready to show the left-way improvement.

68

Proof. Assume the side conditions i.e., that

R[V] N

and

FV(R[V]) = FV(

X

N):

By the context lemma it is enough to show that for all �

0

, S

0

and �,

h�

0

; (

w
g
X

N)�; S

0

i+

(h;s)

=) h�

0

;

w

R[V]�; S

0

i+

(h;s)

:

Thus assume

h�

0

; (

w
g
X

N)�; S

0

i+

(h;s)

i.e., that

h�

0

; (

w

g

X

N)�; S

0

i

� h�

0

; (

w

case true of ftrue�

X

Ng)�; S

0

i

!

(h;s)

h�

0

; true;

w

case [�] of ftrue� (

X

N)�g : S

0

i

m h�

1

; true;

w

case [�] of ftrue� (

X

N)�g : S

1

i

!

(h;s)

h�

1

; (

X

N)�; S

1

i

m h�

2

; (

X

N)�; S

2

i

� h�

2

; (let f~y = ~xg in N)�; S

2

i where X = f~xg and ~y fresh

!

(h;s)

h�

2

f~y = ~x�g; N�; S

2

i

m h�

3

�

3

; N�; S

3

i+

(h;s)

where �

3

� �

2

and �

3

� f~y = ~x�g

Since �

3

is garbage in h�

3

�

3

; N�; S

3

i we may conclude by Lemma 8.1 that

h�

3

; N�; S

3

i+

(h;s)

:

It follows by the de�nition of transitions and garbage collection, using FV(R[V]) =

FV(

X

N), that

h�

0

;

w

R[V]�; S

0

i

! h�

0

; V �;

w

R� : S

0

i

m h�

1

; V �;

w

R� : S

1

i

m h�

2

; V �;

w

R� : S

2

i

! h�

2

; N�; S

2

i

m h�

3

; N�; S

2

i+

(h;s)

:

It remains to show that the con�gurations in the transition sequence uses at

most (h; s) space. For the �rst con�guration we have

jh�

0

;

w

R[V]�; S

0

ij = jh�

0

; (

w
g
X

N)�; S

0

ij � (h; s):

For the second con�guration,

jh�

2

; V �;

w

R� : S

2

ij � jh�

1

; V �;

w

R� : S

1

ij

69

since h�

1

; V �;

w

R� : S

1

im h�

2

; V �;

w

R� : S

2

i and

jh�

1

; V �;

w

R� : S

1

ij

= jh�

1

;

w

true;

w

case [�] of ftrue� (

X

N)�g : S

1

ij � (h; s):

Thus

h�

0

;

w

R[V]�; S

0

i+

(h;s)

as required. 2

8.2 Proof of let-R

In this section we present the proof of let-R:

let � in

w

R[M]

CB

�

w

R[let � in M] if dom� � FV(M) (let-R)

Let us comment on the side condition

if dom� � FV(M):

It is needed in the right-way improvement: Imagine that the side condition

was not there. Then when we compute with let � in

w

R[M] parts of � could

possibly be garbage collected immediately after its allocation which in turn can

lead to that update markers in the stack may be garbage collected. So the stack

could shrink arbitrary much before

w

R is pushed on to the stack. But when we

compute with

w

R[let � in M], the corresponding garbage collection cannot take

place until after

w

R is pushed on to the stack. If this happens to be at the peak

of space use the second computation would take up w more stack units. Except

for this subtlety the context lemma makes the law very easy to establish. We

will only show the right-way improvement. The left-way improvement follows

in an almost identical manner.

Proof. Assume the side condition, i.e., that

dom� � FV(M):

Because of the standard free-variable convention [Bar81] we know that the free

variables in any instance of the law are distinct from the bound variables so

FV(R) \ dom� = ;:

Thus

FV(let � in R[M]) = FV(R[let � in M]):

70

By the context lemma it is enough to show that for all �

0

, S

0

and �,

h�

0

; (let � in R[M])�; S

0

i+

(h;s)

=)

h�

0

; R[let � in M]�; S

0

i+

(h;s)

Thus assume

h�

0

; (let � in R[M])�; S

0

i+

(h;s)

ie that

h�

0

; (let � in R[M])�; S

0

i

!

(h;s)

h�

0

��; R[M]�; S

0

i

m h�

1

��; R[M]�; S

1

i

!

(h;s)

h�

1

��; M�; R� : S

1

i

m h�

2

��; M�; R� : S

2

i+

(h;s)

:

We have assumed without loss of generality that dom� do not clash with the

variables bound by the con�guration and that � acts as the identity on dom�.

The last assumption means in particular that dom� � FV(M�) since dom� �

FV(M). This is what guarantees that �� is live in h�

1

��; R[M]�; S

1

i and

h�

2

��; M�; R� : S

2

i. It follows immediately by the de�nition of transitions

and garbage collection, using FV(let � in R[M]) = FV(R[let � in M]), that

h�

0

; R[let � in M]�; S

0

i

! h�

0

; (let � in M)�; R� : S

0

i

m h�

1

; (let � in M)�; R� : S

1

i

m h�

2

; (let � in M)�; R� : S

2

i

! h�

2

��; M�; R� : S

2

i

m h�

2

��; M�; R� : S

2

i+

(h;s)

:

It remains to show that the con�gurations in the transition sequence uses at

most (h; s) space. For the �rst con�guration we have

jh�

0

; R[let � in M]�; S

0

ij = jh�

0

; (let � in R[M])�; S

0

ij � (h; s);

and for the second con�guration

jh�

2

; (let � in M)�; R� : S

2

ij < jh�

2

��; M�; R� : S

2

ij � (h; s):

Thus

h�

0

; R[let � in M]�; S

0

i+

(h;s)

as required. 2

71

8.3 Proof of R-case

In this section we present the proof of R-case:

w

R[

v

case M of fpat

i

�N

i

g]

CB

�

w+v

case M of fpat

i

�

w

R[N

i

]g (R-case)

The proof is more complicated than the proofs of reduction and let-R from the

previous sections. It is more involved because when the two terms are placed in

the evaluation position of a con�guration the respective con�gurations does not

evaluate to the same con�guration up to garbage within a few steps. It is not

until after the evaluation of M has �nished that the two computations lead to

identical con�gurations. To deal with this situation we need to run the compu-

tation just until the case alternatives are to be popped o� the stack. Recall the

Uniform Computation Lemma from Section 7.2 which we used to prove the con-

text lemma. It allowed us to unplug a subterm and run the computation until it

depended on the subterm, or until termination if the computation was indepen-

dent of the subterm in question. Here, we need to unplug parts of the stack and

run the computation until it depends on this part of the stack. In their work on

time improvement [MS99b], Moran and Sands introduced the notion of Open

Uniform Computation where they can take out and put back parts of the heap

and parts of the stack and they have an Open Uniform Computation Lemma

similar to, but more powerful than, our Uniform Computation Lemma. They

used this technique to establish R-case for strong time improvement. However,

their technique is not directly applicable to a semantics with garbage collection:

during computation garbage collection may remove bindings and update mark-

ers so if we were to take them out it would interfere with garbage collection.

Also, if we, without taking extra care, take out parts of the heap and the stack

we could remove references to bindings which could lead to too early garbage

collection.

The solution is to introduce the notion of a stack hole which may be plugged

with a substack which must not contain any update markers. We will let

range over stack hole variables. Analogously to hole variables, each stack hole

variables have an associated arity n and an occurrence of the stack hole variable

is applied to a vector of variables of length n. Each stack hole variable is also

decorated with a weight which speci�es how much stack space it should account

for. Stack holes may be plugged with stack plugs which is of the form �~x:S

where S is a stack without any update marker. We will use 	 to range over

stack plugs. To plug �~x:S into

w

 ~y we require that the sum of the weights in

S equals w. If so the result is S[

~y

=

~x

]. We will leave this condition on stack plugs

implicit in the rest of this paper.

We tacitly lift the semantics to computing with con�gurations with stack

holes. As with term holes, �lling a stack hole commutes with computation.

Lemma 8.2

For every closed stack plug 	,

72

if h�; M;

w

 ~x S i_

m

(h;s)

h�; V;

w

 ~x T i then

h�; M;

w

 ~x S i[

	

=

]_

m

(h;s)

h�; V;

w

 ~x T i[

	

=

];

Proof. By induction over the length of the computation. 2

We also have a Uniform Computation Lemma for unplugging stack holes.

Lemma 8.3 (Uniform Computation)

For every closed linear stack plug 	, if h�; M;

w

 ~x S i[

	

=

]+

n

(h;s)

then there

exists m, �, V , T such that

� h�; M;

w

 ~x S i_

m

(h;s)

h�; V;

w

 ~x T i;

� h�; V;

w

 ~x T i[

	

=

]+

n�m

(h;s)

, and

� T can be obtained from S by removing zero or more update markers.

Proof. By induction over the length of the computation. 2

We are now ready to show R-case. We will only show the right-way im-

provement. The left-way improvement follows in an almost identical manner.

Proof. Because of the standard free-variable convention [Bar81] we know that

the free variables in any instance of the law are distinct from the bound variables

so

FV(R) \ dom pat

i

= ;:

Thus

FV(

w

R[

v

case M of fpat

i

�N

i

g]) = FV(

w+v

case M of fpat

i

�

w

R[N

i

]g):

By the context lemma it is enough to show that for all �

0

, S

0

and �,

h�

0

;

w

R[

v

case M of fpat

i

�N

i

g]�; S

0

i+

(h;s)

=)

h�

0

; (

w+v

case M of fpat

i

�

w

R[N

i

]g)�; S

0

i+

(h;s)

Thus assume

h�

0

;

w

R[

v

case M of fpat

i

�N

i

g]�; S

0

i+

(h;s)

;

i.e., that

h�

0

;

w

R[

v

case M of fpat

i

�N

i

g]�; S

0

i

!

(h;s)

h�

0

; (

v

case M of fpat

i

�N

i

g)�;

w

R� : S

0

i

m h�

1

; (

v

case M of fpat

i

�N

i

g)�;

w

R� : S

1

i

!

(h;s)

h�

1

; M�;

v

case [�] of fpat

i

�N

i

�g :

w

R� : S

1

i

m h�

2

; M�;

v

case [�] of fpat

i

�N

i

�g :

w

R� : S

2

i+

(h;s)

:

73

We have assumed, without loss of generality, that � acts as the identity on the

variables bound by the patterns. Let ~x be a vector with the free variables of

v

case [�] of fpat

i

�N

i

�g and

w

R�. Then �~x:

v

case [�] of fpat

i

�N

i

�g :

w

R� is

a closed linear stack plug and

h�

2

; M�;

w+v

 ~x S

2

i[

�~x:

v

case [�] of fpat

i

�N

i

�g :

w

R�

=

]

� h�

2

; M�;

v

case [�] of fpat

i

�N

i

�g :

w

R� : S

2

i+

(h;s)

so it follows by the Uniform Computation Lemma that

h�

2

; M�;

w+v

 ~x S

2

i_

n

(h;s)

h�

3

; V;

w+v

 ~x S

3

i

and

h�

3

; V;

w+v

 ~x S

3

i[

�~x:

v

case [�] of fpat

i

�N

i

�g :

w

R�

=

]+

(h;s)

:

From the latter it follows directly that V matches one of the patterns pat

j

and

that

h�

3

; V;

v

case [�] of fpat

i

�N

i

�g :

w

R� : S

3

i

!

(h;s)

h�

3

; N

j

��

j

;

w

R� : S

3

i

m h�

4

; N

j

��

j

;

w

R� : S

4

i+

(h;s)

:

Apart from the step marked with (�) it follows, by the de�nition of transitions

and garbage collection using

FV(

w

R[

v

case M of fpat

i

�N

i

g]) = FV(

w+v

case M of fpat

i

�

w

R[N

i

]g);

that

h�

0

; (

w+v

case M of fpat

i

�

w

R[N

i

]g)�; S

0

i

! h�

0

; M�;

w+v

case [�] of fpat

i

�

w

R[N

i

]�g : S

0

i

m h�

1

; M�;

w+v

case [�] of fpat

i

�

w

R[N

i

]�g : S

1

i

m h�

2

; M�;

w+v

case [�] of fpat

i

�

w

R[N

i

]�g : S

2

i

_

n

(h;s)

h�

3

; V;

w+v

case [�] of fpat

i

�

w

R[N

i

]�g : S

3

i (�)

! h�

3

;

w

R[N

j

]��

j

; S

3

i

m h�

4

;

w

R[N

j

]��

j

; S

4

i

! h�

4

; N

j

��

j

;

w

R� : S

4

i

m h�

4

; N

j

��

j

;

w

R� : S

4

i+

(h;s)

:

The step marked with (�) follows by �lling the hole in h�

2

; M�;

w+v

 ~xS

2

i_

n

(h;s)

h�

3

; V;

w+v

 ~xS

3

i with �~x:

w+v

case [�] of fpat

i

�

w

R[N

i

]�g. It remains to show

that the con�gurations in the transition sequence uses at most (h; s) space. For

the �rst con�guration we have

jh�

0

; (

w+v

case M of fpat

i

�

w

R[N

i

]g)�; S

0

ij

= jh�

0

;

w

R[

v

case M of fpat

i

�N

i

g]�; S

0

ij � (h; s);

74

for the second con�guration

jh�

3

; V;

w+v

case [�] of fpat

i

�

w

R[N

i

]�g : S

3

ij

= jh�

3

; V;

v

case [�] of fpat

i

�N

i

�g) :

w

R� : S

3

ij � (h; s);

and for the third con�guration

jh�

4

;

w

R[N

j

]��

j

; S

4

ij < jh�

4

; N

j

��

j

;

w

R� : S

4

ij � (h; s):

Thus

h�

0

; (

w+v

case M of fpat

i

�

w

R[N

i

]g)�; S

0

i+

(h;s)

as required. 2

8.4 Proof of let-alts

In this section we present the proof of let-alts :

let � in

w

case M of fpat

i

� let � in N

i

g

CB

�

let � in

w

case M of fpat

i

� let � in N

i

g;

if dom� [dom� � FV(N

i

), and j�j = j�j. (let-alts)

The proof is similar to the proof of R-case in that it uses stack holes but there

are some additional complications: We need to argue that we can swap the

allocation of � and �. The argument can broken into two steps. First we need

to argue that the bindings in � are live and untouched after the evaluation

of M . That they are live should be intuitively obvious: because of the side

condition dom� � FV(N

i

) they cannot be garbage collected. That they are

untouched follows from that dom� \ FV(M) = ; (implicit by the free-variable

convention) so they can't be needed in the computation of M . The following

technical Lemma is needed in the proof to make this informal argument precise.

Lemma 8.4

If

� h��; M;

w

 ~x S i_

m

(h;s)

h�

0

; M

0

;

w

 ~x S

0

i,

� dom� � f~xg and

� dom� \ FV(�;M; S) = ;

then there exists h�

00

�; M

00

;

w

 ~x S

00

i such that

h�

0

; M

0

;

w

 ~x S

0

i � h�

00

�; M

00

;

w

 ~x S

00

i:

Proof. By induction over the length of the computation. 2

75

The next step that needs to be argued by the proof is that since the bindings in

� are live and untouched after the evaluation ofM we can delay the allocation to

the branches of the case and instead allocate � earlier. The following technical

Lemma is needed to carry out this step of the proof.

Lemma 8.5

If

� h��; M;

w

 ~x S i_

m

(h;s)

h�

0

�; M

0

;

w

 ~x S

0

i;

� dom� \ FV(�;M; S) = ;

� j�j = j�

0

j,

� (FV(�) [f~xg) n dom� = (FV(�

0

) [f~yg) n dom�

0

and

� h��

0

; M;

ww

0

~y S i is a well formed con�guration,

then

h��

0

; M;

ww

0

~y S i_

m

(h;s)

h�

0

�

0

; M

0

;

ww

0

~y S

0

i:

Proof. By induction over the length of the computation. 2

With these technical lemmas at hand we can proceed with the proof of let-

alts . The law is symmetric so it su�ces to prove one direction.

Proof. Assume the side conditions i.e., that

dom� [dom� � FV(N

i

);

and

j�j = j�j:

Because of the standard free-variable convention [Bar81] we know that all bound

variables in in any instance of the law are distinct, and that they are disjoint

from the free variables. We will use this silently throughout the proof. A �rst

consequence is that

FV(let � in

w

case M of fpat

i

� let � in N

i

g)

= FV(let � in

w

case M of fpat

i

� let � in N

i

g):

By the context lemma it is enough to show that for all �

0

, S

0

and �,

h�

0

; (let � in

w

case M of fpat

i

� let � in N

i

g)�; S

0

i+

(h;s)

=)

h�

0

; (let � in

w

case M of fpat

i

� let � in N

i

g)�; S

0

i+

(h;s)

76

Thus assume

h�

0

; (let � in

w

case M of fpat

i

� let � in N

i

g)�; S

0

i+

(h;s)

i.e., that

h�

0

; (let � in

w

case M of fpat

i

� let � in N

i

g)�; S

0

i

!

(h;s)

h�

0

��; (

w

case M of fpat

i

� let � in N

i

g)�; S

0

i

m h�

1

��; (

w

case M of fpat

i

� let � in N

i

g)�; S

1

i

!

(h;s)

h�

1

��; M�;

w

case [�] of fpat

i

� (let � in N

i

)�g : S

1

i

m h�

2

��; M�;

w

case [�] of fpat

i

� (let � in N

i

)�g : S

2

i+

(h;s)

:

We have assumed, without loss of generality, that � acts as the identity on the

variables bound by the patterns and the lets. Let ~x be a vector with the free

variables of

w

case [�] of fpat

i

� (let � in N

i

)�g. Then

�~x:

w

case [�] of fpat

i

� (let � in N

i

)�g

is a closed linear stack plug and

h�

2

��; M�;

w

 ~x S

2

i[

�~x:

w

case [�] of fpat

i

� (let � in N

i

)�g

=

]

� h�

2

��; M�;

w

case [�] of fpat

i

� (let � in N

i

)�g : S

2

i+

(h;s)

so it follows by the Uniform Computation Lemma that

h�

2

��; M�;

w

 ~x S

2

i_

n

(h;s)

h�

0

; V

0

;

w

 ~x T

0

i

and

h�

0

; V

0

;

w

 ~x : T

0

i[

�~x:

w

case [�] of fpat

i

� (let � in N

i

)�g

=

]+

(h;s)

:

From the �rst side condition of the law we know that dom� � FV(N

i

) and since

dom�\ dom� = ; and dom�\ dom pat

i

= ; (the free variable convention) we

have that

dom�� � FV(

w

case [�] of fpat

i

� (let � in N

i

)�g) = f~xg:

Also, from the free variable convention

dom�� \ FV(�

2

;M�; S

2

) = ;:

From these facts and

h�

2

��; M�;

w

 ~x S

2

i_

n

(h;s)

h�

0

; V

0

;

w

 ~x T

0

i

we know that �� must be a part of �

0

, i.e., by Lemma 8.4,

h�

0

; V

0

;

w

 ~x : T

0

i � h�

3

��; V;

w

 ~x S

3

i

77

for some �

3

, V and S

3

. Thus we have

h�

2

��; M�;

w

 ~x S

2

i_

n

(h;s)

h�

3

��; V;

w

 ~x S

3

i

and

h�

0

; V

0

;

w

 ~x : T

0

i[

�~x:

w

case [�] of fpat

i

� (let � in N

i

)�g

=

]

� h�

3

��; V;

w

 ~x S

3

i[

�~x:

w

case [�] of fpat

i

� (let � in N

i

)�g

=

]

� h�

3

��; V;

w

case [�] of fpat

i

� (let � in N

i

)�g : S

3

i+

(h;s)

:

From the latter it follows directly that V matches one of the patterns pat

j

and

that

h�

3

��; V;

w

case [�] of fpat

i

� (let � in N

i

)�g : S

3

i

!

(h;s)

h�

3

��; (let � in N

i

)��

j

; S

3

i

m h�

4

��; (let � in N

i

)��

j

; S

4

i

!

(h;s)

h�

4

����; N

i

��

j

; S

4

i

m h�

5

����; N

i

��

j

; S

5

i+

(h;s)

:

Apart from the step marked with (�) it follows, by the de�nition of transitions

and garbage collection using

FV(let � in

w

case M of fpat

i

� let � in N

i

g)

= FV(let � in

w

case M of fpat

i

� let � in N

i

g);

that

h�

0

; (let � in

w

case M of fpat

i

� let � in N

i

g)�; S

0

i

! h�

0

��; (

w

case M of fpat

i

� let � in N

i

g)�; S

0

i

m h�

1

��; (

w

case M of fpat

i

� let � in N

i

g)�; S

1

i

! h�

1

��; M�;

w

case [�] of fpat

i

� (let � in N

i

)�g : S

1

i

m h�

2

��; M�;

w

case [�] of fpat

i

� (let � in N

i

)�g : S

2

i

_

n

(h;s)

h�

3

��; V;

w

case [�] of fpat

i

� (let � in N

i

)�g : S

3

i (�)

! h�

3

��; (let � in N

i

)��

j

; S

3

i

m h�

4

��; (let � in N

i

)��

j

; S

4

i

! h�

4

����; N

i

��

j

; S

4

i

� h�

4

����; N

i

��

j

; S

4

i

m h�

5

����; N

i

��

j

; S

5

i+

(h;s)

:

The step marked with (�) is a bit involved. Recall that we showed that

h�

2

��; M�;

w

 ~x S

2

i_

n

(h;s)

h�

3

��; V;

w

 ~x S

3

i:

Let ~y be the free variables of

w

case [�] of fpat

i

� (let � in N

i

)�g. The second

side condition of the law speci�es that j�j = j�j, i.e., that � and � takes up

the same amount of space, and we have that

(FV(��) [f~xg) n dom��

= (FV(��) [FV(

w

case [�] of fpat

i

� (let � in N

i

)�g)) n dom��

= (FV(��) [FV(

w

case [�] of fpat

i

� (let � in N

i

)�g)) n dom��

= (FV(��) [f~yg) n dom��

78

where we have used that the variables bound the lets and the patterns are

distinct and disjoint from the free variables. We have already argued that

dom�� \ FV(�

2

;M�; S

2

) = ;: so from Lemma 8.5 it follows that

h�

2

��; M�;

w

0

~y S

2

i_

n

(h;s)

h�

3

��; V;

w

0

~y S

3

i:

Now (�) follows by plugging the hole with �~y:

w

case [�] of fpat

i

�(let � in N

i

)�g.

It remains to show that the con�gurations in the transition sequence uses at

most (h; s) space. For the �rst con�guration we have

jh�

0

; (let � in

w

case M of fpat

i

� let � in N

i

g)�; S

0

ij

= jh�

0

; (let � in

w

case M of fpat

i

� let � in N

i

g)�; S

0

ij � (h; s);

for the second con�guration

jh�

1

��; (

w

case M of fpat

i

� let � in N

i

g)�; S

1

ij

= jh�

1

��; (

w

case M of fpat

i

� let � in N

i

g)�; S

1

ij � (h; s);

for the third con�guration

jh�

3

��; V;

w

case [�] of fpat

i

� (let � in N

i

)�g : S

3

ij

= jh�

3

��; V;

w

case [�] of fpat

i

� (let � in N

i

)�g : S

3

ij � (h; s);

and �nally for the forth con�guration

jh�

4

��; (let � in N

i

)��

j

; S

4

ij = jh�

4

��; (let � in N

i

)��

j

; S

4

ij � (h; s):

Thus

h�

0

; (let � in

w

case M of fpat

i

� let � in N

i

g)�; S

0

i+

(h;s)

as required. 2

8.5 Proof of let-let

In this section we present the proof of let-let :

let �f

v

w

x = let � in Mg in N

CB

�

let �f

v

w

x = let � in Mg in N

if dom� [dom� � FV(M), and j�j = j�j. (let-let)

To prove the law we need a notion of heap holes. A heap hole is a term hole

which occurs uniquely in a con�guration in the right hand side of a binding in

the heap. That is, � is a heap hole in a con�guration of the form

h�f

v

w

x = � ~xg; M; S i

79

if � does not occur in �, M and S. The key property of heap holes is that they

cannot be duplicated by computation. This is in not necessarily the case for

term holes. If they occur under an abstraction they may be duplicated if the

abstraction is duplicated. We need this property of heap holes to prove the

law, because we need to argue that � is not allocated repeatedly. That heap

holes cannot be duplicated is expressed by the following Uniform Computation

Lemma for heap holes.

Lemma 8.6 (Uniform Computation)

For every closed linear plug �, if h�fx = � ~xg; M; S i[

�

=

�

]+

n

(h;s)

then

� either h�fx = � ~xg; M; S i+

n

(h;s)

,

� or there exists m, � and T such that

{ h�fx = � ~xg; M; S i_

m

(h;s)

h�; � ~x; T i

{ h�; � ~x; T i[

�

=

�

]+

n�m

(h;s)

.

Proof. By induction over the length of the computation. 2

Just like in the proof of let-alts we need to argue that we can swap the

allocation of � and �. The argument is similar to the one for let-alts but the

technical lemmas given below concerns heap holes rather than stack holes.

Lemma 8.7

If

� h��f

v

w

x = � ~xg; M; S i_

m

(h;s)

h�

0

; � ~x; S

0

i,

� dom� � f~xg and

� dom� \ FV(�;M; S) = ;

then there exists h�

00

�; � ~x; S

00

i such that

h�

0

; � ~x; S

0

i � h�

00

�; � ~x; S

00

i:

Proof. By induction over the length of the computation. 2

Lemma 8.8

If

� h��f

v

w

x = � ~xg; M; S i_

m

(h;s)

h�

0

�; � ~x; S

0

i,

� dom� \ FV(�;M; S) = ;

� j�j = j�

0

j,

� (FV(�) [f~xg) n dom� = (FV(�

0

) [f~yg) n dom�

0

and

80

� h��

0

f

v

w

x = �

0

~yg; M; S i is a well formed con�guration,

then

h��

0

f

v

w

x = �

0

~yg; M; S i_

m

(h;s)

h�

0

�

0

; �

0

~y; S

0

i:

Proof. By induction over the length of the computation. 2

There is an additional aspect of let-let that complicates matters. The laws we

have proved in the previous sections all have the property that if the two related

terms are placed in the evaluation position of a con�guration the respective

con�gurations eventually reduces to the same con�guration up to garbage. But

this not the case for let-let because it may happen that the binding for x is never

demanded during the computation and then the �rst computation would never

allocate � and the second would never allocate �. The law is still sound which

we argue informally as follows. If x is never demanded then the bindings in �

and � respectively are not demanded either. Since � and � takes up the same

amount of space (the second side condition) and they have the same liveness

properties it cannot e�ect the space behaviour. To make this informal argument

precise we need another technical lemma.

Lemma 8.9

If

� h��f

v

w

x = � ~xg; M; S i+

(h;s)

,

� j�j = j�

0

j,

� dom� \ FV(�;M; S) = ;,

� dom� � f~xg,

� (FV(�) [f~xg) n dom� = (FV(�

0

) [f~yg) n dom�

0

and

� h��

0

f

v

w

x = �

0

~yg; M; S i is a well formed con�guration,

then

h��

0

f

v

w

x = �

0

~yg; M; S i+

(h;s)

:

Proof. By induction over the length of the computation. 2

With these technical lemmas at hand we can proceed with the proof of let-let .

The law is symmetric so it su�ces to prove one direction.

Proof. Assume the side conditions i.e., that

dom� [dom� � FV(M)

81

and

j�j = j�j:

Because of the standard free-variable convention [Bar81] we know that all bound

variables in in any instance of the law are distinct, and that they are disjoint

from the free variables. We will use this silently throughout the proof. A �rst

consequence is that

FV(let �f

v

w

x = let � in Mg in N) = FV(let �f

v

w

x = let � in Mg in N):

By the context lemma it is enough to show that for all �

0

, S

0

and �,

h�

0

; (let �f

v

w

x = let � in Mg in N)�; S

0

i+

(h;s)

=)

h�

0

; (let �f

v

w

x = let � in Mg in N)�; S

0

i+

(h;s)

:

Thus assume

h�

0

; (let �f

v

w

x = let � in Mg in N)�; S

0

i+

(h;s)

i.e., that

h�

0

; (let �f

v

w

x = let � in Mg in N)�; S

0

i

!

(h;s)

h�

0

��f

v

w

x = (let � in M)�g; N�; S

0

i

m h�

1

��f

v

w

x = (let � in M)�g; N�; S

1

i+

(h;s)

We have assumed, without loss of generality, that � acts as the identity on

the variables bound by the lets. Let ~x be a vector with the free variables of

(let � in M)�. Then �~x:(let � in M)� is a closed linear plug and

h�

1

��f

v

w

x = � ~xg; N�; S

1

i[

�~x:(let � in M)�

=

�

]

� h�

1

��f

v

w

x = (let � in M)�g; N�; S

1

i+

(h;s)

so it follows by the Uniform Computation Lemma for heap holes that either

h�

1

��f

v

w

x = � ~xg; N�; S

1

i+

(h;s)

or

h�

1

��f

v

w

x = � ~xg; N�; S

1

i_

n

(h;s)

h�

0

; � ~x; T

0

i

and

h�

0

; � ~x; T

0

i[

�~x:(let � in M)�

=

�

]+

(h;s)

:

Before we consider the two di�erent cases let us make the following remarks.

From the �rst side condition of the law we know that dom� � FV(M) and since

dom� \ dom� = ; (the free variable convention) we have that

dom�� � FV((let � in M)�) = f~xg:

82

Also from the free variable convention

dom�� \ FV(�

1

;M�; S

1

) = ;:

Let ~y be the free variables of (let � in M)�. Then we have that

(FV(��) [f~xg) n dom��

= (FV(��) [FV((let � in M)�)) n dom��

= (FV(��) [FV((let � in M)�)) n dom��

= (FV(��) [f~yg) n dom��

where we have used that the variables bound by the lets are distinct and disjoint

from the free variables. Now consider the �rst case. The second side condition

of the law speci�es that j�j = j�j, i.e., that � and � takes up the same amount

of space. Thus from Lemma 8.9 and our previous remarks it follows that

h�

1

��f

v

w

x = �

0

~yg; N�; S

1

i+

(h;s)

:

By �lling the hole with �~y:(let � in M)� it follows that

h�

1

��f

v

w

x = (let � in M)�g; N�; S

1

i+

(h;s)

:

so we have

h�

0

; (let �f

v

w

x = let � in Mg in N)�; S

0

i

! h�

0

��f

v

w

x = (let � in M)�g; N�; S

0

i

m h�

1

��f

v

w

x = (let � in M)�g; N�; S

1

i+

(h;s)

:

It only remains to note that

jh�

0

; (let �f

v

w

x = let � in Mg in N)�; S

0

ij

= jh�

0

; (let �f

v

w

x = let � in Mg in N)�; S

0

ij � (h; s):

Now consider the second case. From our previous remarks and

h�

1

��f

v

w

x = � ~xg; N�; S

1

i_

n

(h;s)

h�

0

; � ~x; T

0

i

we know that �� must be a part of �

0

, i.e., by Lemma 8.7,

h�

0

; � ~x; T

0

i � h�

2

��; � ~x; S

2

i

for some �

2

and S

2

. Thus we have

h�

1

��f

v

w

x = � ~xg; N�; S

1

i_

n

(h;s)

h�

2

��; � ~x; S

2

i

and

h�

0

; � ~x; T

0

i[

�~x:(let � in M)�

=

�

]

� h�

2

��; � ~x; S

2

i[

�~x:(let � in M)�

=

�

]

� h�

2

��; (let � in M)�; S

2

i+

(h;s)

:

83

From the latter it follows that

h�

2

��; (let � in M)�; S

2

i

! h�

2

����; M�; S

2

i

m h�

3

����; M�; S

3

i+

(h;s)

:

Apart from the step marked with (�) it follows, by the de�nition of transitions

and garbage collection using

FV(let �f

v

w

x = let � in Mg in N) = FV(let �f

v

w

x = let � in Mg in N);

that

h�

0

; (let �f

v

w

x = let � in Mg in N)�; S

0

i

! h�

0

��f

v

w

x = (let � in M)�g; N�; S

0

i

m h�

1

��f

v

w

x = (let � in M)�g; N�; S

1

i

_

n

(h;s)

h�

2

��; (let � in M)�; S

2

i (�)

! h�

2

����; M�; S

2

i

m h�

3

����; M�; S

3

i+

(h;s)

:

The step marked with (�) is a bit involved. Recall that we showed that

h�

1

��f

v

w

x = � ~xg; N�; S

1

i_

n

(h;s)

h�

2

��; � ~x; S

2

i:

The second side condition of the law speci�es that j�j = j�j, i.e., that � and

� takes up the same amount of space. Thus from Lemma 8.8 and our previous

remarks it follows that

h�

1

��f

v

w

x = � ~xg; N�; S

1

i_

n

(h;s)

h�

2

��; �

0

~y; S

2

i:

Now (�) follows by plugging the hole with �~y:(let � in M)�. It remains to show

that the con�gurations in the transition sequence uses at most (h; s) space. For

the �rst con�guration we have

jh�

0

; (let �f

v

w

x = let � in Mg in N)�; S

0

ij

= jh�

0

; (let �f

v

w

x = let � in Mg in N)�; S

0

ij � (h; s);

and for the second con�guration

jh�

2

��; (let � in M)�; S

2

ij = jh�

2

��; (let � in M)�; S

2

ij � (h; s):

Thus

h�

0

; (let �f

v

w

x = let � in Mg in N)�; S

0

i+

(h;s)

as required. 2

84

9 Related Work

Improvement theory was �rst developed in the call-by-name setting [San95,

San91, San96] for the purpose of reasoning about running-times of programs.

Moran and Sands [MS99a] developed a call-by-need time-improvement theory,

together with a variety of induction principles. This present work, and its

predecessors [GS99, GS01] is the only attempt (of which we are aware) which

formalises space safety properties of local (non-whole-program) transformations.

Other related work includes the development of \space-aware" operational

models for call-by-need languages [Ses97, Ros96, BLR96, BR00b], studies of

space-safety properties of global transformations [Min99, Min00] and of the

relative e�ciency of di�erent abstract machines [BG96, Cli98, BR00a, Min00].

Morrisett and Harper [MH98] use a similar style of abstract machine description

to that used here in order to investigate the semantics of memory management

in an ML-like language (see also [MFH95]). They give abstract speci�cations of

garbage collection, and prove the correctness of a particular type-based collec-

tion scheme.

Minamide [Min00] suggests an alternative to our de�nition of improvement

based on additive constant factors. Its properties are not studied for any par-

ticular language, although we suspect that it would fail to satisfy the syntactic

continuity property, so would not serve as an alternative to strong improvement.

A number of insights into space problems of lazy evaluation { which we have

found useful { can be found in a range of sources, e.g., [Jon92, Wad87, Spa93,

PJ87, Hug83, RW93, R�oj95].

10 Conclusions and Future Work

We have presented a surprisingly

7

rich operational theory for the space use of

call-by-need programs, based on a space improvement ordering on programs.

The theory allows one to argue that transforming a program fragment M into

N is space safe in the sense that replacing M by N in any program can never

lead to asymptotically worse space (heap or stack) behaviour. We also showed

that the asymptotic space improvement relation is semantically badly behaved,

but that the theory of strong space improvement possesses a �xed-point in-

duction theorem which permits the derivation of improvement properties for

recursive de�nitions. With the help of this tool we explored the landscape of

space improvement by considering a range of classical program transformations.

Areas for further work include the introduction of context information to the

theory in order to represent constraints on the whole-program context which can

be used to help establish space improvements. Another interesting direction for

future work would be to consider the space safety of a larger-scale program

transformation, such as deforestation [Wad90].

7

At least, suprising to us!

85

References

[Aug87] Lennart Augustsson. Compiling Lazy Functional Languages, Part

II. PhD thesis, Department of Computer Science, Chalmers Uni-

versity of Technology, 1987.

[Bar81] H. Barendregt. The Lambda Calculus. North Holland, 1981.

[BG96] Guy E. Blelloch and John Greiner. A provably time and space

e�cient implementation of NESL. In Proc. ICFP'96, pages 213{

225, 1996.

[BLR96] Z.-E.-A. Benaissa, P. Lescanne, and K. H. Rose. Modeling sharing

and recursion for weak reduction strategies using explicit substitu-

tion. In Proc. PLILP'96, volume 1140 of LNCS, pages 393{407.

Springer-Verlag, 1996.

[BR00a] Adam Bakewell and Colin Runciman. A model for comparing the

space usage of lazy evaluators. In Proceedings of Principles and

Practice of Declarative Programming, September 2000.

[BR00b] Adam Bakewell and Colin Runciman. A space semantics for core

haskell. In Proceedings of the Haskell Workshop, September 2000.

[Chi93] Wei-Ngan Chin. Towards an automated tupling strategy. In Pro-

ceedings of the ACM SIGPLAN Symposium on Partial Evalua-

tion and Semantics-Based Program Manipulation, pages 119{132,

Copenhagen, Denmark, 1993.

[Cli98] William D. Clinger. Proper tail recursion and space e�ciency. In

Proc. PLDI'98, 1998.

[GP98] A. D. Gordon and A. M. Pitts, editors. Higher Order Operational

Techniques in Semantics. Cambridge University Press, 1998.

[GS99] J. Gustavsson and D. Sands. A foundation for space-safe transfor-

mations of call-by-need programs. In A. D. Gordon and A. M.Pitts,

editors, The Third International Workshop on Higher Order Oper-

ational Techniques in Semantics, volume 26 of Electronic Notes in

Theoretical Computer Science. Elsevier, 1999.

[GS01] J. Gustavsson and D. Sands. Possibilities and limitations of call-

by-need space improvement. In Proceedings of the International

Conference on Functional Programming, September 2001. To Ap-

pear.

[Hug83] R. J. M. Hughes. The Design and Implementation of Programming

Languages. PhD thesis, Programming Research Group, Oxford Uni-

versity, July 1983.

86

[Jon92] Richard Jones. Tail recursion without space leaks. Journal of Func-

tional Programming, 2(1):73{79, January 1992.

[Lau93] J. Launchbury. A natural semantics for lazy evaluation. In Proc.

POPL'93, pages 144{154. ACM Press, January 1993.

[MFH95] Greg Morrisett, Matthias Felleisen, and Robert Harper. Abstract

Models of Memory Management. In Proc. FPCA'95, pages 66{77.

ACM Press, June 1995.

[MH98] Greg Morrisett and Robert Harper. Semantics of memory man-

agement for polymorphic languages. In Gordon and Pitts [GP98],

pages 175{226.

[Mil77] R. Milner. Fully abstract models of the typed �-calculus. Theoret-

ical Computer Science, 4:1{22, 1977.

[Min99] Yasuhiko Minamide. Space-pro�ling semantics of the call-by-value

lambda calculus and the cps transformation. In Proc. HOOTS III,

1999. To appear as ENTCS.

[Min00] Yasuhiko Minamide. A new criterion for safe program transforma-

tions. 2000. To appear as ENTCS.

[MS99a] Andrew Moran and David Sands. Improvement in a lazy context:

An operational theory for call-by-need. In Proc. POPL'99, pages

43{56. ACM Press, January 1999.

[MS99b] Andrew Moran and David Sands. Improvement in a lazy con-

text: An operational theory for call-by-need (extended version).

Extended version of [MS99a], 1999.

[MST96] Ian A. Mason, Scott F. Smith, and Carolyn L. Talcott. From oper-

ational semantics to domain theory. Information and Computation,

128(1):26{47, 10 July 1996.

[Pet77] A. Pettorossi. Transformation of programs and use of tupling strat-

egy. In Proceedings Informatica 77, Bled, Yugoslavia., pages 1{6,

1977.

[Pit94] A. M. Pitts. Some notes on inductive and co-inductive techniques in

the semantics of functional programs. Notes Series BRICS-NS-94-

5, BRICS, Department of Computer Science, University of Aarhus,

December 1994.

[PJ87] S. L. Peyton Jones. The Implementation of Functional Program-

ming Languages. Prentice Hall, 1987.

87

[PJ92] S. L. Peyton Jones. Implementing lazy functional languages on

stock hardware: the Spineless Tagless G-machine. Journal of Func-

tional Programming, 2(2), April 1992.

[PJHA

+

99] Simon Peyton Jones, John Hughes, Lennart Augustsson, Dave

Barton, Brian Boutel, Warren Burton, Joseph Fasel, Kevin Ham-

mond, Ralf Hinze, Paul Hudak, Thomas Johnsson, Mark Jones,

John Launchbury, Erik Meijer, John Peterson, Alastair Reid, Colin

Runciman, and Philip Wadler. Haskell 98: A non-strict, purely

functional language, February 1999. Available at www.haskell.org.

[PJL91] Simon Peyton Jones and John Launchbury. Unboxed values as

�rst class citizens. In Proocedings of the Conference on Functional

Programming and Computer Architecture, September 1991.

[PJPS96] S. Peyton Jones, W. Partain, and A. Santos. Let-oating: moving

bindings to give faster programs. In Proc. ICFP'96, pages 1{12.

ACM Press, May 1996.

[PJS98] S. Peyton Jones and A. Santos. A transformation-based optimiser

for Haskell. Science of Computer Programming, 32(1{3):3{47, 1998.

[R�oj95] Niklas R�ojemo. Garbage collection, and memory e�ciency, in lazy

functional languages. PhD thesis, Chalmers Tekniska H�ogskola,

1995.

[Ros96] K. H. Rose. Operational Reduction Models for Functional Program-

ming Languages. PhD thesis, DIKU, University of Copenhagen,

Denmark, February 1996. available as DIKU report 96/1.

[RR96] Colin Runciman and Niklas R�ojemo. Lag, Drag, Void and Use {

Heap Pro�ling and Space-e�cient Compilation Revisited. In Pro-

ceedings of 1st Intl. Conf. on Functional Programming (ICFP'96),

pages 34{41. ACM Press, May 1996.

[RW93] Colin Runciman and David Wakeling. Heap Pro�ling of Lazy Func-

tional Programs. Journal of Functional Programming, 3(2):217{

245, April 1993.

[San91] D. Sands. Operational theories of improvement in functional lan-

guages (extended abstract). In Proc. 1991 Glasgow Functional Pro-

gramming Workshop, Workshops in Computing Series, pages 298{

311. Springer-Verlag, August 1991.

[San95] D. Sands. A na��ve time analysis and its theory of cost equivalence.

Journal of Logic and Computation, 5(4):495{541, 1995.

88

[San96] D. Sands. Total correctness by local improvement in the trans-

formation of functional program. ACM TOPLAS, 18(2):175{234,

March 1996.

[San98] D. Sands. Computing with contexts: A simple approach. In A. D.

Gordon, A. M. Pitts, and C. L. Talcott, editors, Proc. HOOTS II,

volume 10 of ENTCS. Elsevier Science Publishers B.V., 1998.

[Ses97] P. Sestoft. Deriving a lazy abstract machine. Journal of Functional

Programming, 7(3):231{264, May 1997.

[Smi92] Scott F. Smith. From operational to denotational semantics. In

Steven Brookes et al., editor, 7th International Conference on

Mathematical Foundations of Programming Semantics, Pittsburgh

PA, pages 54{76, Berlin, 1992. Springer Verlag. Lecture Notes in

Computer Science Volume 598.

[Spa93] Jan Sparud. Fixing Some Space Leaks without a Garbage Collector.

In Proc. 6th Int'l Conf. on Functional Programming Languages and

Computer Architecture (FPCA'93), pages 117{122. ACM Press,

June 1993.

[Wad87] P. Wadler. Fixing Some Space Leaks with a Garbage Collector.

Software Practice and Experience, September 1987.

[Wad90] P. Wadler. Deforestation: Transforming programs to eliminate

trees. Theoretical Computer Science, 73:231{248, 1990.

A Language Extension: Boxing and Unboxing

In this section we extend our language with unboxed integers. The extension is

not essential in the same way as pattern bindings because (we believe) that it

does not add to the intensional expressiveness of the language. But we found

explicit constructs for boxing and unboxing to be very useful in calculations of

strong improvement because is allows the proof and the required basic laws to be

more �ne-grained. The usefulness of these language constructs when performing

program transformation is also noted by Peyton Jones and Launchbury [PJL91].

We will useM# to range over unboxed expressions. Following Peyton Jones

and Launchbury we will use a # to distinguish unboxed constants and variables

and operations from their boxed counterparts. The grammar of unboxed terms

is as follows.

Unboxed Terms M# ::= n# j i# jM#

0

+#M#

1

We extend our term language with a construct IntM#, for boxing an unboxed

integer, where Int can be thought of as a kind of constructor. Following Pey-

ton Jones and Launchbury we use the case expression syntax for unboxing:

89

case M of fInt i#�Ng. Finally we have a construct for comparing unboxed

values which yields a boolean: M#

0

�#M#

1

. With these constructs we can

encode boxed addition like

M +N

def

= case M of fInt i#�case N of fInt j#�Int (i#+# j#gg

Next, we extend our abstract machine with boxing and unboxing. Reduction

contexts now also includes case [�] of fInt i#�Ng and we extend with the

following clause

case Intn# of fInt i#�Mg M [

n#

=

i#

]

where [

n#

=

i#

] is a substitution of an unboxed term for and unboxed variable.

For a closed unboxed term M# we will write JM#K for the result of evaluating

M#. We will not account for any stack space that may be needed when evalu-

ating an unboxed term. Our semantics is still within a program size dependent

constant factor because the amount of stack that is needed in an implementation

is bounded by the size of the unboxed terms in the program. The additional

abstract machine rules that we need are given below.

h�; IntM#; S i ! h�; Intn#; S i if JM#K = n (Box)

h�; M#

0

�#M#

1

; S i !

(

h�; true; S i if JM#

0

K � JM#

1

K

h�; false; S i otherwise

(Compare)

Note that the unboxing operation is modelled by the rule schemas Push and

Reduce:

h�; R[M]; S i ! h�; M; R : S i (Push)

h�; V; R : S i ! h�; M; S i if R[V] M (Reduce)

In Figure 11 we have collected some laws for unboxed terms and in Figure

12 some laws for boxing and unboxing. We used these laws when we proved

Proposition 6.8.

B Language Extension: Pattern Bindings

In this appendix we extend our language with pattern bindings.

Bindings in let expressions may now take the following form c ~x = M . The

heap may also contain the new form of binding but also indirections which is

of the form x 7! y and can be thought of as a binding x = y which is treated

specially by the garbage collector. We also need a new form of stack element

which we call pattern binding matchers. They take the form #c ~x;�

c

i

, indicating

90

Int (M#+# 0#)

CB

�

IntM#

Int (0# +#M#)

CB

�

IntM#

Int ((M#

0

+#M#

1

) +#M#

2

)

CB

�

Int (M#

0

+# (M#

1

+#M#

2

))

Int (M#

0

+#M#

1

)

CB

�

Int (M#

1

+#M#

0

)

Figure 11: Laws for unboxed terms.

w

case IntM# of fInt i#�Ng

CB

�

w

g

N [

M#

=

i#

]

let �f

v

w

x = IntM#g in C[x]

B

�

let �f

v

w

x = IntM#g in C[

fxg

IntM#]

let �f

v

w

x = IntM#g in C[x]

C

�

let �f

v

w

x = IntM#g in C[

fxgv

g

IntM#]

let �fx = IntM#; y = IntM#g in M

B

�

let �[

x

=

y

]fx = IntM#g in M [

x

=

y

]

let �fx = IntM#; y = IntM#g in M

C

�

let �[

x

=

y

]f

2

x = IntM#g in M [

x

=

y

]

let f

w

0

v

x =
g in

w

1

+w

0

case M of fInt i#�Ng

CB

�

let f

w

0

v

x =Mg in

w

1

case x of fInt i#�Ng

if x is a dummy reference in N

but does not occur elsewhere in M or N .

let f

v

w

x =Mg in C[case x of fInt i#� D[x]g]

B

�

let f

v

w

x =Mg in C[case x of fInt i#� D[

fxg

Int i#]g]

let f

v

w

x =Mg in C[case x of fInt i#� D[x]g]

C

�

let f

v

w

x =Mg in C[case x of fInt i#� D[

fxgv

g

Int i#]g]

Figure 12: Laws for boxing and unboxing.

91

h�fc ~x =Mg; x

i

; S i ! h�; M; #c ~x;�

c

i

: S i (Lookup)

h�; c ~y; #c ~x;�

c

i

: S i ! h�f~x 7! ~yg; y

i

; S i (Match)

h�fx 7! yg; x; S i ! h�fx 7! yg; y; S i (Indirect)

Figure 13: Rules for pattern bindings

that the result of the current computation should be matched against c ~x. If the

matching succeeds ~x should be indirected to the components of the matched

result and the computation proceed with i'th component. The ~x should be

thought of as binding occurrences of the variables analogously to the variable

in an update marker.

The abstract machine rules for pattern bindings is given in �gure 13. To

evaluate a variable x

i

bound in a pattern binding, we remove the binding

c ~x =M from the heap and start evaluatingM , with a pattern binding matcher

#c ~x;�

c

i

pushed onto the stack. Rule (Match) applies when this evaluation

is �nished, and match the result against the pattern in the projection. If the

matching succeeds the indirections ~x 7! ~y are added to the heap and the com-

putation proceeds with the i'th component of the result. The rule (Indirect)

speci�es that indirections should be followed.

We measure the heap space occupied by a pattern binding by counting the

number of variables bound by the pattern. A pattern binding matcher takes up

one unit of stack and just as for update markers we count the variable bound

by the matcher as occupying heap space.

Garbage collection in the presence of pattern bindings is a bit involved for

two reasons. Firstly, because the update rule creates indirections in the heap and

we will allow the garbage collector to shortcut them, and secondly, a pattern

binder c ~x = M binds all the ~x at the same time but we want to garbage

collect them individually. We model shortcutting of indirections in the garbage

collector by the following rule.

h�fx 7! yg; M; S im h�[

y

=

x

]; M [

y

=

x

]; S[

y

=

x

] i if x 6= y:

Note that we cannot shortcut an indirection which forms a cycle (the side con-

dition x 6= y) since it could cause the con�guration to become open. However

if there is no other free occurrences of x in the con�guration we may remove

the indirection just as we can remove other bindings in the heap. To model the

garbage collection of an individual variable x

i

in a pattern binder c ~x = M we

use a special placeholder: . We may, if there is no free occurrence of x

i

, replace

x

i

with . Then, when we count the heap usage of the binder we don't count the

's. If all the variables in a pattern binding is dead we may also remove the bind-

ing just as we remove ordinary bindings. Recall that we consider the variables

in a pattern binding matcher on the stack as binding occurrences occupying

92

heap. Consequently we may replace individual variables in a pattern binding

matcher with an in the same way as for a pattern binding. Note however that

we may not remove the pattern binding matcher itself even if all the variables

are dead since the pattern binding matcher also performs a projection.

93

94

Paper II

On Usage Analyses for Work and Space Safe

Inlining

On Usage Analyses for Work and Space Safe

Inlining

J�orgen Gustavsson David Sands

Abstract

To inline function calls can be a very worthwhile program transforma-

tion. But, as is well-known, in a call-by-need language the transformation

risks duplicating computation, and this can lead to an asymptotically

worse program { in both space and time. A number of researchers, e.g.,

Turner, Wadler and Mossin [TWM95], have sought to �nd criteria for

when such transformations are work-safe, based on notions of \used at

most once". Despite the fact that Turner et al discuss inlining of \used-

once" bindings in some detail, as far as we are aware, it remains an open

problem to actually prove that these criteria actually do guarantee work-

safety. Another question (one which to our knowledge has not even been

posed) is whether the \used at most once" criteria might also guarantee

space safety.

