
 

Department of Economics 
School of Business, Economics and Law at University of Gothenburg  
Vasagatan 1, PO Box 640, SE 405 30 Göteborg, Sweden  
+46 31 786 0000, +46 31 786 1326 (fax) 
www.handels.gu.se    info@handels.gu.se 

      
 
 
 

WORKING PAPERS IN ECONOMICS 
 

               No 543 
 

 
 
 
         

     From Boom to Bust and Back Again:  

       A dynamic analysis of IT        

          
         
        

       Florin G. Maican 
        
 
 
           
                     

                   
              
                   

                  September 2012 
                  
                
  
 

 
                    ISSN 1403-2473 (print) 

                     ISSN 1403-2465 (online) 



From Boom to Bust and Back Again: A Dynamic

Analysis of IT Services∗

Florin Maican†

Draft: September 12, 2012

Abstract

Aggregate shocks in demand such as the burst of the 2001 dot-com bubble affect
firms’ behavior and, therefore, the market structure. This paper proposes a fully
dynamic oligopoly model to evaluate the impact of aggregate demand shocks on
entry and exit costs as well as on investment and labor adjustment costs in IT
services. The empirical application builds on an eight year panel dataset that
includes every IT service firm in Sweden. The paper finds higher fixed investment
and labor adjustment costs for software but lower for operational services after
the dot-com bust. The entry costs for software were six times lower than for op-
erational services, which might explain the large number of entrants in software.
Entrants are found less productive than incumbents and net exit contributed the
most to productivity growth in the IT services after the dot-com bust. For policy
makers, the changes in cost structure give key information about industry dynam-
ics and its impact on high-skilled jobs.
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1 Introduction

Services have contributed about 80 percent of GDP growth since 1985 in developed

countries.1 The IT industry contributes significantly to increased productivity and

improved service quality in virtually all sectors of the economy (Jorgenson et al.,

2005, 2008). The biggest challenge is to understand the dynamics of this indus-

try where the well functioning of domestic markets become a key factor for overall

performance of an economy. The IT services are labor intensive and require skilled

workforce, quality of education and research funding to be globally competitive.

The access to skilled workforce at the right cost is a key factor in IT services.2

Little work, however, deals with the impact of aggregate shocks on firms’ produc-

tivity and cost structure in labor intensive business services such as IT services.3

Being affected differently by negative aggregate shocks in demand, such as the

2001 dot-com bust, firms change their behavior. Changes in firms’ behavior re-

garding adjustments in investment and labor affect the market structure dynamics.

Using a fully dynamic oligopoly model, this paper investigates the impact of the

2001 dot-com bust on costs of entry and exit, labor adjustment, and investment

in Swedish IT services – an industry characterized by substantial entry and exit.

The paper contributes to the previous literature by recovering both investment

and labor adjustment costs in an innovative service industry before and after an

aggregate negative demand shock. The changes in cost structure after a negative

demand shock are the result of the net effect that appears from two channels.

First, firms try to reduce the cost and focus on finding new markets (additional

demand). Second, firms can benefit from various governmental policies that aim

1International Labor Organization (http://www.ilo.org) and McKinsey Global Institute Anal-
ysis (http://www.mckinsey.com/mgi/)

2For example, countries with high IT services growth – such as India, Ireland and Israel –
have a pool of skilled engineers available at a globally competitive cost.

3Lerner and Schankerman (2010) survey the recent literature on open source and economic
development.
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to help them in difficulty, e.g., subsidies and labor market policies.4 Apart from

retail, there are few studies that look into the dynamics of the services industries

where it is important to allow for serially correlated differences among firms and

estimate adjustment costs. To my knowledge, this is also the first paper that ana-

lyzes productivity dynamics at the firm level in IT services and provides estimates

for demand elasticities and mark-ups for the IT services sub-sectors. The findings

give information about the cost differences across sub-sectors and size groups of

IT services firms that can be used, e.g., when subsidies are allocated for different

groups of firms in this industry. For policy makers, the changes in cost structure

give key information about industry dynamics and its impact on high-skilled jobs.

The setup costs contain information about investment behavior of IT firms.

IT markets confirm strong recovery after the 2001-2003 slowdown (Figure 1).5

The IT services industry, including software, has the highest contribution to total

IT growth (Figure 2), e.g., 5.8 percent for software and 5.3 percent for opera-

tional services, maintenance, and repair.6 IT services are considered sophisticated

because the products are often highly user-specific and non-standardized. The im-

pact of aggregate shocks and various policy choices in this industry affect growth

in the local geographical markets and market structure dynamics. Adjustments in

labor might be costly if IT firms have to invest in redesign or have to change their

service practices to suit new customers. The direct cost of hiring a new employee

is likely smaller than the cost involved in direct work with a new environment,

i.e., there is an unobserved cost when firms hire a new employee. For small tasks,

4I cannot separate these effects due to data constraints.
5While Western European IT markets were expected to grow at an annual average rate of 6.1

percent until 2008, the Central and East European markets were expected to grow by 13 percent
(EU ICT Task Force Report, 2006). Figure 1 presents the evolution of the Western European
ICT market growth from 1997 to 2007.

6EU market growth in this sector is principally driven only by computer services. The EU IT
market growth by segment in 2007 was as follows: software 5.8 percent, IT services 5.3 percent,
computer hardware 2.4 percent, telecommunications equipment 2.0 percent, and carrier services
1.6 percent. IT services are highly dynamic due to the outsourcing of IT functions. The security
of IT systems remains an important sector segment.

3



IT firms might hire external consultants and, therefore increase fixed labor costs.

Local demand is the main factor for growth in IT services.7 The IT services firms

are clustered around large cities that are characterized by dynamic labor markets.

Some IT services grow faster in some regions than in others, i.e., there are some

sources of exogenous variation (from local markets) in firms’ incentives to invest

in labor and capital. The Swedish IT services analyzed include all firms in soft-

ware, operational services, and maintenance and repair from 1996 to 2002. About

25 percent entered and 12-18 percent exited the market during the period. The

Swedish IT services market is representative of a majority of all IT markets in the

EU. The direct effect of the dot-com bust was a decrease in the labor productivity

dispersion, which was caused by an increase in the 25th percentile and a decrease

in the 75th percentile.8

The theoretical framework is based on the Markov Perfect Equilibrium (MPE)

framework of Ericson and Pakes (1995). Ericson and Pakes’ framework assumes

that firms make competitive investments that increase their productivity.9 IT

services is a competitive sector where firms aim to improve their performance by

increasing productivity and offering better quality or low-price goods and services,

i.e., expanding demand of their services. Since prices and other more detailed

product characteristics data on the IT services are not available in many datasets,

7For example, public defence spending has been an important source for expanding software
capabilities in U.S. and Israel. In Norway and Singapore, domestic firms are involved in e-
governmental solutions. Software research activities are financed through public innovation funds
and research grands in different countries, e.g., U.S., Sweden and South Korea. International
companies are an important source of IT services demand. The revenues from software increased
more that 3 times between 1995 and 2008 in Ireland. The Ireland’s Industrial Development
Authority set up a program to attract labor-intensive service businesses to Ireland in the 1980s.
Because of tax and financial incentives and educated workforce, multinational companies such
as IBM, Microsoft, Oracle, Corel, Symantec, EDS moved part of their operations to Ireland.

8There is also an increasing in competitive pressure as the effect of aggregate demand shocks.
Recent theoretical contributions discussing the effect of competitive pressure are Schmidt (1997),
Boone (2000), Raith (2003); whereas recent empirical contributions include Nickell (1996), Syver-
son (2004), Aw et al. (2003), Maican (2010), Aghion et al. (2009), and Kretschmer et al. (2012).

9Ackerberg et al. (2008) and Pakes (2008) review recent methodological developments in the
empirical literature of imperfectly competitive markets.
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an accurate estimation of the quality of firms’ services can not be obtained from

a demand model. Instead, this paper estimates firms’ productivity and assumes

that there is a direct link between productivity and quality, i.e., a highly produc-

tive firm offers high-quality services. Because perceptions of quality differ from

person to person and from software to software, it is difficult to define quality in

the software industry. When we are able to define quality for a software com-

ponent, quality varies with the environment and users (Jones and Bonsignour,

2011).10 Firm productivity is estimated using an extension of Olley and Pakes

(1996) framework suitable for service industries, i.e., it allows for lumpy invest-

ment and controls for unobserved prices and selection.11 Since labor is a key factor

for service quality in the IT industry, productivity is backed out from labor de-

mand (Doraszelski and Jaumandreu, 2009; Maican and Orth, 2009).

This paper uses a two-step procedure to recover the costs structure (Bajari

et al., 2007)-BBL. I assume that all relevant features of the IT services indus-

try are part of a state vector that includes firms’ perceived levels of productivity,

local market demographics, and private shocks to profits. Firms receive states

that depend on the payoffs in the product market. Firms’ actions are subject

to idiosyncratic shocks that are treated as private information, and they choose

strategies that maximize their discounted profits, given the expected strategies of

their rivals. The paper recovers both revenues and optimal policy functions for

investment and labor consistent with the underlying model. The theoretical model

is then used to simulate market outcomes with the cost structures before and after

the dot-com bust.12 I model fixed adjustment labor and capital costs to depend

10Jones and Bonsignour (2011) analyze the cost and economics of software quality and their
relationship to business value. They provide a detailed discussion regarding the challenges of
measuring quality in the software industry.

11Bartelsman and Doms (2000) and Syverson (2011) survey empirical work on productivity
changes using micro data.

12Understanding how different ways to obtain perturbed policy functions affect the market
structure plays a crucial role in simulations. For example, we might generate policies that imply
negative investments that make firms exit early.

5



on the likelihood to adjust positively or negatively, and this propensity for adjust-

ment depends on firms’ state variables (Ryan, 2012).13 This allows me to evaluate

the adjustment costs for each IT firm after the structural parameters are identified.

Recent empirical literature uses the BBL approach in a similar context (Beresteanu

and Ellickson, 2006; Gowrisankaran et al., 2010; Ryan, 2012; Ryan and Tucker,

2006; Sweeting, 2007).14 Goettler and Gordon (2012) use a dynamic oligopoly

model that endogenize innovation to analyze the impact of competition on inno-

vation in the personal computer microprocessor industry. Pakes et al. (2007a)

(POB), Aguirregabiria and Mira (2007), and Pesendorfer and Schmidt-Dengler

(2003) develop alternative extensions to the Hotz and Miller (1993) approach to

estimate dynamic games where actions have a discrete choice structure. Dunne

et al. (2009) use the basic POB framework (no differentiation) to study entry, exit

and the determinants for markets structure for two U.S. service industries, den-

tists and chiropractors. My model allows for differentiation and serially correlated

differences among firms and controls for selection.

By estimating firms’ productivity controlling for imperfect competition and lo-

cal market characteristics, productivity is the only serially correlated state variable

that helps for consistency in estimation of continuation values and policy functions

in case of fully dynamic models. Controlling for selection when estimating pro-

ductivity is important in the IT industry. The exit and entry in my data are based

on organizational number.15 There is a high likelihood of sell-offs of small firms

to large firms since small firms have been successful. IT services offer specialized

13Pakes et al. (2007b) and Pakes (2010) show how the inequalities generated by behavior
choice models can be used as a basis in estimation.

14Ryan (2012) evaluates the welfare costs of the 1990 Amendaments to the Clean Air Act on
the US Portland cement industry using a dynamic model of oligopoly in the tradition of Ericson
and Pakes (1995). Benkard (2004) examines the wide-body aircraft industry but does not recover
estimates of fixed costs. Gowrisankaran et al. (2010) evaluate the impact of the Medicare Rural
Hospital Flexibility (Flex) Program.

15A so-called organization number specifies the identity of a corporate body. The Swedish Tax
Authority (Skatteverket) has a register of all organization numbers used for tax reporting.
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product services, and improved use of novel IT tools can raise the average prices

and, therefore, increase revenues and productivity. However, since price variation

in IT services can also be due to local market power or other demand shocks, it is

important to control for demand when estimating productivity in this industry.

I find that the estimated elasticity of demand for the software industry is about

-4.6, i.e., a mark-up of 1.277. For grouped operational services and maintenance

firms, the estimated demand elasticity is about -5.96, yielding a mark-up of 1.52.

