
Research Reports in Software Engineering and Management 2012:03 ISSN 1654-4870

Proceedings of the 2nd Workshop on Experiences
and Empirical Studies in Software Modelling
Michel Chaudron, Marcela Genero,

Silvia Abrahão, Lars Pareto Department of Computer Science and Engineering

1

Proceedings of the 2nd Workshop on Experiences and Empirical Studies in Software

Modelling

Michel Chaudron, Marcela Genero, Silvia Abrahão, Lars Pareto (Eds.)

Copyright is retained by the authors, 2012

Report no 2012:03

ISSN: 1651-4769

Department of Computer Science and Engineering

Chalmers University of Technology and University of Gothenburg

Chalmers University of Technology

Department of Computer Science and Engineering

SE-412 96 Göteborg

Sweden

Telephone + 46 (0)31-772 1000

Göteborg, Sweden 2012

2

					
					
					
					
					
					
					
					
					
					
					

			
		
ACM/IEEE		15th				International			
	Conference				on				Model				Driven			
	Engineering 				Languages				and			
	Systems	
	
Sept.	30th	–	Oct.	5th	2012	
Innsbruck,	Austria	

					

					

					
					
					
					
					
					
					
					
					
					
					

Experiences	and				Empirical				Studies									
in	Software				Modelling				(EESSMod				2012)									

September	2					

					
					
Michel		Chaudron,				Marcela				Genero,			
	Silvia				Abrahão,	Lars		Pareto				(Eds.)					
					

	 3

EESSMOD 2012
Second International Workshop on Experiences and

Empirical Studies in Software Modelling

Michel Chaudron1, Marcela Genero2, Silvia Abrahão3, Lars Pareto1

chaudron@chalmers.se, Marcela.Genero@uclm.es, sabrahao@dsic.upv.es, pareto@chalmers.se

1 The Software Engineering Division,

Chalmers University of Technology and University of Gothenburg,
SE-412 96 Gothenburg, Sweden

2ALARCOS Research Group, University of Castilla-La Mancha

Paseo de la Universidad 4, 13071, Ciudad Real, Spain

3 ISSI Research Group, Department of Information Systems and Computation,
Universitat Politècnica de València

Camino de Vera, s/n, 46022, Valencia, Spain

Preface

Most software development projects apply modelling in some stages of development and to various degrees in order to
take advantage of the many and varied benefits of it. Modelling is, for example, applied for facilitating communication by
hiding technical details, analysing a system from different perspectives, specifying its structure and behaviour in an
understandable way, and for enabling simulations and generating test cases in a model-driven engineering approach.
Evaluation of modelling techniques, languages and tools is needed to assess their advantages and disadvantages, to ensure
their applicability to different contexts, their ease of use, and other aspects such as required skills and costs  both isolated
evaluations and comparisons with other methods.

The need to reflect upon the adoption of software modelling in industry and a growing understanding of the role of
empirical research in technology adoption led us to organize the International Workshop on Experiences and Empirical
Studies in Software Modelling (EESSMod) as a satellite event of the ACM/IEEE International Conference on Model
Driven Engineering Languages and Systems (MoDELS), with professionals and researchers interested in software
modelling as intended audience, and with the objective to
 build a better understanding of the industrial use of modelling techniques, languages and tools;
 start building theories about the effectiveness of modelling approaches;
 identify directions for future research in the field;
 facilitate and encourage joint research and experimentation in software modelling.

The 1st workshop was held in Wellington, NZ, and the 2nd (presented in these proceedings) in Innsbruck, AU. In all, 18
papers were submitted to the 2nd workshop. Each paper was peer reviewed by three independent PC members (from a
committee of 23). The review process resulted in 9 submissions being accepted for publication, and 6 submissions for
poster presentation (out of which three accepted). The accepted papers were categorized, in search for common research
themes, which resulted in the following categories of research problems:

1. The fitness for purpose of modeling. We know that modeling is great - but when, where and for what? (3 papers)
2. The cognitive aspects of modeling. Models support mental activities better than code - but which, how and to

what degree? (3 papers)
3. Modeling and process improvement. Modeling enables process improvement - but where do these improvements

lead? (3 papers)
These proceedings collect the papers presented at the workshop as well abstracts for the poster presentations. We would
like to thank the authors for submitting their papers to the Workshop. We are also grateful to the members of the Program
Committee for their efforts in the reviewing process, and to the MoDELS2012 organizers for their support and assistance
during the workshop organization. More details on the Workshop are available at http://www.eesmod.org

Gothenburg, Ciudad Real, Valencia
27 September 2012

Michel Chaudron
Marcela Genero
Silvia Abrahão
Lars Pareto

MODELS’12 Workshop – EESSMod 2012

4

Program Committee
Silvia Abrahao, Universitat Politècnica de València, Spain
Bente Anda University of Oslo, Norway
Teresa Baldassarre, Università degli Studi di Bari, Italy
Narasimha Bolloju, City University of Hong Kong, China
Danilo Caivano, Universitàdegli Studi di Bari, Italy
Jeffrey Carver, University of Alabama, USA
Michel Chaudron, Chalmers | University of Gothenburg, Sweden
José Antonio Cruz Lemus, University of Castilla-La Mancha, Spain
Holger Eichelberger, Universität Hildesheim, Germany
Félix Garcia, University of Castilla-La Mancha, Spain
Marcela Genero, University of Castilla-La Mancha, Spain
Carmine Gravino, University of Salerno, Italy
Brian Henderson Sellers, University of Technology, Sydney, Australia
Jan Mendling, Humboldt-University Berlin, Germany
Parastoo Mohagheghi, Norwegian University of Science and Technology, Norway
James Nelson, Southern Illinois University, USA
Lars Pareto, Chalmers | University of Gothenburg, Sweden
Jeffrey Parsons, Memorial University of Newfoundland, Canada
Keith Phalp, Bournemouth University, UK
Giuseppe Scanniello, Università degli Studi della Basilicata, Italy
Keng Siau, Missouri University of Science and Technology, USA
Dag Sjøberg, University of Oslo, Norway
Marco Torchiano, Politecnico di Torino, Italy

MODELS’12 Workshop – EESSMod 2012

5

Workshop Program

Session I: THE FITNESS FOR PURPOSE OF MODELING
Modeling is great - but when, where and for what? Chair: Michel Chaudron

Marco Torchiano, Federico Tomassetti, Filippo Ricca, Alessandro Tiso and Gianna Reggio. Benefits from
Modeling and MDD Adoption: Expectations and Achievements

Rut Torres Vargas, Ariadi Nugroho, Michel Chaudron and Joost Visser. The Use of UML Class Diagrams
and Code Change-proneness

Adrian Kuhn and Gail Murphy. Lessons Learned from Evaluating - MDE Abstractions in an Industry Case Stud

Session II: COGNITIVE ASPECTS OF MODELING
Models support mental activities better than code - but which, how and to what degree?
Chair: Marcela Genero
Giuseppe Scanniello, Carmine Gravino and Genny Tortora. Does the Combined use of Class and Sequence
Diagrams Improve the Source Code Comprehension? Results from a Controlled Experiment
Hafeez Osman, Arjan van Zadelhoff, Dave Stikkolorum and Michel Chaudron. UML Class Diagram
Simplification: What is in the developer’s mind?
Stefan Zugal, Jakob Pinggera, Hajo A. Reijers, Manfred Reichert and Barbara Weber. Making the Case for
Measuring Mental Effort
Session III: MODELING AND PROCESS IMPROVEMENT
Modeling enables process improvement - but where do improvements lead?
Chair: Silvia Abrahão
R.J. Macasaet, Manuel Noguera, Maria Luisa Rodriguez and Jose Luis Garrido. Sam Supakkul, Lawrence
Chung, Micro-business Behavior Patterns associated with Components in a Requirements Approach
Gianna Reggio, Maurizio Leotta, Filippo Ricca and Egidio Astesiano. Five Styles for Modelling the Business
Process and a Method to Choose the Most Suitable One
Lamia Abo Zaid and Olga De Troyer. Modelling and Managing Variability with Feature Assembly –
An Experience Report
Session IV: POSTER AND NETWORKING SESSION
What else is going on in EESSMOD community?
Ideas for cross site collaborations?
Chair: Lars Pareto
Daniel Méndez Fernández and Roel Wieringa, Empirical Design Science for Artefact-based Requirements
Engineering Improvement. (Poster)
Ana M. Fernández-Sáez, Peter Hendriks, Werner Heijstek and Michel R.V. Chaudron, The Role of Domain-
Knowledge in Interpreting Activity Diagrams – An Experiment (Poster)
Vinay Kulkarni, Modeling and Enterprises – the past, the present and the future. (Poster)

MODELS’12 Workshop – EESSMod 2012

6

Content

Preface... 4
Program committee.. 5
Workshop Program..6
Content...7

Benefits from Modeling and MDD Adoption: Expectations and Achievements................8
M. Torchiano, F. Tomassetti, F. Ricca, A. Tiso and G.Reggio.

The Use of UML Class Diagrams and Code Change-proneness...................................... 14
R.T. Vargas, A. Nugroho, M. Chaudron and J. Visser.

Lessons Learned from Evaluating -
MDE Abstractions in an Industry Case Study.. 20
A. Kuhn and G. Murphy.

Does the Combined use of Class and Sequence Diagrams Improve the
Source Code Comprehension? Results from a Controlled Experiment............................ 25
G. Scanniello, C. Gravino and G. Tortora.

UML Class Diagram Simplification: What is in the developer’s mind?.......................... 31
H. Osman, A. van Zadelhoff, D. Stikkolorum and M. Chaudron.

Making the Case for Measuring Mental Effort...37
S. Zugal, J. Pinggera, H.A. Reijers, M. Reichert and B. Weber.

Micro-business Behavior Patterns associated with Components
in a Requirements Approach... 43
R.J. Macasaet, M. Noguera, M.L. Rodriguez, J.L. Garrido, S. Supakkul, and L. Chung

Business Process Modelling:
Five Styles and a Method to Choose the Most Suitable One.. 49
G. Reggio, M. Leotta, F. Ricca and E. Astesiano.

Modelling and Managing Variability with Feature Assembly – An Experience report... 55
L.A. Zaid and O. De Troyer.

The Role of Domain-Knowledge in Interpreting Activity Diagrams –
An Experiment (Abstract)... 61
Ana M. Fernández-Sáez, P. Hendriks, W. Heijstek, and M.R.V. Chaudron.

Empirical Design Science for
Artefact-based Requirements Engineering Improvement. (Abstract)...............................62
D. M. Fernández, Roel Wieringa,

Modeling and Enterprises – the past, the present and the future (Abstract)..................... 63
V. Kulkarni

MODELS’12 Workshop – EESSMod 2012

7

Benefits from Modelling and MDD Adoption: Expectations
and Achievements

Marco Torchiano
Politecnico di Torino

Torino, Italy
marco.torchiano@polito.it

Federico Tomassetti
Politecnico di Torino

Torino, Italy
federico.tomassetti@polito.it

Filippo Ricca
DIBRIS, Università di Genova

Genova, Italy
filippo.ricca@unige.it

Alessandro Tiso
DIBRIS, Università di Genova

Genova, Italy
alessandro.tiso@unige.it

Gianna Reggio
DIBRIS, Università di Genova

Genova, Italy
gianna.reggio@unige.it

ABSTRACT
The adoption of Model Driven Development (MDD) promises,
in the view of pundits, several benefits. This work, based
on the data collected through an opinion survey with 155
Italian IT professionals, aims at performing a reality check
and answering three questions: (i) Which benefits are really
expected by users of modeling and MDD? (ii) How expec-
tations and achievements differ? (iii) Which is the role of
modeling experience on the ability of correctly forecasting
the obtainable benefits?

Results include the identification of clusters of benefits com-
monly expected to be achieved together, the calculation
of the rate of actual achievement of each expected bene-
fit (varying dramatically depending on the benefit) and the
“proof” that experience plays a very marginal role on the
ability of predicting the actual benefits of these approaches.

Categories and Subject Descriptors
D.2.10 [Software Engineering]: Design—methodologies

General Terms
Measurement, Languages

Keywords
Industrial survey, Model Driven Development (MDD)

1. INTRODUCTION
Models are used in software development with the general
goal of raising the level of abstraction. The approaches re-
sorting on models are various and fall under different names:
from simple modeling to model-driven development (MDD)
[16], model-driven engineering (MDE) [17], and model-driven

architecture (MDA) [13]. In practice, models can be trans-
formed and code can be generated from them by means
of (semi) automatic transformations. Alternatively, mod-
els can also be directly executed/interpreted (in that case
they are called executable models). In the following, we will
address all these related techniques with the abbreviation
MD* [22].

There is a number of benefits commonly associated with
the usage of models: they range from an improvement in
the quality of documentation, to huge gains in productivity
and reduction of defects [1]. Hype is frequently associated
to software development processes/techniques until they are
not yet mainstream and fully understood [4]; we think it
is also the case for modeling and MD*. In our opinion it
is important to distinguish which benefits associated with
modeling and MD* are real and which contribute just to
create hype.

The literature reports different success stories about MD*
(e.g., [1, 8]). Those stories tell us which benefits we can
get in the best-case scenario. What about the other cases?
How frequently are the failures? How many practitioners
were disappointed with MD* usage? How frequently the
promises of MD* are not maintained in reality? We think it
is important to answer these questions to provide guidance
to practitioners and clarify what can be reasonably expected
from modeling and MD* and what can possibly, but not so
easily, be obtained.

The large number of methods under the MD* name is con-
sidered to be still evolving and not yet completely mature.
The first success stories were heard a long time ago but the
knowledge to make those successes consistently repeatable is
still missing. Being the discipline not yet fully understood,
and the underlying knowledge not yet codified, expertise is
the only resource we can rely on when a MD* solution is
designed. Thus, another interesting element to investigate
is the role of expertise. Being expertise difficult and contro-
versial to measure directly, we can use the number of years
of experience as an approximation. The resulting question
is: does the level of experience help when adopting modeling
and MD*? In particular, does it help when forecasting the
outcome of modeling?

1

MODELS’12 Workshop – EESSMod 2012

8

In the next section, we present the design of the general
survey, the research questions addressed in this work and
the analysis we performed to answer them (Sect. 2). Then,
we present the results found (Sect. 3). In Sect. 4, we discuss
the results and later we compare them with previous work
(Sect. 5). Finally, we draw our conclusions (Sect. 6).

2. SURVEY DESIGN
We conceived and designed the study with the goals of un-
derstanding:

G1 the actual diffusion of software modeling and MD* in
the Italian industry,

G2 the way software modeling and MD* are applied (i.e.,
which processes, languages and tools are used), and

G3 the motivations either leading to the adoption (expected
benefits) or preventing it (experienced or perceived
problems).

The above goals cover a wide spectrum, which base been
partly considered in previous works [19, 21]. The cited arti-
cles provide also more details about the design of the survey.
In this work, we consider only a limited portion of those
goals, in particular we focus on the benefits, that is the first
part of goal G3.

2.1 Research questions
The goal we investigate in this paper, i.e., examine expec-
tations and real achievements of benefits due to the adop-
tion of modeling and MD*, can be detailed into three main
research questions. First of all, we consider what benefits
the adopters expect from modeling (RQ1), then we examine
what is the actual frequency of achievements (RQ2). Finally,
we consider if the experience can lead to more realistic ex-
pectations (RQ3).

• RQ1: Which are the benefits expected from
modeling and MD* adoption?

– RQ1.1: Which are the most expected bene-
fits? We want to understand which are the antic-
ipated benefits that also represent plausible mo-
tivations for adopting modeling and MD*.

– RQ1.2: Which are the relations between
expectations? We envision group of related ben-
efits, i.e., benefits that are supposed to be achieved
together.

• RQ2: Which are the most frequently fulfilled
expectations? We aim at understanding how well
confirmed benefits match expectations, in order to un-
derstand the capability of participants to predict the
results and spot possibly hard-to-gain benefits.

• RQ3: Does experience in modeling improves
accuracy of benefits achievement forecasts? Cor-
rectly forecasting achievable benefits is a key factor,
e.g., in cost estimation, therefore we are aim to under-
stand whether (or not) experience improves (or affects)
the performance in this respect.

2.2 Instrument
We selected an opinion survey [6] with IT practitioners, ad-
ministered through a web interface, as instrument to take a
snapshot of the state of the practice concerning industrial
MD* adoption. In the design phase of the survey we drew
inspiration from previous surveys (i.e., [20] and [9]) and we
followed as much as possible the guidelines provided in [12].

The survey has been conducted through the following six
steps [12]: (1) setting the objectives or goals, (2) trans-
forming the goals into research questions, (3) questionnaire
design, (4) sampling and evaluation of the questionnaire by
means of pilot executions, (5) survey execution and, (6) anal-
ysis of results and packaging.

For the specific purpose of this paper we analysed a few items
contained in the questionnaire (a more detailed description
is available in [19]).

An initial item (Dev08) concerned whether models are used
in the respondent organization for software development.
For the respondents who provided a positive answer to such
item we administered a further item measured using the
question “What are the benefits expected and verified from
using modeling (and MD*)?”. This was designed as a closed
option question; the list of benefit that we presented the re-
spondents was compiled on the basis of the literature and
includes:

• Design support

• Improved documentation

• Improved development flexibility

• Improved productivity

• Quality of the software

• Maintenance support

• Platform independence

• Standardization

• Shorter reaction time to changes

For each benefit the respondent could indicate whether the
benefit was expected and/or verified.

To evaluate the experience in modeling we considered one
item that measured the years since the initial adoption of
modeling or MD* in the work-group of the respondents.

2.3 Analysis
Whenever possible we addressed the research questions with
the support of statistical tests. In all the tests we used we
considered an α = 0.05 as a threshold for statistical signif-
icance, that is we accept a 5% probability of committing a
type I error.

RQ1.1: to answer this RQ we simply ranked the benefits
by the number of respondents expecting that benefit in de-
scending order. In addition, using the proportion test, we
compute the estimate proportion of respondents who expect
the benefit and the corresponding 95% confidence interval.

2

MODELS’12 Workshop – EESSMod 2012

9

1 2−5 6−10 11−30 31−50 51−250 251 +

0
20

40
60

80
10

0

24

10

15

20

6

26

54

Figure 1: Size of respondents’ companies

The interval is useful to understand the precision of the re-
sult.

RQ1.2: we looked at the relations between all possible pairs
of benefits. We calculated the Kendall rank correlation co-
efficient between the expectations of each pair of benefits,
obtaining a symmetrical measure of the strength of associa-
tion between the expectations of the two benefits. Positive
values represent a positive association while negative values
represent a negative association. The absolute value of the
correlation represent the strength of the association and it
can vary from zero to one.

RQ2: to answer this question we examined for each benefit
how frequently it was achieved when expected. We can look
at the issue as a classification problem – expected benefits
correspond to predictions and verified benefits to observa-
tions – then the above measure corresponds to the precision
of the classifier.

RQ3: in this case we considered the factor experience in
modeling, so we divided the respondents in two groups: low
experienced practitioners (i.e., < 5 years of experience in
modeling) and high experienced practitioners (i.e., ≥ 5 years
of experience in modeling). Finally, we built the contin-
gency table and performed the Fisher test considering the
two groups (low and high experience) and the number of
correct and wrong forecasts done by each group.

3. RESULTS
In summary, over a period of 2 months and half, we collected
155 complete responses to our questionnaire by means of an
on-line survey tool1.

The most of the companies where the respondents work are
in the IT domain (104), then come services (15) and telecom-
munications (11). The distribution of the companies size
where the respondents work is presented in Figure 1.

Among the respondents, on the basis of item Dev08 we were
able to identify 105 respondents using modeling and/or MD*
techniques. We apply the analysis described above only

1LimeSurvey: http://www.limesurvey.org

to the information collected from respondents who adopted
modeling.

3.1 RQ1: Which are the benefits expected from
modeling adoption?

RQ1.1: Which are the most expected benefits? In
Table 1 we report for each benefit the frequency of expec-
tation (column Freq.) and the corresponding percentage of
respondents (column Estimate).

Improved documentation is the most expected benefit, with
almost 4 out of 5 respondents anticipating it. Also Design
support, Quality of the software, Maintenance support, and
Standardization are frequently expected. For all of the top
5 benefits we are 95% sure that more than 50% of modeling
adopters expect them: in fact the confidence interval (C.I.)
lower bounds are larger than 50%. The remaining bene-
fits, Improved development flexibility, Improved productivity,
Shortened reaction time to changes, and Platform indepen-
dence are less popular, with the latter typically expected by
less than 40% of respondents.

RQ1.2: Which are the relations between expecta-
tions? We report the statistically significant relations among
benefits in the graph shown in Figure 2: the nodes represent
the individual benefits, the edges represent a statistically sig-
nificant relation which is reported as edge label. The layout
of the nodes is computed considering the Kendall rank cor-
relation coefficient (KC) (the length of the edge should be as
much as possible inversely proportional to the Kendall dis-
tance) and additional constraints to improve the readability
avoiding the overlaps of nodes and labels.

The benefit expected together (KC > 0) are linked by con-
tinuous black lines, while the benefits whose expectations
tend to exclude each other (KC < 0) are linked by dashed
red lines, with circles at the ends.

All the significant relations were positive except one, that
between Improved documentation and Improved development
flexibility : who expects one of these two benefits tend to not
expect the other one.

By observing Figure 2, we can note two distinct clusters: the
first includes Improved documentation, Design support and
Maintenance support. The second one includes Improved de-
velopment flexibility, Shorter reaction time to changes, Plat-
form independence, Standardization and Improved produc-
tivity. Quality of the software appears to be a transversal
benefit, connecting the two clusters.

The two cluster contain three maximal cliques2: the smallest
(left side) cluster correspond to a three-vertexes maximal
clique, while the largest one (right side) correspond to a
four-vertexes and a three-vertexes cliques that share a node
(Reactivity to changes).

2From Wikipedia: in the mathematical area of graph theory,
a clique in an undirected graph is a subset of its vertices
such that every two vertices in the subset are connected by
an edge.

3

MODELS’12 Workshop – EESSMod 2012

10

Improved
documentation

Design support

0.34Maintenance
support

0.43

Flexibility

-0.2

0.25

Quality of the
software

0.24

Reactivity
to changes

0.2

Productivity

0.22

Standardization

0.270.67

Platform
independence

0.35

0.33

0.36

0.26

0.2

0.22

0.23

Figure 2: Relations among benefits expectations.

3.2 RQ2: Which are the most frequently ful-
filled expectations?

This research question concerns how often the verification
of a benefit met the expectation. It is measured as the fre-
quency of verified benefit given the benefit was expected.
Results are reported in the rightmost column of Table 1
(Fulfillment rate).

Design support has the highest fulfilment rate: 60 respon-
dents out of the 81 who reported to expect it (i.e., 78%)
actually achieved the benefit. Also Documentation improve-
ment is consistently verified when expected, the same is not
true for all the other benefits. Standardization and Mainte-
nance support are just above the parity (it means are slightly
mainly achieved than not achieved, when expected) and all
the others are more often not achieved than achieved. Plat-
form independence and Reactivity to changes have a really
low fulfilment rate, representing very often a delusion for
practitioners.

3.3 RQ3: Does experience in modeling improves
accuracy of benefits achievement forecasts?

The low experienced practitioners group (< 5 years of ex-
perience in modeling) is constituted by 50 persons, whereas
the high experienced practitioners group (i.e., ≥ 5 years of

experience in modeling) by 55. Thus, the two groups are
balanced.

Applying the Fisher test to the built contingency table, even
adopting a looser threshold of 0.1, it is not possible to find
any statistically significant difference. Therefore, we con-
clude that experience does not improve the precision in fore-
casting the obtainable benefits.

4. DISCUSSION
The rate of expectation among benefits varies considerably.
The most commonly expected are the benefits deriving from
a descriptive use of models (e.g., Improved documentation
and Design support) as opposed to those deriving from a
prescriptive use of models (e.g., Improved productivity and
Shorter reaction time to changes). This tells us indirectly
how practitioners use models and for what.

It is interesting to note how this distinction between the us-
age of models in a descriptive or a prescriptive way emerges
also from the relation between benefit expectations, where
two distinct clusters are clearly depicted (Figure 2). These
strong relations between benefit expectations suggest us that
practitioners are trying to achieve a set of different benefits
at the same time. It remains to understand how often those
benefits are contrasting and how difficult is to devise MD*

Table 1: Frequency of expectations
Proportion Fulfillment

Benefit Freq. Estimate 95% C.I. Rate
Improved documentation 81 77% (68% , 85%) 68%
Design support 77 73% (64% , 81%) 78%
Quality of the software 75 71% (62% , 80%) 49%
Maintenance support 66 63% (53% , 72%) 52%
Standardization 64 61% (51% , 70%) 52%
Improved development flexibility 51 49% (39% , 58%) 45%
Improved productivity 42 40% (31% , 50%) 45%
Shorter reaction time to changes 41 39% (30% , 49%) 37%
Platform independence 32 30% (22% , 40%) 34%

4

MODELS’12 Workshop – EESSMod 2012

11

approaches able to permit the achievements of all those ben-
efits at the same time.

The strongest relation is between Improved development flex-
ibility and Shorter reaction time to changes (KC = 0.67),
the intensity of this relation is so strong that we can deduce
the two benefits are either essentially considered synonyms
or they are intimately related. The next strongest relation
(KC = 0.43) is between Improved documentation and Main-
tenance support, this link seems to implicitly confirm the
common wisdom about documentation being an enabler of
maintenance activities.

The rate of achievement is constantly higher than 50% for
benefits of descriptive models while it is much lower for ben-
efits of prescriptive models. In the latter case, the rate of
achievement can be as low as one out of three for Platform
independence and slightly higher for Reactivity to changes
and Improved flexibility. A few pragmatic questions arise
from the perspective of a project manager, that deserve fur-
ther investigation:

• is it reasonable to expect those less fulfilled benefits
from the adoption of modeling and MD*?

• what are the possible causes of low fulfilment rate for
those benefits?

– limited experience in modeling,

– lack or inadequacy of tools,

– simply not obtainable through MD* approaches.

In Table 2 we show, side by side, the position of each benefit
among the rank of the most expected benefits (Table 1, 2nd
column) and the rank of the most reliably predictable bene-
fits (Table 1, last column). As can be seen, the two rankings
are very similar, with most expected benefits being also the
most reliably predictable, and the least expected being also
the least reliably predictable.

The only relevant difference involves Quality of the software
and Standardization. The former is the 3rd more frequently
expected benefit but it proved to be not so easily attain-
able, while the relation is inverted for the latter. Therefore
we can say that concerning the improvements of the software
quality through the usage of modeling there are greater ex-
pectations than it is realistic, while the benefits in terms of
standardization are generally underestimated.

Finally, the lack of effect of experience on the ability of
predicting the outcome could be due to the immaturity of
model-driven techniques, which are still evolving. Is it pos-
sible that developers who have more experience rely on as-
sumptions which were valid for old-fashioned model-driven
approaches and are not more valid with the most recent
ones.

5. RELATED WORK
In the literature is possible to find anecdotal reports of in-
flated expectations on software by stakeholders [2]. High
expectations and consequent disillusion were reported also
for other highly-hyped approaches, as for example for agile

Table 2: Comparison between expectations and rate
of achievement.

Benefit Exp. Rate ach.
Improved documentation 1◦ 2◦

Design support 2◦ 1◦

Quality of the software 3◦ 5◦

Maintenance support 4◦ 4◦

Standardization 5◦ 3◦

Improved development flexibility 6◦ 7◦

Improved productivity 7◦ 6◦

Shortened reaction time to changes 8◦ 8◦

Platform independence 9◦ 9◦

methods [5]. We believe this is true also in the SOA context
[14].

The effects of expertise on forecast of the outcome were
proved to be at the best uncertain in different domains.
Camerer and Johnson state that in many domains expert
judgments is worse than the simplest statistical models [3].
Hammond [7] stated that “in nearly every study of experts
carried out within the judgment and decision-making ap-
proach, experience has been shown to be unrelated to the
empirical accuracy of expert judgments”; such a statement
fits very well the findings of our study, and in particular with
RQ3.

While in general, expert judgment seems not to work par-
ticularly well, in the context of software development, effort
estimation conducted by experts outperforms sophisticated
formal methods [11]. The reasons provided by Jørgensen in
[10] are: (i) the importance of highly context-specific knowl-
edge in software development, (ii) the instability of rela-
tionship in software development (e.g., between effort and
size) which lead to a very unpredictable field. The effect
of expertise on judgment of other aspects of the software
development process are rarely studied, as reported by Lo-
console and Borstler in [15]. In their work they examine how
expectations on requirements volatility matched the actual
number of changes, resulting in a lack of statistical correla-
tion between the expectation and the real outcome.

We have no data for explaining why it is so difficult forecast-
ing the benefits of modeling and MD*. We can only report
the work from Shanteau and Stewart [18]; they suggest that
experts rely on heuristics in making judgments that could
lead to systematic biases.

6. CONCLUSIONS
In conclusion, the results of this survey reveal that:

RQ1: Improved documentation and Design support are the
most expected benefits from practitioners using mod-
eling and/or MD*. Also Quality of the software, Main-
tenance support, and Standardization are frequently
expected. On the contrary, other important benefits,
such as Improved productivity and platform indepen-
dence, are not so much expected. That result tell us,
indirectly, for which reason IT practitioners use mod-
els.

5

MODELS’12 Workshop – EESSMod 2012

12

RQ2: The benefits having the highest fulfilment rate are
still Improved documentation and Design support (Ful-
filment rate > 65%). However, considering all the ben-
efits the average fulfilment rate is not high.

RQ3: Experience in modeling does not help in forecasting
the benefits.

Probably the expectations are currently inflated by the amount
of hype around MD*. It is possible that in the future prac-
titioners will learn to focus on a smaller set of benefits and
they will be able to actually achieve them more reliably.

All in all, this uncertainty about the outcomes of modeling
and the fact that it affects also practitioners with many years
of experience in the field is probably hampering the adoption
of these approaches, which are always predicted to become
mainstream in a never reached next future.

As a future work, it could be interesting to understand how
much of the difficulty in forecasting the benefits of modeling
and MD* depends on the immaturity of those approaches.
Is that difficulty inherent in experts’ judgement or is it worse
in this particular field?

7. REFERENCES
[1] P. Baker, L. Shiou, and F. Weil. Model-driven

engineering in a large industrial context - Motorola
case study. In L. Briand and C. Williams, editors,
Model Driven Engineering Languages and Systems,
volume 3713 of Lecture Notes in Computer Science,
pages 476–491. Springer Berlin / Heidelberg, 2005.

[2] B. Boehm. The art of expectations management.
Computer, 33(1):122 –124, jan 2000.

[3] C. F. Camerer and E. F. Johnson. The
process-performance paradox in expert judgment:
How can the experts know so much and predict so
badly? In K. A. Ericsson and J. Smith, editors,
Towards a general theory of expertise: Prospects and
limits. Cambridge University Press, 1991.

[4] T. Dowling. Are software development technologies
delivering their promise? In IEE Colloquium on “Are
Software Development Technologies Delivering Their
Promise?”, pages 1–3, mar 1995.