In this paper we show that the \used at most once" criteria alone is not

enough to guarantee space-safety. We therefore strengthen the use-once

criteria and show that the stronger criteria is enough to guarantee both

work and space safety. Some of the published usage analyses, including

the analysis by Turner et al, satisfy the stronger criteria so work and

space safety follows from our result. Some other analyses, e.g., [Mog97]

do not satisfy the additional criteria, and we believe that as a result those

analyses do not provide conditions for space-safe inlining.

1 Introduction

Most implementations of non-strict functional languages rely on a call-by-need

evaluation. Call-by-need optimises call-by-name by ensuring that arguments to

functions are evaluated only if needed and at most once. In our opinion, call-by-

need goes beyond being an internal compiler optimisation because it a�ects the

asymptotic time and space complexity of programs and the programmer must

be able to trust that the call-by-need semantics is respected.

The state-of-the-art compilers for lazy languages are based on intensive pro-

gram transformations { inspired by the clean equational theory of pure lazy

languages [PJS98]. But a compiler that wants to respect the intentional call-by-

need semantics cannot rely directly on the equational theory because equivalent

97

programs may have a di�erent asymptotic complexity. Even �-reduction

(�x:M)N)M [

N

=

x

];

the simplest of laws, can lead to an exponential blow up in time complexity.

Why is this? Well, consider the function f below which computes 2

n

in O(n)

steps.

f 0 = 1

f n = double (f (n� 1))

Suppose also that the programmer has de�ned double as

double x = x+ x:

He or she would probably had been better o� with the de�nition

double x = 2 � x

but with call-by-need evaluation x is evaluated only once anyway so his/her def-

inition is only a compiler dependent constant factor worse. Unless the compiler

\optimises" the program by inlining the call to double , i.e., it replaces double

by its de�nition and performs the �-reduction:

f 0 = 1

f n = f (n� 1) + f (n� 1):

The result of the transformation is a function which computes 2

n

in O(2

n

)

steps. With the latter de�nition of double the transformation wouldn't have

duplicated any computation. Intuitively, this is because the latter de�nition

uses its argument once rather than twice.

A number of researchers have sought to �nd criteria for when �-reduction

is work-safe, based on notions of \used at most once", e.g, Turner, Wadler and

Mossin [TWM95]. In Section 5 we give an overview of this line of research.

The more recent usage analyses, starting from Turner et al [TWM95] have been

proved sound in the sense that when the analysis claims that an argument is

used at most once then it is indeed the case. But despite the fact that Turner

et al discuss inlining of used-once bindings in some detail, as far as we are

aware, it remains an open problem to actually prove that any of the usage

analyses guarantee work-safety of �-reduction . Another question (one which to

our knowledge has not even been posed) is whether usage analyses might also

guarantee space safety.

Rather than showing work and space safety for any particular analysis we

pose the question: can the the intuitive semantic criteria \used at most once"

guarantee work and space safety? One problem is that time and space safety

98

do not go hand in hand. Sometimes inlining can lead to asymptotically worse

space behaviour even when it is work-safe. For example, let g be de�ned as

g x xs = x+ traverse xs+ (�y:1)x

where traverse is a function which traverses its input list and returns 0. Note

that g uses its argument, x, only once. But it retains a reference to x until after

traverse xs have been evaluated.

1

Suppose we inline the call to g:

let fxs = count kg

in g (head xs)xs

) let fxs = count kg

in head xs+ traverse xs+ (�y:1) (head xs)

where count is a function which produces the list of integers counting down from

its argument to zero. The inlining above is work-safe but not space safe: the

left hand side can run in constant space but the right hand side requires heap

space proportional to k. This example is enough to show that the \used at most

once" criteria alone is not enough to guarantee space safety. In this paper we

will strengthen the use-once criteria so that it is enough to guarantee both work

and space safety. Intuitively, the stronger criteria is that an argument must be

used at most once and when it is used there may be no other references to the

closure holding the argument. We will refer to the stronger criteria as the \use-

once-don't-drag" criteria. The usage analyses by Gustavsson [Gus98, Gus99]

and Gustavsson and Svenningsson [GS00] have already been proven to satisfy

the \use-once-don't-drag" criteria and we believe that the analyses by Turner

et al [TWM95] and Wansbrough and Peyton-Jones [WPJ99, WPJ00] do so as

well. However the analyses by Sestoft [Ses91], Marlow [Mar93] and Mogensen

[Mog97] do not satisfy the additional criteria, and we believe that as a result

their analyses do not provide conditions for space-safe inlining.

Overview The remainder of the article is organised as follows. Section 2

gives the syntax and operational semantics of our language and de�nes what

we mean by the time consumption and space-use of programs. We also make

precise the notion of \use-once-don't-drag". Section 3 de�nes two notions

of work and space safety. Section 4 state and prove work and space safety

of inlining \use-once-don't-drag" bindings. Section 5 describes related work.

Section 6 concludes and proposes future work.

2 Operational Semantics

In this section we give the syntax and call-by-need operational semantics of our

language in terms of an abstract machine. We de�ne what we mean by the time

consumption and space-use of programs and we make precise the criteria needed

for space safety: that an argument is used at most once and that when it is used

1

Assuming + evaluates from left to right.

99

there is no other references to the closure holding the argument. To this end we

extend the language with a \use-once-don't-drag" application, M �N equipped

with a direct operational interpretation.

Our language is an untyped lambda calculus with recursive lets, structured

data, case expressions, bounded integers (ranged over by n and m) with ad-

dition and a zero test. We work with a restricted syntax in which arguments

to functions (including constructors) are always variables, so applications take

the form M x rather than MN . The syntactic restriction is now rather stan-

dard, following its use in core language of the Glasgow Haskell compiler, e.g.,

[PJPS96, PJS98], and in [Lau93, Ses97]. An unrestricted applicationMN where

N is not a variable will now be taken as syntactic sugar for let fx = Ng in M x

where x is a fresh variable. And a \use-once-don't-drag" application, M �N is

syntactic sugar for let fx

�

= Ng in M x where x

�

= N is a \use-once-don't-drag"

binding. Thus, the grammar of our language is as follows.

Terms L;M;N ::= x j �x:M jM x j c ~x

j n jM +N j add

n

M j iszeroM

j let f

~

Bg in N j case M of fc

i

~x

i

�N

i

g

Bindings B ::= x =M j x

�

=M

All constructors have a �xed arity, and are assumed to be saturated. By c ~x we

mean c x

1

� � � x

n

. The only values are lambda expressions and fully-applied con-

structors. Throughout, x; y; z etc., will range over variables, c over constructor

names, and V and W over values (�x:M j c ~x j n). We will write

let f~x =

~

Mg in N

as a shorthand for let fx

1

=M

1

; : : : ; x

n

=M

n

g in N where the ~x are distinct,

the order of bindings is not syntactically signi�cant, and the ~x are considered

bound in N and the

~

M (so our lets are recursive). Similarly we write

case M of fc

i

~x

i

�N

i

g

for

case M of fc

1

~x

1

�N

1

j � � � jc

m

~x

m

�N

m

g

where each ~x

i

is a vector of distinct variables, and the c

i

are distinct construc-

tors. In addition, we will sometimes write alts as an abbreviation for case

alternatives fc

i

~x

i

�N

i

g.

Our integers are bounded (i.e., for an integer n, MININT � n � MAXINT)

so that they can be represented in constant space. For simplicity, no exception

occurs at overow. Instead the result wraps as in e.g., C. The functions add

n

are

included for convenience in the de�nition of the abstract machine, and represent

an intermediate step in the addition of n to a term.

100

The free variables of a termM will be denoted FV(M); for a vector of terms

~

M , we will write FV(

~

M). The only kind of substitution that we consider is

variable for variable, with � ranging over such substitutions. The simultaneous

substitution of one vector of variables for another will be written M [

~y

=

~x

], where

the ~x are assumed to be distinct (but the ~y need not be).

2.1 The Abstract Machine

The semantics presented in this section is essentially Sestoft's \mark 1" abstract

machine for laziness [Ses97].

Con�gurations Transitions are over con�gurations consisting of a heap, con-

taining bindings, the expression currently being evaluated, and a stack. We

write h�; M; S i for the abstract machine con�guration with heap �, expres-

sionM , and stack S and we will use � and � to range over such con�gurations.

A heap is a set of bindings; we denote the empty heap by ;, and the addition

of a group of fresh bindings

~

B to a heap � by juxtaposition: �f

~

Bg. The stack

written a : S will denote the stack S with a pushed on the top. The empty

stack is denoted by �.

Stack elements are either:

� a reduction context, or

� an update marker #x, indicating that the result of the current computa-

tion should be bound to the variable x in the heap.

The reduction contexts on the stack are shallow contexts containing a single

hole in a \reduction" position - i.e. in a position where the current computation

is being performed. They are de�ned as:

R ::=[�]x j case [�] of fc

i

~x

i

�N

i

g j [�] +M j add

n

[�] j iszero [�]

We will refer to the set of variables bound by � as dom�, and to the set of

variables marked for update in a stack S as domS. Update markers should be

thought of as binding occurrences of variables. A con�guration is well-formed

if dom� and domS are disjoint. We write dom(�; S) for their union. For a

con�guration h�; M; S i to be closed, any free variables in �, M , and S must

be contained in dom(�; S).

Garbage collection We cannot reason about space usage without modelling

garbage collection. During a computation, garbage collection allows us to de-

crease the amount of space used by a con�guration. It is modelled simply by

the removal of any number of bindings and update markers from the heap and

the stack respectively, providing that the con�guration remains closed.

101

h�fx =Mg; x; S i ! h�; M; #x : S i (Lookup)

h�; V; #x : S i ! h�fx = V g; V; S i (Update)

h�fx

�

=Mg; x; S i ! h�; M; S i if x 62 FV(�;M; S) (Lookup-�)

h�; let �

0

in N; S i ! h��

0

; N; S i (Letrec)

h�; R[M]; S i ! h�; M; R : S i (Push)

h�; V; R : S i ! h�; M; S i if R[V] M (Reduce)

(�x:M) y M [

y

=

x

]

case c

j

~y of fc

i

~x

i

�M

i

g M

j

[

~y

=

~x

j

]

m+N add

m

N

add

m

n pm+ nq

iszerom

(

true if m = 0

false otherwise

Figure 1: Abstract machine semantics

De�nition 2.1 (GC)

Garbage collection can be applied to a closed con�guration � to obtain �

0

,

written � m �

0

if and only if �

0

is closed, and can be obtained from � by

removing zero or more bindings and update markers from the heap and the

stack respectively.

This is an accessibility-based de�nition as found in e.g., the gc-reduction rule of

[MH98]. The removal of update-markers from the stack is not surprising given

that they are viewed as the binding occurrences of the variables in question.

Transition Rules The abstract machine semantics is presented in Figure 1;

we implicitly restrict the de�nition to well-formed closed con�gurations.

The �rst group of rules are the standard call-by-need rules. Rules (Lookup)

and (Update) concern evaluation of variables. To begin evaluation of x, we

remove the binding x = M from the heap and start evaluating M , with x,

marked for update, pushed onto the stack. Rule (Update) applies when this

evaluation is �nished, and we may update the heap with the new binding for x.

The rule for \use-once-don't-drag" bindings looks up the binding without

pushing an update marker. Thus the binding will never be updated and cannot

be used again. The side condition x 62 FV(�;M; S) enforces that their are no

\dragging" references to x. Note that if there is a reference to x in a part

102

of the con�guration which is garbage we may still apply the rule if we �rst

remove the garbage. If the side condition cannot be ful�lled the computation

gets stuck. Note that the computation may get stuck due to a \use-once-don't-

drag" binding even though the binding is not used more than once. For example,

let fx

�

= 1 + 2g in x+(�y:1)x gets stuck since when x is used there is a remaining

(semantically dead) occurrence of x in (�y:1)x which cannot be removed by

garbage collection.

Rule (Letrec) adds a set of bindings to the heap. Note that it is an implicit

condition to keep the con�guration well formed so the domain of �

0

must be

fresh, i.e, dom�

0

\ dom(�; S) = ;. This condition can always be satis�ed by a

local �-conversion.

The basic computation rules are captured by the (Push) and (Reduce) rules

schemas. The rule (Push) allows us to get to the heart of the evaluation by

\unwinding" a shallow reduction context. When the term to be evaluated is a

value and there is a reduction context on the stack, the (Reduce) rule is applied.

2.2 Measuring time and space

We measure time consumption of a computation simply by counting the number

of transitions. In practice di�erent transitions takes di�erent amount of time.

For example, the allocation of a closure in the heap typically takes more time

the more free variables of the closure. But our measure is within a constant

factor (depending only on the program size) of the actual time.

Measuring space is more subtle. A desired property of a model of space-use

is that it is true to actual implementations. Unfortunately, di�erent abstract

machines and garbage collection strategies di�er in their asymptotic space be-

haviour. Although we will choose a particular model of space use we believe

that the results in this paper can be adapted to any reasonable model of space

use. We will use the space model from [GS99]. In [GS01b] we discuss the sub-

tle ways in which di�erent abstract machines and implementations described in

the literature di�er from this model and each other. Bakewell and Runciman

[BR00a] focus on techniques for comparing di�erent evaluators.

We measure the heap space occupied by a con�guration by counting the

number of bindings in the heap and the number of update markers on the stack.

We count update markers on the stack as also occupying heap space, since

in a typical implementation an update marker refers to a so-called \blackhole

closure" in the heap { a placeholder where the update eventually will take place.

We will count every binding as occupying one unit of space.

In practice the size of a binding varies since a binding is typically represented

by a tag or a code pointer plus an environment with one entry for every free

variable. However, the right hand side of every binding is a (possibly renamed)

subexpression of the original program, (a property of the semantics sometimes

called semi-compositionality) so counting it as occupying one unit of space gives

a measure which is within a constant factor (depending only on the program

103

size) of the actual space used. Integers are an exception to this claim, but recall

that our integers are bounded so they can also be represented in a constant

amount of space.

We measure stack space by simply counting the number of elements on the

stack, so an update marker will be viewed as occupying both heap and stack

space. In practice every element on the stack does not occupy the same amount

of space, but again, semi-compositionality of the abstract machine assures that

our measure is within a program-size-dependent constant factor. The size of a

con�guration, written j�j is a pair (h; s) where h and s is the amount of heap

and stack respectively occupied by the the con�guration.

We are now ready to de�ne what it means for a computation to complete in

n steps within a certain �xed amount of space.

De�nition 2.2 (Convergence in �xed space)

1. �!

(h;s)

�

0

def

= �! �

0

and j�j � (h; s).

2. _

(h;s)

def

=!

(h;s)

m

3. �+

n

(h;s)

def

= 9�; V:�_

n

(h;s)

h�; V; � i and jh�; V; � ij � (h; s).

4. M+

n

(h;s)

def

= h ;; M; � i+

n

(h;s)

:

We read M+

n

(h;s)

as M can converge in n steps within (h; s) space, i.e., the

maximum heap, and stack is less than or equal to h and s respectively. Note

that, with this de�nition, if a binding is garbage collected immediately after it

has been allocated it does not account for any space. In real implementations

the binding would of course momentarily take up one unit of space even if it is

garbage collected immediately. However, our model is correct within a constant

factor.

We will �nish this section by stating a relationship between terms with

\use-once-don't-drag" bindings and their unannotated counterpart (which we

will denote by

^

M . If a term does not get stuck due to a \use-once-don't-drag"

binding then its time and space behaviour is closely coupled to the term obtained

by removing the \use-once-don't-drag" annotations.

Proposition 2.3

� M+

n

(h;s)

=)

^

M+

n

(h;s)

and

� if M+ then,

^

M+

n

(h;s)

=)M+

�n

(h;s)

.

The proof is straightforward since the computations are lockstep, and whenever

the computation ofM applies a \use-once-don't-drag" lookup step, the fact that

M does not become stuck implies that in the corresponding lookup step in

^

M ,

the update marker can be immediately garbage collected.

104

3 Notions of Work and Space Safety

In this section we de�ne two di�erent notions of work and space safe transfor-

mations { a weak asymptotic notion and a strong absolute one.

The starting point for an operational theory is usually an approximation

and an equivalence de�ned in terms of program contexts. Program contexts

are usually introduced as \programs with holes", the intention being that an

expression is to be \plugged into" all of the holes in the context. The central

idea is that to compare the behaviour of two terms one should compare their

behaviour in all program contexts.

We will use contexts such that holes may not occur in argument positions

of an application or a constructor, for if this were the case, then �lling a hole

(with a non variable) would violate the syntax. Contexts may contain zero or

more occurrences of the hole, and as usual the operation of �lling a hole with a

term can cause variables in the term to become captured. We will use C and D

to range over contexts. The grammar of contexts is as follows.

C;D ::= [�] j x j �x:C j Cx j c ~x

j n j C+ D j add

n

C j iszeroC

j let f

~

Bg in D j case C of fc

i

~x

i

� D

i

g

B ::= x = C j x

�

= C

We will write CV(C) for the variables that may be captured when �lling the

holes in C.

We are now ready to de�ne our two di�erent notions of work and space safety

based on improvement theory which was �rst developed in the call-by-name

setting [San95, San91, San96] for the purpose of reasoning about running-times

of programs. The two notions are the conjunctions of the two corresponding

notions of work-safety of call-by-need in [MS99a] and space-safety of call-by-need

in [GS99].

3.1 Weak Improvement

The �rst de�nition is a weak asymptotic notion of work and space safety which

we will refer to as weak improvement.

De�nition 3.1 (Weak Improvement)

We say that M is weakly improved by N , written M

B

�

N , if there exists a

linear function f 2 N ! N such that for all C, � such that C[M�] and C[N�]

are closed,

C[M�]+

n

(h;s)

=) C[N�]+

�f(n)

(f(h);f(s))

:

SoM

B

�

N means that N never takes up more than a constant factor more time

or space thanM (but it might still use non-constant factor less time and space).

105

This notion of work and space safety has been criticised by Minamide [Min00]

because if we repeatedly apply a transformation step which is a weak improve-

ment the constant factor may multiply up: suppose that we are transforming

a program fragment of size n and suppose we perform n transformation steps.

If each step may double the time and space required then the transformation

sequence may increase the the time and space required by 2

n

. Another problem

with weak improvement is that it is semantically badly behaved { in [GS01b] it is

shown that weak space improvement is discontinuous with respect to unfolding

of recursive de�nitions and that the natural context lemma fails.

3.2 Strong Improvement

An alternative notion of work and space safety is a strong absolute notion of

space improvement.

De�nition 3.2 (Strong improvement)

M is strongly improved by N , written M

B

�

N , if for all C, � such that C[M�]

and C[N�] are closed,

C[M�]+

n

(h;s)

=) C[N�]+

�n

(h;s)

:

We write M

CB

�

N to mean that M

B

�

N and N

B

�

M . Although the de�nition

of strong improvement is somewhat arbitrary { since it deals with constant

factors for a high-level abstract machine it has the property that an arbitrary

number of transformation steps can be performed without any constant factor

multiplying up. Signi�cant for this paper is also that we can show that inlining

of \use-once-don't-drag" bindings is a strong improvement which implies that

it is also a weak improvement.

Our main technical vehicle for showing strong improvements is a context

lemma [Mil77]: to prove that M is strongly improved by N , one only needs to

compare their behaviour with respect to a much smaller set of contexts, namely

the context which immediately need to evaluate their holes.

Lemma 3.3 (Context Lemma)

For all M and N such that FV(M) � FV(N), if for all �, S and �,

h�; M�; S i+

n

h;s

=) h�; N�; S i+

�n

h;s

then M

B

�

N .

The lemma is essentially the conjunction of the context lemma for strong time

improvement in [MS99a] and the context lemma for strong space improvement

in [GS99]. However there is one subtlety. Because of the \use-once-don't-drag"

bindings, successful termination can depend on free variables so the context

lemma as stated in [MS99a] is not valid for our language. The key extra premise

106

is FV(M) � FV(N) which guarantees that N cannot make the computation get

stuck unlessM can already. In the context lemma for space improvement [GS99]

the extra premise is there already because extra references can hold on to extra

space. This is reected in the proof of the context lemma as stated here { it

is a slight adaption of the proof for the context lemma in [GS99]. The proof is

rather involved and we will not reproduce it here but refer the reader to [MS99b]

and [GS01b].

4 Work and Space Safe Inlining

In this section we show the work and space safety of �-reduction for a \use-once-

don't-drag" application, (�x:M) � N . Recall that we consider (�x:M) � N as

syntactic sugar for let fy

�

= Ng in (�x:M) y where y

�

= N is a \use-once-don't-

drag" binding. This makes it possible to divide the problem into two steps. The

�rst step is a restricted �-reduction transformation

(�x:M) y)M [

y

=

x

]:

In [MS99a] this transformation was shown to be a strong time improvement and

in [GS99] to be a strong space improvement. The second step is validated by

the following theorem.

Theorem 4.1

If CV(C) \ (FV(M) [fyg) = ; then

let fy

�

=Mg in C[y]

B

�

let fy

�

=Mg in C[M]

Proof. The context lemmamakes the proof straightforward because it is enough

to show that for all �

0

, S

0

and �,

h�

0

; (let fy

�

=Mg in C[y])�; S

0

i+

n

(h;s)

=)

h�

0

; (let fy

�

=Mg in C[M])�; S

0

i+

�n

(h;s)

Thus assume

h�

0

; (let fy

�

=Mg in C[y])�; S

0

i+

n

(h;s)

i.e.,

h�

0

; (let fy

�

=Mg in C[y])�; S

0

i

!

(h;s)

h�

0

fy

�

=M�g; C[y]�; S

0

i

m h�

1

fy

�

=M�g; C[y]�; S

1

i+

n�1

(h;s)

We have assumed, without loss of generality, that � acts as the identity on the

bound variables in the con�guration. We have also assumed that there is at

107

least one hole in C which guarantees that the binding for y cannot be garbage

collected. If there is no hole in C the left and right hand side of the improvement

coincide so the statement is then trivially true. It su�ces to show that

h�

1

fy

�

=M�g; C[y]�; S

1

i+

n�1

(h;s)

=)

h�

1

fy

�

=M�g; C[M]�; S

1

i+

�n�1

(h;s)

because then we have

h�; (let fy

�

=Mg in C[M])�; S i

!

(h;s)

h�

0

fy

�

=M�g; C[M]�; S

0

i

m h�

1

fy

�

=M�g; C[M]�; S

1

i+

�n�1

(h;s)

as required. To show the desired implication we will show a generalised state-

ment. In this statement we will use � to range over heaps with holes analogously

to term contexts. Similarly S ranges over stacks with holes. The generalised

statement is: for every m, �, C, S such that CV(�;C;S) \ (FV(M) [fyg) = ;,

h�[y]fy

�

=M�g; C[y]; S[y] i+

m

(h;s)

=)

h�[M]fy

�

=M�g; C[M]; S[M] i+

�m

(h;s)

:

The proof is by induction over m and is easy since the two computation are

lockstep apart from the step (if it takes place) in the �rst computation that

looks up y. 2

4.1 Work and Space-Safety for Usage Analysis

It is perhaps not immediately apparent how the notion of \use-once-don't-drag"

binding and Theorem 4.1 can be used to argue the work and space safety of usage

analysis so we will spell it out in this section.

Usage analysis are global program analyses; they can take the context in

which a term occurs into account. Not surprisingly the results that have been

established for usage analyses involve the whole program.

Proposition 4.2

If P is a program (a closed term with no \use-once-don't-drag" bindings) and P

0

is obtained from P by replacing bindings with \use-once-don't-drag" bindings

whenever one of the usage analyses of [TWM95, Gus98, Gus99, WPJ99, WPJ00,

GS00] claims the binding is \use-once" then

P+ =) P

0

+:

108

The proofs of this claim vary in nature for the di�erent analyses but it essentially

amounts to the subject reduction property of the respective type systems, which

implies that well-typed programs cannot become stuck due to the con�guration

becoming open. [The latter point is only proved explicitly in [Gus98, Gus99,

GS00]. In [TWM95] and [WPJ99] the result is established for the weaker notion

of \used at most once" but we believe it is straightforward to strengthen their

results.]

The property that we wish to prove is a similarly global property, rather

than a context-insensitive improvement relation:

Theorem 4.3

If P is a program (a closed term with no \use-once-don't-drag" bindings), such

that

P+

n

(h;s)

;

and Q is obtained from P by inlining some of the bindings which are \use-once"

according to one of the analyses mentioned in Proposition 4.2, then

Q+

�n

(h;s)

:

Proof. Suppose that P+

n

(h;s)

, and that P

0

is the result of replacing all bindings

which are \use-once" according to one of the type systems with actual \use-

once-don't-drag" bindings. Suppose further that Q

0

is the result of inlining

some of these bindings in P

0

, and that Q is the result of removing all \use-

once-don't-drag" annotations from Q

0

. From the soundness of the respective

analysis (Proposition 4.2) we know that P

0

+ so by proposition 2.3 P

0

+

�n

(h;s)

:

Now since Q

0

is obtained from P

0

by inlining \use-once-don't-drag" bindings,

from Theorem 4.1 and the de�nitions of improvement, it follows that Q

0

+

�n

(h;s)

:

Finally, since

^

Q

0

= Q, by proposition 2.3 we have Q+

�n

(h;s)

as required. 2

5 Related Work

This paper relies heavily on the work by Moran and Sands on time improve-

ment for call-by-need [MS99a] and the work by Gustavsson and Sands on space

improvement for call-by-need [GS99, GS01a, GS01b]. Improvement theory was

�rst developed in the call-by-name setting [San95, San91, San96] for the purpose

of reasoning about running-times of programs. Minamide [Min00] suggests an

alternative to our de�nition of improvement based on additive constant factors

but its properties are not studied for any particular language.

Other related work includes the development of \space-aware" operational

models for call-by-need languages [Ses97, Ros96, BLR96, BR00b], studies of

space-safety properties of global transformations [Min99, Min00] and of the

relative e�ciency of di�erent abstract machines [BG96, Cli98, BR00a, Min00].

109

Morrisett and Harper [MH98] use a similar style of abstract machine description

to that used here in order to investigate the semantics of memory management

in an ML-like language (see also [MFH95]). They give abstract speci�cations of

garbage collection, and prove the correctness of a particular type-based collec-

tion scheme.

A number of insights into space problems of lazy evaluation { which we have

found useful { can be found in a range of sources, e.g., [Jon92, Wad87, Spa93,

PJ87, Hug83, RW93, R�oj95]

The idea of usage analysis is old and goes back at least to Fairbairn [Fai85]

but he gives no analysis. As far as we know Fairbairn and Wray were the �rst to

report on a simple local usage analysis which was used to avoid pushing update

markers in the Three Instruction Machine [FW87]. The �rst non local analy-

ses, that we are aware of, that can provide usage information are a backwards

abstract interpretation by Hughes and Wray [Hug88] and a path (evaluation

order) analysis by Bloss, Hudak and Young [BHY88]. The re�ned path analysis

by Gomard and Sestoft [GS91] can also provide usage information. In his PhD

thesis Sestoft presents a so called usage interval analysis [Ses91] which can give

a lower and an upper bound on the number of times an expression is used under

call-by-name. The �rst type based usage analysis is due to Launchbury, Gill,

Hughes, Marlow, Peyton Jones and Wadler [LGH

+

92] and it incorporates ideas

from linear logic (as proposed by Abramsky [Abr90, Abr93]). Marlow presents

an analysis based on abstract interpretation [Mar93] and Fax�en [Fax95] and

Boquist and Johnsson [BJ96] formulates usage analyses based on ow analy-

sis. The �rst usage analysis to be argued correct is the type based analysis by

Turner, Wadler and Mossin [TWM95] which was proved correct with respect to

a notion of \use-once" bindings. However, we belive that it is easy to strengthen

their result to \use-once-don't-drag" bindings. Mogensen takes the type system

by Turner et al as his starting point and adopts it by a notion of zero usage

[Mog97]. Thereby it provides more accurate information about \use-once" bind-

ings but the analysis is not sound with respect to \use-once-don't-drag". The

analysis by Turner et al has been extended with usage subtyping by Gustavsson

[Gus98, Gus99] and Wansbrough and Peyton Jones [WPJ99] and with di�erent

degrees of usage polymorphism by Wansbrough and Peyton Jones [WPJ00] and

Gustavsson and Svenningsson [GS00]. The analyses in [Gus98, Gus99, GS00]

have been proved to satisfy the \use-once-don't-drag" criteria and we believe

the analyses in [WPJ99, WPJ00] do so as well.

6 Conclusions and Future Work

A number of researchers, e.g., Turner, Wadler and Mossin [TWM95], have

sought to �nd criteria for when �-reduction in a call-by-need language is work-

safe, based on notions of \used at most once". Despite the fact that Turner et al

discuss inlining of \use-once" bindings in some detail, as far as we are aware, no

110

usage analysis have previously been proved to guarantee work-safety. Another

question (one which to our knowledge has not even been posed) is whether the

\used at most once" criteria might also guarantee space safety. In this paper

we have shown that the \used at most once" criteria is not enough to guarantee

space-safety. We therefore strengthened the use-once criteria and showed that

the stronger criteria of \use-once-don't-drag" is enough to guarantee both work

and space safety. Some of the published usage analyses, including the analysis

by Turner et al, satisfy the stronger criteria so work and space safety follows

from our result. Some other analyses, e.g. [Mog97], do not satisfy the additional

criteria, and we believe that as a result those analyses do not provide conditions

for space-safe inlining.

An issue for future work is whether the intuitive \used-at-most" criteria can

guarantee work-safety of �-reduction even though it doesn't guarantee space

safety. We believe that it could be shown quite direct along the lines of the

proof in this paper. Another issue is the let-oating transformation

let fx =Mg in �y:N) �y:let fx =Mg in N:

This transformation step is not space nor work safe in general because it may

duplicate the computation of M . But what if the abstraction is used at most

once? The analysis by Turner et al and its followups can provide such infor-

mation but as far as we know it remains an open problem to show that the

transformation then would be work and space safe.

References

[Abr90] Samson Abramsky. Computational interpretations of linear logic.

Technical Report DOC 90/20, Imperial College, Department of Com-

puting, 1990.

[Abr93] Samson Abramsky. Computational interpretations of linear logic.

Theoretical Computer Science, 111:3{57, 1993.

[BG96] Guy E. Blelloch and John Greiner. A provably time and space ef-

�cient implementation of nesl. In Proc. ICFP'96, pages 213{225,

1996.

[BHY88] A. Bloss, P. Hudak, and J. Young. Code optimisations for lazy

evaluation. Lisp and Symbolic Computation, 1:167{164, September

1988.

[BJ96] U. Boquist and T. Johnsson. The grin project: A highly optimising

back end for lazy functional languages. In Proc. of IFL'96, Bad

Godesberg, Germany. Springer Verlag LNCS 1268, 1996.

111

[BLR96] Z.-E.-A. Benaissa, P. Lescanne, and K. H. Rose. Modeling sharing

and recursion for weak reduction strategies using explicit substitu-

tion. In Proc. PLILP'96, volume 1140 of LNCS, pages 393{407.

Springer-Verlag, 1996.

[BR00a] Adam Bakewell and Colin Runciman. A model for comparing the

space usage of lazy evaluators. In Proceedings of Principles and

Practice of Declarative Programming, September 2000.

[BR00b] Adam Bakewell and Colin Runciman. A space semantics for core

haskell. In Proceedings of the Haskell Workshop, September 2000.

[Cli98] William D. Clinger. Proper tail recursion and space e�ciency. In

Proc. PLDI'98, 1998.

[Fai85] Jon Fairbairn. Removing Redundant Laziness from Supercombi-

nators. In Workshop on Implementation of Functional Languages,

pages 181{189. Programming Methodology Group Chalmers Univer-

sity of Technology. PMG Report 17, 1985.

[Fax95] Karl-Filip Fax�en. Optimizing lazy functional programs using ow

inference. In Second International Symposium on Static Analysis,

pages 136{153. Springer-Verlag, LNCS 983, 1995.

[FW87] Jon Fairbairn and Stuart Wray. TIM: A Simple, Lazy Abstract Ma-

chine to Execute Supercombinators. In IFIP conference on Func-

tional Programming Languages and Computer Architecture, pages

34{45. Springer Verlag LNCS 274, 1987.

[GS91] Carsten K. Gomard and Peter Sestoft. Evaluation Order Analy-

sis for Lazy Data Structures. In Proc. 1991 Glasgow Workshop

on Functional Programming, Workshops in Computing. Springer{

Verlag, 1991.

[GS99] J. Gustavsson and D. Sands. A foundation for space-safe transfor-

mations of call-by-need programs. In A. D. Gordon and A. M.Pitts,

editors, The Third International Workshop on Higher Order Oper-

ational Techniques in Semantics, volume 26 of Electronic Notes in

Theoretical Computer Science. Elsevier, 1999.

[GS00] J. Gustavsson and J. Svenningsson. A usage analysis with bounded

usage polymorphism and subtyping. In Proceedings of the 12th In-

ternational Workshop on Implementation of Functional Languages,

pages 140{157. Springer-Verlag, LNCS 2011, September 2000.

[GS01a] J. Gustavsson and D. Sands. Possibilities and limitations of call-by-

need space improvement. In Proceedings of the International Con-

ference on Functional Programming, September 2001. To Appear.

112

[GS01b] J. Gustavsson and D. Sands. Space-safe transformations of call-by-

need programs. Paper I in this thesis, May 2001.

[Gus98] J. Gustavsson. A type based sharing analysis for update avoidance

and optimisation. In Proc. ICFP'98, pages 39{50, September 1998.

[Gus99] J�orgen Gustavsson. A Type Based Sharing Analysis for Update

Avoidance and Optimisation. Licentiate thesis, May 1999.

[Hug83] R. J. M. Hughes. The Design and Implementation of Programming

Languages. PhD thesis, Programming Research Group, Oxford Uni-

versity, July 1983.

[Hug88] J. Hughes. Backwards Analysis of Functional Programs. In Bj�rner

and Ershov, editors, IFIP Workshop on Partial Evaluation and

Mixed Computation, pages 187{208, 1988.

[Jon92] Richard Jones. Tail recursion without space leaks. Journal of Func-

tional Programming, 2(1):73{79, January 1992.

[Lau93] J. Launchbury. A natural semantics for lazy evaluation. In Proc.

POPL'93, pages 144{154. ACM Press, January 1993.

[LGH

+

92] J. Launchbury, A. Gill, J. Hughes, S. Marlow, S. L. Peyton Jones,

and P. Wadler. Avoiding Unnecessary Updates. In J. Launchbury

and P. M. Sansom, editors, Functional Programming, Workshops in

Computing, Glasgow, 1992.

[Mar93] S. Marlow. Update avoidance analysis by abstract interpretation. In

Proc. 1993 Glasgow Functional Programming Workshop, Workshops

in Computing. Springer-Verlag, August 1993.

[MFH95] Greg Morrisett, Matthias Felleisen, and Robert Harper. Abstract

Models of Memory Management. In Proc. FPCA'95, pages 66{77.

ACM Press, June 1995.

[MH98] Greg Morrisett and Robert Harper. Semantics of memory manage-

ment for polymorphic languages. In A. D. Gordon and A. M. Pitts,

editors, Higher Order Operational Techniques in Semantics, pages

175{226. Cambridge University Press, 1998.

[Mil77] R. Milner. Fully abstract models of the typed �-calculus. Theoretical

Computer Science, 4:1{22, 1977.

[Min99] Yasuhiko Minamide. Space-pro�ling semantics of the call-by-value

lambda calculus and the cps transformation. In Proc. HOOTS III,

1999. To appear as ENTCS.

113

[Min00] Yasuhiko Minamide. A new criterion for safe program transforma-

tions. 2000. To appear as ENTCS.

[Mog97] T. Mogensen. Types for 0, 1 or many uses. In Proceedings of IFL

'97: 9th International Workshop on Implementation of Functional

Languages, pages 112{122, St. Andrews, Scotland, September 1997.

Springer-Verlag, LNCS 1467.

[MS99a] Andrew Moran and David Sands. Improvement in a lazy context:

An operational theory for call-by-need. In Proc. POPL'99, pages

43{56. ACM Press, January 1999.

[MS99b] Andrew Moran and David Sands. Improvement in a lazy context:

An operational theory for call-by-need (extended version). Extended

version of [MS99a], 1999.

[PJ87] S. L. Peyton Jones. The Implementation of Functional Programming

Languages. Prentice Hall, 1987.

[PJPS96] S. Peyton Jones, W. Partain, and A. Santos. Let-oating: moving

bindings to give faster programs. In Proc. ICFP'96, pages 1{12.

ACM Press, May 1996.

[PJS98] S. Peyton Jones and A. Santos. A transformation-based optimiser

for Haskell. Science of Computer Programming, 32(1{3):3{47, 1998.

[R�oj95] Niklas R�ojemo. Garbage collection, and memory e�ciency, in lazy

functional languages. PhD thesis, Chalmers Tekniska H�ogskola, 1995.

[Ros96] K. H. Rose. Operational Reduction Models for Functional Program-

ming Languages. PhD thesis, DIKU, University of Copenhagen, Den-

mark, February 1996. available as DIKU report 96/1.

[RW93] Colin Runciman and David Wakeling. Heap Pro�ling of Lazy Func-

tional Programs. Journal of Functional Programming, 3(2):217{245,

April 1993.

[San91] D. Sands. Operational theories of improvement in functional lan-

guages (extended abstract). In Proc. 1991 Glasgow Functional Pro-

gramming Workshop, Workshops in Computing Series, pages 298{

311. Springer-Verlag, August 1991.

[San95] D. Sands. A na��ve time analysis and its theory of cost equivalence.

Journal of Logic and Computation, 5(4):495{541, 1995.

[San96] D. Sands. Total correctness by local improvement in the transforma-

tion of functional program. ACM TOPLAS, 18(2):175{234, March

1996.

114

[Ses91] P. Sestoft. Analysis and E�cient Implementation of Functional Pro-

grams. PhD thesis, DIKU, University of Copenhagen, Denmark,

October 1991.

[Ses97] P. Sestoft. Deriving a lazy abstract machine. Journal of Functional

Programming, 7(3):231{264, May 1997.

[Spa93] Jan Sparud. Fixing Some Space Leaks without a Garbage Collec-

tor. In Proc. 6th Int'l Conf. on Functional Programming Languages

and Computer Architecture (FPCA'93), pages 117{122. ACM Press,

June 1993.

[TWM95] D. N. Turner, P. Wadler, and C. Mossin. Once upon a type. In Proc.

FPCA'95, pages 1{11. ACM Press, June 1995.

[Wad87] P. Wadler. Fixing Some Space Leaks with a Garbage Collector.

Software Practice and Experience, September 1987.

[WPJ99] Keith Wansbrough and Simon Peyton Jones. Once upon a polymor-

phic type. In Proc. POPL'99. ACM Press, January 1999.

[WPJ00] Keith Wansbrough and Simon Peyton Jones. Simple Usage Poly-

morphism. In ACM SIGPLAN Workshop on Types in Compilation,

September 2000.

115

116

Paper III

A Type Based Sharing Analysis for Update

Avoidance and Optimisation

Abstract

Sharing of evaluation is crucial for the e�ciency of lazy functional languages,

but unfortunately the machinery to implement it carries an inherent overhead.

In abstract machines this overhead shows up as the cost of performing up-

dates, many of them actually unnecessary, and also in the cost of the associated

bookkeeping, that is keeping track of when and where to update. In spineless

abstract machines, such as the STG-machine and the TIM, this bookkeeping

consists of pushing, checking for and popping update markers. Checking for up-

date markers is a very frequent operation and indeed the implementation of the

STG-machine has been optimised for fast update marker checks at the expense

of making the pushing and popping of update markers more costly.

In this thesis we present a type based sharing analysis that can determine

when updates can be safely omitted and marker checks bypassed. The type

system is proved sound with respect to the lazy Krivine machine and enjoys

a principal typing property. We have implemented the analysis and the pre-

liminary benchmarks seem very promising. Most notably, virtually all update

marker checks can be avoided. This may make the tradeo�s of current imple-

mentations obsolete and calls for new abstract machine designs.

120

Contents

1 Introduction 125

1.1 Sharing of evaluation . 125

1.2 The overhead of sharing . 125

1.3 Reducing the overhead of sharing 126

1.4 Overview of the thesis . 127

2 Language and semantics 129

2.1 Language . 129

2.1.1 Syntax . 129

2.1.2 Semantics . 130

2.2 The overhead - revisited . 133

2.3 A language with annotations . 135

2.3.1 Syntax . 135

2.3.2 Semantics . 136

2.4 Implementing the abstract machine 139

3 Type system 141

3.1 A few observations . 141

3.2 Type language . 142

3.3 A subtyping relation . 143

3.4 Contexts . 144

3.5 Typing judgements . 145

3.6 Typing rules . 146

3.6.1 Typing bare values . 146

3.6.2 Typing expressions . 147

3.6.3 Typing bindings . 148

3.6.4 Typing declarations . 149

3.6.5 Typing alternatives . 149

4 Soundness 151

4.1 Evaluation preserves typings . 151

4.2 Typing con�gurations . 155

4.3 Soundness theorem . 157

121

4.4 Postponed proofs . 159

4.4.1 Context rewriting and context entailment 159

4.4.2 Free and bound variables lemmas 160

4.4.3 Subsumption lemma . 160

4.4.4 Substitution lemma . 161

4.4.5 Unwind lemma . 161

4.4.6 Discarded update markers lemma 161

4.4.7 Reduction lemma . 164

4.4.8 Progress lemma . 167

4.4.9 Proof of source transition 178

4.4.10 Proof of target transition 179

4.4.11 Proof of the terminal con�guration property 180

5 Implementation 181

5.1 The best annotations . 181

5.2 Overview of the implementation 182

5.3 The underlying type system . 182

5.4 The modi�ed type system . 184

5.4.1 Annotation language . 184

5.4.2 Type language . 185

5.4.3 Term language . 185

5.4.4 Constraints . 186

5.4.5 Typing judgements . 188

5.5 Computing principal typings . 189

5.5.1 Decorating . 189

5.5.2 Inferring constraint sets 190

5.5.3 Principal typings . 193

5.6 Solving the constraints . 197

5.6.1 Existence of optimal models 197

5.6.2 Rewriting the constraint set 200

5.6.3 Simplifying the constraint set 201

5.6.4 Solving the simpli�ed constraints 205

5.7 A note on complexity . 207

6 Experiments 209

7 Related work 213

7.1 Avoiding updates . 213

7.2 Avoiding update marker checks 219

7.3 Program transformation . 219

7.4 Destructive array update and compile time garbage collection . . 220

7.5 Strictness analysis . 221

122

8 Conclusions and future work 223

8.1 Conclusions . 223

8.2 Future work . 223

8.2.1 Polymorphism . 223

8.2.2 User de�ned data types 224

8.2.3 Separate compilation . 224

8.2.4 Annotation polymorphism 225

8.2.5 Annotation polyvariance 227

8.2.6 Garbage collection of update markers 227

8.2.7 The implementations of abstract machines 228

8.2.8 A possibility for further analysis 228

8.2.9 The analysis in an optimising compiler 228

A Typing rules 229

B Constraint inference algorithm 235

C An example program 239

Bibliography 241

123

124

Chapter 1

Introduction

1.1 Sharing of evaluation

In a call-by-name functional language arguments to functions are passed un-

evaluated. For example, (�x:x + x) (1 + 2) evaluates as follows.

(�x:x + x) (1 + 2) 7! (1 + 2) + (1 + 2) 7! 3 + (1 + 2) 7! 3 + 3 7! 6

Note that in the �rst step the argument 1+ 2 is duplicated with the e�ect that

1+ 2 is computed twice. This duplication of computation is devastating for the

e�ciency of call-by-name languages. Therefore non-strict functional languages

usually rely on a call-by-need semantics where the evaluation of arguments is

shared between di�erent uses so that an argument is computed at most once.

Although this sharing of evaluation is crucial for the e�ciency of lazy lan-

guages, it also carries a substantial run time overhead. This overhead and how

to reduce it is the subject of this thesis. This work has been previously reported

on in [Gus98].

1.2 The overhead of sharing

In the implementation of a lazy functional language sharing of evaluation is

performed by updating. For example, the evaluation of (�x:x + x) (1 + 2)

proceeds as follows. First, a closure for 1+2 is built in the heap and a reference

to the closure is passed to the abstraction. Second, to evaluate x+x the value of

x is required. Thus the closure is fetched from the heap and evaluated. Third,

the closure is updated (ie overwritten) with the result, so that when the value

of x is required again the expression needs not be recomputed. However, if the

value of x had not been required again this update would had been wasted.

This happens, for example, in the evaluation of (�x:x + 1) (1 + 2).

125

Measurements suggest that typically 70% of all updates are unnecessary and

that about 20% of the execution time is spent on these unnecessary updates

[Mar93]. It is therefore no surprise that considerable e�ort has been put into

static analyses that can discover unnecessary updates [Ses91, LGH

+

92, Mar93,

TWM95, Fax95, Mog97].

Besides the cost of performing updates there is also a cost associated with the

bookkeeping of updates, that is keeping track of when and where to update. In

the design and implementation of abstract machines, considerable attention has

been given to minimising the bookkeeping associated with shared computation.

See for example [PJ92]. However, comparatively little work has been done to

eliminate bookkeeping overheads by static program analysis. The only work we

are aware of is an analysis by Sestoft [Ses91].

In this thesis we will present a type based sharing analysis that can de-

termine when updates can be safely omitted and also enables us to optimise

the bookkeeping of updates. We will take the type system by Turner, Wadler

and Mossin [TWM95] as our starting point. Our type system has a number of

properties.

� It is more precise than the analysis by Turner et al, that is it will discover

more unnecessary updates.

� It provides information that enable us to optimise the bookkeeping of

updates. Indeed, this is our major contribution.

� It handles all features of a realistic functional language including higher

order functions, data structures and mutual recursion.

� It is proved sound with respect to the lazy Krivine machine, by showing

that evaluation preserves typings.

� Preliminary benchmarks indicates that it is surprisingly e�ective.

1.3 Reducing the overhead of sharing

We can reduce the overhead of sharing if we can discover unnecessary updates.

Consider the following program.

let x= 1 + 2 in

let y = (�z:z) x in

y + y

Here, the value of y is clearly needed twice. Thus the closure referred to by y

needs to be updated so that (�z:z) x gets computed only once. Since (�z:z) x

gets computed only once, x will be dereferenced only once and therefore it is

126

unnecessary to update the closure referenced by x. An analysis can provide this

information by annotating the expression as follows.

let x=

X

1 + 2 in

let y =

!

(�z:z) x in

y + y

Here, annotating the binding of x with a X indicates that the corresponding

closure needs not be updated and annotating the binding of y with an ! indicates

that the corresponding closure needs to be updated.

We can reduce the overhead of sharing if we can reduce the bookkeeping of

updates by predicting when updates take place. Potentially, an update may be

needed whenever a value has been computed. However, in our example only

one update needs to take place, namely when y is updated with the result of

1 + 2. An analysis can provide this information by annotating the expression

as follows.

let x=

X

1

0

+

1

2

0

in

let y =

!

(�

0

z:z) x in

y +

0

y

Here, the annotation 1 on 1 + 2 indicates that exactly one closure, namely y,

needs to be updated with the result of the addition. Naturally, the annotation

0 indicates that no update needs to take place. This information enables us

to optimise the bookkeeping of updates and we will return to this example in

section 2.2 and discuss how to apply the information in the implementation of

an abstract machine.

1.4 Overview of the thesis

This thesis is organised as follows. In chapter 2 we present a small functional

language and its semantics in the form of an abstract machine. We also discuss,

in the context of the abstract machine, how static analysis can be used to avoid

unnecessary updates and to reduce the cost of the bookkeeping of updates. We

then extend the language with annotations that can express these optimisations

and we give a semantics to the extended language. Based on this semantics

we de�ne the notion of a well-annotated term. In chapter 3 we present a type

system in the form of a type directed translation that annotates expressions

and in chapter 4 we prove the type system sound. In chapter 5 we describe the

implementation, that is how to compute the well-typed annotated term that

yields the best optimisation. In chapter 6 we present some experimental results

from a prototype implementation. In chapter 7 we describe related work and in

chapter 8, we conclude and we discuss future work.

127

128

Chapter 2

Language and semantics

In this chapter we will present a small functional language and give its semantics

in the form of an abstract machine. We will also discuss how static analysis can

be used to avoid unnecessary updates and to reduce the cost of the bookkeeping

of updates. We will then extend the language with annotations that can express

these optimisations and give a semantics to the extended language.

2.1 Language

2.1.1 Syntax

The language we use is a lambda calculus extended with integers, lists and

recursive let-expressions. Following Launchbury [Lau93], we use a restricted

syntax given below.

Variables x; y; z

Values v ::= �x:e j n j nil j cons x y

Expressions e ::= v j x j e x j e

0

+ e

1

j

let d in e j

case e of alts

Declarations d ::= � j d; b

Bindings b ::= x= e

Alternatives alts ::= fnil) e

0

; cons x y) e

1

g

The distinguishing feature of the syntax is that arguments in applications and

cons are restricted to variables. It is straightforward to translate a term in

the standard syntax into the restricted form, for example (�x:x + x) (1 + 2) is

translated into let y= 1+ 2 in (�x:x+ x) y. Thus the creation of a closure for

1 + 2 is made explicit via the let-expression. Making the creation of closures

explicit greatly simpli�es the abstract machine as well as the analysis presented

129

in this paper. Indeed, the same restriction appears in the intermediate language

of the Glasgow Haskell Compiler [JHH

+

93].

2.1.2 Semantics

We will take the lazy Krivine machine [Ses97] as the semantic basis of our work.

The choice of an abstract machine makes the update machinery explicit and

enables a soundness proof of our analysis. A correspondence between the lazy

Krivine machine and Launchbury's natural semantics for lazy evaluation [Lau93]

has been shown in [Ses97]. The machine can also serve as a starting point from

which lower level abstract machines can be derived [Ses97].