For software, the productivity growth was around 21 percent from 1997 to 2000,

but only about 6 percent from 1997 to 2002. After the 2001 dot-com bust, exit

firms contributed more to productivity growth (12 percent) than continuing firms

(7.5 percent). For operational services and maintenance, the productivity growth

was about 70 percent from 1997 to 2000 and about 32 percent from 1997 to 2002.

In the period 1997-2000, almost all productivity growth came from continuing

firms.16 However, exit firms contributed the most (50 percent) to productivity

growth from 1997 to 2002. This emphasizes the importance of the selection effect

in this industry. Entrants are found less productive than continuing firms.

On average, the impact of the 2001 dot-com bust on revenues was a decrease

of about 20 percent for software and operational services and of about 34 percent

for maintenance and repair. Furthermore, firms reduced the number of employees

by about 25 percent. After the dot-com bust, firms were more likely to exit in

all sub-sectors. I also find that foreign IT firms were more likely to exit. The

geographical location of owing firm has been found to be more important for pro-

ductivity growth than the location of IT firms (Bloom et al., 2012).17 For software

and operational services, I find that foreign IT firms have about 19 percent higher

16Jorgenson et al. (2005, 2008) find higher productivity growth in IT-producing industries
than in IT-using industries.

17They find that productivity from IT capital plays a key role in explaining higher productivity
of US-based multinationals operating in the EU compared to EU-based firms. This advantage
is explained by the evidence of complementarity between IT capital and human resources.
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revenues than domestic IT firms.

The impact of dot-com bust on investment and labor adjustment costs varies

significantly depending on firm productivity and firm size. Lower adoption and

smaller size IT investments in Europe are found to be responsible for the lower

productivity growth in Europe than in the US over 1990s (van Ark et al., 2008).

My findings suggest that fixed and variable adjustment costs are important de-

terminants of investment and labor decisions. In addition to the lack of demand,

they also explain the downturn in productivity after the dot-com bubble. When

there are fixed costs, a static evaluation ignores important economic penalties as-

sociated with the dot-com bust costs.

The paper finds that, after the burst of the 2001 dot-com bubble, there was

an increase in fixed (setup) investment costs for software but a decrease for op-

erational services and maintenance and repair firms. From 2000 to the end of

the studied period, there were higher fixed costs for positive labor adjustment for

software compared to 1996-1999 (about 4 times), lower for operational services

(about 4 times), and about the same for maintenance and repair. For negative

labor adjustment, the findings indicate higher fixed costs for software but lower

for operational services after the dot-com bust. I find that the entry costs for

software were six times lower than for operational services, which might explain

the large number of entrants in software. In addition, while firms in software and

operational services had higher scrap (sell-off) values after 2000, the maintenance

and repair firms had lower scrap values.

The paper is organized as follows. Section 2 gives a brief overview of the

Swedish IT services industry and relevant events over the last 10 years. It also

includes a discussion on the data sources. Section 3 presents the theoretical model

and Section 4 discusses the estimation details. The empirical results are presented

in Section 5, whereas Section 6 concludes the paper.
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2 Overview of the Swedish IT Services Industry

The Swedish IT industry is in better shape than it has been for many years. At the

beginning of 2006, IT stocks had a 52 percent 12-month growth rate. The Swedish

IT industry had 48 firms among Europe’s 500 fastest growers in Deloitte’s Tech-

nology European Fast 2006. In contrast to the late 1990s IT boom profit growth

continues to rise due to better business models and high demand.

Data. This paper draws on a census of the Swedish IT services industry, pro-

vided by Statistics Sweden, Financial Statistics(FS) and Regional Labor Statis-

tics (RAMS). The Swedish industrial classification code (SNI) for this industry is

72.18 The IT services industry includes the following subgroups: hardware con-

sultancy (code 7210); software consultancy (code 7220) - customized software and

packages software; data processing (code 7230); database activities (code 7240);

maintenance and repair of office, accounting and computing machinery and data

processing equipment (code 7250); and operational service activities (code 7260).

Because it is difficult to divide IT consultancy services for hardware and software,

I keep them in one group called software. In addition, there are few observations

for hardware consultancy. On the other hand, data processing, database activi-

ties, and other computer-related services can be grouped into operational service

activities.19 New firms have appeared while others have exited or merged. FS

contains information on firm input and output and RAMS contains information

on employee education and wages. The dataset covers the period 1996-2002. A

18The SNI standard builds on the Statistical Classification of Economic Activities in the
European Community (NACE).

19Statistics Sweden (SCB), a Swedish government office, also uses this grouping.
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unit of observation is a firm with one or many establishments.20 The computer

consultancy was affected by some major changes in the last few years of the pe-

riod. It is important to note that large firms can have many subsidiaries in the

same sector, although I cannot observe this in my data. Appendix A provides

additional information on the data and variable definitions.

According to the Swedish Business Statistics 1999, the Swedish industrial clas-

sification group 72 consists of 19,045 establishments (5,625 firms in my data) and

around 71,000 employees (Table 1). The total net turnover was SEK 83.3 billion

and value added was SEK 38.3 billion (values are 1996 SEK). Table 1 presents

characteristics of the Swedish IT services during 1996-2002. From 1996 to 2002

at the industry level, the number of firms grew by 60 percent, the industry value-

added by 100 percent, the number of employees by around 100 percent as well,

total wages by 147 percent, and investments by 99 percent. Most of the growth

occurred from 1996 to 2000. From 2000 to 2001 at the industry level, the number

of firms grew by 3 percent, value-added by 22 percent, wages by 15 percent, the

number of employees by 10 percent, and investments by 8 percent. However, the

burst of the 2001 dot-com bubble induced a negative growth of about 2 percent in

number of firms, about 8 percent in value-added, about 7 percent in total wages

and labor, and 10 percent in investment.

Software consultancy is the sub-sector with the largest share of firms, em-

ployees, turnover and value added in relation to the total value for each of these

variables, e.g., there are about 10 times more firms active in software than in op-

erational services (Panels B and C). Software has net entry over the study period

and the largest numbers of entrants (1,532) and exits (1,017) in 2000. Operational

services had net entry until the burst of the 2001 dot-com bubble. Maintenance

20In my data, I do not observe if a firm has establishments (offices) in different regions. If
they have, it is most likely that each establishment pays local taxes. Therefore, I assume that
each establishment is independent, i.e. it is treated as a separate firm. If there are several
establishments of the same firm in a local market, they might be reported as one establishment.

10



and repair is the smallest sub-sector – about 110 firms.

Table 2 shows the impact of the 2001 dot-com bust on the growth rates by

sub-sector between 2000-2001 and 2001-2002. The IT sub-sectors were affected

differently. Operational service firms were more affected between 2000-2001, e.g.,

the number of firms decreased by around 20 percent, sales by 27 percent, and

investments by 19 percent. Software firms were most affected from 2001 to 2002,

i.e., sales decreased by 18 percent and investments by 10 percent.

IT service firms are also found in the following sectors: retail trade in com-

puters; office machinery and equipment wholesale; and telecom products and elec-

tronic components wholesale. It is hard to specify the activities of these firms,

and foreign market is important for them. Therefore, they are not included in the

study.21 They represent 0.2 percent of the total number of companies and their

net turnover represents 41 percent of the total net turnover in the industry. Apart

from analyzing different sub-sectors, the paper also groups the firms into three

classes according to number of employees: (i) small – 0-19 employees; (ii) medium

– 20-99 employees; and (iii) large – over 100 employees.

In Sweden, IT services are concentrated to the three largest cities, i.e., Stock-

holm, Gothenburg, and Malmö. The Swedish government focuses on the IT sector

and pays close attention to firm entry and exit.22 Lundmark (1995) studies the

patterns of growth and location of computer services in Sweden. More specifically,

he analyzes location patterns of IT services in local markets. He emphasizes that

the market structure of Swedish IT services is characterized by a large degree of

local and regional sales, indicating the importance of proximity to customers. The

21However, the share of total turnover in the sectors that represents IT consultancy activities
cannot be determined from the survey or from Swedish Business Statistics in 1999.

22The Swedish Agency for Economic and Regional Growth (NUTEK) contributes to the cre-
ation of new enterprises, more growing enterprises, stronger regions, and consequently to promote
sustainable economic growth and prosperity throughout the country. Another Swedish govern-
ment agency for innovation, Vinnova, elaborates strategies and forms reference groups with key
players from the industry, government agencies, and universities to improve the competitiveness
of the IT industry.
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Swedish IT industry is characterized by large heterogeneity. Most of the firms are

small – around 90 percent of the firms in my data had fewer than 20 employees

in 2000. Yet, despite the large proportion, small firms only generated about 25

percent of total employment and sales in 2000. Therefore, large firms that operate

on both national and international markets are important for the overall perfor-

mance.

Market definition. Information is what is demanded in the IT services industry.

How much and from who depend on the type of activity carried out (in Sweden),

price, training effort, and the level of learning.23 Statistics Sweden (SCB) con-

ducted a survey about demand structure in the Swedish IT services industry in

2001. They found that the customers of Swedish IT services are as follows: firms

and public utilities around 76 percent; central government and municipal author-

ities 14 percent; households and individuals 0.2 percent; and exports around 10

percent. Only firms that are in the SNI group 72 were included in the survey.

The customers of small firms are households and private individuals. Large and

medium IT firms commonly have business enterprises as customers. While large

companies dominate the Swedish IT services in terms of market share, small and

medium companies dominate the market with respect to number of firms.24 More-

over, 50 percent of firms say that 75-100 percent of their sales come from neigh-

boring municipalities and 35 percent of firms do not make sales in neighboring

municipalities.

The paper uses Statistics Sweden’s county definition to define markets. A

county consists of a collections of municipalities. This classification groups the

Swedish municipalities (290) into 25 markets that are mutually exclusive and ex-

23Bower (1973) discusses the specificity of demand in IT services.
24Firms that are in other SE-SIC 92 groups and provide IT services are not included in the

survey due to the difficulties in measuring their activities. Cerda and Glanzelius (2003) provide
more details about Swedish IT services.
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haustive of the land mass of Sweden.25 The county-based market definition is a

compromise between contradictory requirements. The theoretical model assumes

that IT service markets are isolated geographic units; firms in one market interact

competitively only with other firms in the same county market. Firms placed in

too large markets may not all respond to the same market forces (external or ac-

tions of industry competitors). Counties are a suitable compromise to resolve the

tension between isolating markets yet ensuring that the IT service firms within

them are interconnected. IT service firms should, however, be close to their cus-

tomers. Large firms in this sector may face international competition if they sell

software, for example. The definition of the market does not affect the productiv-

ity results. I only include IT firms that have at least a part of their revenues from

the Swedish market when I estimate the cost functions.

Tables 3 and 4 present the summary statistics at the local market level for the

Swedish IT service industry from 1996 to 2002, for all firms (Table 3) and grouped

by size (Table 4). An average local market (county) has about 255 IT service firms;

3,100 employees; 7,225 non-IT firms; and a population of about 400,000 people

(Table 3). Table 4 shows that an average market has about 230 small, 22 medium,

and about 7 large IT firms. The counties that include Stockholm, Gothenburg, or

Malmö have about 10 times more firms than does an average county (Table 4).

Having access to detailed data on individual counties and information on de-

mand based on surveys, demographic characteristics, population and number of

firms (other than IT service firms) are good proxies for local demand.

25Statistics Sweden provides more detailed information, www.scb.se.
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3 The modeling approach

To evaluate the impact of 2001 dot-com bust on cost structure it is necessary

to have a theoretical model of the IT services industry. The model builds on

the work of Ericson and Pakes (1995), who provide a theoretical framework of

industry dynamics on imperfectly competitive markets. The model considers the

main characteristics of the IT industry. First, the dynamic aspect, characterized

by simultaneous entry and exit, is one of main characteristics of IT industry.

Second, investment and labor decisions account for the characteristics of the local

markets (counties). The distribution of capacities (IT labor) and the industrial

structure are primarily determinants of local market structure. Third, there is

substantial heterogeneity in IT services. Skilled labor, demand, and the efficiency

of using new technologies play a key role. Fourth, investments in knowledge and

technology change the quality of IT services and firms pay both fixed and variable

adjustment costs.