[5] H. Esfahani, E. Yu, and M. Annosi. Capitalizing on
empirical evidence during agile adoption. In Agile
Conference (AGILE), 2010, pages 21 –24, aug. 2010.

[6] R. M. Groves, F. J. J. Fowler, M. P. Couper, J. M.
Lepkowski, E. Singer, and R. Tourangeau. Survey
Methodology. John Wiley and Sons, 2009.

[7] K. R. Hammond. Human Judgment and Social Policy:
Irreducible Uncertainty, Inevitable Error, Unavoidable
Injustice. Oxford University Press, USA, Oct. 2000.

[8] J. Hossler, M. Born, and S. Saito. Significant
productivity enhancement through model driven
techniques: A success story. In IEEE International
Enterprise Distributed Object Computing Conference
(EDOC ’06), pages 367–373, oct. 2006.

[9] A. Jelitshka, M. Ciolkowski, C. Denger, B. Freimut,
and A. Schlichting. Relevant information sources for
successful technology transfer: a survey using
inspections as an example. In First International

Symposium on Empirical Software Engineering and
Measurement, 2007. (ESEM 2007), pages 31–40.
IEEE, September 2007.

[10] M. Jørgensen. Estimation of software development
work effort:evidence on expert judgment and formal
models. International Journal of Forecasting,
23(3):449–462, 2007.

[11] M. Jørgensen and S. Grimstad. Software development
effort estimation: Demystifying and improving expert
estimation. In O. L. Aslak Tveito, Are
Magnus Bruaset, editor, Simula Research Laboratory -
by thinking constantly about it, chapter 26, pages
381–404. Springer, Heidelberg, 2009.

[12] B. Kitchenham and S. Pfleeger. Personal opinion
surveys. In F. Shull and Singer, editors, Guide to
Advanced Empirical Software Engineering, pages
63–92. Springer London, 2008.

[13] A. G. Kleppe, J. Warmer, and et al. MDA Explained:
The Model Driven Architecture: Practice and Promise.
Addison-Wesley Longman Publishing Co., 2003.

[14] M. Leotta, F. Ricca, M. Ribaudo, G. Reggio,
E. Astesiano, and T. Vernazza. SOA Adoption in the
Italian Industry. In Proceedings of 34th International
Conference on Software Engineering (ICSE 2012),
pages 1441–1442. IEEE, 2012.

[15] A. Loconsole and J. Borstler. Are size measures better
than expert judgment? an industrial case study on
requirements volatility. In Software Engineering
Conference, 2007. APSEC 2007. 14th Asia-Pacific,
pages 238 –245, dec. 2007.

[16] S. Mellor, A. Clark, and T. Futagami. Model-driven
development - guest editor’s introduction. Software,
IEEE, 20(5):14 –18, sept.-oct. 2003.

[17] D. C. Schmidt. Guest editor’s introduction:
Model-driven engineering. Computer, 39:25–31, 2006.

[18] J. Shanteau and T. R. Stewart. Why study expert
decision making? some historical perspectives and
comments. Organizational Behavior and Human
Decision Processes, 53(2):95–106, 1992.

[19] F. Tomassetti, A. Tiso, F. Ricca, M. Torchiano, and
G. Reggio. Maturity of software modelling and model
driven engineering: a survey in the italian industry. In
Int. Conf. Empirical Assessment and Evaluation in
Software Eng. (EASE12), 2012.

[20] M. Torchiano, M. Di Penta, F. Ricca, A. De Lucia,
and F. Lanubile. Migration of information systems in
the italian industry: A state of the practice survey.
Information and Software Technology, 53:71–86,
January 2011.

[21] M. Torchiano, F. Tomassetti, A. Tiso, F. Ricca, and
G. Reggio. Preliminary findings from a survey on the
MD* state of the practice. In International
Symposium on Empirical Software Engineering and
Measurement (ESEM 2011), pages 372–375, 2011.

[22] M. Völter. MD* best practices. Journal of Object
Technology, 8(6):79–102, 2009.

6

MODELS’12 Workshop – EESSMod 2012

13

The Use of UML Class Diagrams and Its Effect
on Code Change-proneness

Rut Torres Vargas
Leiden Institute of Advanced

Computer Science
Leiden, The Netherlands

r.e.torres.vargas@liacs.nl

Ariadi Nugroho
Software Improvement Group
Amsterdam, The Netherlands

a.nugroho@sig.eu

Michel Chaudron
Leiden Institute of Advanced

Computer Science
Leiden, The Netherlands
chaudron@liacs.nl

Joost Visser
∗

Software Improvement Group
Amsterdam, The Netherlands

j.visser@sig.eu

ABSTRACT
The goal of this study is to investigate the use of UML and
its impact on the change proneness of the implementation
code. We look at whether the use of modeling using UML
class diagrams, as opposed to not doing modeling, relates to
change proneness of (pieces of) source code. Furthermore,
using five design metrics we measure the quality of UML
class diagrams and explore its correlation with code change
proneness. Based on an industrial system for which we had
UML class diagrams and multiple snapshots of the imple-
mentation code, we have found that at the system level the
change proneness of code modeled using class diagrams is
lower than that of code that is not modeled at all. However,
we observe different results when performing the analysis at
different system levels (e.g., subsystem and sub subsystem).
Additionally, we have found significant correlations between
class diagram size, complexity, and level of detail and the
change proneness of the implementation code.

Categories and Subject Descriptors
D.2.8 [Software Engineering]: Metrics—Product Metrics;
D.2.10 [Software Engineering]: Design—Methodologies,
Representation

General Terms
Design, Documentation, Measurement

Keywords
Unified Modeling Language, Code Churn, Quality

∗Joost Visser is also with the Radboud University Nijmegen,
The Netherlands

1. INTRODUCTION
Modeling software systems is believed to give benefits in
downstream software development in terms of higher soft-
ware quality and development productivity. Some research
exists that has tried to empirically validate whether such
benefits can actually be found — see for example [3][5][10][11][12].

Our study is based on empirical data an industrial software
project that is currently in its maintenance phase. In this
study we focus on two research questions regarding the effect
of UML modeling on maintenance of that software:

• RQ1: Does implementation code that is modeled in
UML class diagrams have a higher change proneness
than code that is not modeled?

• RQ2: How do UML class diagram metrics relate to
change proneness of the implementation code?

Our study is different from the aforementioned previous works
in two ways. Firstly, our study looks at change proneness
(by means of code churn; i.e. the total number of added
and changed lines of code) rather than numbers of defects
in evaluating the effect of UML modeling. The assessment
of code churn is performed across multiple snapshots of a
system. Secondly, we propose a novel way of measuring the
quality of a UML model, namely by defining quality metrics
at the level of diagrams (rather than individual classes or
entire models).

At the same time, we learn from earlier research that soft-
ware developers focus their modeling effort on classes that
are more important and classes that are more critical to the
system.

The rest of this paper is organized as follows. In Section 2,
we discuss the goal and the design of the study. In Section
3, we present the results of the study, and in Section 4 we
further discuss the results and their limitations. Section 5
discusses related work, and finally in Section 6 we outline
conclusions and future work.

2. DESIGN OF THE STUDY
In this section we discuss the goal and the setup of the study.

MODELS’12 Workshop – EESSMod 2012

14

2.1 Goal and Research Questions
The goal of this study according to the GQM template [14]
can be formulated as follows:

Analyze the use of UML class diagrams
for the purpose of evaluating its effect
with respect to code change proneness
from the point of view of the researcher
in the context of an industrial software system

Based on the above goal we formulate the following research
questions:

• RQ1: Does implementation code modeled in UML class
diagrams have higher change proneness than not mod-
eled code?

• RQ2: How do UML class diagram metrics relate to
change proneness of the implementation code?

2.2 Measured Variables
In this section we explain the variables measured in our
study. It is important to mention that in the measurement
of class diagrams, the unit of analysis is diagrams. In the
measurement of the code, the unit of analysis is classes (i.e.,
Java classes).

2.2.1 Measured Variables in RQ1
The type of study we used for answering RQ1 is a quasi
experiment. A quasi experiment is designed to assess causal
impact, but it lacks the random assignment to the treatment
groups (i.e., in our study it is the assignment of classes to
the modeled and not-modeled groups).

Independent Variable. The independent variable in RQ1
is the use of class diagram (UMLCD). UMLCD is a nominal
variable that indicates whether a given class in the imple-
mentation code is modeled or not modeled in a class dia-
gram. Hence the value of this variable is either ‘modeled’ or
‘not modeled’.

Dependent Variable. The dependent variable is the av-
erage relative code churn of an implementation class (Av-
gRelChurn). Relative code churn of a class is the total num-
ber of added and changed lines in a particular class divided
by the total lines of the whole system. Because there are
multiple versions of the same class, we take the average
of relative code churn across versions to represent change
proneness in a class. A justification of using relative code
churn is reported by Nagappan and Ball [9] who show the
superiority of relative code churn metrics over absolute code
churn metrics to predict defect density. Although the con-
text of the study conducted by the authors was different
from ours, the use of relative code churn is justifiable. Rela-
tive code churn takes into account the size of the code base,
hence controlling the effect of system size. This is particu-
larly important because multiple system snapshots will be
used in the analysis.

Co-factor. Two confounding factors are considered in the
analysis, namely code complexity and code coupling. The
degree of complexity and coupling of software modules can
indicate their change-proneness [2]. As such, we want to

Diagram D1

UML class x
UML class y
UML class z
....

Code

Implemented class x
Implemented class y
Implemented class z
....

Code_Churn

value_ccx
value_ccy
value_ccz
....

LOC

value_locx
value_locy
value_locz
....

Sum_value_cc Sum_value_loc
/

Aggregated Relative Code
Churn

Average Aggregated
Relative Code Churn

UML class diagram metric
value

Figure 1: Mapping between class diagrams metrics
and the code churn metrics

control for their effects in order to observe a more pure
contribution of using UML class diagrams on code change-
proneness. In order to account for the complexity of the
source code we take the average percentage of lines of code
with a McCabe [8] value above 10 as a confounding fac-
tor (RiskyMcCabe). In order to account for coupling in the
code we take the percentage of lines of code with fan-in value
above 16 (RiskyFanIn).

Note that all code metrics are calculated automatically us-
ing the Software Analysis Toolkit (SAT) developed by the
Software Improvement Group (SIG). These metrics are au-
tomatically calculated for every snapshot of a system and
hence the differences in the code metrics across snapshots
can be obtained easily.

2.2.2 Measured Variables in RQ2
The design of study to answer RQ2 is a correlational study.
Correlational studies do not aim to establish causal relation-
ships. Therefore, in RQ2 there is no distinction in terms of
independent and dependent variables.

Based on previous work, we selected five metrics that repre-
sent the quality of UML class diagrams. These metrics are
calculated automatically using SDMetrics [15].

• Diagram Size (CDSize). Defined as the total number
of classes and interfaces in a class diagram. Ambler [1]
suggests a rule of thumb that a diagram should contain
7 +/- 2 elements.

• Internal Connectivity (CDIntConn). Defined as the
percentage of elements that are relations (associations,
generalization and dependencies). This metric mea-
sures the complexity of class diagrams and is adapted
from metric definition of SDMetrics [15].

• Lonely Classes (CDLoneClass). Defined as the per-
centage of classes that are not connected with any
other class/interface in the diagram. This metric mea-
sures cohesiveness of class diagrams and is adapted
from metric definition of SDMetrics [15].

• Associations Without Role (CDAscNoRole). Defined
as the percentage of associations without role name
(adapted from [12]). This metric measures the level of
detail in class diagrams.

MODELS’12 Workshop – EESSMod 2012

15

• Operations Without Parameters (CDAvgOpsNoPar).
Defined as the average percentage of operations with-
out parameters in the classes that are part of the dia-
gram (adapted from [12]). This metric also measures
the level of detail in class diagrams.

Another measured variable is the average relative code churn
(CDAvgRelChurn). This variable measures the average of
total code churn over time of a set of implementation classes
that are modeled in a single class diagram.

As mentioned previously, the measurement of the code churn
is at the class level (Figure 1). Since the class diagram met-
rics are measured at the diagram level, we follow the next
steps to determine CDAvgRelChurn:

1. Map each UML class into the corresponding implemen-
tation class.

2. Calculate the total code churn and total lines of code
of all implementation classes per diagram.

3. Divide the total code churn by the total LOC, resulting
in the relative code churn per diagram.

4. Calculate the average of relative code churn over time
per diagram (CDAvgRelChurn).

2.3 Analysis Method
To answer RQ1, classes in the implementation code are di-
vided into two groups: modeled and not modeled. Next we
compare the AvgRelChurn between the two groups to check
whether there is a difference that is statistically significant.
We use the Mann-Whitney test to determine the significance
of the difference in AvgRelChurn between the modeled and
not modeled groups. In order to account for confounding
factors, we perform an Analysis of Covariance (ANCOVA)
with the complexity (RiskyMcCabe) and coupling (Risky-
FanIn) metrics as co-factors.

To answer RQ2, we perform a correlation analysis between
each class diagram metric and code churn (CDAvgRelChurn).
We use the Spearman correlation test because our data is
not normally distributed. Finally, we perform a multiple
regression to account for code complexity and coupling as
co-factors.

2.4 Description of the Case Study
The case study is a system for registering business organiza-
tions in the Netherlands. The technical quality of the system
started being monitored by SIG in May 2010. The develop-
ment of the system started around July 2008 and the system
went live in May 2010. The developed system is replacing an
old system, which is still running in parallel. Currently the
new system is in maintenance mode but new functionality
is still being transferred from the old version. The system
is divided in three sub-systems, which we will call A, B and
C. The total LOC for the three sub-systems is around 321
KLOC. The programming language used is Java.

In terms of modeling, not all implemented classes were mod-
eled in UML. Only 23 class diagrams are available, and all
of them correspond to a sub-part of sub-system A. Figure 3

A ~136 KLOC B ~52 KLOC C ~133 KLOC

A'

Figure 3: Division of the system into subsystems

shows the division of the system into three sub-systems (A,
B, C). Furthermore, sub-system A has a set of 22 packages,
which we will call sub-A, consists of modeled (the striped
part) and not modeled classes. The rest of sub-system A, as
well as the whole sub-system B and C consist of packages of
not modeled classes.

In total there are 100 snapshots of this system in the software
repository. Among the code metrics being monitored are
code churn, code complexity and coupling.

3. RESULTS
3.1 The Use of Class Diagram and Its Impact

on Code Change-proneness
The analysis to compare change proneness between the mod-
eled and not modeled classes in the case study is performed
at three levels: sub subsystem A’, subsystem A, and the
whole system (Figure 3). Figure 2 show the boxplots of Av-
gRelChurn of the modeled and not modeled for each of the
three areas of comparison (sub subsystem A’, subsystem A
and system).

Looking at the median in Figure 2 (bold horizontal lines), we
can observe that in the first two cases (sub-system A’ and
sub-system A), on average, modeled classes change more
than not modeled classes, while in the third case (system),
not modeled classes change more. In order to determine
if the difference in AvgRelChurn is significant between the
modeled and not modeled classes, we perform the Mann-
Whitney test. The results of Mann-Whitney test show that
the difference in AvgRelChurn in the three analyses is sta-
tistically significant (p ≤ 0.01).

However, the fact that modeled implementation classes have
higher or lower change-proneness might also be explained
by other factors such as the complexity of the code. To
account for such confounding factors we conduct an anal-
ysis of covariance (ANCOVA) considering the complexity
and coupling of the code as co-factors. From the ANCOVA
analysis the Modeled/Not Modeled variable is still signifi-
cant for the sub-system A and system area, but not for the
sub-system A’ area. Also, it is important to mention that
the RiskyMcCabe metric is not significant in any case, and
the RiskyFanIn metric is significant only in the sub-system
A area.

The different results about the relation between the use of

MODELS’12 Workshop – EESSMod 2012

16

Sub subsystem A'

Modeled
(N=135)

Not Modeled
(N=520)

Subsystem A

0.000

0.005

0.010

0.015

Modeled
(N=140)

Not Modeled
(N=3648)

0.000

0.005

0.010

0.015

System

Modeled
(N=140)

Not Modeled
(N=8481)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Figure 2: Boxplots of AvgRelChurn comparing modeled and not modeled classes in sub subsystem A, sub-
system A, and the whole system

Table 1: Results of the Spearman correlation analy-
ses between class diagram metrics and code change
proneness (CDAvgRelChurn)

r p-value

CDSize -0.476 0.039*
CDIntConn -0.488 0.033*
CDLoneClass -0.085 0.727
CDAscNoRole 0.494 0.031*
CDAvgOpsNoPar 0.241 0.318

* indicates significance at 0.05 level

class diagrams and code change proneness presented above
might indicate the influence of sampling.

3.2 The Relations between UML Diagram Met-
rics and Code Change-proneness

We explore the relations between five UML class diagram
metrics and change proneness of the respective code, i.e. the
implementation classes that are part of the UML class dia-
gram. We run the Spearman correlation test between each
one of the selected class diagram metrics and CDAvgRelChurn.
The results of the correlation test are shown in Table 1.

The results of the correlation analyses in Table 1 show there
are three significant correlations:

• CDSize correlates negatively with CDAvgRelChurn:
the bigger the size of a class diagram, the less change
prone the implementation classes that are part of that
diagram.

• CDIntConn correlates negatively with CDAvgRelChurn:
the more complex a class diagram, the less change
prone the implementation classes that are part of that
diagram.

• CDAscNoRole correlates positively with CDAvgRelChurn:
the more detailed a class diagram is modeled, the less
change prone the implementation classes that are part
of that diagram.

The previous correlation analyses do not take into account
confounding factors that can influence the change proneness
of the code. For this reason, we perform a linear regres-
sion analysis taking the code complexity and coupling as
co-factors. As with the CDAvgRelChurn metric, we need
to aggregate the RiskyMcCabe and RiskyFanIn metric at
the diagram level—referred to as AvgRiskyMcCabe and Av-
gRiskyFanIn respectively. We perform three multiple re-
gression analyses with each of the three UML metrics (CD-
Size, CDIntConn and CDAscNoRole) as a predictor, and
take into account the complexity and coupling of the code
in the respective analysis. The results show that only CD-
Size (p = 0.049) and CDAscNoRole (p = 0.026) remain
significant predictors of code churn.

4. DISCUSSION
4.1 Interpretation of Results
With respect to RQ1, we observe different outcomes as a
consequence of taking different scopes of analysis. Going
from smaller to larger system scope, we have compared mod-
eled versus not modeled classes at the level of sub subsystem,
subsystem, and system (see Figure 3).

At the level of sub subsystem, we have found that there is
no significant difference in the average relative code churn
of modeled and not modeled classes. This result can be ex-
plained by the fact that classes that are part of the same
package probably change together. Therefore, the fact that
a class has been modeled or not will not make a difference
in the change proneness of the code. At the level of sub-
system, we found that there is a significant difference in the
average relative code churn of modeled and not modeled
classes. However, modeled classes change more than not
modeled ones. This result contradicts our assumption that
modeled classes will change less due to the positive impact
of modeling on understandability of the system. Higher un-
derstandability will lead to a correct implementation from
the beginning that leads to fewer rework. At the system
level, we have found that there is a significant difference in
the average relative code churn of modeled and not modeled
classes, and not modeled classes change more than modeled
ones. This result confirms our assumption that modeled

MODELS’12 Workshop – EESSMod 2012

17

classes will change less than not modeled ones, but is not
consistent with the result from the subsystem level.

The differences in the above results can be explained by
the representativeness of the classes in the sample. The
result of analysis at the same sub subsystem does not show
a significant result because the classes are quite similar in
type (e.g., data classes), complexity and importance. At
the level of a sub system, there might be more diverse class
types and hence modeled classes might be the classes that
are significantly more important or critical to the system,
therefore the higher code churn. At the system level, the
diversity of classes is even higher and it is very likely that
there are more critical and important classes that are not
modeled. This might explain why in the analysis at the
system level not modeled classes have significantly higher
code churn. Including all classes of the system in the analysis
increases the representativeness of the data set and therefore
gives more reliable results.

With respect to RQ2 our results show that three out of
five UML class diagram metrics have significant correlations
with the average code churn of the implementation classes.
However, after accounting for the effect of code complexity
and coupling, only two of those metrics remained significant,
namely CDSize and CDAscNoRole.

The fact that CDSize metric has a negative correlation with
code churn suggests that classes that are part of bigger class
diagrams tend to change less often than classes that are part
of smaller class diagrams. In the context of software main-
tenance, this result may not be very surprising. Big class di-
agrams indicate poor modularization, which typically leads
to tightly coupled and incomprehensible classes. It is not
uncommon that maintainers tend to avoid changing brittle
parts of a system and thus changes are made around these
parts instead. However, further validation of this finding is
required.

With respect to the CDascNoRole metric, the result shows
a significant and positive correlation. This finding suggests
that classes that are part of less detailed diagrams (in terms
of detail in the associations) tend to change more than classes
in more detailed diagrams. This finding supports the idea
that level of detail in UML diagrams is beneficial to the un-
derstanding of the system to be implemented [10]. A higher
understandability will lead to fewer changes since the system
has been correctly implemented from the beginning.

4.2 Threats to Validity
Construct Validity. The threat to the construct valid-
ity in this study is mainly related to the variable chosen to
measure change proneness of the code in RQ2. The average
relative code churn (CDAvgRelChurn) is measured for a set
of implementation classes that appear in a particular class
diagram. In this case, we assume that the change prone-
ness of classes modeled in a diagram is influenced by the
quality of that diagram. We are aware that this assumption
has some limitations, particularly if some classes appear in
a class diagram for trivial reasons (they should have been
modeled elsewhere). Further investigation is needed to find
better ways to map UML diagram quality properties to code
quality properties.

Internal Validity. Internal validity in this study comes
from differences in the nature of the implemented classes.
Even when all classes are part of the same system, some of
them can be considered more critical than others and prone
to change more. We try to address this threat by taking into
account confounding factors such as complexity and cou-
pling of the code. However a future study can go further by
asking the development team to classify each class according
to its criticality following a predefined scale. Additionally,
there are some cases where classes in the UML model can
not be mapped to any of the implementation classes. How-
ever, in our study this issue does not occur very often and
hence is not expected to introduce serious bias.

External Validity. Threats to external validity come from
the limitation to generalize the results because of the use of a
single case study. Although based on a single case study, the
use of a real industrial system as a case study increases our
confidence about the generalizability of the results. Further
replications of this study using more industrial systems will
help validate the results.

Conclusion Validity. Conclusion validity refers to the
ability to draw correct conclusions from an experiment. We
have addressed this threat by using carefully selected statis-
tical tests to determine the significance of the results. We
have also considered the applicability of each test in order
to avoid violation of assumptions.

5. RELATED WORK
Previous works that looked into the impact of UML docu-
mentation on software development have focused primarily
on model comprehension and system comprehension—see
for example in [4][6][7]. Because the focus of this study is on
the effect of UML modeling on software maintenance, in the
following passages we focus on previous work that studied
the effect of UML modeling on software maintenance.

The work by Tryggeseth [13] explored how the use of tex-
tual system documentation (requirements specification, de-
sign document, test report, user manual) affects the time
needed to understand how to perform maintenance tasks.
The results show that the time needed is reduced by ap-
proximately 20 percent when documentation is available.

The work by Arisholm et al. [3] investigated the impact of
UML availability on the maintenance of source code. The
authors performed two experiments using students with knowl-
edge on UML and programming. The results show that
UML has a significant, positive impact to increase the func-
tional correctness of code changes. However in terms of time
saving, there were no significant benefits when the time to
modify the UML model is included.

The work by Fernandez-Saez et al. [5] compared how UML
diagrams with different level of detail influence the main-
tenance of the source code. The results of the experiment
carried out with 11 students showed better results when us-
ing low level of detail UML models. The authors however
did not consider the results significant due to the small size
of the group of subjects and their lack of experience in using
UML and Java code.

MODELS’12 Workshop – EESSMod 2012

18

Another closely related work was performed by Nugroho and
Chaudron [11]. The authors investigated the impact of us-
ing UML (class and sequence diagrams) on defect density
of the implementation code. Based on an industrial case
study, the authors found that classes modeled in either class
or sequence diagrams have significantly lower defect density
compared to classes that are not modeled at all. Another
work by the authors defined level of detail metrics for UML
class and sequence diagrams [12]. Based on data from an in-
dustrial software system, the authors found that higher level
of detail in sequence diagrams corresponds to lower defect
density in the implementation code.

The current paper extends the above previous works by in-
vestigating the effect of using UML on code change prone-
ness in an industrial case study.

6. CONCLUSION AND FUTURE WORK
In this paper we report our exploratory investigation into
the impact of the use of UML on the change proneness of
the implementation code. Our study aim to answer two
research questions:

• RQ1: Does implementation code modeled in UML class
diagrams have higher change proneness than not mod-
eled code?

• RQ2: How do UML class diagram metrics relate to
change proneness of the implementation code?

To answer RQ1, we compare the average relative code churn
of classes that have been modeled in class diagrams and
those that have not been modeled. This comparison was
made at three different levels: sub subsystem, subsystem
and system. At the system level, we have found a signifi-
cant difference with not modeled classes changing more than
modeled ones. However, the results vary according to the
level of comparison, which we suspect is due to the repre-
sentativeness of the sample at the respective level.

To answer RQ2, we use five UML class diagram metrics de-
fined in previous works and explore their correlations with
code change proneness. The five metrics are class diagram
size (CDsize), class diagram internal connectivity (CDInt-
Conn), class diagram lonely classes (CDLonClass), class dia-
gram operations without role (CDAscNoRole) and class dia-
gram operations without parameters (CDOpsNoPar). Three
of these metrics show significant correlations with the change
proneness of the code. After accounting for the effects of
code complexity and coupling, only two of the metrics re-
mained significant, namely CDSize (positive correlation) and
CDAscNoRole (negative correlation).

We are aware that this study requires further validations in
future research. An obvious future work is to replicate this
study using more industrial systems. Further refinement
of this study is to separate the analysis based on diagram
types—that is, to evaluate the difference in code churn or
other code quality indicators based on the types of diagram
used in modeling the system (e.g., class versus sequence dia-
grams). Finally, we also aim to investigate the effect of UML
diagram quality on the productivity in performing mainte-
nance activities such as bug fixing.

7. REFERENCES
[1] S. Ambler. The elements of UML 2.0 style. Cambridge

Univ Pr, 2005.

[2] E. Arisholm, L. Briand, and A. Foyen. Dynamic
coupling measurement for object-oriented software.
Software Engineering, IEEE Transactions on,
30(8):491–506, 2004.

[3] E. Arisholm, L. Briand, S. Hove, and Y. Labiche. The
impact of uml documentation on software
maintenance: An experimental evaluation. Software
Engineering, IEEE Transactions on, 32(6):365–381,
2006.

[4] L. Briand, Y. Labiche, M. Di Penta, and
H. Yan-Bondoc. An experimental investigation of
formality in uml-based development. Software
Engineering, IEEE Transactions on, 31(10):833–849,
2005.

[5] A. Fernández-Sáez, M. Genero, and M. Chaudron.
Does the level of detail of uml models affect the
maintainability of source code? In Proceedings of
EESSMod 2011, 2011.

[6] M. Genero, J. Cruz-Lemus, D. Caivano, S. Abrahão,
E. Insfran, and J. Carśı. Assessing the influence of
stereotypes on the comprehension of uml sequence
diagrams: A controlled experiment. Model Driven
Engineering Languages and Systems, pages 280–294,
2008.

[7] L. Kuzniarz, M. Staron, and C. Wohlin. An empirical
study on using stereotypes to improve understanding
of uml models. In Program Comprehension, 2004.
Proceedings. 12th IEEE International Workshop on,
pages 14–23. IEEE, 2004.

[8] T. J. McCabe. A complexity measure. In Proceedings
of the 2nd international conference on Software
engineering, ICSE ’76, pages 407–, Los Alamitos, CA,
USA, 1976. IEEE Computer Society Press.

[9] N. Nagappan and T. Ball. Use of relative code churn
measures to predict system defect density. In Software
Engineering, 2005. ICSE 2005. Proceedings. 27th
International Conference on, pages 284–292. IEEE,
2005.

[10] A. Nugroho. Level of detail in uml models and its
impact on model comprehension: A controlled
experiment. Information and Software Technology,
51(12):1670–1685, 2009.

[11] A. Nugroho and M. Chaudron. Evaluating the impact
of uml modeling on software quality: An industrial
case study. Model Driven Engineering Languages and
Systems, pages 181–195, 2009.

[12] A. Nugroho, B. Flaton, and M. Chaudron. Empirical
analysis of the relation between level of detail in uml
models and defect density. Model Driven Engineering
Languages and Systems, pages 600–614, 2008.

[13] E. Tryggeseth. Report from an experiment: Impact of
documentation on maintenance. Empirical Software
Engineering, 2(2):201–207, 1997.

[14] C. Wohlin, P. Runeson, M. Host, C. Ohlsson,
B. Regnell, and A. Wesslén. Experimentation in
Software Engineering: an Introduction. Kluver
Academic Publishers, 2000.

[15] J. Wüst. SDMetrics: the Software Design Metrics tool
for the UML, 2012.

MODELS’12 Workshop – EESSMod 2012

19

Lessons Learned from Evaluating
MDE Abstractions in an Industry Field Study

Adrian Kuhn
Software Practices Lab

Institute for Computer Science
University of British Columbia

Gail C. Murphy
Software Practices Lab

Institute for Computer Science
University of British Columbia

ABSTRACT
In a recent empirical study we found that evaluating abstrac-
tions of model-driven engineering (MDE) is not as straight
forward as it might seem. In this paper, we report on the
challenges that we as researchers faced when we conducted
the aforementioned field study. In our study we found that
modeling happens within a complex ecosystem of different
people working in different roles. An empirical evaluation
should thus mind the ecosystem, that is, focus on both tech-
nical and human factors. In the following, we present and
discuss five lessons learnt from our recent work.

1. INTRODUCTION
The promise of abstractions such as model-driven engineer-
ing (MDE) is that the representations they provide to engi-
neers are semantically more similar to the domain by hiding
away implementation details. Yet, in a recent field study we
found that identification and evaluation of these abstractions
is not as straight forward as it might seem. Our work was
an ethnographic study of MDE adoption from an engineer’s
perspective [7], we did in-depth interviews with 20 engineers
from the automative industry to learn how they succeed and
struggle with model-driven techniques. While we present a
brief overview of our study in Section 2, in this paper we
focus on the challenges that we—as researchers—faced.

When doing our interviews we found it quite hard to cap-
ture the essence of abstractions. In the wild abstractions
do not come as text book figures. We faced fundamental
challenges such as, when are we looking at an abstraction
and when not? When is an abstraction higher, i.e., more
abstract, than another? Does more abstraction offer more
or less flexibility? What about abstractions that makes en-
gineers more productive but are harder to understand? Or,
an abstraction that is more understandable but, at times,
leaky and thus leads to bursts of overhead work. Has it pos-
sibly been designed to solve another problem than what it
is currently used for at this site of study? Or maybe even,
are we looking at an organizational rather than a technical

abstraction, i.e., shift of responsibility between roles rather
than between representation levels? Or, both? Essentially,
how to identify an abstraction and how to evaluate the qual-
ity of that abstraction?

