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Abstract

The thesis consists of three parts, although each part belongs to a specific
subject area in mathematics, they are considered as subfields of the perturba-
tion theory. The main objective of the presented work is the study of the Dirac
operator; the first part concerns the treatment of the spurious eigenvalues in the
computation of the discrete spectrum. The second part considers G-convergence
theory for positive definite parts of a family of Dirac operators and general pos-
itive definite self-adjoint operators. The third part discusses the convergence of
wave operators for some families of Dirac operators and for general self-adjoint
operators.

In the first and main part, a stable numerical scheme, using finite element and
Galerkin-based hp-cloud methods, is developed to remove the spurious eigen-
values from the computational solution of the Dirac eigenvalue problem. The
scheme is based on applying a Petrov-Galerkin formulation to introduce artifi-
cial diffusivity to stabilize the solution. The added diffusion terms are controlled
by a stability parameter which is derived for the particular problem. The deriva-
tion of the stability parameter is the main part of the scheme, it is obtained for
specific basis functions in the finite element method and then generalized for
any set of admissible basis functions in the Ap-cloud method.

In the second part, G-convergence theory is applied to positive definite parts
of the Dirac operator perturbed by h-dependent abstract potentials, where h is
a parameter allowed to grow to infinity. After shifting the perturbed Dirac op-
erator so that the point spectrum is positive definite, the spectral measure is
used to obtain projected positive definite parts of the operator, in particular the
part that is restricted to the point spectrum. Using the general definition of G-
convergence, G-limits, as h approaches infinity, are proved for these projected
parts under suitable conditions on the perturbations. Moreover, G-convergence
theory is also discussed for some positive definite self-adjoint h-dependent op-
erators. The purpose of applying G-convergence is to study the asymptotic be-
havior of the corresponding eigenvalue problems. In this regard, the eigenvalue
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problems for the considered operators are shown to converge, as h approaches
infinity, to the eigenvalue problems of their associated G-limits.

In the third part, scattering theory is studied for the Dirac operator and gen-
eral self-adjoint operators with classes of h-dependent perturbations. For the
Dirac operator with different power-like decay h-dependent potentials, the wave
operators exist and are complete. In our study, strong convergence, as h ap-
proaches infinity, of these wave operators is proved and their strong limits are
characterized for specific potentials. For general self-adjoint operators, the sta-
tionary approach of scattering theory is employed to study the existence and
convergence of the stationary and time-dependent h-dependent wave operators.

Keywords: Dirac operator, eigenvalue problem, finite element method, spuri-
ous eigenvalues, Petrov-Galerkin, cubic Hermite basis functions, stability pa-
rameter, meshfree method, hp-cloud, intrinsic enrichment, G-convergence, I'-
convergence, scattering theory, identification, wave operator, stationary approach.
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1 Introduction

In quantum mechanics the Dirac equation is a wave equation that provides a de-
scription of the relativistic motion of the electrons as well the positrons, while
the corresponding eigenvalue problem determines their energies (eigenvalues).
The computation of the Dirac operator eigenvalues for single-electron systems
is thoughtfully considered in the last decades in order to obtain stable solution
that can be used as a basis in approximating the eigenvalues of the electron
in some simple many-electron systems. The difficulty in computing the Dirac
operator eigenvalues for a single-electron system is the presence of unphysical
(spurious) eigenvalues among the genuine ones. Also, another challenging task
is the study of the asymptotic behavior of the spectrum, in particular the eigen-
values, of families of perturbed Dirac operators.

The need for stable approximation for the Dirac operator eigenvalues with
Coulomb interaction for single-electron systems makes the construction of a
stable numerical scheme the main concern of this thesis. Here, we classify the
spuriosity in two categories; the so-called instilled spurious eigenvalues and the
spuriosity caused by the unphysical coincidence phenomenon. We provide a
stable scheme to compute the Dirac operator eigenvalues implementing two dif-
ferent numerical methods; the finite element method (FEM) and the Galerkin-
based hp-cloud method. The scheme relies on appropriate choices of the com-
putational space that meets the properties of the Dirac wave function. On the
other hand, it mainly relies on adding artificial stability terms controlled by a
stability parameter. The stability parameter is derived for particular finite ele-
ment basis functions in the FEM, and generalized to arbitrary basis functions in
the hp-cloud approximation method. The stability scheme is computationally
unexpensive, simple to apply, and guarantees complete removal of the spurious
eigenvalues of both categories.

We also study the asymptotic behavior, as h— oo, of the eigenvalues of a
family of perturbed Dirac operators by h-dependent potentials using the the-
ory of G-convergence. We prove the G-limit operators of positive definite parts
of this family under suitable assumptions on the perturbations. In particular
we prove that the corresponding eigenvalues and the eigenvalue problem of
the operator restricted to the point spectrum of the perturbed Dirac operators
converge respectively to the eigenvalues and eigenvalue problem of the G-limit
operator. Apart from this, we start employing I"-convergence together with G-
convergence to study the G-limits of some positive definite self-adjoint opera-
tors, and discuss the convergence of their corresponding eigenvalue problems.