State space. All economically important characteristics of firms are incorporated

into a state vector that includes productivity (efficiency), market demographics,

and a set of private information payoff “shocks” that affect firms’ payoffs. The

vector s groups firms’ state variables. Firms receive state-dependent revenues

from the product (service) market in each period. Entry, exit, and investments

in labor and technology influence the evolution of the state vector. The most

important component of the state space is productivity, ω. Firm j’s productivity,

ωjt, is not directly observable in the data, but is obtained by estimation of a

value-added generating function model. This paper assumes that the productivity

evolves stochastically according to a first-order Markov process:

ωjt = g̃(ωjt−1) + ξjt, (1)

14



where ξjt ∈ N(0, ηω) and g̃(·) is an unknown function. Thus, firms’ actual produc-

tivity ωjt in period t can be decomposed into expected productivity g̃(ωjt−1) and

a private productivity shock ξjt. The productivity shock ξjt may be thought of

as the realization of uncertainties that are linked to productivity. The conditional

expectation function g̃(·) is unobserved by the econometrician (though known to

the firm), but it can be estimated nonparametrically. Furthermore, I assume that

ωjmt evolves independently across markets.

Each local market m is defined by its characteristics: the total number of firms

(other than IT) and population. Because high correlation between the population

and the number of firms (about 0.98), I only use the number of firms in the empir-

ical part. The number of non-IT firms evolves according to the following AR(1)

process:

firmsmt = δfirms
1 firmsmt−1 + δfirms

0 + υfirms
mt , where υfirms

mt ∼ N(0, ηfirms). (2)

Timing assumptions. There is a number of IT firms in a set of markets in an

infinite sequence of years. In each year, the timing of the game is as follows:

1. Each firm observes its current firm productivity and market demographics.

2. Each potential entrant receives a draw from the distribution of entry values

and makes its entry decision; each incumbent firm makes its investment

decision.

3. Each firm receives a private shock and then firms compete in the product

market.

4. Each incumbent that chooses to leave the market exits and receives its scrap

payment; each entrant pays its entry fee. Firms decide on investments in

labor and capital without knowing the decisions of their competitors.
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5. The state vector adjusts and firms enter and exit.

Firms observe the state variables at the beginning of each period along with the

entry, exit, investment, and production decisions of their rivals in the previous

period. Private information shocks are drawn independently across firms and

periods from a known distribution. Firms do not update their expectations of

future behavior after observing the actions of their rivals.

Equilibrium concept. Equilibrium is obtained when firms follow strategies that

maximize the expected discounted present value of their stream revenues given the

expected strategies of the competitors. The paper assumes that firms’ strategies

depend only on the current state vector and generate a Markov Perfect Nash

Equilibrium (MPNE). The MPNE consists of a set of best response strategies

governing entry, exit, labor, and investment. Firm j makes decisions regarding,

e.g., entry, exit, and investments collectively denoted by dj . Since the full set of

dynamic Nash equilibria is unbounded, I restrict firms’ strategies to be anonymous,

symmetric, and Markovian. Therefore, a firm’s strategy, σjt, can be written as a

mapping from states to actions:

σjt : (s, ǫjt) → djt,

where ǫjt is the firm’s private information about the cost of entry, exit, investment,

and labor. A vector of strategies is a mapping of the current state of the system

for each firm’s strategy. The time horizon is infinite, payoffs are bounded, firms

have Markovian strategies, and the discount factor β is positive and less than one.

The value of a firm in state s ∈ S is

Vj(s|σ(s)) = Eǫj

[

πj(σ(s, ǫ), s, ǫj) + β

∫

Vj(s
′|σ)dP (s′|σ(s, ǫ), s)

]

, (3)
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where σ(s) is the vector of strategies, πj(·) is the per-period profit function, and

P (·) is the conditional probability distribution governing the transition between

states. A strategy profile σ(s) is an MPNE giving competitors profile σ−j(s) if

each firm j prefers strategy σj(s) to all Markov strategies σ
′

j(s):

Vj(s|σj(s), σ−j(s)) ≥ Vj(s|σ
′

j(s), σ−j(s)) (4)

for all j, s, and σ
′

j(s). In a similar setting, Doraszelski and Satterthwaite (2010)

discuss the details on existence and uniqueness of of pure strategy equilibrium.

The existence of private information ǫj guarantees that there is at least one pure

strategy equilibrium.

There are two assumptions on the dynamic framework. First, the equilibrium

might not be unique, but I assume that the same equilibrium is played in each

local market (Bajari et al., 2007). Second, I assume that there are no structural

changes in the IT business environment. It implies that I do not need to model

the beliefs of the IT firms about the distribution of future changes in the business

environment.

I describe each component of the model in detail in the section 4 by deriving

the ex-ante value functions for potential entrants and incumbents. These value

functions are used in the counterfactual simulations when the costs of the dot-com

bust are evaluated.

4 Estimation

The estimation is made in two steps. In the first step, I estimate a value added

generating function to obtain an estimate of firms’ perceived productivity. Know-

ing how the state space evolves over time, the revenue generating function and the

17



policy functions can be estimated. Estimated policy functions describe the opti-

mal strategy profile for each firm. In the second step, I estimate the structural

parameters governing fixed and variable investment costs, scrap values, and sunk

costs.

Firm productivity. The present paper assumes a Cobb-Douglas technology

where IT service firms sell a homogeneous product (at the subsector level) and

that the factors underlying profitability differences among firms are neutral effi-

ciency differences.26 The lack of detailed information about services of each IT

firm does not allow to model product differentiation using a discrete choice de-

mand model. For this reason, estimation of the value-added generating function

requires the homogeneity assumption.

Allowing for heterogeneity in productivity in the dynamic model makes this

assumption not so restrictive. The services production function can be specified

as

qjt = β0 + βlljt + βkkjt + ωjt + up
jt, (5)

where qjt is the log of service output sold by firm j at time t; ljt is the log of

labor input, i.e., number of employees (full-time adjusted) ; and kjt is the log of

capital input. The unobserved factor ωjt measures productivity, and up
jt is either

measurement error (which can be serially correlated) or a shock to production

that is not predictable during the period in which labor can be adjusted.

Specification (5) assumes that prices are constant across firms. When firms

have some market power, prices set by individual firms influence the estimated

productivity. The negative correlation between input and prices leads to underesti-

mation of the labor and capital parameters in the production function (De Loecker,

2011; Klette and Griliches, 1996; Melitz, 2000). If the services are perfect substi-

26The first-order Taylor approximation of a nonparametric function is the Cobb-Douglas func-
tion in the logarithmic form.
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tutes, deflated sales are a perfect proxy for unobserved quality adjusted output.

Following the recent literature, it is possible to correct for unobserved price bias in

value-added generating function by introducing a simple CES demand function:

pjt = pIt +
1

η
qjt −

1

η
qIt −

1

η
λjt, (6)

where pjt is output price, pIt and qIt are IT service output price index and quan-

tity at the industry level, λjt are shocks to demand.27 The demand specification

assumes that firms operate in a market with horizontal product differentiation,

where η (< −1 and finite) captures the elasticity of substitution among IT ser-

vices. Due to data constraints, the demand system is quite restrictive, implying a

single elasticity of substitution for all IT services and that there are no differences

in cross price elasticities.

I decompose demand shifters into observed local market characteristics zmt,

i.e., number of non-IT firms and population, and unobserved demand shock ud
jt:

λjt = z′mtβz + ud
jt,

where ud
jt are i.i.d. shocks to demand.28 Therefore, it is not possible to use a more

sophisticated demand model that allows for product differentiation (Berry, 1994;

Berry et al., 1995; Nevo, 2001). Since the IT service prices of individual firms are

unobserved, the deflated output is defined as yit = qit − pIt. Firm productivity

follows a first-order Markov process (equation 1) and takes the following form:

27There is no price index for IT services from 1996 to 2002. From 2002, Statistics Sweden
has started to construct a price index for IT services. In the empirical part, I use the consumer
index price. For robustness, I have constructed a backward price index (1996-2002) from new IT
services price index (2002-2009). Even if this construction is problematic (small sample errors)
it can be informative. Because there are no substantial changes in the elasticities, the results
are not reported.

28If ud
jt are correlated unexpected shocks, they enter into productivity measure (Levinsohn

and Melitz, 2006).
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ωjt = g̃(ωjt−1) + ξjt. Controlling for price and demand shocks in the value-added

generating function (5) yields

yjt =
(

1 + 1
η

)

[β0 + βlljt + βkkjt] −
1
η
qIt −

1
η
z′mtβz + g(ωjt−1) +

(

1 + 1
η

)

ξjt

−1
η
ud

jt +
(

1 + 1
η

)

up
jt,

(7)

where g(·) =
(

1 + 1
η

)

g̃(·). The value of kjt is determined by previous investment

ijt−1. Labor ljt is correlated with the shocks in productivity ξjt. The inverse labor

demand helps us to recover unobserved productivity ωjt−1 rather than recovering

from the unknown policy function of investment (Olley and Pakes, 1996) and

materials (Levinsohn and Petrin, 2003).29 Doraszelski and Jaumandreu (2009)

propose one-step estimator that uses the parametric form of the labor demand

function from the Cobb-Douglas production function to proxy for productivity.

Maican and Orth (2009) discuss the identification of the production function using

nonparametric and parametric labor demand function.30 The main advantage of

using labor demand function is that the observations with zero investments are

included in the analysis. This is notable because IT firms often invest one year,

followed by several years without investment. In year t − 1, firms chose current

labor ljt−1 based on current productivity ωjt−1, which gives demand for labor as

ljt−1 =
1

1 − βl

[β0 + ln(βl) + βkkjt−1 + ωjt−1 − (wjt−1 − pjt−1) + ln(1 +
1

η
)],

where wjt−1 is total wages paid. Solving for ωjt−1 yields

ωjt−1 = η

1+η

[

δ0 + [(1 − βl) −
1
η
βl]ljt−1 + wjt−1 − pIt−1 −

(

1 + 1
η

)

βkkjt−1

+ 1
η
qmt−1 + 1

η
z′mt−1βz

]

,
(8)

29Ackerberg et al. (2006) (ACF) discuss the identification of the production function using
different proxies.

30They also discuss the identification in the production function when labor has dynamic
implications.
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where δ0 = −ln(βl)− ln(1+1/η)−β0(1+1/η)− lnE[eu
p
jt]+ 1

η
lnE[eud

jt ]. Appendix

B presents the productivity estimation details using one-step estimator. This

estimator requires the following assumptions: (i) labor is a static variable input;

(ii) capital is a fixed dynamic input chosen in t − 1; (iii) productivity is the only

unobserved variable; (iv) there is helpful variation in firms’ wages, and wages

are exogenous.31 The static assumption of labor might be restrictive in the IT

industry. For robustness, I also use a two-step estimator based on ACF and

nonparametric labor demand function to proxy for productivity (Maican and Orth,

2009). The results using two-step estimator are consistent with those from one-

step estimator. Having the estimated parameters for the value-added generating

function, we can recover the productivity (efficiency) for each firm.

Static profits. A firm’s profits in one period depends on its productivity, ωjt;

competitors’ productivity, ω−jt ; local market characteristics, zmt ; and the firm’s

investment and labor decisions. Therefore, the profit of firm j in period t is

πjt(ωjt, ω−jt, zmt, ǫjt; β, θ) = r̃jt(ωjt, ω−jt, zmt; β) − ci(ijt; θ
i)

−c∆l(∆ljt; θ
l) − cl(ljt) + ǫj(dj),

(9)

where ǫjt denotes the private shocks to profits; ci(·; θ
i) the cost associated with

investment in technology (machinery); c∆l(·; θ
l) the cost of adjusting the number

of employees; and cl(·) is total labor cost. In the empirical implementation and

results, I focus only on the cost of adjusting the number of employees even if I

control for the total cost of labor, i.e., to separate revenues from costs. In the

forward simulations, the payoff generating function r̃jt(·) is estimated using the

31To control for wage endogeneity, one can use lagged wages as instruments.
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following form:

rjt = β0 + β′
1bs1(ωjt) + β′

2bs2(
∑

h 6=j ωht) + β′
3bs3(kjt) + β′

4bs4(
∑

h 6=j kht)

+β′
5bs5(firmsmt) + β6after2000 + β7foreignjt

+β8mediumjt + β9largejt + βm + εr
jt,

(10)

where bs(·) is the basis function of cubic b-splines (Chen, 2007; Coppejans, 2004;

Eubank, 1988); βm is the set of market effects introduced to capture differences in

other unobserved factors that are common across all firms in a market; firmsmt is

the number of firms, other than IT, at the market level; mediumimt and largeimt

are dummy variables for medium and large firms; and εr
jmt are i.i.d. shocks.32

Investment and labor costs. The cost function associated with investment in

technology is:

ci(ijmt; θ
i) = 1(ijmt > 0)(θ̃i,+

0 + θi,+
1 ijmt + θi,+

2 (ijmt)
2) + 1(ijmt < 0)(θ̃i,−

0 + θi,−
1 ijmt

+θi,−
2 (ijmt)

2).