Also we realized, engineers are not necessarily aware at which
level of abstraction they are working. To them, what they
do is their daily work. They might not even be aware of pos-
sible other abstraction layers below or above their work. So,
asking them about abstraction levels often does not make
sense in their language. For example, none of the engineers
that we interviewed referred or thought of to their work as
modeling, while in fact they were using model-driven engi-
neering techniques.

As we conducted our field study we continuously improved
our questionnaire as we gained more insight into the chal-
lenge of studying abstractions. In the following we summa-
rize our lessons learned:

• Quantitative approaches might fail, often abstractions
are not “more of the same” but “something different”
and thus not covered by established metrics.

• While qualitative approaches are better suited, they
might still miss parts of the picture unless the complete
ecosystem is taken into account.

• Recent adopters make for great interview partners, to
them abstractions are still fresh and not yet daily busi-
ness. Caution with learning curves is advised tough.

• Asking for examples of most recent work items is para-
mount to avoid bias, or else a field study risks reporting
prescribed processes rather than actual practices.

• Focus on communication patterns rather than artifact
flow, as artifact flow is a subset of communication.

These lessons learned are obviously based on a single case
study only, however we hope that they might serve as the
base for a discussion at the Eesmod workshop of how to
best evaluate model-driven abstractions in field studies.

The reminder of this paper is structured as follows: In Sec-
tion 2 we discuss our choice of methodology, and provide a
brief overview of our industry case study. In Section 3 we
discuss the lessons learned that are listed above. In Sec-
tion 4 we outline related work. Eventually, in Section 5 we
conclude with a summary.

MODELS’12 Workshop – EESSMod 2012

20

2. OUR CASE STUDY IN A NUTSHELL
Our research is aimed at understanding cognitive issues in
model-driven engineering, with a focus on information and
communication needs from the perspective of individual en-
gineers. As we started our research we had little background
in model-driven engineering and faced the choice of an ap-
propriate research methodology.

Quantitative approaches are warranted for scenarios where
the state of the art provides a deep understanding of the
domain under study and can refer to established means of
measuring the phenomena under study. In our case, a litera-
ture review confirm a gap in research, we thus decided to go
with an approach which is both qualitative and exploratory.

To enable the gathering of detailed, rich and contextual in-
formation about model-driven engineering, we chose a quali-
tative study approach. We interviewed people working with
model-driven engineering technology in semi-structured in-
terviews, following an exploratory case-study approach where
open ended questions are asked in order to refine the research
hypothesis as the current study is ongoing.

Exploratory approaches are great when you, as a researcher,
start with little understanding of the domain under study.
Grounded theory has recently gained popularity in the em-
pirical software engineering community as an exploratory
approach [1]. However, we choose to do an exploratory case
study, where we are not necessarily looking for “one the-
ory” but are facing a multifaceted case with possibly many
theories explaining the observations.

An advantage of exploratory user studies, both grounded
theory [2] and exploratory case studies [8], is that, as a re-
searcher, you are able to adapt your questionnaire as you
learn from the participants answers. For example, as we
started our user studies we had questions about “how many
models” a person is responsible for. Though we quickly
learned that, unlike to us academics, to the engineers“model”
was not a countable term. The question did make as much as
to them as asking how many “softwares” a software engineer
in a traditional team is working on.

In our interviews, we found that the terms “model” and
“modeling” were used ambiguously. Engineers generally did
not refer to their work as “modeling” but used the terms
“auto-coding” and “hand-coding.” These terms were used
to differentiate between working with tools which include a
step of code generation versus writing C-level code manu-
ally. Engineers used the term “model” ambiguously to refer
to software models, as well as the plant models used for the
in-silico simulation of vehicles. Engineers also used the term
“simulation” ambiguously to refer to running the in-silico
simulation of the plant models, as well as to running soft-
ware models from within the modeling tools as opposed to
running the auto-generated sources.

We believe the terminology we observed is mixing model-
based design (MBD, an approach in system engineering for
disentangling the development of control software and corre-
sponding vehicles, using in-silico modeling while vehicles are
not yet available) and model-driven engineering (MDE). The
ambiguous use of terminology can be explained if we look at

model-driven engineering as a division of labour between a
few specialized language designers and many modelers. Af-
ter all, the software engineers do not have to understand
the full complexity of modeling, this is up to the specialized
code-generation engineers. However, we found that points
of friction in modeling tools, in particular the insufficient
support of model diffing, may break the abstraction and
nevertheless expose engineers to these complexities.

In the industry case study we interviewed 20 people work-
ing with model-driven approaches at General Motors, a large
automotive company that heavily relies on model-driven en-
gineering for their software development. The study is going
to appear in the proceedings of Models 2012, the hosting
conference of this workshop1.

We found that, in the context of a large organization, con-
textual forces dominate the cognitive issues of using model-
driven technology. The four forces we identified that are
likely independent of the particular abstractions chosen as
the basis of software development are the need for diffing in
software product lines, the needs for problem-specific lan-
guages and types, the need for live modeling in exploratory
activities, and the need for point-to-point traceability be-
tween artifacts. We also identified triggers of accidental
complexity, which we refer to as points of friction intro-
duced by languages and tools. Examples of the friction
points identified are insufficient support for model diffing,
point-to-point traceability, and model changes at runtime.

In the following we are going to focus on the setup and set-
ting of the case study as far as it is of interest for the present
paper. The study consisted of interviews with 20 engineers
and managers working in different roles. We visited the
industry of interest (General Motors) on two separate occa-
sions, collecting data constructed through semi-structured
in-depth interviewing. We interviewed 12 engineers and 8
managers. Overall, the engineers we interviewed came from
four different teams from different company departments.
All teams were global, that is spread across sites in India and
America, however we interviewed people from the American
sites only. The 12 engineers selected for interviews were
sampled from several roles however their profiles are simi-
lar, that is they all work with the same process and use the
same modeling technology. Each interview was 90–120 min-
utes long, recorded on tape and transcribed for encoding by
one of the authors of this paper.

In a first visit, we interviewed 10 participants from both
management and technical roles to familiarize ourselves with
the software process used in the automotive industry. Based
on what we learned from the first interviews, in our sec-
ond visit, we interviewed an additional 10 participants, all
of them working with software models but in different roles.
The interviews were semi-structured, following an exploratory
case-study approach where open ended questions are asked
in order to identify research hypothesis for future studies.
We asked participants to describe their work, how their work
fits into the process of the organization, with whom they in-
teract on a weekly basis, and which artifacts are the input
and which are the output of their work. We also asked to see

1Preprint available at http://arxiv.org/abs/1207.0855

MODELS’12 Workshop – EESSMod 2012

21

http://arxiv.org/abs/1207.0855

current or recent examples of artifacts on which they were
working.

We transcribed the 12 interviews with engineers (4 from the
first visit and 8 from the second visit). We encoded the tran-
scripts and from this encoding, we distilled the contextual
forces and points of friction presented in this paper. We en-
coded the interviews by tagging sentences with hashtags as
if they were tweets. We then used a series of tag clouds to
identify patterns in the data, merging and splitting tags as
we saw need. We did two passes over the tags, a first one to
identify all forces and frictions that shape the work of the
participants, and a second pass to identify forces and fric-
tions that might provide the basis for general hypotheses on
model-driven engineering, ruling out those that are specific
to the organization under study.

3. LESSONS LEARNED
In this section we share our lessons learnt of assessing ab-
stractions in the wild. The nature of abstractions is difficult
to qualify. There is value but often it is faceted, the same
tool might be both more and less abstract. Sometimes pro-
viding better abstractions to one role but worse abstractions
to another role, sometime to the same role. We found that,
in the context of a large organization, contextual forces dom-
inate the cognitive issues of using model-driven technology.
While some abstractions are technical and applied locally by
individuals, such as information hiding in programing lan-
guage, MDE happens within a complex ecosystem of differ-
ent people working in different roles, or even different parts
of an organizations.

In the following we present the main lessons learned from
conducting our study.

Finding Quantitative approaches might fail, often abstrac-
tions are not “more of the same” but “something different”
and thus not covered by established metrics.

Novel abstractions, by their definition of raising representa-
tions to be more semantic and of hiding away details, are
disrupting established quantitative metrics. So, how to es-
tablish good metrics for a novel abstraction? Designing new
metrics requires a understanding of the domain, both tech-
nical and semantic. An understanding that is typically best
gained by first doing qualitative and exploratory studies.

It might seem obvious that KLOC (lines of code) are an in-
appropriate metric to compare the complexity of manually
written and auto-generated code. Yet the difficulty of assess-
ing abstractions using quantitative methods are much more
subtle. While increasing the abstraction of one process step
might positively impact that one step, work further down-
stream in the process might suffer negative benefits. For
example, cost being gained by reduced development times
might be outweigh by increased cost of certification, as has
been found in a study by Hutchinson et.al. [4, 5].

In a similar way, time gained by spending less time in one
tool might be lost again by time spent in a novel tool or even
doing unexpected ad-hoc workarounds. In our case study we
have found that engineers spend significant time manually
putting together screenshots of model changes in Microsoft

Powerpoint in order to email them as a “change set” to other
engineers. A job which has been automated using text-based
diffing tools before the introduction of MDE abstractions.

Finding While qualitative approaches are better suited
(than quantitative ones), they might still be miss parts of
the picture unless the complete ecosystem is taken into ac-
count.

Participant will not report “see, part of my work is done
by somebody else“ since to them it not their work anymore
when somebody else does it. Yet, when looking at adoption
of higher abstractions, such as MDE ,very often it is the
case that part of somebody’s work is now done by another
role. Abstraction might move work from one role to another
or even from one team to another. An empirical study of
model-driven engineering should thus mind the ecosystem
and look into how details are abstracted away across roles
and organizational units rather than just across technical
boundaries.

Sometimes, a comparison is being made between rhe shift
from source to models in MDE and the shift from assembly
to high-level languages. We found that this is not a use-
ful analogy for designing empirical studies of MDE. The ab-
stractions introduction when moving from assembly to high-
level code are typically hiding away details which are taken
care of by the machine. Consider for example garbage collec-
tion, where the machine takes care of allocating and freeing
memory, which has previously been the engineer’s burden.
This is not the case of many of the abstractions introduced
by MDE. Code generation is unlike code compilation. In or-
der to provide engineers with domain-specific abstractions,
the implementation details that are hidden from engineers
must be taken care of by other, more specialized roles, rather
than the machine. In our case study we found that a team of
specialized code generation experts is responsible for defin-
ing and managing these abstractions.

Finding Recent adopters make for great interview part-
ners, to them abstractions are still fresh and not yet daily
business. Caution with learning curves is advised tough.

Recent adopters are make for great interviews partners. They
are much more aware of abstraction levels, since to them the
abstractions their working with are novel and thus they are
still aware of what improved and what worsened with in-
troducing these novel abstractions. They were still in the
state of comparing the Now (model driven engineering with
Simulink and Rhapsody) and the Then (hand coding in ma-
chine level languages). Yet, caution is advised as they might
be in a learning curve and some of their observations are due
to that learning curve. But that is exactly our job as ethno-
graphic researchers, taking a step back and being able to do
this kind of analysis.

The very definition of abstraction means that we might pre-
fer to ask certain kinds of questions about abstractions intro-
duced to people who can compare how a similar things was
built before, i.e., they need to know what might be hidden
now. More importantly, as we pointed out before, we need
to ask how did people work before and what did the people

MODELS’12 Workshop – EESSMod 2012

22

versus the machine do compared to after the abstractions
are introduced.

On our second visit we had the chance the include a team
in our study who had only recently adopted model-driven
engineering. Interviewing this kind of recent adopters, of-
fers a unique window of opportunity onto comparing the
“before” and “after” of an abstraction’s introduction. Other
than engineers who had been using model-driven technology
since their training, these people can compare how work has
been done before and after the introduction of model-driven
abstraction.

A danger is though that these people might report negatively
about many novel aspects of the abstractions as they are still
on a learning curve of adopting new ways of getting work
done. We found that it helped to have both recent adopters
as well as experienced users of model-driven engineering in
the same sample.

Finding Asking for examples of most recent work items is
paramount to avoid bias, or else a field study risks reporting
prescribed processes rather than actual practices.

A quantum leap in our understanding of model-driven engi-
neering happened as we started to ask participants for con-
crete examples. This is a well-known lessons learned for
many empirical researchers. If you, as a researcher, ask peo-
ple general questions about how they get their job done,
answers by participants tend to remain equally general, typ-
ically describing an idealized account of how their job should
be done rather how their job is actual done when the“rubber
hits the road.”2

Examples. Show us the most recent model (or other artifact
in question) that you were working with. This focus on
the most recent work is important to avoid the participant’s
filter bias. If not asked for the most recent artifact, or the
most recent week, we risk of being presented with ideal-case
examples rather than actual samples from their daily work.
And they will look different than you as researcher expect!
For example we asked engineers: do you have tests? Yes. Do
you have repeatable tests? Yes. Are they automated? Yes.
So we expected tests that are akin to unit testing practices
known from software engineering. But when we asked them
to show us their most recent test, they opened an Excel
sheet with instructions to a human tester and with a fields
to enter what they see on screen. Obviously repeated and
automated, but not the way we expected!

For example, here is a lesson learned. After two visits of ten
interviews each, we realized that we missed a whole popu-
lation stakeholders, the code-generation experts. We inter-
viewed product engineers and their leads but did reach out
to that one specialized team of code-generation experts. We
were neither aware that they exist nor which crucial role
they play in the model-driven engineering process. Mainly
because neither their job title gave any clue of their work,
nor were they included in the process model that was pre-
sented to us. We only learned about them when we started

2
This metaphor is just one of many wonderful examples of a rich

language of automotive metaphors used by our interview partners.

to check in with wrap-up questions, e.g. “Were there more
people to whom you talked last week that are not yet on this
list?,” after having gone step by step through all communi-
cations and meetings of a participant’s most recent week.
So even in our participant’s heads these specializes were so
much outside of their process that they did not think of
them in the first place. Yet, they are key to understand-
ing the MDE adoption and its benefits. We thus plan to
interview these people in future work.

We started to ask questions like “tell us more of about the
most recent change ticket your worked on” and then con-
tinued with “can you please show us the model that you
changed for that ticket” and then “can you show us the ex-
act changes you did to that model.” This way we made sure
to learn about the actual work being done, and not hearing
twenty times about the same formally defined process that
it has been presented to us on our first briefing.

It is very important to narrow down this kind of questions
to the most specific examples possible, such as “most recent
change ticket you worked on” or “people you talked to last
week,” and then following them up with questions such as
“were there more people you talked to last week that had
not been mentioned so far” in order to make catch missing
data. It is typically this latter kind of catch-up questions
that reveal the most interesting tidbits of information.

Of course it may happen the that the “most recent change
ticket” or “last week” had been exceptional and do not to
serve as good exemplars. We controlled for this using ques-
tions like “had last week been a typical week of your work.”
Often the reply had been one of “yes it had been typical
expect for. . . ” which again lead to very interesting insight
into their typical work as we learned which kind of work
participants consider untypical.

Finding Focus on communication patterns rather than ar-
tifact flow, as artifact flow is a subset of communication.

In the begin our questionnaire focused on artifact flow, be-
cause we figured that would be a great source of learn about
all parts of the ecosystem that are involved in MDE. But the
we realized, focusing on people and communication is a much
better approach: we started going with them through all
meetings and communication of the most recent week, ask-
ing for each communication about every participant’s role
and how they are connected to each other. It was this in-
formation which proved to provide a complete picture of the
MDE ecosystem, including artifact flow. We thus conclude
that artifacts flow is a subset of communication only, and
thus communication a better means to learn about abstrac-
tions and their adoption.

On our second visit we started to include questions such
as “whom did you talk to last week“ in our interviews. We
asked participants to walk us through their most recent week
of interaction with other people. This lead to most interest-
ing insight about the organizational perspective of model-
driven engineering abstractions. For example we learned
about teams and organization groups that had not been cap-
tured by the formalized process. For example, we learned
that some engineers are part of task force groups that are

MODELS’12 Workshop – EESSMod 2012

23

evaluating novel model-driven engineering technology. And,
we learned about the existence of a specialized team of code
generation experts of which we had not been aware of pre-
viously. Which has led to a revised understanding of model-
driven engineering not so much being a technical abstrac-
tion, where details are hidden away from humans and being
taken care of by the machine (as e.g., in a compiler), but
an organizational abstraction where details are hidden away
from a large workforce of engineers and being take care of
by a specialized team of code generation experts [7].

4. RELATED WORK
We are not the first to study MDE abstractions in the field,
though to our best knowledge there is little work that shares
lessons learnt about the research process used for conducting
these studies.

Heijstek and Chaudron [3] studied an industrial MDE case
over two years, where a team of 28 built a business ap-
plication for the financial sector. Using grounded theory
they found 14 factors which impact the architectural pro-
cess. They found that MDE shifts responsibility from en-
gineers to modelers, and that the domain-specific models
facilitated easier communication across disciplines and even
became a language of business experts. The setup of their
case differs from our recent work [7] in that their case had
a whole-system view on a closed ecosystem of 28 people,
with premium access to both project lead and main archi-
tect of the system. In comparison, we had a peephole view
on a much larger ecosystem of tens of thousands of peo-
ple that are collaborating across the main company and it’s
subsidiaries. It will be interesting to compare the findings of
these two studies with regard to these different perspectives.

Hutchinson et.al. presented their results of a qualitative user
study, consisting of semi-structured interviews with 20 en-
gineers in 20 different organizations [4, 5]. They identified
lessons learned, in particular the importance of complex or-
ganizational, managerial and social factors, as opposed to
simple technical factors, in the relative success, or failure,
of MDE. As an example of organizational change manage-
ment, the successful deployment of model driven engineer-
ing appears to require: a progressive and iterative approach;
transparent organizational commitment and motivation; in-
tegration with existing organizational processes and a clear
business focus.

The proceedings of RAO 2006 [6], a workshop on the role of
abstractions, providing interesting insight into both the role
and study of abstraction, both in the context of MDE and
in the context of software engineering in general.

5. CONCLUSIONS
In this paper we presented lessons learned with regard to
the to research methodology of a recent industry case study
of ours. When we reviewed definitions of abstraction we
found a common theme of “hiding away details” with the
purpose of “reducing details so programmers can focus on a
few concepts at a time”(quotes taken from Wikipedia). How
can we, are we asking thus, evaluate what is hidden away?
We found that the introduction of MDE abstractions is not
happening at the mere technical level, but happens within
a complex ecosystem of different people working in different

roles. An empirical study of MDE should thus mind the
ecosystem.

Given that abstraction is about hiding away details, often
people working with these abstraction are not aware of what
has been hidden themselves. We found that interviewing
recent adopters of MDE technology provide a unique window
of opportunity onto people who can compare how work has
been done before and after an abstraction’s introduction We
also found it helpful to ask participant to focus on concrete
examples, such as “most recent bug report” or “people you
talked to last week,” in order to learn about their actual
work experience.

These lessons learned are obviously based on a single case
study only, however we hope that they might serve as the
base for a discussion at the EESMOD workshop of how to
best study “that what is hidden away,” i.e., abstractions.

Acknowledgments
This research has been funded by the Canadian Network on
Engineering Complex Software Intensive Systems for Auto-
motive Applications (NECSIS). Special thanks to Joe D’Am-
brosia and Shige Wang from GM Research. We thank Deepak
Azad, Neil Ernst, Manabu Kamimura for their feedback on
an earlier draft of this paper.

6. REFERENCES
[1] Steve Adolph, Wendy Hall, and Philippe Kruchten.

Using grounded theory to study the experience of
software development. Empirical Software Engineering,
16(4):487–513, August 2011.

[2] Juliet M. Corbin and Anselm Strauss. Grounded theory
research: Procedures, canons, and evaluative criteria.
Qualitative Sociology, 13(1):3–21, March 1990.

[3] W. Heijstek and M. R. V. Chaudron. The impact of
model driven development on the software architecture
process. In Software Engineering and Advanced
Applications (SEAA), 2010 36th EUROMICRO
Conference on, pages 333–341, 2010.

[4] John Hutchinson, Mark Rouncefield, and Jon Whittle.
Model-driven engineering practices in industry. In
Proceeding of ICSE’11, ICSE ’11, pages 633–642, New
York, NY, USA, 2011.

[5] John Hutchinson, Jon Whittle, Mark Rouncefield, and
Steinar Kristoffersen. Empirical assessment of MDE in
industry. In Proceeding of ICSE’11, ICSE ’11, pages
471–480, New York, NY, USA, 2011.

[6] Jeff Kramer and Orit Hazzan. The role of abstraction
in software engineering. In Proceedings ICSE’06, ICSE
’06, pages 1017–1018, New York, NY, USA, 2006.

[7] Adrian Kuhn, Albert Thompson, and Gail Murphy. An
exploratory study of forces and frictions affecting
large-scale model-driven development. In MODELS’12,
2012.

[8] Robert K. Yin. Case Study Research: Design and
Methods. Sage Publications, 3rd edition, 2003.

MODELS’12 Workshop – EESSMod 2012

24

Does the Combined use of Class and Sequence Diagrams
Improve the Source Code Comprehension? Results from a

Controlled Experiment

Giuseppe Scanniello
DMI, University of Basilicata

Potenza, Italy
giuseppe.scanniello@unibas.it

Carmine Gravino and Genoveffa Tortora
University of Salerno

Fisciano, Salerno, Italy
{gravino, tortora}@unisa.it

ABSTRACT
We present the results of a controlled experiment aimed
to investigate whether the source code comprehension in-
creases when participants are provided with UML class and
sequence diagrams produced in the software design phase.
The experiment has been conducted with Master students
in Computer Science at the University of Salerno. The data
analysis shows that the participants significantly better com-
prehend source code when it is added with class and se-
quence diagrams together.
Categories and Subject Descriptors: D.2.0 [Software
Engineering]: General
General Terms: Experimentation, Measurement
Keywords: Comprehension, Controlled Experiment, UML

1. INTRODUCTION
Nowadays the documentation of object oriented software
systems contains several UML (Unified Modeling Language)
diagrams [16]. The wide diffusion of the UML is due to
the number of visual notations it offers to write system
blueprints, including conceptual (e.g., business processes and
system functions) and concrete items (e.g., programming
language statements, database schema, and reusable soft-
ware components) [10].

The assessment of the benefits deriving from the use of the
UML in all the phases of the software life cycle is relevant for
the software engineering community as shown by the num-
ber of empirical studies in terms of controlled experiments
and case studies available in the literature [4]. Although a
number of studies have been conducted on the UML, only
a few of them have been carried out to assess whether the
use of UML models produced in the design phase improves
source code comprehension [4].

In this paper, we present the results of a controlled experi-
ment conducted with last year Master students in Computer
Science at the University of Salerno. We analyze whether the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

participants achieved an improved comprehension of source
code when it is added with UML class and sequence dia-
grams produced in the design phase. The control group is
represented by the participants who performed comprehen-
sion tasks with source code alone, while the treatment group
is constituted by the participants who performed the com-
prehension tasks class and sequence diagrams together.

The remainder of the paper is organized as follows. The
design of the experiment is presented in Section 2, while
we present and discuss the achieved results in Section 3.
The threats that may affect the validity of the results are
highlighted in Section 4. In Section 5, we discuss related
work. Final remarks and future work conclude.

2. CONTROLLED EXPERIMENT
The planning and the design of the experiment is reported in
this section. We followed the template for experimentation
in software engineering suggested in [21]. For replication
purposes, we made available on the web1 an experimental
package and the raw data.

2.1 Definition
Applying the Goal Question Metric (GQM) paradigm [2],
the goal of the experiment can be defined as follows: An-
alyze the use of UML class and sequence diagrams pro-
duced in the design phase for the purpose of evaluating
them with respect to their support in the comprehension
of source code from the point of view of the researcher,
in the context of students in Computer Science, and from
the point of view of the project manager, in the context
of junior programmers.

2.2 Planning
2.2.1 Context

Participants were last year students enrolled to a Master
program in Computer Science at the University of Salerno.
They can be considered not far from novice software engi-
neers or junior programmers [5].

The participants to the experiment (UniSa from here on)
were all graduate students with basic software engineering
knowledge. They had knowledge of requirements engineer-
ing, high and low level design of object oriented software

1www.scienzemfn.unisa.it/scanniello/SC_UML_Exp1/

MODELS’12 Workshop – EESSMod 2012

25

systems based on the UML, software development, and soft-
ware maintenance. The students were asked to accomplish
the experiment as an optional activity of an Advanced Soft-
ware Engineering course of the Master program in Computer
Science at the University of Salerno.

There were 16 participants, who were not graded on the com-
prehension results achieved in the experiment. We asked the
participants to perform the tasks based on the experimen-
tal objects individually and in a professional way to get one
point more to the final mark.

We used two systems for managing: (i) the sales of a music
shop (i.e., Music Shop) and (ii) the reservation of theater
tickets (i.e., Theater Ticket Reservation). The systems Mu-
sic Shop and Theater Ticket Reservation were developed
by students of the Master program in Computer Science at
the University of Basilicata as the laboratory activity of an
Advanced Object Oriented Programming course. These sys-
tems never underwent maintenance operations.

The experimental objects used were selected within these
systems. The selection was guided keeping in mind a trade-
off between the complexity and the relevance of the imple-
mented functionality. The effort to perform comprehension
tasks (about 1 hour) on these objects was another criterion
used. For Music Shop, we selected a chunk of 463 LOCs (S1
from here on). For the second system, we selected a chunk
of 378 LOCs (S2 from here on). As far as S1 is concerned,
the class diagram contained: 6 classes, 27 attributes, and
45 methods; while the sequence diagram: 1 actor, 5 objects,
and 11 messages. For S2, the class diagram contained: 5
classes, 22 attributes, and 36 methods; while the sequence
diagram: 1 actor, 5 objects, and 9 messages. S1 and S2
were small enough to fit the time constraints of the experi-
ment though realistic for small maintenance operations that
a novice software engineers or junior programmer perform
within a software company [20].

2.2.2 Hypothesis Formulation and Selected Variables
We defined and tested the following null hypothesis:

Hn0 The presence of UML class and sequence diagrams
does not significantly improve the comprehension of
source code.

The alternative hypothesis (i.e., Ha0) can be easily derived
because it admits a positive effect of UML class and sequence
diagrams on source code comprehension.

To test the hypothesis above, we considered the independent
variable (also named main factor) Method. It is a nominal
variable that can assume two values: NO Mo(source code
alone) and Mo (source code added with UML diagrams).

To quantitatively evaluate the comprehension achieved by
the participants on the source code, we asked them to fill
out a comprehension questionnaire for each experimental
object. These questionnaires consisted of 15 multiple choice
questions, each admitting the same number of possible an-
swers with only one correct. Then, we defined and used the
following dependent variable:

Table 1: Experiment design
Group A Group B Group C Group D

Run 1 S1, Mo S1, NO Mo S2, Mo S2, NO Mo
Run 2 S2, NO Mo S2, Mo S1, NO Mo S1, Mo

Comprehension: the number of correct answers provided by
the participant.

2.2.3 Experiment Design
We adopted the within-participant counterbalanced exper-
imental design. It is shown in Table 1: each participant
worked on S1 and S2 using either Mo or NO Mo. The stu-
dents were randomly assigned to each group: A, B, C, and
D. Each group contained 4 students.

We also analyzed the effect of:

System. Differences in the experimental objects (e.g., com-
plexity and domain) could affect the comprehension of the
participants.

Order of Method. The order in which the participants
performed the laboratory runs may bias the results.

2.2.4 Execution of the Experiment
Pilot. A pilot experiment was conducted to evaluate pos-
sible issues related to the experimental material. The par-
ticipants to the pilot were 2 Bachelor students in Computer
Science at the University of Basilicata. The results indicated
that 2 hours were sufficient to accomplish the experiment.
The pilot results allow identifying minor issues in the exper-
imental material. These issues were properly fixed before
the experiment.

Experiment Execution. The experiments were organized
in three phases. In the first phase the participants attended
an introductory lesson on how to execute the comprehen-
sion tasks. The participants were informed of the pedagogi-
cal purpose of the experiment. Details on the experimental
hypotheses were not given.

The second and third phases were sequentially performed in
the same day. In the second phase, the participants were
asked to accomplish the comprehension tasks according to
the adopted design in the two subsequent laboratory runs.
Each participant was provided with the following material:

• Handouts of the introductory presentation.

• For each object, we provided the participants with the
source code. Depending on the task, we also furnished
the UML diagrams. A printout of the associated com-
prehension questionnaire was also given. The material
for the second laboratory run was given to the partic-
ipants only when they accomplished the first run.

• A post-experiment survey questionnaire used to gain
enough insight to strengthen and explain the results
of each experiment. The post-experiment survey ques-
tionnaire was filled out at the end of the second task
and collected by the supervisors together with the ma-
terial of the second task.

MODELS’12 Workshop – EESSMod 2012

26

• Some sheets of paper and a pencil.

The post-experiment survey questionnaire was defined to get
indications about the overall quality of the provided mate-
rial, the perceived usefulness of the models, the clarity of
the experimental objects, and the goals of the experiment.
The used post-experiment survey questionnaire is shown in
Table 2.

2.3 Analysis Procedure
We used the non-parametric Wilcoxon test to assess the ef-
fect of method (i.e., accept the Hn0). This test was also
used in all the cases paired analyses were required (e.g., to
study the effect of System). In case of unpaired analysis, we
chose the Mann-Whitney U exact test. We employed these
non parametric tests due to the sample size and (in some
cases) the non-normality of the distributions.

Statistical tests check the presence of statistical significant
differences, but they do not provide any information about
the magnitude of such a difference. We then used the point-
biserial correlation r because is the best way to compute
the magnitude of the difference when a Wilcoxon test is
used [14]. The r value is computed a

√
Z2/N , where Z is

returned by the Wilcoxon test and N is the sample size. In
the empirical software engineering fields [18], the magnitude
of the effect sizes measured using the point-biserial corre-
lation is classified as follows: small (0 to 0.193), medium
(0.193 to 0.456), and large (0.456 to 0.868).

Further, to analyze the probability that a statistical test will
reject a null hypothesis when it is actually false, we analyzed
the statistical power of the tests performed. A value close
to 0.80 is considered as a standard for the adequacy [13].

To test the effect of Order of Method, we used a method
similar to the one suggested by Briand et al. in [3]. Let
be: Diff(NO Mo) the differences for the Comprehension
values achieved by the participants, who (according to the
experimental design) performed the tasks with NO Mo first
and then with Mo; Diff(Mo) the differences for the Com-
prehension values achieved by the participants, who per-

Table 2: Post-experiment Survey Questionnaire
Id Question Answers

Q1 I had enough time to perform the tasks (1-5)
Q2 The task objectives were perfectly clear

to me
Q3 The tasks I performed were perfectly

clear to me
Q4 Judge the difficulty of the task concerning (A-E)

the system Music Shop (i.e., S1)
Q5 Judge the difficulty of the task concerning

the system Theatre Ticket Reservation
(i.e., S2)

Q6 Using the UML class and sequence (1-5)
diagrams the comprehension of a software
system is enhanced

1 = strongly agree; 2 = agree; 3 neutral; 4 = disagree;
5 = strongly disagree
A = very high; B = high; C = medium; D = low;
E = very low

formed the tasks with Mo first and then with NO Mo. We
applied the non-parametric Mann-Whitney U exact test to
verify Had: Diff(NO Mo) > Diff(Mo).