For the purpose of the abstract machine we extend the set of terms to include

expressions of the form add

n

e. We de�ne a reduction relation e 7! e

0

between

terms:

(�x:e) y 7! e[x:=y]

n+ e 7! add

n

e

add

n

0

n

1

7! n

2

if n

0

+ n

1

= n

2

case nil of

nil) e

0

cons x y) e

1

7! e

0

case cons x

0

x

1

of

nil) e

0

cons y

0

y

1

) e

1

7! e

1

[y

0

:=x

0

; y

1

:=x

1

]

Con�gurations in the abstract machine are triples hH ; e ; Si, where H is

a heap, e is the term currently being evaluated and S is the abstract machine

stack:

Con�gurations C ::= hH ; e ; Si

Heaps H ::= � jH; b

Stacks S ::= � j R;S j#x; S

Reduction contexts R ::= [] x j [] + e j add

n

[] j

case [] of alts

A heap consists of a sequence of bindings. The variables bound by the heap

must be distinct and the order of bindings is irrelevant. Thus a heap can be

considered as a partial function mapping variables to terms and we will write

dom(H) for the set of variables bound by H . A heap can also be considered

as a declaration and vice versa. We will write H

0

; H

1

for the concatenation of

H

0

and H

1

. An abstract machine stack is a stack of shallow reduction contexts

and update markers. The stack can be thought of as corresponding to the

\surrounding derivation" in a natural semantics, where the rôle of an update

marker #x is to keep track of a pending update of x. The update markers on

the stack will be distinct, that is there will be no more than one pending update

of the same variable. We will consider an update marker as a binder and we will

write dom(S) for the variables bound by the update markers in S. Consequently,

we will require the variables bound by the stack to be distinct from the variables

130

hH ; let d in e ; Si

Let

7�! hH; d ; e ; Si

hH; x= e ; x ; Si

Var

7�! hH ; e ; #x; Si

hH ; R[e] ; Si

Unwind

7�! hH ; e ; R;Si

hH ; v ; #x; Si

Update

7�! hH; x= v ; v ; Si

hH ; v ; R;Si

Reduce

7�! hH ; e ; Si if R[v] 7! e

Figure 2.1: Abstract machine transistion rules

bound by the heap. We will also require that con�gurations are closed and we

will identify con�gurations up to �-conversion, that is renaming of the variables

bound by the heap and the stack. We will also identify con�gurations up to

garbage meaning that we may remove or add bindings to the heap as long as the

con�guration remains closed (that is hH

0

; H

1

; e; Si � hH

0

; e; Si if hH

0

; H

1

; e; Si

and hH

0

; e ; Si are closed). We will refer to this as garbage-conversion.

An initial con�guration is of the form h�; e; �i, where e is a closed expression.

The transition rules of the abstract machine are given in �gure 2.1. The rule

hH ; let d in e ; Si

Let

7�! hH; d ; e ; Si

creates new bindings in the heap. For the rule to be applied the variables

bound by d must be distinct from the variables bound by H and S, that is

dom(d)\ (dom(H)[dom(S)) = ;. This condition can always be met simply by

�-converting the let-expression. The rule

hH; x= e ; x ; Si

Var

7�! hH ; e ; #x; Si

evaluates a variable x. It looks up the corresponding expression e in the heap,

removes the binding, pushes an update marker for x on the stack and starts the

evaluation of e. Later, if e terminates, the update marker will see to that x gets

updated with the result. The removal of the binding corresponds to so called

black-holing: if the evaluation of e to weak head normal form depends on x (ie

x depends directly on itself) the computation will get stuck, since x is no longer

bound by the heap. Note that we still consider the con�guration to be closed,

since x is bound by the update marker on the stack. The rule

hH ; R[e] ; Si

Unwind

7�! hH ; e ; R;Si

allows us to get to the heart of the evaluation by \unwinding" a shallow re-

duction context. When the term to be evaluated is a value the next transition

depends on whether an update marker or a reduction context is on top of the

131

stack. To determine which rule to apply a so called update marker check is

performed. If the top of the stack is an update marker the rule

hH ; v ; #x; Si

Update

7�! hH; x= v ; v ; Si

applies and the heap is updated accordingly. If it is a reduction context the rule

hH ; v ; R;Si

Reduce

7�! hH ; e ; Si if R[v] 7! e

applies and the value is plugged into the reduction context and a reduction can

take place.

The abstract machine presented so far has a built in ine�ciency shown by

the following transition sequence.

hH; x= v ; x ; Si

Var

7�! hH ; v ; #x; Si

Update

7�! hH; x= v ; v ; Si

When a value is looked up with the rule Var the binding is removed from the

heap and an update marker is pushed onto the stack. Then, by the rule Update,

the marker is immediately popped o� the stack and the binding is added to the

heap again (ie an update is performed). This is indeed a common case and the

abstract machine could be optimised for it by adding the synthesised rule

hH; x= v ; x ; Si

Lookup

7�! hH; x= v ; v ; Si

which allows a value to be looked up without pushing a marker and performing

an update. Any reasonable compiler would perform this optimisation so we have

included it in our implementation to make for realistic benchmarks. However,

since the rule is simply synthesised from the rules Var and Update we will not

consider it further.

The machine terminates when no transition rule can be applied. It may

terminate for three di�erent reasons.

� The computation terminates successfully with a value. In this case the

con�guration is of the form hH ; v ; �i.

� A black hole is detected, that is the con�guration is of the form hH ; x ; Si

where x 62 dom(H).

� The computation goes wrong. By going wrong we mean reaching a con-

�guration of the form hH ; v ; R;Si where R[v] 67!. This cannot happen if

we only consider well-typed terms (ie \well typed terms cannot go wrong"

[Mil78]).

We de�ne Value, Blackhole and Wrong to be the sets of terminal con�gurations

of the di�erent forms. We will let V , B and W range over Value, Blackhole and

Wrong respectively.

132

2.2 The overhead - revisited

We will now discuss the overhead of sharing and how it can be reduced in

the context of the abstract machine. Consider again the example from the

introduction.

let x= 1 + 2 in

let y = (�z:z) x in

y + y

Running this program in the abstract machine yields the transition sequence

given in �gure 2.2. Note that we have named the con�gurations in the transition

sequence as C

0

, C

1

etc. The costs of updates shows up in a number of places.

� In the applications of the rule Var where an update marker is pushed

onto the stack to record that an update shall eventually take place. This

happens in the transitions C

3

7�! C

4

and C

6

7�! C

7

.

� In the applications of the rule Update where an update marker is popped

from the stack and an update takes place. This happens in the transitions

C

11

7�! C

12

and C

12

7�! C

13

.

� Whenever a value is in the second component of the con�guration an

update marker check has to be performed to decide whether an update

should take place or not. This happens in the transitions C

5

7�! C

6

,

C

8

7�! C

9

, C

10

7�! C

11

, C

11

7�! C

12

, C

12

7�! C

13

, C

13

7�! C

14

and

C

16

7�! C

17

.

Thus, we can reduce the cost associated with the update machinery if we can

avoid unnecessary updates (which also saves the cost of pushing and popping

an update marker) and if we can avoid unnecessary update marker checks.

We note that update marker checks seem to be very common. Indeed, the

measurements presented in chapter 6 suggest that in an unoptimised implemen-

tation update marker checks are typically about 10 times as frequent as updates.

It is therefore no surprise that implementations of abstract machines tend to be

optimised for fast update marker checks at the expense of a large representation

of update markers, making the pushing and popping of them more expensive.

For example, in the implementation of the STG-machine, update marker checks

are very cheap while update markers are represented using three words where

only one word (using 1 bit as a tag) would su�ce [PJ92]. However, although

the cost of a single update marker check is low, an analysis that can reduce

the number of checks could be very worthwhile. In fact, the preliminary bench-

marks of our analysis suggest that update marker checks can be avoided to such

an extent that they become less frequent than updates. As a consequence the

implementations of abstract machines might be the subject of review.

We can avoid an update of a closure if we can determine that there are

no remaining references to the closure. In our example the update of x is

133

h� ; let x= 1 + 2 in let y = (�z:z) x in y + y ; �i (C

0

)

Let

7�! hx= 1 + 2 ; let y = (�z:z) x in y + y ; �i (C

1

)

Let

7�! hx= 1 + 2; y = (�z:z) x ; y + y ; �i (C

2

)

Unw.

7�! hx= 1 + 2; y = (�z:z) x ; y ; [] + yi (C

3

)

Var

7�! hx= 1 + 2 ; (�z:z) x ; #y; [] + yi (C

4

)

Unw.

7�! hx= 1 + 2 ; �z:z ; [] x;#y; [] + yi (C

5

)

Red.

7�! hx= 1 + 2 ; x ; #y; [] + yi (C

6

)

Var

7�! h� ; 1 + 2 ; #x;#y; [] + yi (C

7

)

Unw.

7�! h� ; 1 ; [] + 2;#x;#y; [] + yi (C

8

)

Red.

7�! h� ; add

1

2 ; #x;#y; [] + yi (C

9

)

Unw.

7�! h� ; 2 ; add

1

[];#x;#y; [] + yi (C

10

)

Red.

7�! h� ; 3 ; #x;#y; [] + yi (C

11

)

Upd.

7�! hx= 3 ; 3 ; #y; [] + yi � h� ; 3 ; #y; [] + yi (C

12

)

Upd.

7�! hy = 3 ; 3 ; [] + yi (C

13

)

Red.

7�! hy = 3 ; add

3

y ; �i (C

14

)

Unw.

7�! hy = 3 ; y ; add

3

[]i (C

15

)

Loo.

7�! hy = 3 ; 3 ; add

3

[]i � h� ; 3 ; add

3

[]i (C

16

)

Red.

7�! h� ; 6 ; �i (C

17

)

Figure 2.2: A transition sequence

superuous; no occurrence of x remains so the binding is dead. We can convey

this information by annotating the expression as follows.

let x=

X

1 + 2 in

let y =

!

(�z:z) x in

y + y

Here, annotating the binding of x with a X means that it shall not be updated

and annotating the binding of y with an ! means that it shall be updated.

134

We can avoid update marker checks by predicting what will be on top of the

stack when a value has been computed and either of the rules

hH ; v ; R;Si

Reduce

7�! hH ; e ; Si if R[v] 7! e

or

hH ; v ; #x; Si

Update

7�! hH; x= v ; v ; Si

may be applied. If we know that there can be no or that there must be at

least one update marker on top of the stack then we can bypass the update

marker check and apply the the appropriate rule directly. In our example only

two updates take place, namely when x and y are updated with the result of

1 + 2. Thus, when 1 + 2 has been computed two update markers reside on

top of the stack, one saying that x shall be updated and one saying that y

shall be updated (see con�guration C

11

). However, if we bypass the update

of x, as suggested above, there will only be one marker there. We can take

advantage of this fact by annotating 1 + 2 as 1 +

1

2. The intuitive meaning of

the annotation is that the compiled code for 1 +

1

2 shall take for granted that

there is exactly one update marker on the stack and pop it o� the stack without

performing an update marker check. In our example (the compiled code of) no

other value needs to take care of any update marker and we can exploit this fact

by annotating them with the annotation 0. For example �z:z will be annotated

as �

0

z:z, which allows us to avoid the update marker check in the transition

C

5

7�! C

6

. To summarise; our example can be annotated as follows.

let x=

X

1

0

+

1

2

0

in

let y =

!

(�

0

z:z) x in

y +

0

y

In total this saves the cost of pushing and popping an update marker, performing

an update and doing seven update marker checks.

2.3 A language with annotations

In this section we will present the language of annotated expressions and its

semantics.

2.3.1 Syntax

We will annotate bindings in let-expressions with a �, ranging over fX; !g.

Here, X means the binding will not be updated and ! means that it will. In the

example in the previous section we annotated values and + with 0 and 1 saying

that no update marker and exactly one update marker needed to be taken care

of. It is however not always possible to give such a precise annotation. Thus

our annotation will instead give a lower and an upper bound on the numbers of

135

update markers that needs to be taken care of. Thus our annotations, ranged

over by �, consists of a pair [�; �]. The �rst component � gives a lower bound

on the number of markers that must reside on the stack (because the value

will take them for granted) and the second component � gives an upper bound

on the number of update markers that may reside on the stack (because the

value will not look for more). Consequently, we will refer to them as the lower

and the upper bound. We will let � and � range over N [f!g. Including !

allows us to have annotations like [0; !] meaning that an arbitrary number of

update markers can be taken care of, e�ectively serving as an escape-hatch for

the analysis. Thus, the language of the previous section is extended as follows.

Variables x; y; z

Values ~v ::= �x:~e j n j nil j cons x y

Expressions ~e ::= ~v

�

j x j ~e x j ~e

0

+

�

~e

1

j

let

~

d in ~e j

case ~e of

~

alts

Declarations

~

d ::= � j

~

d;

~

b

Bindings

~

b ::= x=

�

~e

Alternatives

~

alts ::= fnil) ~e

0

; cons x y) ~e

1

g

We will sometimes use �

�

x:e and cons

�

x y as syntactic sugar for (�x:e)

�

and

(cons x y)

�

respectively.

2.3.2 Semantics

The meaning of the annotations is given by modifying the abstract machine of

the previous section. Again, we extend the set of (annotated) terms to include

the expression add

�

n

~e. We de�ne a reduction relation ~e ~7! ~e

0

between annotated

terms:

(�

�

x:~e) y ~7! ~e[x:=y]

n

�

0

+

�

~e ~7! add

�

n

~e

add

�

n

0

n

�

0

1

~7! n

�

2

if n

0

+ n

1

= n

2

case nil

�

of

nil) ~e

0

cons x y) ~e

1

~7! ~e

0

case cons

�

x

0

x

1

of

nil) ~e

0

cons y

0

y

1

) ~e

1

~7! ~e

1

[y

0

:=x

0

; y

1

:=x

1

]

136

h

~

H ; let

~

d in ~e ;

~

Si

Let

~7�! h

~

H;

~

d ; ~e ;

~

Si

h

~

H; x=

!

~e ; x ;

~

Si

Var-!

~7�! h

~

H ; ~e ; #x;

~

Si

h

~

H; x=

X

~e ; x ;

~

Si

Var-X

~7�! h

~

H ; ~e ;

~

Si

h

~

H ;

~

R[~e] ;

~

Si

Unwind

~7�! h

~

H ; ~e ;

~

R;

~

Si

h

~

H ; ~v

[�;�]

; #x;

~

Si

Update

~7�! h

~

H; x=

!

~v

[�;�]

; ~v

[��1;��1]

;

~

Si if � � 1

h

~

H ; ~v

[�;�]

;

~

R;

~

Si

Reduce

~7�! h

~

H ; ~e ;

~

Si if � = 0 and

~

R[~v

[�;�]

] ~7! ~e

Figure 2.3: Abstract machine transition rules for annotated terms

Con�gurations in the abstract machine now take the form h

~

H ; ~e ;

~

Si, where

~

H

is a heap of annotated bindings and

~

S is an annotated abstract machine stack:

Con�gurations

~

C ::= h

~

H ; ~e ;

~

Si

Heaps

~

H ::= � j

~

H;

~

b

Stacks

~

S ::= � j

~

R;

~

S j#x;

~

S

Reduction contexts

~

R ::= [] x j [] +

�

~e j add

�

n

[] j

case [] of

~

alts

The transition rules of the abstract machine are given in �gure 2.3. The rules

Let and Unwind remain unchanged (adding only a~everywhere). However, there

are now two Var rules. The rule

h

~

H; x=

!

~e ; x ;

~

Si

Var-!

7�! h

~

H ; ~e ; #x;

~

Si

takes care of variables bound to closures that shall be updated. It looks up the

binding in the heap, removes it, pushes an update marker and evaluates the

expression just as the rule Var. The rule

h

~

H; x=

X

~e ; x ;

~

Si

Var-X

7�! h

~

H ; ~e ;

~

Si

takes care of variables bound to closures that shall not be updated. It looks

up the binding in the heap, removes it and evaluates the expression without

pushing an update marker. Indeed, this means that the binding will not be

updated. Note that we require con�gurations to be closed so the rule does not

apply unless the con�guration remains closed. This is important since an open

con�guration would correspond to dangling pointers in an implementation. If

the rule does not apply the computation will go wrong and we will consider the

con�guration to be ill-annotated. An example of this would be the con�guration

hx=

X

y; y =

X

1

[0;0]

; y ; [] +

[0;0]

x; �i

137

which cannot reduce further since there is a reference to y in the binding for x

(which is not dead since there is a reference to x on the stack). Note that the

transition rules are de�ned up to garbage equivalence. That is we may, and it

is sometimes necessary to, garbage convert the con�guration before a transition

rule can be applied. Consider for example, the modi�cation of the previous

example so that there is no reference to x on the stack.

hx=

X

y; y =

X

1

[0;0]

; y ; �i � hy =

X

1

[0;0]

; y ; �i

Var-X

~7�! h� ; 1

[0;0]

; �i

We cannot directly apply the transition rule since there is a reference to y in

the binding for x. But since the binding for x is dead we may remove it and we

can then apply the transition rule. The rule

h

~

H ; ~v

[�;�]

; #x;

~

Si

Update

7�! h

~

H; x=

!

~v

[�;�]

; ~v

[��1;��1]

;

~

Si if � � 1

has been modi�ed to take the annotation on values into account. For the value to

perform an update, the upper bound must be nonzero. This reects that a value

with a zero upper bound requires the top of the stack to contain a reduction

context. Once the update has been performed the annotation is decreased to

record that an update marker has been taken care of. Here we take !� 1 to be

! and 0� 1 to be 0. If the upper bound is zero the computation will go wrong

and we will consider the con�guration to be ill-annotated. The rule

h

~

H ; ~v

[�;�]

;

~

R;

~

Si

Reduce

7�! h

~

H ; ~e ;

~

Si if � = 0 and

~

R[~v

[�;�]

] ~7! ~e

has also been modi�ed to take the annotation on values into account. For the

value to take part in a reduction the lower bound must be zero. That is the

value must not require an update marker on top of the stack. If the lower bound

is nonzero the computation will go wrong and we will consider the con�guration

to be ill-annotated. Again the rule

h

~

H; x=

!

~v

[�;�]

; x ;

~

Si

Lookup

7�! h

~

H; x=

!

~v

[�;�]

; ~v

[��1;��1]

;

~

Si if � � 1

can be added to make for a more e�cient abstract machine.

Again the machine can terminate for three di�erent reason; the computation

terminates successfully with a value, a black hole is detected or the computation

goes wrong. However, now the computation can go wrong for a number of

reasons:

� A binding is erroneously annotated with a X. In this case the terminal

con�guration has the form h

~

H; x=

X

~e ; x ;

~

Si and there is no

~

H

0

such that

h

~

H

0

; x=

X

~e ; x ;

~

Si � h

~

H; x=

X

~e ; x ;

~

Si and h

~

H

0

; e ;

~

Si is closed.

� An update marker is on top of the stack, but the annotation on the value

erroneously speci�es that no update marker needs to be taken care of.

Thus, the terminal con�guration is of the form h

~

H ; ~v

[�;0]

; #x;

~

Si.

138

� A reduction context is on top of the stack but the annotation on the value

erroneously speci�es that there shall be an update marker on top of the

stack. Thus, the terminal con�guration is of the form h

~

H ; ~v

[�+1;�]

;

~

R;

~

Si.

� The con�guration is of the form h

~

H ; ~v

[0;�]

;

~

R;

~

Si but

~

R[~v

[0;�]

]

~

67!. This

cannot happen if we only consider well typed terms (that is well typed in

an ordinary type system).

We de�ne Value~, Blackhole~and Wrong~to be the sets of terminal con�gurations

of the di�erent forms. and we will let

~

V ,

~

B and

~

W range over Value~, Blackhole~

and Wrong~ respectively. We will say that a con�guration

~

C is ill-annotated

if it goes wrong (ie there exists

~

W such that

~

C 7�!

�

~

W). Conversely, we

will say that a con�guration is well-annotated if it does not go wrong. We

will also say that a closed term ~e is ill-annotated/well-annotated if h� ; ~e ; �i is

ill-annotated/well-annotated.

A crucial property of our analysis should be that it annotates expressions so

that the computation cannot go wrong. Our analysis is phrased as a type system

and indeed our soundness result says that well-typed terms are well-annotated.

An important implication is that if only well typed terms are considered, the cost

associated with detecting whether a computation goes wrong can be avoided.

This is particularly important for the rule Var-X where checking whether the

con�guration remains closed or not would be very expensive.

2.4 Implementing the abstract machine

As it stands the abstract machine is not well suited to be implemented directly.

The main reason for this is that it uses substitution which is not very e�cient.

However, Sestoft has shown that from this abstract machine one can derive

lower level abstract machines which can be implemented e�ciently [Ses97]. For

our purposes the higher level abstract machine is well-suited. It models the

aspects of lower level machines that we are interested in and the higher level

makes it tractable for formal proofs. However there are two important aspects

which deserve some attention.

First, some implementations garbage collect update markers if they are dead

(ie, if there is no reference to them). Since we try to predict statically how many

update markers reside on the stack, our implementation cannot be allowed to

garbage collect update markers. The objective for garbage collecting update

markers is twofold. One being that garbage collecting an update marker saves

the cost of performing an update. This saves a strictly bounded amount of

work and it only applies to the dead update markers that happen to be on the

stack when a garbage collection is triggered. With our analysis many of the

markers that potentially could be garbage collected will also never end up on

the stack since the corresponding binding often gets annotated with a X. The

other reason for wanting to garbage collect update markers is that it also reduces

139

the size of the stack. Unless arbitrarily many update markers are stacked on

top of each other (ie without intervening reduction contexts) the saved space is

only (a small) constant factor. Unfortunately arbitrarily many update markers

can stack up on top of each other as in the following example (where index is

the function that picks the n'th element of a list).

let f = �x:let x

0

= id x

xs= f x

0

in cons x xs

y = 1 + 2

in index n (f y)

In this example the number of update markers that stack up on top of each

other is linear in n but all of them can be garbage collected away. Thus in an

implementation with garbage collection of update markers this program can run

without causing a stack overow (assuming that running out of stack can trigger

a garbage collection) but in an implementation without it cannot. Fortunately

this seems to occur very rarely in practice and some compilers do not garbage

collect update markers. Anyhow the situation is not entirely satisfactory and

we will sketch a possible solution in chapter 8.

Another aspect of the abstract machine is that it duplicates values where

some implementations do not. If we, for example, evaluate

let x= 1+ 2

y = id x

in y

we will end up with both x and y bound to 3. Some implementations instead

create an indirection from y to x which can later be removed by the garbage col-

lector, thereby saving space. This can only reduce the space used by a constant

factor but it can have a quite dramatic e�ect in practice [RW93]. However in

most cases the e�ect is quite small and some implementations do indeed copy

values [PJ92]. It should also be possible to modify the abstract machine and

our type system to model an implementation that creates indirections but we

have not considered that.

140

Chapter 3

Type system

In this chapter we present a type system in the form of a type directed transla-

tion that annotates expressions. We will take the type system by Mossin, Turner

and Wadler as our starting point and we will modify it so that it discovers more

unnecessary updates and provides information that allows us to bypass update

marker checks.

3.1 A few observations

The semantics of section 2.3 speci�es that for a binding x = e to be annotated

with a X it is required that when (if ever) the binding is used there is only one

occurrence of x in the con�guration, namely the one that is dereferenced. Our

type system is based on the following idea. If, when a binding x= e is created,

x occurs only once in the con�guration and x never gets duplicated during the

computation then x will occur only once when (if ever) it is dereferenced. Thus,

the type system will annotate a binding with a X, if the corresponding variable

occurs once when the binding is created and it can assure that it never gets

duplicated. There is an important exception to the above; when a variable

occurs once in both branches of a case-expression. Then, since eventually only

one branch will be taken, we may consider it as occurring only once.

1

A variable x may get duplicated during the computation in two ways:

� By the rule

hH ; v ; R;Si

Reduce

7�! hH ; e ; Si if R[v] 7! e

1

Another way to explain this exception is to turn to a lower level semantics. Had we used

an abstract machine with environments (such as the mark 2 machine in [Ses97]) we would

not have required that a variable occurs once in the con�guration but rather that it occurs in

at most one environment. Then case-expressions would not had been an exception anymore,

since the variables in the branches of a case expression always occur in the same environment

(until one of the branches is selected).

141

since when reducing an application (or a case-expression) the variable

gets substituted into the body of the abstraction (or the cons-branch of

the case) and if the bound variable occurs more than once in the body

then x will get duplicated. This is the reason why the binding of x is

annotated with an ! in the following example.

let x=

!

1 + 2 in

(�y:y + y) x

� By the rule

hH ; v ; #x; Si

Update

7�! hH; x= v ; v ; Si

(or by the rule Lookup which is synthesised from Update) since when an

update (or lookup) is performed the value gets duplicated and thus also

its free variables. In the example

let x=

!

1 + 2 in

let f =

!

�y:x + y in

f 1 + f 2

the abstraction �y:x+ y gets duplicated when f is looked up. Thus, since

x is a free variable of the abstraction, x gets duplicated. This is the reason

why the binding of x is annotated with an !.

3.2 Type language

The type language is given below and is an extension to an ordinary type lan-

guage. For simplicity the system is monomorphic and our type language does

not contain type variables. In chapter 5 we will extend the type language with

type variables to allow for a principal typing property.

Bare types � ::= Int j � ! � j List � � �

Types � ::= �

�

Binding types � ::= �

�

We let � range over bare types, that is types without outermost annotations,

which includes integers, function types and lists. We will use bare types to

give types to bare values (values without outermost annotations). We will get

back and explain the di�erent forms of bare types. However �rst we need to

introduce types and binding types. We let � range over types. The type of

an expression ~e reects not only the ordinary type of the expression but also

the number of update markers the value of the expression (if it terminates) can

take care of. Thus, an expression with type �

[�;�]

must be able to handle any

number of markers between � and �. For example, 5

[1;2]

has the type Int

[1;2]

.

We let � range over binding types which we will use to give a type to bindings

142

and variables (whose types will reect the type of the bindings they refer to).

The type of a binding x=

�

~e naturally reects the type of the expression ~e but

it also reects the way it is bound. So for example x =

X

2

[0;0]

+

[0;0]

3

[0;0]

has

the type x : Int

[0;0]

X

. Note that we include the name of the variable in the type

of the binding. If a variable x refers to a binding with the type x : � we will

say that x has the type �. An example which might need some explanation is

x =

!

2

[0;0]

+

[1;1]

3

[0;0]

which we assign the type x : Int

[0;0]

!

. This may seem a

bit surprising at �rst glance since the addition is annotated with [1; 1] we might

expect the type to be x : Int

[1;1]

!

. However this is not the case since when

we evaluate x we look up the binding, push an update marker and evaluate

2

[0;0]

+

[1;1]

3

[0;0]

. The annotation [1; 1] then ensures that the update marker we

just pushed can be taken care of. However no additional update markers can be

handled. Thus there must not be any marker on top of the stack when we start

the evaluation of x and therefore we assign the binding the type x : Int

[0;0]

!

.

Let us return to the di�erent forms of bare types. The bare type � ! �

denotes functions that when applied to a variable (remember expressions can

only be applied to variables) with the binding type � will yield something of

type � . We will sometimes use � !

�

� as syntactic sugar for (� ! �)

�

. The

bare type List � � � denotes lists whose head (if non-empty) has the binding

type �, and whose tail has the binding type (List � � �)

�

�

. The fact that the

head and the tail are given binding types (rather than just types) reects that

cons can be applied to variables only. Thus the types of the head and the tail

are actually the types of the bindings referred to from the cons-cell. An empty

list can naturally be given any list-type.

3.3 A subtyping relation

There is a natural subtype relation for our type language. For example, we say

that 5

[1;2]

has the type Int

[1;2]

since 5

[1;2]

can take care of one or two update

markers. But it should also have the type Int

[1;1]

since it can indeed take care

of just one update marker. Clearly every term of the type Int

[1;2]

could also be

considered to have the type Int

[1;1]

although it is less informative. Therefore

we say that Int

[1;2]

is a subtype of Int

[1;1]

.

When we turn to binding types the situation is slightly subtle and we need

to have our application in mind. Remember that the idea behind the type

system is that we can annotate a binding x= ~e with a X if we can assure that

we never duplicate x during the computation. This is achieved by preventing

the duplication of variables whose type is of the form �

X

. Clearly a binding

of the form x =

X

~e must not be given a type of the form x : �

!

since it would

allow that the variable x, referring to the binding, gets duplicated and this

must not happen. For bindings annotated with an ! the situation is di�erent.

A variable referring to such a binding may freely be duplicated and possible

dereferenced several times. However it is not forced to be duplicated. Although

143

Int � Int

�

0

� � � � �

0

� ! � � �

0

! �

0

� � �

0

�

0

� � �

0

� �

List � � � � List �

0

�

0

�

0

� � �

0

�

0

� �

�

�

� �

0

�

0

� � �

0

�

0

� �

�

�

� �

0

�

0

Figure 3.1: The subtyping relation

less informative, we can therefore safely assign the binding a type of the form

�

X

.

Before we go on and de�ne our subtyping relation we will need orderings

on the annotations. First we de�ne [�; �] � [�

0

; �

0

] i� �

0

� � and � � �

0

. The

ordering can be thought of as modelling the capability of (a value annotated

with) the annotation. The smaller the annotation the fewer stack con�gurations

it will be able to handle safely. Thus the completely incapable annotation [!; 0]

is the smallest annotation. A value annotated with [!; 0] will require an in�nite

number of update markers on the stack but it cannot take care of any of them.

In contrast the largest annotation [0; !] can take care of an arbitrary number of

update markers. It is clearly safe to annotate every value with [0; !]. However

then little would be won since the term would behave exactly as the unannotated

terms in the standard semantics. We also de�ne an ordering on fX; !g where

X < !. Again the ordering models the capability of the annotations. Using these

orderings we �nally de�ne the subtyping relation which can be found in �gure

3.1.

3.4 Contexts

We use � to range over typing contexts.

Contexts � ::= x

1

: �

1

; :::; x

n

: �

n

A context associates binding types with variables and consists of a sequence of

type associations of the form x : �. A context may very well contain several

occurrences of the same variable, and the ordering of type associations is irrel-

evant. We will write �

0

;�

1

to denote the concatenation of �

0

and �

1

. As usual

we will use contexts when we give a type to a term with free variables. Thus

we will say that ~e has the type � in a context � if we can give ~e the type �

assuming that the free variables in ~e has the types given by �. However the

context also plays another important rôle; it records the number of times each

variable occurs in the term. Thus if x occurs n times in ~e it also occurs n times

in � (with one important exception, namely if x occurs in di�erent branches of

144

a case-expression). This may be a bit surprising at �rst. Consider for example

the term (�

[0;0]

y:y +

[0;0]

y) x with the free variable x. We will be able to say

that this term has the type Int

[0;0]

in the context x : Int

[0;0]

!

. According to the

reduction relation the term can reduce to x +

[0;0]

x so we would expect to be

able to give x+

[0;0]

x the same type in the same context. However this will not

be possible since x now occurs twice in the term. Instead we can type the term

in the context x : Int

[0;0]

!

; x : Int

[0;0]

!

where x occurs twice. To be able to state

a relation between the contexts before and after a reduction we de�ne a rewrite

relation on contexts.

�; x : �

!

Dup

! �; x : �

!

; x : �

!

�; x : �

Drop

! �

We have two rewrite rules. The �rst says that a type association of the form

x : �

!

may be duplicated. This is suppose to model the duplication of a variable

x during the computation. Note that we may not duplicate a type association

of the form x : �

X

. This reects our intention that a variable that refers to a

binding which will not be updated, must not be duplicated. The second rule

simply allows us to remove a type association. This corresponds to when a

variable is dropped during the computation (for example since it occurred in a

branch of a case-expression that was not selected). These rewrite rules will play

a rôle similar to the weakening and contraction rules in logic. The restricted

duplication (ie that we may only duplicate type associations of the form x : �

!

)

corresponds to the restricted form of contraction in linear logic [Gir87].

We will let � range over distinct typing contexts.

Distinct contexts � ::= x

1

: �

1

; :::; x

n

: �

n

where x

i

6= x

j

if i 6= j

A distinct context is a context that does not contain the same variable more

than once. If (and only if) the distinct contexts �

0

and �

1

have no variables

in common we will write �

0

;�

1

for their concatenation. We will use distinct

contexts to give a type to declarations and heaps. For example x=

X

1

[0;0]

+

[0;0]

2

[0;0]

; y=

!

3

[0;0]

+

[1;1]

4

[0;0]

has the type x : Int

[0;0]

X

; y : Int

[0;0]

!

. The fact that we

use distinct contexts rather than contexts reects that a declaration may not

bind the same variable more than once.

To relate the type � of a heap to the types of the variables referring to the

bindings in the heap we de�ne a relation � ` � (we will say that � entails �).

We will let � ` � i� � !

�

�. The relation simply says that if � ` � then

the number of occurrences of a variable in � is consistent with the type of the

variable in �. For example if x : �

X

is a type association in � then x occurs at

most once in � (since we may not duplicate such a type association).

3.5 Typing judgements

The analysis is presented in the form of a type directed translation. There are

�ve forms of typing judgements, one for each syntactic category. Judgements

145

for bare values take the form � ` v ~v : � and shall be read \In the context

�, the value v can be annotated as ~v having bare type �". We will refer to

v as the source and ~v as the target of the translation. Similarly judgements

for expressions take the form � ` e ~e : � . Judgements for alternatives take

the form � ` alts

~

alts : �) � . Thus we will assign alternatives a type

of the form �) � where � is the bare type of the bare value used to select a

branch and � is the type of the right hand side of the branches. In our small

language � will always be of list type. Judgements for bindings take the form

� ` b

~

b : (x : �). Note that the type of a binding includes the name of the

bound variable, ie the type of a binding is actually a type association. Finally,

judgements for declarations take the form � ` d

~

d : �. Thus, the type of a

declaration is a distinct context containing the types of the bindings in

~

d. As

discussed in the previous section the context in our judgements as usual keeps

track of the types of the free variables of the term but it also records the number

of times each variable occurs in the term. It should be noted that when typing

a binding the context will contain all variables occurring in the right hand side

of the binding possibly including the variable bound by the binding. Similarly

when typing a declaration the context will contain all variables occurring in the

right hand sides of the declaration possibly including the variables bound by

the declaration.

3.6 Typing rules

In this section we will present the typing rules of our type system. We will

present the rules one by one. For ease of reference all typing rules have been

conveniently collected in a few �gures in appendix A.

3.6.1 Typing bare values

The rule

Abs

�

0

;�

1

` e ~e : �

�

0

` �x:e �x:~e : � ! �

x 62 dom(�

0

)

x : � !

�

�

1

is used to type bare abstractions. The key feature of the rule is that if x

occurs more than once in ~e then the abstraction will be assigned a type of the

form �

0

!

! � indicating that a variable will be duplicated if it is passed to the

abstraction. This is accomplished by �rst typing ~e in a context �

0

;�

1

, where

x 62 dom(�

0

). Then, if x occurs more than once in ~e, x will occur more than

once in �

1

. Now the side condition x : � ! �

1

specify that we must be able to

rewrite x : � to �

1

which clearly involves duplicating x : � (since x occurs more

than once in �

1

) so � must then be of the form �

0

!

. The rule

Int

` n n : Int

146

is used to type integers and is straightforward. The only thing worth noticing

is that we must type integers in an empty context since an integer does not

contain any free variables. The rule

Nil

` nil nil : List � � �

is used to type the empty list and should be completely straightforward. The

rule

Cons

x : �

0

; y : �

1

` cons x y cons x y : List � � �

�

0

� �

�

1

� (List � � �)

�

�

used to type cons cells might however require some explanation. Saying that

a cons-value has the type List � � � should mean that (the variable referring

to the binding containing) the head of the list has the binding type � and

(the variable referring to the binding containing) the tail has the binding type

(List � � �)

�

�

. However since we have a subtyping relation on our types it is a

desirable property that if we can derive that a term has a type we should be

able to derive (in the same context) that it has any supertype as well. We could

obtain this property by having a separate subsumption rule but we have chosen

not to. Instead we have added subtyping as a side conditions to a few carefully

selected rules so that we can show a subsumption lemma.

3.6.2 Typing expressions

The rule

Value

� ` v ~v : �

� ` v ~v

�

: �

[�;�]

if � > 0 then �!

�

�;�

[�; �] � �

is used to type an annotated value. Saying that an annotated value has the

type �

[�;�]

means that the value has to be able to take care of any number of

of update markers between � and �. So if � > 0 then the annotated value must

be able to take care of at least one update marker. Taking care of an update

marker means updating with the value, thus duplicating any free variables of

the value. The purpose of the side condition if � > 0 then � !

�

�;� is to

ensure that these variables may safely be duplicated. Finally the side condition

[�; �] � � says that the annotation � on the value may be more capable than the

annotation [�; �] on the type, but not less. The rule

Var

x : �

�

` x x : �

0

� � �

0

is straightforward and simply records the fact that x occurs once in the term.

The side condition is again there to enable the subsumption lemma. The rule

App

� ` e ~e : � !

[0;0]

�

�; x : � ` e x ~e x : �

147

however requires some explanation. Naturally if ~e has the type � !

[0;0]

� and

x has the type � then ~e x should be given the type � . But why does the rule

require that the function type is annotated with [0; 0]? The reason is that when

evaluation of ~e x starts, a reduction context of the form [] x is pushed onto the

stack. Thus it is crucial that ~e does not require any update markers on top of

the stack. The rule

Plus

�

0

` e

0

 ~e

0

: Int

[0;0]

�

1

` e

1

 ~e

1

: Int

[0;0]

�

0

; �

1

` e

0

+ e

1

 ~e

0

+

�

~e

1

: Int

�

0

�

0

� �

ensures that ~e

0

and ~e

1

do not require any update markers on top of the stack

(cf the rule App). Otherwise it is completely straightforward. The rule

Add

� ` e ~e : Int

[0;0]

� ` add

n

e add

�

n

~e : Int

�

0

�

0

� �

is similar to the rule Plus. The rule

Let

�

0

; �

1

` d

~

d : � �

2

; �

3

` e ~e : �

�

0

; �

2

` let d in e let

~

d in ~e : �

dom(

~

d) \ dom(�

0

;�

2

) = ;

� ` �

1

; �

3

ensures that if a let-bound variable occurs more than once or may be duplicated

then the type of the binding must be of the form �

0

!

. This is accomplished in

the following way: First, we type

~

d yielding a distinct context � containing the

types of the bindings in

~

d. We then split the context, in which

~

d was typed, into

�

0

and �

1

such that any occurrence of a variable bound by

~

d ends up in �

1

. This

is ensured by the side condition dom(

~

d) \ dom(�

0

;�

2

) = ;. Second, we type

~e and then split the context into �

2

and �

3

. Analogously, any occurrence of a

variable bound by

~

d ends up in �

3

, also ensured by dom(

~

d) \ dom(�

0

;�

2

) = ;.

Now if a let-bound variable x occurs more than once in

~

d and ~e, then x will

also occur more than once in �

1

;�

3

and thus the condition � ` �

1

;�

3

will force

the type of x to be of the form �

0

!

, for some �

0

. The rule

Case

�

0

` e ~e : �

[0;0]

�

1

` alts

~

alts : �) �

�

0

; �

1

` case e of alts case ~e of

~

alts : �

simply ensures that ~e does not require any update markers on top of the stack

(cf the rule App). Otherwise it is completely straightforward.

3.6.3 Typing bindings

The rule

Bind-X

� ` e ~e : �

� ` x= e x=

X

~e : (x : �

X

)

simply assigns a binding annotated with a X a type of the form �

X

. The rule

Bind-!

� ` e ~e : �

[�+1;�+1]

� ` x= e x=

!

~e : (x : �

[�;�]

�

)

148

is more interesting. The rule requires that the expression in the binding is able

to take care of, and allows it to require, an extra update marker. This reects

the fact that when the binding gets evaluated an extra update marker will be

pushed onto the stack. Also a binding annotated with an ! may be given a type

of either the form �

!

or the form �

X

.

3.6.4 Typing declarations

The rules

Decl-�

` � � : �

Decl

�

0

` d

~

d : � �

1

` b

~

b : (x : �)

�

0

;�

1

` d; b

~

d;

~

b : (�; x : �)

are straightforward. They simply collect the types of the bindings in the decla-

ration.

3.6.5 Typing alternatives

The rule

Alts

�

0

;�

1

` e

0

 ~e

0

: � �

0

;�

2

;�

3

` e

1

 ~e

1

: �

�

0

;�

1

;�

2

` fnil) e

0

; cons x y) e

1

g

fnil) ~e

0

; cons x y) ~e

1

g : List � � �) �

x; y 62 dom(�

0

;�

2

)

x : �;

y : (List � � �)

�

�

` �

3

contains a subtle treatment of contexts. If a variable occurs once in each branch

of the case-expression and thus twice in the term it may still occur only once

in the context. This is achieved by collecting the variables that occur in both

branches in a common context �

0

, thus e�ectively counting a variable occurring

in both branches as one. Finally, the side conditions take care of the variables

bound in the cons-pattern. They see to that if x or y occurs several times in

e

1

then they must have a type of the form �

0

!

. It works in essentially the same

way as in the rule for abstractions.

149

150

Chapter 4

Soundness

In this chapter we will prove the soundness of our type system. By soundness

we mean that every well-typed term is indeed well-annotated (in the sense that

they do not go wrong).

4.1 Evaluation preserves typings

We will prove the soundness by showing that evaluation preserves typings in the

style popularised byWright and Felleisen [WF94]. Since our notion of evaluation

involves transitions between con�gurations we need to de�ne what it means for

a con�guration to be well-typed. That is we will need typing judgements of the

form ` C

~

C : � . Note that since we require con�gurations to be closed there

is no need for any context. However it turns out that the de�nition of such a

typing relation and its desired properties are not entirely straightforward. We

will try to motivate our de�nition and the properties we will prove about it by

studying the expression

let x= 1 + 2 in

let y = (�z:z) x in

y + y

taken from the introduction. It can safely be annotated as

let x=

X

1

0

+

1

2

0

in

let y =

!

(�

0

z:z) x in

y +

0

y

(where 0 and 1 abbreviates [0; 0] and [1; 1] respectively) having type Int

[0;0]

. If

we execute these expressions in the abstract machines we get the two transition

sequences given in �gure 4.1 and 4.2 respectively. Note that we have named

the con�gurations in the transition sequences as C

0

, C

1

, etc and

~

C

0

,

~

C

1

, etc

respectively.

151

h� ; let x= 1 + 2 in let y = (�z:z) x in y + y ; �i (C

0

)

Let

7�! hx= 1 + 2 ; let y = (�z:z) x in y + y ; �i (C

1

)

Let

7�! hx= 1 + 2; y = (�z:z) x ; y + y ; �i (C

2

)

Unw.

7�! hx= 1 + 2; y = (�z:z) x ; y ; [] + yi (C

3

)

Var

7�! hx= 1 + 2 ; (�z:z) x ; #y; [] + yi (C

4

)

Unw.

7�! hx= 1 + 2 ; �z:z ; [] x;#y; [] + yi (C

5

)

Red.

7�! hx= 1 + 2 ; x ; #y; [] + yi (C

6

)

Var

7�! h� ; 1 + 2 ; #x;#y; [] + yi (C

7

)

Unw.

7�! h� ; 1 ; [] + 2;#x;#y; [] + yi (C

8

)

Red.

7�! h� ; add

1

2 ; #x;#y; [] + yi (C

9

)

Unw.

7�! h� ; 2 ; add

1

[];#x;#y; [] + yi (C

10

)

Red.

7�! h� ; 3 ; #x;#y; [] + yi (C

11

)

Upd.

7�! hx= 3 ; 3 ; #y; [] + yi � h� ; 3 ; #y; [] + yi (C

12

)

Upd.

7�! hy = 3 ; 3 ; [] + yi (C

13

)

Red.

7�! hy = 3 ; add

3

y ; �i (C

14

)

Unw.

7�! hy = 3 ; y ; add

3

[]i (C

15

)

Loo.

7�! hy = 3 ; 3 ; add

3

[]i � h� ; 3 ; add

3

[]i (C

16

)

Red.

7�! h� ; 6 ; �i (C

17

)

Figure 4.1: A transition sequence

152

h� ; let x=

X

1

0

+

1

2

0

in let y =

!

(�

0

z:z) x in y +

0

y ; �i (

~

C

0

)

Let

~7�! hx=

X

1

0

+

1

2

0

; let y =

!

(�

0

z:z) x in y +

0

y ; �i (

~

C

1

)

Let

~7�! hx=

X

1

0

+

1

2

0

; y =

!

(�

0

z:z) x ; y +

0

y ; �i (

~

C

2

)

Unw.

~7�! hx=

X

1

0

+

1

2

0

; y =

!

(�

0

z:z) x ; y ; [] +

0

yi (

~

C

3

)

Var-!

~7�! hx=

X

1

0

+

1

2

0

; (�

0

z:z) x ; #y; [] +

0

yi (

~

C

4

)

Unw.

~7�! hx=

X

1

0

+

1

2

0

; �

0

z:z ; [] x;#y; [] +

0

yi (

~

C

5

)

Red.

~7�! hx=

X

1

0

+

1

2

0

; x ; #y; [] +

0

yi (

~

C

6

)

Var-X

~7�! h� ; 1

0

+

1

2

0

; #y; [] +

0

yi (

~

C

7

)

Unw.

~7�! h� ; 1

0

; [] +

1

2

0

;#y; [] +

0

yi (

~

C

8

)

Red.

~7�! h� ; add

1

1

2

0

; #y; [] +

0

yi (

~

C

9

)

Unw.

~7�! h� ; 2

0

; add

1

1

[];#y; [] +

0

yi (

~

C

10

)

Red.

~7�! h� ; 3

1

; #y; [] +

0

yi (

~

C

11

)

Upd.

~7�! hy =

!

3

1

; 3

0

; [] +

0

yi (

~

C

12

)

Red.

~7�! hy =

!

3

1

; add

0

3

y ; �i (

~

C

13

)

Unw.

~7�! hy =

!

3

1

; y ; add

0

3

[]i (

~

C

14

)

Loo.

~7�! hy =

!

3

1

; 3

0

; add

0

3

[]i � h� ; 3

0

; add

0

3

[]i (

~

C

15

)

Red.

~7�! h� ; 6

0

; �i (

~

C

16

)

Figure 4.2: An annotated transition sequence

153

There are a number of properties one might be tempted to require from our

typing relation for con�gurations.

1. If ` e ~e : � then the corresponding initial con�gurations should be

related as well, that is in our example ` C

0

~

C

0

: Int

[0;0]

.

2. The relation should be preserved by transitions, that is in our example

` C

1

~

C

1

: Int

[0;0]

, ` C

2

~

C

2

: Int

[0;0]

and so forth.

3. If ` C

~

C : � then C should be a terminal con�guration i�

~

C is a

terminal con�guration.

4. If ` C

~

C : � then C and

~

C must not be wrong, ie C 62 Wrong and

~

C 62Wrong~.

5. If ` C

~

C : � then C and

~

C should have the same shape, that is if we

remove the annotations from

~

C we should obtain C.

However 1, 2 and 3 are contradictory since they would imply that the two

transition sequences in our example would be of equal length, which they are

not. The reason is of course that by annotating the binding of x with X we avoid

an update and thus save a transition. This also explains why the con�gurations

from C

7

to C

11

do not have the same shape (there is an extra update marker

for x on the stack) as their annotated counterparts. It should be clear that we

must be able to discard update markers when we annotate a con�guration thus

giving up property 5. We will refer to these update markers as the discarded

update markers. We also need to modify property 2 and 3 in order for them to

hold. The following two propositions is the result of modifying property 2.

Proposition 4.1.1 (Source transition)

If ` C

~

C : � and C 7�! C

0

then there exists

~

C

0

such that

�

~

C ~7�!

0=1

~

C

0

� ` C

0

~

C

0

: � .

Proposition 4.1.2 (Target transition)

If ` C

~

C : � and

~

C ~7�!

~

C

0

then there exists C

0

such that

� C 7�!

+

C

0

� ` C

0

~

C

0

: � .

The source transition proposition states that if the source of the translation (the

con�guration without annotations) can evaluate one step then the target of the

translation (the annotated con�guration) can match that by taking a step or

by taking no step at all. The case where no step is needed is of course when

the source takes care of a discarded update marker that does not exist in the

154

target. In our example this happens in the transition C

11

7�! C

12

. Indeed

our typing rules for con�gurations will allow that both ` C

11

~

C

11

: Int

[0;0]

and ` C

12

~

C

11

: Int

[0;0]

. The target transition proposition states that if the

target of the translation can evaluate one step then the source of the translation

can match that by taking one or more steps. The source of course needs to take

more than one step if it has to take care of a discarded update marker that does

not exist in the target. In our example, to match

~

C

11

~7�!

~

C

12

the source needs

to take two steps: C

11

7�! C

12

and C

12

7�! C

13

. Finally the following lemma

is the result of modifying property 3 and then combining it with property 4.

Lemma 4.1.3 (Terminal con�guration property)

If ` C

~

C : � then

(i) If C 2 Value then

~

C 2 Value~

(ii) If

~

C 2 Value~then C 7�!

�

V and ` V

~

C : �

(iii) C 2 Blackhole i�

~

C 2 Blackhole~

(iv) C 62Wrong and

~

C 62Wrong~

Again, the update markers that only exist in the source show up. This time in

clause (ii): if the target is a value then the source is not necessarily a value since

it might be necessary to take care of some update markers that do not exist in

the target.

Before we go on and prove the source and target transition properties as well

as the terminal con�guration property we naturally need to de�ne the typing

relation for con�gurations. But we also need to establish a whole range of

properties of our type system. We therefore postpone those proofs to section

4.4. The outline of the rest of this chapter is as follows. We start by de�ning

the typing relation in section 4.2. Then in section 4.3 we go on and prove the

soundness of the type system using the properties stated in this section. Finally

in section 4.4 we establish a whole range of properties we need to complete the

postponed proofs.

4.2 Typing con�gurations

We will now go on and de�ne our typing relation on con�gurations. However,

to do that we need to de�ne typing relations for the di�erent components of the

con�gurations. Since we can consider a heap as a declaration there is no need for

a separate typing relation for heaps. Consequently we will write � ` H

~

H : �

when H (considered as a declaration) can be annotated as

~

H (considered as a

declaration). To de�ne the typing relation for stacks we �rst need to de�ne

a typing relation for reduction contexts. The typing judgements for reduction

contexts take the form � ` R

~

R : [�

[0;0]

]� and means that if a term ~e of type

155

�

[0;0]

in context �

0

is plugged into

~

R then the result

~

R[~e] has type � in context

�;�

0

. The typing rules for reduction contexts are derived from the rules for

expressions of the corresponding form. For example from the rule

App

� ` e ~e : � !

[0;0]

�

�; x : � ` e x ~e x : �

for applications we can derive the rule

AppR

x : � ` [] x [] x : [� !

[0;0]

�]�

for applicative contexts. The rest of the typing rules are derived in the same way

and are given in �gure A.6 in appendix A. Our typing judgements for stacks

take the form � ` S

~

S : � ; [�

0

]�

1

. where � corresponds to the types of the

update markers in the stack. Since we think of them as binders they are given

a type of the same form as given to a heap. The type �

0

is the type the stack

requires the expression in the con�guration to have. If so, �

1

will be the type of

the whole con�guration. The rule

Stack-�

` � � : � ; [�]�

simply states that, for the empty stack, the expression in the con�guration may

have any type and that will be the type of the whole con�guration. The rule

Stack-R

�

0

` R

~

R : [�

[0;0]

]�

0

�

1

` S

~

S : � ; [�

0

]�

1

�

0

; �

1

` R;S

~

R;

~

S : � ; [�

[0;0]

]�

1

handles the case when a reduction context is on top of the stack. The key

feature of the rule is that it requires the expression to have a type of the form

�

[0;0]

. Thus the expression need not be able to care of and it must not require

any update markers on top of the stack. The rule

Stack-#

� ` S

~

S : � ; [�

0

]�

1

� ` #x; S #x;

~

S : (�; x : �

[�;�]

�

; [�

[�+1;�+1]

]�

1

)

�

[�;�]

� �

0

handles the case when the stack is of the form #x;

~

S. If the stack

~

S requires

an expression of type �

0

and �

[�;�]

is a subtype of �

0

then the stack #x;

~

S will

require an expression of type �

[�+1;�+1]

, that is an expression that can take care

of, and is allowed to require, the extra update marker. When x eventually gets

updated, it will be updated with a value ~v

�

of type �

[�+1;�+1]

. This will create

a binding of the form x=

!