Fixed and variable adjustment costs vary separately for positive and negative in-

vestments. Setup costs from installing new equipment are covered by the fixed

costs, θ̃0. Fixed costs of investment are private information to the firm and are

drawn each period from a known distribution, F i,+(·; γi,+). Since the firm can sell

old IT equipment, sunk costs associated with negative investment can be positive.

These costs are private information and drawn each period from a common dis-

tribution, F i,−(·; γi,−). The total labor cost is cl(ljt) = θlljt. The cost function

32I omit to control for aggregate sales/value-added at the local market level in equation (10)
because the rival variables based on productivity and capital already capture the local market
characteristics. In addition, adding aggregate sales/value-added might introduce endogeneity
problems.
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associated with labor adjustment is given by:

c∆l(∆ljmt; θ
l) = 1(∆ljmt > 0)(θ̃l,+

0 + θl,+
1 ∆ljmt) + 1(∆ljmt < 0)(θ̃l,−

0 + θl,−
1 ∆ljmt).

For example search and recruiting, training, explicit firing costs are covered by

the c∆l(·) function. Reorganization of services and consulting activities are also

included. Fixed costs associated with positive and negative labor adjustment are

drawn from the distributions F l,+(·; γl,+) and F l,−(·; γl,−).

Entry, exit, and fixed costs. IT firms also have different costs that are not

related to service production. To enter the market, firms pay an entry (sunk) cost,

f e
j . The entry cost is drawn from the common distribution, F e(·; γe). Firms that

exit the market receive the sell-off value associated with closing down the firm, fx
j ,

which is commonly drawn from the common distribution, F x(·; γx). Summarizing,

the costs that depend on the status of the firm are:

fj(σ(s)) =











f e
j if the firm is an entrant,

fx
j if the firm exits the market.

The ex-ante value functions for both potential entrants and incumbents can be

written down. The value functions that give the expected discounted present value,

in Swedish krona (SEK), of being at a given state vector, have two components:33

(i) the per-period payoff function and (ii) the continuation value, i.e., the expected

value of next period’s state. Firms use their value function to find their optimal

entry, exit, investment, and labor policies.

The value function for the potential entrant j who decides to enter in the next

period conditional on the current state and the draw from the distribution of the

33At the beginning of the study period (1996), 1 USD=6.71 SEK and 1 EUR=8.63 SEK.
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sunk cost of entry, f e
j , can be written as:

V e
j (s, f e

j ) = max
ie
j
,le

j

{

−f e
j − θ̃i

0 − θi
1i

e
j − θi

2(i
e
j)

2 − θl
1∆lej + βE[V (s′|s)]

}

. (11)

The value function for an incumbent has two parts. The first part corresponds to

whether the firm decides to exit the industry. If it does, it receives its services-

market payoffs πj(s) and its sell-off payment fx
j . If it remains active, it receives

service-market revenues. Therefore, if firm j continues, it obtains the following

payoff:

V stay
j (s) = maxij ,lj −1(ij > 0)(θ̃i,+

0 + θi,+
1 ij + θi,+

2 (ij)
2)

−1(∆lj > 0)(θ̃l,+
0 + θl,+

1 ∆lj) − 1(ij < 0)(θ̃i,−
0 + θi,−

1 ij + θi,−
2 (ij)

2)

−1(∆lj < 0)(θl,−
0 − θi,−

1 ∆lj) + βE[V (s′|s)]

(12)

The ex-ante value function for an incumbent is a combination of the payoffs if the

firm stays or exits:

Vj(s) =

∫

πj(s)dS + (1 − px(sj))V
stay
j (s) + px(sj)f

x
j . (13)

In (13), px(sj) is the probability that firm j exits the market. It is given by

px(sj) = Pr(fx
j > V stay

j (s))

= 1 − F x(V stay
j (s); γx).

(14)

The continuation value, V stay
j (s), can be obtained by inverting equation (14),

V stay
j (s) = (F x)−1(1 − px(s); γx). The expected sell-off value, f̃x

j , conditional on

exit is E[fx
j |f

x
j > (F x)−1(1 − px(s); γx)], i.e., it is a function of the probability of

exit and the parameters of the exit distribution, γx. The recovered values θ̃i,+
0 ,

θ̃i,−
0 , θ̃l,+

0 , θ̃l,−
0 , and f̃x

j are the means of the distributions F i,+, F i,−, F l,+, F l,−,
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and F x only when firms receive favorable draws. To avoid this problem, the fixed

costs can be recovered using linear sieve (Ryan, 2012):

θ̃i,+
0 (pi,+

j ) = δi,+bs(pi,+
j (s)), θ̃i,−

0 (pi,−
j ) = δi,−bs(pi,−

j (s)),

θ̃l,+
0 (pl,+

j ) = δl,+bs(pl,+
j (s)), θ̃l,−

0 (pl,−
j ) = δl,−bs(pl,−

j (s)),

f̃x
j (px

j ) = δxbs(px
j (s)),

where δ parameters are finite and bs(·) are basis functions defined from the proba-

bility of positive investment, pi,+; the probability of negative investment, pi,−; the

probability of positive labor adjustment, pl,+; the probability of negative labor

adjustment, pl,−; and the probability of exit, px.34 The distribution of sunk entry-

costs can be recovered by matching its cumulative distribution to the predicted

probability of entry. A firm enters when the value of doing so, EV e(s), is larger

than f e
j . By simulating many forward paths of possible outcomes given that the

firm entered, and averaging over those paths, I obtain the expected value of entry,

which I then match against observed rates of entry. Therefore, the probability

that a firm enters is given by

Pr(f e
j ≤ EV e

j (s)) = F e(EV e(s); γe), (15)

where F e(·; γe) is the cumulative distribution of sunk entry-costs. The entry prob-

ability, estimated by logit, gives Pr(entry|s). If ns is the number of simulated

states from which EV e is recovered, then the parameters of the distribution are

estimated from the following optimization problem:

minγe

1

ns

ns
∑

k

[Pr(entry|s)− F e(EV e(s); γe)]2. (16)

34If there is a trade-off between positive and negative investment, then both probabilities
might appear in the setup cost functions. However, this increases the number of the parameters
to be estimated.
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The paper uses logit approximation to estimate entry and exit probabilities.35 To

be more precise, I estimate the following entry and exit policies for all states:

Pr(entry|s) = φ(α0 + α1

∑

h 6=j ωjmt

+α2kjmt + α3

∑

h 6=j khmt + α4firmsmt + α5after2000

+α6foreignjmt + α7mediumjmt + α8largejmt + αm)

Pr(exit|s) = φ(α0 + α1ωjmt + α2

∑

h 6=j ωjmt

+α3kjmt + α4

∑

h 6=j khmt + α5firmsmt + α6after2000

+α7foreignjmt + α8mediumjmt + α9largejmt + αm).

Both policy functions contain a dummy variable for before and after the dot-com

bust.

Estimating structural parameters. The evolution process of the state vector

and the level of payoff associated with each state are described by the first step

estimation of productivity, policy functions, and evolution of demographic charac-

teristics. In the second step of the estimation, I recover the rest of the parameters

of cost functions by finding the set of parameters that make the firm’s policy func-

tion optimal. Having the estimates from the first stage, I simulate the evolution

of the market under various conditions. This is possible because the first stage

estimates characterize what each firm would do in all possible situations. Using

forward simulation, I find parameters of the optimal policy function that minimize

the profitable deviations from these observed strategies.

Firm behavior is simulated under two alternative strategies in order to identify

the investment cost parameters. The first scenario implies that all firms use the

optimal strategies recovered in the first stage; this strategy is denoted σ(s). The

second scenario implies that a single firm deviates from the optimal strategy while

35In many cases, entry and exit strategies take the form of simple cutoff rules in dynamic
oligopoly models.
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all other firms use the optimal strategies. The strategy profile σ(s) is an MPNE

if and only if

Vj(s, σj(s), σ−j(s); θ) ≥ Vj(s, σ
′

j(s), σ−j(s); θ) (17)

for all states s, all firms j, and alternative profiles σ
′

j(s). The minimum dis-

tance estimator is constructed using this set of inequalities. Due to the linear-

ity in the cost functions, the optimality conditions (17) can be re-written as

[Wj(s, σj(s), σ−j(s); θ, α) − Wj(s, σ
′

j(s), σ−j(s); θ), α]θ ≥ 0. The above equation

can be written in terms of profitable deviations from the optimal policy

g(x; θ, α) = [Wj(s, σj(s), σ−j(s); θ, α) − Wj(s, σ
′

j(s), σ−j(s); θ, α)]θ, (18)

where α represents the parametrization of the policy functions. More specifically,

alternative policies are drawn from a distribution F of all policies to generate a

set of inequalities indexed by x. The estimates of Wj , denoted W̃j, are obtained

using forward simulation. They are used in the sample analog of the objective

function

Qn(θ, α) =
1

nI

nI
∑

k=1

(min{g̃(x, θ, α), 0})2. (19)

I use the Nelder-Mead method to obtain the starting values. Then I plug the esti-

mated parameters as started values in the Uncmin optimization routine.36 Another

alternative is to use the Laplace-type estimator (Chernozhukov and Hong, 2003).

The present paper estimates the distribution of entry costs using a procedure that

matches the observed entry rates to the simulated values of entering at each state.

Alternative estimators. Another estimator that can be used is simulated mo-

ments estimator, which is a class of generalized method of moments (GMM) es-

timators (Hansen, 1982; Pakes and Pollard, 1989). This estimator minimizes the

36Uncmin performs unconstrained nonlinear optimizations
(http://www1.fpl.fs.fed.us/optimization.html).
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distance between a set of unconditional moments from the data and the simulated

counterparts from the model (Gallant and Tauchen, 1996; Hall and Rust, 2003).

The advantage of this estimator is that we do not need to simulate alternative

policies. It only requires to choose informative moments to match for identifica-

tion of the structural parameters.37

Standard errors. The first stage errors affect the standard errors in the second

stage. The Uncmin optimization method gives the final estimates and the reported

standard errors. Because of forward simulations, there is a computation burden

to correct the second stage standard errors, i.e., the reported standard errors are

downward biased. However, recent econometric literature suggests potentially easy

computation alternatives to consider. Ackerberg et al. (2012) propose a numerical

equivalence between asymptotic variance for two-step semiparametric estimators

when the sieves method is used in the first stage. Applying this approximation,

the results indicate no significant differences in the estimated standard errors.

5 Results

This section presents the results of estimates of productivity, revenue-generating

function, and optimal firm policies, i.e., in terms of entry, exit, investment in tech-

nology, and labor. The estimates of cost parameters are discussed in the second

part of this section.

Before I discuss the estimated productivity results, I would like to summarize

the results regarding labor productivity and capital intensity. Figures 3 and 4

present the evolution of the labor productivity distribution and capital intensity

for the three IT services sectors. Labor productivity is measured as value added

37Goettler and Gordon (2012) use this estimator in their study on microprocessor industry.
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per number of employees. The firms in software and operational services with low

labor productive (10th percentile) experienced a decrease in labor productivity in

2000, but then started to recover in 2001. The peak of median labor productivity

occurred in 1999 for software and operational services and in 2000 for maintenance.

While the labor productivity of median software and operational firms shows a

weak but positive trend, the median maintenance firms had a negative trend after

2000. The highly labor-productive firms (90th percentile) increased their labor

productivity from 1997 and 2000 (software and maintenance), but then those in

software stagnated and remained fairly constant and those in operational services

actually went down. The labor productivity dispersion decreased in all sectors af-

ter 2000 (particularly quickly in operational services). To avoid possible outliers, I

measure productivity dispersion as the interquartile range over median. Software

and operational services sectors have larger labor productivity dispersion than

does the maintenance sector.