For all the performed statistical tests, we decided to accept
a probability of 5% of committing a Type-I-Error [21].

To investigate the effect of System, we applied the Bonfer-
roni correction [8], [9]. In particular, we used two tests to an-
alyze whether the effect of System is statistically significant.
Then, the p-values have to be less than αcor = 0.050

2
= 0.025.

To graphically show the answers of the post-experiment sur-
vey questionnaire, we adopted boxplots. These are widely
employed since they provide a quick visual representation to
summarize data [9].

3. ANALYSIS AND RESULTS
Some descriptive statistics (i.e., median, mean, and stan-
dard deviation) on the Comprehension dependent variable
are shown in Table 3. The statistics are grouped by Method
and System. These descriptive statistics show that the par-
ticipants achieved a better comprehension when they accom-
plished the task with the UML diagrams. Furthermore, the
participants achieved nearly the same comprehension on S1
and S2 both with Mo and NO Mo.

3.1 Influence of Method
The results of the Wilcoxon test revealed that Hn0 can be
rejected (p-value < 0.01).The effect size is large (i.e., 0.62)
and the statistical power is 0.91. An average improvement
of 14% was achieved when the participants accomplished the
comprehension task with the class and sequence diagrams.

The results of a paired analysis is reported in Table 4. The
results show that the number of participants that bene-
fited from the UML diagrams in the source code compre-
hension (Mo > NO Mo) were 13 out of 16, while 2 were
those who obtained a better comprehension using source
code alone (Mo < NO Mo). One participant out of 16
achieved the same comprehension using Mo and NO Mo
(Mo = NO Mo), respectively. For each participant, we also
computed the difference between the comprehension values
he/she achieved with Mo and that achieved with NO Mo
(i.e., Mo − NO Mo). This value is positive in case the partic-
ipant achieved a better comprehension with Mo, otherwise
negative. The difference is zero, when the same comprehen-
sion values was achieved by the participant using Mo and
NO Mo. Some descriptive statistics on Mo − NO Mo are
reported in Table 4. In particular, the average value is 1.31,
while the median is 1. The minimum and maximum are
-3.00 and 4.00, respectively. The standard deviation is 1.66.

3.2 Effect of co-factors
System - The Mann-Whitney test revealed that there was
no significant effect of System. When using Mo and NO Mo,
the p-values are 1 and 0.87, respectively.

Order of Method - the Mann-Whitney test revealed that
the order in which the participants performed the compre-
hension tasks was not statistically significant. These results
indicated that the participants did not get a significantly

MODELS’12 Workshop – EESSMod 2012

27

Table 3: Descriptive Statistics
System Observation Mo NO Mo

Min Max Med Mean Std. Dev. Min Max Med Mean Std. Dev.

All 32 10 15 14 13.06 1.53 9 14 12 11.75 1.29
S1 16 11 14 14 13.12 1.25 9 13 11.5 11.62 1.41
S2 16 10 15 13.5 13 1.85 10 14 12 11.88 1.25

Table 4: Analysis of the differences
Mo > Mo < Mo = Descriptive statistics of Mo − NO Mo

NO Mo NO Mo NO Mo Min Max Med Mean Std. Dev.

13/16 2/16 1/16 -3.00 3.00 1.00 1.31 1.66

better comprehension of the source code when passing from
the first task to the second one.

3.3 Further analysis
We also collected information on the time the participants
spent to accomplish a comprehension task on source code.
We then performed a further analysis on that information
to complete the assessment on the affect of the UML class
and sequence diagrams on the source code comprehension.

The Wilcoxon test revealed that there was no statistically
significant difference in the completion time (i.e., the depen-
dent variable) when using Mo and NO Mo (p-value = 0.12).
The hypothesis tested with this non parametric test was two-
sided because we could not make any postulation on the ef-
fect of Method on completion time. Therefore, the combined
use of UML class and sequence diagrams does not signifi-
cantly affect the time the participants spent to comprehend
source code. However, the descriptive statistics indicate that
the participants on average spent more time when using Mo
(mean = 30.06) with respect to NO Mo (mean = 23). The
median values are 27.5 for Mo and 20 for NO Mo. Further-
more, the standard deviation for Mo is almost twice that of
NO Mo (i.e., 13.13 and 7.61, respectively).

The Mann-Whitney test revealed that there was not a signif-
icant effect of System on the observed results. The p-values
are 0.53 and 0.79 when using Mo and NO Mo, respectively.
Furthermore, the effect of Order of Method was not statis-
tically significant as well. The returned p-value was 0.37.

It is worth mentioning that the investigation on the comple-
tion time was not our primary goal here. This is because we
confined the discussion on that dependent variable in this
subsection.

3.4 The Results of the Post-experiment Sur-
vey Questionnaire

The boxplots reported in Figure 1 summarize the answers to
the post-experiment survey questionnaire of UniSa. As the
box of Q1 shows, the participants to experiment considered
the time to conduct the experiment appropriate (the median
is 1 and corresponds to strongly agree). They also clearly
understood both the objectives and the tasks. The boxes
of Q2 and Q3 show that the medians are 1 (strongly agree)
and 2 (agree), respectively. A neutral judgment on the com-
plexity of the experimental objects was given as the boxes
of Q4 and Q5 show: both the medians are 3. As the box

Figure 1: Boxplots of the answers

of Q6 shows, all the participants found the use of the UML
effective for the comprehension of source code (the median
is 2 and corresponds to agree).

4. THREATS TO VALIDITY
In the following subsections the threats that could affect the
validity of the controlled experiments are presented. We use
the schema proposed in [21].

4.1 Internal Validity
Internal validity concerns the degree to which conclusions
can be drawn about the causal effect of the independent
variables on the dependent variables.

Interaction with selection. This threat has been miti-
gated because each group of participants worked on
different objects with Mo or NO Mo on two compre-
hension tasks. Further, the participants had similar
experience with UML, software system modeling, and
computer programming.

Maturation. Participants might have learned how to im-
prove their comprehension performances passing from
the first task to the second one. The data analysis
revealed that the order in which the participants per-
formed the tasks did not significantly affect source code
comprehension.

Diffusion or imitation of treatments. This threat con-
cerns the information exchanged among the partici-
pants. The participants were monitored by the experi-
ment supervisors, who did not allowed the participants
to communicate each other.

MODELS’12 Workshop – EESSMod 2012

28

4.2 External Validity
The main issue of the external validity refers to the possi-
bility of generalizing the results.

Interaction of selection and treatment. The use of stu-
dents may affect the external validity [5], [6], [17].
Threats are related to the representativeness of the
participants as compared with professionals. Repli-
cations with this kind of participants are needed to
confirm or contradict the achieved results.

Interaction of setting and treatment. It concerns the
experimental objects used. The software systems on
which the experimental objects were selected have never
undergone maintenance operations. This may affect
the source code comprehension. Also, the size and
complexity of the objects may affect the validity of
the results. However, larger and more complex tasks
could excessively overload the participants, thus bias-
ing the results.
Using source code printout could have negatively af-
fected the performance of the participants. It is worth
noting that the use of a IDE should equally affect the
comprehension of the participants both using and not
using the diagrams.

4.3 Construct Validity
Construct validity concerns generalizing the results to the
concepts behind the experiment. Some threats are related
to the design of the experiments and to social factors.

Interaction of different treatments. The adopted design
partially mitigated these threats.

Mono-method bias. Using one single dependent variable
could bias the results. The adopted measure to quan-
titatively assess the comprehension is well known and
widely used (e.g., [11], [15]).

Confounding constructs and level of construct. More
levels than High and Low could be used in the classifi-
cation of participants’ ability. We are also aware that
the use of a different measure to assess participants’
ability could lead to different results. Also, the way
to group the students into high and low experienced
participants could represent another threat.

Evaluation apprehension. We mitigated this threat be-
cause the participants were not evaluated on the com-
prehension they achieved on the source code used in
the experiment. The participants were not aware of
the experimental hypotheses investigated.

Experimenters’ expectations. We mitigated this threat
formulating the questions of the comprehension ques-
tionnaires so conditioning their answers in favor of
neither Mo nor NO Mo. The post-experiment survey
questionnaire was designed to capture the participants’
perception on the experiment and the used material.
The survey was intended to support and explain the
quantitative results and was designed using standard
approaches and scales [19].

4.4 Conclusion Validity
Conclusion validity concerns issues that may affect the abil-
ity of drawing a correct conclusion.

Reliability of measures. The used measure allowed us to
assess in an objective way the comprehension level
achieved by the participants on source code.

Random heterogeneity of participants. We drew fair
samples and conducted our experiment with partic-
ipants belonging to these samples. Another threat is
related to the number of observations. Replications on
a larger number of participants are required to confirm
or contradict the results.

Fishing and the error rate. For UniSa the null hypoth-
esis has been rejected with p-value less than 0.01 and
0.91 as the statistical power value.

5. RELATED WORK
We discuss the related literature concerning controlled ex-
periments aimed at assessing the effect of using the UML
in software maintenance and program comprehension. To
get a deeper understanding on empirical evaluations on the
models and forms used in the UML, a systematic literature
review is available in [4].

Arisholm et al. [1] observe that the availability of docu-
mentation based on the UML may significantly improve the
functional correctness of changes as well as the design qual-
ity when complex tasks have to be accomplished. Although
this study and the one presented here have the same research
goal (i.e., impact of UML documentation on software main-
tenance), a number of differences are present. The main dif-
ference is that we specifically focus on comprehension tasks,
while the authors on modification tasks performed both on
UML diagrams and source code.

Dzidek et al. [12] investigate on the costs and benefits in
using the UML to maintain and evolve software systems.
The authors conduct a controlled experiment with profes-
sional programmers. The results reveal that the use of the
UML significantly impacts the functional correctness of the
maintenance operations. Conversely, the UML use does not
significantly affect the time to perform maintenance opera-
tions. The main difference with respect to our investigation
is that the focus of the controlled experiment is not based
on the comprehension of source code and the UML diagrams
are different.

Gravino et al. [15] present a controlled experiment to assess
whether UML models produced in the early phases of the
development process (i.e., requirements elicitation and anal-
ysis phases) improve the comprehension of source code. The
results reveal that the use of models does not significantly
improve the comprehension of source code with respect to
the use of source code alone. In some way, the study pre-
sented here and that highlighted in [15] go in the same direc-
tion: investigating whether or not the comprehensibility of
the source code might improve when it is added with UML
diagrams. The most remarkable difference between these
papers is that here we consider UML diagrams produced in
the design phase.

MODELS’12 Workshop – EESSMod 2012

29

6. CONCLUSION AND FUTURE WORK
In this paper, we have presented the results of a controlled
experiment to assess whether the comprehension of source
code is affected when it is added with UML class and se-
quence diagrams produced in the design phase. The data
analysis revealed that the participants benefited from the
use of the UML diagrams. We used a controlled experiment
because a number of confounding and uncontrollable factors
could be present in real project settings. Controlled exper-
iments are often conducted in the early steps of empirical
investigations that take place over the years (e.g., [1], [7]).

Due to the results of the experiment, we plan to conduct
industrial case studies in the future. This part of our re-
search is still in progress and is the most challenging and
complex. The results presented in the paper suggest the
following future research directions:

1. It is possible that participants, who were provided with
the UML diagrams, did not deeply analyzed the code
because they believed that these diagrams provided
adequate information to accomplish a comprehension
task on source code. This point is interesting from
the researcher perspective and then worthwhile being
investigated.

2. It could be interesting to investigate the motivation
guiding the software engineers in trusting software mod-
els and how they select them to accomplish their tasks.
It will be then worth analyzing how software engi-
neers choose the information to perform comprehen-
sion tasks.

Acknowledgments
We wish to thank the Ilaria Bilancia and the Michela Conti-
nanza for their precious help in preparing the experimental
material and in executing the experiments. We also thank
the participants to the experiment.

7. REFERENCES
[1] E. Arisholm, L. C. Briand, S. E. Hove, and

Y. Labiche. The impact of UML documentation on
software maintenance: An experimental evaluation.
IEEE Transactions on Software Engineering,
32:365–381, 2006.

[2] V. Basili, G. Caldiera, and D. H. Rombach. The Goal
Question Metric Paradigm, Encyclopedia of Software
Engineering. John Wiley and Sons, 1994.

[3] L. C. Briand, Y. Labiche, M. Di Penta, and
H. Yan-Bondoc. An experimental investigation of
formality in UML-based development. IEEE
Transactions on Software Engineering,
31(10):833–849, 2005.

[4] D. Budgen, A. J. Burn, O. P. Brereton, B. A.
Kitchenham, and R. Pretorius. Empirical evidence
about the UML: a systematic literature review.
Software: Practice and Experience, 41(4):363–392,
2011.

[5] J. Carver, L. Jaccheri, S. Morasca, and F. Shull. Issues
in using students in empirical studies in software
engineering education. In Proceedings of the 9th
International Symposium on Software Metrics, pages

239–, Washington, DC, USA, 2003. IEEE Computer
Society.

[6] M. Ciolkowski, D. Muthig, and J. Rech. Using
academic courses for empirical validation of software
development processes. EUROMICRO Conference,
0:354–361, 2004.

[7] M. Colosimo, A. De Lucia, G. Scanniello, and
G. Tortora. Evaluating legacy system migration
technologies through empirical studies. International
Journal on Information and Software Technology,
51(12):433–447, 2009.

[8] W. J. Conover. Practical Nonparametric Statistics.
Wiley, 3rd edition edition, 1998.

[9] J. L. Devore and N. Farnum. Applied Statistics for
Engineers and Scientists. Duxbury, 1999.

[10] P. J. Dobing B. How uml is used. Communications of
the ACM, 49(5):109–113, 2006.

[11] J. Dolado, M. Harman, M. Otero, and L. Hu. An
empirical investigation of the influence of a type of side
effects on program comprehension. IEEE Transactions
on Software Engineering, 29:665–670, 2003.

[12] W. J. Dzidek, E. Arisholm, and L. C. Briand. A
realistic empirical evaluation of the costs and benefits
of UML in software maintenance. IEEE Transactions
on Software Engineering, 34:407–432, May 2008.

[13] P. Ellis. The Essential Guide to Effect Sizes: Statistical
Power, Meta-Analysis, and the Interpretation of
Research Results. Cambridge University Press, 2010.

[14] A. Field and G. Hole. How to Design and Report
Experiments. Sage publications Limited, 2003.

[15] C. Gravino, G. Tortora, and G. Scanniello. An
empirical investigation on the relation between
analysis models and source code comprehension. In
Proceedings of the 2010 ACM Symposium on Applied
Computing, SAC ’10, pages 2365–2366, New York,
NY, USA, 2010. ACM.

[16] O. M. Group. OMG Unified Modeling Language
(OMG UML), Infrastructure, V2.1.2. Technical report,
Nov. 2007.

[17] J. Hannay and M. Jørgensen. The role of deliberate
artificial design elements in software engineering
experiments. IEEE Transactions on Software
Engineering, 34:242–259, March 2008.

[18] V. B. Kampenes, T. Dyb̊a, J. E. Hannay, and D. I. K.
Sjøberg. A systematic review of effect size in software
engineering experiments. Information & Software
Technology, 49(11-12):1073–1086, 2007.

[19] A. N. Oppenheim. Questionnaire Design, Interviewing
and Attitude Measurement. Pinter, London, 1992.

[20] G. Scanniello, C. Gravino, and G. Tortora.
Investigating the role of UML in the software modeling
and maintenance - a preliminary industrial survey. In
Proceedings of the 12th International Conference on
Enterprise Information Systems, pages 141–148, 2010.

[21] C. Wohlin, P. Runeson, M. Höst, M. Ohlsson,
B. Regnell, and A. Wesslén. Experimentation in
Software Engineering - An Introduction. Kluwer, 2000.

MODELS’12 Workshop – EESSMod 2012

30

UML Class Diagram Simplification: What is in the
developer’s mind?

Hafeez Osman
hosman@liacs.nl

Dave R. Stikkolorum
drstikko@liacs.nl

Arjan van Zadelhoff
avzadelh@liacs.nl

Michel R.V. Chaudron
chaudron@liacs.nl

Leiden Institute of Advanced Computer Science, Leiden University
Niels Bohrweg 1, Leiden, the Netherlands

ABSTRACT
Class diagrams play an important role in software develop-
ment. However, in some cases, these diagrams contain a lot
of information. This makes it hard for software maintain-
ers to use them to understand a system. In this paper, we
aim to discover how to simplify class diagrams in a such
way that they make systems easier to understand. To this
end, we performed a survey to analyze what type of informa-
tion software developers find important to include or exclude
in order to simplify a class diagram. This survey involved
32 software developers with 75% of the participants having
more than 5 years of experience with class diagrams. As
the result, we found that the important elements in a class
diagram are class relationship, meaningful class names and
class properties. We also found that information that should
be excluded in a simplified class diagram is GUI related in-
formation, private and protected operations, helper classes
and library classes. In this survey we also tried to discover
what types of features are needed for class diagram simpli-
fication tools.

Keywords
Reverse engineering, UML, Class Diagram, Simplification

1. INTRODUCTION
The UML class diagram is one of the valuable artefacts in
software development and software maintenance that de-
scribes the static structure of programs at a higher level of
abstraction than source code [9]. The UML models, which
are usually created during the design phase, are often poorly
kept up to date during the realization and maintenance
phase. As the implementation evolves, correspondence be-
tween design and implementation degrades from its initial
design [10]. Reverse engineering is one of the techniques
used to uncover a software design after the implementation

phase. Reverse engineering is the process of analyzing the
source code of a system to identify its components and their
interrelationships and create design representations of the
system at a higher level of abstraction [4]. However, (the)
class diagrams resulting from reverse engineering sometimes
suffer from too much details. In particular, reverse engi-
neered class diagrams are typically a detailed representation
of the underlying source code, which makes it hard for the
software engineer to understand what the key elements in
the software structure are [11]. Although several Computer
Aided Software Engineering (CASE) tools have options to
leave out several properties in a class diagram, they are un-
able to automatically identify classes and information that
are not useful or less important. As part of a recent study,
Fernández-Sáez et al. [8] found that developers experience
more difficulties in finding information in reverse engineered
diagrams than in forward designed diagrams and also find
the level of detail in forward designed diagrams more appro-
priate than in reverse engineered diagrams. A good repre-
sentation of a class diagram by showing the crucial informa-
tion of a system is needed, especially when new programmers
want to join a development group; they need a starting point
in order to understand the whole project. Tools support dur-
ing maintenance, re-engineering or re-architecting activities
have become important to decrease the time software per-
sonnel spend on manual source code analysis and help to
focus attention on important program understanding issues
[2].

This paper aims to find out how to simplify a UML class
diagram by leaving out unnecessary information without af-
fecting the developer’s understanding of the entire system.
To this end, we have conducted a survey to gather infor-
mation from software developers about what type of infor-
mation they focus on. We have prepared a questionnaire
that consists of 15 questions which are divided into 3 parts
in order to discover this information. In total, 32 software
developers from the Netherlands that participated in this
survey. The paper is structured as follows. Section 2 dis-
cusses related works and followed by Section 3 that describes
the survey methodology. Section 4 describes the result and
findings. We discuss our findings in Section 5 and Section 6
suggests future work. This is followed by our conclusion in
Section 7.

MODELS’12 Workshop – EESSMod 2012

31

2. RELATED WORKS
In this section, we discuss several studies that are slightly re-
lated. Yusuf et al. [15] did a study about assessing the com-
prehension of UML Class diagrams via eye tracking. Their
goal was to obtain an understanding of how human subjects
use different types of information in UML class diagrams
in performing their tasks. They found that experts tend
to use such things as stereotype information, coloring, and
layout to facilitate more efficient exploration and navigation
of class diagrams. Also, experts tend to navigate from the
center of the diagram to the edges whereas novices tend to
navigate from top-to-bottom and left-to-right.

Egyed [6] described an approach for automated abstraction
that allows designers to ‘zoom out’ on class diagrams to
investigate and reason about their bigger picture. This ap-
proach was based on a large number of abstraction rules and,
when used together, it can abstract complex class structures
quickly. A part of the abstraction rules are semantic rules
that look at the semantic properties of classes and relation-
ships which makes it possible to eliminate a helper class and
derive a (slightly) more abstract class diagram. In total, the
article provides 121 rules to abstract a class diagram. They
validated their abstraction technique and its rules on numer-
ous third-party applications and models with up to several
hundred model elements.

Bassil et al. [1] conducted a survey study about software
visualization (SV) tools. This study addresses various func-
tional, practical, cognitive and code analysis aspects that
users may be looking for in SV tools. They found that func-
tional aspects such as searching and browsing, use of colors,
and easy access from the symbol list to the corresponding
source code were rated as the most essential aspects. Also hi-
erarchical representations and navigation across hierarchies
were strongly desired.

3. SURVEY METHODOLOGY
In this section, we describe i) The questionnaire design; and
ii) The experiment description.

3.1 Questionnaire Design
The questionnaire was organized into three parts i.e. Part A,
B and C. In total, there were 15 questions. For this survey,
we organized the questionnaire by dividing this question-
naire into two different sets of questions. Both sets of ques-
tions had the same questions for Part A and C. However,
we differentiated the questions in Part B. The questionnaire
can be found at [12].

3.1.1 Part A: Personal Questions
Part A consisted of six questions. Questions one to four were
intended to access respondents background information. In
questions five and six, we wanted to discover the respon-
dents’ preferences of software artefacts (i.e. UML, Source
code) for understanding a system.

3.1.2 Part B: Practical Problems
This part contained three questions. Each of these questions
included of a class diagram. In this part the respondents’
were required to mark information that can be left out of the

provided class diagram without affecting their understand-
ing of the system. The class diagrams that were used in this
survey are the following:

1. Automated Teller Machine (ATM) simulation
system [3] : This fully functional system has a class
design and complete implementation source code. The
complete software documents based on UML that were
provided consists of 22 design classes. We reverse en-
gineered the design of this system for this study.

2. Pacman Game [5] : Pacman’s Perilous Predicament
is a turn based implementation on the classic Pacman
arcade game. The amount of classes in the source code
in this system is 17 while only 15 classes are stated in
the class diagram design. Both forward and reverse
engineered designs were used in this survey.

3. Library System [7]: Library System is a system that
enables a user to borrow a book from a library. This
complete system consists of 24 classes in the source
code. The reverse engineered design was used for this
survey.

Enterprise Architect version 7.5 were used as a tool to re-
verse engineered the source codes to produce class diagrams.
The questionnaire included diagrams with different Level of
Detail (LoD). In set A, ATM system in MLoD and Library
System in HLoD were used and in set B, ATM system in
HLoD and Library System in MLoD were used. Different
LoD were used to simulate different types of detail that are
used in a class diagrams. We also used different sources
of class diagram by setting Forward Design Class Diagram
and Reverse Engineered Class Diagram to simulate the dif-
ferent flavours of class diagrams that exist in the software
industry. In HLoD class diagrams, all class diagram ele-
ments i.e.classes, attributes, types of attributes, operations,
operations’ return types, parameters in operations and rela-
tionship are presented. In MLoD, all elements in the class
diagram are shown except Types of attributes and Parame-
ters in operations.

3.1.3 Part C: (Class Diagram) Indicators for Class
Inclusion

This part consisted of six open-ended questions. The aim of
these questions was to discover which information is needed
in a class diagram and which type of information may be
left out.

3.2 Experiment Description
The experiment was conducted on 6th of June 2012 at Lei-
den Institute of Advanced Computer Science (LIACS), Lei-
den. The participants of this survey were software develop-
ers from all over the Netherlands. In total, there were 32
respondents and all of them were members of a software de-
veloper community called Devnology. The participants had
to answer every question and were free to ask any question
during the questionnaire session. The time given to answer
those questions was 60 minutes and all participants answered
the questions in one session.

MODELS’12 Workshop – EESSMod 2012

32

4. RESULTS AND FINDINGS
In this section, we present our results and analysis of the
answers given by the respondents. The complete responses
of this questionnaire can be found at [13] and the full analysis
can be found at [14]. This section is divided into three parts
which presents our analysis for this questionnaire.

4.1 Part A: Personal Questions
This part presents the results and analysis of the respon-
dents’ background and their preference of software artefacts
(UML or Source Code) for understanding a system.

4.1.1 Background of the Respondents
The questions to access the respondents’ background are the
following:

• Question A1: What is your role at the moment?
• Question A2: How many year(s) of experience do you

have in working with class diagrams?
• Question A3: Where did you learn about UML?
• Question A4: How do you rate your own skills in cre-

ating, modifying and understanding a class diagram?

In terms of the respondent’s role, 81% of the respondents
are programmers. 50% of the respondents are software ar-
chitects and 28% of the respondents are software designers.
This shows that the majority of the respondents are involved
in the design and implementation phases in software devel-
opment. 14 out of 26 programmers (54%) are also software
architects or software designers. For the respondents’ expe-
rience in class diagrams, we found that 50% of the respon-
dents are experienced with class diagrams for more than 10
years. The results also show that 75% of the respondents
have experience with class diagrams for more than 5 years.
In term of UML knowledge, 47% of the respondents had
learned about UML in Polytechnic or University and 25%
have taken professional training to learn UML. Meanwhile,
38% of the respondents learned UML by themselves and 19%
learned from their colleague(s) or from industrial practice.
There were no participants that answered ‘No’. This shows
that all participants of this survey have knowledge of UML.
For the respondent’s skills in class diagrams, most of the re-
spondents (88%) have average and good skills on creating,
modifying, and understanding class diagrams and only 3%
have excellent skills related to class diagrams. This indi-
cates that over 90% of the respondents have average skills
or above related to class diagrams.

4.1.2 Repondents’ Preference of Software Artefacts
The questions to discover the respondent’s preference of soft-
ware artefacts are the following:

• Question A5: Indicate whether you (dis)like to look at
source code for understanding a system?

• Question A6: Indicate whether you (dis)like to look at
UML models for understanding a system?

The results shown in Figure 1 indicate that there are not
much differences between Like or Dislike of Source code ver-
sus UML design. We further investigated this result by sep-

Figure 1: Respondents Like or Dislike Source Code
vs UML

arating this and present it according to the role of the re-
spondents, specifically programmer, software architect, and
software programmer. The results show that the program-
mers are a bit more positive about source code than UML
but the difference is not significant. It was quite a surprise
to see that a lot of software designers like using source code
more than UML to understand a system. The same for the
software architects, they like using source code more than
UML to understand a system.

4.2 Part B: Practical Problems
The results of this part were analysed by combining the an-
swers based on the following categories: attribute, opera-
tion, class, relationship, inheritance and package.

4.2.1 Category 1: Attribute
In the attribute category we divided this category into two
subcategories: Properties and Type of Attribute. We di-
vided the properties subcategory in three elements: Pro-
tected, Public and Private. We also divided the type of at-
tribute subcategory into three elements: No primitive type,
GUI related, and Constant. The results show that 25% of
the respondents chose not to include the GUI related at-
tributes. 19% of the respondents like to leave out Private
and Constant types of attributes. 13% of respondents pro-
posed to leave out protected attributes.

4.2.2 Category 2 : Operation
The operation category is divided into two subcategories
namely Properties and Type. The Properties subcategory
consists of four elements and these are Private, Protected,
Public and Return Type. The Type subcategory also con-
sists of four elements and these are Event Handler, General
Function, Getters/Setters and Constructor. For the con-
structor element, we divided this element into 2 groups and
these are With Parameter and Without Parameter because
the respondents seem to differentiate this information. The
results show that 25% of the respondents chose to exclude
constructors without parameters. Nevertheless, 16% of the
respondents suggested that all constructors should be left
out in a class diagram. For getters and setters, 19% of
the respondents suggested that these operations should be
excluded. 9% of the respondents mentioned that General

MODELS’12 Workshop – EESSMod 2012

33

No Group Subgroup No Group Subgroup

1
Relationship/
Connectivity/
Interaction

Association

3
Class

structure/
properties

Abstraction
Inheritance Method/Operation
Direction Attribute
Dependency Public Interface
Multiplicity Class Entities

2
Class Role

and
Responsibility

Classname
(meaningful)

Size Large/Small

Class Behaviour Public Properties
Business Entities Class Hierarchy
Main Classes/
Object/Purpose Object related

Class
functionality and
responsibility 4

High level

Concept

Domain Design Pattern
properties name
and methods
name

Overview

Reasoning
5 Others

Data

"starting" point
All Generic
Classes

Table 1: Keywords on Types of Information to Un-
derstand a System

Functions should not be included in a class diagram because
these functions are commonly used and well-known to pro-
grammers. Event Handlers were chosen to be excluded from
a class diagram by 6% of the respondents.

4.2.3 Category 3: Class
The class category is divided into two subcategories which
are Type of Class and Role. The type of class subcategory
consists of Interface, Enumeration, and Abstract elements
while the role subcategory consists of five elements which
are Console, Listener, Input/Support Classes, Log, and GUI
Related. In Type of Class, 38% of the respondents chose not
to include Enumeration classes. This is followed by interface
classes with 19% and 13% suggested that Abstract classes
should not be included in simplified class diagrams. The
Role subcategory results show that half of the respondents
suggested that GUI related classes and classes for logging
tasks should be left out in order to simplify a class diagram.
The respondents suggested eliminating these classes because
without these classes you can still understand the system.
The input function is a class that is used to take the in-
put from the interface or device. 21% of the respondents
indicated that this type of class should not to be included.

4.2.4 Category 4: Package
In the package category, there is only one subcategory which
is Separation of Class Diagram. In the Library System class
diagram, there were 4 respondents that drew several lines
to separate the GUI related classes. They suggested that
the class diagram should be separated into two different di-
agrams. This means that they wanted to keep the GUI
related classes and classes created for the system separated.

4.3 Part C: Class Diagram Indicators for Class
Inclusion/Exclusion

The analysis for this part was done by observing the an-
swers from the respondents and creating several keywords
to categorize these answers.

4.3.1 Type of Information in Class Diagrams for Un-
derstanding a Software System

Class
Relationship

Class Diagram
Semantic

Class Structure
and Properties

High level Others

% 81 59 44 34 6

0

10

20

30

40

50

60

70

80

90

P
e
rc
e
n
ta
ge

Figure 2: Types of Information the Respondents
Look For in a Class Diagram

Figure 3: Information of Operations that Should be
left out

The respondents were asked the following question: ‘In soft-
ware documentation, particularly in class diagrams, what
type of information do you look for to understand a soft-
ware system?’. In this question, we were expecting to get
the type of information that the respondents look for to un-
derstand a system. Based on the answers, we created several
keywords and categories as shown in Table 1. In Figure 2,
the results show that class relationship is the most impor-
tant information in a class diagram that the respondents
searched for understanding a class diagram. 81% of the re-
spondents mentioned this. 59% of the respondents searched
for class Role and Responsibility(RnR) such as meaningful
class names, class functionality and behaviour, class proper-
ties and so on. About 44% of the respondents were looking
at class properties such as attributes, operations, class inter-
faces and so on. This follows with 34% of the respondents
that were looking at the high level abstraction of the class
diagram for example design concepts, design patterns and
class overviews.