~v

�

which can be given a type of the form x : �

[�;�]

�

for

any �. Thus we extend � with x : �

[�;�]

�

. Finally the rule

Stack-#-discard

� ` S

~

S : � ; [�

0

]�

1

� ` #x; S

~

S : � ; [�

2

]�

1

�

2

� �

0

156

allows update markers to be discarded. Note that when a marker is discarded

� is not extended and the typing rule for con�gurations will prevent us from

erroneously discarding update markers. Finally typing judgements for con�gu-

rations take the form ` C

~

C : � where � simply is the type of the result of

evaluating the con�guration. Note that since we only consider closed con�gu-

rations there is no need for any context. The rule for typing con�gurations is

as follows.

Con�g

�

0

` H

~

H : �

0

�

1

` e ~e : �

0

�

2

` S

~

S : �

1

; [�

0

]�

1

` hH ; e ; Si h

~

H ; ~e ;

~

Si : �

1

�

0

; �

1

` �

0

; �

1

; �

2

The rule ensures that if a variable occurs several times in the con�guration or

may be duplicated, then the corresponding binding in the heap is annotated

with an !. This is achieved as follows: First, we type

~

H in a context �

0

yielding

a distinct context �

0

containing the types of the bindings in

~

H . Second, we

type ~e in a context �

1

yielding some type �

0

. Third, we type

~

S in a context

�

2

yielding a distinct context �

1

, corresponding to the types of the update

markers, and a type �

1

giving the type of the whole con�guration. Now, if a

variable x occurs more than once in

~

H, ~e and

~

S then x will also occur more

than once in �

0

;�

1

;�

2

and thus the condition �

0

;�

1

` �

0

;�

1

;�

2

will force the

type of x to be of the form �

!

, for some � . It should be pointed out that the

typing relation for con�gurations is de�ned up to garbage equivalence. That is

we are allowed (and sometimes required) to garbage convert the con�guration

before we can apply the typing rule.

4.3 Soundness theorem

We are now ready to state and prove our soundness theorem.

Theorem 4.3.1 (Soundness)

If ` e ~e : � then

(i) h� ; e ; �i 7�!

�

V i� h� ; ~e ; �i ~7�!

�

~

V .

(ii) h� ; e ; �i 7�!

�

B i� h� ; ~e ; �i ~7�!

�

~

B.

(iii) h� ; e ; �i diverges i� h� ; ~e ; �i diverges

(iv) h� ; e ; �i 67�!

�

W and h� ; ~e ; �i

~

67�!

�

~

W .

Proof 4.3.2 (Soundness)

The soundness theorem follows easily from source and target transition and

the terminal con�guration property. We will only prove (i). The others follow

analogously. Assume

` e ~e : �:

157

By de�nition

` h� ; e ; �i h� ; ~e ; �i : �:

We will �rst consider the left to right implication. Thus assume that

h� ; e ; �i 7�!

�

V:

Now by the source transition property we know that there exists a corresponding

annotated transition sequence

h� ; ~e ; �i ~7�!

�

~

C

such that

` V

~

C : �:

Finally by the terminal con�guration property we know that

~

C 2 Value~

as required. Now let us turn to the right to left implication and thus assume

that

h� ; ~e ; �i ~7�!

�

~

V :

By the target transition property we can construct a corresponding transition

sequence

h� ; e ; �i 7�!

�

C

where

` C

~

V : �:

Since there may be discarded update markers on C's stack, C is not necessarily

a value con�guration. However by the terminal con�guration property we know

that these update markers can be taken care of, that is there exists a transition

sequence

C 7�!

�

V:

Thus from h� ; e ; �i 7�!

�

C and C 7�!

�

V we may conclude that

h� ; e ; �i 7�!

�

V

as required.

An important consequence of the fact that well-typed terms cannot go wrong

is that if we restrict ourselves to well-typed terms the implementation need not

check for whether a computation goes wrong or not. This is important since in

our annotated language these checks would be expensive.

158

4.4 Postponed proofs

In this section we will give the postponed proofs of source and target transition

and the terminal con�guration lemma. However, before we can do so we need to

establish a whole range of properties of the building blocks of our type system.

We will regularly omit the details of proofs where they follow by a routine

induction.

4.4.1 Context rewriting and context entailment

The context rewriting relation and context entailment relation play a central rôle

in our type system. Consequently our proofs heavily uses a number of prop-

erties of context rewriting and context entailment. We will need the following

properties of context rewriting.

Lemma 4.4.1 (Context rewrite lemma)

(i) If �!

�

�

0

then �;�

00

!

�

�

0

;�

00

.

(ii) If �!

�

�

0

then �[~x:=~y]!

�

�

0

[~x:=~y].

(iii) If �

0

!

�

�

1

and �

0

0

� �

0

then there exist �

0

1

such that �

0

0

!

�

�

0

1

and

�

0

1

� �

1

.

(iv) If �!

�

�

0

then dom(�) � dom(�

0

).

Proof 4.4.2

Each of the properties are proved by induction over the length of the rewriting

sequence.

We will also need a number of properties of context entailment.

Lemma 4.4.3 (Context entailment lemma)

(i) If � ` � and �!

�

�

0

then � ` �

0

.

(ii) If � ` � then dom(�) � dom(�)

(iii) If �

0

` �

0

, �

1

` �

1

and dom(�

0

) \ dom(�

1

) = ;, then �

0

;�

1

` �

0

;�

1

.

(iv) If �; x : � ` �; x : �

0

then � � �

0

.

(v) If �; x : �

X

` �; x : �

X

then � ` �

Proof 4.4.4

The �rst three results follows immediately from the context rewrite lemma. The

two last ones are proved by induction over the rewriting sequence (remember

that � ` � i� � !

�

�) and relies on the fact we only allow a distinct context

to the left of the turnstyle.

159

In the proofs of the rest of this section we will often use the properties of context

rewriting and context entailment without an explicit reference to the context

rewriting lemma and the context entailment lemma.

4.4.2 Free and bound variables lemmas

A key property of our type system is that a variable occurs in the context if

and only if it occurs in the corresponding term. This fact is expressed by the

following lemma.

Lemma 4.4.5 (Free variables lemma)

(i) If � ` e ~e : � then fv(e) = dom(�) = fv(~e).

(ii) If � ` H

~

H : � then fv(H) = dom(�) = fv(

~

H).

(iii) If � ` S

~

S : � ; [�

0

]�

1

then fv(S) = dom(�) = fv(

~

S).

Proof 4.4.6

We �rst prove (i) by induction over the height of the derivation of � ` e

~e : � . We can then prove (ii) and (iii) by induction over the size of H and S

respectively.

We also need the following lemma which relates the variables bound in a heap

(or stack) to the variables that show up in the distinct context we give as the

type to the heap (or stack).

Lemma 4.4.7 (Bound variables lemma)

(i) If � ` H

~

H : � then dom(H) = dom(�) = dom(

~

H).

(ii) If � ` S

~

S : � ; [�

0

]�

1

then dom(S) � dom(�) = dom(

~

S).

Proof 4.4.8

By induction over the size of H and S respectively.

4.4.3 Subsumption lemma

In any type system with a subtyping relation one would expect that if e can be

given the type � and � is a subtype of �

0

then e can be given the type �

0

. This is

sometimes assured by having a subsumption rule which allows subtyping to be

applied. We have chosen to instead build subtyping into the leaf rules so that

we can show the following subsumption lemma. It turns out that by not having

a separate subsumption rule we retain a syntax-directed system and our proofs

can be liberated from a whole lot of clutter.

Lemma 4.4.9 (Subsumption lemma)

If � ` e ~e : � , �

0

� � and � � �

0

and then �

0

` e ~e : �

0

.

160

Proof 4.4.10

By induction over the derivation of � ` e ~e : � .

4.4.4 Substitution lemma

As one can expect our type system enjoys a substitution property.

Lemma 4.4.11 (Substitution lemma)

If � ` e ~e : � then �[~x:=~y] ` e[~x:=~y] ~e[~x:=~y] : �

Proof 4.4.12

By induction over the derivation of � ` e ~e : � .

It should be noted that we only allow variables to be substituted for variables

not for terms. Due to the restricted syntax substituting a variable for a term

could yield an ill-formed term. Besides, the semantics only substitutes variables

for variables so there is no need for such a substitution.

4.4.5 Unwind lemma

The following lemma states that if we can type an expression of the form

~

R[~e]

then we can type

~

R and ~e as well. We will later use this lemma when we prove

that typings are preserved by the transition Unwind.

Lemma 4.4.13 (Unwind lemma)

If � ` R[e]

~

R[~e] : � then there exist �

0

, �

1

and � such that

� �

0

` R

~

R : [�

[0;0]

]�

� �

1

` e ~e : �

[0;0]

� � � �

0

;�

1

Proof 4.4.14

Since the typing rules for reduction contexts are derived from the corresponding

rules for expressions it is a simple matter to prove the lemma by case analysis

on R and inspection of the typing rules.

4.4.6 Discarded update markers lemma

So far the argued properties of the type system have been rather straightforward

or standard. However, the discarded update markers lemma is right at the heart

of the type system. Let us �rst recapitulate the rule

Stack-#-discard

� ` S

~

S : � ; [�

0

]�

1

� ` #x; S

~

S : � ; [�

2

]�

1

�

2

� �

0

161

which allows update markers to be discarded by the type directed translation.

This means that the typing rules for con�gurations are not syntax directed

and that the source and target of the translation might be of di�erent shapes.

The signi�cance of the discarded update markers lemma is that is says that

these discarded update markers are in fact redundant. That is that a binding

created by the update signi�ed by such an update marker can immediately be

removed by garbage conversion. Another way to put it is that when the second

component of the con�guration is a value we may take care of any discarded

update marker that happens to be on top of the stack without adding any

live binding to the heap. And we can repeat this process until the top of the

stack does not contain any discarded update markers. This is expressed in the

following lemma.

Lemma 4.4.15 (Discarded update markers lemma)

If ` hH ; v ; S

0

i

~

C : � then there exist n � 0 and S

i

for 1 � i � n such that

� hH ; v ; S

0

i

Update

7�! hH ; v ; S

1

i

Update

7�! : : :

Update

7�! hH ; v ; S

n

i

� ` hH ; v ; S

i

i

~

C : �

� If S

n

� � then

~

C � h

~

H ; ~v

�

; �i.

� If S

n

� R;S then

~

C � h

~

H ; ~v

�

;

~

R;

~

Si.

� If S

n

� #x; S then

~

C � h

~

H ; ~v

�

; #x;

~

Si.

Proof 4.4.16 (Discarded update markers lemma)

Assume

` hH ; v ; S

0

i

~

C : �:

We proceed by induction over the size of S

0

. By inspection of the typing rules

we see that the derivation of ` hH ; v ; S

0

i

~

C : � is of the following form.

Con�g

�

0

` H

~

H : �

0

�

1

` v ~v

�

: �

0

�

2

` S

0

~

S : �

1

; [�

0

]�

` hH ; v ; S

0

i h

~

H ; ~v

�

;

~

Si : �

�

0

;�

1

` �

0

;�

1

;�

2

Now the outermost rule used in the derivation of �

2

` S

0

~

S : �

1

; [�

0

]� can

be either Stack-�, Stack-R, Stack-# or Stack-#-discard. In the three �rst cases

the result follows immediately by taking n = 0. Consider therefore the case

where Stack-#-discard was used. That is when the derivation of �

2

` S

0

~

S :

�

1

; [�

0

]� is of the following form.

Stack-#-discard

�

2

` S

1

~

S : �

1

; [�

1

]�

�

2

` #x; S

1

~

S : �

1

; [�

0

]�

�

0

� �

1

162

By de�nition

hH ; v ; #x; S

1

i

Update

7�! hH; x = v ; v ; S

1

i

but we need to show that hH ; v ; #x; S

1

i

Update

7�! hH ; v ; S

1

i which holds if we can

show that the binding of x is dead (since the transition rules are de�ned up to

garbage equivalence). This amounts to showing that x 62 fv(H)[fv(v)[fv(S

1

).

We �rst note that

x 62 dom(H) [dom(S

1

)

since otherwise hH ; v ; #x; S

1

i would be ill-formed (since x would occur bound

twice: either once in the heap and once in the stack or twice in the stack). We

know that �

0

and �

1

are the types of the bindings in H and the markers in S

0

so by the bound variables lemma

x 62 dom(�

0

) [dom(�

1

)

and since �

0

;�

1

` �

0

;�

1

;�

2

x 62 dom(�

0

) [dom(�

1

) [dom(�

2

):

But we know that H , e and S can be typed in �

0

, �

1

and �

2

respectively. Thus

x 62 fv(H) [fv(v) [fv(S

1

)

and we may conclude that

hH ; v ; #x; S

1

i

Update

7�! hH ; v ; S

1

i:

If we can show that ` hH ; v; S

1

i

~

C : � we may apply the induction hypothesis.

We start by using the subsumption lemma and �

0

� �

1

to yield that

�

1

` v ~v

�

: �

1

:

We can then derive

` hH ; v ; S

1

i

~

C : �

as follows.

Con�g

�

0

` H

~

H : �

0

�

1

` v ~v

�

: �

1

�

2

` S

1

~

S : �

1

; [�

1

]�

` hH ; v ; S

1

i h

~

H ; ~v

�

;

~

Si : �

�

0

;�

1

` �

0

;�

1

;�

2

Now by using the induction hypothesis we know that there exist n � 1 and S

i

for 2 � i � n such that

� hH ; v ; S

1

i

Update

7�! hH ; v ; S

2

i

Update

7�! : : :

Update

7�! hH ; v ; S

n

i

163

� ` hH ; v ; S

i

i

~

C : �

� If S

n

� � then

~

C � h

~

H ; ~v

�

; �i.

� If S

n

� R;S then

~

C � h

~

H ; ~v

�

;

~

R;

~

Si.

� If S

n

� #x; S then

~

C � h

~

H ; ~v

�

; #x;

~

Si.

Combining the above with hH ; v ; #x; S

1

i

Update

7�! hH ; v ; S

1

i then yields the

desired result.

4.4.7 Reduction lemma

Another key property of our type system is stated by the reduction lemma.

It basically says that if the type of a reduction context and the type of value

match up then we can plug the value into the reduction context and perform a

reduction. Moreover the possible duplication of free variables is consistent with

the types of the variables. This is expressed as follows.

Lemma 4.4.17 (Reduction lemma)

If �

0

` R

~

R : [�

[0;0]

]� and �

1

` v ~v : � then there exist e and ~e and � such

that

� R[v] 7! e

�

~

R[~v

�

] ~7! ~e

� �

0

;�

1

!

�

�

� � ` e ~e : �

Proof 4.4.18 (Reduction lemma)

Assume that

�

0

` R

~

R : [�

[0;0]

]�

and

�

1

` v ~v : �:

We proceed by case analysis on R. The cases where R � []+ e and R � add

n

[]

are trivial (essentially since no variable can be duplicated by the reduction) and

have been omitted.

164

case R � [] y: By inspection of the typing rules we see that the derivations of

�

0

` R

~

R : [�

[0;0]

]� and �

1

` v ~v : � are of the following forms.

AppR

y : � ` [] y [] y : [� !

[0;0]

�]�

Abs

�

1

;�

2

` e ~e : �

�

1

` �x:e �x:~e : � ! �

x 62 dom(�

1

)

x : � !

�

�

2

By de�nition

(�x:e) y 7! e[x:=y]

and

(�

�

x:~e) y ~7! ~e[x:=y]:

Now by applying the substitution [x:=y] to the side condition x : � !

�

�

2

we

know that

y : � !

�

�

2

[x:=y]

so

�

1

; y : � !

�

�

1

;�

2

[x:=y]:

It remains to show that �

1

;�

2

[x:=y] ` e[x:=y] ~e[x:=y] : � . We know that

�

1

;�

2

` e ~e : � and by applying [x:=y] to the judgement we get that

�

1

[x:=y];�

2

[x:=y] ` e[x:=y] ~e[x:=y] : �:

Now by the side condition x 62 dom(�

1

) we know that �

1

[x:=y] � �

1

so

�

1

;�

2

[x:=y] ` e[x:=y] ~e[x:=y] : �

as required.

case R � case [] of alts: By inspection of the typing rules we see that the

derivation of �

0

` R

~

R : [�

[0;0]

]� is of the form

Case

�

2

;�

3

;�

4

` alts

~

alts : List � � �

0

) �

�

2

;�

3

;�

4

` case [] of alts case [] of

~

alts : [(List � � �

0

)

[0;0]

]�

where alts = fnil) e

0

; cons x

0

x

1

) e

1

g,

~

alts = fnil) ~e

0

; cons x

0

x

1

) ~e

1

g

and �

2

;�

3

;�

4

` alts

~

alts : List � � �

0

) � is derived as follows.

Alts

�

2

;�

3

` e

0

 ~e

0

: � �

2

;�

4

;�

5

` e

1

 ~e

1

: �

�

2

;�

3

;�

4

` alts

~

alts : List � � �

0

) �

x

0

; x

1

62 dom(�

2

;�

4

)

x

0

: �; x

1

: (List � � �

0

)

�

0

�

` �

5

Now there are two possible cases. Either v � nil or v � cons y

0

y

1

.

165

subcase v � nil: By inspection of the typing rules we see that the derivation

of �

1

` v ~v : � is of the following form.

Nil

` nil nil : List � � �

0

By de�nition

case nil of fnil) e

0

; cons x y) e

1

g 7! e

0

;

case nil

�

of fnil) ~e

0

; cons x y) ~e

1

g ~7! ~e

0

and

�

2

;�

3

;�

4

Drop

!

�

�

2

;�

3

:

We also already have that

�

2

;�

3

` e

0

 ~e

0

: �

as required.

subcase v � cons y

0

y

1

: By inspection of the typing rules we see that the

derivation of �

1

` v ~v : � is of the following form.

Cons

y

0

: �

0

; y

1

: �

1

` cons y

0

y

1

 cons y

0

y

1

: List � � �

0

�

0

� �

�

1

� (List � � �

0

)

�

0

�

By de�nition we know that

case cons y

0

y

1

of fnil) e

0

; cons x

0

x

1

) e

1

g 7! e

1

[x

0

:=y

0

; x

1

:=y

1

]

and

case cons

�

y

0

y

1

of fnil) ~e

0

; cons x

0

x

1

) ~e

1

g ~7! ~e

1

[x

0

:=y

0

; x

1

:=y

1

]:

Now by de�nition x

0

: �; x

1

: (List � � �

0

)

�

0

�

` �

5

means that

x

0

: �; x

1

: (List � � �

0

)

�

0

�

!

�

�

5

:

By applying the substitution [x

0

:=y

0

; x

1

:=y

1

] to the above we know that

y

0

: �; y

1

: (List � � �

0

)

�

0

�

!

�

�

5

[x

0

:=y

0

; x

1

:=y

1

]:

Now since �

0

� � and �

1

� (List � � �

0

)

�

0

�

we can use the context rewrite lemma

(clause iii) to show that there exist �

6

such that

�

6

� �

5

[x

0

:=y

0

; x

1

:=y

1

]

166

and

y

0

: �

0

; y

1

: �

1

!

�

�

6

:

Using the latter we get that

�

2

;�

3

;�

4

; y

0

: �

0

; y

1

: �

1

!

�

�

2

;�

3

;�

4

;�

6

Drop

!

�

�

2

;�

4

;�

6

:

It remains to show that

�

2

;�

4

;�

6

` e

1

[x

0

:=y

0

; x

1

:=y

1

] ~e

1

[x

0

:=y

0

; x

1

:=y

1

] : �:

We know that �

2

;�

4

;�

5

` e

1

 ~e

1

: � so by applying [x

0

:=y

0

; x

1

:=y

1

] to the

judgement we get that

(�

2

;�

4

;�

5

)[x

0

:=y

0

; x

1

:=y

1

] ` e

1

[x

0

:=y

0

; x

1

:=y

1

] ~e

1

[x

0

:=y

0

; x

1

:=y

1

] : �:

We can use the side condition x

0

; x

1

62 dom(�

2

;�

4

) to simplify the judgement

to

�

2

;�

4

;�

5

[x

0

:=y

0

; x

1

:=y

1

] ` e

1

[x

0

:=y

0

; x

1

:=y

1

] ~e

1

[x

0

:=y

0

; x

1

:=y

1

] : �:

Finally since �

6

� �

5

[x

0

:=y

0

; x

1

:=y

1

] we may use the subsumption lemma to

get

�

2

;�

4

;�

6

` e

1

[x

0

:=y

0

; x

1

:=y

1

] ~e

1

[x

0

:=y

0

; x

1

:=y

1

] : �

as required.

4.4.8 Progress lemma

We now have all the machinery to �ll in the postponed proofs. The proofs of

source and target transition and the terminal con�guration lemma have a lot

in common. Thus we will �rst prove a lemma which implies the properties we

need to prove. We call this the progress lemma. It basically says that if C is

annotated as

~

C then, modulo updates needed to take care of discarded update

markers, either both C and

~

C are values or both are black holes or both can

evaluate one step further.

Lemma 4.4.19 (Progress)

If ` C

0

~

C : � then there exist n � 0 and C

i

for 1 � i � n such that

� C

0

Update

7�! C

1

Update

7�! : : :

Update

7�! C

n

� ` C

i

~

C : �

� Either C

n

2 Value and

~

C 2 Value~

or C

n

2 Blackhole and

~

C 2 Blackhole~

or C

n

7�! C

0

,

~

C ~7�!

~

C

0

and ` C

0

~

C

0

: � .

167

Proof 4.4.20 (Progress)

Assume that

` C

~

C : �:

We �rst note that an expression is either a value, a variable, a let-expression

or of the form R[e]. We will use this and make the proof by case analysis on

the second component of C. The interesting cases will be when the second

component is a value or variable. Simply because these are the cases where the

computation can go wrong and fail to proceed.

case C � hH ; v ; S

0

i: Let us start with the case where C � hH ; v ; S

0

i which

turns out to be the most substantial case. Then since the second component of

the con�guration is a value we know by the discarded update markers lemma

that we can take care of any discarded update markers on top of the stack. That

is we know that there exist n � 0 and S

i

for 1 � i � n such that:

� hH ; v ; S

0

i

Update

7�! hH ; v ; S

1

i

Update

7�! : : :

Update

7�! hH ; v ; S

n

i

� ` hH ; v ; S

i

i

~

C : �

� If S

n

� � then

~

C � h

~

H ; ~v

�

; �i.

� If S

n

� R;S then

~

C � h

~

H ; ~v

�

;

~

R;

~

Si.

� If S

n

� #x; S then

~

C � h

~

H ; ~v

�

; #x;

~

Si.

We proceed by case analysis on the structure of S

n

.

subcase S

n

� �: We then know that

~

C � h

~

H ; ~v

�

; �i

so by de�nition

hH ; v ; �i 2 Value

and

h

~

H ; ~v

�

; �i 2 Value~:

Thus

hH ; v ; S

0

i

Update

7�! hH ; v ; S

1

i

Update

7�! : : :

Update

7�! hH ; v ; �i;

` hH ; v ; S

i

i h

~

H ; ~v

�

; �i : �;

hH ; v ; �i 2 Value

and

h

~

H ; ~v

�

; �i 2 Value~

as required.

168

subcase S

n

� R;S: We then know that

~

C � h

~

H ; ~v

[�;�]

;

~

R;

~

Si and by inspec-

tion of the typing rules we see that the derivation of ` hH ; v ; R;Si

~

C : � is

of the form

Con�g

�

0

` H

~

H : �

0

�

1

` v ~v

[�;�]

: �

[0;0]

�

2

;�

3

` R;S

~

R;

~

S : �

1

; [�

[0;0]

]�

` hH ; v ; R;Si h

~

H ; ~v

[�;�]

;

~

R;

~

Si : �

�

0

;�

1

` �

0

;�

1

;�

2

;�

3

where

�

1

` v ~v

[�;�]

: �

[0;0]

is derived as

Value

�

1

` v ~v : �

�

1

` v ~v

[�;�]

: �

[0;0]

if 0 > 0 then �

1

!

�

�

1

;�

1

[0; 0] � [�; �]

and

�

2

;�

3

` R;S

~

R;

~

S : �

1

; [�

[0;0]

]�

is derived as follows.

Stack-R

�

2

` R

~

R : [�

[0;0]

]�

0

�

3

` S

~

S : �

1

; [�

0

]�

�

2

;�

3

` R;S

~

R;

~

S : �

1

; [�

[0;0]

]�

Now since �

1

` v ~v : � and �

2

` R

~

R : [�

[0;0]

]�

0

we know by the reduction

lemma that there exist e, ~e and �

4

such that

R[v] 7! e;

~

R[~v

[�;�]

] ~7! ~e;

�

1

;�

2

!

�

�

4

and

�

4

` e ~e : �

0

:

So the only thing that can stop the evaluation of h

~

H ; ~v

[�;�]

;

~

R;

~

Si to proceed

is if ~v

[�;�]

requires an update marker on top of the stack. That is if � 6= 0. But

from [0; 0] � [�; �] we know immediately that

� = 0:

Thus by de�nition

hH ; v ; R;Si 7�! hH ; e ; Si

and

h

~

H ; ~v

[�;�]

;

~

R;

~

Si ~7�! h

~

H ; ~e ;

~

Si:

169

It remains to show that ` hH ; e ; Si h

~

H ; ~e ;

~

Si : � . We �rst show that

�

0

;�

1

` �

0

;�

4

;�

3

which follows from �

0

;�

1

` �

0

;�

1

;�

2

;�

3

and �

1

;�

2

!

�

�

4

. Now we can derive

` hH ; e ; Si h

~

H ; ~e ;

~

Si : �

as follows.

Con�g

�

0

` H

~

H : �

0

�

4

` e ~e : �

0

�

3

` S

~

S : �

1

; [�

0

]�

` hH ; e ; Si h

~

H ; ~e ;

~

Si : �

�

0

;�

1

` �

0

;�

4

;�

3

To conclude we know that

hH ; v ; S

0

i

Update

7�! hH ; v ; S

1

i

Update

7�! : : :

Update

7�! hH ; v ; R;Si;

` hH ; v ; S

i

i h

~

H ; ~v

[�;�]

;

~

R;

~

Si : �;

hH ; v ; R;Si 7�! hH ; e ; Si;

h

~

H ; ~v

[�;�]

;

~

R;

~

Si ~7�! h

~

H ; ~e ;

~

Si

and

` hH ; e ; Si h

~

H ; ~e ;

~

Si : �

as required.

subcase S

n

� #x; S: We then know that

~

C � h

~

H ; ~v

[�;�]

; #x;

~

Si and by

inspection of the typing rules we see that the derivation of ` hH ; v ; #x; Si

~

C : � is of the form

Con�g

�

0

` H

~

H : �

0

�

1

` v ~v

[�;�]

: �

[�

0

+1;�

0

+1]

�

2

` #x; S #x;

~

S : (�

1

; x : �

[�

0

;�

0

]

�

; [�

[�

0

+1;�

0

+1]

]�)

` hH ; v ; #x; Si h

~

H ; ~v

[�;�]

; #x;

~

Si : �

�

0

;�

1

; x : �

[�

0

;�

0

]

�

` �

0

;�

1

;�

2

where �

1

` v ~v

[�;�]

: �

[�

0

+1;�

0

+1]

is derived as

Value

�

1

` v ~v : �

�

1

` v ~v

[�;�]

: �

[�

0

+1;�

0

+1]

if �

0

+ 1 > 0 then �

1

!

�

�

1

;�

1

[�

0

+ 1; �

0

+ 1] � [�; �]

and �

2

` #x; S #x;

~

S : (�

1

; x : �

[�

0

;�

0

]

�

; [�

[�

0

+1;�

0

+1]

]�) is derived as follows.

Stack-#

�

2

` S

~

S : �

1

; [�

0

]�

�

2

` #x; S #x;

~

S : (�

1

; x : �

[�

0

;�

0

]

�

; [�

[�

0

+1;�

0

+1]

]�)

�

[�

0

;�

0

]

� �

0

170

The only thing which can stop h

~

H ; ~v

[�;�]

; #x;

~

Si from evaluating further is

if ~v

[�;�]

cannot take care of the update marker. That is if � = 0. But from

[�

0

+ 1; �

0

+ 1] � [�; �] we know that

� > 0:

Thus by de�nition

hH ; v ; #x; Si 7�! hH; x= v ; v ; Si

and

h

~

H ; ~v

[�;�]

; #x;

~

Si ~7�! h

~

H; x=

!

~v

[�;�]

; ~v

[��1;��1]

;

~

Si:

It only remains to show that ` hH; x=v; v; Si h

~

H; x=

!

~v

[�;�]

; ~v

[��1;��1]

;

~

Si : � .

We start by deriving

�

1

` x= v x=

!

~v

[�;�]

: (x : �

[�

0

;�

0

]

�

)

as

Bind-!

�

1

` v ~v

[�;�]

: �

[�

0

+1;�

0

+1]

�

1

` x= v x=

!

~v

[�;�]

: (x : �

[�

0

;�

0

]

�

)

and then derive

�

0

;�

1

` H; x= v

~

H; x=

!

~v

[�;�]

: (�

0

; x : �

[�

0

;�

0

]

�

)

as follows.

Heap

�

0

` H

~

H : �

0

�

1

` x= v x=

!

~v

[�;�]

: (x : �

[�

0

;�

0

]

�

)

�

0

;�

1

` H; x= v

~

H; x=

!

~v

[�;�]

: (�

0

; x : �

[�

0

;�

0

]

�

)

We know that if �

0

+ 1 > 0 then �

1

!

�

�

1

;�

1

so clearly

�

1

!

�

�

1

;�

1

:

and then of course

if �

0

> 0 then �

1

!

�

�

1

;�

1

holds. From [�

0

+ 1; �

0

+ 1] � [�; �] we also know that

[�

0

; �

0

] � [� � 1; � � 1]:

Now we can derive

�

1

` v ~v

[��1;��1]

: �

[�

0

;�

0

]

as

Value

�

1

` v ~v : �

�

1

` v ~v

[�

1

�1;�

1

�1]

: �

[�

0

;�

0

]

if �

0

> 0 then �

1

!

�

�

1

;�

1

[�

0

; �

0

] � [� � 1; � � 1]

171

and by the sumbsumption lemma we then know that

�

1

` v ~v

[��1;��1]

: �

0

:

Now from �

0

;�

1

; x : �

[�

0

;�

0

]

�

` �

0

;�

1

;�

2

and �

1

!

�

�

1

;�

1

we know that

�

0

;�

1

; x : �

[�

0

;�

0

]

�

` �

0

;�

1

;�

1

;�

2

Thus we can �nally derive

` hH; x= v ; v ; Si h

~

H; x=

!

~v

[�;�]

; ~v

[��1;��1]

;

~

Si : �

as follows.

Con�g

�

0

;�

1

` H; x= v

~

H; x=

!

~v

[�;�]

: (�

0

; x : �

[�

0

;�

0

]

�

)

�

1

` v ~v

[��1;��1]

: �

0

�

2

` S

~

S : �

1

; [�

0

]�

` hH; x= v ; v ; Si h

~

H; x=

!

~v

[�;�]

; ~v

[��1;��1]

;

~

Si : �

�

0

;�

1

; x : �

[�

0

;�

0

]

�

` �

0

;�

1

;�

1

;�

2

To conclude we know that

hH ; v ; S

0

i

Update

7�! hH ; v ; S

1

i

Update

7�! : : :

Update

7�! hH ; v ; #x; Si

` hH ; v ; S

i

i h

~

H ; ~v

[�;�]

; #x;

~

Si : �

hH ; v ; #x; Si 7�! hH; x= v ; v ; Si

h

~

H ; ~v

[�;�]

; #x;

~

Si ~7�! h

~

H; x=

!

~v

[�;�]

; ~v

[��1;��1]

;

~

Si

and

` hH; x= v ; v ; Si h

~

H; x=

!

~v

[�;�]

; ~v

[��1;��1]

;

~

Si : �

as required. This completes the proof for the case where C � hH ; v ; S

0

i.

cases C � hH

0

; x ; Si, C � hH ; let d in e ; Si and C � hH ; R[e] ; Si: In

the remaining cases, where the second component of the con�guration is not a

value, the next transition does not at all depend on the stack. Since it does not

depend on the stack it does not depend on the discarded update markers either.

Thus for these cases we can prove the following.

Either C 2 Blackhole and

~

C 2 Blackhole~

or C 7�! C

0

,

~

C ~7�!

~

C

0

and ` C

0

~

C

0

: � .

This clearly implies the lemma; simply take n = 0.

172

case C � hH

0

; x ; Si: By inspection of the typing rules we see that the

derivation of ` C

~

C : � is of the form

Con�g

�

0

` H

0

~

H

0

: �

0

x : �

1

�

0

` x x : �

0

�

1

` S

~

S : �

1

; [�

0

]�

` hH

0

; x ; Si h

~

H

0

; x ;

~

Si : �

�

0

;�

1

` �

0

; x : �

1

�

0

;�

1

where x : �

1

�

0

` x x : �

0

is derived as follows.

Var

x : �

1

�

0

` x x : �

0

�

1

� �

0

Now, since we require con�gurations to be closed either x 2 dom(H

0

) or x 2

dom(S) but not both.

subcase x 2 dom(S): By de�nition

hH

0

; x ; Si 2 Blackhole

and by the bound variables lemma

dom(

~

H

0

) = dom(H

0

)

so

x 62 dom(

~

H

0

)

which implies that

h

~

H

0

; x ;

~

Si 2 Blackhole~

as required.

subcase x 2 dom(H

0

): Then H

0

then must be of the form H; x = e and the

derivation of �

0

` H

0

~

H

0

: �

0

of the following form.

Heap

�

2

` H

~

H : �

2

�

3

` x= e x=

�

~e : (x : �)

�

2

;�

3

` H; x= e

~

H; x=

�

~e : (�

2

; x : �)

By now we know by the forms of the derivations that C � hH; x= e ; x ; Si and

~

C � h

~

H; x=

�

~e ; x ;

~

Si. We proceed by cases on �.

subsubcase � = X: Then the derivation of �

3

` x= e x=

�

~e : (x : �) must

be of the following form.

Bind-X

�

3

` e ~e : �

2

�

3

` x= e x=

X

~e : (x : �

2

X

)

173

Now by de�nition

hH; x = e ; x ; Si 7�! hH ; e ; #x; Si

and we need to show that h

~

H; x=

X

~e ; x ;

~

Si ~7�! h

~

H ; ~e ;

~

Si, ie that it is safe to

not push an update marker for x. It is safe if we can show that we do not create

any dangling pointers. That is we need to show that h

~

H ; ~e ;

~

Si remains closed

which amounts to showing that x 62 fv(

~

H) [fv(~e) [fv(

~

S). From the derivation

of �

0

` H

0

~

H

0

: �

0

we know that

�

0

� �

2

; x : �

and

�

0

� �

2

;�

3

and from the derivation of �

1

` x= e x=

�

~e : x : � we know that

� � �

2

X

:

Using �

0

;�

1

` �

0

; x : �

1

�

0

;�

1

and these facts we know that

�

2

; x : �

2

X

;�

1

` �

2

;�

3

; x : �

1

�

0

;�

1

:

By the context entailment lemma (clause iv) we then get that

�

2

X

� �

1

�

0

and thus

�

2

; x : �

2

X

;�

1

` �

2

;�

3

; x : �

2

X

;�

1

so

�

2

;�

1

` �

2

;�

3

;�

1

by the context entailment lemma (clause v). Now since �

2

; x : �

2

X

;�

1

is a

distinct context we know that

x 62 dom(�

2

;�

1

)

and thus by �

2

;�

1

` �

2

;�

3

;�

1

x 62 dom(�

2

;�

3

;�

1

):

Now, since we can type

~

H , ~e and

~

S in �

2

, �

3

and �

1

respectively, we know by

the free variables lemma that

x 62 fv(

~

H) [fv(~e) [fv(

~

S)

Thus we may conclude that h

~

H ; ~e ;

~

Si is closed and that

h

~

H; x=

X

~e ; x ;

~

Si ~7�! h

~

H ; ~e ;

~

Si:

174

It only remains to show that ` hH ; e ; #x; Si h

~

H ; ~e ;

~

Si : � . We start by

showing that

�

1

` #x; S

~

S : �

1

; [�

2

]�

which can be derived as

Stack-#-discard

�

1

` S

~

S : �

1

; [�

0

]�

�

1

` #x; S

~

S : �

1

; [�

2

]�

�

2

� �

0

where we obtain �

2

� �

0

from �

1

� �

0

and �

2

� �

1

. We can now �nally derive

` hH ; e ; #x; Si h

~

H ; ~e ;

~

Si : �

as follows.

Con�g

�

2

` H

~

H : �

2

�

3

` e ~e : �

2

�

1

` #x; S

~

S : �

1

; [�

2

]�

` hH ; e ; #x; Si h

~

H ; ~e ;

~

Si : �

�

2

;�

1

` �

2

;�

3

;�

1

subsubcase � = !: In this case

~

C � h

~

H; x =

!

~e ; x ;

~

Si and the derivation of

�

3

` x= e x=

�

~e : (x : �) must be of the following form.

Bind-!

�

3

` e ~e : �

[�+1;�+1]

�

3

` x= e x=

!

~e : x : �

[�;�]

�

1

By de�nition

hH; x = e ; x ; Si 7�! hH ; e ; #x; Si

and

h

~

H; x=

!

~e ; x ;

~

Si ~7�! h

~

H ; ~e ; #x;

~

Si

so we only need to show that ` hH ; e ; #x; Si h

~

H ; ~e ; #x;

~

Si : � . From the

derivation of �

0

` H

0

~

H

0

: �

0

we know that

�

0

� �

2

; x : �

and

�

0

� �

2

;�

3

and from the derivation of �

1

` x= e x=

�

~e : x : � we know that

� � �

[�;�]

�

1

:

Using �

0

;�

1

` �

0

; x : �

1

�

0

;�

1

and these facts we know that

�

2

; x : �

[�;�]

�

1

;�

1

` �

2

;�

3

; x : �

1

�

0

;�

1

:

175

From this follows by the context entailment lemma (clause iv) that

�

[�;�]

�

1

� �

1

�

0

and thus from �

1

� �

0

we know that

�

[�;�]

� �

0

:

From �

2

; x : �

[�;�]

�

1

;�

1

` �

2

;�

3

; x : �

1

�

0

;�

1

it also follows that

�

2

; x : �

[�;�]

�

1

;�

1

` �

2

;�

3

;�

1

since �

2

;�

3

; x : �

1

�

0

;�

1

Drop

! �

2

;�

3

;�

1

. We can now build a derivation of

�

1

` #x; S #x;

~

S : �

1

; x : �

[�;�]

�

1

; [�

[�+1;�+1]

]�

as follows.

Stack-#

�

1

` S

~

S : �

1

; [�

0

]�

�

1

` #x; S #x;

~

S : �

1

; x : �

[�;�]

�

1

; [�

[�+1;�+1]

]�

�

[�;�]

� �

0

And �nally ` hH ; e ; #x; Si h

~

H ; ~e ; #x;

~

Si : � can be derived as follows.

Con�g

�

2

` H

~

H : �

2

�

3

` e ~e : �

[�+1;�+1]

�

1

` #x; S #x;

~

S : �

1

; x : �

[�;�]

�

1

; [�

[�+1;�+1]

]�

` hH ; e ; #x; Si h

~

H ; ~e ; #x;

~

Si : �

�

2

;�

1

; x : �

[�;�]

�

1

` �

2

;�

3

;�

1

This concludes the case where C � hH

0

; x ; Si.

case C � hH ; let d in e ; Si: By inspection of the typing rules we see that

the derivation of ` C

~

C : � is of the form

Con�g

�

0

` H

~

H : �

0

�

1

;�

3

` let d in e let

~

d in ~e : �

0

�

5

` S

~

S : �

2

; [�

0

]�

` hH ; let d in e ; Si h

~

H ; let

~

d in ~e ;

~

Si : �

�

0

;�

2

` �

0

;�

1

;�

3

;�

5

where �

1

;�

3

` let d in e let

~

d in ~e : �

0

is derived as follows.

Let

�

1

;�

2

` d

~

d : �

1

�

3

;�

4

` e ~e : �

0

�

1

;�

3

` let d in e let

~

d in ~e : �

0

dom(

~

d) \ dom(�

1

;�

3

) = ;

�

1

` �

2

;�

4

Without loss of generality we assume that

dom(d) \ (dom(H) [dom(S)) = ;

176

This implies by the bound variables lemma that also

dom(

~

d) \ (dom(

~

H) [dom(

~

S)) = ;

and

dom(�

1

) \ (dom(�

0

) [dom(�

2

)) = ;:

Thus by de�nition

hH ; let d in e ; Si 7�! hH; d ; e ; Si

and

h

~

H ; let

~

d in ~e ;

~

Si ~7�! h

~

H;

~

d ; ~e ;

~

Si

so it only remains to show that ` hH; d ; e ; Si h

~

H;

~

d ; ~e ;

~

Si : � . We start by

showing that

�

0

;�

1

;�

2

` H; d

~

H;

~

d : �

0

;�

1

which follows from �

0

` H

~

H : �

0

and �

1

;�

2

` d

~

d : �

1

by a simple

induction over the size of d. The next step is to show that

�

0

;�

1

;�

2

` �

0

;�

1

;�

2

;�

3

;�

4

;�

5

which follows from dom(�

1

)\(dom(�

0

)[dom(�

2

)) = ;, �

0

;�

2

` �

0

;�

1

;�

3

;�

5

and �

1

` �

2

;�

4

by the context entailment lemma (clause iii). Now we can derive

` hH; d ; e ; Si h

~

H;

~

d ; ~e ;

~

Si : �

as follows.

Con�g

�

0

;�

1

;�

2

` H; d

~

H;

~

d : �

0

;�

1

�

3

;�

4

` e ~e : �

0

�

5

` S

~

S : �

2

; [�

0

]�

` hH; d ; e ; Si h

~

H;

~

d ; ~e ;

~

Si : �

�

0

;�

1

;�

2

` �

0

;�

1

;�

2

;�

3

;�

4

;�

5

This concludes the case where C � hH ; let d in e ; Si.

case C � hH ; R[e] ; Si: By inspection of the typing rules we see that the

derivation of ` C

~

C : � is of the form

Con�g

�

0

` H

~

H : �

0

�

1

` R[e]

~

R[~e] : �

0

�

2

` S

~

S : �

1

; [�

0

]�

` hH ; R[e] ; Si h

~

H ;

~

R[~e] ;

~

Si : �

�

0

;�

1

` �

0

;�

1

;�

2

By de�nition

hH ; R[e] ; Si 7�! hH ; e ; R;Si

177

and

h

~

H ;

~

R[~e] ;

~

Si ~7�! h

~

H ; ~e ;

~

R;

~

Si

so it only remains to show that ` hH ; e ; R;Si h

~

H ; ~e ;

~

R;

~

Si : �: Now by the

unwind lemma and �

1

` R[e]

~

R[~e] : �

0

we get that

�

3

` R

~

R : [�

[0;0]

]�

0

and

�

4

` e ~e : �

[0;0]

where

�

1

� �

3

;�

4

:

We can now derive

�

3

;�

2

` R;S

~

R;

~

S : �

1

; [�

[0;0]

]�

as follows.

Stack-R

�

3

` R

~

R : [�

[0;0]

]�

0

�

2

` S

~

S : �

1

; [�

0

]�

�

3

;�

2

` R;S

~

R;

~

S : �

1

; [�

[0;0]

]�

From �

0

;�

1

` �

0

;�

1

;�

2

and �

1

� �

3

;�

4

we know that

�

0

;�

1

` �

0

;�

4

;�

3

;�

2

:

so we can derive

` hH ; e ; R;Si h

~

H ; ~e ;

~

R;

~

Si : �

as follows.

Con�g

�

0

` H

~

H : �

0

�

4

` e ~e : �

1

�

3

;�

2

` R;S

~

R;

~

S : �

1

; [�

1

]�

` hH ; e ; R;Si h

~

H ; ~e ;

~

R;

~

Si : �

�

0

;�

1

` �

0

;�

4

;�

3

;�

2

This concludes the proof of the progress lemma.

4.4.9 Proof of source transition

We are now ready to make the postponed proofs. We will start by the source

transition property.

Proposition 4.4.21 (Source transition)

If ` C

~

C : � and C 7�! C

0

then there exists

~

C

0

such that

�

~

C ~7�!

0=1

~

C

0

178

� ` C

0

~

C

0

: � .

Proof 4.4.22 (Source transition)

Assume ` C

~

C : � and C 7�! C

0

. Then by the progress lemma we know

that there exist n � 0 and C

i

for 1 � i � n such that

� C

Update

7�! C

1

Update

7�! : : :

Update

7�! C

n

� ` C

i

~

C : �

� Either C

n

2 Value and

~

C 2 Value~.

or C

n

2 Blackhole and

~

C 2 Blackhole~

or C

n

7�! C

0

,

~

C ~7�!

~

C

0

and ` C

0

~

C

0

: �

Now if n > 0 we know that C

0

� C

1

so ` C

0

~

C : � and of course

~

C ~7�!

0=1

~

C

as required. Suppose instead that n = 0. Then since neither C 2 Value nor

C 2 Blackhole we know there exists

~

C

0

such that

~

C ~7�!

~

C

0

and ` C

0

~

C

0

: �

as required.

4.4.10 Proof of target transition

In very much the same way we prove the target transition property.

Proposition 4.4.23 (Target transition)

If ` C

~

C : � and

~

C ~7�!

~

C

0

then there exists C

0

such that

� C 7�!

+

C

0

� ` C

0

~

C

0

: � .

Proof 4.4.24 (Target transition)

Assume ` C

~

C : � and

~

C ~7�!

~

C

0

. By the progress lemma we know there exist

n � 0 and C

i

for 1 � i � n such that

� C

Update

7�! C

1

Update

7�! : : :

Update

7�! C

n

� ` C

i

~

C : �

� Either C

n

2 Value and

~

C 2 Value~.

or C

n

2 Blackhole and

~

C 2 Blackhole~

or C

n

7�! C

0

,

~

C ~7�!

~

C

0

and ` C

0

~

C

0

: �

Since neither

~

C 2 Value~ nor

~

C 2 Blackhole~we know that C

n

7�! C

0

and

` C

0

~

C

0

: � . Thus C 7�!

+

C

0

as required.

179

4.4.11 Proof of the terminal con�guration property

Finally we prove the terminal con�guration property.

Lemma 4.4.25 (Terminal con�guration property)

If ` C

~

C : � then

(i) If C 2 Value then

~

C 2 Value~

(ii) If

~

C 2 Value~then C 7�!

�

V and ` V

~

C : �

(iii) C 2 Blackhole i�

~

C 2 Blackhole~

(iv) C 62Wrong and

~

C 62Wrong~

Proof 4.4.26 (Terminal con�guration lemma)

All the clauses are proved easily in a similar manner so we will only prove clause

(ii). Assume that ` C

~

C : � and

~

C 2 Value~. Then by the progress lemma

there exist n � 0 and C

i

for 1 � i � n such that

� C

Update

7�! C

1

Update

7�! : : :

Update

7�! C

n

� ` C

i

~

C : �

� Either C

n

2 Value and

~

C 2 Value~.

or C

n

2 Blackhole and

~

C 2 Blackhole~

or C

n

7�! C

0

,

~

C ~7�!

~

C

0

and ` C

0

~

C

0

: �

Since we know that

~

C 2 Value~ it must be the case that C

n

2 Value and we

already know that C 7�!

�

C

n

and ` C

n

~

C : � as required.

180

Chapter 5

Implementation

In this chapter we will describe and argue the correctness of our implementation

of the type system.

5.1 The best annotations

Given an unannotated term it is the task of the implementation to �nd a corre-

sponding well-typed annotated term. However, usually several well-typed anno-

tated terms can be obtained from a single unannotated term and the implemen-

tation should naturally choose the best one. That is the one which avoids as

many updates and update marker checks as possible. It is however not always

clear which annotated term to choose, as illustrated by the following example.

�

[0;0]

x:let y =

X

1

[0;0]

+

[0;1]

2

[0;0]

in

case x of

nil) let p=

!

id y in p+

[0;0]

p

cons z zs) let q =

X

id y in z +

[0;0]

q

Here, 1 + 2 is annotated with [0; 1] because there will be one update marker

on top of the stack if the nil-branch is taken and none if the cons-branch is

taken. This means that an update marker check has to be performed when

1+ 2 has been computed. However, if we annotate the binding of q with ! there

will always be exactly one update marker and we can annotate 1 + 2 with [1; 1]

instead. Thus, we can avoid the marker check at the expense of performing

an extra update when the cons-branch is taken. To choose the best of these

alternatives the relative cost of updates and update marker checks as well as

the relative frequency of the case-branches have to be taken into consideration.

We will defer such choices and �rst minimise the number of updates and then

minimise the number of marker checks. We will de�ne an ordering on terms

which reects this intention. First, let ~� and ~� range over vectors of �'s and �'s

181

respectively. For vectors of length n, let ~� � ~�

0

i� ~�

i

� ~�

0

i

for all 1 � i � n.

Let ~� � ~�

0

be de�ned analogously and let (~�;~�) � (~�

0

;~�

0

) be the lexicographic

ordering on pairs induced by these two orderings. For every annotated term ~e

we associate a pair (~�;~�) consisting of the annotations on the term (in some

order given by the structure of ~e). Let ~e and ~e

0

be two terms with the same

underlying structure (ie if we remove all annotations the terms become equal).

Let (~�

0

;~�

0

) and (~�

0

;~�

0

) be the annotations associated with ~e and ~e

0

respectively.

We will then write ~e � ~e

0

i� (~�;~�) � (~�

0

;~�

0

) and we will say that ~e is better

annotated than ~e

0

. Thus the objective of our algorithm will be to �nd the

smallest well-typed term according to this ordering.

5.2 Overview of the implementation

We will divide our implementation in three distinct phases. The �rst phase of

the implementation will perform an ordinary type inference based on an ordi-

nary monomorphic type system. This approach has several advantages. First

ordinary type inference is well understood and there are e�cient implementa-

tions. Second, most compilers performs ordinary type inference anyway and

sometimes keep type information to later passes by means of an explicitly typed

intermediate language.

The second phase of the implementation will use the information produced

by the �rst phase and produce an typing judgement in our type system as its

output. Unfortunately the type system of chapter 3 does not enjoy a principal

typing property, ie there is no typing judgement that represents all typing judge-

ments. Thus we will modify the type system of chapter 3 to achieve a principal

typing property. This involves extending the term and the type language with

annotation variables and type variables and it also necessitates the introduction

of constraints constraining the type variables and annotation variables.