The next step is to look into capital intensity. Median firms and firms in the

90th percentile of capital intensity had an upward trend in all three sectors, but

those at the 10th percentile decreased only in the maintenance sector after 2000

(Figure 4).38 The capital intensity dispersion increased for maintenance and for

software (small slope of the trend). For operational services, the capital intensity

dispersion decreased until 2001 and then started to increase.

Productivity estimates. The theoretical model assumes that productivity is

the state variable that captures all important aspects of an IT firm and that there

is a direct link between productivity and quality. So, I assume that IT firms that

offer high quality services have high productivity. Table 5 presents the results from

estimating the value-added generating function using OLS and the semiparamet-

38Using UK data, Faggio et al. (2007) find that industries with high productivity growth have
a large increase in IT capital intensity.
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ric estimator presented in Section 4.39 Firm productivity is recovered from the

estimation of the value added generating function.

By using the OLS estimator, the coefficient of labor is around 1, suggesting

presence of a simultaneity problem (Marschak and Andrew, 1944). Since firms

productivity is positively correlated with labor, a large labor coefficient is not a

surprise. Furthermore, it is expected that firms with large capital stock (large

firms) stay in the market even if they have low productivity, i.e., the coefficient

of the capital is downward biased for the OLS estimator (selection bias). Fur-

thermore, the results show that the null hypothesis of constant returns to scale is

accepted using the OLS estimator.

The last two columns of Table 5 show the estimates of the value-added generat-

ing function using the extended Olley and Pakes (1996) estimator (EOP) presented

in Section 4. In addition to controlling for endogeneity and selection, the main

advantage of this estimator is that it to some extent controls for a price bias by

introducing a simple demand function. This allows me to estimate mark-ups for

the IT services. Since we expect different demand elasticities for the different IT

sectors, I make separate estimations for software and for operational services and

maintenance. Column 3 (Table 5) presents the estimates for the software sub-

sector. Compared to OLS, the labor coefficient goes in the right direction using

EOP, i.e., it decreases to 0.680, and the capital coefficient increases to 0.374. The

estimated elasticity of demand for software is about -4.6, implying a mark-up of

1.277. For grouped operational services and maintenance firms (column 5), the

estimated labor coefficient decreases to 0.789 and the capital coefficient increases

to 0.208 compared EOP and OLS. The estimated demand elasticity is about -5.96,

39The results using the Ackerberg et al. (2006) estimator (ACF) are available from the author.
In the ACF estimator, I control for both endogeneity and selection. The ACF estimator controls
for investment in the market threshold function that affects the likelihood of exit, but does not
control for prices or wages.
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yielding a mark-up of 1.52.40 The estimated productivity using the EOP estimator

is used in the rest of the paper.

Figure 5 shows the evolution of different parts of the productivity distribu-

tion for different size classes. It does not distinguish between what IT sector

the firms belong to and type of firm, e.g., an entrant, an exit, or an incumbent.

The results suggest that scale matters: large firms are the most productive, fol-

lowed by medium-sized and small firms. This holds for the entire productivity

distribution. Low productivity firms (10th percentile) increased their productiv-

ity (small positive slope) until 2001. For the median and the high productivity

firms (90th percentile), there are three distinct periods. Their productivity was

rather constant from 1997 to 1999, developed positively from 1999 to 2000, but

negatively starting in 2001. These periods are also important for the dispersion

trend, a decrease from 1999 to 2001 for large and medium firms. Medium-sized

firms show the largest decrease in productivity dispersion. Small firms have a

constant productivity dispersion over time. A decrease in productivity dispersion

can be interpreted as an increase in competition, i.e., firms increase their quality

and become closer to each other.

Summarizing, the paper finds that the 2001 dot-com bubble bust has affected

firms differently depending on productivity and size. There is a smaller difference

in productivity levels among large and median low productive firms (10th per-

centile) than among high productive firms (90th percentile). On the other hand,

the gap between small and medium-sized firms decreases in the upper part of the

productivity distribution (90th percentile).

Dynamic productivity decomposition. To analyze the productivity dynam-

ics at the industry level, the present paper uses a dynamic productivity decom-

position. Olley and Pakes (1996) propose a static decomposition of aggregate

40It would have been more informative to estimate the mark-ups before and after the dot-com
bust. Unfortunately, this is not possible due to data constraint.
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productivity where the weighted productivity for continuing stores, Ωt, has two

components: (1) unweighted contribution of productivity improvements, Ωt and

(2) market share reallocations for the continuing firms cov(msjt, ωjt) ≡
∑

j(msjt−

mst)(ωjt − Ωt). The change in the productivity index from period t to period t′,

∆Ωt,t′ , can be written as

∆Ωt,t′ = ∆Ωt,t′ + ∆covt,t′ . (20)

Since the OP decomposition ignores entry and exit, Melitz and Polanec (2009)

(MP) suggest a dynamic OP decomposition where there is a positive contribution

for entering and exiting firms only when the aggregate productivity of these firms

is larger than that of continuing firms in corresponding periods. The aggregate

productivity in periods t and t′ can be decomposed as

Ωt = msCt,t′ ,t
ΩCt,t′ ,t

+ msXt,t′ ,t
ΩXt,t′ ,t

Ωt′ = msCt,t′ ,t
′ΩCt,t′ ,t

′ + msEt,t′ ,t
′ΩEt,t′ ,t

′ ,
(21)

where msCt,t′ ,t
, msEt,t′ ,t

′ , and msXt,t′ ,t
are the aggregate market shares of incum-

bents in period t, of entrants in period t′, and of exits firms in period t, respectively.

Thus, the change in aggregate productivity can be written as

∆Ωt,t′ = ∆ΩCt,t′
+∆covCt,t′

+msEt,t′ ,t
′(ΩEt,t′ ,t

′−ΩCt,t′ ,t
′)+msXt,t′ ,t

(ΩCt,t′ ,t
−ΩXt,t′ ,t

).

(22)

Table 6 presents the MP productivity decomposition from 1997 to 2002 for the

software and operational services sub-sectors using 1997 as the base year. For soft-

ware, the productivity growth is around 21 percent from 1997 to 2000 but only 6

percent from 1997 to 2002. The largest growth occurred from 1997 to 2001 (23

percent). Entrants contributed negatively to productivity growth, i.e., entrants
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were less productive than continuing firms. On the other hand, the exit firms

contributed positively to productivity growth, and the contribution increased over

time, e.g., from 5 percent in 1997 to around 18 percent in 2001. From 1997 to 2001,

the continuing software contributed the most to growth: 35 percent (1997-2000)

and 45 percent (1997-2001). From 1997 to 2002, the software firms that exited

contributed more to productivity growth than did continuing firms (12 percent

versus 7.5 percent).

For operational services and maintenance, the productivity growth was about

70 percent from 1997 to 2000 and about 32 percent from 1997 to 2002. Continuing

firms accounted for almost all productivity growth from 1997 to 2000. Yet, exit

firms contributed the most (50 percent) to productivity growth from 1997 to 2002.

Summarizing, the decomposition results emphasize the importance of net exit

for productivity growth in the IT services after the 2001 dot-com bust. This sug-

gests important changes in the market dynamics after the impact of aggregate

shocks in the market, e.g., less productive firms exit.

Payoff generating function. The estimated productivity is used to obtain a

payoff generating function (r(·)), needed to evaluate the value functions, for each

subsector. I do not have additional information to model the intermediate inputs

cost. Using value-added to proxy for r(·) might imply overreporting since I model

both labor and investment costs. To avoid this problem, I report the estimates

of the payoff generating function using revenues. However, there is a high cor-

relation (about 0.7) between value-added and revenues in my sample. Table 7

presents two specifications. The first is a simple linear regression estimated by

OLS. A flexible way to model firms’ revenues as a function of the state variables

is to use the method of linear sieves, i.e., a simple semi-nonparametric approach

to estimate unknown functions. The second specification uses a non-parametric

cubic b-splines approximation and is estimated by the OLS estimator. A nice
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feature of the linear sieves is their simple analytical form. This paper uses cubic

b-splines as basis functions, denoted bs(·), which are finite dimensional piecewise

polynomials (Appendix C provides a short description of the cubic b-splines).

The revenues are a function of firms’ productivity, rivals’ productivity, own cap-

ital, rivals’ capital, number of non-IT firms in the local market, firm size (medium

or large), and type of ownership (domestic or foreign). The variables are in log

form. Rivals’ productivity captures the effect of the competitive pressure on firms’

revenues. The impact of rival size on revenues is captured by rivals’ capital, which

to some extent also captures competition, i.e., the number of IT firms. At the

local market, number of non-IT firms measures demand for IT services.41

The OLS results (Panel A) show that doubling productivity increases revenues

about 58 percent for software, and 53 percent for operational services and for

maintenance and repair. Doubling the capital stock increases revenues by about

37 percent for software, 29 percent for operational services, and 33 percent for

maintenance and repair firms. If the number of non-IT firms at the local market

level doubles, then revenues go up about 12 percent for software, 33 percent for

operational services, and 22 percent for maintenance and repair firms. Rivals’ pro-

ductivity and capital have a negative impact on software and operational firms’

sales. For software and operational services, foreign IT firms have revenues about

19 percent higher than domestic IT firms. The dot-com bubble bust decreases

revenues by about 20 percent for software and operational services and by 34 per-

cent for maintenance and repair.

Panel B (Table 7) presents only a summary of the estimation results using

b-splines with 6, 9, and 14 knots. For software and operational services, the ad-

justed R2 increases, the root of mean squared errors (RMSE) and absolute mean

errors (MAE) decrease using b-splines as basis functions for firms’ own productiv-

41There is a high correlation (0.99) between number of firms and population at the county
level.
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ity, firms’ own capital, rivals’ productivity, and rivals’ capital. This suggests that

there is no need to use nonlinear approximation for operational services’ revenues.

Even if the simple linear regression does a good job estimating revenues, there is

a significant increase in adjusted R2, about 13 percentage points, and the RMSE

decreases from 0.622 (OLS) to 0.599 when cubic b-splines are used for the software

industry, for example. In the forward simulations, b-spline specification with 14

knots is used to estimate the value functions for software and operational services.

Policy functions. The next step is to estimate investment and labor policy func-

tions for all firms. In addition, I estimate the entry and exit policies. All these

policies are estimated for each IT sub-sector. Table 8 presents the logit estimates

for the exit (Panel A) and entry (Panel B) policies. In my dataset, entry and exit

are based on organization number.

For all sub-sectors, high productivity firms and firms located in markets with

a large number of firms (only software and operational services) are less likely to

exit. In all sub-sectors, firms are also more likely to exit after the 2001 dot-com

bust. For software and operational services, firms are less likely to exit in markets

where rivals have large capital stocks and high productivity. In the Swedish case,

large firms are located in large markets and might have subsidiary (technology

and innovation clusters). However, markets with large capital stocks imply high

demand, i.e., there is still room to differentiate in these sub-sectors. For software

and operational services, I find that firms with large capital are more likely to exit.

There have been many technological innovations in this industry in recent years.

Failing to update utilized technology has a negative impact on firm performance.

Acquisitions were made during the studied period. This may explain the findings

that software and operational service firms are more likely to exit if the firm has

over 20 employees.

My findings indicate that IT firms are more likely to enter if rivals have high
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productivity, i.e., if there is sufficient demand. Software firms are less likely to en-

ter markets where rivals have extensive capital, i.e., markets with large firms, but

more likely to enter markets with a large number of firms. Hence, these markets

offer sufficient demand and skilled labor. It is less likely to have foreign entrants

(software and operational services) and to observe entry after the dot-com bust.