4.3.2 Type of Information that Can be Left out
For type of information that can be left out, the respondents
need to answer the following question: ‘In a class diagram,
what type of information do you think can be left out with-
out affecting your understanding of a system?’. This ques-
tion is divided into four sections which are: Classes, Oper-
ations, Relationships, and Others. In the section of classes,
almost half of the respondents (44%) suggested that helper
classes should not be included in a class diagram. A quar-
ter of the respondents (25%) did not want library classes to
appear in a class diagram. These library classes could make

MODELS’12 Workshop – EESSMod 2012

34

a class diagram more complex. 22% of the respondents sug-
gested that the interface class type should not be included
in a class diagram.

In the section of Operations, the results(Figure 3) show that
66% of the respondents chose to exclude private operations
in a class diagram. 56% of the respondents mentioned that
constructors and destructors are not needed in a class di-
agram in order to understand a system while only 9% of
the respondents mentioned that they do not need construc-
tors without parameters. 41% of the respondents mentioned
that protected operations should be left out from a class di-
agram. In section Relationship, multiplicity is what most
respondents mentioned that is not needed in a class dia-
gram. However, only 6% of the respondents mentioned this,
which is a quite low percentage. 3% of the respondents do
not need any Labels (or roles of the relationships), Self Rela-
tions and References in a class diagram. In section Other(s),
9% of the respondents said that private fields should not be
included in a class diagram. Only 3% of the respondents
suggested technical, duplicates and UI information not to
be included in a class diagram.

4.3.3 The Criteria to Indicate Important Classes in
a Class Diagram

The respondents were asked about ‘What criteria do you
think indicate that a class (in a class diagram) is impor-
tant for understanding a system?’. This question tried to
discover the criteria to indicate important classes in a class
diagram. As the results, 38% of respondents think that the
relationship is the most important criterion in a class dia-
gram which also align with our results in question C1. 16%
of the respondents think that meaningful class names, Busi-
ness or domain value, and the position of class are the im-
portant criteria in a class diagram. This result shows that
RnR and the meaning of a class play a role in understanding
a class diagram. Some respondents preferred to search for
the position of the class and most of them mentioned that
the middle of a class diagram should contain the important
classes.

4.3.4 Type of Relationships that the Respondents Look
at First

The respondents were asked the following question: ‘If you
try to understand a class diagram, which relationships do
you look at first?’. In this question, we aimed to find out
what type of relationship the respondents look at first and
three types of relationships were provided as example an-
swers. We found that it is quite biased because most of
the answers only mentioned about these types of relation-
ships. None of the respondents answered other types of rela-
tionships such as composition, aggregation, and realization.
The results shows that 41% of the respondents like to search
for association relationships first while 19% search for De-
pendency relationships. Only 9% searched for inheritance
relationships.

4.3.5 Features/functions Expected in a Class Dia-
gram Simplification Tool

The respondents were asked the following question: ‘If there
is a tool for simplifying class diagrams (e.g. obtained from

reverse engineering), what features/functions would you ex-
pect from such a tool?’. In this question, we tried to dis-
cover what kind of features the respondents are looking for
if there is a tool which could simplify a class diagram. The
results show that the respondents mainly want a tool that
can hide/unhide information. The other feature that relates
to this is the drill up/down feature because when you are
drilling up, the amount of information of a class diagram will
be less and vice versa. 16% of the respondents wanted to
see more information about a class by hovering over a class
in a class diagram for example. Another feature that many
respondents wanted (13% of the respondents) is the change-
able layout of the class diagram in which the navigation can
be improved.

5. DISCUSSION
In this section we discuss the results and findings presented
in the previous section.

5.1 Respondents Background
In Part A, we have accessed the information about the re-
spondents’ skills and experiences in UML particularly in
class diagrams. All of the respondents have knowledge in
UML with 75% of the respondents have more than 5 years
of experience in class diagrams where 50% of the respon-
dents have experience for more than 10 years. In terms of
respondent skills in class diagrams, we found that over 90%
of the respondents have at least average skills in creating,
modifying and understanding class diagrams. For the re-
spondents preference of software artefacts, the results show
that there is no significant difference between the usage of
source code and class diagrams in order to understand a
system. However, we found that most of the software ar-
chitects and software designers prefer source code over class
diagrams to understand a system. A reason for this result
could be that they have a good knowledge of programming
or they have other techniques other than UML.

5.2 Class Properties
Relationships in a class diagram are considered the impor-
tant elements to show the structure of classes in a class dia-
gram. Most of the respondents in this survey looked at the
association relationship first. This shows that the associa-
tion relationship is important in class diagrams. However,
we found this result not really accurate since the respondents
only gave the answer within the examples given in the ques-
tion. In this survey, we found that most of the respondents
suggested leaving out or separating the GUI related informa-
tion from the class diagrams. The respondents focus more on
class diagram information that is created by the programmer
or software designer. The GUI related information exists in
source code when a developer used GUI libraries provided by
Rapid Application Development (RAD) tools such as Visual
Basic. In terms of class operations, most of the respondents
suggested to leave out the private and protected type of
operations. These types of operations are only used for in-
ternal classes and member classes for protected operations.
We also discovered that constructor/destructor operations
should not appear in simplified class diagrams. Particularly
in Part B, we found that most of the respondents suggested
that constructors without parameters should be excluded.

MODELS’12 Workshop – EESSMod 2012

35

5.3 Class Role and Responsibility(RnR)
One of our useful discoveries in this study is the importance
of the class RnR in a class diagram. Class RnR based on
classes’, operations’ and attributes’ name; are important be-
cause from our observation the respondents seemed to try
to understand a system based on class RnR. By using this
information, they can get an overall idea on how a system
works and get some hints of the functionalities of classes in a
class diagram. In this survey we also discovered that classes
that should be left out in a class diagram are helper classes,
library classes and interfaces classes. Most of the respon-
dents suggested leaving out helper classes. Nevertheless, it
is not easy to automatically identify helper classes based on
the class name or other information because it only can be
identified manually and the results are different based on
the software developer’s experience.

5.4 Class Diagram Simplification Tool
Features

From this survey, we found out that most of the respon-
dents need tools for simplifying a class diagram that can
Hide/Unhide information and Drill up and down a class di-
agram. With this feature they can use the tools to under-
stand the system in general by leaving out the details and
they can get more information when they want to modify
the system.

6. FUTURE WORK
This study was an early experiment on how to simplify a
class diagram and we see a number of ways to extend this
work. In this study, we have discovered information that
should be left out to simplify a class diagram. By using this
information, a simplified class diagram could be produced.
We propose to validate the resulting class diagram by using
an industrial case study and discover the suitability of the
simplified class diagram for the practical usage. Also from
this result, we found that class role and responsibility are
one of the important indicators in a class diagram. The
role and responsibility of a class are detected by using the
class names, operations names and attributes names. We
would like to suggest a study on names (class, operation
and attribute) that the software developers find important
or meaningful in order to understand a system.

7. CONCLUSION
This study presented a survey on how to simplify a class di-
agram without affecting their understanding of a system. In
particular, the questions in this survey were about the infor-
mation that should be left out from a class diagram and also
what kind of important information should remain. 32 soft-
ware developers from the Netherlands participated in this
survey. The most important element in a class diagram is
the class relationship. In this survey we discovered that most
of the respondents search for class roles and responsibility in
order to get high-level understanding how a system works.
This means, meaningful class names, operation names and
attribute names are important to show the functionality or
responsibility of a system. To simplify a class diagram, most
of the respondents chose to exclude GUI related information
and also library classes. This shows that most of the soft-
ware developers only need the information about the classes
that are created or designed. Most of the respondents also

mention that helper classes should be excluded to simplify
a diagram. However, it is not easy to automatically identify
a helper class. Private, Protected and Constructor (without
parameter) are types of operations that may be left out in
order to simplify a class diagram. Although we are aware
research on validation of our approach needs to be done,
we found several useful indicators that could be used in the
future for class diagram simplification.

8. ACKNOWLEDGEMENTS
We would like to thank all the participants from the Devnol-
ogy community.

9. REFERENCES
[1] S. Bassil and R. K. Keller. Software visualization tools:

Survey and analysis, volume 67, pages 7–17. IEEE,
2001.

[2] B. Bellay and H. Gall. A Comparison of Four Reverse
Engineering Tools, pages 2–11. IEEE Computer
Society Press, 1997.

[3] R. C. Bjork. Atm system. http://www.math-cs.
gordon.edu/courses/cs211/ATMExample/.

[4] E. J. Chikofsky and J. H. Cross. Reverse Engineering
and Design Recovery: A Taxonomy, volume 7, pages
13–17. IEEE Computer Society Press, 1990.

[5] A. Craig, A. Dinardo, and R. Gillespie. Pacman game.
http://code.google.com/p/tb-pacman/.

[6] A. Egyed. Automated abstraction of class diagrams,
volume 11, pages 449–491. ACM Transaction Software
Engineering Methodology, 2002.

[7] H. Eriksson, M. Penker, B. Lyons, and D. Fado. UML
2 Toolkit. Wiley Publishing Inc, 2004.

[8] A. M. Fernández-Sáez, M. Genero, M. R. V.
Chaudron, and I. Ramos. A Controlled Experiment on
the Impact of UML Diagram Origin on Maintenance
Performance. Unpublished.

[9] Y.-G. Guéhéneuc. A Systematic Study of UML Class
Diagram Constituents for their Abstract and Precise
Recovery, pages 265–274. IEEE, 2004.

[10] A. Nugroho and M. R. V. Chaudron. A Survey of the
Practice of Design - Code Correspondence amongst
Professional Software Engineers, pages 467–469.
Proceedings of the First International Symposium on
Empirical Software Engineering and Measurement,
September 20-21, 2007.

[11] H. Osman and M. R. V. Chaudron. An Assessment of
Reverse Engineering Capabilities of UML CASE Tools,
pages 7–12. 2nd Annual International Conference
Proceedings on Software Engineering Application,
September 12-13, 2011.

[12] H. Osman and A. van Zadelhoff. Original
questionnaire.
http://www.liacs.nl/~hosman/Questionnaire.rar.

[13] H. Osman and A. van Zadelhoff. Survey data.
http://www.liacs.nl/~hosman/SurveyData.rar.

[14] H. Osman, A. van Zadelhoff, D. Stikkolorum, and
M. Chaudron. Technical report. http://www.liacs.
nl/~hosman/Technical_Report_2012.pdf.

[15] S. Yusuf, H. Kagdi, and J. I. Maletic. Assessing the
Comprehension of UML Class Diagrams via Eye
Tracking, pages 113–122. IEEE, 2007.

MODELS’12 Workshop – EESSMod 2012

36

Making the Case for Measuring Mental Effort∗

Stefan Zugal
University of Innsbruck
Technikerstraße 21a

6020 Innsbruck, Austria
stefan.zugal@uibk.ac.at

Jakob Pinggera
University of Innsbruck
Technikerstraße 21a

6020 Innsbruck, Austria
jakob.pinggera@uibk.ac.at

Hajo Reijers
Eindhoven University of

Technology
PO Box 513

NL-5600 MB Eindhoven, The
Netherlands

h.a.reijers@tue.nl
Manfred Reichert

Universität Ulm
Building O27,

James-Franck-Ring
89069 Ulm, Germany

manfred.reichert@uni-
ulm.de

Barbara Weber
University of Innsbruck
Technikerstraße 21a

6020 Innsbruck, Austria
barbara.weber@uibk.ac.at

ABSTRACT
To empirically investigate conceptual modeling languages,
subjects are typically confronted with experimental tasks,
such as the creation, modification or understanding of con-
ceptual models. Thereby, accuracy, i.e., the amount of cor-
rectly performed tasks divided by the number of total tasks,
is usually used to assess performance. Even though accuracy
is widely adopted, it is connected to two often overlooked
problems. First, accuracy is a rather insensitive measure.
Second, for tasks of low complexity, the measurement of ac-
curacy may be distorted by peculiarities of the human mind.
In order to tackle these problems, we propose to additionally
assess the subject’s mental effort, i.e., the mental resources
required to perform a task. In particular, we show how afore-
mentioned problems connected to accuracy can be resolved,
that mental effort is a valid measure of performance and how
mental effort can easily be assessed in empirical research.

Categories and Subject Descriptors
G.3 [Probability and Statistics]: Experimental design

General Terms
Experimentation, Human Factors, Measurement

1. INTRODUCTION
Over the years, numerous conceptual modeling languages
and associated modeling tools have been proposed [15]. In
order to allow for an objective discrimination whether new

∗This research is supported by Austrian Science Fund
(FWF): P23699-N23

proposals come along with improvements, the adoption of
empirical software engineering has been advocated [4, 26].
Certainly, empirical research has been shown to be suitable
for putting discussions on an objective basis. Still, in or-
der to contribute to truly objective results, a valid exper-
imental setup, as well as valid measurement methods are
indispensable—slightest changes in the design might lead to
fundamentally different outcomes [12].

In this work, we focus on empirical research that involves
human activities, such as the creation, modification and un-
derstanding of conceptual models. Therein, various meth-
ods have been applied to identify differences. In particu-
lar, researchers have used modeling tasks [20], modification
tasks [7] and sets of questions [5] to assess performance of
conceptual modeling languages. In order to measure the
outcome of tasks, typically accuracy and duration are ana-
lyzed (cf. [5, 7, 11, 20, 28]). Accuracy thereby refers to the
percentage of correctly performed tasks, whereas duration
refers to how long a subject required to perform a task. Even
though accuracy is well-established and widely adopted, it
is connected to two often overlooked problems. First, in or-
der to identify differences with respect to accuracy, subjects
need to commit errors. Hence, subtle differences that may
be relevant, but do not lead to errors, cannot be identified
(e.g., slight improvement of comprehensibility). Second, it
has been shown that for tasks that are easy, humans tend
to make mistakes that are actually not caused by the mod-
eling notation, but are rather the result of peculiarities of
the human mind [10]. In order to overcome these problems
and to improve validity of the collected data, we propose to
additionally assess the subject’s mental effort, i.e., the men-
tal resources required for performing the task. We would
like to stress that we do not propose replacing accuracy and
duration, but rather using mental effort as an additional
perspective that potentially provides further insights. The
contribution of this paper is twofold. First, we argue for
measuring mental effort on the basis of literature. Second,
we will substantiate our claims with experiences drawn from
own experiments.

MODELS’12 Workshop – EESSMod 2012

37

The remainder of this paper is structured as follows. Sec-
tion 2 discusses problems related to accuracy and how to
address them using mental effort. Insights from experiments
making use of mental effort are presented in Section 3 and
afterwards discussed in Section 4. Section 5 presents related
work and Section 6 concludes with a summary.

2. MEASURING MENTAL EFFORT
In the following we start by discussing the previously de-
scribed problems in more detail. Then, we introduce mental
effort to address the aforementioned problems.

Problems Concerning Accuracy. In the introduction,
we briefly mentioned that accuracy is of rather low sensi-
tivity and potentially incorrect for tasks of low complexity.
Issues regarding the sensitivity become clear when looking
at the definition of accuracy. Usually, accuracy is defined to
be the ratio of correctly performed tasks (e.g., correct an-
swers) divided by the number of all performed tasks (e.g.,
total amount of questions). In other words, subjects have
to commit mistakes in order to obtain a lower accuracy. If
a task performed in the course of an experiment is not diffi-
cult enough to provoke errors, no differences can be observed
with respect to accuracy, also known as ceiling effect [25].
Likewise, if differences between experimental tasks are not
large enough, no differences can be observed.

In addition, for tasks of low complexity a further problem
arises—it has been recognized that for such tasks subjects
tend to commit more careless mistakes. In [10], this phe-
nomenon is explained by Dual-Process Theory [22]. Roughly
speaking, this theory postulates that the human brain con-
sists of two systems, S1 and S2. S1 processes are character-
ized as being fast, unconscious and effortless. S2 processes,
in contrast, are slow, conscious and effortful. In addition,
S2 serves as monitor of the fast automatic responses of S1.
Apparently, in certain situations, S1 comes up with a fast
response and S2 does not intervene—leading to answers that
are fast but incorrect. Hence, for tasks of low complexity,
it may be the case that accuracy does not reflect the task’s
difficulty, but rather this peculiarity of the human mind.

Up to now we have discussed problems associated with mea-
suring accuracy, i.e., low sensitivity and potential problems
when assessing accuracy for tasks of low complexity. In the
following, we introduce the concept of mental effort and il-
lustrate how it can be used to overcome these problems.

Measuring Mental Effort. In general, the human brain
can be seen as a “truly generic problem solver” [24]. Within
the human brain, cognitive psychology differentiates between
working memory that contains information currently being
processed, as well as long-term memory in which informa-
tion can be stored for a long period of time [17]. Most se-
vere, and thus of high interest, are limitations of the working
memory. As reported in [2], working memory cannot hold
more than about seven items at the same time. The amount
of working memory currently used is thereby referred to as
mental effort. The importance of the working memory has
been recognized and led to the development and establish-
ment of Cognitive Load Theory, meanwhile widespread and
empirically validated in numerous studies [3].

To measure mental effort, various techniques, such as rat-
ing scales, pupillary responses or heart-rate variability are
available [17]. Especially rating scales, i.e., self-rating men-
tal effort, has been shown to reliably measure mental effort
and is thus widely adopted [9, 17]. Furthermore, this kind
of measurement can easily be applied, e.g., by using 7-point
rating scales. For instance, in [13] mental effort was assessed
using a 7-point rating scale, ranging from (1) very easy to
(7) very hard for the question“How difficult was it for you to
learn about lightning from the presentation you just saw?”.

In the context of conceptual models, mental effort is of in-
terest as it appears to be connected to performance, e.g.,
properly answering questions about a model. In general, it
is known that errors are more likely to occur when the work-
ing memory’s limits are exceeded [23]. Similarly, in [14] it
is argued that higher mental effort is in general associated
with lower understanding of models.

Based on these insights, we argue that mental effort is con-
nected to performance, i.e., accuracy and duration. In con-
trast to accuracy, however, subtle differences can presum-
ably be observed. In particular, for cases where mental ef-
fort is well within the working memory’s limits and thus does
not provoke a significant amount of errors, still a different
mental effort could be observed. In addition, for tasks of low
complexity, careless mistakes may distort the measurement
of accuracy. For mental effort, however, it can be expected
that careless mistakes will not distort the measurement.

3. MENTAL EFFORT IN EMPIRICAL RE-
SEARCH

So far, our arguments for measuring mental effort are based
on insights from literature. In the following, we will com-
plement the discussion with findings we gained in own ex-
periments. For each experiment, we will shortly sketch the
setup on a very abstract level and point out relevant findings
related to the measurement of mental effort.

3.1 Experiment 1: Test Cases in Declarative
Business Process Modeling

Background. In this experiment, we investigated whether
the presence of test cases supports the maintenance of declar-
ative business process models, as argued in [32]. In the con-
text of this work, the relevant information is that subjects
were asked to adapt conceptual models with different types
of operational support.

Setup. We employed a randomized, balanced single-factor
experiment with repeated measurements (cf. [27]). The fac-
tor was adoption of test cases, having factor levels test cases
as well as absence of test cases. The experiment’s objects
were change assignments for two declarative process mod-
els. Measured response variables relevant for this work were
mental effort and accuracy, i.e., the amount of errors con-
ducted (details are provided in [31]). To assess mental effort,
we employed a 7-point rating scale, ranging from Extremely
low mental effort (1) to Extremely high mental effort (7) for
the question “How would you assess the mental effort for
completing the change tasks (with tests)?”. For assessing the
impact of factor level absence of test cases, the phrase “with
tests” was replaced by “without tests”.

MODELS’12 Workshop – EESSMod 2012

38

Execution of Experiment. The experiment was con-
ducted in December 2010 in a course on business process
management at the University of Innsbruck; in total 12
students participated. Operational support for collecting
demographic data was provided by Cheetah Experimental
Platform (CEP) [21], modeling assignments were conducted
using Test Driven Modeling Suite (TDMS) [30].

Findings Relevant to Mental Effort. The collected data
indicated that subjects, who had test cases at hand, con-
ducted fewer errors, however, the differences were not signif-
icant (Wilcoxon Signed-Rank Test, Z = -0.857, p = 0.391).
Interestingly, the data indicated a lower mental effort for
subjects who had test cases at hand. However, in this case
the differences could be found to be significant (Wilcoxon
Signed-Rank Test, Z = -2.565, p = 0.010). A detailed anal-
ysis showed that the provided models were too simple to
provoke the desired effects, i.e., differences with respect to
the amount of errors committed. In fact, 96% of the tasks
were performed correctly, leaving almost no room for im-
provement. Still, the models were difficult enough to achieve
significant results with respect to mental effort. Knowing
that errors are more likely to occur when the working mem-
ory’s limits are exceeded [23], these results seem plausible.
Even though the tasks were not difficult enough to go beyond
the limit of the subjects’ working memory and thereby pro-
voking errors, different levels of mental effort were required.
Put differently, it appears as if in this case measuring mental
effort provided a more sensitive method than accuracy.

3.2 Experiment 2: Test Cases in Declarative
Business Process Modeling (Replication)

Background. In this experiment, we further explored this
research direction, i.e., the background is identical to Ex-
periment 1.

Setup. Since this experiment is a replication of Experiment
1, the setup is identical, except for more complex models1.

Execution of Experiment. The experiment was con-
ducted in December 2011 in a course on business process
management at the University of Ulm; in total 31 students
participated. Again, CEP [21] and TDMS [30] were used as
operational support.

Findings Relevant to Mental Effort. Data analysis
showed that subjects who had test cases at hand conducted
significantly less errors (Wilcoxon Signed-Rank Test, Z =
-3.165, p = 0.002) and required significantly less mental ef-
fort (Wilcoxon Signed-Rank Test, Z = -3.867, p = 0.000).
Interestingly, the total amount of correctly performed tasks
dropped from 96% in Experiment 1 to 80% in this experi-
ment. Hence, the two key observations are, as follows. First,
apparently a certain level of complexity was required to pro-
voke enough errors and to make differences with respect
to accuracy significant. Second, mental effort consistently
showed significant differences in both experiments. In other
words, as discussed in Section 2, mental effort and accuracy
seem connected, however, a certain level of complexity is re-
quired for accuracy in order to show significant differences.

1Material can be downloaded from:
http://bpm.q-e.at/experiment/TDMReplication

3.3 Experiment 3: Hierarchy in Business Pro-
cess Models

Background. In this experiment we investigated the im-
pact of hierarchy on the understandability of BPMN models.
In the context of this work, the essential part is that we elab-
orated pairs of information-equivalent models, one of them
making use of hierarchy. Then, we asked subjects to an-
swer questions about those models, measuring accuracy of
answers, duration and mental effort.

Setup. We employed a randomized, balanced single-factor
experiment with repeated measurements (cf. [27]). The fac-
tor was hierarchy with factor levels flat as well as hierarchi-
cal. The experiment’s objects were two BPMN-based busi-
ness processes. Measured response variables relevant for this
work were accuracy of answers, duration and mental effort2.
In contrast to Experiment 1 and Experiment 2, where men-
tal effort was assessed once for each subject, in this exper-
iment we measured the expended mental effort after each
question. To assess mental effort, we used a 7-point rating
scale ranging from Extremely low mental effort (1) to Ex-
tremely high mental effort (7). The question for measuring
mental effort was: “Please indicate your mental effort for
answering this question (question X)”.

Execution of Experiment. The experiment was con-
ducted in a course on business process management at the
University of Eindhoven in January 2012; in total 114 stu-
dents participated. Again, CEP [21] was used for presenting
the models to subjects and collecting answers.

Findings Relevant to Mental Effort. The assessment
of accuracy, duration and mental effort per question, as op-
posed to Experiment 1 and Experiment 2, where mental
effort was assessed once for the entire experiment, allowed
for a much more fine grained analysis. In the course of this
experiment, 2 BPMN-based business process models were
presented to each subject. For each model, 8 questions were
asked, leading a total of 16 questions per subject. Since we
expected different mental effort, accuracy and duration, de-
pending on whether a question was posed for a hierarchical
model or a flat model, responses were analyzed separately,
leading to a total of 32 data points. In the following, we
will discuss this data from two perspectives. First, we will
present a case in which accuracy did not reflect the diffi-
culty of a task, but rather peculiarities of the human mind.
Second, we will take a closer look into the relation between
mental effort, accuracy and duration.

Accuracy for Tasks of Low Complexity. In Section 2
we argued that measurement of accuracy might lead to un-
expected results—in the following, we provide further em-
pirical evidence. In particular, the third question in this
experiment yielded an average mental effort of 3.14, ac-
curacy of 0.79 and duration of 40 seconds when asked for
the hierarchical model. If the same question was posed for
the information-equivalent model without hierarchy, men-
tal effort increased to 3.75, duration increased to 51 sec-
onds, but also the accuracy increased to 0.91. Statistically
speaking, a Mann-Whitney U test showed that mental ef-

2Material can be downloaded from:
http://bpm.q-e.at/experiment/Hierarchy

MODELS’12 Workshop – EESSMod 2012

39

fort increased significantly (z = -3.271, p = 0.001), also the
duration increased significantly (z = -4.468, p = 0.000). Ap-
parently inconsistently, also the average accuracy increased,
even though not significantly (z = -1.717, p = 0.086)—
according to previous findings, higher mental effort should
have been associated with lower accuracy.

In order to resolve this contradiction, we investigated the
aforementioned question in detail. The analysis showed that
it should have been harder to answer the question for the
non-hierarchical model, i.e., lower accuracy could be ex-
pected. In particular, for answering the question in the
hierarchical model, 13 BPMN nodes had to be taken into
account—for the non-hierarchical model, however, 92 nodes
had to be considered3. Knowing that this amount of nodes
required the subjects to scroll considerably to see all rel-
evant model elements, it seems surprising that actually a
higher accuracy could be observed. However, in the light of
Dual-Process Theory [22], these results can be explained as
follows. For the hierarchical model, the question could be
answered easily, as indicated by the average mental effort
of 3.14 (approximately Low mental effort). Hence, it seems
plausible that system S1 provided a quick, but incorrect an-
swer that was not overridden by S2. In the non-hierarchical
model, subjects were forced to scroll to determine the an-
swer, i.e., involving conscious activities, hence activating S2.
The activation of S2, in turn, ensured that the question was
answered in a controlled way, instead by a quick response of
S1. Summarizing, it seems as if relying on accuracy would
have been misleading in this case, while mental effort and
duration provided more reliable results.

Validity of Mental Effort. So far we have provided em-
pirical evidence that mental effort is more sensitive than
accuracy and can be measured properly for tasks of low com-
plexity. In the following, we will provide empirical evidence
that mental effort is tightly connected to accuracy and du-
ration, i.e., is a valid measure of performance. To visualize
the interplay between mental effort and accuracy, we used
a scatter plot (cf. Figure 1). Therein, the x-axis represents
the average mental effort required for answering a question.
Values from 1 to 7 represent the rating scale used for assess-
ing mental effort, ranging from Extremely low mental effort
(1) to Extremely high mental effort (7). Likewise, the y-
axis reflects a question’s average accuracy, i.e., the ratio of
correct answers to total answers given for a question. As
discussed in Section 2, higher mental effort should be as-
sociated with lower performance. Hence, in this particular
case, higher mental effort should be associated with lower
accuracy. In fact, in Figure 1, a tendency toward lower ac-
curacy with increased mental effort can be observed. In par-
ticular, the dashed line represents the regression line as ob-
tained through simple linear regression (R2 = 0.41, F(1,30)
= 21.16, p = 0.000). Please note that this regression does
not contradict the case when mental effort and accuracy
do not perfectly correlate, as demonstrated in the example
above. Rather, the regression is not perfect, hence leaving
room for such idiosyncrasies.

Akin to Figure 1, in Figure 2, the interplay between men-
tal effort and duration is illustrated. Likewise, the x-axis

3The models and question can be accessed through:
http://bpm.q-e.at/misc/HierarchyQuestion3

Mental Effort

7.006.005.004.003.002.001.00

A
cc

u
ra

cy

 1.00

0.80

0.60

0.40

0.20

0.00

R² Linear = 0.41

Page 1

Figure 1: Mental effort versus accuracy

represents mental effort. On the y-axis, the average amount
of seconds required for answering a question can be found.
The dashed line is the result of simple linear regression (R2

= 0.55, F(1,30) = 36.70, p = 0.000). Interestingly, in this
case higher mental effort is associated with higher duration.
In the light of the background presented in Section 2, also
this result seems plausible. The more difficult a questions
is to answer, the longer the answering process will take and
the higher the mental effort will be.

Mental Effort

7.006.005.004.003.002.001.00

D
u

ra
ti

o
n

 (
se

c)

100.00

80.00

60.00

40.00

20.00

0.00

Page 1

R² Linear = 0.55

Figure 2: Mental effort versus duration (sec)

To substantiate these observations, we computed Pearson
Correlation coefficient for correlations between mental ef-
fort, accuracy and duration. As shown in Table 1, the find-
ings coincide with the observations made in Figures 1 and 2.
In particular, the results confirm that mental effort and ac-
curacy are correlated negatively (r(30) = -0.643, p = 0.000);
mental effort and duration are correlated positively (r(30)
= 0.742, p = 0.000). Finally, accuracy and duration are

MODELS’12 Workshop – EESSMod 2012

40

correlated negatively (r(30) = -0.459, p = 0.008).

Mental Eff. Duration
Accuracy Pearson Corr. -0.643** -0.459**

Sig. (2-tailed) 0.000 0.008
N 32 32

Mental Eff. Pearson Corr. 0.742**
Sig. (2-tailed) 0.000
N 32

**. Correlation is significant at the 0.01 level (2-tailed).

Table 1: Correlations

4. DISCUSSION
Up to know we argued that accuracy is presumably rather
insensitive and may be distorted for tasks of low complex-
ity. In order to tackle these problems, the measurement of
mental effort was proposed. In the following, key insights as
well as limitations of this approach are discussed.

Regarding sensitivity, Experiment 1 and Experiment 2 pro-
vided empirical evidence that mental effort is more sensi-
tive than accuracy. In Experiment 1 tasks of rather low
complexity were provided to the subjects. Even though dif-
ferences with respect to accuracy and mental effort could
be observed, only mental effort differed significantly [31].
In Experiment 2 the task complexity was increased, conse-
quently more errors were committed. Knowing that errors
are more likely to be committed when the working mem-
ory is overloaded [23], these observations seem plausible. In
Experiment 1, different levels of mental effort could be ob-
served. However, the working memory was not overloaded,
resulting in a low error rate and hence marginally fluctua-
tions in accuracy. In Experiment 2, increased complexity
lead to an overload of working memory, accordingly the er-
ror rate increased and accuracy dropped. In other words,
it seems likely that differences with respect to mental effort
can be observed before differences with respect to accuracy
occur, i.e., mental effort appears to be more sensitive.