Finally the third phase of the implementation will take the constraint set

generated by the second phase as its input and compute a solution. This solution

then generates the best well-typed annotated term.

It should be pointed out that the algorithm is global in the sense that it

requires access to the entire program. Thus the implementation is not well

suited for separate compilation. This is inherent in the type system since the

annotations on a function can very well inuence the annotations on functions

in other modules. In chapter 8 we will discuss some ideas of how to attack the

problem of separate compilation.

5.3 The underlying type system

In this section we will present the underlying ordinary type system that the

�rst phase of our algorithm works with. We will use an explicitly typed term

language which allows us to easily propagate type information to the second

182

phase of our algorithm. However, we �rst de�ne our ordinary type language as

follows.

Type variables a; b; c

Types � ::= a j Int j �

0

! �

1

j List �

Contexts
 ::= x

1

: �

1

; :::; x

n

: �

n

where x

i

6= x

j

if i 6= j

Now we can de�ne the term language as follows.

Variables x; y; z

Values v ::= �x:e j n j nil j cons x y

Expressions e ::= v j x j e x j e

0

+ e

1

j

let d :
 in e j

case e : � of alts

Declarations d ::= � j d; b

Bindings b ::= x= e

Alternatives alts ::= fnil) e

0

; cons x y) e

1

g

We have added type annotations to the language such that it is easy to (given

arbitrary
, e and �) check whether
 ` e : � (which will be de�ned shortly)

holds or not. Since the types of the bindings in a let-expressions are not

necessarily visible in the type of the let-expression we need to annotate the

let-expression with a context
 giving the types of the bindings. Similarly, we

need to annotate each case-expression with the type of the term it scrutinises.

Note that we do not need to annotate �-abstractions due to the restricted form

of application in our language. By not doing so we avoid redundancy which

would complicate our proofs considerably. Note that we will let e range over

explicitly typed terms to avoid confusion with the untyped terms introduced in

chapter 2 which are ranged over by e. We will write bec for the untyped term

obtained by removing type annotations.

Typing judgements will take the form
 ` e : � and the straightforward

typing rules are given in �gure A.9 in appendix A.

We will let � range over type substitutions mapping type variables to types.

We will write �� for application of a substitution to a type. Similarly we will

also apply substitutions to contexts and explicitly typed terms. We say that

 ` e : � can be instantiated to

0

` e

0

: �

0

by � (written
 ` e : � .

�

0

` e

0

: �

0

)

i�
� �

0

, e� � e

0

and �� � �

0

. We will also write
 ` e : � .

0

` e

0

: �

0

i�

there exists a type substitution � such that
 ` e : � .

�

0

` e

0

: �

0

. We will

say that a typing judgement
 ` e : � is a principal typing of e i� bec � e and

 ` e : � .

0

` e

0

: �

0

. for any

0

` e

0

: �

0

such that be

0

c � e. The following

result is due to Damas and Milner [DM82].

Theorem 5.3.1 (Principal typings)

There exists an algorithm W such that W(e) succeeds if and only if e is well-typed

and yields (
; e; �) such that
 ` e : � is a principal typing judgement for e.

183

5.4 The modi�ed type system

The type system presented in chapter 3 has an important shortcoming; it does

not enjoy a principal typing property. In this section, we will remedy this

shortcoming and modify the type system of chapter 3 to allow for a principal

typing property.

5.4.1 Annotation language

To achieve a principal typing property we need to extend the language of anno-

tations to include annotation variables as follows.

� ::= X j ! j k

� ::= [�; �]

� ::= n j ! j i j � � �

� ::= n j ! j j j � � �

Thus, we can now annotate bindings (and binding types) with a X, an ! or an

annotation variable k. Similarly � now ranges over natural numbers, ! and

annotation variables i. However we also introduce an annotation of the form

� � � which might need some explanation. Consider the two typing rules for

bindings.

Bind-X

� ` e ~e : �

� ` x= e x=

X

~e : (x : �

X

)

Bind-!

� ` e ~e : �

[�+1;�+1]

� ` x= e x=

!

~e : (x : �

[�;�]

�

)

Having two rules for bindings was convenient when we presented the type system

in chapter 3 but now it poses a problem. Since we allow bindings to be annotated

with an annotation variable k as well we should require that the rules can take

care of this case also. This requires us to �rst combine the two rules into one

which could then be generalised. If we interpret ��X as �, �� ! as �+1, ��X

as � and � � ! as � + 1 we could combine the two rules as follows.

Binding

� ` e ~e : �

[���;���]

� ` x= e x=

�

~e : x : �

[�;�]

�

0

�

0

� �

Now, in order to generalise this rule to handle annotation variables as well we

introduce the annotations ��� and ���. Clearly this means that structurally

di�erent annotations may mean the same thing. For example the annotations 2,

1� ! and 2�X all mean the same thing and we therefore identify them. That is

we de�ne two equivalences as the congruent closures of ��X � � and ��X � �

respectively. Note that this means that annotations can \change shape" when

a substitution is applied to them. For example, i � k[i:=1; k:=!] � 1 � ! � 2.

Finally note that a closed annotation (that is an annotation not containing

annotation variables) can be considered as an annotation in the annotation

language de�ned in chapter 2.

184

5.4.2 Type language

We will also modify the type language of chapter 3 in two respects. First

the annotations in the types will be of the form de�ned above which includes

annotation variables. Second our type language will also contain bare type

variables. There will be a countable in�nite number of bare type variables

associated with every type variable in the underlying type language. We will

write a

n

and b

n

for bare type variables associated with a and b respectively.

The obtained type language is given below.

Bare type variables a

n

; b

n

; c

n

Bare types � ::= a

n

j Int j � ! � j List � � �

Types � ::= �

�

Binding types � ::= �

�

We will write d�e, d�e and d�e, to denote the type expressions (in the underly-

ing type language) obtained by removing annotations. For example da

0

[0;0]

X

!

a

1

[0;0]

e � a ! a. Similarly, we will also write d�e and d~ee for the context and

term obtained accordingly.

We will let

~

� range over type substitutions mapping bare type variables

to bare types and annotation variables to annotations. We will require that

d

~

�(a

n

)e = d

~

�(a

m

)e, that is substitutions must map bare type variables associ-

ated with the same type variable (in the underlying type system) to bare types

with the same underlying structure. We will say that a type substitution

~

� is

closing if �

~

� is closed (ie do not contain any bare type variables or annotation

variables) for any type � . We will let

~

range over closing substitutions. Finally

note that a closed type expression can be considered as a type expression in the

type language of chapter 3. This is indeed the reason why we need the notion

of closing substitutions.

5.4.3 Term language

We will modify the annotated term languages in two respects. First the annota-

tions will be of the form de�ned above. Second, we will make also the annotated

term languages explicitly typed.

Variables x; y; z

Values ~v ::= �x:~e j n j nil j cons x y

Expressions ~e ::= ~v

�

j x j ~e x j ~e

0

+

�

~e

1

j

let

~

d : � in ~e j

case ~e : � of

~

alts

Declarations

~

d ::= � j

~

d;

~

b

Bindings

~

b ::= x=

�

~e

Alternatives

~

alts ::= fnil) ~e

0

; cons x y) ~e

1

g

As in the case of the ordinary term language we annotate let-expressions with

a context giving the types of the bindings and we annotate case-expressions

185

~

j= if � > 0 then � = ! i� if �

~

> 0 then �

~

= !

~

j= � = ! i� �

~

= !

~

j= � � �

0

i� �

~

� �

0

~

#

~

j= � � �

0

i� �

~

� �

0

~

#

~

j= � � �

0

i� �

~

� �

0

~

#

~

j= a

i

� a

j

i� a

i

~

� a

j

~

#

Figure 5.1: De�nition of

~

j= �

with a � saying that the type of the scrutinised term is �

[0;0]

. Note that we

will let ~e range over explicitly typed annotated terms to avoid confusion with

the untyped annotated terms introduced in chapter 2 which are ranged over by

~e. We will again write b~ec for the untyped term obtained by removing type

annotations. We will also write d~ee for the explicitly typed term obtained by

removing the annotations from the term (which includes removing annotations

from the annotated types in the term).

5.4.4 Constraints

The fact that we have introduced annotation variables and type variables makes

some of the side conditions in our typing rules meaningless. For example the

side condition if � > 0 then � !

�

�;� in the rule Value does not make sense if

� is an annotation variable. Instead we will modify our typing judgements such

that they include a set of constraints. Then when these constraints are satis�ed

there exist a corresponding typing judgement in the type system of chapter 3.

We will have two form of constraints; atomic constraints that will show up in the

typing judgements and composite constraints which will show up in the typing

rules. Let us �rst introduce atomic constraints ranged over by �.

Atomic constraints � ::= if � > 0 then � = ! j � = ! j

�

0

� �

1

j �

0

� �

1

j �

0

� �

1

j a

n

� a

m

We will give a meaning to these atomic constraints by means of a relation

~

j= �

saying that

~

models (ie satis�es) �. The relation is de�ned in �gure 5.1 and

should be self explanatory. We will let � range over sets of atomic constraints

and we will write

~

j= � i�

~

models all the constraints in �. We will also write

j= � i� all closing substitutions models �.

We will now go on and introduce composite constraints which will be the

constraints that show up in our typing rules. We will let range over composite

186

� ` if � > 0 then ; !

�

;; ;

� ` if � > 0 then �!

�

�;�

� ` if � > 0 then �; x : �

�

!

�

�; x : �

�

;�; x : �

�

if � > 0 then � = ! 2 �

� ` �; x : �

�

! �; x : �

�

; x : �

�

� = ! 2 �

� ` �; x : � ! �

� ` �!

�

�

� ` �!

�

�

0

� ` �

0

! �

00

� ` �!

�

�

00

� ` �!

�

�

� ` � ` �

� ` [�; �] � [�

0

; �

0

]

�

0

� �; � � �

0

2 �

� ` a

n

� a

m

a

n

� a

m

2 �

� ` Int � Int

� ` �

0

� � � ` � � �

0

� ` � ! � � �

0

! �

0

� ` � � �

0

� ` �

0

� �

� ` List � � � � List �

0

�

0

�

0

�

0

� � 2 �

� ` � � �

0

� ` �

�

� �

0

�

0

�

0

� � 2 �

� ` � � �

0

� ` �

0

� �

� ` �

�

� �

0

�

0

Figure 5.2: Constraint derivation

constraints.

Composite constraints ::= if � > 0 then �!

�

�;� j �! �

0

j �!

�

�

0

j

� ` � j �

0

� �

1

j �

0

� �

1

j �

0

� �

1

j �

0

� �

1

Note that our notation is highly ambiguous. For example we now have both a

constraint �

0

� �

1

which is pure syntax and a statement �

0

� �

1

in our meta

language. If a constraint is closed we will let [[]] denote this corresponding

statement in the meta language. We will give meaning to composite constraints

by de�ning when a composite constraint can be derived from a set of atomic

constraints � (written � `). The de�nition of � ` appears in �gure 5.2.

We will frequently use the following result.

Lemma 5.4.1 (Weakening)

If � ` then �;�

0

` .

Proof 5.4.2

By induction over � ` .

187

We will say that a closing substitution

~

models (written

~

j=) i� there

exists a set of atomic constraints � such that

~

j= � and � ` . We will write

j= i�

~

j= for all

~

#.

We also need to de�ne what it means to apply a substitution

~

� to an atomic

constraint �. If � is not of the form a

n

� a

m

we simply apply the substitution

to the components of the constraint. However if � � a

n

� a

m

then a

n

~

� � a

m

~

� is

not necessarily an atomic constraint. However we require from

~

� that d

~

�(a

i

)e �

d

~

�(a

j

)e. This means that we can break a

n

~

� � a

m

~

� down into a set of atomic

constraints � such that � ` a

n

~

� � a

m

~

�. The de�nition is straightforward and

has been omitted. For composite constraints the situation is simpler and we

simply apply the substitution to the components of the constraint.

Now we are ready to state the relationship between our composite constraints

and the corresponding statement in the meta language by means of a soundness

and a completeness lemma.

Lemma 5.4.3 (Soundness of

~

j=)

If

~

j= then [[

~

#]].

Proof 5.4.4

By induction over the size of .

Lemma 5.4.5 (Completeness of

~

j=)

If [[]] then j= .

Proof 5.4.6

By induction over the size of .

5.4.5 Typing judgements

Typing judgements for expression now take the form � ; � ` e ~e : � which

should be read as \from the atomic constraints � we can derive that in the

context �, the expression e can be annotated as ~e having type �". We will also

modify our typing judgements for values, alternatives, bindings and declarations

in the same way.

The typing rules are directly derived from the typing rules in chapter 3 and

appear in appendix A. We will frequently use the following lemma.

Lemma 5.4.7 (Weakening)

If � ; � ` e ~e : � then �;�

0

; � ` e ~e : �

Proof 5.4.8

By induction over the size of e using the weakening lemma for � ` .

188

We will write

~

j= � ` e ~e : � i� there exists � such that

~

j= � and

� ; � ` e ~e : � . We will also write j= � ` e ~e : � i�

~

j= � ` e ~e : � for

all

~

#. Using this notation we can state the soundness and completeness of the

modi�ed type system with respect to the type system of chapter 3.

Proposition 5.4.9 (Soundness)

If

~

j= � ` e ~e : � then �

~

` bec b~e

~

#c : �

~

#

Proof 5.4.10

By induction over e using the soundness of

~

j= .

Proposition 5.4.11 (Completeness)

If � ` e ~e : � then j= � ` e ~e : � where bec � e, b~ec � ~e.

Proof 5.4.12

By induction over e using the completeness of

~

j= and the weakening lemma.

5.5 Computing principal typings

Up to to this point we have introduced the modi�ed type system and argued its

correspondence with the type system of chapter 3. Now we will go on and show

how we can compute a principal typing judgement in the modi�ed type system.

We will also show that the generated constraints are in a restricted form for

which there exists an algorithm that e�ciently can �nd an optimal solution to

the constraints.

The algorithm will take a term e as its input. It will �rst compute, using

W(e), a triple (
; e; �) such that
 ` e : � is a principal typing for e. The next

stage is to decorate the triple with fresh annotation variables so we obtain a

triple (�; ~e; �). Then we �nally compute a constraint set � and a context �

such that � ; � ` e ~e : � and � ` � ` �.

5.5.1 Decorating

The algorithm decorate(
; e; �) that decorates the triple (
; e; �) is entirely

straightforward and it has been omitted. We will however need the following

properties of the algorithm.

Lemma 5.5.1

� decorate(
; e; �) always succeeds.

� ddecorate(
; e; �)e � (
; e; �)

� If (
; e; �) . d(�; ~e; �)e then decorate(
; e; �) . (�; ~e; �).

� The annotations in decorate(
; e; �) are distinct.

189

 if � > 0 then �

0

!

�

�

0

;�

0

 �! �

0

i� if x : � 2 �

0

then x : � 2 �

 �!

�

�

0

i� if x : � 2 �

0

then x : � 2 �

 � ` � i� if x : � 2 � then x : � 2 �

 �

0

� �

1

i� d�

0

e � d�

1

e

 �

0

� �

1

i� d�

0

e � d�

1

e

 �

0

� �

1

i� d�

0

e � d�

1

e

 �

0

� �

1

Figure 5.3: De�nition of

Proof 5.5.2

The proof follows the structure of the algorithm and is completely straightfor-

ward.

5.5.2 Inferring constraint sets

After we have decorated (
; e; �) as (�; ~e; �) the next step is to compute a

constraint set � and a context � such that � ; � ` e ~e : � and � ` � ` �.

The derivation of � ; � ` e ~e : � depends on a number of derivations of

composite constraints. Consequently the algorithm depends on an algorithm,

which we will call infer, that given a constraint can compute a � such that

� ` . It is however not always possible to �nd such a � which means that

infer might fail. For example if � Int � � ! � then there is no � such that

� ` . We therefore introduce a relation (which should be read as \ is

derivable") which we will be a su�cient (and necessary) condition for infer to

succeed. The de�nition of is given in �gure 5.3.

We also need to show that the constraints generated by infer are of a speci�c

form. For this purpose we use the notion of covariance and contravariance. We

will write p�q

+

for the set of annotations of � that occur in covariant positions

and p�q

�

for those occurring in contravariant positions. Similarly we will also

de�ne p�q

+

, p�q

�

, p�q

+

and p�q

�

. This is done in �gure 5.4. We also extend

the notion of covariance and contravariance to atomic constraints in �gure 5.5

and to composite constraints in �gure 5.6. The de�nition of infer() is

straightforward and has been omitted. The following result states the soundness

of .

Lemma 5.5.3 (Soundness of)

If then infer() succeeds yielding � such that

� � `

� If �

0

`

~

� then �

~

� � �

0

.

190

p[�; �]q

+

= f�g p[�; �]q

�

= f�g

pa

m

q

+

= ; pa

m

q

�

= ;

pIntq

+

= ; pIntq

�

= ;

p� ! �q

+

= p�q

�

[p�q

+

p� ! �q

�

= p�q

+

[p�q

�

pList � � �q

+

= p�q

+

[p�q

�

pList � � �q

�

= p�q

�

[f�g [p�q

+

p�

�

q

+

= p�q

+

[p�q

�

p�

�

q

�

= p�q

�

[p�q

+

p�

�

q

+

= p�q

+

p�

�

q

�

= p�q

�

[f�g

Figure 5.4: Covariance and contravariance for types

pif � > 0 then � = !q

+

= f�g pif � > 0 then � = !q

�

= f�g

p� = !q

+

= f�g p� = !q

�

= ;

p�

0

� �

1

q

+

= f�

1

g p�

0

� �

1

q

�

= f�

0

g

p�

0

� �

1

q

+

= f�

1

g p�

0

� �

1

q

�

= f�

0

g

p�

0

� �

1

q

+

= f�

1

g p�

0

� �

1

q

�

= f�

0

g

Figure 5.5: Covariance and contravariance for atomic constraints

� p�q

+

� pq

+

� p�q

�

� pq

�

Proof 5.5.4

By induction over the size of .

We are now ready to de�ne a function infer(�; ~e; �) that infers a � and a �

such that � ; � ` e ~e : � . We will actually de�ne a set of mutually recursive

functions, one function for each form of judgement we have. The functions are

fully de�ned in appendix B and follow the typing rules closely.

The de�nition of infer(�; ~e; �) depends on infer() which can fail and

thus infer(�; ~e; �) can also fail. We therefore de�ne a relation (�; ~e; �) as

 (�; ~e; �) i� d�e ` d~ee : d�e. Knowing that (�; ~e; �) will be su�cient to

guarantee that infer(�; ~e; �) succeeds.

We de�ne p~eq to be the annotations in ~e and p~eq = pb~ecq. We also extend

the notion of covariance and contravariance to triples of the form (�; ~e; �) in

�gure 5.7. We are then �nally ready to state the soundness of (�; ~e; �).

191

pif � > 0 then �!

�

�;�q

+

= ;

pif � > 0 then �!

�

�;�q

�

= f�g [p�q

�

p�! �

0

q

+

= ; p�! �

0

q

�

= p�q

�

p�!

�

�

0

q

+

= ; p�!

�

�

0

q

�

= p�q

�

p� ` �q

+

= ; p� ` �q

�

= p�q

�

p�

0

� �

1

q

+

= p�

0

q

�

[p�

1

q

+

p�

0

� �

1

q

�

= p�

0

q

+

[p�

1

q

�

p�

0

� �

1

q

+

= p�

0

q

�

[p�

1

q

+

p�

0

� �

1

q

�

= p�

0

q

+

[p�

1

q

�

p�

0

� �

1

q

+

= p�

0

q

�

[p�

1

q

+

p�

0

� �

1

q

�

= p�

0

q

+

[p�

1

q

�

p�

0

� �

1

q

+

= p�

0

q

�

[p�

1

q

+

p�

0

� �

1

q

�

= p�

0

q

+

[p�

1

q

�

Figure 5.6: Covariance and contravariance for constraints

p(�; ~e; �)q

+

= p�q

�

[p~eq

+

[p�q

+

p(�; ~e; �)q

�

= p�q

+

[p~eq

�

[p�q

�

p~eq

+

= f� j � 2 p~eqg [f� j � 2 p~eqg [ptypes(~e)q

+

[ptypes(~e)q

�

p~eq

�

= f� j � 2 p~eqg [f� j � 2 p~eqg [ptypes(~e)q

+

[ptypes(~e)q

�

Figure 5.7: Covariance and contravariance for (�; ~e; �)

Proposition 5.5.5 (Soundness of (�; ~e; �))

If (�; ~e; �) then infer(�; ~e; �) will succeed yielding (�;�) such that

� � ; � ` d~ee ~e : � .

� � ` �

� If �

0

; �

0

` e

0

 ~e

0

: �

0

, �

0

` �

0

and (�; ~e; �) .

~

�

(�

0

; ~e

0

; �

0

) then �

~

� � �

0

and �

~

� � �

0

.

� p�q

+

� p(�; ~e; �)q

+

[f0

�

g [f� � � j � 2 p(�; ~e; �)q

+

; � 2 p~eqg

� p�q

�

� p(�; ~e; �)q

�

[f0

�

g [f� � � j � 2 p(�; ~e; �)q

�

; � 2 p~eqg

Proof 5.5.6

By induction over the size of ~e using the soundness of .

192

5.5.3 Principal typings

We can �nally put the pieces together and de�ne a function principal(e) which

computes a principal typing. The de�nition follows below.

principal(e) = (�;�;�; e; ~e; �)

where (
; e; �) = W(e)

(�; ~e; �) = decorate(
; e; �)

(�

0

;�) = infer(�; ~e; �)

�

1

= infer(� ` �)

� = �

0

;�

1

To prove that principal(e) actually computes a principal typing we need

the following completeness results for and (�; ~e; �).

Lemma 5.5.7 (Completeness of)

If � ` then .

Proof 5.5.8

By induction over � ` .

Lemma 5.5.9 (Completeness of (�; ~e; �))

If � ; � ` e ~e : � and � ` � then (�; ~e; �)

Proof 5.5.10

By induction over the size of e using the completeness of .

We need to prove that the constraints computed by principal(e) are of a

restricted form. Let � range over constraints of the following form.

� ::= i j 0 j i� k

� ::= j j 0 j j � k

� ::= if � > 0 then k = ! j k = ! j i

0

� � j � � j

1

j k

0

� k

1

j a

i

� a

j

We will take � to range over sets of restricted constraints.

We will write � ; � ; � ` e ~e : � i� � ; � ` e ~e : � and � ` � ` �. We

will let � ; � ; � ` e ~e : � .

~

�

�

0

; �

0

; �

0

` e

0

 ~e

0

: �

0

i� �

~

� � �

0

, �

~

� � �

0

,

�

~

� � �

0

, ~e

~

� � ~e

0

and �

~

� � �

0

. Finally, we say that � ; � ; � ` e ~e : � is a

principal typing judgement for e i� for any other typing �

0

; �

0

; �

0

` e

0

 ~e

0

: �

0

for e it is the case that � ; � ; � ` e ~e : � . �

0

; �

0

; �

0

` e

0

 ~e

0

: �

0

.

Now we are ready to state the main result.

Theorem 5.5.11 (Principal typings)

If and only if e is welltyped, principal(e) succeeds yielding (�;�;�; e; ~e; �)

such that

� � ; � ; � ` e ~e : � is a principal typing for e.

193

� If � 2 � then

{ � is in the set of restricted constraints ranged over by �.

{ If i 2 p�q

+

then i 62 p~eq.

{ If i� k 2 p�q

+

then i 62 p~eq and k 2 p~eq.

{ If j 2 p�q

�

then j 62 p~eq.

{ If j � k 2 p�q

�

then j 62 p~eq and k 2 p~eq.

Proof 5.5.12

If e is ill-typed then W(e) will fail and therefore also principal(e). Assume

instead that e is well-typed. We then know from the principal typing theorem

that W(e) succeeds, yielding (
; e; �) such that
 ` e : � is a principal typing for

e. We know that decorate(
; e; �) always succeeds yielding (�; ~e; �) such that

d(�; ~e; �)e � (
; e; �)

(�; ~e; �) . (�

0

; ~e

0

; �

0

) if (
; e; �) . d(�

0

; ~e

0

; �

0

)e:

Now from
 ` e : � and d(�; ~e; �)e � (
; e; �) we know that

 (�; ~e; �):

Thus we now by the soundness of (�; ~e; �) that infer(�; ~e; �) will succeed

yielding (�

0

;�) such that

�

0

; � ` d~ee ~e : �;

 � ` �;

if �

0

; �

0

` e

0

 ~e

0

: �

0

; �

0

` �

0

and (�; ~e; �) .

~

�

(�

0

; ~e

0

; �

0

)

then �

0

~

� � �

0

and �

~

� � �

0

;

p�

0

q

+

� p(�; ~e; �)q

+

[f0

�

g [f� � � j � 2 p(�; ~e; �)q

+

; � 2 p~eqg

and

p�

0

q

�

� p(�; ~e; �)q

�

[f0

�

g [f� � � j � 2 p(�; ~e; �)q

�

; � 2 p~eqg:

We also know by the soundness of � ` � that infer(� ` �) succeeds yielding

�

1

such that

�

1

` � ` �;

if �

0

1

` (� ` �)

~

� then �

1

~

� � �

0

1

;

p�

1

q

+

� p� ` �q

+

and

p�

1

q

�

� p� ` �q

�

:

194

Let � = �

0

;�

1

. We can now conclude that principal(e) succeeds yielding

(�;�;�; e; ~e; �). We also need to show that � ; � ; � ` e ~e : � is a principal

typing for e. First we know from �

0

; � ` d~ee ~e : � , d~ee � e and the weakening

lemma that

� ; � ` e ~e : �:

We also know by �

1

` � ` � and the weakening lemma that

� ` � ` �

so

� ; � ; � ` e ~e : �:

Now, if

�

0

; �

0

; �

0

` e

0

 ~e

0

: �

0

is a judgement for e, we need to show that � ; � ; � ` e ~e : � . �

0

; �

0

; �

0

`

e

0

 ~e

0

: �

0

. By de�nition, �

0

; �

0

; �

0

` e

0

 ~e

0

: �

0

means that

�

0

; �

0

` e

0

 ~e

0

: �

0

and

�

0

` �

0

` �

0

:

Now, from �

0

` �

0

` �

0

we know by the completeness of �

0

` �

0

that

 �

0

` �

0

so by �

0

; �

0

` e

0

 ~e

0

: �

0

and the completeness of (�

0

; ~e

0

; �

0

) we know that

 (�

0

; ~e

0

; �

0

)

which means that

d�

0

e ` d~e

0

e : d�

0

e:

Now since
 ` e : � is a principal judgement we know that

 ` e : � . d�

0

e ` d~e

0

e : d�

0

e

that is

(
; e; �) . d(�

0

; ~e

0

; �

0

)e:

From this we may conclude that there exist

~

� such that

(�; ~e; �) .

~

�

(�

0

; ~e

0

; �

0

)

which implies that

�

0

~

� � �

0

and

�

~

� � �

0

:

195

By (�; ~e; �) .

~

�

(�

0

; ~e

0

; �

0

) we also know that

�

~

� � �

0

~e

~

� � ~e

0

�

~

� � �

0

:

Now from �

0

` �

0

` �

0

, �

~

� � �

0

and �

~

� � �

0

we can by a simple inductive

argument show that

�

0

` �

~

� ` �

~

�

Thus we may conclude that

�

1

~

� � �

0

:

Finally from �

0

~

� � �

0

, �

1

~

� � �

0

and � = �

0

;�

1

we know that

�

~

� � �

0

which is what is required for

� ; � ; � ` d~ee ~e : � . �

0

; �

0

; �

0

` e

0

 ~e

0

: �

0

:

Thus � ; � ; � ` d~ee ~e : � is a principal typing for e.

Now let us turn to the properties of �. Thus assume that � 2 �. We proceed

by case analysis on the form of the constraint. We will only consider the case

where � � �

0

� �

1

. The other cases follow in the same manner. Now since

�

0

2 p�

0

� �

1

q

�

we know that

�

0

2 p(�; ~e; �)q

�

[f0

�

g [f� � � j � 2 p(�; ~e; �)q

�

; � 2 p~eqg

and we know that the annotations in (�; ~e; �) only consist of annotation vari-

ables (since (�; ~e; �) = decorate(
; e; �)) so

�

0

� i

for some i. Similarly, since �

1

2 p�

0

� �

1

q

+

we know that

�

1

2 p(�; ~e; �)q

+

[f0

�

g [f� � � j � 2 p(�; ~e; �)q

+

; � 2 p~eqg:

Thus either

�

1

� i where i 2 p(�; ~e; �)q

+

;

�

1

� 0

or

�

1

� i� k where i 2 p(�; ~e; �)q

+

and k 2 p~eq:

Thus �

0

� �

1

is of the form ranged over by �. Now since �

1

2 p�

0

� �

1

q

+

we

are also required to show that if �

1

� i or �

1

� i� k then i 62 p~eq. We already

know that i 2 p(�; ~e; �)q

+

and by the de�nition of p(�; ~e; �)q

+

we know that

i 2 p�q

�

[f� j � 2 p~eqg [f� j � 2 p~eqg [ptypes(~e)q

+

[ptypes(~e)q

�

[p�q

+

196

Thus all �'s in p(�; ~e; �)q

+

come from the types and since the annotations in the

term are distinct from the annotations in the types (a property of decorate)

we know that

i 62 p~eq

as required.

5.6 Solving the constraints

In this section we will show that the constraints generated by the principal

typing algorithm always have an optimal model. By an optimal model we mean

a model that generates the best annotated well-typed term according to the

ordering speci�ed in section 5.1. We will also give an algorithm that e�ciently

computes the optimal model and argue it correct.

5.6.1 Existence of optimal models

We start by de�ning a preorder on closing substitutions indexed by an annotated

expression. Let

~

and

~

#

0

be two closing substitution. We will write

~

-

~e

~

#

0

i� b~e

~

#c � b~e

~

#

0

c. We will say that

~

is an optimal model of � (which ranges

over sets of restricted constraints) with respect to -

~e

i�

~

j= � and

~

-

~e

~

#

0

for any

~

#

0

such that

~

#

0

j= �. Note that the preorder ignores the annotation

variables that do not occur in p~eq which means that the variables that occur in

the types in ~e are ignored. The reason for this is of course that the annotations

in the types do not have any operational signi�cance and we therefore do not

care about them as long as the term is well-typed. Although the variables that

do not occur in p~eq are ignored by

~

-

~e

~

#

0

they may occur in the constraint

set. This complicates matters a bit and we have to treat these variables very

carefully. Also note that -

~e

is covariant in the k's and j's that occur in p~eq and

contravariant in the i's in p~eq. Thus we will try to minimise the k's and the j's

and maximise the i's.

We will let � range over sets of closing substitutions and we will write � j= �

i� all closing substitutions in � models �. We then de�ne an operator

�

u

~e

� on

these sets.

(

�

u

~e

�)(k) = uf

~

#(k) j

~

2 �g

(

�

u

~e

�)(j) = uf

~

#(j) j

~

2

^

�g if j 2 p~eq

(

�

u

~e

�)(j) = uf

~

#(j) j

~

2 �g if j 62 p~eq

(

�

u

~e

�)(i) = tf

~

#(i)j

~

2

^

�g

where

^

� = f

~

j

~

2 � and for any k 2 p~eq it is the case that

~

#(k) = uf

~

#(k) j

~

2 �gg:

197

Note that the j's that occur in p~eq are treated di�erently from the j's that do

not. This is best understood in terms of the properties we want to hold for the

operator. As the notation suggests we want

�

u

~e

to be a greatest lower bound

operator with respect to -

~e

. This leaves us with no choice in the de�nition of

(

�

u

~e

�)(j) when j 2 p~eq but puts no constraint on the de�nition when j 62 p~eq

(since -

~e

ignores the j's such that j 62 p~eq). That

�

u

~e

really is a greatest lower

bound operator is stated in the following lemma.

Lemma 5.6.1

�

u

~e

� is a greatest lower bound of � with respect to -

~e

.

Proof 5.6.2

By simple veri�cation.

We also want that, given a set of models �, then

�

u

~e

� should be a model.

This is sometimes called the Moore family property [NNH98]. The de�nition

of (

�

u

~e

�)(j) when j 62 p~eq is carefully designed to make this hold and is best

understood by the proof of the property.

Lemma 5.6.3 (Moore family property)

If (�;�;�; e; ~e; �) = principal(e) and � j= � then

�

u

~e

� j= �.

Proof 5.6.4

This is a nontrivial property that crucially depends on the di�erent treatment

of the di�erent sort of j's and on the form of the constraints generated by

principal(e). The proof is by case analysis on the form of the constraints in

�. Thus assume that � 2 �. We will only consider the two illustrative cases

where � � if j > 0 then k = ! and � � i

0

� i

1

� k.

case � � ifj > 0thenk = !: We need to show that

�

u

~e

� j= ifj > 0thenk = !.

Now since j 2 pif j > 0 then k = !q

�

we know by the principal typing theorem

that j 62 p~eq. Thus, by the de�nition of

�

u

~e

�, to show that

�

u

~e

� j= if j >

0 then k = ! amounts to showing that

if u f

~

#(j) j

~

2 �g > 0 then u f

~

#(k) j

~

2 �g = !:

Thus assume that

uf

~

#(j) j

~

2 �g > 0:

Then for any

~

2 � we know that

~

#(j) > 0

and since

~

j= if j > 0 then k = ! we may conclude that

~

#(k) = !

198

for any

~

2 �. Thus

uf

~

#(k) j

~

2 �g = !

as required.

case � � i

0

� i

1

� k: We need to show that

�

u

~e

� j= i

0

� i

1

� k. That is to

show that tf

~

#(i

0

) j

~

2

^

�g � tf

~

#(i

1

) j

~

2

^

�g � uf

~

#(k) j

~

2 �g. Now for any

~

2

^

� we know that

~

#(i

0

) �

~

#(i

1

)�

~

#(k) � tf

~

#(i

1

)�

~

#(k) j

~

2

^

�g:

Thus

tf

~

#(i

0

) j

~

2

^

�g � tf

~

#(i

1

)�

~

#(k) j

~

2

^

�g:

Now since i

1

� k 2 pi

0

� i

1

� kq

+

the principal typing theorem gives us the key

fact that

k 2 p~eq

and thus by the de�nition of

^

� we know that for any

~

2

^

�

~

#(k) = uf

~

#(k) j

~

2 �g

Thus

tf

~

#(i

1

)�

~

#(k) j

~

2

^

�g = tf

~

#(i

1

)� uf

~

#(k) j

~

2 �g j

~

2

^

�g

and

tf

~

#(i

1

)� uf

~

#(k) j

~

2 �g j

~

2

^

�g = tf

~

#(i

1

) j

~

2

^

�g � uf

~

#(k) j

~

2 �g

So we may conclude that

tf

~

#(i

0

) j

~

2

^

�g � tf

~

#(i

1

) j

~

2

^

�g � uf

~

#(k) j

~

2 �g

as required.

We can now show that there exists an optimal model for the restricted form of

constraints generated by principal(e).

Proposition 5.6.5 (Existence of optimal models)

If (�;�;�; e; ~e; �) = principal(e) then there exists an optimal model

~

for �.

Proof 5.6.6

Assume (�;�;�; e; ~e; �) = principal(e) and let

~

=

�

u

~e

f

~

j

~

j= �g. Then

~

#

is a model of � by the Moore family property and

~

is smaller that any other

model (with respect to -

~e

) since

�

u

~e

is a greatest lower bound operator.

199

5.6.2 Rewriting the constraint set

Now we will go on and show how to e�ciently compute the optimal solution

to a set of constraints. The algorithm is divided into three phases. The �rst

phase is phrased as a rewrite system which extends the constraint set. When

the rewriting has terminated the second phase simpli�es the constraints to a

simple form which can be solved easily in the third phase.

For the purpose of the algorithm we also include constraints of the form

j > 0. The idea behind the �rst phase is to �nd all k's that is forced to be !

in every model of the constraints. Then if k is forced to be ! in every model

we record that by adding an explicit constraints k = !. A k can be forced to

! for three reasons: either explicitly by a constraint k = !, or implicitly by a

constraint k

0

� k where k

0

is forced to be !, or by a constraint ifj > 0thenk = !

where j is forced to be non-zero. A rewrite relation based on this observation

is given below.

� �! �; j

0

> 0 if j � k � j

0

; k = ! 2 �; j

0

> 0 62 �

� �! �; j

0

> 0 if j > 0; j � k � j

0

2 �; j

0

> 0 62 �

� �! �; j

0

> 0 if j > 0; j � j

0

2 �; j

0

> 0 62 �

� �! �; k = ! if j > 0; if j > 0 then k = ! 2 �; k = ! 62 �

� �! �; k

0

= ! if j > 0; if j � k > 0 then k

0

= ! 2 �; k

0

= ! 62 �

� �! �; k

0

= ! if k = !; if j � k > 0 then k

0

= ! 2 �; k

0

= ! 62 �

� �! �; k

0

= ! if k = !; k � k

0

2 �; k

0

= ! 62 �

It is easy to show that the rewrite relation preserves models and that it, given

a �nite constraint set, terminates with a normal form. This is expressed in the

following two lemmas.

Lemma 5.6.7 (Rewriting preserves models)

If � �! �

0

then

~

j= � i�

~

j= �

0

Proof 5.6.8

By verifying each rewrite rule.

Lemma 5.6.9

Given a �nite set of constraints � the rewriting terminates.

Proof 5.6.10

For each rewrite step the number of constraints increases by one. However the

number of annotation variables remains constant. Since we only add constraints

of the forms k = ! and j > 0 the number of rewrite steps is bounded by the

number of annotation variables.

200

5.6.3 Simplifying the constraint set

The second phase of the algorithm takes a set of constraints in normal form

and simpli�es the constraints to a form which can be solved easily. The simpli-

�cation is based on the idea that if we instantiate a set of constraints � with a

substitution

~

� and �nd a model

~

to the instantiated constraints then we can

construct a model

~

�

~

� of the original constraints as well. This is expressed in

the following lemma.

Lemma 5.6.11 (Soundness of instantiation)

If

~

j= �

~

� then

~

�

~

� j= �

Proof 5.6.12

By simple case analysis on the form of the constraints in �.

It may of course be the case that the instantiated constraints do not have a

model. The following lemma however states that if there is a model of the form

~

�

~

� then we could �nd it with this approach.

Lemma 5.6.13 (Restricted completeness of instantiation)

If

~

�

~

� j= � then

~

j= �

~

�.

Proof 5.6.14

By simple case analysis on the form of the constraints in �.

We will now given a constraint set in normal form show how to instantiate

the constraint set in a way such that the instantiated constraint set does have

models. It will also help us to get rid of all k's in the constraints which will

allow us to simplify the constraints considerably. We de�ne

~

�

�

as follows.

~

�

�

(i) = i

~

�

�

(j) = 0 if j > 0 62 �

~

�

�

(j) = j if j > 0 2 �

~

�

�

(k) = X if k = ! 62 �

~

�

�

(k) = ! if k = ! 2 �

~

�

�

(a

i

) = a

i

We will then go on and solve �

~

�

�

.

The de�nition of

~

�

�

is based on the following idea: if for every model

~

of

� it the case that

~

#(k) = ! then this will be explicitly recorded by a constraint

k = ! in �. Thus if k = ! 62 � then we should be able to instantiate k to X

without losing all models. This is not obvious though. If we for example have

a constraint if j > 0 then k = ! in � we will by instantiating k to X force j to

be zero which might conict with another constraint. Fortunately the rewrite

201

relation ensures that if for every model

~

of � it is the case that

~

#(j) > 0 then

this will be explicitly recorded by a constraint j > 0 in � and if j > 0 2 � then

so would also k = ! (remember that we require � to be in normal form). Thus

j > 0 cannot be in � so we should also be able to instantiate j to 0. We will

shortly show that it is indeed true that �

~

�

�

do have models and also an optimal

model.

This is however not enough. We also need to show that an optimal model

of the instantiated constraints generates an optimal model of the original con-

straints. At �rst sight it may seem obvious. We are supposed to minimise the

k's and the j's and we de�ne

~

�

�

(k) and

~

�

�

(i) to be the smallest possible an-

notations where it is possible and

~

�

�

is the identity otherwise. However, there

may be a constraint i

0

� i

1

� k in �. Then letting

~

�

�

(k) = X may force i

0

to

be smaller than otherwise possible and we do want to maximise the i's. This is

exactly what happens with the example in section 5.1 which was the motivat-

ing example for the decision to �rst optimise the annotations on the bindings

and then optimise the annotations on the value. This is also reected in the

preorder -

~e

which allows us to make the annotations on values arbitrary worse

if the annotations on the bindings are made better. But -

~e

ignores the k's that

occur in the types in ~e. So if we have a constraint i

0

� i

1

�k in � where k 62 p~eq,

we could lose the optimal model if we let

~

�

�

(k) = X. Fortunately the principal

typing theorem guarantees that if i

0

� i

1

� k 2 � then k 2 p~eq.

Since �

~

�

�

does not contain any k's we will order the models of �

~

�

�

by a

preorder that ignores the k's. We de�ne the preorder as

~

.

~

#

0

i� for all i, j,

~

#

0

(i) �

~

#(i) and

~

#(j) �

~

#

0

(j).

We are now ready to state and prove that if the instantiated constraint set

has an optimal model then so does the original constraint set.

Lemma 5.6.15

If (�;�;�; e; ~e; �) = principal(e), � �!

�

�

0

, �

0

is in normal form and

~

is an

optimal model of �

0

~

�

�

0

with respect to . then

~

#�

~

�

�

0

is an optimal model of �.

Proof 5.6.16

Assume that (�;�;�; e; ~e; �) = principal(e), � �!

�

�

0

and that

~

is an

optimal model of �

0

~

�

�

0

with respect to .. We �rst argue that

~

#�

~

�

�

0

is a model

of � as follows. Since

~

j= �

0

~

�

�

0

we know by the soundness of instantiation that

~

�

~

�

�

0

j= �

0

and since rewriting preserves models we know that

~

�

~

�

�

0

j= �:

To show that

~

#�

~

�

�

0

is an optimal model, take an arbitrary model

~

#

0

of �. Then

since rewriting preserves models we know that

~

#

0

j= �

0

:

202

We then note that given arbitrary k we know that if (

~

�

~

�

�

0

)(k) = ! then

k = ! 2 �

0

so

~

#

0

(k) = ! as well (since

~

#

0

j= �

0

). Thus we know that

(

~

�

~

�

�

0

)(k) �

~

#

0

(k)

for all k. Now if there exists a k 2 p~eq such that (

~

�

~

�

�

0

)(k) <

~

#

0

(k) we are

done. Assume therefore that there is no such k, that is

(

~

�

~

�

�

0

)(k) =

~

#

0

(k)

for all k 2 p~eq. Now let

~

#

00

be de�ned as follows.

~

#

00

(k) =

~

�

�

0

(k)

~

#

00

(j) = (

~

�

~

�

�

0

(j)) u

~

#

0

(j)

~

#

00

(i) = (

~

�

~

�

�

0

(i)) t

~

#

0

(i)

By de�nition of

~

�

�

0

we see that

~

#

00

=

~

#

00

�

~

�

�

0

and from the de�nition of

�

u

~e

and (

~

�

~

�

�

0

)(k) =

~

#

0

(k) for all k 2 p~eq we know

that

~

#

00

= (

~

�

~

�

�

0

)

�

u

~e

~

#

0

Now, since the set of models is closed under

�

u

~e

(

~

�

~

�

�

0

)

�

u

~e

~

#

0

j= �

so since rewriting preserves models

(

~

�

~

�

�

0

)

�

u

~e

~

#

0

j= �

0

so by

~

#

00

= (

~

�

~

�

�

0

)

�

u

~e

~

#

0

~

#

00

j= �

0

and by

~

#

00

=

~

#

00

�

~

�

�

0

~

#

00

�

~

�

�

0

j= �

0

and therefore

~

#

00

j= �

0

~

�

�

0

by the partial completeness of instantiation. But

~

is an optimal model of �

0

with respect to . so

~

.

~

#

00

:

Thus for any i,

~

�

~

�

�

0

(i) =

~

#(i) �

~

#

00

(i) = (

~

�

~

�

�

0

(i)) t

~

#

0

(i) �

~

#

0

(i)

203

and for any j

~

�

~

�

�

0

(j) �

~

#(j) �

~

#

00

(j) = (

~

�

~

�

�

0

(j)) u

~

#

0

(j) �

~

#

0

(j)

as required.

Now let us return to the task of showing that the instantiated constraint set

has an optimal model. We will do that by showing that the we can construct sets

of constraints of a simple form which are equivalent to the instantiated constraint

set. We will then argue that for these constraint sets it is straightforward to

�nd an optimal model.

Let , � and & range over constraints of the following forms.

 ::= i � 0 j i

0

� i

1

j i

0

� i

1

+ 1

� ::= j

0

� j

1

j j

0

+ 1 � j

1

j j > 0

& ::= a

i

� a

j

We will let 	, �, � range over set of constraint of the form ranged over by

 , � and & respectively. Now the following result states that the instantiated

constraint set can be simpli�ed.

Lemma 5.6.17 (Simpli�cation)

If � is a �nite set of constraints in normal form then there exist �nite sets 	,

�, � such that

~

j= �

~

�

�

i�

~

# j= 	,

~

j= � and

~

j= �.

Proof 5.6.18

Assume � is in normal form. We proceed by proving that for any constraint �

in � either �

~

�

�

is trivially true (ie it is modelled by every closing substitution)

or there exists an equivalent constraint of the form given above. Thus given

a constraint � we proceed by case analysis on the form of the constraint. We

will only consider the illustrative case where � � j

0

� k � j

1

. Let us start by

considering the case where

~

�

�

(k) = X. Then if

~

�

�

(j

0

) = 0 we have that

(j

0

� k � j

1

)

~

�

�

� 0�X �

~

�

�

(j

1

)

which is trivially satis�able. Consider instead the case where

~

�

�

(j

0

) = j

0

. By

the de�nition of

~

�

�

,

j

0

> 0 2 �

so

j

1

> 0 2 �

since � is in normal form. Thus by the de�nition of

~

�

�

we know that

~

�

�

(j

1

) = j

1

:

Thus

(j

0

� k � j

1

)

~

�

�

� j

0

�X � j

1

� j

0

� j

1

204

which is among the constraints of the form above. Now consider the case where

~

�

�

(k) = !. Then by the de�nition of

~

�

�

,

� = ! 2 �

so

j

1

> 0 2 �

since � is in normal form. Thus by the de�nition of

~

�

�

we know that

~

�

�

(j

1

) = j

1

:

Now in the case where

~

�

�

(j

0

) = 0 we have that

(j

0

� k � j

1

)

~

�

�

� 0� ! � j

1

which is equivalent to j

1

> 0. In the case where

~

�

�

(j

0

) = j

0

we have that

(j

0

� k � j

1

)

~

�

�

� j

0

� ! � j

1

which is equivalent to j

0

+ 1 � j

1

.

5.6.4 Solving the simpli�ed constraints

It remains to show that there are algorithms that can �nd optimal models of

simpli�ed forms of constraint sets. These algorithms are straightforward and

we will only describe them informally. It should be straightforward to describe

them as rewrite systems as well.

To solve constraints ranged over by we proceed as follows. First remember

that ranges over constraints of the form

 ::= i � 0 j i

0

� i

1

j i

0

� i

1

+ 1

and that we are supposed to maximise the i's. The �rst stage of the algorithm

will �nd all i's that has to be 0. Either directly due to a constraint i � 0 or

indirectly due to a constraint i

0

� i

1

where i

1

is forced to be 0. We can express

this as a rewrite system with the single rewrite rule

	 �! 	; i

0

� 0 if i � 0; i

0

� i 2 	; i

0

� 0 62 	:

We apply this rule until we reach a normal form. Then we instantiate the

constraints by substituting in 0 for i if i � 0 2 	. We can then simplify the

instantiated constraints to constraints of the following form.

i � 1 j i

0

� i

1

j i

0

� i

1

+ 1

We see that they have the same form as before except that i � 0 is replaced

by i � 1. Thus in the second stage we will try to �nd all i's such that i � 1

205

and instantiate them to 1. We repeat this process until we have a constraint set

where there is no constraint of the form i � n. We can then take the remaining

i's to be !. The algorithm will terminate since the number of variables in the

constraint set is strictly decreasing for each stage. Moreover the algorithm will

be linear in the number of i's in 	 since the cost of each stage is proportional

to the number of eliminated variables.

To solve constraints ranged over by � we proceed as follows. First remember

that � ranges over constraints of the form

� ::= j

0

� j

1

j j

0

+ 1 � j

1

j j > 0

and that we are supposed to minimise the j's. Also note that any variable j that

occurs in the constraint set is constrained by a constraint j > 0 (this follows

from the de�nition of

~

�

�

) so the best value we can assign to a j is 1. Now think

of the constraint set as a graph where the j's are nodes and the constraints are

edges. First �nd all the cycles in the graph that only contain edges of the form

j

0

� j

1

. The variables in such a cycles must be equal so we can instantiate them

all to a common variable. When there is no cycle of this form left we �nd all

remaining cycles. That is cycles that contain an edge of the form j

0

+ 1 � j

1

.

All the variables in such a cycle must be ! so we instantiate them to !. Some

constraints can then be simpli�ed away and we will have a constraint set of the

form

! � j

1

j j

0

� j

1

j j

0

+ 1 � j

1

j j > 0

that do not contain any cycles. We then �nd all j's that has to be !, instantiate,

simplify and remove trivial constraints. We will then again have constraints of

the form

j

0

� j

1

j j

0

+ 1 � j

1

j j > 0

without cycles. Since there are no cycles in the graph there must be some

variables that do not occur in the right hand side of any constraint. Instantiate

them all to 1 and simplify. We will get a constraint set of the form

j

0

� j

1

j j

0

+ 1 � j

1

j j > 1:

where every variable j in the constraint set is constrained by a constraint j > 1.

We then repeat this process until the set of constraints is empty. This will

eventually happen since the number of variables in the constraint set is strictly

decreasing for each of the repeated stages. Moreover the algorithm will be

linear in the number of j's in � since the cost of each stage is proportional to

the number of eliminated variables.

Finally, we can solve the constraints ranged over by & by instantiating the

involved bare type variables to Int.

206

5.7 A note on complexity

The complexity of the implementation of the analysis depends on the complexity

of the three phases of the algorithm. Most compilers perform type inference

anyway so we will assume that this phase has been carried out and that the

input of the analysis is an explicitly typed term.

At �rst sight it might seem as if the number of generated constraints is

linear in the size of the explicitly typed term but it is not. This claim was made

made for the similar type system by Wansbrough and Peyton Jones [WJ99b]

but turned out to be false

1

. The non-linearity comes from the rule

Value

� ; � ` v ~v : �

� ; � ` v ~v

�

: �

[�;�]

� ` if � > 0 then �!

�

�;�

� ` [�; �] � �

where the side condition � ` if � > 0 then �!

�

�;� generates one constraint

for every free variable in �. Thus the number of constraints generated for

�x

0

:�x

1

: : : : �x

n

:x

0

+ x

1

+ : : :+ x

n

is quadratic in n. Thus the overall complexity of the analysis is at least quadratic

in the size of the explicitly typed program (and the same holds for the type sys-

tems by Turner et al [TWM95] and Wansbrough and Peyton Jones [WJ99b]).