Table 9 shows the investment policy function estimates for all IT firms by

subsector. Panel A presents the estimates from a simple linear investment spec-

ification. Panel B shows summary results from non-parametric regressions using

cubic b-splines as basis functions for linear sieves approximations of unknown func-

tions in own productivity, rivals’ productivity, and rivals’ capital. Both regression

specifications use the OLS estimator. For software and operational services, pro-

ductivity has a positive and significant effect on investment, i.e., firms with high

productivity invest more in capital. For maintenance and repair, firms invest more

if rivals reduce their capacity. For all IT sub-sectors, firms with large capital stock

invest more, but they invest less after 2000. For software and operational services,

increasing the business opportunities, i.e., increasing the number of non-IT firms,

has a positive impact on investment. Allowing the marginal effects to depend

on the size of the variables (b-splines specifications), the accuracy of recovering

the observed investment increases. By using the non-parametric specification,

the adjusted R2 increases from 17 to over 86 percent for software, from 37 to 85

percent for operational services, and from 58 to 95 percent for maintenance and

repair. Allowing for non-linearities in productivity and capital reduces the RMSE

at least two times, and the correlation between observed and predicted investment

increases from 0.41 to 0.93 for software, from 0.61 to 0.93 for operational services,

and from 0.77 to 0.98 for maintenance and repair firms.

Table 10 presents the labor policy function results for all IT firms. A linear

specification does a good job fitting the observed number of employees. For all IT
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sectors, the adjusted R2 is about 90 percent. Allowing for non-linearities gives a

better fit only for software and maintenance and repair labor policies.42

By doubling their productivity, the number of employees increases by about 52

percent for software and by about 48 percent for operational services and mainte-

nance and repair firms. A double capital stock increases the number of employees

about by 27 percent for software, by 20 percent for operational services, and by

about 15 percent for maintenance and repair. If the number of firms doubles

(double potential demand), operational services firms increase labor by about 33

percent and maintenance and repair firms by about 50 percent. On average, for-

eign firms have about 10 percent more employees than domestic ones in software.

The corresponding numbers for operational services and maintenance and repair

are around 8 percent and 37 percent, respectively. After the dot-com bust, IT

firms reduced the number of employees by about 28 percent in software, by 24

percent in operational services, and by about 22 percent in maintenance and re-

pair.

Estimation of structural parameters. In the second step, I obtain the cost

parameters for each IT sub-sector before and after the IT dot-com bust. First,

the value functions are estimated using the policy functions estimated in the pre-

vious subsection. The value functions are the expectations of discounted profits

over current and future states, and profit shocks. In the estimation, 100 forward

simulations are used and the discount parameter, β, is fixed to 0.95. For policy

functions, the cubic b-spline estimates are used to extend the panel (forward sim-

ulations).

Since I control for local market competition, the order of generating the policy

functions is very important. First, future productivity and capital stock are gener-

ated for each firm and year. To generate future productivity previous investment

42A negative adjusted R2 obtained for operational services regressions suggests that there is
no need for non-linearities.
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is also added as variable in the g(·) function. Second, the rivals’ productivity and

capital are computed for each market and year. Third, the revenues and required

labor are generated knowing that the population and the number of other firms

evolve as exogenous processes. Fourth, the exit estimates are used to simulate

whether firms exit or continue. If a firm continues, the investment and setup cost

components for investment and labor are generated using cubic b-splines with 14

knots. The setup cost components are the basis cubic b-splines in the estimated

probability to invest, dis-invest, hire, or fire. The high setup costs might cause

the observed lumpy investment and lack of adjustment in employment, i.e. the

dynamics of investment and labor, to depend on the setup costs. Hamermesh

(1989) finds empirical evidence that the adjustment labor costs, which are inde-

pendent of the level changes, are determinants of lumpy adjustment.43 I assume

that employment dynamics in IT are generated by a process that distinguishes

between hiring and firing costs.44

Table 11 shows the estimated cost parameters for each sub-sector before (1997-

2000) and after (2001-2002) the 2001 dot-com bust. Panel A presents the estimated

results for investment. The quadratic cost of adjustment implies that the future

value of additional capital depends on the choice with respect to adjustment. I

present only the results for positive investment. After 2003, IT firms started to

invest again (Section 2). Therefore, to be close to how industry behave I use the

investment policy function from 1996-2000 in the forward simulation after 2003.

Since capital stock is a state variable, allowing for excessive negative investment

makes smaller firms have a short life. For this reason, the results for negative

investment are not significant. This paper finds that setup investment costs are

43Hamermesh and Pfann (1996) find evidence of asymmetric adjustment costs, e.g., the cost
of advertising might be proportional to the number of hired employees but not firing cost (Pfann
and Palm, 1993). Since the asymmetry implies non-linearity in the shape of the cost function,
it would be impossible to estimate the cost parameters without additional approximations to
reach linearity.

44In my case, I observe the number of employees in November.
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higher for software but lower for operational services and maintenance after the

dot-com bust. In the IT services case, the setup investment cost is associated

with system and network configuration costs when firms change technology. Op-

erational service firms have at least twice the setup costs of software and mainte-

nance and repair. This sub-sector includes data processing and database activities,

which require large costs in case of migration from one system to another even if

the machines get cheaper due to technological innovations. However, the implied

distribution of investment costs indicates higher investment costs, on average, for

operational services after the dot-com bust even if the setup costs are lower (Panel

B). During the study period, there was significant innovation with respect to on

both hardware and software in the database management area, e.g., integration of

Oracle (commercial product) and MySQL (free) on Linux. Fast access to informa-

tion became very important at the same time as the complexity of the information

stored increased. Therefore, firms had to invest in advanced technologies, which

might explain the larger cost after the dot-com bust in this sub-sector. This con-

trasts the maintenance and repair sub-sector, where investment costs decreased

after dot-com. Since advances in technology make hardware cheaper, firms prefer

to buy rather than repair.

Panel C shows the estimates for labor adjustment costs. For software, the setup

costs of positive labor adjustment are about 4 times larger after the dot-com bust.

The variable marginal labor adjustment cost is about SEK 322,000 before and

about SEK 271,000 after the dot-com bubble. The findings of larger setup costs

and smaller variable adjustment labor costs after the dot-com bust suggest that

firms face uncertainties regarding demand and might rather work with external

consultants than hire new staff. The firing setup costs (about SEK 366,000) are

about 2 times larger after the dot-com bust.

For operational services, the results indicate larger setup costs for positive la-
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bor adjustment before the dot-com bust. However, the setup costs are larger for

negative than for positive adjustment. Here, setup labor costs might also include

expenses in connection with employees’ training, e.g., training to become a cer-

tified expert. This might explain the decrease in labor adjustment setup costs

after the dot-com bust, when the firms were focused on reducing the costs due to

the aggregate decrease in demand. Operational services has larger marginal cost

of adjustment after the dot-com bust, i.e., about SEK 379,000 before and SEK

432,708 after. The marginal labor adjustment costs are larger for operational ser-

vices than for software firms.

For maintenance and repair, the estimates indicate about the same positive

labor adjustment setup cost (SEK 400,000) before and after the dot-com bust.

Furthermore, the marginal cost of positive labor adjustment is with about SEK

50,000 less (SEK 245,000). The parameters for the negative adjustment costs

could not be identified due to too few observations.

Having the estimated labor parameters, the implied distributions of cost for la-

bor adjustment can be computed (Panel D). The 2001 dot-com bust implies higher

positive labor adjustment costs for software but lower positive labor adjustment

cost for operational services and maintenance and repair.

Distributions of exit and entry sunk costs. A median firm that exits has

one employee for software and two employees for operational services and main-

tenance and repair. After the burst of the dot-com bubble, firms in software and

operational services have higher (sell-off) while the maintenance and repair firms

have lower scrap values (Table 11, Panel E).

To estimate entry cost, I assume that it follows a normal distribution. Us-

ing the minimum distance estimator, I recover mean and standard deviation for

each industry before and after the dot-com bust. A median entrant in software

or operational services has two employees, and a median entrant in maintenance

40



and repair has three. The mean entry cost for software and operational services is

estimated to be about SEK 19,000 and SEK 120,000, respectively. However, I find

no significant difference between entry costs before and after the dot-com bust for

software and operational services, i.e., demand uncertainty and large setup costs

might explain the decrease in the number of entrants and their size. For mainte-

nance and repair, the mean entry cost (about SEK 135,000) is not significant. One

possible explanation to this is that this industry had few entrants. The low value

of sunk entry costs for software firms – about 6 times lower than for operational

services – explains the observed differences in the number of entrants; i.e., the

yearly number of entrants in software was about 8 times the number of entrants

in operational services.

6 Conclusions

This paper analyzes the impact of the 2001 dot-com bust on productivity and cost

structure in the Swedish IT services. To understand the differences in productivity

among the IT service sub-sectors and how the firms change their behavior when

facing demand shocks, the paper analyzes the possible changes in cost structure

caused by the burst of the 2001 dot-com bubble. Since changes in the cost structure

impact the market dynamics and therefore productivity growth, they are impor-

tant both for market structure and agencies that support this industry, which is

dominated by small firms (number of firms).

The findings indicate that differences between setup (fixed) and variable costs

help explain observed behavior in investment and labor policies in the IT services

industry. Since the relative importance of setup and variable adjustment costs

can not be measured directly from the observed data, they are inferred from the
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model. The results indicate higher fixed investment and labor adjustment costs for

software. The fixed costs are lower for operational services after the dot-com bust.

The downturn in productivity growth after the dot-com bubble can be explained

not only by reduced demand but also by large adjustment costs.

The results show that from 1997 to 2002, the productivity growth was about

6 percent for software and about 32 percent for operational services. After the

dot-com bust, net exit contributed the most to productivity growth, suggesting

important changes in the market dynamics after this aggregate shock.

Entrants are less productive than incumbent IT firms. Software firms invest

more if there is an increase in business opportunities at the local market level. On

average for the IT sub-sectors, firms with large capital stocks invest more. Yet,

they invested less after the 2001 dot-com bust. This study finds that, among the

low productivity IT firms, medium and large firms were affected the most by the

dot-com bust.

Changes in cost structure cause changes in prices (and vice-versa), but this im-

portant aspect is not explicitly modeled here due to difficulties finding price data

for IT services. Even if the paper controls for unobserved prices in an indirect way,

there is still possible to have correlated unobserved demand shocks in estimated

productivity (Ackerberg et al., 2008; De Loecker, 2011; Foster et al., 2008). A

detailed investigation of demand and a better understanding of the entry process

would be interesting for future research.
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Figure 1: Western European ICT market growth, 1997-2007, in percent. Source:
EITO 2006 in cooperation with IDC.

Figure 2: EU ICT, excluding Cyprus and Malta, market growth by segment,
2005-2007, in percent. Source: EITO 2006 in cooperation with IDC.
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Table 1: Characteristics of the data for the Swedish IT service industry 1996-2002

A: All IT service firms
Year Firms Entry Exit Sales Value Total Employees Investment

added wages
1996 4,116 543 48,320,538 21,459,073 12,070,602 42,686 1,774,708
1997 4,581 1,166 551 53,209,942 25,707,591 14,506,458 49,883 2,038,902
1998 5,109 1,149 644 66,707,752 31,395,570 17,851,110 59,208 2,257,806
1999 5,625 1,185 820 83,369,434 38,282,741 22,787,128 71,133 3,022,545
2000 6,523 1,694 1,203 96,284,420 39,710,885 28,085,689 85,928 3,668,669
2001 6,749 1,336 1,326 112,979,488 48,588,640 32,312,569 94,096 3,947,814
2002 6,623 962 100,931,185 44,672,840 29,804,633 87,567 3,539,552

B: Software
1996 3,474 445 35,638,817 16,448,024 9,376,162 32,580 1,110,581
1997 3,882 973 441 42,341,881 20,666,581 11,981,723 40,393 1,466,592
1998 4,398 1,022 536 56,348,497 26,907,847 15,241,528 49,657 1,741,355
1999 4,908 1,051 709 67,495,845 32,512,499 19,477,029 59,823 2,299,510
2000 5,742 1,532 1,017 76,266,817 32,079,924 23,499,892 70,792 2,937,217
2001 6,043 1,222 1,168 97,738,433 42,385,864 28,361,781 81,518 3,355,883
2002 5,932 856 80,063,479 36,335,808 24,621,346 71,526 3,007,020

C: Operational services
1996 527 88 11,114,449 4,374,038 2,294,675 8,580 646,102
1997 583 174 100 9,435,368 4,379,401 2,139,978 7,996 549,014
1998 601 122 88 8,888,705 3,781,396 2,199,835 7,939 493,259
1999 616 124 102 13,227,458 4,896,611 2,774,268 9,497 678,515
2000 671 147 168 17,881,246 6,739,992 4,039,204 13,299 709,624
2001 602 101 141 12,969,458 5,325,738 3,305,638 10,298 574,791
2002 592 93 18,956,159 7,454,423 4,606,482 13,932 518,766

D: Maintenance and repair
1996 115 10 1,567,272 637,011 399,765 1,526 18,025
1997 116 19 10 1,432,693 661,608 384,756 1,494 23,295
1998 110 5 20 1,470,551 706,326 409,747 1,612 23,191
1999 101 10 9 2,646,131 873,630 535,830 1,813 44,520
2000 110 15 18 2,136,357 890,968 546,592 1,837 21,828
2001 104 13 17 2,271,597 877,038 645,150 2,280 17,139
2002 99 13 1,911,548 882,608 576,804 2,109 13,764
NOTE: The data are from the merge between Financial Statistics(FS) and Regional Labor Statis-
tics(RAMS) databases. Sales, value-added, wages, investment are measured in thousand 1996 SEK.
1 USD=6.71 SEK and 1 EUR=8.63 SEK.