Regarding tasks of low complexity, Experiment 3 provided
further insights. In particular, we could observe an increase
of mental effort and duration that was connected to in-
creased accuracy—actually a decrease of accuracy could be
expected, as far more model elements had to be taken into
account. As indicated in [10], it seems as if this result can be
traced back to peculiarities of the human mind, which tends
to commit more careless mistakes for tasks of low complex-
ity. Hence, in such a case it seems as if the measurement
of mental effort provides a more accurate picture. Please
note that this finding does not contradict the correlation
between mental effort and accuracy, as found in Experiment
3. Rather, the correlation is valid in general, while this pe-
culiar interplay could be found for one specific question.

Apparently, several limitations apply to this work. First,
as shown in Figure 2, a linear relationship between men-
tal effort and duration could be found. Even though this
seems plausible for short-lasting tasks (the maximum aver-
age duration was about 90 seconds), it seems questionable
in how far this holds for longer tasks. For instance, a long-
lasting repetitive task, such as finding all elements named

“A” within a model, will most likely lead to a low mental
effort, but a long duration. Second, mental effort is a sub-
jective measure. Even though it has been shown that people
are able to give a numerical indication of their mental bur-
den [16], it is questionable whether mental effort of different
subjects can be compared directly. Hence, it seems advis-
able to ensure a reasonable sample size when conducting
between-subject experiments or to focus on within-subject
experiments. Third, we reported from consistent results
across three experiments. Still, our findings may be pecu-
liarities of these experiments. To improve the generalization,
more experiments adopting different modeling languages are
required.

5. RELATED WORK
In the domain of cognitive psychology, the work of Paas et
al., in which mental effort is discussed broadly, is directly
connected [17]. In contrast to this work, however, mental
effort is not linked to conceptual modeling. In the domain
of conceptual modeling, related work can be found where
model understandability is of concern. For instance, Aranda
et al. provide guidelines for assessing model understandabil-
ity [1]. Besides accuracy and duration, perceived difficulty is
proposed to be measured. However, in contrast to this work,
no indications on how perceived difficulty can be measured,
are given. Likewise, [11] assesses in a survey how under-
standability of models is measured. The most prominent
measure is accuracy, followed by duration and perceived ease
of understanding. However, these studies rather rely on the
ease-of-use scale from Technology Acceptance Model [6] than
on rating scales for measuring mental effort. Recently, men-
tal effort has also been used as a tool for discussing model
understandability. For instance, in [29] the role of mental
effort in Business Process Modeling is discussed. Likewise,
in [28, 33] mental effort is employed for assessing the impact
of hierarchy on model understandability. In contrast to this
work, however, mental effort is rather used as a tool for dis-
cussion; the measurement of mental effort is not of concern.
Apparently, measuring mental effort is only meaningful if
the validity of the experimental design can be ensured. In
this respect [8, 18] provide guidelines for the proper opera-
tionalization of measurements.

6. SUMMARY AND OUTLOOK
In this work, we showed how measuring mental effort allows
to compensate for shortcomings when measuring accuracy.
In particular, we argued that mental effort is more sensitive
than accuracy and that the measurement is not distorted for
tasks of low complexity. Hence, it allows to identify subtle
differences between conceptual models or conceptual mod-
eling languages. Likewise, when data regarding accuracy
is affected by ceiling effects, mental effort can still provide
valuable insights. In addition, we showed that the measure-
ment of mental effort can be implemented easily through
the adoption of rating scales. Thereby, we recommend to
measure mental effort after each task in order to provide a
fine-grained measurement. With this contribution we hope
to help in paving avenues for even more comprehensive em-
pirical investigations.

Future work will imply the collection of further data for a
deeper investigation of the interplay between mental effort,
accuracy and duration. In particular, we plan to adopt eye

MODELS’12 Workshop – EESSMod 2012

41

movement analysis [19] to constantly monitor mental effort
while subjects perform a task.

7. REFERENCES
[1] J. Aranda, N. Ernst, J. Horkoff, and S. Easterbrook.

A Framework for Empirical Evaluation of Model
Comprehensibility. In Proc. MISE ’07, pages 7–12,
2007.

[2] A. Baddeley. Working Memory: Theories, Models, and
Controversies. Annu. Rev. Psychol., 63(1):1–29, 2012.

[3] M. Bannert. Managing cognitive load—recent trends
in cognitive load theory. Learning and Instruction,
12(1):139–146, 2002.

[4] J. C. Carver, E. Syriani, and J. Gray. Assessing the
frequency of empirical evaluation in software modeling
research. In Proc. EESSMod ’11, pages 28–37, 2011.

[5] J. A. Cruz-Lemus, M. Genero, M. E. Manso,
S. Morasca, and M. Piattini. Assessing the
understandability of UML statechart diagrams with
composite states—A family of empirical studies.
Empirical Software Engineering, 25(6):685–719, 2009.

[6] F. Davies. A Technology Acceptance Model for
Empirically Testing New End-User Information
Systems: Theory and Results. PhD thesis, Sloan
School of Management, 1986.

[7] A. M. Férnandez-Sáez, M. Genero, and M. R. V.
Chaudron. Does the level of detail of uml models
affect the maintainability of source code? In Proc.
EESSMod ’11, pages 3–17, 2011.

[8] A. Gemino and Y. Wand. A framework for empirical
evaluation of conceptual modeling techniques. Requir.
Eng., 9(4):248–260, 2004.

[9] D. Gopher and R. Brown. On the psychophysics of
workload: Why bother with subjective measure?
Human Factors: The Journal of the Human Factors
and Ergonomics Society, 26(5):519–532, 1984.

[10] I. Hadar and U. Leron. How intuitive is
object-oriented design? Communications of the ACM,
51(5):41–46, 2008.

[11] C. Houy, P. Fettke, and P. Loos. Understanding
understandability of conceptual models: What are we
actually talking about? In Proc. ER ’12, pages 64–77,
2012.

[12] R. Laue and A. Gadatsch. Measuring the
Understandability of Business Process Models - Are
We Asking the Right Questions? In Proc. BPD ’10,
pages 37–48, 2011.

[13] R. Mayer and P. Chandler. When learning is just a
click away: Does simple user interaction foster deeper
understanding of multimedia messages. Journal of
Educational Psychology, 93(2):390–397, 2001.

[14] D. L. Moody. Cognitive Load Effects on End User
Understanding of Conceptual Models: An
Experimental Analysis. In Proc. ADBIS ’04, pages
129–143, 2004.

[15] J. Mylopoulos. Information modeling in the time of
the revolution. Information Systems, 23(3/4):127–155,
1998.

[16] F. Paas. Training strategies for attaining transfer of
problem-solving skill in statistics: A cognitive-load
approach. Journal of Educational Psychology,

84(4):429–434, 1992.

[17] F. Paas, A. Renkl, and J. Sweller. Cognitive Load
Theory and Instructional Design: Recent
Developments. Educational Psychologist, 38(1):1–4,
2003.

[18] J. Parsons and L. Cole. What do the pictures mean?
Guidelines for experimental evaluation of
representation fidelity in diagrammatical conceptual
modeling techniques. DKE, 55(3):327–342, 2005.

[19] J. Pinggera, M. Furtner, M. Martini, P. Sachse,
K. Reiter, S. Zugal, and B. Weber. Investigating the
Process of Process Modeling with Eye Movement
Analysis. In Proc. ER-BPM ’12, to appear.

[20] J. Pinggera, P. Soffer, S. Zugal, B. Weber,
M. Weidlich, D. Fahland, H. Reijers, and J. Mendling.
Modeling Styles in Business Process Modeling. In
Proc. BPMDS ’12, pages 151–166, 2012.

[21] J. Pinggera, S. Zugal, and B. Weber. Investigating the
process of process modeling with cheetah experimental
platform. In Proc. ER-POIS ’10, pages 13–18, 2010.

[22] K. E. Stanovich and R. West. Individual differences in
reasoning: implications for the rationality debate?
Behavioural and Brain Sciences, 23(5):665–726, 2000.

[23] J. Sweller. Cognitive load during problem solving:
Effects on learning. Cognitive Science, 12(2):257–285,
1988.

[24] W. J. Tracz. Computer programming and the human
thought process. Software: Practice and Experience,
9(2):127–137, 1979.

[25] W. P. Vogt. Dictionary of Statistics & Methodology: A
Nontechnical Guide for the Social Sciences (Fourth
Edition). SAGE Publications, 2011.

[26] C. Wohlin, M. Höst, and K. Henningsson. Empirical
research methods in software engineering. In Empirical
Methods and Studies in Software Engineering, volume
2765 of LNCS, pages 7–23. Springer, 2003.

[27] C. Wohlin, R. Runeson, M. Halst, M. Ohlsson,
B. Regnell, and A. Wesslen. Experimentation in
Software Engineering: an Introduction. Kluwer, 2000.

[28] S. Zugal, J. Pinggera, J. Mendling, H. Reijers, and
B. Weber. Assessing the Impact of Hierarchy on
Model Understandability—A Cognitive Perspective. In
Proc. EESSMod ’11, pages 123–133, 2011.

[29] S. Zugal, J. Pinggera, and B. Weber. Assessing
process models with cognitive psychology. In Proc.
EMISA ’11, pages 177–182, 2011.

[30] S. Zugal, J. Pinggera, and B. Weber. Creating
Declarative Process Models Using Test Driven
Modeling Suite. In Proc. CAiSE Forum ’11, pages
16–32, 2011.

[31] S. Zugal, J. Pinggera, and B. Weber. The impact of
testcases on the maintainability of declarative process
models. In Proc. BPMDS ’11, pages 163–177, 2011.

[32] S. Zugal, J. Pinggera, and B. Weber. Toward
Enhanced Life-Cycle Support for Declarative
Processes. Journal of Software: Evolution and Process,
24(3):285–302, 2012.

[33] S. Zugal, P. Soffer, J. Pinggera, and B. Weber.
Expressiveness and Understandability Considerations
of Hierarchy in Declarative Business Process Models.
In Proc. BPMDS ’12, pages 167–181, 2012.

MODELS’12 Workshop – EESSMod 2012

42

Micro-business Behavior Patterns associated with
Components in a Requirements Approach

RJ Macasaet1,2
1Pentathlon Systems Resources Incorporated, Department of Software Research and Development

Cityland Pioneer, Pioneer Street, Mandaluyong City, 1550 Metro Manila, Philippines
2University of Granada, Departamento de Lenguajes y Sistemas Informáticos

Calle Periodista Daniel Saucedo Aranda S/N, 18071 Granada, España
rjmacasaet@pentathlonsystems.com, rjmacasaet@ugr.es

Manuel Noguera

University of Granada, Dpt. de
Lenguajes y Sistemas Informáticos

C/ Pdta. Saucedo Aranda S/N,
18071 Granada, España
mnoguera@ugr.es

María Luisa Rodríguez
University of Granada, Dpt. de

Lenguajes y Sistemas Informáticos
C/ Pdta. Saucedo Aranda S/N,

18071 Granada, España
mlra@ugr.es

José Luis Garrido
University of Granada, Dpt. de

Lenguajes y Sistemas Informáticos
C/ Pdta. Saucedo Aranda S/N,

18071 Granada, España
jgarrido@ugr.es

Sam Supakkul

University of Texas at Dallas,
Department of Computer Science,
Richardson, Texas 75083, U.S.A.

ssupakkul@ieee.org

Lawrence Chung
University of Texas at Dallas,

Department of Computer Science,
Richardson, Texas 75083, U.S.A.

chung@utdallas.edu

ABSTRACT
Micro-businesses are the smallest enterprises and since they
come in large numbers and are greatly diversified, they
become difficult to define and classify. Micro-businesses also
have several resource restrictions. These ambiguities and
constraints make software research and development difficult
in the micro-business domain. Component-based development
offers advantages for the software of micro-businesses. The
reuse of components for common requirements minimizes
resource consumption in their software projects. This paper
provides a working definition for micro-businesses,
observations of their behavior, working micro-business
behavior patterns, and examples of real world applications on
how the patterns help in software development through
requirements. The micro-business behavior patterns are
associated with components that will be used later on in the
development of micro-business software systems.

Categories and Subject Descriptors
D.2.13 [Software Engineering]: Reusable Software – Reuse
Models

General Terms
Documentation

Keywords
Micro-businesses, SMEs, Business Process Modeling,
Behavior Patterns, Components, CBD, Non-Functional
Requirements, Requirements Engineering

1. INTRODUCTION
Micro-businesses are the smallest kind of small-to-medium
sized enterprise (SME) and are referred to in several ways.
Since many of these references are conflicting, coming to a
consensus regarding its definition is difficult [1]. Micro-
businesses can be classified as an enterprise with less than 10
people [2] although headcount may not be considered the best
metric [3]. The age of a business [4] or the length of their
(software) projects [5][3] could be used as alternative metrics.
Classifying a business based on their degree of collaboration
on software projects [6] or on their degree of adaptability to
software systems [7] may also be suitable.

In order to avoid confusion in this paper, micro-businesses are
defined as businesses which require only a few (less than 10)
components for their software. In this definition, components
are referred to as independent software modules which
encapsulate a certain set of functions. These components can
be replaced with other components or newer versions and
modified without affecting other components.

The goal of component-based development (CBD) is to
develop software systems by reusing pre-existing software
components rather than rewriting them from scratch. In this

MODELS’12 Workshop – EESSMod 2012

43

context, there is a general understanding of components as
reusable building blocks in a software project [8]. CBD offers
great opportunities for micro-businesses (and for SMEs in
general) which normally are unable to purchase and maintain
entire software systems autonomously [9]. Micro-businesses
have tight budgets, limited manpower, lack technical exposure
and maturity [7][10], and usually have no requirements
processes suitable for their size [11][12].

Micro-businesses must define their requirements properly even
with their size [13] because if software requirements are not
expressed properly, there will eventually be problems during
design, implementation [14], and acceptance, which all in all
threaten the success of the software project [15].
Misunderstood requirements are a major cause of development
inefficiency and project failure [16]. Hence, software process
improvement efforts for small and medium firms (including
micro) are continuously being made particularly in the
requirements phase [17].

In order to improve the chances of success of micro-business
software projects, attempts to improve their requirements
process must be made. Such processes must not be costly,
must not demand too much manpower [18], must not be too
technical [13], must have simple and comprehensible models
[19], must not consume too much time, must be “lightweight
but effective” [20], and it must be “good enough” [21] for the
stakeholders involved. Although trade-offs are made for
micro-business requirements processes (in comparison to
requirements processes for larger businesses with more
resources), all stakeholders [22] end up “satisficed” [23] upon
project completion, i.e., satisfying at some level a variety of
needs, without necessarily optimizing results.

This paper presents micro-business behaviour patterns within a
requirements approach [24] and explains how they are
observed, specified, structured, and applied in real world cases.
These micro-business behaviour patterns contribute to the
requirements process and help improve the reusability of
software components, thus increasing their quality.

This paper is structured as follows. Section 2 discusses related
work. Section 3 discusses the micro-business behaviour pattern
in detail wherein the subsections discuss how they are
modeled, observed, and applied in real world cases. Finally,
section 4 discusses conclusions and future work.

2. RELATED WORK
CBD and the use of patterns can contribute to the improvement
and feasibility of requirements processes for micro-businesses.
Recent CBD work [8] suggests that patterns are understood as
valuable architectural design aids applicable to recurring
problems in specific design contexts. Although it is difficult to
classify patterns, it is generally accepted that architectural
patterns [25], design patterns [26], and workflow patterns [27]
exist and that these behavioral patterns could provide valuable
guidance to stakeholders in a (micro-business) software
project, especially during the requirements phase. Furthermore,
initial studies have been made regarding requirements patterns
specifically pertinent to the domain of commercial off-the-
shelf (COTS) systems [28].

Micro-business behavior patterns which are part of a
requirements approach [24] are presented in this paper. The
patterns represent repeatedly occurring micro-business
behavior in the real world and are associated with software

components. The patterns aid CBD by improving the
reusability of the software components in similar micro-
businesses. In this field of research, the patterns contribute to
the literature by sharing current real-world experiences and
proposing behavioral models pertinent specifically to the
domain of micro-businesses. The patterns are discussed in
further detail in the following section.

3. THE MICRO-BUSINESS BEHAVIOR
PATTERN
This section is organized as follows. The first subsection
presents a modeling approach for a micro-business behavior
pattern. The second subsection discusses how micro-business
behavior patterns are observed in the real world. Finally, the
last subsection illustrates real world applications of micro-
business behavior patterns.

3.1 A Modeling Approach for a Micro-
business Behavior Pattern
The concepts, artifacts, and relationships of the micro-business
behavior pattern are modeled below in Fig. 1.

Figure 1. The Micro-business Behavior Pattern

The goals of the micro-business owner are satisfied or
satisficed with micro-business processes. The information
from the micro-business processes, goals, and sub-goals are
decomposed into requirements. Methods which decompose
goals into requirements can be applied here. Some examples of
these methods can be found on p.198 of Requirements
Engineering: Processes and Techniques [29] and in the goal
modeling section of KAOS [11].

The requirements are further broken down into functional and
non-functional requirements. This paper defines a functional
requirement as what the system can do [30] whilst a non-
functional requirement as the ability of the system to do it (the

MODELS’12 Workshop – EESSMod 2012

44

functional requirement) [18]. A framework with step-by-step
instructions which links goals to functional and non-functional
requirements is presented on p. 198 of Requirements
Engineering: Processes and Techniques [29].

The software components are those which satisfy the
functional requirements and satisfice the non-functional
requirements. These components are also those which realize
or “make real” the micro-business behavior pattern. One or
several components may realize a said micro-business
behavior pattern.

The micro-business behavior pattern has specifications and
structure (which will be illustrated in detail in subsection 3.3).
The specifications include text and keywords which describe
the pattern, a spreadsheet or list of the functional requirements
it satisfies, and development-related information such as the
authors and the development time spent on the components
(expressed in man days).

The structure of the micro-business behavior pattern includes
an image (or diagram) of the pattern which could also show
other related micro-business behavior patterns (as shown in
Figs. 2 and 3), a micro-business profile sample preset which
guides software developers on component reuse, and a non-
functional requirements priority profile list which helps define
the priorities of the micro-business owner, their customers, and
those of the software developer.

3.2 Observing Micro-business Behavior in
the Real World
The first micro-business under observation is a clothes retail
store. The clothes retail store owner is expanding and opening
another store nearby. The owner would like to consolidate all
his sales data at any point in time so that he could be more
responsive in making important daily business decisions such
as knowing when to order more of which kind of product,
when to pay more attention to which store, and the like. The
responsiveness of the software is very important for him.

The second micro-business under observation is a fruit store.
The fruit store owner wants to know his sales totals at the end
of each day. The fruits in his store spoil very quickly so he
only wants to order specific amounts of fruit on certain days in
order to avoid wastage. He wants the software deployed within
a week.

The third micro-business under observation is a wine bar. The
wine bar owner wants to know his daily sales totals and wants
to know if the number of wine glasses served are proportionate
to the number of wine bottles consumed. His customers come
in and out of the bar quickly especially during peak hours and
these customers demand to pay and obtain a receipt instantly .

Upon observing these three micro-businesses, common
behaviors can be identified. First, all of these micro-business
owners would like to know their sales figures. Second, all the
micro-business owners would like to know their inventory
levels. Following the goals of CBD, there is no need to
develop the same software for each micro-business again and
again if certain components can be reused.

3.3 Applying Micro-business Behavior
Patterns in the Real World
This subsection will explain micro-business behavior patterns
in detail (the structure and specifications) and how they are

applied in the real world cases mentioned in the previous
subsection (3.2) – the clothes retail store, the fruit stand, and
the wine bar.

The first common need of the micro-business owners is that
they would all want to know their sales figures. In this case,
the micro-business behavior pattern which can be applied to
these three micro-businesses is a Point-of-Sale “POS”
Behavior Pattern. The specifications and structure of this
behavior pattern are presented below. Its diagram is illustrated
in Fig. 2. Special notes are marked with an “*” in bold.

Point-of-Sale “POS” Behavior Pattern Specifications

Text Description:
The point of sale “POS” process involves recording sales,
being able to display totals, and providing a customer with a
receipt (or confirmation of sale).
*Take note that this text description fits the common needs
of the three micro-businesses mentioned in subsection 3.2.

Keywords:
POS, Sale, Sales, Point of Sale, Receipt

List of Functional Requirements:
1. Record Sale(s)
2. Display Sales Total(s)
3. Provide Receipt(s)

Development-related Information:
1. Authors and their last edit date (chronological) – Jerrick Lim
053010, Philip Santos 060710
2. Total development time spent on software component(s) –
42 man days
3. Average customization time of software component(s)
during deployments – 10.5 man days

Point-of-Sale “POS” Behavior Pattern Structure

Non-Functional Requirements Priority Profiles (check top
priority, priorities can also be ranked, 1 as top):
Micro-business Perspective

o Low-cost
o Quick deployment *Checked by Fruit Stand

Owner – There could be discussions on increasing
the number of software developers during
deployment in order to meet the deadline.

o Quick (responsive) software *Checked by Clothes
Retail Store Owner – Since two sites are involved,
there will be discussions on the reliability of the
internet provider(s).

o Easy-to-use, User-friendly software
o Ease of Maintenance
o Secure Database
o Portability of software

Developer Perspective
o High Margin
o Quick deployment
o Ease of Implementation
o Ease of Maintenance

Customer Perspective
o Quick (responsive) software *Checked by Wine

Bar Owner - There could be discussions on
considering the purchase of more powerful hardware
in order to make the software more responsive
during operations and to print receipts faster.

o Security

MODELS’12 Workshop – EESSMod 2012

45

Micro-business Profile Sample Presets (check one) – There are
specific software components which pertain to each selection.
This grouping of components helps in re-using them,
eventually improving their quality :
Supermarket

o Stand-alone (only one physical branch)
o Multiple (several physical locations)

 Retailer
o Stand-alone (only one physical branch) *Checked

by Fruit Stand Owner
o Multiple (several physical locations) *Checked by

Clothes Retail Store Owner
o Online (only virtual sales)
o Total (physical and virtual sales)

 Wholesaler
o Micro-distributor
o Regional
o National
o Continental
o International

 Restaurant
o Fast-food
o Dine-in
o Refreshments and Bar *Checked by Wine Bar

Owner
o Delivery
o Fine-dining
o Multi-service

Figure 2. The Point-of-Sale Behavior Pattern

In this case, the diagram has been expressed in business
process modeling notation (BPMN) [31]. BPMN has been

gaining wide acceptance [32] and is meant to be “readily
understandable by all business users” [31]. Such notation is
ideal for use in a requirements approach [24] which aims to be
“not too technical” [13], comprehensible, and simple enough
[19] for micro-business owners who are not too technically
exposed [7][10] and who normally view these diagrams during
their day-to-day project meetings.

Take note that the links/connectors which are represented as
orange lines could eventually be some kind of pattern in their
own right [8]. Other micro-business behavior patterns which
are shown in Fig. 2 and are connected by the orange lines are
the Cash Payment Behavior Pattern, the Credit Card Payment
Behavior Pattern, the Gift Check Payment Behavior Pattern,
and the Inventory Management Behavior Pattern. The payment
behavior patterns represent repeatedly occurring payment
behaviors of customers (which are also considered micro-
business behavior).

The Inventory Management Behavior Pattern which is shown
as a related pattern in Fig. 2 addresses the second common
need of the micro-business owners (as discussed in subsection
3.2) which is that they would all want to monitor their
inventory. The specifications and structure of the Inventory
Management Behavior Pattern are presented below. Its
diagram is illustrated in Fig. 3. Special notes are marked with
an “*” in bold.

Inventory Management Behavior Pattern Specifications

Text Description:
Inventory management involves monitoring and recording the
duration of the storage of items.
*Take note that this text description fits the common needs
of the three micro-businesses mentioned in subsection 3.2.

Keywords:
Inventory, Warehouse, Item, Storage

List of Functional Requirements:
1. Record the storage of an item or several items.
2. Record the removal of an item or several items.
3. Display current inventory.
4. Record the storage time of an item or several items.

Development-related Information:
1. Authors and their last edit date (chronological) – Kerwin
Velasco 042810, Rudolph Lavarias 051910
2. Total development time spent on software component – 35
man days
3. Average customization time of software component during
deployments – 8 man days

Inventory Management Behavior Pattern S tructure

Non-Functional Requirements Priority Profiles (check top
priority, priorities can also be ranked, 1 as top):
Micro-business Perspective

o Low-cost
o Quick deployment *Checked by Fruit Stand

Owner – There could be discussions on increasing
the number of software developers during
deployment in order to meet the deadline.

o Quick (responsive) software *Checked by Clothes
Retail Store Owner – Since two sites are involved,
there will be discussions on the reliability of the
internet provider(s).

MODELS’12 Workshop – EESSMod 2012

46

o Easy-to-use, User-friendly software
o Ease of Maintenance
o Secure Database
o Portability of software

Developer Perspective
o High Margin
o Quick deployment
o Ease of Implementation
o Ease of Maintenance

Customer Perspective
o Quick (responsive) software *Checked by Wine

Bar Owner - There could be discussions on
considering the purchase of more powerful hardware
in order to make the software more responsive
during operations and to print receipts faster.

o Security

Micro-business Profile Sample Presets (check one) – There are
specific software components which pertain to each selection.
This grouping of components helps in re-using them,
eventually improving their quality :
Time-related

o Space rental
o Expiration date/Spoilage control *Checked by Fruit

Stand Owner
o Ingredients inventory (Food-related)

 Non-time related
o Raw materials inventory (Manufacturing)
o Junk Yard Storage

 Generic POS attachment
o Raw *Checked by Clothes Retail Store Owner

and Wine Bar Owner
o Custom

Figure 3. The Inventory Management Behavior Pattern

4. CONCLUSIONS AND FUTURE WORK
The large number and diversity of micro-businesses make
them difficult to define and classify. Further compounded with
several resource restrictions, such ambiguities and constraints
make software research and development in the micro-business
domain an extra challenge. A requirements approach [24]
using micro-business behavior patterns and CBD techniques
could help improve the success of software projects for micro-
businesses. The reuse of components for common
requirements minimizes resource consumption in similar
software projects.

This paper provides a working definition for micro-businesses,
a modeling approach for micro-business behavior patterns, and
examples of how such patterns are applied in real world cases.
The micro-business behavior patterns are associated with
components that will be used later on in the development of
micro-business software systems. These micro-business
behavior patterns are being used in a requirements approach
[24] in a real world software development company,
Pentathlon Systems Resources Incorporated. The authors of
this paper and the developers at the software company are
continuously striving to improve the structure and specification
of the patterns for better use.

Future research work involves the creation of a systematic
search method for the micro-business behavior patterns.
Currently, keyword-based methods are being used. Ontological
and case-based methods are currently being studied for
feasibility and practicality .

5. ACKNOWLEDGEMENTS
This research has been funded by the Innovation Office of the
Andalusian Government through project TIN-6600, the
Spanish Ministry of Economy and Competitiveness through
project TIN2012-38600, CEI BioTIC Granada under project
20F2/36, and Pentathlon Systems Resources Incorporated.

6. REFERENCES
[1] Merten, T., Lauenroth, K., and Bürsner, S. 2011. Towards

a New Understanding of Small and Medium Sized
Enterprises in Requirements Engineering Research. In
Proceedings of the 17th International Working Conference
on Requirements Engineering: Foundation for Software
Quality REFSQ, Essen, Germany, 60-65.

[2] European Commission. 2008. The New SME Definition
User Guide and Model Declaration. URL =
http://www.ec.europa.eu/enterprise/enterprise_policy/sme
_definition/sme_user_guide.pdf (Last accessed on
December 2, 2011)

[3] Aranda, J. 2010. Playing to the Strengths of Small
Organizations. In Proceedings of the 1s t Workshop on RE
in Small Companies RESC, 141-144.

[4] Nikula, U., Sajeniemi, J., and Kalvianen, H. 2000. A
state-of-the-practice survey on requirements engineering
in small-and-medium-sized enterprises. In Telecom
Business Research Center Lappeenranta Research Report
1, Lappeenrata University of Technology.

[5] Aranda, J., Easterbrook, S.M., and Wilson, G. 2007.
Requirements in the Wild: How Small Companies do it.
In Proceedings of the 15th IEEE International
Requirements Engineering Conference RE, Delhi, India.

MODELS’12 Workshop – EESSMod 2012

47

[6] Jantunen, S. 2010. The Benefit of Being Small: Exploring
Market-Driven Requirements engineering Practices in
Five Organizations. In Proceedings of the 1st Workshop
on RE in Small Companies RESC, pp. 131-140.

[7] Kamsties, E., Hormann, K., and Schlich, M. 1998.
Requirements Engineering in Small and Medium
Enterprises: State-of-the-Practice, Problems, Solutions,
and Technology Transfer. In Conference on European
Industrial Requirements Engineering CEIRE, London,
United Kingdom.

[8] Elizondo, P. and Lau, K. 2010. A Catalogue of
Component Connectors to Support Development with
Reuse. Journal of Systems and Software 83, 2010, 1165-
1178. DOI = http://dx.doi.org/10.1016/j.jss.2010.01.008

[9] Turowski, K. 2000. Establishing Standards for Business
Components. In K. Jacobs (Eds.): Information
Technology Standards and Standardisation: A Global
Perspective. Hershey, 131-151.

[10] Kauppinen, M., Tapani, A., Kujula, S., and Laura, L.
2001. Introducing Requirements Engineering: How to
Make a Cultural Change Happen in Practice: Helsinki
University of Technology. In Software Business and
Engineering Institute. DOI =
http://doi.ieeecomputersociety.org/10.1109/ICRE.2002.10
48504

[11] Respect-IT. 2007. KAOS Tutorial Version 1.0. URL =
http://www.objectiver.com/fileadmin/download/document
s/KaosTutorial.pdf (Last accessed on March 10, 2011)

[12] Lamsweerde, A. 2001. Goal Oriented Requirements
Engineering: A Guided Tour. Invited mini-tutorial paper
which appeared in Requirements Engineering,
International Symposium on Toronto, August 2001, 249-
263. Proceedings RE’01 5th IEEE. DOI =
http://doi.ieeecomputersociety.org/10.1109/ISRE.2001.94
8567

[13] Young, R. 2004. Requirements Engineering Handbook .
Artech House, Incorporated, Norwood, Massachusetts.

[14] Kauppinen, M., Vartiainen, M., Kontio, J., Kujula, S., and
Sulonen, R. 2004. Implementing Requirements
Engineering Processes Throughout Organizations:
Success Factors and Challenges. In Information and
Software Technology 46, pp. 937-953.

[15] Davis, C.J., Fuller, R.M., Tremblay, M.C., and Berndt,
D.J. 2006. Communication Challenges in Requirements
Engineering and the Use of the Repertory Grid
Technique. In Journal of Computer Information Systems,
46, (5), 78.