However in practice the number of nested abstractions does not grow with pro-

gram size. Under that assumption we believe that it might be the case that the

number of constraints is linear in the size of the explicitly typed term. We leave

the investigation of this as future work.

It remains to show that we can �nd the optimal solution to the constraints

in linear time. We have proved that given a constraint set of size n the rewrite

system that underly our implementation terminates in n steps. However we

have not argued that the rewrite system can be implemented in linear time

although we believe it can.

1

Con�rmed by personal communication.

207

208

Chapter 6

Experiments

We have made a prototype implementation of the analysis and an interpreter

of the abstract machine that counts the number of updates and update marker

checks. The implementation follows the semantics of chapter 2 with two excep-

tions. First we have implemented the rule

hH; x= v ; x ; Si

Lookup

7�! hH; x= v ; v ; Si

which allows a value to be looked up without pushing a marker and performing

an update. Any reasonable compiler would perform this optimisation so we

have included it in our implementation to make for more realistic benchmarks.

Second, we have implemented the known function call optimisation which re-

duces the number of update marker checks when calling top-level functions. The

known function call optimisation works as follows. Suppose, for example, that

we have a top-level function f of arity 3 which is called as f xyz. The �rst thing

the code for f will do is to look for update markers on the top of the stack. But

it will not �nd any since there will be three arguments on the top of the stack.

At the call of f we know that and can take advantage of it by simply jumping to

the code right after the code that performs the update marker checks. Similarly

if f is called with just two arguments (as in let g = f x y inmap g xs) we can

bypass parts of the code that checks for markers. The optimisation only applies

to top-level functions since it requires that we statically know where the code for

f resides. To increase the possibility for the optimisation we have implemented

a simple transformation that oats functions to the top level where it is possible

(that is when they do not have any free variables except for those referring to

other top level declarations). This transformation can also save a few updates

since it can turn

let f = let g = �y:e

1

in �x:e

0

in e

209

into

let f = �x:e

0

g = �y:e

1

in e

which makes f bound to a value. This explains why the measurements pre-

sented here do not exactly coincide with those in [Gus98]. The known function

call optimisation seems to go back to at least the implementation of the three

instruction machine which as far as we know is the �rst abstract machines based

on update markers [FW87].

We have measured the e�ects of our analysis for a few small Haskell pro-

grams. The program sizes range from two lines up to thirty lines (the most

substantial ones being a byte code interpreter and a calculator that parses

arithmetic expressions). Some of the programs heavily use Haskell's power-

ful syntax (such as list comprehensions) and several prede�ned functions and

when translated into our restricted language the program sizes range from 12

lines up to 190 lines (including the used prede�ned functions). In appendix C

we show one of the programs and the result of applying the analysis to it. The

constraint solver in our implementation (written in Haskell) is very naive and

is at least quadratic in the number of constraints. Anyhow the largest program

can be analysed within three seconds. We believe that with a good implemen-

tation of the constraint solver (which we believe can be linear in the number of

constraints) large programs can be analysed quickly.

The results of the measurements are given below.

Without analysis With analysis Saved %

Program Upd Chk Upd Chk Upd Chk

primes 6685 48983(61416) 639 0(0) 90 100(100)

substring 102 370(502) 63 1(12) 38 100(98)

nqueens 712 2446(3760) 72 0(0) 90 100(100)

quicksort 38 220(438) 0 0(0) 100 100(100)

interpreter 3254 20909(27088) 3249 431(431) 0 98(98)

zantema 71 664(1005) 66 0(0) 7 100(100)

syracuse 166 1224(1475) 83 0(0) 50 100(100)

calculator 19 315(413) 0 0(0) 100 100(100)

The �rst and second column contains the number of updates and update marker

checks needed in the unoptimised and optimised abstract machine respectively.

The third column shows the percentage of updates and update marker checks

saved. The �gures within parentheses shows the number of update marker

checks with the known function call optimisation turned o�.

The number of saved updates varies greatly from program to program de-

pending on the amount of inherent sharing and ranges from 0% to 100% with

an average of 59%. Thus for a fair comparison with other analyses it is crucial

to compare the results for the same programs. The measurements in [Ses91]

210

are performed on very small programs and furthermore functions are used to

encode lists. He also uses an abstract machine which treats updates di�erently

(see chapter 7 for a discussion of this). His results range from 0% to 53% with

an average of 25%. The measurements in [Mar93] are performed on large real

world programs which we cannot match. His results range from 0% to 57% with

an average of 23%. The measurements by Fax�en [Fax96] are carried out on a

few small programs. The results vary from 0% to 100% with an average of 66%.

Although a direct comparison is not possible, our results seem promising.

The number of saved update marker checks is constantly over 98% with an

average of 99% and seems to be independent of the nature of the program. The

measurements by [Ses91] show that the number of update marker checks that

can be saved by his analysis ranges from 0% to 55% with an average of 25%.

We also note that the known function call optimisation can reduce the number

of checks with between 17% and 50% with an average of 29%. Together with

our analysis the known function call optimisation gives little extra but it is not

completely subsumed by our analysis.

These initial results seem very promising but indeed the programs tried out

are very small. Most notably, none of them su�er from the lack of polymor-

phism and polyvariance (see chapter 8 for a discussion of polymorphism and

polyvariance). It would be very interesting to incorporate the analysis in a real

compiler to see how it behaves on large programs and to measure the actual

speedup.

211

212

Chapter 7

Related work

Our type systems builds on ideas taken from linear logic [Gir87] and is yet

another attempt to exploit the computational interpretations of linear logic

[Abr93]. There are a number of type systems and analyses building on linear

logic and where there is a connection to our work we will relate to them later

in this chapter. The chapter is organised as follows. First we will relate our

approach to those analyses which also tackle the problem of update avoidance

and the problem of avoiding update marker checks. Then we will relate to

work which tackles the closely related problems of ensuring the safety of pro-

gram transformation, destructively updating arrays and compile time garbage

collection. Finally, we will relate sharing analysis to strictness analysis.

7.1 Avoiding updates

The idea of avoiding unnecessary updates is old and goes back at least to Fair-

bairn [Fai85] but he gives no analysis. Also as pointed out by Fairbairn and

Wray [FW87], and Burn, Peyton Jones and Robson [BRJ88] the abstract ma-

chines that were underlying the implementations in those days were not very

well suited for exploiting sharing analysis. One of the main objectives behind the

design of the Three Instruction Machine(TIM) by Fairbairn and Wray [FW87]

and the Spineless G-machine by Burn, Peyton Jones and Robson [BRJ88] was

therefore to open up the possibility for sharing analysis. Fairbairn and Wray are

also the �rst to report on a simple local sharing analysis which can speed up the

TIM by about 10%. However the TIM has a fairly naive treatment of sharing

which can lead to long chains of indirections (corresponding to bindings of the

form x= y). When such a chain is evaluated all the bindings are updated. The

good results from Fairbairns and Wray's analysis seem to stem mainly from the

elimination of some of these chains. The TIM was later re�ned into the G-TIM

by Argo [Arg89]. In the G-TIM these chains are not created and Fairbairn and

Wray's analysis does not seem applicable.

213

As far as we know the �rst non local analyses for update avoidance are a

backwards analysis by Hughes and Wray [Hug88] and a path analysis by Bloss

and Hudak [BHY88].

Hughes and Wray's analysis is based on counting the number of times an

expression is used under call-by-name which approximates its use under call-

by-need. If the analysis can �gure out that an expression is used at most once

then it is safe not to update the corresponding closure. Since their analysis is

based on call-by-name rather than call-by-need it is rather conservative. Hughes

and Wray give their analysis for a �rst order language without data structures.

However it seems possible to extend it to a higher order language with data

structures although such an analysis would be very expensive.

Bloss and Hudak's path analysis can predict the order of evaluation of vari-

ables in an expression. Consider for example

if x then y else y + y

and rename the di�erent occurrences of y as below.

if x then y

0

else y

1

+ y

2

If we apply path analysis to this expression we would �nd out that either x is

needed �rst and then y

0

or x is needed �rst and then y

1

and y

2

. Based on this

information we could annotate the expression as

if x

X

then y

X

else y + y

where the X indicates that the binding referred to by x need not be updated and

the binding referred to by y need not be updated if the then-branch is selected.

Note that this annotation schema is quite di�erent from that in our analy-

sis where we annotate bindings rather than variables. Our choice to annotate

bindings rather than variables reects our intention to base our implementation

of the abstract machine on the so called self-updating model (used in for ex-

ample the STG-machine [PJ92]) rather than the so called cell-model where the

responsibility to update the closure lies on the code that forces the evaluation

of the closure (ie the code for the variable). An analysis for the self-updating

model (like ours) can in this example not annotate the binding for y with X

since it would go wrong if the else-branch is taken. Thus analyses based on

the cell-model can avoid more updates in this case. However for some examples

it can also be the other way around. Unfortunately the path analysis by Bloss

and Hudak cannot handle data structures such as lists and it is computationally

very expensive. Gomard's and Sestoft's evaluation order analysis [GS91] is a

re�nement of the work by Bloss and Hudak. Gomard's and Sestoft's analysis

can take care of data structures and it is signi�cantly less expensive than Bloss

and Hudak's analysis. Unfortunately it is not higher order and seems to be far

more expensive than update avoidance analyses not based on evaluation order

information.

214

In his PhD thesis Sestoft presents a so called usage interval analysis [Ses91]

which can give a lower and an upper bound on the number of times an expression

is used under call-by-name. The lower bound gives strictness information and

the upper bound gives sharing information: if we know that an expression is used

at most once then we can avoid to update the corresponding closure. Sestoft's

analysis is essentially �rst order but is extended to a higher order language by

means of a ow analysis which Sestoft calls closure analysis. In this way he

obtains an analysis for a higher order language with a reasonable complexity.

The analysis does not treat data structures directly, but they can be encoded

as functions without an explosion in time complexity. But due to the encoding

the resulting analysis is rather imprecise when it comes to data structures.

Although the analysis is quite crude it gives good results and on average 23% of

all updates can be avoided. However, Sestoft's measurements is for an abstract

machine which accomplishes sharing of evaluation in a rather naive fashion

similar to the one in the TIM. It is not clear to us if the good results would

carry over to an implementation based on a more e�cient abstract machine.

The �rst type based sharing analysis is due to Launchbury, Gill, Hughes,

Marlow, Peyton Jones and Wadler [LGH

+

92]. It treats non-atomic types (ie

function types) conservatively and it cannot handle data structures. Anyhow it

has been very inuential since it incorporates ideas from linear logic (as proposed

by Abramsky [Abr90, Abr93]) and it is the basis for several other type based

sharing analyses, including ours.

Marlow presents an analysis based on abstract interpretation [Mar93]. One

of the main objectives behind Marlow's work was to construct an analysis which

could successfully be implemented in a full scale compiler. Where there was a

choice between an e�cient analysis and a more accurate one he opted for the

former. The result was a rather cheap but fairly conservative analysis (especially

when it comes to data structures) which was successfully implemented in the

Glasgow Haskell Compiler [JHH

+

93]. Marlow's measurements show that he can

avoid on average about 25% o� all unnecessary updates which gives a speedup

of about 5%.

Our work builds directly on the type based analysis by Turner, Wadler and

Mossin [TWM95]. Their analysis handles a monomorphic language with higher

order functions and data structures. The complexity of their analysis appears

to be essentially linear in the size of the explicitly typed term (see section 5.7 for

a precise statement). Despite the low complexity their analysis is signi�cantly

more precise than previous analyses, especially when it comes to data structures.

They also prove their analysis sound with respect to Launchbury's natural se-

mantics [Lau93]. Although our work builds closely on the work by Turner et

al there are a number of important di�erences. First, our analysis provides in-

formation that enables us to optimise the bookkeeping of updates by avoiding

update marker checks. We think of this as our major contribution. Second, their

analysis treats only a very restricted form of recursive let-expressions. Most

notably, they cannot handle mutual recursion. Third, our analysis is strictly

215

more precise (ie the set of well typed terms in our type system is a strict su-

perset of the well typed terms in their system). One reason for this being that

we distinguish between the type of a binding and the type of the corresponding

expression. For example,

let x=

X

1 + 2 in

let y =

!

(�z:z) x in

y + y

is considered to be ill-typed by their type system, since y has the same type as

(�z:z) x and thus the same type as x. Another reason for why our type system

is more accurate is that our type system has a subsumption rule which allows

more terms to be typed. For example,

let f =

!

�x:x + 1

y =

!

2 + 3

z =

X

4 + 5

in y + (f y) + (f z)

is ill-type in their type system (since it would require f to have two di�erent

types). Although our type system is strictly more precise than the one by Turner

et al it is not clear to us how big the di�erence is in practice. However both

our re�nements (binding types and subsumption) are important for our analysis

when it comes to avoiding update marker checks.

Fax�en formulates an elegant sharing analysis based on ow information which

can be obtained by means of a ow analysis [Fax95]. The formulation of the

sharing analysis itself is independent of the ow analysis but the accuracy and

complexity of the analysis depends crucially on the accuracy and complexity of

the underlying ow analysis. Together with his sharing analysis Fax�en presents

a suitable ow analysis which can handle a polymorhic higher order language

with data structures. The complexity of his ow analysis is not clear to us.

Fax�en proves his ow analysis correct but gives no proof for the soundness

of his sharing analysis. Although Fax�en's analysis looks completely di�erent

(at least at �rst sight) from the analysis by Turner et al they are in fact closely

related and based on similar ideas. Also the constraint set generated by the type

inference algorithm by Turner et al bears great resemblance to the graph that

Fax�en creates based on the ow information. The exact relationship between

the analyses are not clear to us (since the accuracy of Fax�en's ow analysis is

not clear to us) but it seems to us as if Fax�en's analysis yields more precise

results in some cases. The examples we have found are exactly those where

our analysis is more precise than Turner et al's indicating that our analysis has

similar precision to Fax�en's when it comes to update avoidance. Fax�en makes

no attempt to avoid update marker checks. However it should be noted that

Fax�en's analysis handles a polymorhic language which we do not.

A key feature of Turner et al's, Fax�en's and our analysis is that they consider

216

expressions like

let x=

X

1 + 2 in x+ (�y:3) x

to be ill-typed even though x is only accessed once. Indeed, taking it to be well-

typed would render our analysis unsound since executing it leads to a dangling

pointer and thus we consider it to be ill-annotated. However the dangling pointer

is not dereferenced during the evaluation and therefore it would make sense to

consider it to be well-annotated. To consider programs as ill-annotated only

if they actually dereference a dangling pointer is the approach taken by for

example Sestoft, Lanchbury et al and Marlow (although they do not state it

explicitly). Mogensen takes the type system by Turner et al as his starting

point and adopts it to �t this weaker correctness criteria by means of a notion of

zero usage [Mog97]. We have chosen to consider programs that leads to dangling

pointers as ill-annotated for the following reason: even though a dangling pointer

is not dereferenced during the evaluation of the expression, it could very well

be dereferenced by the garbage collector. Thus if the analysis cannot guarantee

that evaluation does not lead to dangling pointers the implementation must

see to that it is safe for the garbage collector to dereference such a pointer.

This can be achieved as follows. When a closure that is not to be updated is

fetched from the heap the closure is overwritten with a special \dangling pointer

closure" that the garbage collector can recognise. If this is not done and the

closure is left as it is the garbage collector would retain the closure and all the

closures it references which can lead to a space leak. This is very similar to how

conventional implementations handle closures that needs to be updated: when

they are fetched they are overwritten with a so called black hole closure which

the garbage collector can recognise. (Some implementation instead takes care

of the problem when the garbage collector is invoked: it then scans the stack to

�nd all update markers and overwrites the corresponding closures with a black

hole closure. However this optimisation does not carry over to the \dangling

pointer closure" problem, since there are no markers for these closures on the

stack.) Although it is easy for an implementation to handle these dangling

pointers there is a rather high associated cost. We believe that this cost exceeds

the gain that could be made by avoiding more updates. Further experiments

may be needed to decide upon this tradeo�.

An earlier version of this type system has been previously presented in

[Gus98]. Apart from some minor cosmetic changes (by replacing de�nitions by

equivalent ones) we have made one important modi�cation to the type system.

This concerns the rule

Value

� ` v ~v : �

� ` v ~v

�

: �

[�;�]

if � > 0 then �!

�

�;�

[�; �] � �

and the side condition if � > 0 then � !

�

�;�. Recall that the purpose of

the side condition is to ensure that if the value is required to take care of any

update markers then it must be allowed to safely duplicate the free variables of

the value. In the type system presented in [Gus98] this mechanism was spread

217

out over several rules. However if we reformulated the rules in the style of this

presentation we would end up with the following rule.

Value

� ` v ~v : �

� ` v ~v

[�

0

;�

0

]

: �

[�;�]

if �

0

> 0 then �!

�

�;�

[�; �] � [�

0

; �

0

]

Note that the side condition now is if �

0

> 0 then � !

�

�;� rather than if � >

0 then �!

�

�;�. Thus in our previous type system the side condition ensured

that if the value could take care of an update marker then it must be safe to

duplicate the free variables of the value. However, in our current type system

the side condition ensures that if the value is required to take care of an update

marker then it must be safe to duplicate the free variables. Since the other side

condition ensures that � � �

0

(ie that the value can do what is required) this

means that in the current type system more terms are well-typed. However this

does not inuence the accuracy of the type system since the optimally annotated

well-typed term in the current type system is also well-typed in the previous

one (since then � = �

0

). The modi�cation is important for two reasons. First

the Moore family property (lemma 5.6.3) does not hold for our previous type

system and our proof of the existence of optimal models fails (proposition 5.6.5).

(Although the result itself holds. The proof would just be less elegant.) Second,

we believe it could be important in a setting with separate compilation. Then

when annotating a function that is called from other modules we might want

be overly conservative and annotate some values with [0; !] so that the function

can be called in any (at that point unknown) context. With the previous type

system this could lead to unnecessarily constraints on the arguments to the

function.

Wansbrough and Peyton Jones also take Turner et al's type system as their

starting point [WJ99b]. They make two important changes to Turner et al's

system which inuence the applicability of their type system. First they extend

it to handle an underlying polymorphic language (but they have no notion

of annotation polymorphism). Second they extend the analysis to user de�ned

data types. They also make two changes to Turner et al's system which inuence

the accuracy of their type system. First, they introduce a subtyping relation

identical to ours (although they did it independently of [Gus98]). Since they do

not have any notion of annotation polymorphism, they believe that subtyping

has a major impact on the accuracy of their analysis. Experiments that may

con�rm this claim are forthcoming [WJ99a]. Note that this is in contrast to our

expectations of the subtyping in our type system but we have a system with

annotation polymorphism in mind. Second, their type language for data types is

less expressive than Turner et al's and they cannot, for example, express that the

elements of a list need to be updated but the spine of the list needs not. Thus if

one single closure in a huge data structure needs to be updated this propagates to

the entire data structure. However they have good reasons for using a restrictive

type language. We will discuss that further in chapter 8 when we consider the

extension of our type system to handle user de�ned data types. We are also

218

working on extending our type system to cope with polymorphism (including

annotation polymorphism). We believe that the resulting type system will be

strictly more accurate then the type system by Wansbrough and Peyton Jones

(the restriction of their type system to the language we can handle certainly

is less accurate then our current type system). However it is not clear to us

how much this will give in practice. Wansbrough and Peyton Jones prove their

analysis sound with respect to a single step version of Launchbury's natural

semantics [Lau93].

7.2 Avoiding update marker checks

We are only aware of one analysis that can be used to optimise the bookkeeping

of updates, namely the usage interval analysis by Sestoft [Ses91]. His analysis

annotates values with (annotations corresponding to) [0; 0] and [0; !], thus his

analysis provides less accurate information than ours. Most notably, the com-

mon case [1; 1] degenerates to [0; !]. Indeed, a direct comparison shows that

this has a signi�cant impact in practice (see chapter 6).

7.3 Program transformation

A problem very closely related to update avoidance is the problem of ensuring

the safety of some program transformations. For example �-reduction

(�x:e) e

0

) e[x:=e

0

]

is not safe in general since it may duplicate work if x occurs several times in e.

However if we can guarantee that the function uses its argument at most once

then we can safely inline e

0

. Another useful transformation is the following.

let x= e in �y:e

0

) �y:let x= e in e

0

This transformation also risks duplicating computation since if the abstraction

is used several times e may be computed several times. But if we can guarantee

that the function is used at most once then we can safely perform the transfor-

mation. To devise an analysis that ensures the safety of these transformations is

clearly closely related to the problem of update avoidance and the early work by

Goldberg [Gol87] which is used essentially to guarantee the safety of the second

of these transformations is very closely related to update avoidance analyses.

Also the update avoidance analyses by Turner et al [TWM95] and Wansbrough

and Peyton Jones [WJ99b] have both been proposed as solutions to the prob-

lem. Given the close relationship between our analysis and these analyses we

believe that our analysis could also be used for this purpose. However we have

no proof of this and as far as we know proving Goldberg's, Turner et al's and

Wansbrough and Peyton Jones analyses sound for this purpose is also still an

219

open problem. It is an interesting question whether all sound update avoidance

analyses can also guarantee the safety of these program transformations and

vice versa. That is whether the two problems are actually equivalent. We are

currently considering if it is possible to use the techniques in the recent work

by Moran and Sands [MS99] in order to prove this.

7.4 Destructive array update and compile time

garbage collection

Two problems closely related to update avoidance is the destructive array up-

date problem and the compile time garbage collection problem. The destructive

array update problem is about e�ciently implementing purely functional ar-

rays. Updating a purely functional array in general forces the entire array to be

copied before the update can take place since there may be other references to

the array. Destructively updating the array can then lead to a loss of referential

transparency. However if there is no other reference to the array it may be

updated destructively. The compile time garbage collection problem is about

reusing memory without the garbage collector being involved. This can be done

if the compiler can detect the last use of a closure in the heap. In for example

case x of

nil) : : :

cons y ys) : : :

we can reuse the memory where x is stored if we have the only reference to x.

These two problems are closely related to each other and some work attack them

both simultaneously. Although closely related to the update avoidance problem

there is an important di�erence. The update avoidance problem requires that

a closure that is not to be update is used at most once and we ensure that by

enforcing that the reference to the closure is passed around in a single threaded

fashion. However an array that shall be updated destructively may very well

be used several times but when the array gets updated there may only be one

reference to it. The literature on these two problems is substantial and we will

make no attempt to cover it all. We just note that judging by the similarity of

the problems it seems likely that every piece of work on any of these problems is

related to update avoidance in some sense. Most apparent are the connections to

type systems based on ideas from linear logic [Gir87]. These can be divided into

two kinds. First those which form the basis of a linear programming language.

This includes the work by Girard and Lafont [GL87] Lafont [Laf88], Homstr�om

[Hol88], Wadler [Wad90], Abramsky [Abr90, Abr93], Wakeling and Runciman

[WR91] and Mackie [Mac94]. Second those type systems which form the basis of

an automatic compile time program analysis. This includes the work by Guzm�an

and Hudak [GH90], Wadler [Wad91], Barendsen and Smetsers [BS96], Turner

et al [TWM95] and Kobayashi [Kob99]. Strikingly similar to our type system is

220

the uniqueness type system by Barendsen and Smetsers [BS96]; just take X to

be unique and ! to be non-unique. However, there is a very important di�erence:

In our type system a function of type �

X

! �

0

will allow its parameter to be

non-updating and a function of type �

!

! �

0

will require its parameter to be

updating. In contrast, a function with uniqueness type �

unique

! �

0

will require

its parameter to be unique and a function of type �

non-unique

! �

0

will allow its

parameter to be non-unique. This also shows up in the subtyping relation where

we have �

!

� �

X

in contrast to �

unique

� �

non-unique

. Thus their type system is

unsound with respect to update-avoidance and our type system is unsound with

respect to update-in-place.

7.5 Strictness analysis

Strictness analysis [Myc82], as sharing analysis, aims at reducing the overhead

of call-by-need. It does so by determining when it is safe to pass arguments to

functions evaluated rather than unevaluated. This is safe if we know that the

function will use its argument. Thus strictness analysis can be thought of as

turning call-by-need into call-by-value while avoiding updates can be considered

as turning call-by-need into call-by-name.

Since both analyses attack the same problem, it is an interesting question

how they interact. In for example,

let x= 1+ 2

in (�y:y + 1) x

both strictness analysis and sharing analysis can be used by turning the bind-

ing of x into a strict binding or into a non-updating binding respectively. In

these situations the former is usually the better since it also reduces the cost of

building closures. The advantage of sharing analysis is that it applies to many

situations where strictness analysis does not. Moreover, in the presence of re-

cursive data structures it is di�cult to bene�cially exploit strictness analysis.

For example the map function is strict in the spine of its second argument if

it is called in a context which requires the spine of the result. To exploit this

one could fully evaluate the spine of the second argument to map before calling

map. However, this may be fatal since it can dramatically increase the amount

of space needed to run the program. Thus, in practice strictness analysis is used

primarily to improve the situation for base types and nonrecurive data types

[JP93]. In contrast we believe that recursive data structures do not pose any

problem for our sharing analysis.

In general it seems to be a good idea to �rst apply a strictness analyser and

then a sharing analyser. This was the approach taken by Marlow [Mar93] and

Peyton Jones and Partain [JP93] and their measurements show that strictness

analysis and sharing analysis complement each other .

An interesting observation is that strictness analysis wants to determine

whether an expression is used at least ones (in every terminating computation)

221

while sharing analysis can be considered as determining whether an expression

is used at most ones

1

. This suggests that there are important similarities

between these analyses. Wright has demonstrated that a strictness logic and a

usage logic can be expressed in a common framework [Wri96].

1

In this work we do not take this approach but rather seek to determine whether references

to bindings are used in a linear fashion. That is, whether a reference is duplicated or not.

This is important since it guarantees that no dangling pointers are ever created. See section

7.1 for a discussion of this.

222

Chapter 8

Conclusions and future

work

8.1 Conclusions

We have presented a type based sharing analysis that can determine when up-

dates and update marker checks can be avoided. We have proved our analysis

sound with respect to the lazy Krivine machine by proving that evaluation pre-

serves typings. As a consequence we get that well typed expressions do not go

wrong. We have also proved that our type system enjoys a principal typing

property and we have given an algorithm that computes the optimal instance

of a principal typing. The analysis has been implemented and the preliminary

benchmarks indicate that about 59% of the updates and 99% of the update

marker checks can be avoided.

8.2 Future work

8.2.1 Polymorphism

The type system presented in this thesis is monomorphic. For the analysis to

be used in a realistic setting it is crucial that the type system can be extended

to handle a polymorphic language. Wansbrough and Peyton Jones [WJ99b]

also takes Turner et al's type system as their starting point and extends it

with (among other things) polymorphism. We think that it is straightforward

to extend our type system with polymorphism in a similar fashion. However,

Wansbrough's and Peyton Jones type system is only polymorphic in the un-

derlying type system and has no notion of annotation polymorphism which we

believe may be important. (In contrast to Wansbrough and Peyton Jones who

believe the bene�ts are likely to be small [WJ99b].) We will come back to

223

annotation polymorphsim shortly.

8.2.2 User de�ned data types

Another key feature of functional languages is user de�ned data types. As it

stands our analysis only copes with lists. To extend the type system with user

de�ned data types essentially amounts to giving a way to translate ordinary data

type declarations into corresponding bare data type declarations. For example,

data List a = Nil

j Cons a (List a)

is translated into

data List a i

0

j

0

k

0

i

1

j

1

k

1

= Nil

j Cons a

[i

0

;j

0

]

k

0

(List a i

0

j

0

k

0

i

1

j

1

k

1

)

[i

1

;j

1

]

k

1

by turning the type arguments of the constructors into binding types and ab-

stracting over the annotation variables we introduce. This yields the bare

type for lists that we have used in our type system (although we have writ-

ten List a

[i

0

;j

0

]

k

0

k

1

[i

1

; j

1

] rather than List a i

0

j

0

k

0

i

1

j

1

k

1

). By following this

idea it should be straightforward to extend the type system with user de�ned

data types. However, as pointed out by Wansbrough and Peyton Jones [WJ98],

this means that the number of annotation parameters to the data type grows

linearly in the size of the data type declaration. Under the assumption that

individual data types do not grow with program size this does not inuence the

complexity of the analysis but it may have the e�ect that programs which use

a large data type become expensive to analyse. To avoid this Wansbrough and

Peyton Jones choose a less expressive type language which, for example, cannot

express that the spine of a list is used in a linear fashion while the components

are used several times. This clearly degrades the accuracy of the analysis and

whether the faster analysis is worth the loss of precision is an interesting topic

for future work.

8.2.3 Separate compilation

Separate compilation is a notorious problem for this kind of global program

analysis. To �nd the best annotations of a program it is simply necessary to

have access to the whole program. One way to deal with separate compilation

is to be conservative and if, for example, append is exported from a module we

annotate it as follows.

append=

!

�

[1;!]

xs:�

[0;!]

ys:case xs of

nil) ys

cons z zs) let ws=

!

append zs ys

in cons

[0;!]

z ws

224

This means that append will be able to take care of any situation but it also

means that append puts demands on its arguments. This is reected in the

types that we can assign to it. Unfortunately, due to the lack of annotation

polymorphism there is no minimal type which we can assign to it. But maybe

the most useful type we can assign to it is the following (assuming that we have

ordinary polymorphism).

8a: (List a

[0;!]

!

X [0; 0])

[0;0]

X

!

[0;!]

(List a

[0;!]

!

! [0; !])

[0;!]

!

!

[0;!]

(List a

[0;!]

!

! [0; !])

[0;!]

This allows the result of append to be used in any context (thanks to subtyping)

but it unfortunately puts unnecessarily strong requirements on the types of the

arguments. If we choose to export this type then unfortunately every place

where we use append will be forced to adapt to this type and it is bound to

degrade signi�cantly the accuracy of the analysis. It would be desirable if the

e�ect of the conservative annotations on append could be kept local, that is

they only e�ect the e�ciency of the append function itself. We think there are

good opportunities to achieve this by means of annotation polymorphism and

annotation polyvariance.

8.2.4 Annotation polymorphism

As noted above we believe that annotation polymorphism will be important

for the accuracy of the analysis in the setting of large programs and separate

compilation. It should be straightforward to extend the modi�ed type system

of chapter 5 with annotation polymorphism since it already has the principal

typing property. We simply add the possibility to generalise over annotation

variables that do not occur in the term. Of course this also means that our type

schemes will contain a constraint set which constrains the generalised annotation

variables. This will have an signi�cant impact on the complexity of the inference

algorithm since instantiation means that we duplicate constraint sets which

may lead to an explosion in the number of generated constraints. To avoid

some of this increased cost it may be necessary to simplify the constraint set

when generalising. How to do this is not clear to us but it seems as if some of

techniques usde by Mossin may be applicable [Mos97].

If we add polymorphism then an interesting weakness in our type system

shows up. Recall our discussion in the section on separate compilation. There

we argued that in the presence of separate compilation we will have to be con-

servative and, for example, annotate append as follows.

append=

!

�

[1;!]

xs:�

[0;!]

ys:case xs of

nil) ys

cons z zs) letws=

!

append zs ys

in cons

[0;!]

z ws

225

We also argued that it would be desirable if the e�ect of these conservative

annotations could be kept local. Using the notion of annotation polymorphism

suggested above we could assign a type like

8a; i

0

; i

1

; i

2

; j

0

; j

1

; j

2

; k

0

; k

1

: (List a

[i

0

;j

0

]

!

X [0; 0])

[0;0]

X

!

[0;!]

(List a

[i

0

;j

0

]

k

0

k

1

[i

1

; j

1

])

[i

1

;j

1

]

k

1

!

[i

2

;j

2

]

(List a

[i

0

;j

0

]

k

0

k

1

[i

1

; j

1

])

[i

1

;j

1

]

where 1 � i

1

if j

2

> 0 then k

1

= !

to our example

1

. This type is clearly much better than the type we can assign

to it in our system without annotation polymorphism. However it is not entirely

satisfactory. For example the type demands that the elements of the list of the

�rst argument to append get updated. This is due to the fact that we have

annotated the binding of ws with ! which allows the spine of the list returned

by append to be used several times. The type system then also enforces that

the elements of the list given as the �rst argument can be used several times

since they end up as elements in the resulting list. The constraint 1 � i

1

will

have a similar e�ect on the elements of the second argument since it will in force

k

0

and k

1

to be ! (unless we just pass append the empty list). It is however

not necessary for the elements of the lists to be updating if we use the result of

append in a context where it is used linearly and we would expect this to be

reected in the type. To explain why it is not so, consider the following simple

example.

let x=

X

1 +

[0;0]

2

y =

X

3 +

[0;0]

4

f =

!

�

[1;1]

z:y +

[0;0]

z

in f x

This is ill-typed but well-annotated (ie it does not go wrong). It is ill-typed

since f is annotated with ! and therefore we will duplicate �z:y + z when we

look up f and thus also duplicate y. Since we duplicate y we will give it the

type Int

[0;0]

!

which clashes with the annotation on the binding for y. It is well-

annotated since the duplication is completely harmless: when f is looked up the

binding for f becomes garbage; we may remove it and there will still only be one

occurrence of y. Our type system can not express this and we think it necessary

to use a richer type language to do so. It should be noted that this re�nement is

only important in the presence of large programs and separate compilation since

1

We could actually assign it an even better but more complicated type. For clarity we

have simpli�ed away some subtyping constraints.

226

when we have access to the whole program we would annotate the example as

let x=

X

1 +

[0;0]

2

y =

X

3 +

[0;0]

4

f =

X

�

[0;0]

z:y +

[0;0]

z

in f x

which is well-typed and optimally annotated. In the presence of separate com-

pilation we will, as noted above, sometimes need to be unnecessary conservative

and not annotate the term optimally and thus we think that this may be im-

portant for the overall accuracy of the analysis.

8.2.5 Annotation polyvariance

Even if we add annotation polymorphism and make our type system more para-

metric the e�ect of conservative annotations cannot be kept entirely local. How-

ever it may be possible to achieve this locality by generating a few di�erently

annotated versions of every function we export. We would do that by carefully

generating a few versions such that the set of types that we can assign to them

coincides with the set of types that we could assign to the function if we could

generate all possible versions (which we cannot do since that is in�nitely many).

We would, for example, generate at least two versions of append, one that builds

lists that can be shared and one that builds non-sharable lists. Whether this is

actually possible is not clear to us and it is an interesting topic for future work.

Another simpler form of polyvariance can be used if a function is used in

several di�erent contexts within the same module. Then one can simply generate

one version of each function for every use.

8.2.6 Garbage collection of update markers

As discussed in section 2.4 our analysis precludes that update markers are

garbage collected. Some compilers do not garbage collect update markers and

that does not seem to cause any problems in practice. Anyhow, there are pro-

grams which run in constant stack space with garbage collection of update

markers but which may run out of stack without it. See section 2.4 for an ex-

ample of this. Fortunately, there seems to be a solution at hand. If all bindings

in a program can be assigned a type of the form �

[�;�]

�

where � 6= ! then we know

that arbitray many update markers cannot be stacked on top of each other. This

means that the amount of stack needed by the program in an implementation

without garbage collection of update markers is within a constant factor of the

stack space needed in an implementation with it (and an upper bound on the

constant factor is given by the �'s). Most programs seem to fall in this category.

Conversely, if any binding in the program is assigned a type of the form �

[�;!]

�

then arbitrarily many update markers may stack up on top of each other. In

those examples we may simply turn o� the analysis and garbage collect update

227

markers as usual. A more sophisticated, but more complicated, solution would

be to have two di�erent sorts of update markers. One that may be garbage

collected and one that may not. We could then adapt the analysis such that an

arbitrary number of update markers of the latter sort do not stack up on top of

each other.

8.2.7 The implementations of abstract machines

The benchmarks presented in chapter 6 suggest that checking for update markers

is an operation which is about ten times as frequent as the pushing and popping

of update markers. It is therefore no surprise that implementations of abstract

machines tend to be optimised towards fast update marker checks at the expense

of the pushing and popping of update markers. However, with our analysis

update marker checks can be avoided to such an extent that they become far

less frequent than the pushing and popping of update markers. Hence, with

our analysis, the implementation of the abstract machine should instead be

optimised towards fast pushing and popping of update markers at the expense

of the update marker checks and we note this as an interesting topic to explore.

8.2.8 A possibility for further analysis

It is often the case that one optimisation opens up possibilities for further opti-

misations. Indeed, this is true for our analysis. Due to our analysis most update

markers are never checked for (since most checks can be avoided). A marker

that is never checked for could be represented by just the pointer of where in

the heap to update. This kind of marker would be very cheap to push and pop.

We are currently working on an analysis for this purpose, that is an analysis

which can ensure that a marker is never checked for. We believe that the anal-

ysis could be very e�ective and would allow us to represent most markers in

this cheap way. Indeed this would make the tradeo� discussed in the previous

subsection less of an issue since it would only concern the remaining markers

that might need to be checked.

8.2.9 The analysis in an optimising compiler

The initial experimental results given in chapter 6 seem very promising but

indeed the programs tried out are very small. It would be interesting to incor-

porate the analysis into an optimising compiler and measure the e�ectiveness

of the analysis in terms of the actual speedup of large real world programs.

228

Appendix A

Typing rules

In this appendix we have collected all the typing rules to provide a convenient

overview of the rules. Figures A.1 to A.5 contain the typing rules for the type

system presented in chapter 3. Figures A.6 to A.8 contain the rules for typing

con�gurations presented in chapter 4. Figure A.9 contains the typing rules of

the underlying ordinary type system and �gures A.10 to A.12 contain the typing

rules for the modi�ed type system presented in chapter 5.

Abs

�

0

;�

1

` e ~e : �

�

0

` �x:e �x:~e : � ! �

x 62 dom(�

0

)

x : � !

�

�

1

Int

` n n : Int

Nil

` nil nil : List � � �

Cons

x : �

0

; y : �

1

` cons x y cons x y : List � � �

�

0

� �

�

1

� (List � � �)

�

�

Figure A.1: Typing rules for bare values

229

Value

� ` v ~v : �

� ` v ~v

�

: �

[�;�]

if � > 0 then �!

�

�;�

[�; �] � �

Var

x : �

�

` x x : �

0

� � �

0

App

� ` e ~e : � !

[0;0]

�

�; x : � ` e x ~e x : �

Plus

�

0

` e

0

 ~e

0

: Int

[0;0]

�

1

` e

1

 ~e

1

: Int

[0;0]

�

0

; �

1

` e

0

+ e

1

 ~e

0

+

�

~e

1

: Int

�

0

�

0

� �

Add

� ` e ~e : Int

[0;0]

� ` add

n

e add

�

n

~e : Int

�

0

�

0

� �

Let

�

0

; �

1

` d

~

d : � �

2

; �

3

` e ~e : �

�

0

; �

2

` let d in e let

~

d in ~e : �

dom(

~

d) \ dom(�

0

;�

2

) = ;

� ` �

1

; �

3

Case

�

0

` e ~e : �

[0;0]

�

1

` alts

~

alts : �) �

�

0

; �

1

` case e of alts case ~e of

~

alts : �

Figure A.2: Typing rules for expressions

Bind-X

� ` e ~e : �

� ` x= e x=

X

~e : (x : �

X

)

Bind-!

� ` e ~e : �

[�+1;�+1]

� ` x= e x=

!

~e : (x : �

[�;�]

�

)

Figure A.3: Typing rules for bindings

Decl-�

` � � : �

Decl

�

0

` d

~

d : � �

1

` b

~

b : (x : �)

�

0

;�

1

` d; b

~

d;

~

b : (�; x : �)

Figure A.4: Typing rules for declarations

230

Alts

�

0

;�

1

` e

0

 ~e

0

: � �

0

;�

2

;�

3

` e

1

 ~e

1

: �

�

0

;�

1

;�

2

` fnil) e

0

; cons x y) e

1

g

fnil) ~e

0

; cons x y) ~e

1

g : List � � �) �

x; y 62 dom(�

0

;�

2

)

x : �;

y : (List � � �)

�

�

` �

3

Figure A.5: Typing rule for alternatives

AppR

x : � ` [] x [] x : [� !

[0;0]

�]�

PlusR

� ` e ~e : Int

[0;0]

� ` [] + e [] +

�

~e : [Int

[0;0]

]Int

�

0

�

0

� �

AddR

` add

n

[] add

�

n

[] : [Int

[0;0]

]Int

�

0

�

0

� �

CaseR

� ` alts

~

alts : �) �

� ` case [] of alts case [] of

~

alts : [�

[0;0]

]�

Figure A.6: Typing rules for reduction contexts

Stack-�

` � � : � ; [�]�

Stack-R

�

0

` R

~

R : [�

[0;0]

]�

0

�

1

` S

~

S : � ; [�

0

]�

1

�

0

; �

1

` R;S

~

R;

~

S : � ; [�

[0;0]

]�

1

Stack-#

� ` S

~

S : � ; [�

0

]�

1

� ` #x; S #x;

~

S : (�; x : �

[�;�]

�

; [�

[�+1;�+1]

]�

1

)

�

[�;�]

� �

0

Stack-#-discard

� ` S

~

S : � ; [�

0

]�

1

� ` #x; S

~

S : � ; [�

2

]�

1

�

2

� �

0

Figure A.7: Typing rules for stacks

231

Con�g

�

0

` H

~

H : �

0

�

1

` e ~e : �

0

�

2

` S

~

S : �

1

; [�

0

]�

1

` hH ; e ; Si h

~

H ; ~e ;

~

Si : �

1

�

0

; �

1

` �

0

; �

1

; �

2

Figure A.8: Typing rule for con�gurations

Int

 ` n : Int

Nil

 ` nil : List �

Cons

(x) = �
(y) = List �

 ` cons x y : List �

Abs

; x : �

0

` e : �

1

 ` �x:e : �

0

! �

1

Var

(x) = �

 ` x : �

Plus

 ` e

0

: Int
 ` e

1

: Int

 ` e

0

+ e

1

: Int

Add

 ` e : Int

 ` add

n

e : Int

App

 ` e : �

0

! �

1

(x) = �

0

 ` e x : �

1

Case

 ` e : �

1

 ` alts : �

1

) �

0

 ` case e : �

1

of alts : �

0

Let

0

;

1

` d :

1

0

;

1

` e : �

0

` let d :

1

in e : �

Alts

 ` e

0

: �

0

; x : �

1

; y : List �

1

` e

1

: �

0

 ` fnil) e

0

; cons x y) e

1

g : List �

1

) �

0

Declaration-�

 ` � : �

Declaration

 ` d :

0

 ` b : (x : �)

 ` d; b : (

0

; x : �)

Binding

 ` e : �

 ` x= e : (x : �)

Figure A.9: Ordinary typing rules

232

Int

� ; � ` n n : Int

Nil

� ; � ` nil nil : List � � �

Cons

� ; x : �

0

; y : �

1

` cons x y cons x y : List � � �

� ` �

0

� �

� ` �

1

� (List � � �)

�

�

Abs

� ; �

0

;�

1

` e ~e : �

� ; �

0

` �x:e �x:~e : � ! �

x 62 dom(�

0

)

� ` x : � !

�

�

1

Figure A.10: Typing rules for bare values

Value

� ; � ` v ~v : �

� ; � ` v ~v

�

: �

[�;�]

� ` if � > 0 then �!

�

�;�

� ` [�; �] � �

Var

� ; x : �

�

` x x : �

0

� ` � � �

0

Plus

� ; �

0

` e

0

 ~e

0

: Int

[0;0]

� ; �

1

` e

1

 ~e

1

: Int

[0;0]

� ; �

0

;�

1

` e

0

+ e

1

 ~e

0

+

�

~e

1

: Int

�

0

� ` �

0

� �

Add

� ; � ` e ~e : Int

[0;0]

� ; � ` add

n

e add

�

n

~e : Int

�

0

� ` �

0

� �

App

� ; � ` e ~e : � !

[0;0]

�

� ; �; x : � ` e x ~e x : �

Case

� ; �

0

` e ~e : �

[0;0]

� ; �

1

` alts

~

alts : �) �

� ; �

0

;�

1

` case e : � of alts case ~e : � of

~

alts : �

d�e � �

Let

� ; �

0

;�

1

` d

~

d : � � ; �

2

;�

3

` e ~e : �

� ; �

0

;�

2

` let d : � in e let

~

d : � in ~e : �

dom(

~

d) \ dom(�

0

;�

2

) = ;

� ` (� ` �

1

;�

3

)

d�e � �

Figure A.11: Typing rules

233

Alts

� ; �

0

;�

1

` e

0

 ~e

0

: � � ; �

0

;�

2

;�

3

` e

1

 ~e

1

: �

� ; �

0

;�

1

;�

2

` fnil) e

0

; cons x y) e

1

g

fnil) ~e

0

; cons x y) ~e

1

g : List � � �) �

where x; y 62 dom(�

0

;�

2

)

� ` x : �; y : (List � � �)

�

�

` �

3

Figure A.12: Typing rule for alternatives

Decl-�

� ; � ` � � : �

Decl

� ; �

0

` d

~

d : � � ; �

1

` b

~

b : (x : �)

� ; �

0

;�

1

` d; b

~

d;

~

b : (�; x : �)

Bind

� ; � ` e ~e : �

[���;���]

� ; � ` x= e x=

�

~e : (x : �

[�;�]

�

0

)

�

0

� � 2 �

Figure A.13: Typing rules for declarations and bindings

234

Appendix B

Constraint inference

algorithm

This appendix contains the full de�nition of the constraint inference algorithm

described in subsection 5.5.2 which is an important part of the type inference

algorithm described in chapter 5.

infer(�; n; Int) = (;; �)

infer(�; nil; List � � �) = (;; �)

infer(�; cons x y; List � � �) = (�;�)

where �

0

= �(x)

�

1

= �(y)

�

0

= infer(�

0

� �)

�

1

= infer(�

1

� (List � � �)

�

�

)

� = �

0

;�

1

� = x : �

0

; y : �

1

infer(�

0

; �x:~e; � ! �) = (�;�)

where �

1

= �

0

; x : �

(�

0

;�

0

) = infer(�

1

; ~e; �)

�

1

= infer(x : � !

�

�

2

)

� = �

0

;�

1

� = �

1

where �

1

;�

2

� �

0

x 62 dom(�

1

)

dom(�

2

) � fxg

Figure B.1: De�nition of infer(�; ~v; �)

235

infer(�; ~v

�

; �

[�;�]

) = (�;�)

where (�

0

;�) = infer(�; ~v; �)

�

1

= infer(if � > 0 then �!

�

�;�)

�

2

= infer([�; �] � �)

� = �

0

;�

1

;�

2

infer(�; x; �) = (�;�)

where �

0

�

= �(x)

� = infer(�

0

� �)

� = x : �

0

infer(�; ~e

0

+

�

~e

1

; Int

�

0

) = (�;�)

where (�

0

;�

0

) = infer(�; ~e

0

; Int

[0;0]

)

(�

1

;�

1

) = infer(�; ~e

1

; Int

[0;0]

)

�

2

= infer(�

0

� �)

� = �

0

;�

1

;�

2

� = �

0

;�

1

infer(�; add

�

n

~e; Int

�

0

) = (�;�)

where (�

0

;�) = infer(�; ~e; Int

[0;0]

)

�

1

= infer(�

0

� �)

� = �

0

;�

1

infer(�; ~e x; �) = (�;�)

where � = �(x)

(�;�

0

) = infer(�; ~e; � !

[0;0]

�)

� = �

0

; x : �

infer(�; case ~e : � of

~

alts; �) = (�;�)

where (�

0

;�

0

) = infer(�; ~e; �

[0;0]

)

(�

1

;�

1

) = infer(�;

~

alts; �) �)

� = �

0

;�

1

� = �

0

;�

1

infer(�

0

; let

~

d : �

1

in ~e; �) = (�;�)

where � = �

0

;�

1

(�

0

;�

0

) = infer(�;

~

d;�

1

)

(�

1

;�

1

) = infer(�; ~e; �)

�

2

= infer(�

1

` �

3

;�

5

)

� = �

0

;�

1

;�

2

� = �

2

;�

4

where �

2

;�

3

� �

0

�

4

;�

5

� �

1

dom(

~

d) \ dom(�

2

;�

4

) = ;

dom(�

3

;�

5

) � dom(

~

d)

Figure B.2: De�nition of infer(�; ~e; �)

236

infer(�

0

; fnil) ~e

0

; cons x y) ~e

1

g; List � � �) �) = (�;�)

where (�

0

;�

0

) = infer(�

0

; ~e

0

; �)

�

1

= x : �; y : (List � � �)

�

�

�

2

= �

0

;�

1

(�

1

;�

1

) = infer(�

2

; ~e

1

; �)

�

2

= infer(�

1

` �

5

)

� = �

0

;�

1

;�

2

� = �

2

;�

3

;�

4

where �

2

;�

3

� �

0

�

2

;�

4

;�

5

� �

1

x; y 62 dom(�

2

;�

4

)

dom(�

5

) � fx; yg

�

3

\ �

4

= �

Figure B.3: De�nition of infer(�;

~

alts; �) �)

infer(�; �; �) = (;; �)

infer(�

0

;

~

d

0

;�

1

) = (�;�)

where (�

0

;�

0

) = infer(�

0

;

~

d

1

;�

2

)

(�

1

;�

1

) = infer(�

0

; x=

�

~e; x : �)

� = �

0

;�

1

� = �

1

;�

2

where �

2

; x : � � �

1

~

d

1

; x=

�

~e �

~

d

0

Figure B.4: De�nition of infer(�

0

;

~

d;�

1

infer(�; x=

�

0

~e; x : �

[�;�]

�

1

) = (�;�)

where (�

0

;�) = infer(�; ~e; �

[���

0

;���

0

]

)

� = �

0

; �

1

� �

0

Figure B.5: De�nition of infer(�

0

;

~

b; x : �)

237

238

Appendix C

An example program

This appendix contains an example of the analysis in action on the smallest

program which we used to measure the e�ciency of the analysis (see chapter

6). The program checks whether a string is a substring of another string and

the original Haskell source code was as follows.

substring xs ys = any (isPre�xOf xs) (tails ys)

Since our small language does not contain characters we have used the function

to check whether the list of integers [10::20] is a sublist of [1::]. The result of

desugaring the program (and the prede�ned functions it uses) and analysing the

program is given below.

let substring =

X

�

[0;0]

xs:�

[0;0]

ys:let p =

!

isPre�xOf xs

ts =

X

tails ys

in any p ts

any =

X

�

[0;0]

p:�

[0;0]

xs:let bs =

X

map p xs

in or bs

map =

!

�

[1;1]

f:�

[0;0]

xs:case xs of

nil) nil

[0;0]

cons y ys) let z =

X

f y

zs =

X

map f ys

in cons

[0;0]

z zs

or =

X

�

[0;0]

bs:foldr orbin false bs

foldr =

!

�

[1;1]

f:�

[0;0]

z:�

[0;0]

xs:case xs of

nil) z

cons y ys) let r =

X

foldr f z ys

in f y r

orbin =

!

�

[1;1]

a:�

[0;0]

b:if a

239

then true

[0;0]

else b

false =

X

false

[0;0]

isPre�xOf =

!