Table 2: The 2001 dot-com bust: growth rates (percent) 2000-2001 and 2001-2002

Firms Sales Employees Investment
2000-2001 2001-2002 2000-2001 2001-2002 2000-2001 2001-2002 2000-2001 2001-2002

Software 5 -2 28 -18 15 -10 14 -10
Operational services -10 -2 -27 46 -25 58 -19 -10
Maintenance and repair -5 -5 6 -16 17 -7 21 -20
NOTE: The data come from the merge between Financial Statistics(FS) and Regional Labor Statistics(RAMS)
databases. The growth rates are computed at the sub-sector level.
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Table 3: Summary statistics at the local market level for the Swedish IT service
industry 1996-2002

Variable Minimun Mean Median Maximum Standard
Deviation

Services production

Sales 257 36,403 6,569 798,279 118,663
Value added 70 16,196 3,082 333,439 51,010
Capital 2,189 201,392 32,373 4,745,895 667,003
Employees 24 3,179.99 773 62,314 9,534
Wages 40 10,203 1,891 226,977 33,383
Demand

Other firms 916 7,225 4,338 42,477 8,809
Population 57,313 399,814 269,699 1,838,882 416,484
Competition

IT firms 6 255 87 3,490 593
Investment

Investment -4,307 1,068 168 23,349 3,594

NOTE: The data come from the merge between Financial Statistics(FS) and Regional Labor
Statistics(RAMS) databases. There are 160 observations in 25 regional markets. The vari-
ables are aggregated at the county level. Sales, value-added, wages, capital, and investment
are measured in thousand 1996 SEK. 1 USD=6.71 SEK and 1 EUR=8.63 SEK.
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Table 4: Summary statistics of Swedish IT service grouped by size

A. Small size IT service firms: 0-19 employees
Variable Minimun Mean Median Maximum Standard

Deviation
Services production

Sales 164 8,908 2,389 137,769 23,116
Value added 70 3,721 1,102 52,299 9,324
Capital 1,263 47,820 14,169 739,642 118,627
Employees 17 799 273 10,861 1,855
Wages 40 2,259 627 37,211 5,989
Competition

IT firms 6 230 81 3,061 527
Investment

Investment -234 249 75 4,771 660

B. Medium size IT service firms: 20-99 employees
Services production

Sales 29 8,616 2,280 145,898 23,682
Value added -55 3,782 1,102 61,821 9,837
Capital 341 41,397 8,994 828,553 115,150
Employees 20 846 260 13,128 2,102
Wages 38 2,771 736 50,442 7,657
Competition

IT firms 1 22 7 356 55
Investment

Investment -183 245 44 5,753 703

C. Large size IT service firms: over 100 employees
Services production

Sales 314 33,116 6,125 514,612 93,380
Value added 217 15,211 3,329 224,736 41,269
Capital 0 195,859 46,654 3,610,016 579,167
Employees 104 2,707 596 38,325 7,248
Wages 184 9,107 1,746 139,325 25,648
Competition

IT firms 1 7 2 90 17
Investment

Investment -4,393 1,006 184 19,792 3,155
NOTE: The data are from the merge between Financial Statistics(FS) and Regional Labor
Statistics(RAMS) databases. There are 160 observations in 25 regional markets. The vari-
ables are aggregated at the county level. Sales, value-added, wages, capital, and investment
are measured in thousand 1996 SEK. 1 USD=6.71 SEK and 1 EUR=8.63 SEK.
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Figure 3: Evolution of the labor productivity percentiles and dispersion from 1996 to
2002.
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Figure 4: Evolution of the capital intensity percentiles and dispersion from 1996 to
2002.
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Table 5: Estimates of value-added generating function parameters in Swedish IT
services

OLS EOP OLS EOP
software software Op. services and Op. services and

maintenance maintenance
Log No Emp. 1.017 0.680 0.995 0.789

(0.006) (0.0004) (0.0163) (0.031)

Log capital 0.118 0.374 0.169 0.208
(0.004) (0.004) (0.010) (0.003)

Market output 0.217 0.168
(0.004) (0.010)

Scale 1.135 1.347 1.164 1.196
Demand -4.609 -5.96
Mark-up 1.277 1.524
Sargan (p-value) 0.101 0.125
No. obs. 28,277 28,277 4,028 4,028
NOTE: OLS is ordinary least square regression including year dummies; EOP is the semi-
parametric estimation of equation (23) specified in Section 4, including selection. Two-stage
GMM is used in the EOP estimation. Reported standard errors (in parentheses) are robust to
heteroscedasticity.
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Figure 5: Evolution of productivity percentiles and dispersion for different size classes
from 1996 to 2002.
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Table 6: Dynamic Olley-Pakes productivity decomposition with entry and exit

A. Software
Surviving firms Difference Difference Difference Change in Difference Difference

change in between entering between surviving between surviving covariance for between entering between surviving
weighted and surviving and exiting and exiting surviving firms and surviving and exiting

productivity in weighted in weighted in unweighted in unweighted in unweighted
Surviving firms productivity productivity productivity productivity productivity

Year Prod. Growth (ωC
t′

− ωCt
) sE

t′
(ωE

t′
− ωC

t′
) sXt

(ωCt
− ωXt

) (ωCt
− ωXt

) (covC
t′

− covCt
) sE

t′
(ωE

t′
− ωC

t′
) sXt

(ωCt
− ωXt

)

(1) (2) (3) (4) (5) (6) (7) (8)
1998 -0.005 0.062 -0.123 0.055 -0.020 0.083 -0.033 0.036
1999 -0.313 -0.205 -0.211 0.102 -0.284 0.078 -0.055 0.063
2000 0.208 0.353 -0.235 0.090 0.276 0.077 -0.024 0.087
2001 0.231 0.457 -0.401 0.175 0.318 0.139 -0.033 0.072
2002 0.063 0.075 -0.135 0.123 -0.049 0.124 -0.059 0.078

B. Operational services and repair
1998 0.128 0.083 -0.189 0.234 0.171 -0.087 -0.031 0.199
1999 0.138 0.275 -0.108 -0.028 0.002 0.273 -0.074 0.102
2000 0.702 0.707 0.028 -0.033 0.461 0.246 -0.053 0.097
2001 0.663 0.990 -0.537 0.209 0.595 0.394 -0.017 0.031
2002 0.323 0.004 -0.186 0.505 -0.172 0.177 -0.013 0.062
NOTE: The reference period for calculation of the change of aggregate productivity index is 1997. Log of total factor productivity is used as measure of
productivity.
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Table 7: Revenues function estimates

A. Linear parametric specification
Variable Software Operational Maintenance

services and repair
Intercept 6.371 5.956 7.075

(0.102) (0.345) (0.686)

Own productivity 0.585 0.522 0.534
(0.004) (0.015) (0.028)

Own capital 0.367 0.292 0.326
(0.004) (0.013) (0.025)

Rivals’ productivity -6.63E-05 -1.85E-04 -3.45E-04
(6.38E-06) (7.86E-05) (0.001)

Rivals’ capital -3.22E-08 -1.05E-08 -3.24E-06
(4.57E-09) (6.13E-08) (3.79E-06)

Number of firms (other than IT) 0.119 0.327 0.222
(0.011) (0.039) (0.083)

Foreign owner 0.186 0.198 0.389
(0.032) (0.088) (0.276)

Medium size (20-99 employees) 0.199 0.042 -0.054
(0.024) (0.073) (0.170)

Large size (over 100 employees) 0.458 0.304 -0.098
(0.045) (0.139) (0.359)

After 2000 -0.202 -0.194 -0.335
(0.017) (0.052) (0.090)

Adjusted R2 0.821 0.814 0.808
Root of mean squares errors 0.622 0.708 0.583
Absolute mean errors 0.387 0.501 0.340

B. Linear non-parametric specification using cubic b-splines
Number of knots, kn = 6

Adjusted R2 0.832 0.813
Root of mean squares errors 0.604 0.562
Absolute mean errors 0.365 0.316

Number of knots, kn = 9
Adjusted R2 0.833 0.822
Root of mean squares errors 0.600 0.524
Absolute mean errors 0.360 0.275

Number of knots, kn = 14
Adjusted R2 0.834 0.829
Root of mean squares errors 0.599 0.496
Absolute mean errors 0.359 0.246
NOTE: The dependent variable is the log of revenues. The independent variables
are as follows: Own productivity measures the firm’s productivity; own capital is
the firm’s capital stock; rivals’ productivity is the log of sum of rivals’ productivity
at the county level; rivals’ capital is the log of rivals’ productivity at the county
level; Number of firms other than IT is the log of the number of non-IT firms at
the county level; population is the log of population at the county level; foreign
owner is a dummy variable indicating whether the firm has foreign ownership;
medium size (20-99 employees), large size (over 100 employees), and after 2000
are dummy variables for the firm’s size and the period following the 2001 dot-com
bust. For Panel A, the standard errors are in parentheses.
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Table 8: Entry and exit policy functions estimation results

A. Exit policies
Variable Software Operational Maintenance

services and repair
Intercept 14.292 -0.744 -0.431

(0.479) (0.948) (2.32)

Own productivity -0.321 -0.389 -0.285
(0.014) (0.036) (0.087)

Own capital 0.027 0.084 0.021
(0.012) (0.032) (0.086)

Rivals’ productivity -0.771 0.022 -0.350
(0.022) (0.042) (0.179)

Rivals’ capital -0.646 0.093 -0.204
(0.035) (0.043) (0.116)

Number of firms (other than IT) -0.208 -0.496 -0.033
(0.035 (0.120) (0.268)

Foreign owner 0.628 0.730 1.122
(0.102) (0.226) (0.635)

Medium size (20-99 employees) 0.015 0.795 0.687
(0.088) (0.200) (0.601)

Large size (over 100 employees) 1.484 0.548 0.614
(0.149) (0.415) (1.004)

After 2000 1.978 2.079 2.603
(0.035) (0.093) (0.247)

Log-likelihood -11851.188 -1635.361 -270.744
The likelihood ratio index 0.389 0.289 0.390

B. Entry policies
Intercept -1.051 -3.144 -4.822

(0.353) (0.860) (1.931)

Rivals’ productivity 0.068 0.184 0.434
(0.015) (0.036) (0.150)

Rivals’ capital -0.192 -0.016 0.100
(0.028) (0.039) (0.110)

Number of firms (other than IT) 0.265 0.177 0.134
(0.028) (0.116) (0.232)

Foreign owner -0.581 -0.468 0.334
(0.115) (0.287) (0.744)

Medium size (20-99 employees) -0.867 -0.902 -0.784
(0.064) (0.168) (0.631)

Large size (over 100 employees) -1.307 -1.665 -0.234
(0.165) (0.478) (1.016)

After 2000 -0.760 -1.240 -1.416
(0.034) (0.107) (0.282)