Regarding the absolutely continuous part of the spectrum, we study scatter-
ing theory for a family of Dirac operators and general self-adjoint operators. For
the Dirac operator with different power-like decay h-dependent potentials, the
strong time-dependent wave operator (WO) exists and is complete. We prove
the strong convergence, as h— o0, of this WO under suitable conditions on the
assumed potentials. If the added potentials are of short-range type, the conver-
gence study of the WOs is equivalent to the convergence study of the perturbed
Dirac operator in the strong resolvent sense. For the Dirac operator with long-
range potentials, we consider two simplified WOs for which the study of the
asymptotic behavior is easier. Depending on the power of decay of the assumed
potentials, the simplified WOs are obtained by considering two particular iden-
tifications. One of these identifications is an h-free operator, thus the study of
the asymptotic behavior of the WOs is also reduced to the study of the conver-
gence of the perturbed Dirac operator in the strong resolvent sense. The other
identification still has the h-dependency, but the convergence of the WOs with
this identification becomes easier to study. For general i-dependent self-adjoint
operators, the existence and convergence, as h — 0o, of the weak and strong
time-dependent WOs and of the stationary WO are studied more extensively.

An outline of this work is as follows: In §2, we give preliminaries and in-
troduce some elementary properties of the Dirac operator. In §3, we explain the
occurrence of the spurious eigenvalues caused by using the projection method
in the numerical approximation. Also we discuss the causes of the spuriosity
of both categories in the computation of the Dirac eigenvalue problem. We
continue with the discussion on the stability scheme and the stability parame-
ters, where we also provide numerical examples using the FEM and hp-cloud
method. In §4 we give basic preliminaries on G-convergence including a gen-
eral overview, a one dimensional example, and some definitions. Likewise, I'-
convergence and its connection to G-convergence are stated. We also discuss
G-convergence of elliptic and positive definite self-adjoint operators. Further,
we apply G-convergence theory to positive definite parts of a family of Dirac
operators. In §5 we provide a general overview of scattering theory and state
the definitions of the time-dependent and stationary WOs and their properties.
We also study the strong convergence of the WOs for a family of Dirac op-
erators, and discuss the simplified WOs. Finally, we discuss and prove the
existence and convergence of the time-dependent and stationary WOs for the
general h-dependent self-adjoint operators. We conclude the work by giving a
brief summary of the appended papers as well pointing out some future work.



2 The Dirac equation

The free Dirac equation describes the free motion of an electron (or a positron)
with no external fields or presence of other particles. It is derived from the
relativistic relation between energy and momentum

A2 =p?c? + mict, (1
where )\ is the total electron energy, p is the electron kinetic momentum, c is the
speed of light, and m is the electron rest mass. The corresponding wave equation

of quantum mechanics is obtained from the classical equation of motion (1) by
replacing the energy A and the momentum p by their quanta

A= iﬁgt and p = —ihAV, )

where t denotes the time, 7 is the Planck constant divided by 27, and V =

(%, %, %). Using (2), equation (1) can be written in the form

The problem with the existence of the Laplace operator under the square root
was solved by Paul Dirac who derived the well-known Dirac equation that pro-
vides a description of the electron motion consistent with both the principles of
quantum mechanics and the theory of special relativity. The free Dirac space-
time equation (see [24] for more details) has the form

0
zﬁau(x, t) = Hou(x,t), 4)
where Hy : H'(R3; C*) — L?(R3; C*) is the free Dirac operator given as
Hy = —ihca - V +mc?(, (5)

the symbols ac= (a1, g, 3) and (3 are the 4 x 4 Dirac matrices given by

o 0 O'j o I 0
a]—<0j 0) andﬁ—<0 —I>'

Here I and 0 are the 2 x 2 unity and zero matrices respectively, and o;’s are the
2 x 2 Pauli matrices

(01 (0 —i do (10
o1 = 10 , 09 = i 0 , and o3 = 0 —1 .