�

[1;1]

xs:�

[0;1]

ys:

case xs of

nil) true

[0;0]

cons z zs) case ys of

nil) false

[0;0]

consw ws) if z ==

[0;0]

w

then isPre�xOf zs ws

else false

[0;0]

tails =

!

�

[1;1]

xs:case xs of

nil) let empty1 =

X

nil

[0;0]

empty2 =

X

nil

[0;0]

in cons

[0;0]

empty1 empty2

cons y ys) let yss =

X

tails ys

in cons

[0;0]

xs yss

from =

!

�

[1;1]

n:let n2 =

!

n +

[1;1]

1

[0;0]

ns =

!

from n2

in cons

[1;1]

n ns

fromto =

!

�

[1;1]

n:�

[0;0]

m:if n >

[0;0]

m

then nil

[1;1]

else let n2 =

!

n +

[1;1]

1

[0;0]

ns =

!

fromto n2 m

in cons

[1;1]

n ns

one =

!

1

[1;1]

ten =

!

10

[1;1]

twenty =

!

20

[1;1]

ns =

!

fromto ten twenty

ms =

!

from one

in substring ns ms

240

Bibliography

[Abr90] Samson Abramsky. Computational interpretations of linear logic.

Technical Report DOC 90/20, Imperial College, Department of Com-

puting, 1990.

[Abr93] Samson Abramsky. Computational interpretations of linear logic.

Theoretical Computer Science, 111:3{57, 1993.

[Arg89] Guy Argo. Improving the Three Instruction Machine. In Proceedings

1989 conference on Functional Programming Languages and Com-

puter Architecture, 1989.

[BHY88] A. Bloss, P. Hudak, and J. Young. Code optimisations for lazy

evaluation. Lisp and Symbolic Computation, 1:167{164, September

1988.

[BRJ88] G. Burn, J. Robson, and S. Peyton Jones. The Spineless G-machine.

In Proceedings of the 1988 ACM Symposium on Lisp and Functional

Programming, Snowbird, Utah, 1988.

[BS96] E. Barendsen and S. Smetsers. Uniqueness Typing for Functional

Languages with Graph Rewriting Semantics. Mathematical Struc-

tures in Computer Science, 6:579{612, 1996.

[DM82] L. Damas and R. Milner. Principal type-schemes for functional pro-

grams. In Proceedings 1982 Symposium on Principles of Program-

ming Languages, Alberque, N.M, 1982.

[Fai85] Jon Fairbairn. Removing Redundant Laziness from Supercombi-

nators. In Workshop on Implementation of Functional Languages,

pages 181{189. Programming Methodology Group Chalmers Univer-

sity of Technology. PMG Report 17, 1985.

[Fax95] Karl-Filip Fax�en. Optimizing lazy functional programs using ow

inference. In Second International Symposium on Static Analysis,

pages 136{153. Springer-Verlag, LNCS 983, 1995.

241

[Fax96] Karl-Filip Fax�en. Flow Inference, Code Generation and Garbage

Collection for Lazy Functional Languages. 1996.

[FW87] Jon Fairbairn and Stuart Wray. TIM: A Simple, Lazy Abstract Ma-

chine to Execute Supercombinators. In IFIP conference on Func-

tional Programming Languages and Computer Architecture, pages

34{45. Springer Verlag LNCS 274, 1987.

[GH90] J. Guzm�an and P. Hudak. Single-Threaded Polymorphic Lambda

Calculus. In Symposium on Logic in Computer Science, pages 333{

343, 1990.

[Gir87] Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50:1{

102, 1987.

[GL87] J. Y. Girard and Y. Lafont. Linear Logic and Lazy Computation.

In Proceedings of TAPSOFT '87, Volume 2, pages 52{66. Springer-

Verlag, LNCS 250, 1987.

[Gol87] Benjamin Goldberg. Detecting Sharing of Partial Applications in

Functional Programs. In Functional Programming Languages and

Computer Architecture, pages 408{425. Springer-Verlag, LNCS 274,

1987.

[GS91] Carsten K. Gomard and Peter Sestoft. Evaluation Order Analy-

sis for Lazy Data Structures. In Proc. 1991 Glasgow Workshop

on Functional Programming, Workshops in Computing. Springer{

Verlag, 1991.

[Gus98] J�orgen Gustavsson. A Type Based Sharing Analysis for Update

Avoidance and Optimisation. In ACM SIGPLAN International Con-

ference on Functional programming, pages 39{50, Baltimore, Mary-

land, 1998.

[Hol88] S�oren Holmstr�om. A Linear Functional Language. In Proceedings

of the 1988 Workshop on Implementation of Lazy Functional Lan-

guages, 1988.

[Hug88] J. Hughes. Backwards Analysis of Functional Programs. In Bj�rner

and Ershov, editors, IFIP Workshop on Partial Evaluation and

Mixed Computation, pages 187{208, 1988.

[JHH

+

93] S.L. Peyton Jones, C.V. Hall, K. Hammond, W.D. Partain, and

P.L. Wadler. The Glasgow Haskell compiler: a technical overview.

In Joint Framework for Information Technology (JFIT), Technical

Conference Digest, 1993.

242

[JP93] Simon Peyton Jones and Will Partain. Measuring the e�ectiveness of

a simple strictness analyser. In Proceedings of the Glasgow workshop

on functional programming, Workshops in Computing, pages 201{

220. Springer{Verlag, 1993.

[Kob99] Naoki Kobayashi. Quasi-Linear Types. In Proceedings 1999 Sympo-

sium on Principles of Programming Languages, 1999.

[Laf88] Yves Lafont. The Linear Abstract Machine. Theoretical Computer

Science, 59:157{180, 1988.

[Lau93] J. Launchbury. A Natural Semantics for Lazy Evaluation. In Pro-

ceedings 1993 Symposium on Principles of Programming Languages,

Charleston, N. Carolina, 1993.

[LGH

+

92] J. Launchbury, A. Gill, J. Hughes, S. Marlow, S. L. Peyton Jones,

and P. Wadler. Avoiding Unnecessary Updates. In J. Launchbury

and P. M. Sansom, editors, Functional Programming, Workshops in

Computing, Glasgow, 1992.

[Mac94] Ian Mackie. Lilac: a functional programming language based on lin-

ear logic. Journal of Functional Programming, 4(4):395{433, October

1994.

[Mar93] S. Marlow. Update Avoidance Analysis by Abstract Interpreta-

tion. In Proc. 1993 Glasgow Workshop on Functional Programming,

Workshops in Computing. Springer{Verlag, 1993.

[Mil78] Robin Milner. A Theory of Type Polymorphism in Programming.

Journal of Computer and Systems Sciences, 17:348{375, 1978.

[Mog97] T. Mogensen. Types for 0, 1 or many uses. In Proceedings of IFL

'97: 9th International Workshop on Implementation of Functional

Languages, pages 112{122, St. Andrews, Scotland, September 1997.

Springer-Verlag, LNCS 1467.

[Mos97] Christian Mossin. Flow Analysis of Typed Higher-Order Programs

(Revised Version). PhD thesis, DIKU, University of Copenhagen,

Denmark, August 1997.

[MS99] Andrew Moran and David Sands. Improvement in a Lazy Context:

An Operational Theory for Call-By-Need. In Proceedings 1999 Sym-

posium on Principles of Programming Languages, 1999.

[Myc82] Alan Mycroft. Abstract Interpretation and Optimizing Transforma-

tions for Applicative Programs. PhD thesis, University of Edinburg,

1982.

243

[NNH98] Flemming Nielson, Hanne Riis Nielson, and Chris Hankin. Prin-

ciples of Program Analysis. November 1998. Draft distriduted at

the advanced course on Principles of Program Analysis at Schloss

Dagstuhl, Germany.

[PJ92] Simon L. Peyton Jones. Implementing lazy functional languages on

stock hardware: the spineless tagless g-machine. Journal of Func-

tional Programming, 2(2):127{202, July 1992.

[RW93] Colin Runciman and David Wakeling. Heap Pro�ling of Lazy Func-

tional Programs. Journal of Functional Programming, 3(2):217{245,

April 1993.

[Ses91] P. Sestoft. Analysis and E�cient Implementation of Functional Pro-

grams. PhD thesis, DIKU, University of Copenhagen, Denmark,

October 1991.

[Ses97] P. Sestoft. Deriving a lazy abstract machine. Journal of Functional

Programming, 7(3):231{264, May 1997.

[TWM95] D. N. Turner, P. Wadler, and C. Mossin. Once upon a type. In

ACM Conf. on Functional Programming Languages and Computer

Architecture, La Jolla, 1995.

[Wad90] Philip Wadler. Linear types can change the world! In M. Broy

and C. Jones, editors, Programming Concepts and Methods, Sea of

Galilee, Israel, April 1990. North Holland.

[Wad91] Philip Wadler. Is there a use for linear logic? In ACM Conference

on Partial Evaluation and Semantics-Based Program Manipulation,

New Haven, Connecticut, June 1991.

[WF94] Andrew K. Wright and Matthias Felleisen. A syntactic approach to

type soundness. Information and Computation, 115(1):38{94, 1994.

[WJ98] Keith Wansbrough and Simon Peyton Jones. Once Upon a Polymor-

phic Type. Technical Report TR-1998-19, Department of Computing

Science, University of Glasgow, 1998.

[WJ99a] Keith Wansbrough and Simon Peyton Jones. Personal communica-

tion, 1999.

[WJ99b] Keith Wansbrough and Simon Peyton Jones. Once Upon a Poly-

morphic Type. In Proceedings 1999 Symposium on Principles of

Programming Languages, 1999.

[WR91] D. Wakeling and C. Runciman. Linearity and Laziness. In J. Hughes,

editor, Functional Programming Languages and Computer Architec-

ture, pages 215{240. Springer-Verlag, August 1991. LNCS 523.

244

[Wri96] David A. Wright. Linear, Strictness and Usage Logics. In Proceedings

of Computing: The Australasian Theory Symposium (CATS '96),

Melbourne, Australia, 1996.

245

246

Paper IV

A Usage Analysis with Bounded Usage

Polymorphism and Subtyping

A Usage Analysis with Bounded Usage

Polymorphism and Subtyping

J�orgen Gustavsson Josef Svenningsson

Abstract

Usage analysis aims to predict the number of times a heap allocated

closure is used. Previously proposed usage analyses have proved not to

scale up well to large programs. In this paper we present a powerful and

accurate type based analysis designed to scale up for large programs. The

key features of the type system are usage subtyping and bounded usage

polymorphism. Bounded polymorphism can lead to huge constraint sets

so to express constraints compactly we introduce a new expressive form of

constraints which allows constraints to be represented compactly through

calls to constraint abstractions.

1 Introduction

In the implementation of a lazy functional language sharing of evaluation is

performed by updating. For example, the (unoptimised) evaluation of

(�x:x + x) (1 + 2)

proceeds as follows. First, a closure for 1+2 is built in the heap and a reference

to the closure is passed to the abstraction. Second, to evaluate x+x the value of

x is required. Thus the closure is fetched from the heap and evaluated. Third,

the closure is updated with the result so that when the value of x is required

again the expression needs not be recomputed.

Measurements by Marlow show that 70% of all closures are used at most

once and that it is therefore unnecessary to update them. Usage information

also enables a series of program transformations such as more aggressive inlining

and let-oating [TWM95, WPJ99, GS99]. It is therefore no surprise that con-

siderable e�ort has been put into static analyses that can discover if a closure

is used at most once [Ses91, LGH

+

92, Mar93, TWM95, Fax95, BJ96, Mog97,

Gus98, WPJ99]. This line of research has produced analyses with

increasing accuracy, and benchmarks have shown that for small programs they

discover a large portion of closures used at most once. However these analyses

are monovariant and do not take the context where a function is called into

account. When analysing large programs it is crucial to take the context into

249

account { when Wansbrough and Peyton Jones implemented the recent analysis

from [WPJ99] into the Glasgow Haskell Compiler they discovered that it was

almost useless in practice since it did not scale up for large programs. [WPJ00].

In this paper we present a powerful and accurate type system which attempts

to solve this problem. It takes the context where a function is called into account

through bounded usage polymorphism. We designed our type system by putting

together and extending the best ideas from previous work. The salient features

of the type system are these:

� Our system has full-blown bounded usage polymorphism and supports

usage polymorhic recursion.

� In [WPJ98] Wansbrough and Peyton Jones give an overview of the de-

sign space for how to treat data structures. We choose the most aggres-

sive approach which corresponds to the hard-wired treatment of lists in

[TWM95].

� Our system is based on subsumption between usage types. The use of

subtyping in usage analysis goes back to Fax�en [Fax95].

� We have a three-level type language which incorporates separate notions

of usage of closures and usage of values which gives increased precision. To

separate the usage of closures and values is an idea due to Fax�en [Fax95].

� We have expressive update annotations which allow us to express more

aggressive optimisations than previous analyses.

Having all these features is not very useful unless there is an e�cient in-

ference algorithm for the type system. Here bounded polymorphism presents a

problem. See for example Mossin's thesis [Mos97] for an account of the problems

with bounded ow polymorphism in type based ow analyses. The core of the

problem is that the quanti�ed variables in a type schema may be constrained by

a huge number of constraints. In the naive inference algorithm �rst presented

by Mossin the number of constraints may be exponential in the size of the pro-

gram. Mossin re�nes the algorithm by adding a constraint simpli�cation phase

which renders an inference algorithm which is O(n

7

).

A novelty in our work is a new expressive form of constraints which allows

constraints to be represented compactly through calls to constraint abstractions.

To e�ciently compute least solutions to constraints with constraint abstractions

is an involved problem and is the subject of a companion paper [GS01]. There

we show how to e�ciently compute a least solution to constraints in a con-

straint language with constraint abstractions and inequality constraints over a

lattice. Using these techniques we can obtain an inference algorithm for our us-

age analysis which is O(n

3

) where n is the size of the explicitly typed program.

We believe that constraint abstractions can be very useful for a range of pro-

gram analyses which features bounded annotation polymorphism and in [GS01]

250

we show how to apply the ideas to a ow analysis with bounded ow poly-

morphism. Other candidates may be e�ect analysis, e.g., [TJ94], binding time

analysis, e.g., [DHM95], non determinism analysis, e.g., [PS00] and uniqueness

type systems, e.g., [BS96].

1.1 Outline

This paper is organised as follows. Section 2 introduces the language and its

semantics. Section 3 presents the type system. Section 4 describes related work.

Section 5 concludes.

2 Language

In this section we will present our language and its semantics in the form of an

abstract machine.

2.1 Syntax

The language we use is a lambda calculus extended with integers, lists, case-

expressions and recursive let-expressions. We omit user de�ned data structures

to simplify the presentation but it is a straightforward matter to add them

[Sve00].

Variables x; y; z

Values v ::= �x:e j n j nil j cons x y

Expressions e ::= v

�

j x j e x j e

0

+

�

e

1

j let b

1

; : : : ; b

n

in e j case e of alts

Bindings b ::= x=

�

e

Alternatives alts ::= fnil) e

0

; cons x y) e

1

g

Annotations � ::= 1 j !

We annotate bindings, values and + with usage annotations 1 and ! ranged

over by �. The intuitive meaning of 1 and ! is that the annotated binding (or

value) may be used at most once and any number of times respectively.

A distinguishing feature of the syntax is that arguments (in applications

of terms and constructors) are restricted to variables. We will occasionally

use unrestricted application e

0

e

1

as syntactic sugar for let x =

!

e

1

in e

0

x

where x is a fresh variable. The purpose of the restricted syntax is to make

the creation of closures explicit via a let-expression which greatly simpli�es the

presentation of the abstract machine as well as the analysis presented in this

paper. The syntactic restriction is by now rather standard, see for example

[PJPS96, Lau93, Ses97, GS99].

251

2.2 Semantics

We will take Sestoft's abstract machine [Ses97] as the semantic basis of our work.

The machine can be thought of as modelling lower-level abstract machines based

on so called update markers, such as the TIM [FW87] and the STG-machine

[PJ92]. A correspondence between Sestoft's machine and Launchbury's natural

semantics for lazy evaluation [Lau93] has been shown in [Ses97]. For the purpose

of the abstract machine we extend the set of terms to include expressions of

the form add

�

n

e, which represents an intermediate step in the computation of

n

�

0

+

�

e. We de�ne a reduction relation e 7! e

0

between terms:

(�x:e)

�

y 7! e[x:=y] n

�

0

+

�

e 7! add

�

n

e add

�

n

0

n

�

0

1

7! dn

0

+ n

1

e

�

0

@

case nil

�

of

nil) e

0

cons x

0

y

0

) e

1

1

A

7! e

0

0

@

case (cons x y)

�

of

nil) e

0

cons x

0

y

0

) e

1

1

A

7! e

1

[x

0

:=x; y

0

:=y]

Note that no reduction depends on an annotation. The annotations are instead

taken into account in the abstract machine transition rules.

Con�gurations in the abstract machine are triples hH ; e ; Si, where H is

a heap, e is the term currently being evaluated and S is the abstract machine

stack:

Heaps H ::= b

1

; : : : ; b

n

Stacks S ::= � j R;S j#x; S

Reduction contexts R ::= [�] x j [�] +

�

e j add

�

n

[�] j case [�] of alts

A heap consists of a sequence of bindings. The variables bound by the heap must

be distinct and the order of bindings is irrelevant. Thus a heap can be considered

as a partial function mapping variables to terms and we will write dom(H) for

the set of variables bound by H . We will write H

0

; H

1

for the concatenation of

H

0

and H

1

. An abstract machine stack is a stack of shallow reduction contexts

and update markers. The stack can be thought of as corresponding to the

\surrounding derivation" in a natural semantics, where the rôle of an update

marker #x is to keep track of a pending update of x. The update markers on

the stack will be distinct, that is there will be no more than one pending update

of the same variable. We will consider an update marker as a binder and we will

write dom(S) for the variables bound by the update markers in S. Consequently,

we will require the variables bound by the stack to be distinct from the variables

bound by the heap. We will also require that con�gurations are closed and we

will identify con�gurations up to �-conversion, that is renaming of the variables

bound by the heap and the stack. We will also identify con�gurations up to

garbage meaning that we may remove or add bindings and update markers to

the heap as long as the con�guration remains closed. An initial con�guration is

of the form h� ; e ; �i, where e is a closed expression. The transition rules of the

abstract machine are given in Figure 1. The rule Let

252

hH ; let

~

b in e ; Si

Let

7�! hH;

~

b ; e ; Si

hH; x=

!

e ; x ; Si

Var-!

7�! hH ; e ; #x; Si

hH; x=

1

e ; x ; Si

Var-1

7�! hH ; e ; Si

hH ; R[e] ; Si

Unwind

7�! hH ; e ; R;Si

hH ; v

�

; R;Si

Reduce

7�! hH ; e ; Si if R[v

�

] 7! e

hH ; v

!

; #x; Si

Marker-!

7�! hH; x=

!

v

!

; v

!

; Si

hH ; v

1

; #x; Si

Marker-1

7�! hH ; v

1

; Si

Figure 1: Abstract machine transition rules

hH ; let

~

b in e ; Si

Let

7�! hH;

~

b ; e ; Si

creates new bindings in the heap. For the rule to be applied the variables bound

by

~

b must be distinct from the variables bound by H and S. This condition can

always be met simply by �-converting the let-expression. The rule Var-!

hH; x=

!

e ; x ; Si

Var-!

7�! hH ; e ; #x; Si

gives semantics to bindings annotated with !. The rule states that an update

marker shall be pushed onto the stack so that the variable x eventually may be

updated with the result of evaluating e. The removal of the binding corresponds

to so called black-holing: if the evaluation of e to a value depends on x (i.e., x

depends directly on itself) the computation will get stuck, since x is no longer

bound by the heap. Note that we still consider the con�guration to be closed,

since x is bound by the update marker on the stack. The rule Var-1

hH; x=

1

e ; x ; Si

Var-1

7�! hH ; e ; Si

gives semantics to bindings annotated with 1. Such bindings may only be used

once so there is no need to update the binding and thus no update marker is

pushed onto the stack. Note that we require con�gurations to be closed so the

rule does not apply unless the con�guration remains closed. An example of

where the rule does not apply is the con�guration

hx=

1

1 +

!

2 ; x ; [�] +

�

x; �i

which cannot reduce further since there is a reference to x on the stack. This

restriction is important since an open con�guration would correspond to dan-

gling pointers in an implementation. If the rule does not apply the computation

will go wrong, and we will consider the con�guration and the term it originates

from to be ill-annotated. The key property of the type system presented in

253

this paper is that if a term is well-typed then it cannot go wrong. Note that,

the insistence that con�gurations remain closed is a stronger requirement than

the intuitive \used at most once" criterion, which says that it is safe to avoid

updating a closure if it is used at most once. For example, according to the

weaker criterion it is safe to not update x in

let x= 1 + 2 in x+ (�y:3) x

because x is only used once, but according to our criterion it is not safe. Our

stronger criterion is useful for two reasons. Firstly, with dangling pointers spe-

cial care has to be taken so that the garbage collector does not follow them { and

there is a cost associated with that. Secondly, usage annotations can be used to

justify certain program transformations, such as more aggressive inlining. Gus-

tavsson and Sands [GS99] have shown that the stronger criterion can guarantee

that these transformations are time and space safe, but with the weaker \used

at most once" criterion the transformations can lead to an asymptoticly worse

space behaviour. The rule Unwind

hH ; R[e] ; Si

Unwind

7�! hH ; e ; R;Si

allows us to get to the heart of the evaluation by \unwinding" a shallow re-

duction context. When the term to be evaluated is a value the next transition

depends on whether an update marker or a reduction context is on top of the

stack. If it is a reduction context the rule Reduce

hH ; v ; R;Si

Reduce

7�! hH ; e ; Si if R[v] 7! e

applies, the value is plugged into the reduction context and a reduction can take

place. If the top of the stack is an update marker, what happens depends on

the annotation on the value. If it is ! the value may be used several times and

we apply the rule Update-!

hH ; v

!

; #x; Si

Marker-!

7�! hH; x=

!

v

!

; v

!

; Si

which takes care of the update marker and performs the update. If the value

on the other hand is annotated with 1, the value may only be used once so the

rule Update-1

hH ; v

1

; #x; Si

Marker-1

7�! hH ; v

1

; Si

throws away the marker without performing the update. Again, note that the

rule does not apply unless the con�guration remains closed. So, for example,

h� ; 3

1

; #x; [�] +

�

x; �i

goes wrong and we consider the con�guration to be ill-annotated.

254

3 Type system

The semantics in Section 2 speci�es that for a binding x = e to be safely an-

notated with a 1 it is required that whenever the binding is used through the

rule

hH; x=

1

e ; x ; Si

Var-1

7�! hH ; e ; Si;

the con�guration must remain closed. Thus there may only be one (non-binding)

occurrence of x in the con�guration, namely the one that is dereferenced. Simi-

larly, to safely annotate a value with 1 it is required that if and when the value

is used and there is an update marker #x on the stack

hH ; v

1

; #x; Si

Marker-1

7�! hH ; v

1

; Si ;

then there is no live occurrence of x in the con�guration so that the con�guration

remains closed. Our type system (and most other type based usage analyses)

is based on the following simple idea. If, when a binding x = e is created, x

occurs only once in the con�guration and x never gets duplicated during the

computation then x will occur only once if and when it is dereferenced.

1

3.1 Type language

In order to construct a type system for the annotated language we need a

corresponding annotated type language. We start by extending the annotation

language from the previous section to include annotation variables.

Annotations � ::= 1 j ! j k j j

We will use two kinds of variables, type annotation variables, ranged over by k,

and program annotation variables, ranged over by j. Type annotation variables

may occur in the annotations on a type but not in the annotations on a program.

Conversely, program annotation variables may occur in programs but not in

types.

The structure of the type language closely follows the structure of the term

language and we will have one kind of type for every syntactic category. We let

� range over value types which is the form of type we will assign to values.

Type Variables a

Value Types � ::= a j Int j � ! � j List �

0

�

1

�

2

�

3

�

Our value types contains type variables, an integer type, function types and the

list type. The function types relies on a notion of binding types, ranged over

1

We will strengthen this idea in an obvious but important way { when a variable occurs

once in several branches of a case-expression. Then, since eventually only one branch will be

taken, we may consider it as occurring only once.

255

by �, and expression types, ranged over by � , which we will introduce below.

Expression types are used to give types to expressions and are de�ned as follows.

Expression Types � ::= �

�

An annotated value v

�

will be given a type of the form �

�

and a non-value e will

be given a type such that the annotated value of e (if e terminates) will have

that type. Thus, for example, saying that a term has a type �

!

means that the

value of the term may be used any number of times. Binding types which we

will use to give a type to bindings are de�ned as follows.

Binding Types � ::= �

�

A binding x=

�

e may be given a type of the form �

�

where � is the type of e.

We also use binding types to give a type to a variable when we can think of

the variable as a reference, for example when we pass it as an argument to a

function. A type of a variable is then simply the type of the bindings it may refer

to. Recall that we used expression types and binding types in the type � ! �

of a function. A function of this type can be applied to a variable (remember

functions can only be applied to variables due to the syntactic restriction in our

language) with the binding type � and then it will return something of type � .

We can also use binding types to logically justify our type List �

0

�

1

�

2

�

3

� of

lists. We can obtain this type simply by annotating the right hand side of the

data type de�nition

List a = nil j cons a (List a)

such that the arguments to the constructors are binding types, as follows.

List k

0

k

1

k

2

k

3

a = nil j cons a

k

1

k

0

(List k

0

k

1

k

2

k

3

a)

k

3

k

2

The reason for why the arguments to the constructors should be binding types

is simply because constructors, due to the syntactic restriction, may be applied

only to variables.

3.2 Subtyping

A key observation which we will use to justify our subtyping relation is that 1

operationally approximates !, i.e., if we in any term e replace any occurrence

of 1 with ! then the modi�ed term will run successfully without going wrong if

and when e does. We de�ne the subtyping relation on closed types where the

ordering on annotations is the operational approximation 1 < ! by the following

rules.

�

0

� � � � �

0

� ! � � �

0

! �

0

�

�

1

�

0

� �

0

�

1

0

�

0

0

�

0

2

� �

2

�

0

3

� �

3

List �

0

�

1

�

2

�

3

� � List �

0

0

�

1

0

�

2

0

�

3

0

�

0

Int � Int

� � �

0

�

0

� �

�

�

� �

0

�

0

� � �

0

�

0

� �

�

�

� �

0

�

0

256

Note that the subtype ordering is contravariant with respect to the ordering on

the annotations. The rule for lists can be understood by unfolding the annotated

data type de�nition for lists.

3.3 Constraints

In order to extend the subtyping relation to types with type variables and

annotation variables we need the notion of constraints. To be able to represents

constraints compactly we introduce a new form of constraints which may contain

calls to constraint abstractions. A constraint abstraction is simply a function

that given some annotation variables returns a constraint. We will let � range

over constraint abstractions, l range over constraint abstraction variables and

� range over constraints.

Annotation constraints � ::= �

0

� �

1

j�

0

;�

1

j let

~

� in � j 9

~

k:� j l ~�

Constraint abstractions � ::= l

~

k = �

Constraint abstractions allow di�erent substitution instances of a constraint

to share the same representation. For example to represent instances of the

constraints k

0

� k

1

; k

1

� k

2

we can de�ne an abstraction

l k

0

k

1

k

2

= k

0

� k

1

; k

1

� k

2

and represent (�

0

� �

1

; �

1

� �

2

); (�

3

� �

4

; �

4

� �

5

) as

let l k

0

k

1

k

2

= k

0

� k

1

; k

1

� k

2

in l �

0

�

1

�

2

; l �

3

�

4

�

5

:

Thus with constraint abstractions the size of any instance is linear in the num-

ber of free type annotation variables of the constraint but the size of the original

constraint may be quadratic in the sum of the number of free type annotation

variables and free program annotation variables (or even worse if it contains ex-

istential quanti�ers). With constraint abstraction we can avoid the exponential

explosion of constraints which can happen with a naive approach. To see why

consider a program of the following form.

let f

0

= : : :

in let f

1

= : : : f

0

: : : f

0

: : :

in let : : :

in let f

n

= : : : f

n�1

: : : f

n�1

: : :

in : : : f

n

: : : f

n

: : :

The �rst naive algorithm, for the similar problem of ow analysis with bounded

ow polymorphism, presented by Mossin [Mos97] which su�ers from the expo-

nential explosion problem would proceed as follows. It �rst infers the polymor-

phic type for f

0

. Then to compute the type for f

1

it instantiates the type of

f

0

twice and thus make two instances of the constraints contained in the type

257

schema so the constraints for f

1

will be at least twice as big. This is repeated

n times and thus the size of the resulting constraints will be exponential in the

call depth n. In practice the call depth typically does not grow linearly with

the size of the program but the call depth does tend to increase with program

size which makes this into a problem that occurs in practice. With constraint

abstractions we can avoid the problem and represent the constraints as follows

let l

0

~

k

0

= : : :

in let l

1

~

k

1

= : : : l

0

~

k

0

0

: : : l

0

~

k

00

0

: : :

in let : : :

in let l

n

~

k

n

= : : : l

n�1

~

k

0

n�1

: : : l

n�1

~

k

00

n�1

: : :

in : : : l

n

~

k

0

0

: : : l

n

~

k

00

0

: : :

To give semantics to constraints we will use closing substitutions from type

variables to value types and annotation variables to annotations, ranged over

by #. The meaning of a constraint � is given by a relation #;

~

� j= � (read as

#;

~

� models �) de�ned coinductively by the following rules.

�

0

� �

1

#

#;

~

� j= �

0

� �

1

#;

~

� j= �

0

#;

~

� j= �

1

#;

~

� j= �

0

;�

1

#;

~

�;

~

�

0

j= �

#;

~

� j= let

~

�

0

in �

#;

~

� j= �[

~

k := ~�]

#;

~

� j= 9

~

k:�

#;

~

� j= �[

~

k := ~�]

#;

~

� j= l ~�

l

~

k = � 2

~

�

We will sometimes write # j= � as a shorthand for #; � j= �. We will let 	

range over constraints concerning type variables.

Type variable constraints 	 ::= a

0

� a

1

j	

0

;	

1

j 9~a:	

The meaning of a constraint 	 is given by a relation # j= 	 (read as # models

). We de�ne # j= 	 inductively by the following rules.

#(a

0

) � #(a

1

)

j= a

0

� a

1

# j= 	

0

# j= 	

1

# j= 	

0

;	

1

#[~a := ~�] j= 	

# j= 9~a:	

We will let � range over pairs �;	 and we de�ne # j= � as # j= �;	 i� # j= �

and # j= 	. The whole purpose of having constraints is that they allow us to

extend the subtyping relation to types with variables. We will de�ne a relation

� j= �

0

� �

1

where �

0

and �

1

may be open types, which reads: �

0

� �

1

is a

consequence of �. It is de�ned as � j= �

0

� �

1

i� for every #, if # j= � then

�

0

� �

1

#. We also de�ne � j= �

0

� �

1

and � j= �

0

� �

1

in the same manner.

3.4 Type schemas

Our type system incorporates bounded polymorphism so we need type schemas

where the quanti�ed variables are bounded by some constraints.

Type Schemas � ::= 8

~

k;~a: � j�

258

We will de�ne a relation � j= � � � which reads as: it is a consequence of � that

� can be instantiated to �. It is de�ned as � j= (8

~

k;~a: � j�

0

) � �[

~

k := ~�;~a := ~�]

i� for every #, if # j= � then # � [

~

k := ~�;~a := ~�] j= �

0

. We will sometimes

consider a value type � to be a type schema with no quanti�ed variables and no

constraints.

3.5 Contexts

We use � and � to range over typing contexts which are multisets of type

associations of the form x : �

�

0

�

(and since we may consider a value type � as a

type schema there may also be type associations of the form x : �

�

0

�

). As usual

we will use contexts when we give a type to a term with free variables. Thus

we will say that e has the type � in a context � if we can give e the type �

assuming that the free variables in e has the types given by �. However the

context also plays another important rôle; it records the number of times each

variable occurs in the term. Thus if x occurs n times in e it also occurs n times

in � (with one important exception, namely if x occurs in di�erent branches of

a case-expression). This may be a bit surprising at �rst. Consider for example

the term (�y:y +

1

y)

1

x with the free variable x. We will be able to say that

this term has the type Int

1

in the context x : Int

!

!

. According to the reduction

relation the term can reduce to x +

1

x so we would expect to be able to give

x +

1

x the same type in the same context. However this will not be possible

since x now occurs twice in the term. Instead we can type the term in the

context x : Int

!

!

; x : Int

!

!

where x occurs twice. To be able to state a relation

between the contexts before and after a reduction we de�ne a rewrite relation

on contexts.

�; x : �

!

!

! �; x : �

!

!

; x : �

!

!

�; x : �

�

0

�

! �

We have two rewrite rules. The �rst says that a type association of the form

x : �

!

!

may be duplicated. This is supposed to model the duplication of a

variable x during the computation. Note that we may not duplicate a type

association of the form x : �

1

1

. This reects our intention that a variable that

refers to a binding which will not be updated, must not be duplicated. The

second rule simply allows us to remove a type association. This corresponds to

the case when a variable is dropped during the computation (for example since it

occurred in a branch of a case-expression that was not selected). These rewrite

rules will play a rôle similar to the contraction and weakening rules in logic.

The restricted duplication (i.e., that we may only duplicate type associations

of the form x : �

!

!

) corresponds to the restricted form of contraction in linear

logic [Gir87]. We extend the relation to contexts with open types in the same

way as with the subtyping relation by de�ning � j= �

0

!

�

�

1

i� for every #,

if # j= � then �

0

!

�

�

1

#. Finally we will also need the relation � j= if � =

! then � !

�

�;� which holds i� for every #, if # j= �, and �# = ! then

�#!

�

�#;�#.

259

Abs

�; �

0

;�

1

` e : �

�;�

0

` �x:e : � ! �

x 62 dom(�

0

)

� j= x : � !

�

�

1

Int

�; ; ` n : Int

Nil

�; ; ` nil : List �

0

�

1

�

2

�

3

�

Cons

�;x : �

0

�

1

�

0

; y : �

1

�

3

�

2

` cons x y : �

0

�

0

� List �

4

�

5

�

6

�

7

�

� j= �

0

� �

0

; �

1

� �

1

� j= �

0

�

1

�

0

� �

�

5

�

4

; �

1

�

3

�

2

� �

0

�

7

�

6

Figure 2: Typing rules for values

3.6 Typing judgements

Typing judgements for values take the form �; � ` v : � and shall be read: under

the constraints � and in the context �, the value v can be given the value type

�. Similarly we will have typing judgements for expressions, alternatives and

bindings. As discussed in the previous section the context � in our judgements

as usual keeps track of the types of the free variables in the term but it also

records the number of times each variable occurs in the term.

3.7 Typing rules

The typing rules for values are in Figure 2. The key feature of the rule Abs

�; �

0

;�

1

` e : �

�;�

0

` �x:e : � ! �

x 62 dom(�

0

)

� j= x : � !

�

�

1

is that if x occurs more than once in e then the abstraction will be assigned a

type of the form �

�

�

0

! � where � and �

0

are constrained to be ! indicating

that a variable will be duplicated if it is passed to the abstraction. This is

accomplished by �rst typing e in a context �

0

;�

1

where x 62 dom(�

0

). Then,

if x occurs more than once in e, x will occur more than once in �

1

. Now the

second side condition specify that we must be able to rewrite x : �

�

�

0

to �

1

which

clearly involves duplicating x : �

�

�

0

(since x occurs more than once in �

1

) which

will constrain � and �

0

to be !. The typing rule for integers is straightforward

and the rules for lists can be understood by unfolding the annotated data type

de�nition for lists.

We have divided the typing rules for expressions into two �gures. Most rules

appear in Figure 3 but the rules which concern let expressions are in Figure 4.

The rule Value

�; � ` v : �

�;� ` v

�

: �

�

0

� j= if �

0

= ! then �!

�

�;�

� j= �

0

� �

260

Value

�; � ` v : �

�;� ` v

�

: �

�

0

� j= if �

0

= ! then �!

�

�;�

� j= �

0

� �

Var

�;x : �

�

1

�

0

` x : �

� j= � � �

� j= �

�

1

� �

App

�; � ` e : (�

�

0

�

1

! �)

�

�;�; x : �

�

0

�

1

` e x : �

� j= � � �

Plus

�; �

0

` e

0

: Int

�

0

�;�

1

` e

1

: Int

�

1

�;�

0

;�

1

` e

0

+

�

e

1

: Int

�

0

� j= �

0

� �

Alts

�; �

0

;�

1

` e

0

: � �;�

0

;�

2

;�

3

` e

1

: �

�;�

0

;�

1

;�

2

` fnil) e

0

; cons x y) e

1

g : �

0

) �

(�)

(�)

�

0

� List �

0

�

1

�

2

�

3

�

x; y 62 dom(�

0

;�

2

)

� j= x : �

�

1

�

0

; y : �

0

�

3

�

2

!

�

�

3

Case

�; �

0

` e : �

�

�;�

1

` alts : �) �

�;�

0

;�

1

` case e of alts : �

Figure 3: Typing rules for expressions

is used to type an annotated value. Saying that an annotated value has the type

�

�

0

means that if �

0

is ! the value may be used any number of times and thus

it will take care of any update marker on the stack. Taking care of an update

marker means updating with the value, thus duplicating any free variables of

the value. The purpose of the side condition � j= if �

0

= ! then � !

�

�;� is

to ensure that these variables may safely be duplicated if �

0

is constrained to

be !.

In order to type case-expressions we introduce an auxiliary form of judge-

ments for alternatives. We give alternatives a type of the form �) � where � is

the type of the value that is being scrutinised and � is the type of the branches.

The rule Alts

�; �

0

;�

1

` e

0

: � �;�

0

;�

2

;�

3

` e

1

: �

�;�

0

;�

1

;�

2

` fnil) e

0

; cons x y) e

1

g : �

0

) �

�

0

� List �

0

�

1

�

2

�

3

�

x; y 62 dom(�

0

;�

2

)

� j= x : �

�

1

�

0

; y : �

0

�

3

�

2

!

�

�

3

for alternatives contains a subtle treatment of contexts. If a variable occurs once

in each branch of the case-expression and thus twice in the term it may still occur

only once in the context. This is achieved by collecting the variables that occur

in both branches in a common context �

0

, thus e�ectively counting a variable

occurring in both branches as one. Finally, the side conditions take care of the

261

Binding

�

0

; 	; � ` e : �

�

0

�;� ` x=

�

e : (x : (8

~

k

1

;~a

1

: � j l

~

k

2

; 9~a

0

:)

�

0

�

1

)where l

~

k

2

= 9

~

k

0

:�

0

(�)

Binding group-�

�; � ` � : �where �

(�)

~

k

0

62 ftav(�; �

�

0

); ~a

0

62 ftv(�; �

�

0

);

~

k

1

62 ftav(�; �

0

; l

~

k

2

= 9

~

k

0

:�

0

);

~a

1

62 ftv(�); � j= �

1

� �

Binding group

�; �

0

` b : (x : �

�

1

�

0

)where � �;�

1

`

~

b : �where

~

�

�;�

0

;�

1

` b;

~

b : (x : �

�

1

�

0

;�)where �;

~

�

Let

�

0

; �

0

;�

1

`

~

b : �where

~

� �

1

; 	; �

2

;�

3

` e : �

�;	; �

1

;�

3

` let

~

b in e : �

(��)

(��)

dom(�

1

;�

3

) \ dom(�) = ;

� j= �!

�

�

0

; �

2

� j= �

0

; let

~

� in �

1

Figure 4: Typing rules for bindings and let expressions

variables bound in the cons-pattern. They see to that if x (and/or y) occurs

several times in e

1

then �

0

and �

1

(and/or �

2

and �

3

) will be constrained to

be !. Thanks to the auxiliary rule for alternatives the rule for case-expressions

becomes entirely straightforward.

To type let-expressions we �rst introduce an auxiliary form of typing judge-

ments for bindings. We will give bindings a type of the form x : �

�

0

�

1

, i.e., the

type of a binding includes the name of the bound variable (so it can be consid-

ered as a type association). The rules for typing bindings appears in Figure 4.

To type a binding with the rule Binding

�

0

; 	; � ` e : �

�

0

�;� ` x=

�

e : (x : (8

~

k

1

;~a

1

: � j l

~

k

2

; 9~a

0

:)

�

0

�

1

)where l

~

k

2

= 9

~

k

0

:�

0

(�)

(�)

~

k

0

62 ftav(�; �

�

0

); ~a

0

62 ftv(�; �

�

0

);

~

k

1

62 ftav(�; �

0

; l

~

k

2

= 9

~

k

0

:�

0

);

~a

1

62 ftv(�); � j= �

1

� �

we �rst type the expression in the binding and yield the constraints �

0

; 	. We

may then existentially quantify variables which appear in the constraints to

obtain 9

~

k

0

:�

0

and 9~a

0

:	 providing

~

k

0

and ~a

0

do not occur free elsewhere in the

judgement. This is ensured by the �rst line of side conditions. We then form

262

the type schema 8

~

k

1

;~a

1

: � j l

~

k

2

; 9~a

0

:	 by universally quantifying

~

k

1

and ~a

1

. The

second line of side conditions simply ensures that

~

k

1

and ~a

1

do not occur free

elsewhere in the judgement. We put 9~a

0

:	 in the type schema but not 9

~

k

0

:�

0

.

Instead we introduce a constraint abstraction l

~

k

2

= 9

~

k

0

:�

0

and put a call to the

constraint abstraction into the type schema. We also need a form of judgements

for groups of bindings. As you would expect the type of a group of bindings is

just a set of type associations (i.e., a typing context) and the typing rules just

collect the type associations and the corresponding constraint abstractions. In

the rule Let

�

0

; �

0

;�

1

`

~

b : �where

~

� �

1

; 	; �

2

;�

3

` e : �

�;	; �

1

;�

3

` let

~

b in e : �

dom(�

1

;�

3

) \ dom(�) = ;

� j= �!

�

�

0

; �

2

� j= �

0

; let

~

� in �

1

we �rst type the bindings which gives a context � which contains the type

schemas associated with each binding. The �rst two side conditions ensures

that the type schema �

i

�

0

i

�

i

associated with each variable x

i

in � is consistent

with the type of each use of x

i

. They also ensures that if x

i

may be used more

than once then �

i

and �

0

i

must be constrained to !. It is achieved as follows.

If x

i

occurs more than once in e and the right hand sides of

~

b then x

i

will also

occur more than once in �

0

;�

2

. Thus the second side condition will ensure

that �

i

and �

0

i

is constrained to be !. The typing of the bindings also gives a

group of constraint abstraction

~

�. With the constraint abstraction we form the

constraint let

~

� in �

1

which by the third side condition must be a consequence

of the constraints in the conclusion of the rule.

3.8 Soundness

The soundness of our type system simply says that a well typed program is well

annotated, i.e., when we run it in the abstract machine it does not go wrong.

Theorem 3.1

If �; ; ` e : � and # j= � then e# cannot go wrong.

The result is established by extending the type system to abstract machine con-

�gurations and then proving a subject reduction result which says that typings

are preserved by transitions in the abstract machine. A very similar proof for

the type system in [Gus98] is presented in full detail in [Gus99].

3.9 Inference Algorithm

As stated the type system is undecidable since it employs type polymorphic

recursion. Our inference algorithm will therefore take a term which is explicitly

typed in the underlying ordinary type system and can handle type polymorphic

recursion if presented to it through the type annotations. It will �rst compute

263

a usage typing judgement which is principal with respect to the given typing

judgement, i.e., every other usage typing judgement is an instance of the com-

puted judgement if \stripping the annotations" from it yields the judgement

in the underlying type system. The second phase of the algorithm then com-

putes the best solution to the constraints in the principal judgement using the

techniques described in a companion paper [GS01].

The time complexity of the algorithm is dominated by the cost of the con-

straint solving in the second phase. We can argue, as follows, that the time

complexity of the second phase is O(n

3

) where n is the size of the explicitly

typed term. Let the skeleton of the constraints be the constraints where all

occurrences of inequality constraints of the form �

0

� �

1

have been removed.

What remains are the binding occurrences of variables and all calls to constraint

abstractions. By inspecting the typing rules we can see that the size of the skele-

ton of the constraints required to type a program is proportional to the size of

the explicitly typed program. Moreover the number of free annotation variables

in the constraints are proportional to the size of the program. From these facts

and theorem 2 of [GS01] we can conclude that the complexity is O(n

3

) where n

is the size of the typed program.

For a version of the analysis in this paper without usage-polymorphic recur-

sion we have developed an algorithm based on non-recursive constraint abstrac-

tions with a worst case complexity of O(n �m � t

2

) where n is the size of the

untyped lambda lifted version of the program, m is the size of the type of the

largest set of (properly) mutually recursive de�nitions and t is the size of the

largest instantiated type [Sve00]. Since m and t typically grow slowly or not at

all with program size we expect that algorithm to scale up well in practice.

4 Related Work

There is a rich literature on analyses which aims at avoiding updates. See

[Gus99] for a thorough overview. This work especially lends ideas from the type

based approach by Turner, Wadler and Mossin [TWM95], and its followups

by Gustavsson [Gus98] and Wansbrough and Peyton Jones [WPJ99]. Bounded

polymorphism was proposed by Turner, Wadler and Mossin [TWM95] and the

idea to use subtyping in usage analysis originates from the work by Fax�en [Fax95]

(the subtyping in his ow analysis and the directed edges in the post processing

achieves the same e�ect as the subtyping in this paper) although it was inde-

pendently proposed by Gustavsson [Gus98] and Wansbrough and Peyton Jones

[WPJ99].

The analysis which seems to be closest in expressive power to ours is an

analysis by Fax�en based on an undecidable type based ow analysis [Fax97].

Due to the undecidable nature of the analysis his inference algorithm is not

complete with respect to the type system. The algorithm is parametrised by a

notion of �nite name supply and the larger name-supply the better the algorithm

264

approximates the type system. The exact relationship between the di�erent

degrees of approximations computed by his algorithm and our type system is

not clear to us.

The aim of this work is to make usage analysis scale up for large programs

and in that respect it is most closely related to recent work by Wansbrough and

Peyton Jones [WPJ00]. They have also observed that usage polymorphism is

crucial for the accuracy of the analysis of large programs but they side-step the

di�culties associated with bounded polymorphism. Instead they have a sim-

ple usage polymorphism where the quanti�ed variables may not be constrained.

This is achieved by an algorithm which eliminates inequality constraints prior

to quanti�cation by unifying constrained variables. The drawback of their ap-

proach is that as they refrain from using bounded polymorphism, they get an

analysis which is rather inaccurate when it comes to data structures. Consider

for example the following program fragment.

: : :map square (fromto 1 100) : : :

The spine of the list produced by fromto is consumed linearly by map but a type

system with their simple usage polymorphism cannot discover it. The reason

being that in a system with simple usage polymorphism the usage of the spine

must be uni�ed with the usage of the elements and in this case the elements

are used more than once. In our system with bounded polymorphism the usage

of the spine and the elements need only to constrain each other through an

inequality constraint so we can deduce that the spine is used linearly although

the elements are not. We believe that this situation is common enough in

practice to have a signi�cant e�ect on the accuracy of the analysis.

That the number of constraints explodes is a problem also for other type

based program analyses with bounded polymorphism. In that respect our work

is most closely related to the work by Fax�en [Fax95], Mossin [Mos97] and Rehof

and F�anhdrich [RF01]. Fax�en and Mossin present inference algorithms for type

based ow analyses which simpli�es constraint sets to smaller but equivalent

constraint sets. In their recent work on type based ow analysis Rehof and

F�anhdrich uses instantiation constraints to represent constraints compactly and

thus instantiation constraints plays a rôle similar to our constraint abstractions.

5 Conclusions and Future Work

We have presented a powerful and accurate type system for usage analysis with

bounded usage polymorphism and subtyping. A key contribution is a new ex-

pressive form of constraints which allows constraints to be represented com-

pactly through calls to constraint abstractions. In a companion paper [GS01]

we show how to e�ciently compute a least solution to constraints with constraint

abstractions and we use this technique to obtain an O(n

3

) inference algorithm

for our usage analysis, where n is the size of the explicitly typed program.

265

Acknowledgements We would like to thank David Sands andMakoto Takeyama

for comments on this paper and Karl-Filip Fax�en, Jakob Rehof and Keith Wans-

brough for discussions on the relations to their work.

References

[BJ96] U. Boquist and T. Johnsson. The grin project: A highly optimising

back end for lazy functional languages. In Proc. of IFL'96, Bad

Godesberg, Germany. Springer Verlag LNCS 1268, 1996.

[BS96] E. Barendsen and S. Smetsers. Uniqueness Typing for Functional

Languages with Graph Rewriting Semantics. Mathematical Struc-

tures in Computer Science, 6:579{612, 1996.

[DHM95] D. Dussart, F. Henglein, and C. Mossin. Polymorphic recursion

and subtype quali�cations: Polymorphic binding-time analysis in

polynomial time. In proceedings of 2nd Static Analysis Symposium,

September 1995.

[Fax95] Karl-Filip Fax�en. Optimizing lazy functional programs using ow

inference. In Proc. of SAS'95, pages 136{153. Springer-Verlag, LNCS

983, September 1995.

[Fax97] Karl-Filip Fax�en. Analysing, Transforming and Compiling Lazy

Functional Programs. PhD thesis, Royal Institute of Technology,

Sweden, June 1997.

[FW87] J. Fairbairn and S. Wray. TIM: A Simple, Lazy Abstract Machine

to Execute Supercombinators. In Proc. of FPCA'87, pages 34{45.

Springer Verlag LNCS 274, September 1987.

[Gir87] Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50:1{

102, 1987.

[GS99] J. Gustavsson and D. Sands. A foundation for space-safe transfor-

mations of call-by-need programs. In Proc. of HOOTS'99, volume 26

of ENTCS. Elsevier, 1999.

[GS01] J. Gustavsson and J. Svenningsson. Constraint abstractions. In Proc.

of Second Symposium on Programs as Data Objects, LNCS. Springer

Verlag, 2001. To Appear.

[Gus98] J. Gustavsson. A Type Based Sharing Analysis for Update Avoid-

ance and Optimisation. In Proc. of ICFP'98, pages 39{50, Baltimore,

Maryland, September 1998.

[Gus99] J. Gustavsson. A Type Based Sharing Analysis for Update Avoid-

ance and Optimisation. Licentiate thesis, May 1999.

266

[Lau93] J. Launchbury. A Natural Semantics for Lazy Evaluation. In Proc.

of POPL'93, Charleston, N. Carolina, 1993.

[LGH

+

92] J. Launchbury, A. Gill, J. Hughes, S. Marlow, S. L. Peyton Jones,

and P. Wadler. Avoiding Unnecessary Updates. In J. Launchbury

and P. M. Sansom, editors, Functional Programming, Workshops in

Computing, Glasgow, 1992.

[Mar93] S. Marlow. Update Avoidance Analysis by Abstract Interpreta-

tion. In Proc. 1993 Glasgow Workshop on Functional Programming,

Workshops in Computing. Springer{Verlag, 1993.