Log-likelihood -15849.964 -1852.225 -330.732
The likelihood ratio index 0.184 0.194 0.255
NOTE: The estimations are done using logit estimator. The independent
variables are as follows: Own productivity measures the firm’s productivity;
own capital is the firm’s capital stock; rivals’ productivity is the log of sum
of rivals’ productivity at the county level; rivals’ capital is the log of rivals’
productivity at the county level; Number of firms other than IT is the log
of the number of non-IT firms at the county level; population is the log of
population at the county level; foreign owner is a dummy variable indicating
whether the firm has foreign ownership; medium size (20-99 employees), large
size (over 100 employees), and after 2000 are dummy variables for the firm’s
size and the period following the 2001 dot-com bust. The standard errors are
in parentheses.
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Table 9: Investment policy functions estimation results

A. Investment policies for IT services
Variable Software Operational Maintenance

services and repair
Intercept -1.565 -3.635 -0.778

(3.682) (5.385) (0.543)

Own productivity 0.078 0.201 -0.003
(0.032) (0.179) (0.019)

Own capital 0.474 0.947 0.105
(0.027) (0.165) (0.017)

Rivals’ productivity -0.067 1.898 0.251
(0.268) (4.155) (0.446)

Rivals’ capital -1.732 -4.728 -0.318
(4.573) (6.855) (0.175)

Number of firms (other than IT) 0.108 0.245 0.041
(0.057) (0.425) (0.039)

Foreign owner 0.632 1.940 0.631
(0.212) (1.059) (0.192)

Medium size (20-99 employees) -0.551 -2.328 0.373
(0.157) (0.881) (0.118)

Large size (over 100 employees) 9.192 27.088 2.120
(0.295) (1.672) (0.253)

After 2000 -0.188 -0.466 -0.127
(0.089) (0.553) (0.061)

Adjusted R2 0.174 0.367 0.583
Root of mean squares errors 4.085 8.501 0.405
Absolute mean errors 16.688 72.280 0.165
Correlation (observed,predicted) 0.418 0.609 0.770

B. Linear non-parametric specification using cubic b-splines
Number of knots, kn = 6

Adjusted R2 0.729 0.743 0.877
Root of mean squares errors 2.335 5.382 0.213
Absolute mean errors 5.451 28.966 0.045
Correlation (observed,predicted) 0.854 0.883 0.942

Number of knots, kn = 9
Adjusted R2 0.836 0.767 0.945
Root of mean squares errors 1.818 5.075 0.136
Absolute mean errors 3.305 25.763 0.018
Correlation (observed,predicted) 0.915 0.887 0.976

Number of knots, kn = 14
Adjusted R2 0.869 0.854 0.950
Root of mean squares errors 1.618 3.997 0.125
Absolute mean errors 2.619 15.982 0.015
Correlation (observed,predicted) 0.933 0.930 0.980
NOTE: The dependent variable is the investment expenditure in ten thousand
Swedish krona. The independent variables are as follows: Own productivity
measures the firm’s productivity; own capital is the firm’s capital stock; rivals’
productivity is the log of sum of rivals’ productivity at the county level; rivals’
capital is the log of rivals’ productivity at the county level; Number of firms
other than IT is the log of the number of non-IT firms at the county level;
population is the log of population at the county level; foreign owner is a
dummy variable indicating whether the firm has foreign ownership; medium
size (20-99 employees), large size (over 100 employees), and after 2000 are
dummy variables for the firm’s size and the period following the 2001 dot-com
bust. For Panel A, the standard errors are in parentheses.
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Table 10: Labor policy functions estimation results

A. Labor policies for IT services
Variable Software Operational Maintenance

services and repair
Intercept 1.012 1.603 1.620

( 0.423) ( 0.619) (0.824)

Own productivity 0.522 0.482 0.485
( 0.002) ( 0.006) (0.010)

Own capital 0.267 0.199 0.151
( 0.002) ( 0.006) (0.016)

Rivals’ productivity -1.261 -2.542 -1.069
( 0.174) ( 0.387) (0.568)

Rivals’ capital -1.224 -0.339 -0.302
( 0.725) ( 0.680) (0.151)

Number of firms (other than IT) 0.017 0.327 0.500
( 0.041) ( 0.105) (0.158)

Population 0.122 -0.025 -0.177
( 0.045) ( 0.116) (0.173)

Foreign owner 0.098 0.078 0.372
( 0.018) ( 0.041) (0.092)

After 2000 -0.278 -0.243 -0.219
( 0.009) ( 0.022) (0.036)

Adjusted R2 0.899 0.929 0.939
Root of mean squares errors 0.351 0.329 0.245
Absolute mean errors 0.123 0.108 0.060
Correlation (observed,predicted) 0.949 0.964 0.970

B. Linear non-parametric specification using cubic b-splines
Number of knots, kn = 6

Adjusted R2 0.943 -1.272 0.960
Root of mean squares errors 0.069 1.865 0.193
Absolute mean errors 0.263 3.480 0.037
Correlation (observed,predicted) 0.971 0.584 0.981

Number of knots, kn = 9
Adjusted R2 0.945 -8.892 0.963
Root of mean squares errors 0.067 3.858 0.178
Absolute mean errors 0.259 14.888 0.031
Correlation (observed,predicted) 0.972 0.507 0.984

Number of knots, kn = 14
Adjusted R2 0.946 -2.010 0.964
Root of mean squares errors 0.065 2.112 0.169
Absolute mean errors 0.256 4.461 0.028
Correlation (observed,predicted) 0.973 0.475 0.985
NOTE: The dependent variable is the log of number of employees. The inde-
pendent variables are as follows: Own productivity measures the firm’s pro-
ductivity; own capital is the firm’s capital stock; rivals’ productivity is the log
of sum of rivals’ productivity at the county level; rivals’ capital is the log of
rivals’ productivity at the county level; Number of firms other than IT is the
log of the number of non-IT firms at the county level; population is the log
of population at the county level; foreign owner is a dummy variable indicat-
ing whether the firm has foreign ownership; medium size (20-99 employees),
large size (over 100 employees), and after 2000 are dummy variables for the
firm’s size and the period following the 2001 IT bubble burst. For Panel A,
the standard errors are in parentheses.

58



Table 11: Cost estimates by sub-sector before and after the 2001 dot-com bust

Variable Software Operational Maintenance
services and repair

Before After Before After Before After
A: Investment cost
Setup investment 170.61 323.68 667.13 645.98 193.01 148.23
Std. (9.60) (7.63) (5.81) (9.51) (8.59) (5.27)

Variable investment 6.26 5.36 10.02 13.80 34.39 14.07
Std. (0.16) (0.60) (0.33) (0.70) (4.57) (9.36)

Variable investment squared 6.76e-6 295e-5 4.09e-5 8.60e-5 0.003 0.06
Std. (8.03e-7) (4.32e-6) (2.10e-6) (5.37e-6) (0.0008) (0.04)

B: Implied distributions of investment costs
Investment - mean 4,293.81 4,673.79 3,015.53 3,491.63 1,043.34 787,17
Investment - std. 2,992.91 44.75 241.43 453.68 50.69 75.27

C: Labor adjustment cost
Setup positive adjustemnt 141.89 666.67 413.50 89.63 400.47 404.28
Std. (78.92) (347.88) (151.26) (34.89) (60.20) (87.47)

Variable positive adjustment 322.58 271.27 379.26 432.708 294.36 245.14
Std. (2.81) (2.17) (2.06) (4.34) (9.76) (2.20)

Setup negative adjustment 167.12 366.72 562.01 210.55 337.74
Std. (67.37) (89.02) (87.50) ( 93.33) (99.74 )

Variable negative adjustment 285.14 285.82 324.05 279.41 262.132
Std. (1.47) (4.57) (3.959) (26.38) (2.01)

D: Implied distributions of labor adjustment costs
Positive adjustment - mean 2,587.32 2,890.39 2,000.37 1,515.04 2,534.41 2,089
Positive adjustment - std. 1,039.67 1,943.26 171.25 671.25 475.75 319.42
Negative adjustment - mean 1,262 1,429.50 1,650.87 927.97 1,003.73
Negative adjustment - std. 478.26 631,68 287.41 150.04 66.98

E: Exit costs
Scrap (sell-of values) 170.01 175.01 230.00 255.15 260.11 248.04
Std. (61.02) (50.29) (27.24) (23.45) (40.57) (34.78)

F: Entry costs
Sunk cost 18.69 19.92 120.61 120.33 135.96 117.14
Std. (4.08) (4.66) (34.63) (34.53) (146.97) (104.30)

NOTE: The estimates are obtained using 2,000 simulations with 100 years each, where the initial
states are held constant across simulations. Standard errors in parentheses.
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Appendix A: Data. This section describes the variables in the data. Value

added is total shipments, adjusted for changes in inventories, minus the cost of

materials. Real value added is constructed by deflating value added by a five-

digit industry output deflater. The deflectors are taken from Statistics Sweden.

The labor variable is the total number of employees. The total wages come from

RAMS. I deflated sales, wages, and investment by the consumer price index (CPI)

from IMF-CDROM 2005. The capital measure is constructed using a perpetual

inventory method, kt+1 = (1−δ)kt + it. Since the capital data distinguish between

buildings and equipment, all calculations of the capital stock are done separately

for buildings and equipment. As suggested by Hulten and Wykoff (1981), equip-

ment is depreciated at a rate of 0.1179. In the empirical part, the paper only uses

machinery and equipment in the capital stock measure.

Appendix B: Productivity estimation. Considering the high turnover in the

IT industry, it is important to control for selection. Olley and Pakes’ (1996) ap-

proach to control for selection is to substitute the predicted survival probability

Pt−1 into g(·). Thus, the final value-added generating function to be estimated is

yjt =
(

1 + 1
η

)

[β0 + βlljt + βkkjt] + −1
η
qmt −

1
η
z′mtβz + g(Pt−1, ωjt−1)

+
(

1 + 1
η

)

ξjt −
1
η
ud

jt +
(

1 + 1
η

)

up
jt,

(23)

where ωjt−1 comes from (8).45

The value-added generating function (23) is estimated using the sieve mini-

mum distance (SMD) procedure proposed by Newey and Powell (2003) and Ai

and Chen (2003) for independent and identically distributed (i.i.d) data. The goal

is to obtain an estimable expression for the unknown parameters β and gKT
where

45The condition for identification is that the variables in the parametric part of the model are
not perfectly predictable (in the least square sense) by the variables in the non-parametric part
(Robinson, 1988). Hence, there cannot be a functional relationship between the variables in the
parametric and non-parametric part (Newey et al., 1999). Including additional variables that
affect productivity guarantees the identification.
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KT indicates all parameters in g(·). To approximate g(·), a third order polynomial

in ωt−1 is used.46 A tensor product polynomial series of {1, lt−1, kt−1, pIt−1, wmt−1,

zmt−1} are used as instruments. Using the GMM implementation, the parameter

values (β, gKT
) are jointly estimated. The Nelder-Mead numerical optimization

method is used to minimize the GMM objective function.

Appendix C: B-Splines. We consider a cubic spline, f(x), x ∈ [a, b], with q in-

terior knots, ξi, i = 1, · · · , q, that can be written as a sum of piecewise polynomials

of order 4 (degree 3) on the any interval [ξi−1, ξi],

f(x) =

3
∑

m=0

δmix
m, x ∈ [ξi−1, ξi), i = 1, · · · , q, or x ∈ [ξq, ξq+1], i = q + 1.

The function f(x) is assumed to be twice continuously differentiable. Collinearity

is a potential problem when using cubic spline in regressions. For this reason, the

b-splines are preferred because of their numerical properties. For b-splines, the

basis is derived recursively.47 To do this, additional knots, such as ξ−3 = ξ−2 =

ξ−1 = a and ξq+2 = ξr+3 = ξr+4 = b, have to be added. The basis for b-splines,

{Bi,4}
q
i=−3 is given by

Bi,n =
x − ξi

ξi+n−1 − ξi

Bi,n−1(x) +
ξi+n − x

ξi+n − ξi+1

Bi+1,n−1(x), if n = 2, 3, 4,

where Bi,1(x) is equal to 1 if x ∈ [ξi, ξi+1) and 0 otherwise. Having the basis, the

cubic b-spline is given by

bs(x) =

q+4
∑

i=1

αiBi−4,4(x),

46For robustness, the expand g(·) using a 4th order polynomial was also used. Yet, the results
were similar.

47Schumaker (1981) provides a detailed overview on spline theory. de Boor (1978) and Eubank
(1988) provide detailed information on b-splines.
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where αi,i = 1, · · · , q + 4 is the set of coefficients.
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