[16] Maalej W., Happel, H.J., and Seedorf, S. Applications of
Ontologies in Collaborative Software Development. 2010.
In I. Mistrik, J Grundy, A. van der Hoek, and J.
Whitehead (Eds.), Collaborative Software Engineering,
Berlin, Heidelberg.

[17] Pino, F., García, F., and Piattini, M. 2008. Software
Process Improvement in Small and Medium Software
Companies: A Systematic Review. In Software Quality

Control, Volume 16, Issue 2, June 2008. 237-261. DOI =
10.1007/s11219-007-9038-z.

[18] Holcombe, M. 2008. Running an Agile Software
Development Project. Wiley, Hoboken, New Jersey,
USA.

[19] Kruchten, P. 2003. The Rational Unified Process.
Addison-Wesley Professional.

[20] Ambler, S. 2002. Agile Modeling. John Wiley and Sons.
[21] Bach, J. 1997. Good Enough Quality: Beyond the

Buzzword. In IEEE Computer Society, vol. 30, no. 8,
August 1997, pp. 96-98.

[22] Niazi, M.K. 2002. Improving the Requirements
Engineering Process through the Application of a Key
Process Areas Approach. In Australia Workshop on
Requirements Engineering.

[23] Simon, H. 1992. The Sciences of the Artificial. MIT Press.
[24] Macasaet, R., Chung, L., Garrido, J., Rodriguez, M., and

Noguera, M. 2011. An Agile Requirements Elicitation
Approach based on NFRs and Business Process Models
for Micro-businesses. In Proceedings of the 12th
International Conference on Product Focused Software
Development and Process Improvement PROFES (Torre
Canne, Italy, June 20-22, 2011). ACM, New York, NY,
50-56. DOI =
http://doi.acm.org/10.1145/2181101.2181114.

[25] Kuchana, P. 2004. Software Architecture Design Patterns
in Java. Auerbach Publications, Boston, MA, USA.

[26] Gamma, E., Helm, R., Johnson, R., and Vlissides, J. 1995.
Design patterns: elements of reusable object-oriented
software. Addison-Wesley.

[27] Russell, N., ter Hofstede, A.H.M., van der Aalst, W.M.P.,
Mulyar, N., 2006. Workflow control-flow patterns: A
revised view. Technical Report 34, BPM Center, BPM-
06-22.

[28] Méndez, O., Franch, X., Quer, C. 2008. Requirements
Patterns for COTS Systems. In Proceedings of the 7 th
International Conference on Composition-Based Software
Systems, Madrid, Spain on February 25-29, 2008. DOI =
10.1109/ICCBSS.2008.34

[29] Kotonya, G. and Sommerville, I. 2003. Requirements
Engineering: Processes and Techniques. John Wiley and
Sons Limited, England.

[30] Sommerville, I. 2004. Software Engineering, Seventh
Edition. Pearson Education.

[31] Object Management Group, Inc. 2008. Business Process
Modeling Notation Version 1.1. URL =
http://www.omg.org/spec/BPMN/1.1/PDF (Last accessed
on March 10, 2011)

[32] Koskela, M. and Haajanen, J. 2007. Business Process
Modeling and Execution: Tools and Technologies Report
for the SOAMeS Project. In VTT Research Notes 2407,
VTT Technical Research Centre of Finland.

MODELS’12 Workshop – EESSMod 2012

48

Business Process Modelling:
Five Styles and a Method to Choose the Most Suitable One

Gianna Reggio, Maurizio Leotta, Filippo Ricca, Egidio Astesiano Gianna Reggio1 Maurizio Leotta1 Filippo Ricca1 Egidio Astesiano1

DIBRIS, Università di Genova, Italy
{ gianna.reggio | maurizio.leotta | filippo.ricca | egidio.astesiano }@unige.it

ABSTRACT
A software developer facing a modelling task may follow dif-
ferent styles at different levels of abstraction and precision,
to better cope with the aims and the potential users of the
model. We address the problem of modelling the business
processes by means of UML activity diagrams, and present
five styles differing in the precision level, from the Ultra-
Light style, where the nodes and the edges of the activity di-
agram are decorated by freely-formed text, to precise styles
where instead OCL and UML actions are used. Then, we
propose a practical empirical method for choosing the most
suitable style depending on the context in which the models
will be used (why, when, where, how long, by whom).

Categories and Subject Descriptors:
D.2.2 [Software Engineering]: Design Tools and Tech-
niques

General Terms: Design, Documentation.

Keywords: UML, Business Process Modelling, Styles.

1. INTRODUCTION
The Unified Modeling Language (UML) is used to model
many disparate aspects of different software and systems,
in all the phases of the development process, with different
aims, and by different kinds of stakeholders (e.g., business
analysts and developers). This is possible because the UML
offers a large number of constructs and allows to leave out
any detail. Thus, a modeller when facing with a modelling
task may follow different styles1. This has been recognized
since long time. For example, Fowler proposes three differ-
ent ways to build UML models: UML as Sketch, UML as
Blueprint, and UML as Programming Language [4]. Within
the UML, the activity diagrams are used to model and visu-
alize the flows of control (and of data) in different entities,
such as systems, objects, use cases, and operations.

1
A particular manner or technique by which something is done, cre-

ated, or performed (Merriam Webster’s Dictionary)

Activity diagrams have been also used to model business
processes [3, 5]. Modellers may follow different styles when
modelling the business processes using the activity diagrams,
e.g., the few guidelines suggested in [1]. An examination
of the publicly available activity diagrams shows that the
large majority of the modellers are completely undisciplined
and produce activity diagrams without following any style.
Moreover, except [1], no other relevant proposals are avail-
able. Also prompted by the participation in various research
projects conducted in cooperation with the industry, we have
then defined various styles for modelling the business pro-
cesses with the UML activity diagrams that differ for the
degree of precision of the produced models. These styles
range from the Ultra-Light, where no guidelines drive the
modellers, to styles for producing precise2 models, where
OCL and UML actions are exploited to decorate arcs and
nodes, respectively. Each style is motivated by some specific
modelling activities made in some specific context by spe-
cific persons.

Then, we have tried to evaluate these five styles. For exam-
ple, for what concerns the comprehension [7] we got some
empirical evidence that a precise model is easier to compre-
hend. By another empirical investigation we have found that
producing models following the Ultra-Light style may results
in making many mistakes and errors, that can be detected
and corrected when revising such models following a precise
style [6]. The precise models seem to be “better”; however,
they have also problematic aspects, e.g., their production
requires more effort and work of people with a good UML
knowledge. Thus, in this paper we address the problem of
finding the most suitable style when modelling the business
processes using the UML. We propose a method, based on
our experience in the context of business process modelling,
that, on the basis of the context in which the modelling will
be done, evaluates the five styles by giving a value to their
suitability in such context.

The main contributions of this paper are:
– a detailed presentation of the five styles (described in
this paper exhaustively for the first time) ranging from the
lighter to the more precise by means of a running example;
– a method able to help the decision makers to choose the
most suitable style depending on the context in which the
models will be used.

We present the five styles for the business modelling with
the UML in Sect. 2. In Sect. 3 we propose our method to
evaluate the five styles for choosing the most suitable one.
Finally, in Sect. 4 we draw some conclusions.

2
Exactly or sharply defined or stated (Merriam Webster’s Dictionary)

MODELS’12 Workshop – EESSMod 2012

49

2. THE FIVE STYLES
In this paper we assume the common intuitive meaning of
business process, i.e.: “A progression of tasks (activities, in-
teractions, ...) that involve two or more entities, and create
or add value to the organization’s activities. In a sequential
process, each step is dependent on occurrence of the previ-
ous step; in a parallel process, two or more steps can occur
concurrently”; and we will use the following terminology:

– the (business process) participants are the active enti-
ties performing the various tasks. We distinguish the par-
ticipants that are human beings (and thus capable of au-
tonomous activities) from those corresponding to software
and hardware systems.
– the (business process) objects are the entities over which
the activities of the process are performed, obviously these
entities are passive, i.e., they are not able to do any activity
by themselves.
– the (business process) data are the data used in the vari-
ous tasks.

To present the five styles for Business Process modelling
(shortly BP modelling), we will use as a running example the
business process corresponding to ordering in an e-commerce
site (EC), briefly described as follows:

A client sends an order. If the client is not already regis-
tered, (s)he will be asked to register to the site, if (s)he re-
fuses the order will be cancelled. Then the order will be sent
to the warehouse, which will prepare the package, and in the
meantime either the handler of the credit cards or Paypal
will be contacted (depending on the preferences of the client,
expressed at the registration time) to get the payment; af-
ter the package will be sent; finally the carrier will inform
that the package has been delivered, and the order will be
archived.

In this section, we introduce five styles for BP modelling us-
ing the UML: Ultra-Light, Light, Disciplined, Precise Con-
ceptual and Precise Operational, where the degree of pre-
cision is minimum in the first style and maximum in the
last two. Fig. 1 presents the structure of the models of the
business processes produced following the five styles.

2.1 The Ultra-Light Style
The simplest models are those produced following the Ultra-
Light style: they just consist of an activity diagram pro-
duced without following any guideline, using3 action nodes,
control nodes, edges, and time and accept events, where the
nodes and the edges are decorated by natural language text
fragments freely formed; we can better name it No-Style,
since the modeller is completely free to produce the activity
diagram as s(he) likes. The Ultra-Light style is the most
commonly used, and obviously it is the easiest and fastest

3
Swimlanes and object nodes are not treated here for space reasons.

Figure 1: BP model structure for the five styles

Figure 2: EC: Light Model

to follow, but the Ultra-Light models are also easily full of
mistakes, see, e.g., [6], and cannot be used for any kind of
post elaboration.

2.2 The Light Style
The Light style only imposes few restrictions (listed in the
following) on the use of the visual constructs of the activ-
ity diagrams and on their layout, whereas the decorations
of nodes and edges are still completely unconstrained: they
are just natural language text fragments.

– For each decision node there must be a matching merge
node and similarly for any fork node there must be a match-
ing join node (exception can be made whenever a flow leav-
ing the decision/fork node ends with a final node).
– One outgoing edge from a decision node must be labelled
with the “else” guard.
– The flowing of the tokens should be depicted vertically,
and the edges leaving a decision node should be depicted
as follows: the edge corresponding to the regular/correct
course of the events should be vertical, whereas the alterna-
tive corresponding to an error or an exceptional case should
be depicted horizontally.

Notice that it may happen that the sentences defining the
activities may be either in active or passive form (e.g., “Clerk
fills the form” and “Form is filled”), and that the entity exe-
cuting the activity may be precisely determined or left unde-
fined (e.g., “Form becomes filled”); in other cases it is possi-
ble that nominal sentences are used instead of verbal phrases
(“Filling the form”). Also the objects over which the business
process activities are performed may be described in differ-
ent ways, for example by a substantive (e.g., “Form”, “The
form”) or by a qualificative sentence (e.g., “Client form”,
“Filled form”).

Fig. 2 presents the Light model of the EC business process.
As required, it is an activity diagram satisfying the con-
straints just introduced4. The various tasks are denoted by

4
For space reasons the two edges leaving the second decision node are

horizontal instead of almost vertical.

MODELS’12 Workshop – EESSMod 2012

50

Figure 3: EC: Disciplined Model

natural language sentences having different structure; some
are active and makes explicit the subject (e.g., The client
sends an order), some others are in the passive form (Order
archived) and so no information is given on who will perform
the task. Notice how the relationship between the task The
client is asked if (s)he wants to register and the subsequent de-
cision node with an edge with guard yes is completely based
on the reader understanding of the meaning of an English
sentence.

2.3 The Disciplined Style
A business process model that follows the Disciplined style
consists of (see Fig. 1): the participant/object/data lists
(written using CAPITAL LETTERS), and an activity diagram
describing the process behaviour, where:

– the action nodes are decorated by tasks described by sim-
ple natural language sentences having the form: “subjects
+ present tense verb + object complements + other comple-
ments” or “subjects + present tense passive form + other
complements”, where the subjects and the object comple-
ments are either participants or business objects of the pro-
cess, and the data may appear in other complements.
– the guards on the edges leaving the decision nodes must
be qualificative sentences about some of the participants/
objects/data of the business process, e.g., “X is ...”, “X has
...”, “X ≥ 10”.

Notice that the participants/objects are roles for the entities
taking part in the business process and not specific individ-
uals.

To determine the tasks of a business process it is important
to keep in mind that they are assumed to be atomic in the
context of the model of such process (i.e., it is not impor-
tant/relevant to detail them further in term of actions of
the various participants), but it is not always true that they
correspond to elementary actions of the participants. For
example it is ok to have a task of the form “The SELLER

and the CLIENT exchanges the CONTRACT”, as well as to
give a more detailed model where the tasks are instead “The
SELLER sends the CONTRACT” and “The CLIENT receives
the CONTRACT”.

The passive form must be used whenever who will execute
the task is either not relevant or not known. “CLIENT pays
INVOICE” is an example of active sentence, whereas “OR-

DER is archived” is a case of passive sentence; both follow
the above constraints. The use of the passive style should
be quite careful. If we do not want to describe or we do
not know who are the participants of the business process,
we can represent several tasks using the passive form. The
resulting business process model will be quite abstract, and
it may be then refined by transforming the passive sentences
into active ones, after having determined the subjects.

Note that the guards cannot be actions of someone, for ex-
ample “X answered yes” or “X accepts” cannot be a guard;
in this case there should be a task corresponding to give an
answer and then the decision will be about the answer, thus
the guard will have the form “answer = Yes”.

Fig. 3 shows the Disciplined model of the EC business pro-
cess. Notice that in this model all the sentences are in active
form, e.g., EC archives ORDER and EC registers CLIENT, because
the style requests to find the participants lead us to detect
the presence of EC, the system supporting the e-commerce.
To represent the answer of the client to the registration pro-
posal we have used a process data ANS; in this way the rela-
tionships between the guards and the previous task is clear,
whereas in the Light model it was completely left to the
reader’s intuition.

2.4 The Precise Style with Conceptual Tasks
The Precise style with Conceptual Tasks style (shortly Pre-
cise Conceptual style) for BP modelling requires to describe
the participants, the objects and the data precisely by means
of a class diagram, named static view, and to use an activ-
ity diagram to model the behaviour of the process, whereas
the conditions on the edges leaving the decision nodes will
be OCL expressions, and the action nodes will be decorated
by elements of special classes stereotyped by �task�, intro-
duced by a class diagram named task view. Thus, a Precise
Conceptual model consists of (see Fig. 1): i) a static view,
i.e., a class diagram introducing the classes needed to type its
participants, objects and data, ii) the participant/object/
data lists, iii) a task view, i.e., a class diagram introducing
the task classes, iv) and an activity diagram representing its
behaviour, satisfying the following constraints.

a) The classes in the static view must be stereotyped by
�object� (business process objects), �businessWorker� and
�system� (business process participants distinguished in
autonomous entities, human beings and hardware/software
systems); datatypes may be also included in this class dia-
gram. The elements of those classes may be described using
the many tools offered by the UML, for example constraints
and behavioural diagrams.

b) The participants will have a name and will be typed by a
class with stereotype either �businessWorker� or �system�,
the objects also will have a name and will be typed by a
class stereotyped by �object�, and the data will be typed
by UML datatypes, either predefined or user defined in the
static view. It is possible to constrain the possible partici-
pants, objects and data of a business process.

c) The fact that some participants and objects of the busi-
ness process take part in a task is modelled by means of
dependency relations linking the task class with the partici-

MODELS’12 Workshop – EESSMod 2012

51

(a) Behaviour View (Activity Diagram)

(b) Static and Task Views (Class Diagram)

Figure 4: EC: Precise Conceptual Model

pant/object classes. The task classes should depend on the
object classes (to depict that the tasks will act over them),
and the participant classes should depend on the task class
(to depict that they will take part in the tasks). Further-
more, the dependency between a task and an object class
may be stereotyped by �out� if such business object is cre-
ated during the task. If a task is characterized by some
data, then those data are represented by attributes of the
task class typed by datatypes. An attribute may be stereo-
typed by �out�, in the case of a data produced by the task
itself. Some constraints of kind invariant/pre/post may be
attached to a �task� class expressing relationships holding
always during/before/after the task execution among the in-
volved entities. The behavioural aspects of a task instead
may be modelled using some of the many constructs offered
by the UML, e.g., sequence and again activity diagrams.
The action nodes of the activity diagram modelling a busi-
ness process will be labelled by instances of task classes,
presented in the following way:

TaskName<x1,...,xn>

where TaskName is a task class, and x1,...,xn are the partic-
ipants/objects/data involved in the task.

Fig. 4 shows the model of EC following the Precise Concep-
tual style. In this case we have put together the static and
the task view and thus the model consists of a class diagram,
an activity diagram and the participant/object/data lists.

The class diagram introduces the classes defining the partic-
ipants and the objects, together with some datatypes used
to describe them (for example ClientInfo). EC, PAYPAL and

CREDITCARD are participants of kind system (they correspond
respectively to the software system running the e-commerce
site, the Paypal payment service and the credit card han-
dling system), whereas CLIENT is a human participant and
CARRIER and WAREHOUSE are respectively an external trans-
port company and a department of the e-commerce com-
pany; they are not classified as systems since they cannot
be fully automatized. Notice that the client is not involved
in the task for delivering the package because it is assumed
that the delivery will be made at a certain address and does
not require an active participation of the client itself. In-
stead, the task informDelivered involves two participants, the
CARRIER and the EC system.

2.5 The Precise Style “Operation Based”
The Precise style “Operation Based” (shortly Precise Op-
erational style) for BP modelling requires to describe the
participants, the objects and the data precisely by means of
a static view, as for the Precise Conceptual style of Sect. 2.4,
and similarly the activity diagram modelling the behaviour
of the process is presented in a precise way. The only differ-
ence concerns the way the UML is used to model the tasks:
now the tasks are modelled by means of calls of operations of
the participant or object classes. Thus, the Precise Opera-
tional model of a business process consists of (see Fig. 1): i)
a static view, ii) the participant/object/data lists, iii) and
an activity diagram representing its behaviour satisfying the
following constraints.

The tasks involving the participants and the objects will
be modelled by operations of the various participant/object
classes stereotyped by �task� (whenever all the operations
of a class have this stereotype it may be omitted to make
the visual presentation simpler). When defining the�task�
operations, it is important to keep in mind that i) an opera-
tion corresponding to a task part of a class C stereotyped by
�businessWorker� or �system� describes a task that a par-
ticipant of type C is responsible to perform and it should be
named using a verb in the infinitive form without the “to”;
ii) an operation corresponding to a task part of a class C
stereotyped by �object� describes a tasks that will be done
over an object of type C and it should be named by the past
participle of a verb.

The action nodes of the activity diagram will be decorated
either by calls of task operations on either participants or
objects (and the participants, the objects and the data will
freely appear as arguments of them) or by UML actions,
i.e., assignment, creation and destruction of class instances;
whereas the conditions on the edges leaving the decision
nodes will be OCL expressions in which the participants,
the objects and the data will freely appear.

Notice how the guidelines asking to define task operation
either corresponding to operations over objects or to some-
thing that a participant is responsible to execute leads to
have fine-grained tasks more or less of the same size, and
finer than those of the Precise Conceptual style.

Fig. 5 presents the Precise Operational model of the EC
business process consisting of a class diagram, an activity
diagram, and the typed participant/object/data lists. The
class diagram introduces the classes defining the partici-
pants/objects/data as for the Precise Conceptual model of
Sect. 2.4. Since all the operations are stereotyped by�task�
we have omitted to depict it visually in the class diagram.

MODELS’12 Workshop – EESSMod 2012

52

(a) Behaviour View (Activity Diagram)

(b) Static View (Class Diagram)

Figure 5: EC: Precise Operational Model

Notice that in this model the request for registration to the
client is implemented by three tasks: the request by EC, the
client answer and then the registration of the same by EC,
in case of positive answer; and thus differently than in the
Precise Conceptual and in the Disciplined models. The rea-
son is the style guideline asking to attach to each participant
the tasks which are under his responsibility, and so we had
to single-out the answering of the client.

In this example there are no task operations on the classes
modelling the business process objects, because we have
modelled explicitly who is performing the various tasks; in-
stead, if we would prefer avoiding to express who is deliv-
ering the package, we can delete the class Carrier and add
two operations to the class Package (requiredDelivering and
delivered).

3. CHOOSE THE MOST SUITABLE STYLE
Even if the precise styles are better for what concerns the
expressiveness and the quality of models, as shown in [6,
7], we think that the context in which the business process
models appear (the why, when, where, how long, by whom
the models are produced/used) and the wanted quality of
the same models may influence the choice of the most suit-
able style. Hence, we have devised a method for choosing
the most suitable style trying to balance precision and free-

U
ltra

-L
ig

h
t

L
ig

h
t

D
is

c
ip

lin
e
d

P
re

c
is

e

C
o
n
c
e
p
tu

a
l

P
re

c
is

e

O
p
e
ra

tio
n
a
l

F1 Modeller has a good knowledge of UML W1 0.8 I1 -2 -1 0 1 1 MC1 [-1,0,1]

F2 Model reader has a good knowledge of UML W2 0.8 I2 -2 -2 -2 1 1 MC2 [-1,0,1]

F3 Model used as a communication media W3 0.8 I3 0 1 2 1 -1 MC3 [0,1]

F4
Model used in a MD Development as

source of (semi-)automatic transformations
W4 0.8 I4 -2 -2 -1 1 2 MC4 [0,1]

F5 Model must be produced in a short time W5 0.8 I5 2 1 0 -1 -2 MC5 [0,1]

F6
Model will have a long life span

(and perhaps evolve)
W6 0.5 I6 -2 -1 1 1 1 MC6 [0,1]

F7 Modelled business is critical W7 1.0 I7 -2 -1 0 2 2 MC7 [0,1]

F8 Model quality should be checkable W8 0.5 I8 -2 -1 0 2 2 MC8 [0,1]

W
e
ig

h
ts

Factors
Modelling

Context

Influence

Figure 6: Factors and weights for choosing the most
suitable style

dom, similarly to the proposal of [2] for choosing between
agile and prescriptive software development methods.

To choose the most suitable style, we have created an algo-
rithmic suitability estimation method. Our method allows
the user to obtain a suitability value in a given context, for
each style proposed in this paper, simply assessing the pres-
ence, in such context, of some factors, listed in Fig. 6. There
is a group of factors concerning the environment in which the
model will be developed and used (F1,..., F7), and a factor
concerning the possibility to check the quality of the model
itself (F8). These factors have been selected empirically5:
the authors have independently proposed a list of factors,
prompted by their (long for some of them) modelling expe-
rience in many different contexts and producing models of
different quality; then such lists have been compared, dis-
cussed and then merged in a “not too long” common list (the
considered factors were present in all the author lists).
A user of our method has just to decide which factors are
present in her/his Modelling Context (MC) and return the
numbers MC1,...,MC8 in the following way:

– for i = 1,2: if the factor Fi is present, then MCi = 1;
if Fi is not present, then MCi = −1;
if Fi is not relevant/known MCi = 0;

– for i = 3,...,8: if the factor Fi is present, then MCi = 1,
else MCi = 0;

Then, the formula (**) will assign a suitability value to each
style S and the style with the higher value will be considered
the most suitable.

(**) Suitability of Style S: STs =
∑

i=1,...,8 Wi ∗ Ii,s ∗MCi

where S ∈ {Ultra-Light, Light, Discip., Prec. Conc., Prec. Oper.}

– Ii,s represents the influence of factor Fi on the suitability
of the style S: –2 when it is heavily deterring it and 2 when
it is heavily favouring it: −2 ≤ Ii,s≤ 2;
– Wi represents the importance of factor Fi: near 0 when
the importance is negligible and 1 when it is of paramount
importance: 0 < Wi ≤ 1.

To guarantee a sensible selection of the used weights (Wi,
Ii,s, i = 1, ..., 8), the authors have empirically5 estimated
them. More in detail, all the authors have independently
proposed some values for them, and then such values have
been compared and discussed. In the cases of disagreement
(few and where the difference was not excessive) a common
value has been decided. The values of the various weights
(Wi, Ii,s, i = 1, ..., 8) can be seen in Fig. 6.

5originating in or based on observation or experience (Mer-
riam Webster’s Dictionary)

MODELS’12 Workshop – EESSMod 2012

53

F1 F2 F3 F4 F5 F6 F7 F8 Ultra- Light Discip. Prec. Prec.

(MC1) (MC2) (MC3) (MC4) (MC5) (MC6) (MC7) (MC8) Light Conc. Oper.

A) -1 -1 1 0 1 0 0 0 +4,8 +4,0 +3,2 –1,6 –4,0

B) 1 1 0 1 0 1 1 1 –8,8 –6,0 –1,9 +5,9 +6,7

C) 1 -1 1 0 0 1 1 0 –3,0 +0,1 +3,7 +3,3 +1,7

Figure 7: Applications of the style suitability evalu-
ation method

An Excel spread sheet freely available6 allows to easily insert
the values characterizing the presence of the various factors
(MCi, i = 1, ..., 8) and will do all the needed calculations,
presenting the suitability values for the five styles (so the
weights Wi, Ii,s, are reported here to give a complete ex-
planation of how the style selection method works; the user
have only to assess the presence of the various factors just
filling the gray column in Fig. 6).

Let us discuss the various factors and their impact on the
choice of the most suitable style, as formalized by the cho-
sen weights. F1 and F2 take into account the knowledge
of the UML by who produces and reads the model (notice
how the three light styles are equally suitable for readers not
fluent in the UML notation: since all of them require just
the knowledge of the visual constructs of the activity dia-
grams). F3 and F4 concern the role of the produced model,
and we consider two dimensions: whether it is relevant that
the model is easy to read, because it is a piece of documenta-
tion, penalizing the choice of the precise-styles and heavily-
favouring the Disciplined style, and whether it has to be
used as the starting point of some (semi-)automatic trans-
formations, favouring the precise styles (mainly the Precise
Operational). Then, we consider whether it is important to
produce the model in a short time (F5), since the time ob-
viously increases as the style becomes more precise. Factor
F6 is related to the span life of the model and thus to the
possibility to undergo some evolution, which equally favours
the Disciplined and precise styles (indeed, the structuring of
the textual decoration of the Disciplined activity diagram is
a great support to evolution, think, e.g., to replace a partic-
ipant with another one, in this case it will be easy to find
all the tasks in which s(he) was taking part). F7 is the most
influential factor for the choice of a precise style, and again
heavily favours the precise styles (in this case in the same
way, since they differ only in the level of abstraction, not
in rigor). F8 concerns the possibility to check the quality
of the model, i.e.: are you interested in checking if (1) is
the model complete and minimal and without UML errors?
(2) are rigorous inspections on the model doable? (3) are
complexity metrics on the model definable?

We have then validated these weights by applying the evalu-
ation method to many cases out of the possible 576 = 32 ∗26

(several cases are reported in the Excel spreadsheet). Here
we report three typical modelling contexts: A) a draft model
of a business process to be discussed with the stakeholders;
B) a model to be used as the starting point of the (semi-
)automatic generation of a BPEL implementation of a sys-
tem supporting a business process; and C) a model of the
process for getting the approval of a new building project
by the local administrations in Italy. In Fig. 7, we present
the values characterizing the three cases and the evaluation
results. We got that for case A) the Ultra-Light style is
the most suitable (+4,8), for case B) the winner style is the

6
http://softeng.disi.unige.it/TR/Styles.xls

Precise Operational (+6,7), and, finally, for case C) the win-
ner is the Disciplined style (+3,7). These results are quite
reasonable: A) the Ultra-Light model is acceptable since it
will be just used to discuss on the process with stakeholder,
and will be heavily modified before to reach a stable form;
B): the Precise Operational is the most suitable style to get
a model to transform into a running system using BPEL;
C) the Disciplined style allows a quite precise description
of the things to be done and the item to be handled but
at a quite abstract level and in a way easy to read for non-
technical persons, not cluttering the model with too many
details, but at the same time helping to avoid mistakes that
may have very serious consequences (e.g., to name in the
same way two slightly different documents or tasks).

4. CONCLUSION AND FUTURE WORK
In this paper, we have first presented five styles, differing in
the precision level, for modelling the business processes by
means of UML activity diagrams. Then, we have devised
a practical empirical approach to choose a style among the
proposed ones, keeping in consideration the context in which
they will be used and for what.

In this work, we focused on business process modelling and
chose UML activity diagrams for their representation. How-
ever, we think that our work (styles and our method for the
choice of the style) can be generalized for other UML di-
agrams, notations, purposes and in other contexts/settings
with some rework. For example, a similar proposal could be
put forward for UML state machines used to describe the
behaviour of an entity or for business processes expressed
by means of BPMN.

As future work, we would like to test more systematically
and deeply our practical approach. In particular, we intend
to better validate our weights with additional cases (i.e.,
modelling contexts) and try our approach in an industrial
context. Another interesting direction could be re-thinking
the approach using machine learning techniques.

5. REFERENCES
[1] S. W. Ambler. The Elements of UML 2.0 Style.

Cambridge University Press, 2005.

[2] B.W. Boehm and R. Turner. Balancing agility and
discipline: a guide for the perplexed. Addison-Wesley.

[3] E. Di Nitto, L. Lavazza, M. Schiavoni, E. Tracanella,
and M. Trombetta. Deriving executable process
descriptions from UML. In Proceedings of ICSE 2002,
pages 155–165.

[4] M. Fowler and S. Kendall. UML Distilled: A Brief
Guide to the Standard Object Modeling Language (4th
Edition). Addison-Wesley Professional, 2010.

[5] S. Jurack, L. Lambers, K. Mehner, G. Taentzer, and
G. Wierse. Object flow definition for refined activity
diagrams. In Proceedings of FASE 2009, pages 49–63.

[6] G. Reggio, M. Leotta, and F. Ricca. “Precise is better
than Light” A Document Analysis Study about Quality
of Business Process Models. In Proceedings of EmpiRE
2011, pages 61–68. IEEE, 2011.

[7] G. Reggio, F. Ricca, G. Scanniello, F. Di Cerbo, and
G. Dodero. A precise style for business process
modelling: Results from two controlled experiments. In
Proceedings of MODELS 2011, volume 6981 of LNCS,
pages 138–152. Springer.

MODELS’12 Workshop – EESSMod 2012

54

Modelling and Managing Variability with Feature Assembly
– An Experience Report

Lamia Abo Zaid

Vrije Universiteit Brussel

Pleinlaan 2

1050 Brussels, Belgium

Lamia.Abo.Zaid@vub.ac.be

Olga De Troyer

Vrije Universiteit Brussel

Pleinlaan 2

1050 Brussels, Belgium

Olga.DeTroyer@vub.ac.be

ABSTRACT

Feature models have been commonly used to model the variability

and commonality in software product lines. We have defined the

Feature Assembly Modelling, a feature modelling technique that

allows to model variability in software adopting a multi

perspective approach. Furthermore, the approach allows

modelling software by combining both variability and reusability,

i.e. we have developed an approach to take reusability into

account while defining new software. To support the approach,

we have also developed an information retrieval framework that

provides an interactive visualization of the feature models. The

visualization allows users to explore and query the existing

models. In this paper, we report on our experience in introducing

this variability modelling approach into a small-scale software

company. This experience was very useful for both parties. The

company was able to uncover the structure of their software and

the modelling exercise provided them better insight in their

products. For us, it has helped to better understand the needs of

companies, to evaluate the usability of our Feature Assembly

approach and the associated learning curve, as well as revealing

its current limitations. Moreover, as we are aware of the fact that

classical feature modelling is not yet a practice adopted by

companies, it was interesting to see that our approach was well

accepted and appreciated by the company.