[Mog97] T. Mogensen. Types for 0, 1 or many uses. In Proc. of IFL '97,

pages 112{122. Springer-Verlag, LNCS 1467, September 1997.

[Mos97] C. Mossin. Flow Analysis of Typed Higher-Order Programs (Revised

Version). PhD thesis, University of Copenhagen, Denmark, August

1997.

[PJ92] Simon L. Peyton Jones. Implementing lazy functional languages on

stock hardware: the spineless tagless g-machine. Journal of Func-

tional Programming, 2(2):127{202, July 1992.

[PJPS96] S. Peyton Jones, W. Partain, and A. Santos. Let-oating: moving

bindings to give faster programs. In Proc. of ICFP'96, pages 1{12.

ACM, May 1996.

[PS00] R. Pe~na and C. Segura. Non-determinism analysis in a parallel-

functional language. In Proceedings of the 12th International Work-

shop of Functional Languages, LNCS, pages 1{18. Springer-Verlag,

LNCS 2011, September 2000.

[RF01] Jakob Rehof and Manuel F�andrich. Type-Based Flow Analysis:

From Polymorphic Subtyping to CFL-Reachability. In Proceedings

of 2001 Symposium on Principles of Programming Languages, 2001.

To appear.

[Ses91] P. Sestoft. Analysis and E�cient Implementation of Functional Pro-

grams. PhD thesis, DIKU, University of Copenhagen, Denmark,

October 1991.

[Ses97] P. Sestoft. Deriving a lazy abstract machine. Journal of Functional

Programming, 7(3):231{264, May 1997.

[Sve00] Josef Svenningsson. An e�cient algorithm for a sharing analysis with

polymorphism and subtyping. Masters thesis, June 2000.

[TJ94] J.-P. Talpin and P. Jouvelot. The type and e�ect discipline. Infor-

mation and Computation, 111(2), 1994.

267

[TWM95] D. N. Turner, P. Wadler, and C. Mossin. Once upon a type. In Proc.

of FPCA, La Jolla, 1995.

[WPJ98] Keith Wansbrough and Simon Peyton Jones. Once Upon a Polymor-

phic Type. Technical Report TR-1998-19, Department of Computing

Science, University of Glasgow, December 1998.

[WPJ99] Keith Wansbrough and Simon Peyton Jones. Once Upon a Polymor-

phic Type. In Proc. of POPL'99, January 1999.

[WPJ00] Keith Wansbrough and Simon Peyton Jones. Simple Usage Poly-

morphism. In ACM SIGPLAN Workshop on Types in Compilation,

September 2000.

268

Paper V

Constraint Abstractions

Constraint Abstractions

J�orgen Gustavsson Josef Svenningsson

Abstract

Many type based program analyses with subtyping, such as ow anal-

ysis, are based on inequality constraints over a lattice. When inequality

constraints are combined with polymorphism it is often hard to scale the

analysis up to large programs. A major source of ine�ciency in conven-

tional implementations stems from computing substitution instances of

constraints. In this paper we extend the constraint language with con-

straint abstractions so that instantiation can be expressed directly in the

constraint language and we give a cubic-time algorithm for constraint

solving. As an application, we illustrate how a ow analysis with ow

subtyping, ow polymorphism and ow-polymorphic recursion can be im-

plemented in O(n

3

) time where n is the size of the explicitly typed pro-

gram.

1 Introduction

Constraints are at the heart of many modern program analyses. These analyses

are often implemented by two stages. The �rst stage collects constraints in an

appropriate constraint language and the second stage �nds a solution (usually

the least) to the constraints. If the constraints are collected through a simple

linear time traversal over the program yielding a linear amount of constraints

the �rst phase can hardly constitute a bottleneck. But often the constraints for

a program point are computed by performing a non constant-time operation on

constraints collected for another part of the program. Notable examples, and

the motivation for this work, are analyses which combine subtyping and poly-

morphism. There, typically, the constraints for a call to a polymorphic function

f are a substitution instance of the constraints for the body of f . For these

analyses, to na��vely collect constraints typically leads to unacceptable perfor-

mance. Consider, for example, how we na��vely could collect the constraints for

a program of the following form.

let f

0

= : : :

in let f

1

= : : : f

0

: : : f

0

in let : : :

in let f

n

= : : : f

n�1

: : : f

n�1

: : :

in : : : f

n

: : : f

n

: : :

271

We �rst collect the constraints for the polymorphic function f

0

. Then for the

two calls to f

0

in the body of f

1

, we compute two di�erent substitution instances

of the constraints from the body of f

0

. As a result the number of constraints for

f

1

will be at least twice as many as those for f

0

. Thus, the number of resulting

constraints grows exponentially in the call depth n (even if the underlying types

are small). In analyses which combine subtyping and polymorphic recursion,

and rely on a �xed point iteration, this e�ect may show up in every step of

the iteration and thus the constraints may grow exponentially in the number of

required iterations. We can drastically reduce the number of constraints if we

can simplify the constraints to fewer but equivalent constraints. It is therefore

no surprise that lots of work has been put into techniques for how to simplify

constraints [FM89, Cur90, Kae92, Smi94, EST95, Pot96, TS96, FA96, AWP97,

Reh97, FF97].

Another approach is to make the constraint language more powerful so that

constraints can be generated by a simple linear time traversal over the program.

This can be achieved by making substitution instantiation a syntactic construct

in the constraint language. But when we make the constraint language more

powerful we also make constraint solving more di�cult. So is this a tractable

approach? The constraint solver could of course just perform the delayed op-

erations and then proceed as before. But can one do better? The answer, of

course, depends on the constraint language in question.

In this paper we consider a constraint language with simple inequality con-

straints over a lattice. Such constraints show up in several type based pro-

gram analyses such as ow analyses, e.g., [Mos97], binding time analyses, e.g.,

[DHM95], usage analyses, e.g., [TWM95], points-to-analyses, e.g., [FFA00] and

uniqueness type systems [BS96]. We extend this simple constraint language

with constraint abstractions which allow the constraints to compactly express

substitution instantiation.

The main result of this paper is a constraint solving algorithm which com-

putes least solutions to the extended form of constraints in cubic time. We have

used this expressive constraint language to formulate usage-polymorphic usage

analyses with usage subtyping [Sve00, GS00] and an algorithm closely related to

the one in this paper is presented in the second author's Master's thesis [Sve00]

([GS00] focuses on the usage type system and no constraint solving is presented).

In this paper, as another example, we show how the constraint language can

be used to yield a cubic algorithm for Mossin's polymorphic ow analysis with

ow subtyping and ow-polymorphic recursion [Mos97]. This is a signi�cant re-

sult { the previously published algorithm, by Mossin, is O(n

8

). Independently,

F�ahndrich and Rehof [RF01] have given an algorithm for Mossin's ow analysis

based on instantiation constraints which is also O(n

3

). We will take a closer

look an the relationship of their algorithm and ours in section 4.

272

1.1 Outline

The rest of this article is organised as follows. In section 2 we introduce our con-

straint language and give the semantics. In section 3 we present our constraint

solving algorithm, its implementation and computational complexity. Section

4 discusses related work and section 5 concludes. In appendix A we illustrate

how the constraint language can be used in a ow analysis. In appendix B we

give the proof of Theorem 3.6.

2 Constraints

In this section we will �rst introduce the underlying constraints language that

we consider in this paper, and then extend the constraint language with con-

straint abstractions which can express substitution instantiation. The atomic

constraints we consider are inequality constraints of the form

a � b

where a and b are taken from an countably in�nite set of variables. The con-

straint language also contains the trivially true constraint, conjunction of con-

straints and existential quanti�cation as given by the following grammar.

Atomic Constraints A ::= a � b

Constraint Terms M;N ::= A j > jM ^N j 9a:M

These kinds of constraints show up in several di�erent type based program

analyses such as, for example, ow analysis, e.g., [Mos97] which we will use as

our running example. The constraints arise from the use of subtyping between

ow types - i.e., types annotated with ow information.

Depending on the application, the constraints can be interpreted in di�erent

domains. For example, for ow analysis we can interpret the constraints in a

lattice of �nite sets of labels with subset as the ordering.

De�nition 2.1

We interpret a constraint term in a lattice L, with a bottom element and the

ordering v, by de�ning the notion of a model of a constraint term. Let � range

over mappings from variables into L. Then � j=M , read as � is a model of M ,

is de�ned inductively by the following rules.

�(a) v �(b)

� j= a � b � j= >

� j=M � j= N

� j=M ^N

�[a := d] j=M

� j= 9a:M

d 2 L

Given a constraint term one is usually interested in �nding its optimal model

(usually the least) given a �xed assignment of some of the variables. For exam-

ple, in ow analysis some of the variables in the constraint term correspond to

points in the program where values are produced, often referred to as the sources

273

of ow. Other variables correspond to points in the program where values are

consumed, often referred to as the targets of ow. The existentially quanti�ed

variables correspond to the ow annotations on intermediate ow types. To

�nd the ow from the sources to the targets we can �x an assignment for the

source variables (usually by associating a unique label l to each source and in-

terpret it as the singleton set flg) and compute the least model which respects

this assignment. For this simple constraint language it is easy to compute least

solutions (it can be seen as a transitive closure problem) in O(n

3

) time, where

n is the number of variables.

1

2.1 Constraint abstractions

When subtyping is combined with polymorphism the need to compute substi-

tution instances of constraint terms arise. We will build this operation into our

constraint language through the means of constraint abstractions.

Constraint Abstraction Variables f; g; h

Constraint Abstractions F ::= f ~a =M

A constraint abstraction f ~a =M can be seen simply as a function which when

applied to some variables

~

b returnsM [~a :=

~

b]. Constraint abstractions are intro-

duced by a let-construct reminiscent of let-constructs in functional languages,

and are also called in the same way. The complete grammar of the extended

constraint language is as follows.

Atomic Constraints A ::= a � b

Constraint Terms M;N ::= A j > jM ^N j 9a:M j

let f

~

Fg inM j f ~a

Constraint Abstractions F ::= f ~a =M

We will write FV(M) for the free variables of M and FAV(M) for the free ab-

straction variables of M . We will identify constraint terms up to �-equivalence,

that is the renaming of bound variables and bound abstraction variables. In

letf

~

FginM the constraint abstraction variables de�ned by

~

F are bound both

in M and in the bodies of

~

F so our lets are mutually recursive. Consequently

the variables de�ned by

~

F must be distinct. We will use � to range over sets

of constraint abstractions where the de�ned variables are distinct, and we will

denote the addition of a group of distinct constraint abstractions

~

F to � by

juxtaposition: �f

~

Fg. We will say that a group of constraint abstractions

~

F is

garbage in let �f

~

Fg inM if we can remove the abstractions without causing

bound abstraction variables to become free. Recursive constraint abstractions

goes beyond just expressing a delayed substitution instantiation. It also al-

lows us to express a �xed-point calculation in a very convenient way. We will

1

For a lattice where binary least upper bounds can be computed in constant time (for

example a two point lattice) the least solution can be computed in O(n

2

) time.

274

make use of this in the ow analysis in appendix A to express ow-polymorphic

recursion.

To give a semantics to the extended constraint language we need to de�ne

the notion of a model of a constraint term in the context of a set of constraint

abstractions �.

De�nition 2.2

In a lattice L, with a bottom element and with the ordering v, we de�ne �; � j=

M coinductively by the following rules (we follow the notational convention of

Cousot and Cousot [CC92] to mark the rules with a \�" to indicate that it is a

coinductive de�nition).

�

�; � j= a � b

�(a) v �(b) �

�; � j=M �; � j= N

�; � j=M ^N

�

�; � j= >

�

�[a := d]; � j=M

�; � j= 9a:M

d 2 L

a 62 FV(�)

�

�; �f

~

Fg j=M

�; � j= let f

~

Fg inM

�

�; �ff ~a =Mg j=M [~a :=

~

b]

�; �ff ~a =Mg j= f

~

b

The de�nition needs to be coinductive to cope with recursive constraint ab-

stractions. The coinductive de�nition expresses the intuitive concept that such

constraint abstractions should be \unfolded in�nitely". When it is not clear

from the context we will write �; � j=

L

M to make explicit which lattice we

consider. We will say that N is a consequence of M , written M j= N , i� for

every L, �, �, if �; � j=

L

M then �; � j=

L

N . We will write M , N i� M j= N

and N j=M .

In de�nitions throughout this paper we will �nd it convenient to work with

constraint term contexts. A constraint term context is simply a constraint term

with a \hole" analogous to term contexts used extensively in operational se-

mantics.

Constraint Term Contexts C ::= [�] j C ^M jM ^ C j 9a:C j

let � inC j let �ff ~a = Cg inM

We will write C[M] to denote the �lling of the hole in C with M . Hole �lling

may capture variables. We will write CV(C) for the variables that may be

captured when �lling the hole. We will say that the hole in C is live if the hole

does not occur in a constraint abstraction which is garbage. Our �rst use of

constraint term contexts is in the de�nition of the free live atomic constraints

of a constraint term.

De�nition 2.3

The set of free live atomic constraints of a constraint termM , denoted LIVE(M),

is de�ned as follows.

LIVE(M) = fA jM � C[A];FV(A) \ CV(C) = ; and the hole in C is live.g

275

We will use LIVE(M) in de�nitions where we need to refer to the atomic sub-

terms of M but want to exclude those which occur in constraint abstractions

which are garbage and thus never will be \called" by the models relation. Note

that all syntactically live constraint abstractions are semantically live since they

are all \called" by the models relation.

Another use of constraint term contexts is in the statement of the following

unwinding lemma.

Lemma 2.4

If FV(M) \ CV(C) = ; then

let �ff ~a =Mg in C[f

~

b], let �ff ~a =Mg in C[M [~a :=

~

b]]

This lemma is necessary, and is the only di�culty, when proving the subject

reduction property of the usage analysis in [GS00] and the ow analysis in ap-

pendix A. The premise FV(M)\CV(C) = ; is there to ensure that no inadver-

tent name capture takes place and it can always be ful�lled by an �-conversion.

In the remainder of this paper we will leave this condition on unwindings im-

plicit.

3 Solving Constraints

As we discussed in the previous section we are interested in �nding the least

model of a constraint term given a �xed assignment of some of the variables.

In this section we will present an algorithm for this purpose for our constraint

language. The algorithm is based on a rewrite system which rewrites constraint

terms to equivalent but more informative ones. Every rewrite step adds an

atomic constraint to the constraint term and the idea is that when the rules

have been applied exhaustively then enough information is explicit in the term

so that the models can be constructed easily.

De�nition 3.1

We de�ne the rewrite relation ! as the compatible closure of the relation 7!

de�ned by the clauses in �gure 1.

Here we provide some explanation of the rewrite rules. The �rst rule,

1. if a � b; b � c 2 LIVE(M) then

9b:M 7! 9b:M ^ a � c

is a simple transitivity rule. If a � b and b � c are free live atomic subterms

of M we may simply add the constraint a � c. Note that the rule requires a

and c to be in scope at the binding occurrence of b. As a result we cannot, for

example, perform the rewrite

9a:9b:(a � b) ^ (9c:b � c) ! 9a:9b:(a � b) ^ (9c:b � c ^ a � c)

276

1. if a � b; b � c 2 LIVE(M) then

9b:M 7! 9b:M ^ a � c

2. if A 2 LIVE(M), and, for some i, a

i

2 FV(A) then

let �ff ~a =Mg

inC[f

~

b]

7! let �ff ~a =Mg

inC[f

~

b ^ A[~a :=

~

b]]

3. if A 2 LIVE(C[f

~

b]), and, for some i, a

i

2 FV(A) then

let �ff ~a = C[f

~

b]g

inM

7! let �ff ~a = C[f

~

b ^ A[~a :=

~

b]]g

inM

4. if A 2 LIVE(M), and for some i, a

i

2 FV(A) then

let �ff ~a =Mgfg ~c = C[f

~

b]g

inM

7!

let �ff ~a =Mgfg ~c = C[f

~

b ^A[~a :=

~

b]]g

inM

Figure 1: Rewrite rules

which adds a � c although it would make perfect sense. The reason is simply

that at the binding occurrence of b, c is not in scope. The purpose of the

restriction on the transitivity rule is an important one. It reduces the number

of rewrite steps due to transitivity by taking advantage of scoping information.

The second rule

2. if A 2 LIVE(M), and, for some i, a

i

2 FV(A) then

let �ff ~a =Mg

inC[f

~

b]

7! let �ff ~a =Mg

inC[f

~

b ^ A[~a :=

~

b]]

allows us to unwind an atomic constraint. Note that at least one of the variables

in A must be bound by the abstraction. The restriction is there to prevent

rewrite steps which would not be useful anyway. The two last rules are similar

to the second rule but deal with unwinding in mutually recursive constraint

abstractions. A key property of the rewrite rules is that they lead to equivalent

constraint terms.

Lemma 3.2

If M 7! N then M , N

277

The property is easy to argue for the transitivity rule. For the second rule

it follows from the unwinding property (Lemma 2.4). The two last rules rely

on similar unwinding properties for unwinding in mutually recursive constraint

abstractions.

3.1 Normal forms

Intuitively a constraint term is in normal form when the rules in �gure 1 have

been applied exhaustively. But nothing stops us from performing rewrite steps

which just add new copies of atomic constraints which are already in the con-

straint term. We can of course do this an arbitrary number of times creating

a sequence of terms which are di�erent but \essentially the same". To capture

this notion of essentially the same we de�ne a congruence which equates terms

which are equal up to copies of atomic constraints.

De�nition 3.3

We de�ne � as the reexive, transitive, symmetric and compatible closure of

the following clauses.

(i) A ^ A � A (ii) M ^ > �M (iii) > ^M �M

(iv) if FV(A) \ CV(C) = ; and the hole in C is live then C[A] � C[>] ^ A

Rewriting commutes with � so we can naturally extend! to equivalence classes

of �. With the help of � we can de�ne the notion of a productive rewrite step

M ; N which is a rewrite step which adds a new atomic constraint.

De�nition 3.4

M ; N i� M ! N and M 6� N .

Finally we arrive at our de�nition of normal form up to productive rewrite

steps.

De�nition 3.5

M is in normal form i� M 6;.

The main technical theorem in this paper is that when a constraint term with

no free constraint abstraction variables is in normal form then the models of the

constraint term are exactly characterised by the free live atomic constraints of

the constraint term.

Theorem 3.6

If M is in normal form and FAV(M) = ; then �; ; j=M i� � j= LIVE(M)

Given a constraint term M and a �xed assignment of some of the variables we

can �nd its least model as follows. First we �nd an equivalent constraint term N

278

in normal form. Then we extract the free live atomic constraints of the normal

form which exactly characterises the models of N and M . Since LIVE(N) is

just a set of atomic constraints we can then proceed with any standard method,

such as computing the transitive closure. The proof of Theorem 3.6 can be

found in appendix B. The key component of the proof is the application of two

key properties of unwindings of normal forms. The �rst property is that normal

forms are preserved by unwindings.

Lemma 3.7

If let �ff ~a =Mg inC[f

~

b] is in normal form then the unwinding let �ff ~a =

Mg inC[M [~a :=

~

b]] is in normal form.

The lemma guarantees normal forms of arbitrary unwindings of a normal form

which we need because of the coinductive de�nition of �; � j= M . The second

property is that unwinding of a normal form does not change the free live atomic

constraints of the constraint term.

Lemma 3.8

If let �ff ~a =Mg inC[f

~

b] is in normal form then

LIVE(let �ff ~a =Mg in C[f

~

b]) = LIVE(let �ff ~a =Mg inC[M [~a :=

~

b]])

3.2 Computing Normal Forms

Given a constraint term M , we need to compute an equivalent term in normal

form. Our algorithm relies on a representation of equivalence classes of terms

with respect to � and computes sequences of the form

M

0

;M

1

;M

2

; : : : :

The termination of the algorithm is ensured by the following result.

Lemma 3.9

There is no in�nite sequence of the form given above.

Proof 3.10 (Sketch)

Let n be the number of variables (free and bound) inM

0

. Note that the number

of variables remain constant in each step. Thus the number of unique atomic

constraints that can be added to M is bounded by n

2

. Since every productive

rewrite step introduces a new atomic constraint the number of steps is bounded

by n

2

.

When given a constraint term as input, our algorithm �rst marks all atomic

constraints. These marked constraints can be thought of as a work list of atomic

constraints to consider. The algorithm then unmarks the constraints one by one

and performs all productive rewrite steps which only involve atomic constraints

279

which are not marked. The new atomic constraints which are produced by a

rewrite step are initially marked. The algorithm maintains the following in-

variant: the term obtained by replacing the marked terms with > is in normal

form. The algorithm terminates with a normal form when no atomic constraints

remain marked. The pseudo code for this algorithm is given below.

Algorithm 3.11

1. Mark all atomic constraints.

2. If there are no remaining marked constraints then stop otherwise pick a

marked atomic constraint and unmark it.

3. Find all productive redexes which involve the unmarked constraint and

perform the corresponding rewrite steps. Let the added atomic constraints

be marked.

4. Go to step 2.

3.3 Data Structures

The e�ciency of the algorithm relies on maintaining certain data structures.

In step 3 of the algorithm we use data structures such that we can solve the

following two problems:

1. �nd all redexes we need to consider in time proportional to the number of

such, and

2. decide in constant time whether a redex is productive.

We can solve the �rst problem if we maintain, for every existentially bound

variable b,

� a list of all a in scope at the point where b is bound, such that a � b is an

unmarked atomic constraint in the term.

� a list of all c in scope at the point where b is bound, such that b � c is an

unmarked atomic constraint in the term.

With this information we can easily list all transitivity-redexes we need to con-

sider in step 3, in time proportional to the number of redexes. When we unmark

a constraint we can update the data structure in constant time.

For the second problem, to decide in constant time whether a redex is pro-

ductive, we need to decide, in constant time, whether the atomic constraint to

be added already exists in the term. We can achieve this by a n times n bit-

matrix where n is the number of variables (free and bound) in the constraint

term. If a � b is in the term then the entry in the matrix for (a; b) is 1 and

0 otherwise. This is su�cient for the complexity argument in the next section

but in practice we use a re�ned data structure which we describe in section 3.5.

280

3.4 Complexity

The cost of the algorithm is dominated by the operations performed by step 3,

which searches for productive redexes. The cost is proportional to the number of

redexes (productive or non-productive) considered and each redex in the �nal

normal form is considered exactly once in step 3. Thus the cost of step 3 is

proportional to the number of redexes in the �nal normal form. An analysis of

the maximum number of redexes gives the following.

� The maximum number of transitivity-redexes is, for each existentially

quanti�ed variable a, the square of the number of variables in scope at

the point where a is bound.

� The maximum number of unwind-redexes is, for each variable a bound in

a constraint abstraction f , two times the number of variables in scope at

the point where a is bound times the number of calls to f .

A consequence of this analysis is the complexity result we are about to state.

Let the skeleton of a constraint term be the term where all occurrences of atomic

constraints, and the trivially true constraint have been removed. What remains

are the binding occurrences of variables and all calls to constraint abstractions.

Now, for a constraint term M , let n be the size of the skeleton of M plus the

number of free variables ofM . The complexity of the algorithm can be expressed

in terms of n as follows.

Theorem 3.12

The normal form can be computed O(n

3

) time.

3.5 Re�ned Data Structure

The cost of initialising the bit-matrix described in section 3.3 is dominated by

the cost of step 3 in the algorithm but we believe that in practice the cost of

initialising the matrix may be signi�cant. Also the amount of memory required

for the matrix is quite substantial and many entries in the matrix would be

redundant since the corresponding variables have no overlapping scope. Below

we sketch a re�ned approach based on this observation which we believe will

be important in practice. We associate a natural number, index(a), with every

variable a. We assign the natural number as follows. First we choose an arbi-

trary order for all the free variables and bind them existentially, in this order,

at top level. Then we assign to each variable the lexical binding level of the

variable. For example, in 9a:(9b:M) ^ (9c:N) we assign 0 to a, 1 to b and c,

and so on. Note that the number we assign to each variable is unique within

the scope of the variable. Given this we have the following data structures. For

every variable b,

� a set of all a such that index(a) � index(b) and a � b is an atomic

constraint (marked or unmarked) in the term.

281

� a set of all c such that index(c) � index(b) and b � c is an atomic constraint

(marked or unmarked) in the term.

The sets have, due to scoping, the property that, for any two distinct elements

a and b, index(a) is distinct from index(b). Thus the sets can be represented

by bit-arrays, indexed by index(a) so that set membership can be decided in

constant time. Now, to decide whether an atomic constraint a � b is in the

constraint becomes just set membership in the appropriate set.

4 Related Work

The motivation for this paper is to reduce the cost of the combination of sub-

typing and polymorphism and in this respect it is related to numerous papers

on constraint simpli�cation techniques

[FM89, Cur90, Kae92, Smi94, EST95, Pot96, TS96, FA96, AWP97, Reh97,

FF97]. Our work is particularly related to the work by Dussart, Henglein

and Mossin on binding-time analysis with binding-time-polymorphic recursion

[DHM95] where they use constraint simpli�cation techniques in combination

with a clever �xed-point iteration to obtain a polynomial time algorithm. In

his thesis Mossin applied these ideas to show that a ow analysis with ow-

polymorphic recursion can be implemented in polynomial time [Mos97]. Our

ow analysis in appendix A, that we give as an example of how constraint ab-

stractions can be used, is based on this ow analysis. A consequence of the

complexity of our constraint solving algorithm is that the analysis can be im-

plemented in O(n

3

) time where n is the size of the explicitly type program.

This is a substantial improvement over the algorithm by Mossin which is O(n

8

)

2

[Mos97].

To represent instantiation in the constraint language is not a new idea. It

goes back at least to Henglein's work on type-polymorphic recursion [Hen93]

where he uses semiuni�cation constraints to represent instantiation. Although

constraint abstractions and semiuni�cation constraints may have similar appli-

cations they are inherently di�erent: Semiuni�cation constraints are inequality

constraints of the form A � B which constrains the (type) term B to be an

instance of A by an unknown substitution. In contrast, a call to a constraint

abstraction denotes a given instance of the constraints in the body of the ab-

straction.

Closely related to our work is the recent work by Rehof and F�ahndrich [RF01]

where they also give an O(n

3

) algorithm for Mossin's ow analysis. The key idea

in their and our work is the same { to represent substitution instantiation in

the constraints by extending the constraint language. However, the means are

2

In his thesis Mossin states that he believes that the given algorithm can be improved. In

fact an early version of [DHM95] contained a O(n

3

) algorithm for binding-time analysis but it

was removed from the �nal version since its correctness turned out to be non-trivial (personal

communication with Fritz Henglein).

282

not the same. Where we use constraint abstractions they use instantiation con-

straints, a form of inequality constraints similar to semiuni�cation constraints

but labelled with an instantiation site and a polarity. They compute the ow

information from the constraints through an algorithm for Context-Free Lan-

guage (CFL) reachability [Rep97, MR00]. A key di�erence between constraint

abstractions and instantiation constraints is that constraint abstractions o�er

more structure and a notion of local scope whilst in the work by Rehof and

F�ahndrich all variables scope over the entire set of constraints. Our algorithm

takes advantage of the scoping in an essential way. Firstly, we do not add any

edges between variables that have no common scope and secondly the scoping

comes into the restriction of our transitivity rule and the unwind rules. Al-

though the scoping does not improve the asymptotic complexity in terms of the

size of the explicitly typed program it shows up in the more �ne-grained com-

plexity argument leading to the cubic bound (see section 3.4) and it is essential

for the re�ned data structures we sketch in section 3.5. Constraint abstractions

also o�er a more subjective advantage { the additional structure of constraint

abstractions enforces many useful properties. As a result we think it will be

easy to use constraint abstractions in a wide range of type based analyses and

we think that constraint abstractions will not lead to any additional di�culties

when establishing the soundness of the analyses.

We have previously used constraint abstraction to formulate usage-poly-

morphic usage analyses with usage subtyping [Sve00, GS00] and an algorithm

closely related to the one in this paper is presented in the second authors masters

thesis [Sve00] ([GS00] focuses on the usage type system and no constraint solving

is presented).

5 Conclusions and Future Work

In this paper we have shown how a constraint language with simple inequality

constraints over a lattice can be extended with constraint abstractions which

allow the constraints to compactly express substitution instantiation. The main

result of this paper is a constraint solving algorithm which computes least so-

lutions to the extended form of constraints in cubic time. In [GS00] we have

used this expressive constraint language to formulate a usage-polymorphic us-

age analyses with usage subtyping and usage-polymorphic recursion and in an

appendix to this paper we demonstrate how the extended constraint language

can be used to yield a cubic algorithm for Mossin's polymorphic ow analysis

with ow subtyping and ow polymorphic recursion [Mos97]. We believe that

our approach can be applied to a number of other type based program analyses

such as binding time analyses, e.g., [DHM95], points-to-analyses, e.g., [FFA00]

and uniqueness type systems [BS96].

An interesting possibility for future work is to explore alternative constraint

solving algorithms. The current algorithm has a rather compositional character

283

in that, it rewrites the body of a constraint abstraction without considering how

it is called. In [Sve00] we describe an algorithm where the di�erent calls to a

constraint abstraction lead to rewrites inside the abstraction. The algorithm

can in this way take advantage of global information (it can be thought of as a

form of caching) which yields a interesting �ner grained complexity characterisa-

tion. The algorithm in [Sve00] is however restricted to non-recursive constraint

abstractions and it is not clear whether the algorithm can be extended to recur-

sive constraint abstractions (although we believe so). Another opportunity for

future work is to investigate whether constraint abstractions can be a useful ex-

tension for other underlying constraint languages. Constraint abstraction could

also possibly be made more powerful by allowing constraint abstractions to be

passed as parameters to constraint abstractions (i.e., making them higher or-

der). Finally a practical comparison with Mossin's algorithm and the algorithm

by Rehof and F�ahndrich remains to be done. The outcome of such a comparison

is not clear to us.

Acknowledgements. We would like to thank our supervisor David Sands for

his support and the anonymous referees for their useful comments.

References

[AWP97] A. Aiken, E. Wimmers, and J. Palsberg. Optimal representation of

polymorphic types with subtyping. In Proceedings TACS'97 Theo-

retical Aspects of Computer Software, pages 47{77. Springer Lecture

Notes in Computer Science, vol. 1281, September 1997.

[BS96] E. Barendsen and S. Smetsers. Uniqueness Typing for Functional

Languages with Graph Rewriting Semantics. Mathematical Struc-

tures in Computer Science, 6:579{612, 1996.

[CC92] P. Cousot and R. Cousot. Inductive de�nitions, semantics and ab-

stract interpretation. In Conference Record of the Ninthteenth Annual

ACM SIGPLAN-SIGACT Symposium on Principles of Programming

Languages, pages 83{94, Albuquerque, New Mexico, January 1992.

ACM Press, New York, NY.

[Cur90] P. Curtis. Constrained quali�cation in polymorphic type analysis.

Technical Report CSL-09-1, Xerox Parc, February 1990.

[DHM95] D. Dussart, F. Henglein, and C. Mossin. Polymorphic recursion and

subtype quali�cations: Polymorphic binding-time analysis in polyno-

mial time. In proceedings of 2nd Static Analysis Symposium, Septem-

ber 1995.

[EST95] J. Eifrig, S. Smith, and V. Trifonov. Sound polymorphic type infer-

ence for objects. In Proceedings OOPSLA'95, 1995.

284

[FA96] M. F�andrich and A. Aiken. Making set-constraint program analyses

scale. In Workshop on Set Constraints, 1996.

[Fax95] Karl-Filip Fax�en. Optimizing lazy functional programs using ow

inference. In Proc. of SAS'95, pages 136{153. Springer-Verlag, LNCS

983, September 1995.

[FF97] C. Flanagan and M. Felleisen. Componential set-based analysis. In

Proceedings of the ACM SIGPLAN'97 Conference on Programming

Language Design and Implementation. ACM, June 1997.

[FFA00] J. Foster, M. F�andrich, and A. Aiken. Polymorphic versus Monomor-

phic Flow-insensitive Points-to Analysis for C. In Proceedings of 2000

Static Analysis Symposium, June 2000.

[FM89] Y. Fuh and P. Mishra. Polymorphic subtype inference: Closing the

theory-practice gap. In Proceedings of Int'l J't Conf. on Theory and

Practice of Software Development, pages 167{183. Springer-Verlag,

March 1989.

[GS00] J. Gustavsson and J. Svenningsson. A usage analysis with bounded

usage polymorphism and subtyping. In Proceedings of the 12th In-

ternational Workshop on Implementation of Functional Languages,

pages 140{157. Springer-Verlag, LNCS 2011, September 2000.

[Hen93] Fritz Henglein. Type inference with polymorphic recursion. ACM

Transactions on Programming Languages and Systems, 15(2):253{

289, April 1993.

[Kae92] Stefan Kaes. Type inference in the presence of overloading, subtyping

and recursive types. In 1992 ACM conference on LISP and Func-

tional Programming, pages 193{204, San Francisco, CA, 1992. ACM

Press.

[Mos97] C. Mossin. Flow Analysis of Typed Higher-Order Programs (Revised

Version). PhD thesis, University of Copenhagen, Denmark, August

1997.

[MR00] David Melski and Thomas Reps. Interconvertibility of a class of

set constraints and context-free language reachability. Theoretical

Computer Science, 248, November 2000.

[Pot96] F. Pottier. Simplifying subtyping constraints. In Proceedings

ICFP'97, International Conference on Functional Programming,

pages 122{133. ACM Press, May 1996.

[Reh97] J. Rehof. Minimal typings in atomic subtyping. In Proceedings

POPL'97, 24th ACM SIGPLAN-SIGACT Symposium on Principles

285

of Programming Languages, pages 278{291, Paris, France, January

1997. ACM.

[Rep97] T. Reps. Program analysis via graph reachability. In Proc. of ILPS

'97, pages 5{19. Springer-Verlag, October 1997.

[RF01] Jakob Rehof and Manuel F�andrich. Type-Based Flow Analysis: From

Polymorphic Subtyping to CFL-Reachability. In Proceedings of 2001

Symposium on Principles of Programming Languages, 2001.

[Smi94] G. S. Smith. Principal type schemes for functional programs with

overloading and subtyping. Science of Computer Programming,

23:197{226, 1994.

[Sve00] Josef Svenningsson. An e�cient algorithm for a sharing analysis with

polymorphism and subtyping. Masters thesis, June 2000.

[TS96] V. Trifonov and S. Smith. Subtyping constrained types. In Proceed-

ings SAS'96, Static Analysis Symposium, pages 349{365, Aachen,

Germany, 1996. Springer Verlag.

[TWM95] D. N. Turner, P. Wadler, and C. Mossin. Once upon a type. In Proc.

of FPCA, La Jolla, 1995.

A Flow Analysis

In this appendix we illustrate how constraint abstractions can be used in prac-

tice. As an example, we briey present a ow-polymorphic type based ow

analysis with ow-polymorphic recursion. For another example see [GS00] where

constraint abstractions are used in usage analysis. The ow analysis is based

on the ow analysis by Mossin [Mos97] but we use our extended constraint

language with constraint abstractions. A similar analysis, but without poly-

morphic recursion, is given by Fax�en [Fax95]. For simplicity we restrict ourself

to a simply typed functional language. To extend the analysis to a language

with a Hindley-Milner style type system is not di�cult. See for example [Fax95].

A key result is that the analysis can be implemented in O(n

3

) time where n is

the size of the explicitly typed program which is a substantial improvement over

the algorithm by Mossin which is O(n

8

) [Mos97].

The aim of ow analysis is to statically compute an approximation to the

ow of values during the execution of a program. To be able to pose ow

questions we will label subexpressions with unique ow variables. We will label

expressions in two distinct ways, as a source of ow or as a target of ow. We

will use e

a

as our notation for labelling e (with ow variable a) as a source of ow

and e

a

as our notation for labelling e as a target of ow. If we are interested in

the ow of values from producers to consumers then we label all program points

where values are created as sources of ow, we label the points where values are

286

destructed as targets of ow, and we leave all other subexpressions unlabelled.

In the example below we have labelled all values as sources with ow variables

a

0

through a

4

and we have labelled the arguments to plus as targets with a

5

and a

6

. We have not labelled the others consumers (the applications) to keep

the example less cluttered.

let apply = (�f:(�y:f y)

a

0

)

a

1

in let id = (�x:x)

a

2

in (apply id 5

a

3

)

a

5

+ (apply id 7

a

4

)

a

6

We may now ask the question \which values may show up as arguments to

plus?". Our ow analysis will give the answer that the value labelled with a

3

(5) may ow to a

5

(the �rst argument) and a

4

(7) may ow to a

6

(the second

argument). In this example the ow polymorphic types that we assign to id

and apply plays a crucial role. A monomorphic system would conservatively say

that both values could ow to both places. For some applications we might be

interested in, not only the ow from producers to consumers, but also the ow

to points on the way from a consumer to a producer. In our example we might

be interested in the ow to x in the body of id. We then add a target label on

x as in

let apply = (�f:(�y:f y)

a

0

)

a

1

in let id = (�x:x

a

7

)

a

2

in (apply id 5

a

3

)

a

5

+ (apply id 7

a

4

)

a

6

and then ask for the ow to a

7

. Our analysis would answer with a

3

and a

4

. An

important property of the analysis is that the type of id remains polymorphic

even though we tap o� the ow passing through x. Thus our type system

corresponds to the sticky interpretation of a type derivation in [Mos97]. The

key to this property is to distinguish between source labels and target labels. If

the label on x would serve as both a source and a target label the ow through

id would be monomorphic.

3

The language we consider is a lambda calculus extended with recursive let-

expressions, integers, lists and case-expressions. The grammar of the language

is as follows.

Variables x; y; z

Flow Variables a

Expressions e ::= �x:e j n j nil j cons e

0

e

1

j x j e

0

+ e

1

j e

0

e

1

j

let f

~

bg in e j case e of alts j e

a

j e

a

Bindings b ::= x = e

Alternatives alts ::= fnil) e

0

; cons x y) e

1

g

The language is simply typed and for our complexity result we assume that

the terms are explicitly typed by having type annotations attached to every

3

We can achieve this degrading e�ect by annotating x both as a source and as a target but

using the same ow variable, i.e., as x

a

7

a

7

.

287

> ` Int � Int

M ` � � �

0

M ^ (a � a

0

) ` (List �)

a

� (List �

0

)

a

0

M ` �

0

0

� �

0

N ` �

1

� �

0

1

M ^N ` �

0

! �

1

� �

0

0

! �

0

1

M ` �

0

� �

1

M ^ (a � a

0

) ` �

a

0

� �

a

0

1

Figure 2: Subtyping rules

subterm. For our ow analysis we label the types of the underlying type system

with ow variables.

Flow Types � ::= Int

a

j (� ! �

0

)

a

j (List �)

a

We will let � range over ow types without the outermost annotation. The

subtype entailment relation which take the form M ` �

0

� �

1

is de�ned in

Figure 2. Recall that M ranges over constraint terms as de�ned in Section 2.1.

We read M ` �

0

� �

1

as \from the constraint term M it can be derived that

�

0

� �

1

". We will let � range over type schemas.

Type Schemas � ::= 8~a: f ~a) �

Since the underlying type system is monomorphic type schemas will only quan-

tify over ow variables. A type schema contains a call f ~a to a constraint

abstraction which may constrain the quanti�ed variables. We will let � and �

range over typing contexts which associates variables with types or type schemas

depending on whether it is a let-bound variable or not. We will use juxtaposition

as our notation for combining typing contexts. Our typing judgements take the

form �;M ` e : � for terms, �;F ` b : (x : �) for bindings and �; � ` f

~

bg : �

for groups of bindings. (Recall that F ranges over constraint abstractions and

that � ranges over sets of constraint abstractions.) The typing rules of the anal-

ysis can be seen in Figure 3 and 4. The key di�erence to the type system

in [Mos97] is in the rule Binding where generalisation takes place. Instead of

putting the constraint term used to type the body of the binding into the type

schema the constraint term is inserted into a new constraint abstraction and a

call to this abstraction is included in the type schema.

To compute the ow in a program we can proceed as follows. First we com-

pute a principal typing of the program which includes a constraint term where

the free variables are the ow variables labelling the program. We then apply

the algorithm from Section 3 and extract a set of atomic constraints which we

can view as a graph. If there is a path from a

0

to a

1

then a

0

may ow to

a

1

. The typing rules as presented here are not syntax directed and cannot di-

rectly be interpreted as describing an algorithm for computing principal typings.

288

Abs

�fx : �g;M ` e : �

0

�;M ` �x:e : (� ! �

0

)

a

Int

�;> ` n : Int

a

Nil

�;> ` nil : (List �)

a

Cons

�;M ` e

0

: � �;N ` e

1

: (List �)

a

�;M ^N ` cons e

0

e

1

: (List �)

a

Var-�

�fx : 8~a:f ~a) �g; f

~

b ` x : � [~a :=

~

b]

Var-�

�fx : �g;> ` x : �

Plus

�;M ` e

0

: Int

a

0

�;N ` e

1

: Int

a

1

�;M ^N ` e

0

+ e

1

: Int

a

App

�;M ` e

0

: (� ! �

0

)

a

�;N ` e

1

: �

�;M ^N ` e

0

e

1

: �

0

Let

��;� ` f

~

bg : � ��;M ` e : �

�; let � inM ` let f

~

bg in e : �

Case

�;M ` e : � �;N ` alts : �) �

0

�;M ^N ` case e of alts : �

0

Alts

�;M ` e

0

: �

0

�fx : �; y : (List �)

a

g;N ` e

1

: �

0

�;M ^N ` fnil) e

0

; cons x y) e

1

g : (List �)

a

) �

0

Source

�;M ` e : �

a

�;M ^ (a � c) ^ (b � c) ` e

b

: �

c

Target

�;M ` e : �

a

�;M ^ (a � c) ^ (a � b) ` e

b

: �

c

Sub

�;M ` e : �

�;M ^N ` e : �

0

N ` � � �

0

Exist-intro

�;M ` e : �

�; 9~a:M ` e : �

f~ag \ FV(�; e; �) = ;

Figure 3: Typing rules for a ow analysis

289

Binding group-;

�; ; ` ; : ;

Binding group

�; � ` f

~

bg : � �;F ` b : (x : �)

�; �fFg ` f

~

b; bg : (�; x : �)

Binding

�;M ` e : �

�; f ~a =M ` x = e : (x : 8~a:f ~a) �)

f~ag \ FV(�; f ~a =M; e) = ;

Figure 4: Typing rules for a ow analysis

Firstly, the subsumption rule (Sub) and the rule (Exist-intro) which introduces

existential quanti�cation in constraints can be applied everywhere in a typing

derivation. This problem is solved by the standard approach to incorporate

(Sub) and (Exists-intro) into an appropriate subset of the other rules to obtain

a syntax-directed set of rules. Secondly, in the rule (Let) an inference algorithm

would have to come up with an appropriate �. However, this only amounts

to coming up with fresh names: Clearly, � would have to contain one type

associations of the form x : � for each variable de�ned by the let-expression.

Recall that � is of the form 8~a:f ~a) � . We obtain � simply by annotating the

underlying type with fresh ow variables. Since they are fresh we will be able to

generalise over all of them so we can take ~a to be these variables in some order.

Finally we generate the fresh name f for the constraint abstraction. Note that

no �xed-point calculation is required which is possible because we have recur-

sive constraint abstractions. Now let us apply the algorithm to our example

program. We �rst compute the constraint term in the principal typing which

yields the following.

let f

apply

b

0

b

1

b

2

b

3

b

4

b

5

b

6

= 9c

0

:9c

1

:9c

2

:(b

3

� b

0

) ^ (b

1

� b

4

) ^ (b

2

� c

2

)^

(c

1

� b

5

) ^ (a

0

� b

5

) ^ (c

0

� b

6

) ^ (a

1

� b

6

)

in let f

id

b

0

b

1

b

2

= 9c

0

:9c

1

:(b

0

� c

1

) ^ (c

1

� b

1

) ^ (c

1

� a

7

)^

(c

0

� b

2

) ^ (a

2

� b

2

)

in 9c

0

: : : :9c

18

:(f

apply

c

0

c

1

c

2

c

3

c

4

c

5

c

6

) ^ (f

id

c

0

c

1

c

2

)^

(c

7

� c

3

) ^ (a

3

� c

3

) ^ (c

4

� c

8

) ^ (c

4

� a

5

)^

(f

apply

c

10

c

11

c

12

c

13

c

14

c

15

c

16

) ^ (f

id

c

10

c

11

c

12

)^

(c

17

� c

13

) ^ (a

3

� c

13

) ^ (c

14

� c

18

) ^ (c

14

� a

5

)

Then we apply the algorithm from Section 3 and extract the set of free live

atomic constraints which is fa

3

� a

5

; a

4

� a

6

; a

3

� a

7

; a

4

� a

7

g. The paths in

this constraint set (viewed as a graph) is the result of the analysis.

Finally, by inspecting the rules we can see that the size of the skeleton of

the constraint term required to type a program is proportional to the size of the

290

explicitly typed program and that the number of free variables is the number of

ow variables in the program. From this fact and theorem 3.12 we can conclude

that the complexity of the ow analysis is O(n

3

) where n is the size of the typed

program.

B Proof of Theorem 3.6

In this appendix we give a proof of Theorem 3.6. We �rst introduce a form of

constraint term contexts, reminiscent of evaluation contexts used in operational

semantics, where the hole may not occur under any binder.

Evaluation Contexts E ::= [�] jE ^M jM ^ E

Note that the hole in an evaluation context is always live. We have the following

properties for evaluation contexts which we state without proof.

Lemma B.1

1. let�inE[let�

0

inM] is in normal form i� let��

0

inE[M] is in normal

form.

2. LIVE(let � inE[let �

0

inM]) = LIVE(let ��

0

inE[M]):

3. If a 62 FV(�; E), and let�inE[9a:M] is in normal form then let�inE[M]

is in normal form.

The key to the proof of Theorem 3.6 is the following auxiliary relation.

De�nition B.2

We de�ne an auxiliary relation �; � �j=M as:

�; � �j=M i� there exists E such that

1. let � inE[M] is in normal form,

2. � j= LIVE(let � inE[M]),

3. FAV(let � inE[M]) = ;.

The technical core of the proof now shows up in the proof of the following

lemma.

Lemma B.3

if �; � �j=M then �; � j=M .

Before we proceed with the proof of this lemma we will use it to establish

Theorem 3.6.

291

Proof B.4 (Theorem 3.6)

Assume the premise. The right way implication (if �; ; j=M then � j= LIVE(M))

follows the fact that all syntactically live constraints are semantically live. To

show the left way implication (if � j= LIVE(M) then �; ; j= M) assume that

� j= LIVE(M) which immediately gives �; ; �j= M . Thus, by Lemma B.3,

�; ; j=M as required.

Finally we prove Lemma B.3.

Proof B.5 (Lemma B.3)

Recall that �; � j= M is de�ned coinductively by the rules in Figure 1. That

is, j= is de�ned as the largest �xed point of the functional F expressed by the

rules. By the coinduction principle we can show that �j= � j= if we can show

that �j=�F(�j=). Thus we assume that �; � �j=M and proceed by case analysis

on the structure of M .

case M � a � b: By the de�nition of �; � �j= a � b there exists E which ful�ls

the requirements in De�nition B.2. In particular, � j= LIVE(let� inE[a � b]).

Since E cannot capture variables and the hole in E is live we know that a �

b 2 LIVE(let � inE[M]) so �; � F(�j=) a � b:

case M � >: Trivial.

case M � K ^ L: To show that �; � F(�j=) K ^ L we need to show that

�; � �j= K and �; � �j= L. We will only show the former, the latter follows

symmetrically. By the de�nition of �; � �j= K ^ L there exists E which ful�ls

the requirements in De�nition B.2. Take E

0

to be E[[�] ^ L]. Then E

0

is a

witness of �; � �j= K.

case M � let�

0

inN : We may without loss of generality (due to properties of

�-conversion) assume that the constraint abstraction variables de�ned � and �

0

are disjoint. To show that �; � F(�j=) let�

0

inN we need to show that �; ��

0

�j=

N . By the de�nition of �; � �j= let �

0

inM there exists E which ful�ls the

requirements in De�nition B.2. Floating of let bindings preserves normal forms

(Lemma B.1) so we can oat out �

0

and obtain let��

0

inE[M] in normal form.

Also, by Lemma B.1, LIVE(let�inE[let�

0

inM]) = LIVE(let��

0

inE[M]):

Thus E is a witness of �; ��

0

�j=M .

case M � f

~

b: By the de�nition of �; � �j= f

~

b we know that f must bound by

�, i.e., � = �

0

ff ~a = Ng for some �

0

and some N . We are required to show that

�; �

0

ff ~a = Ng �j= N [~a :=

~

b]. From �; � �j= f

~

b we know that there exists E

which ful�ls the requirements in De�nition B.2. Normal forms are closed under

292

unwindings (Lemma 3.7) so let�

0

ff ~a = Ng inE[N [~a :=

~

b]] is in normal form.

Also, by Lemma 3.8,

LIVE(let �

0

ff ~a = Ng inE[f

~

b]) = LIVE(let �

0

ff ~a = Ng inE[N [~a :=

~

b]]):

Thus E is a witness of �; �

0

ff ~a = Ng �j= N [~a :=

~

b].

case M � 9a:N To show that �; � F(�j=) 9a:N we need to show that there

exists d 2 L such that �[a := d]; � �j= N . Let

d =

G

f�(a

0

) j a

0

6= a and a

0

� a 2 LIVE(N)g:

By the de�nition of �; � �j= 9a:N there exists E which ful�ls the requirements

in De�nition B.2. Without loss of generality (due to properties of �-conversion)

we can assume that a 62 FV(�; E). Since let � in E[9a:N] is in normal form,

and a 62 FV(�; E) we know, by Lemma B.1, that let � in E[N] is in normal

form. It remains to show that �[a := d] j= LIVE(let � in E[N]). Given

A 2 LIVE(let � inE[N]) we proceed by the following cases.

subcase A � a � a: Trivial.

subcase A � b � c where b 6= a and c 6= a:

In this case A 2 LIVE(let � inE[9a:N]) so � j= A and thus �[a := d] j= A.

subcase A � b � a where b 6= a : In this case A 2 LIVE(N) and thus

�[a := d] j= A by the construction of d.

subcase A � a � b and b 6= a: In this case a � b 2 LIVE(N). We will show

that �(b) is an upper bound of

f�(a

0

) j a

0

6= a and a

0

� a 2 LIVE(N)g

and, since d is de�ned as the least upper upper bound, �[a := d] j= a � b

follows. Now given any a

0

such that a

0

6= a and a

0

� a 2 LIVE(N). Since

a

0

� a 2 LIVE(N) and a � b 2 LIVE(N) we know that let � in E[9a:N] !

let�inE[9a:N ^a

0

� b] and since let�inE[9a:N] is in normal form we know

that

LIVE(let � inE[9a:N ^ a

0

� b]) = LIVE(let � inE[9a:N]):

Finally, since a

0

6= a it must be the case that a

0

� b 2 LIVE(let � inE[9a:N ^

a

0

� b]) and thus a

0

� b 2 LIVE(let � in E[9a:N]). Hence � j= a

0

� b so

�(a

0

) v �(b).

293

294