Categories and Subject Descriptors

D.2.13 [Software Engineering]: Reusable Software – Domain

Engineering.

D.2.10 [Software Engineering]: Design – Methodologies, and

Representation.

General Terms

Design, Management.

Keywords

Feature Models, Feature Assembly, Software Product Lines,

Variability, Variability Management, Experience Report

1. INTRODUCTION
Companies developing multiple related software products or

products having different variants (i.e. software product lines) are

faced with many challenges as the complexity of the software

increases considerably by introducing variability. For instance,

how can they keep an overview on the many different variants of

the products produced and installed for different customers; how

do the different features of the variant products relate to each

other; which dependencies exist between the different features;

what is the impact of making some changes to a certain feature;

etc. We claim that in order to avoid problems in later stages of the

software life cycle, it is necessary to perform a thorough

modelling phase of the variability in a product (or family of

products) in order to reveal the complexity introduced by common

and variable features, feature relations, and feature dependencies.

Different feature oriented modelling techniques (e.g., [1] [2])

exist that allow to model variability and commonality in software.

The term “feature” is used to denote an abstraction that different

stakeholders can understand [1]. Despite the relevance of feature

modelling for industry, a recent study [3] reveals that there are

very few reports in the feature modelling literature on the

application of feature models in practice. Furthermore, a few of

the detected papers discuss successful and unsuccessful

applications of feature modelling in practice. Results show that

companies often had doubts when applying the feature modelling

technique and its usefulness was not fully anticipated beforehand

[3].

Furthermore, it is agreed upon both in academia and

industry, that analysis and design are often underestimated when

developing new products [4] [5]. The impact of good design is

obvious, yet good practice remains a challenge. Furthermore, it

was found that in small and medium scale companies variability is

not planned beforehand [4] [6] but actually evolves with time due

to the expansion of the software to serve more customers or due to

the need to customize some features to meet the different needs of

different customers [7]. In these situations, a poor product design

may create problematic situations as the software becomes

difficult to extend, becomes extremely complex and unstable, and

most of the company’s development time will be spent in bug

fixing, maintenance, and testing.

This paper presents our experience of introducing our own

Feature Assembly Modelling approach to a software company.

We aimed to validate the approach using a real case. Moreover, as

we are aware of the fact that classical feature modelling is not yet

a practice adopted by companies, we were interested in

understanding the reasons for this and check if our Feature

Assembly Approach could provide a solution for this. The paper

is organized as follows: in section 2, we provide some background

on variability modelling and feature modelling. Section 3 presents

our Feature Assembly approach. Next, in section 4 we describe

the case study and introduce a set of research questions that this

case study aimed to answer. Next, in section 5, we present the

accomplishment of the case study and section 6 presents the

results. Section 7 provides a discussion of the results and section 8

presents the threats to validity. Finally, section 9 provides the

conclusions and an overview of our future work

2. BACKGROUND
Companies developing related software products or products

having different variants (i.e. a software product line) are faced

MODELS’12 Workshop – EESSMod 2012

55

with many challenges as the complexity of developing,

maintaining, and managing the software increases considerably

due to introducing variability. Software variability is defined as

“the ability of a software system or artefact to be efficiently

extended, changed, customized or configured for use in a

particular context” [8]. In order to gain the merits of variability,

there is a need for expressing this variability through variability

analysis and variability modelling. Feature oriented domain

analysis techniques have been commonly used to analyse the

variability and commonality of variable products [2]. The resulted

variability model is referred to as “feature model” and has been

commonly used to model the variability and commonality [1] [2]

[9]. Feature models are visual representations (graphs) of the

features which the software is composed of in addition to their

feature relations, feature dependencies, and their contribution to

the variably of the system.

Despite the value of feature modelling it has not found its

way to industry. This could be due to the complexity of the

modelling technique [10], missing support/training on how to

apply feature modelling [3], the different tools with different

functionality and usability support [11], or simply because

variability was not anticipated from the start but developed

overtime as the product matured. A variability modelling

technique should be expressive and intuitive enough to capture

and represent information about features composing the software

product line in addition to how these features contribute to the

variability of the software product line. In our previous works, we

have identified limitations of mainstream feature modelling

techniques [10]. In order to overcome these limitations, we have

proposed the Feature Assembly Modelling technique [10].

In addition to modelling variability there is a need for

managing this variability. Feature models act as a medium for

communicating product capabilities between different

stakeholders. As the number of features grows, along with the

increasing number of relations between features, finding

information manually becomes difficult. Therefore there is a need

to allow stakeholders to browse these feature models for

information [12]. In addition, there is a need for efficient retrieval

of information (e.g. search) from feature models [13] [14].

3. FEATURE ASSEMBLY
The main goal behind Feature Assembly [10] [15] is to be able to

specify variable software products (e.g., a software product line)

by combining and reusing (existing) software features. In doing

so, reuse is promoted and supported from the initial software

conception phase through the complete software development life

cycle.

The Feature Assembly approach should help companies

define their products better, by first conceiving them in terms of

“features”. In addition, in the Feature Assembly modelling

technique, one needs to distinguish between features that

represent variability (i.e. variation points) and those that do not. In

order to deal with the size and the complexity of the models, the

concept of “perspective” was introduced. A perspective allows

considering the modelling from one particular point of view at a

time, e.g., the system perspective, the task perspective, or the user

interface perspective (other perspectives may exist as well). The

modelling technique separates features from how they contribute

to variability. This makes it possible to reuse features in different

variability contexts. Furthermore, this could encourage companies

to consider reuse as early as the design phase, not only by

allowing to reuse existing features but also by forcing them to

design for reuse. Considering reuse at the design level will enable

reuse at the implementation level, increasing the overall

productivity and reducing cost.

Feature Assembly does not only allow modelling of

variability, it also offers continuous management of the

information contained in these models. This functionality is

provided by our Feature Assembly Framework [15]. The

framework is based on a repository for storing features, their

relations and dependencies, called the Feature Pool. The Feature

Pool Manager allows exploring and searching the pool for

reusable features. The Feature Pool may also be used to store

complete Feature Assembly Models. In this case, and using the

Feature Pool, users can both browse and search the information

contained in Feature Assembly models. The results are presented

in a visual way, providing better insight in the information and

models retrieved. This actually allows Feature Assembly models

to act as an interactive documentation source, where users can

readily find information. This should allow for improved

understanding, management, and reuse of existing software

features, as existing features can efficiently be identified as well

as their dependencies. Additionally, it could support decision-

making by unlocking the knowledge about the software features

already developed in the company.

4. CASE STUDY - PLANNING
The case study presented in this paper was part of the living labs

initiative of the VariBru1 project. The idea was to conduct a pilot

study in which our Feature Assembly approach was assessed by a

company that encounters variability in their products and wants to

explicitly represent this variability. The company did not apply

the concepts of variability analysis and modelling before. The

case study aimed applying the Feature Assembly approach for

analysing and modelling variability from the domain analysis and

design perspective. The objective was to evaluate the Feature

Assembly approach and improve our understanding of the

variability modelling needs of companies.

4.1 METHODOLOGY
We introduced the Feature Assembly approach to a small-scale

software company, Antidot (located in Brussels), and applied it to

a (variable) product of the company. Antidot is working in the

domain of web-based IT solutions and services for corporations,

companies and associations. To provide these services, they have

developed their own Content Management System (CMS) which

can be customized (i.e. configured) in different ways to serve the

needs of their different customers. Antidot was interested in the

approach as they wanted to increase the configurability of their

product; they were looking for a way to help them keep track of

the different variants of their features (in order to make more

accurate customer offers) and the different configurations

installed for different customers. Two employees of the company

participated in the semi structured and flexible meetings we set

up for conducting this case study; the first held the roles of CEO

and Senior Project Manager; the second held the role of senior

developer and designer (there is no dedicated team for the design).

From our research team the authors were the participants, the case

study was managed by the first author.

4.2 MOTIVATION
Antidot’s CMS product has experienced an increase in features as

well as feature variation (i.e. new variants of features were

1 www.varibru.be

MODELS’12 Workshop – EESSMod 2012

56

introduced) over time. This has led to a situation in which there

was a need to track the available features, the features that hold

variations or represent variation points, and the dependencies

between these features.

As previous research [4] has showed that small and medium

scale software companies are confronted with variability issues, it

was interesting to validate the power of Feature Assembly in

bringing variability modelling into practice for these companies in

order to help solve their variability problems. We have

formulated a set of questions that are oriented to measure the

relevance of our Feature Assembly approach for the company.

These questions can be applied to companies in a similar

situation, i.e. that have some form of variability in their products,

and which did not yet apply a feature modelling technique.

RQ1. Does the Feature Assembly approach bring variability

modelling and management one step closer to

industry, i.e. does the company Antidot see added

value in adopting this variability modelling approach?

RQ2. Does the company have a problem of concealed

information (i.e. information hidden in code, paper

documents, or in the heads of the developers)?

RQ3. Can we promote reuse early in the development cycle?

Will that make a difference for the development cost?

RQ4. Is our Feature Assembly approach effective and

usable in practice?

The case study aimed at finding answers to these questions.

Answering these questions should help us gain better

understanding of the approach’s feasibility as well as its

limitations.

5. CASE STUDY - EXECUTION
We had several meetings with members of Antidot. In the first

meeting, we introduced the Feature Assembly Modelling

approach, i.e. the Feature Assembly Modelling Language and the

concept of modelling by reusing features from an existing Feature

Pool. We illustrated the concepts using an example. The company

also explained how they currently manage their features. In order

to help them understand the modelling technique, we made some

models for their (existing) CMS and presented them in the next

meeting; this quickly initiated a discussion as they saw mistakes

in our models (which was not surprising as we didn’t know all the

details of their software), a sample of their corrections is shown in

figure 1. We then asked them to do the modelling process on their

own (as homework) and provided them with some basic

documentation material about the modelling technique. During

our meeting we used a pen-and-paper approach for creating the

models (or rather modifying the created models). To help speed

up the modelling process we have defined a Visio Stencil that

draws the notations of the Feature Assembly Modelling

Language, we provided Antidot with this stencil2. In the following

meetings, we discussed their models, answered their modelling

questions, and collected their comments on the ease of use and

intuition of the modelling approach. We also introduced the

Feature Assembly Framework prototype3 that we created for

2 Note that at that time, a dedicated tool to create the Feature

Assembly models was not yet available.

3 The Feature Assembly prototype is a web-based application to

visualize and explore feature assembly models (also used for

testing the approach and asked them to try it out. In a next

meeting, we collected their comments concerning the

functionality and the usability of this prototype. By asking them to

try out the prototype of the Feature Assembly Framework we

wanted to investigate and better understand how companies want

to be able to search for information about their designs, and what

types of information they consider useful or essential. The

available prototype visualizes the Feature Assembly models and

allows users to navigate visually through the models in order to

find features and information about features.

Figure 2. Screenshot showing how information can be found in

Feature Assembly Models using form-based querying -

Applied to the models of Antidot.

Figure 3. Screenshot showing how Feature Assembly Models

are visualized allowing users to browse the information

contained in the models - Applied to the models of Antidot.

Furthermore, the prototype allows users to search for information

based on predefined metadata such as feature name, feature

Feature Pool contents). The examples can also be found on

https://wise.vub.ac.be/feature_assembly/examples.html.

 Figure 1. Excerpt showing early modelling of CMS to

demonstrate modelling with Feature Assembly

MODELS’12 Workshop – EESSMod 2012

57

description, feature type, feature definition date (as interval),

perspective name, perspective description. Additionally, the

features belonging to a specific perspective can be shown. Also a

tag cloud is used to enhance the searching via tags that can be

assigned to features. The tag cloud also indicates the frequency of

tags used to label features.

6. RESULTS
In this section, we elaborate on the results obtained from this

evaluation activity. We first present the results obtained for the

Feature Assembly modelling technique and next the ones for the

Feature Assembly Framework.

6.1 The Feature Assembly Modelling

Technique
Concerning the effectiveness and ease of use of the Feature

Assembly Modelling technique, Antidot’s team reported the

following. To analyse and model4 one major module of the CMS,

it took one person two hours and a half. The resulted model

contained 28 features and 21 connections between features (14

feature relations and 7 feature dependencies). They found this an

acceptable modelling time, although there was some overhead

because it was the first time they use a variability modelling

technique. In total, three persons were involved in the modelling

of the CMS. A small issue was the learning time needed for the

notations used, although they appreciated the similarity with the

UML notations (as they are using UML for system modelling).

Despite this, we have noticed that already after the second

modelling meeting, the team was very comfortable with the

modelling technique, capable of making decisions concerning

feature types and dependencies. Other remarks concerned the

expressiveness of the modelling approach. We report their major

remarks:

R1. Some features needed many feature dependencies and

this was cumbersome to specify.

R2. The distinction between some feature dependencies was

not clear and this made it difficult to decide which one

to use (e.g., ‘uses’ versus ‘requires’)

R3. They were wondering at which level of detail they had

to model.

R4. It was not clear how they could specify external

features/components.

R5. Sometimes it was difficult to decide which perspective

to use for modelling certain features.

R6. It was not clear if and how they could model different

versions of the same feature.

Some of these remarks are due to the lack of experience with

the Feature Assembly modelling technique and the lack of good

documentation for the method (e.g., an elaborated user guide),

such as remarks R2, R3, and R5. Also remark R5 was given

because they assumed that a feature could only belong to one

perspective, which in not the case. Remark R1 triggers some

important questions: Is it necessary to always model all

dependencies? Is a high coupling not an indication of some bad

design decision? And if all dependencies are really justified, can

we not find an easy way to specify them, e.g., by introducing

some abstraction mechanisms to reduce the number of links that

need to be specified? There is no unique recipe for solving this

4 This was their first use of a variability modeling technique and

therefore we cannot compare the obtained results to a previous

experience.

issue, on the other hand knowing this kind of information at a

design time allows considering design patterns to eliminate such

coupling between features in code [16]. Remarks R4 and R6 were

indeed very valuable, as the method currently doesn’t provide

support for this. Currently, the Feature Assembly Modelling

technique treats all features (external and non-external) similarly.

Also it does not support versioning of features. These issues

should be considered in future work.

Furthermore, the case study has revealed/confirmed the

following merits of adopting such a variability modelling

technique:

1. Feature Assembly let them reconsider their “features”

in order to increase the modularity of the software.

Using the Feature Assembly Modelling technique,

dependencies between features became more visible

and they can use this to improve the design for

achieving a lower degree of coupling between

modules/components at the code level. In their own

words they mentioned “We found that our software is

not as modular as we thought it was, therefore we are

now rethinking our feature dependencies to make our

components more modular to increase the reusability in

our system”

2. Explicitly modelling variabilities and commonalities

triggered new potential variation points. As a result,

more variability will be planned in the next version of

the product.

3. Documenting and understanding the feature

dependencies helps them in better defining their test

scenarios, as the feature dependencies are reflected as

module dependencies in the code. In their own words

they mentioned “understanding the feature

dependencies already gives important information for

building testing scenarios”

4. Feature Assembly models help them better identifying

the impact of change in features.

5. The system perspective provides a better view on the

important features of their product, providing a different

level of abstraction and understanding of their system.

The company also reported that Feature Assembly models

will help them with understanding and managing the evolving

variability of their product over time.

6.2 The Feature Assembly Framework
The evaluation exercise of the Feature Assembly Framework

prototype performed by Antidot confirmed our hypothesis of the

importance of the ability to unlock the knowledge contained in

design models (i.e. Feature Assembly models). The team of

Antidot confirmed that providing a visual navigation mechanism

for inspecting the models was indeed useful. Furthermore,

allowing users to visually interact with the Feature Assembly

models is useful when tracing a certain feature for its relations or

dependencies. In their case, they had some features that

represented the backbone of their system and which they found

very useful to inspect using the prototype. This functionality is

particularly important when more than one person is involved in

the modelling (in their case three persons were involved). Also,

they reported that being able to control the depth of display for a

model during visualization is indeed useful for providing different

levels of detail.

Furthermore, Antidot recommended adding some

important meta-data to the information stored. For example, they

recommended adding a description for each perspective and a

MODELS’12 Workshop – EESSMod 2012

58

definition date for the features. A definition date could also help

them overcome the issue of lack of versioning support for the

features mentioned in the previous section (we actually updated

our prototype to include this and let them test it again).

Among the discussions we had was the discussion of the

applicability of the Feature Assembly Framework [15] for reusing

already existing features in the design of new products. Being a

small size company their reuse schema was based on

“opportunistic reuse” [17], i.e. the reuse of components and code

at the implementation level. Reuse at a design level was not given

much attention. Introducing them to the concept of “design with

reuse” has actually led them to reconsider the independency of

their features to enable more reuse opportunities. It was agreed

that the power of considering reuse at the design level (“design

with reuse”) is that it promotes component reuse rather than code

reuse and as such also enables “design for reuse”. To achieve

“design for reuse” the following guidelines were identified:

1. Identify which features are candidate standalone (i.e.

consolidated and independent) features.

2. Analyse which of the feature dependencies are essential

and should be enforced for these features when reused.

3. Improve the models such that the feature dependencies

between standalone features are minimized.

4. Use the meta-data to describe these features, in order to

be able to easy retrieve them later on, in particular by

the use of tags. Restricting the tags to a specific set (e.g.

using a predefined set of keywords) was not

recommended, but rather a growing pool of tags was

advised.

To enable “design with reuse” the following requirements

were identified:

1. A good search mechanism is needed to identify already

existing and reusable features.

2. The need to invest time in carefully modelling (existing)

software features.

7. DISCUSSION
We can conclude that the work done during this evaluation, as

well as the discussions held, confirmed the value of the presented

approach; it also revealed interesting future work. The presented

case study clearly answered our research questions stated earlier,

the company clearly stated that they see added value in applying

feature analysis and modelling to their product(s), this answers

our first research question (RQ1).

The Feature Assembly Framework was also appreciated

for providing an interactive medium for finding information about

features in the Feature Assembly Models. For this to payoff, the

company has to enforce a strict policy for adding meta

information (e.g., feature description, feature keywords,

stakeholders involved, customers who have this feature, etc.) and

therefore making it available for later. From the discussions we

had it was also clear that not all stakeholders need the same

detailed level of information. For example, developers are

interested in all levels of details for the modules they are

responsible for, but for other modules they are only interested in

the feature dependencies. It was clear that even this small

company does have a need to unlock information implicitly

available inside the company (RQ2).

The case study has also confronted us with the gap

between industry and research in the domain of software

variability. We started, as many other researchers, with an

approach to be used when developing a new product line,

however it turned out that in practice, small and medium scale

companies acquire variability over time in their products and need

mechanisms to deal with the variability of existing products or

turn existing products into product lines. Although our approach

was originally not designed for this purpose, it could however also

be applied usefully in this context. Nevertheless, the experience

indicated that (at least a part of the) research should be more

driven by the challenges faced by the industry, and researchers

should not try to push solutions for which there is no need in

practice. Furthermore, the case study has confirmed the need to

evaluate research prototypes in collaboration with industry to

validate their effectiveness and to reveal additional needs.

The presented case study only provided a partial answer

to our third research question considering feature reuse (RQ3).

Feature Assembly modelling allows making more modular

designs. Furthermore, the Feature Assembly Framework helps

efficiently retrieve features for reuse. Therefore we may say that it

increases the chances of successful reuse inside the company,

therefore increasing the chances of reducing development cost.

However, actual reuse can only be achieved while developing a

new product. This has not been performed during the case study.

Therefore, it was not possible to answer RQ3 with complete

certainty.

The time taken by Antidot to learn to use the Feature

Assembly Modelling technique was quite impressive. The

company was also very positive on the ease of use and intuition of

the modelling concepts and notations. They reported no problems

with the understandability of the modelling semantics. The only

negative issue mentioned was that sometimes it was not very

obvious for them which feature dependency (we provide eight

different dependencies) fits best to describe a certain situation.

Also the notations used for the dependencies were sometimes

difficult to remember. However, they found each one of the

proposed dependencies essential. Therefore, we believe that this

will improve with more practice of the technique. Although, we

did not measure the effectiveness and usability in a quantitative

way, the answer on our fourth research question (RQ4) is

definitely positive.

Furthermore, research on software product lines focuses

mostly on the architecture, implementation, and configuration

levels. It is our opinion, and this is confirmed by our validation,

that modelling issues concerning variable software are as

important. In addition, there is a need for extending the research

on variability with Information Management aspects to deal with

growing amount of information needed for and about variable

software. No matter how large or small the company teams are,

tools that allow flexible information sharing are required.

8. THREATS TO VALIDITY
As we only validated the approach with one company, it may be

possible that experiences in other companies could be different.

However, the company was unknown to the researchers before the

case study was started and the company also didn’t have any

reason to favour the approach or the researchers. Therefore, we

can state that the results obtained are rather objective.

 The fact that the company is a small-scale company

may have had an impact on the results.

As already mentioned, the company has not been using

the concepts of variability modelling before, neither the concept

of “feature” to describe their product capabilities. This may have

affected the results in two different ways. First, introducing a new

modelling technique may have introduced some learning time

MODELS’12 Workshop – EESSMod 2012

59

(which was indeed the case). Secondly, because Antidot has not

used a variability modelling technique before they cannot

compare the ease of use and expressiveness of Features Assembly

to other feature modelling techniques.

The case study was done in a rather informal way, i.e.

using meetings and discussion. We believe that this is justified for

a first (pilot) validation case study, as the first purpose was to

obtain as much spontaneous feedback as possible. In later case

studies and experiments, a more rigorous approach will be used.

9. CONCLUSIONS AND FUTURE WORK
In this paper, we presented the results of an evaluation of our

Feature Assembly approach performed by a small-scale software

company. This evaluation was fruitful in many ways. Firstly, it

gave us some insight on how a company works and on their

challenges concerning managing the continuous growth and

variation of their products. Secondly, the validation has clearly

shown the importance of modelling software in terms of the

composing features in order to better understand and identify the

sources of complexity in the product. This is particularly

important in products that contain variability or that acquire

variability over time. We started this case study with some

research questions in mind to help us evaluate our Feature

Assembly Approach. Our questions have been answered,

moreover, new issues were raised concerning the company’s

needs when modelling and managing the variability in their

products (e.g., the need for explicit feature versioning). Most of

these issues are worth further investigation.

For our future work, we seek applying the Feature

Assembly approach to more industrial cases; this will certainly

help improving the technique. It will also help us understand what

meta-data is useful for unlocking information concerning features.

Also the presented case study has pointed out the importance of

tool support [11] that may go beyond simple proof of concept

tools. We plan to develop a Feature Assembly modelling editor to

help companies rapidly create their feature assembly models.

Furthermore, the issue of feature versioning will be considered in

future work.

10. ACKNOWLEDGMENTS
This research is sponsored by Innoviris, the Brussels institute for

research and innovation (www.innoviris.be) through the VariBru

project (www.varibru.be).

The authors like to thank Sebastien Le Grand and Frederic

Arijs from Antidot for their valuable contribution during this case

study. The authors also like to thank Tom Puttemans for his

prototype implementation of the Feature Assembly Visualization

tool.

11. REFERENCES

[1] K. Kang, S. Cohen, J. Hess, W. Novak, A. Peterson,

“Feature-oriented domain analysis (FODA) feasibility

study”, Technical Report CMU/SEI-90-TR-021, Software

Engineering Institute, Carnegie-Mellon University, 1990

[2] K.C. Kang, J. Lee, P. Donohoe, “Feature-Oriented Product

Line Engineering”, IEEE Software, vol. 19, no. 4, pp. 58-65,

2002

[3] A. Hubaux, , A. Classen, , M. Mendonca, , P. Heymans, A

Preliminary Review on the Application of Feature Diagrams

in Practice, In proccedings of VaMoS 2010 (VaMoS'10),

Linz, Austria, January 27-29, University of Duisburg-Essen,

pp. 53-59, 2010

[4] W. Codenie, N. González-Deleito, J. Deleu, V. Blagojevic,

P. Kuvaja, J. Similä: A Model for Trading off Flexibility and

Variability in Software Intensive Product Development, In

proccedings of VaMoS 2009, ICB-Research Report,

Universität Duisburg-Essen, pp. 61-70, 2009

[5] R. Van Ommering, J. Bosch, Widening the scope of software

product lines — from variation to composition, In

Proceedings of the Second International Conference on

Software Product Lines (SPLC 2), Gary J. Chastek (Ed.).

Springer-Verlag, London, UK, pp. 328-347, 2002

[6] B. Curtis, H. Krasner, N. Iscoe, A Field Study of the

Software Design Process for Large Systems,

Communications of the ACM, Volume 31 Issue 11, Nov. pp.

1268-1287, 1988

[7] D. M. Berry, K. Czarnecki, M. Antkiewicz, M. AbdelRazik,

Requirements Determination is Unstoppable: An Experience

Report, 18th IEEE International Conference on

Requirements Engineering, pp. 311-316, 2010

[8] M. Svahnberg, J. van Gurp, J. Bosch, A Taxonomy of

Variability Realization Techniques. in Software Practice &

Experience, 35(8). pp.705-754, (2005).

[9] M. L. Griss, J. Favaro, M. d’Alessandro, Integrating Feature

Modelling with the RSEB, Proc. Fifth International

Conference on Software Reuse, pp. 76-85, Victoria, BC,

Canada , 1998.

[10] L. Abo Zaid, F. Kleinermann, O. De Troyer: Feature

Assembly: A New Feature Modelling Technique, In : 29th

International Conference on Conceptual Modelling, Lecture

Notes in Computer Science, 2010, Volume 6412/2010,

Springer-Verlag, pp. 233-246

[11] M. El Dammagh, O. De Troyer, Feature Modelling Tools:

Evaluation and Lessons Learned, ER Workshops 2011 pp.

120-129, 2011

[12] D. Nestor, S. Thiel, G. Botterweck, C. Cawley, P. Healy:

Applying visualisation techniques in software product lines.

SOFTVIS 2008: 175-184

[13] H. Wang, Y. Li, J. Sun, H. Zhang, J. Pan, A semantic web

approach to feature Modelling and verification. In:

Proceedings of Workshop on Semantic Web Enabled

Software Engineering (SWESE’05), 2005

[14] L. Abo Zaid, F. Kleinermann, O. De Troyer, Applying

Semantic Web Technology to Feature Modelling. In: The

24th Annual ACM Symposium on Applied Computing, The

Semantic Web and Applications (SWA) Track march 2009.

[15] L.Zaid, F. Kleinermann, O. De Troyer, Feature Assembly

Framework: towards scalable and reusable feature models, In

Proceedings of the 5th Workshop on Variability Modelling

of Software-Intensive Systems (VaMoS '11). ACM, New

York, NY, USA, pp. 1-9, 2011

[16] E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design

Patterns: Elements of Reusable Object-oriented Software,

Addison-Wesley, 1995.

[17] R. van Ommering, Software Reuse in Product Populations,

IEEE Trans. Software Eng., vol. 31, no. 7, 2005, pp. 537–

550.

MODELS’12 Workshop – EESSMod 2012

60

The Role of Domain-Knowledge in Interpreting Activity
Diagrams – An Experiment

Ana M. Fernández-Sáez, Peter Hendriks, Werner Heijstek and Michel R.V. Chaudron
Leiden Institute of Advanced Computer Science, Leiden University, Niels Bohrweg 1, 2333 CA Leiden

{fernande,heijstek,chaudron}@liacs.nl, httpeter@gmail.com

ABSTRACT

The UML has been designed as a tool to support software
development in general. UML is, however, not always intuitive to
use in any given domain. We are unsure how domain knowledge
influences the interpretation of generic UML diagrams. A
commonly used diagram is the activity diagram. This study
outlines an experiment in which subjects with medical knowledge,
computer scientists, and a control group of respondents with other
backgrounds, are compared. To this end, we used process models
from the medical domain. Our conclusions include that medical
activity diagrams are marginally better interpreted by medically
trained staff than by computer scientist. This is remarkable when
compared to the low score of subjects without a medical- or
computer science background implying that knowledge of a
modeling language can be more important than domain
knowledge.

Categories and Subject Descriptors
D.3.2 [Programming Languages]: Language Classification –
design languages (UML)

General Terms
Documentation, Design, Experimentation, Human Factors,
Languages.

Keywords
UML, activity diagrams, domain knowledge, empirical study,
experiment

MODELS’12 Workshop – EESSMod 2012

61

http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/f/Fern=aacute=ndez=S=aacute=ez:Ana_M=.html

MODELS’12 Workshop – EESSMod 2012

62

Modeling and Enterprises – the past, the present and the
future

Vinay Kulkarni
Tata Research Development and Design Centre

54-B, Industrial Estate, Hadapsar,
Pune, India 411013
+91 20 66086333

vinay.vkulkarni@tcs.com

ABSTRACT
Industry has been practicing model-driven development in various
flavours. In general it can be said that modelling and use of
models have delivered on the promises of platform independence,
enhanced productivity, and delivery certainty as regards
development of software-intensive systems. Globalization market
forces, increased regulatory compliance, ever-increasing
penetration of internet, and rapid advance of technology are some
of the key drivers leading to increased business dynamics.
Increased number of factors impacting the decision and
interdependency there between is leading to increased complexity
in making business decisions. Also, enterprise software systems
need to commensurately change to quickly support the business
decisions. The paper presents synthesis of our experience over a
decade and half in developing model-driven development
technology and using it to deliver 70+ business-critical software
systems worldwide.

Categories and Subject Descriptors
D.2 [Software Engineering]: Design

General Terms
Management, Design, Languages, Theory

Keywords
Modelling, Meta modelling, Model-driven development,
Enterprise systems, Adaptation, Analysis, Simulation

MODELS’12 Workshop – EESSMod 2012

63

	Title

	Preface

	Benefits from Modelling and MDD Adoption: Expectations and Achievements
	The Use of UML Class Diagrams and Its Effect
on Code Change-proneness

	Lessons Learned from Evaluating
MDE Abstractions in an Industry Field Study

	Introduction
	Our Case Study in a Nutshell
	Lessons Learned
	Related Work
	Conclusions
	References

	Does the Combined use of Class and Sequence Diagrams Improve the Source Code Comprehension
	UML Class Diagram Simplification: What is in the developer’s mind?
	Making the Case for Measuring Mental Effort

	Micro-business Behavior Patterns associated with
Components in a Requirements Approach

	Business Process Modelling:
Five Styles and a Method to Choose the Most Suitable One

	Modelling and Managing Variability with Feature Assembly
– An Experience Report

	The Role of Domain-Knowledge in Interpreting Activity
Diagrams – An Experiment

	Empirical Design Science for Artefact-based Requirements Engineering Improvement

	Modeling and Enterprises – the past, the present and the
future