In the sequel we shall use the following notations; D, R, and N to denote re-
spectively the domain, range, and null spaces of a given operator. The notations
0, Op, Oqe, and oegs Will denote respectively to the spectrum, point spectrum,



absolutely continuous spectrum, and essential spectrum of operators. For sim-
plicity, we define X = H'(R3,C*) and Y = L?(R3, C*). Separation of variables
in (4) yields the free Dirac eigenvalue problem

Hou(x) = Au(x) . (6)
The free operator Hy is essentially self-adjoint on C§°(R?; C*) and self-adjoint
on X, moreover o(Hp) = (—o0, —mc?] U [mc?, +00). The free Dirac operator
with an additional field V' is given by

H=Hy+V. @)

where V' is a 4 x 4 matrix-valued function acting as a multiplication opera-
tor in Y. The operator H is essentially self-adjoint on C(C)’O(Rg; C*) and self-
adjoint on X provided that the function V' is Hermitian and for all x € R3\{0}
and i,j = 1,2,3,4, satisfies |V;j(x)] < aﬁ + b, where c is the speed of
light, a < 1, and b > 0, see e.g. [51]. From now on, the function V' will
be considered as the Coulomb potential which has the form V(z) = TTZ\I ,
here I is the 4 x 4 identity matrix (I will be dropped from the definition of
the Coulomb potential for simplicity), and Z € {1,2,...137} is the electric
charge number. The spectrum of the Dirac operator with Coulomb potential is
(—o0, —me?] U {\*}ren U [mc?, +00), where {\¥} ey is a discrete sequence
of eigenvalues.

For simple computations, to obtain the eigenvalues of the Dirac operator

with Coulomb potential, the radial part of the operator is considered. Before
proceeding, from now on, for simplicity, by the radial Dirac operator (eigen-
value problem) we shall mean the radial Dirac operator (eigenvalue problem)
with Coulomb potential. The radial Dirac eigenvalue problem is obtained by
separation of variables of the radial and angular parts, i.e., by assuming u(x) =
1 < f(r)Zs.m(w,0)
r\ i19(r)Z s m(w,b
the Dirac radial functions referred to as the large and small components respec-
tively, and 2, is the angular part of the wave function . The radial Dirac
eigenvalue problem is then given by

Hyo(r) = Ap(r), where (8)

d K
oo | VO Tt ) g o (1) o
c(% + ;) —mc” +V(r)

) ), where r represents the radial variable, f and g are

As defined before, A is the relativistic energy, V(r) = —Z/r is the radial
Coulomb potential, and « is the spin-orbit coupling parameter defined as kK =
(—1)]H+% (7+ ), where 7 and ¢ are the total and orbital angular momentum
numbers respectively.



3 Computation of the eigenvalues of the Dirac operator

Accurate and stable computation of the electron energies (eigenvalues) in single-
electron systems (Hydrogen-like ions) is of vital interest in many applications.
Approximation of the electron eigenvalues in many-electron systems, as in Hel-
ium-like ions, is based on studying quantum electrodynamic effects (QED-
effects). QED-effects are known as a perturbation procedure which mainly
concerns the interactions between the existing electrons in the system where
these interactions are used to measure the electron correlation. An approach
for calculating QED-effects, see [32, 41], is based on a basis set of eigenstates
of Hydrogen-like ions (the radial Dirac operator). The main difficulty in com-
puting the eigenvalues of the radial Dirac operator is the presence of unphysical
values (eigenvalues that do not match the physical observations) among the gen-
uine eigenvalues. These values are considered as a pollution to the spectrum and
known as spurious eigenvalues. The spurious eigenvalues result in oscillations
in the wave functions and the emergence of states that originally do not exist.
In many cases, this will substantially reduce the computation reliability of the
basis set (partially or may be completely) in the practical atomic calculations.

The spuriosity problem in the computation of the radial Dirac operator eigen-
values is a challenging issue which makes obtaining accurate and stable com-
putation for these eigenvalues a field of study per se. Spurious eigenvalues are
reported in most computational methods of eigenvalue problems, whether it is
the finite element method (FEM), the finite difference method (FDM), the spec-
tral domain approach (SDA), the boundary element method (BEM), the point
matching method (PMM), or, further, the meshfree methods (MMs). Thus,
spuriosity is an effect of the numerical methods and is found in the compu-
tational solution of many problems, rather than the Dirac eigenvalue problem
[1, 39, 44], such as electromagnetic problems [35, 43] and general eigenvalue
problems [61].

Below we present a classification of the spuriosity in the computation of the
radial Dirac operator eigenvalues and its causes, we also explain the occurrence
of spuriosity in the computation of general eigenvalue problems. We present two
stable approaches for accurate computations with complete removal of spurious
eigenvalues.

3.1 Spurious eigenvalues in the computation

We classify the spuriosity in the computation of the eigenvalues of the radial
Dirac operator in two categories

(1) The instilled spuriosity.



(71) The unphysical coincidence phenomenon.

The first category consists of those spurious eigenvalues that may occur within
the genuine eigenvalues (they occur between the true energy levels). This type
of spuriosity occurs for all values of the quantum number «. The second type is
the unphysical assigning of almost the same first eigenvalue (or almost the same
entire set of eigenvalues) for 251 /5(k = —1) and 2p;5(k = 1), 3p3/a(k =
—2) and 3d3/y(k = 2), 4d5)5(k = —3) and 4f5/5(k = 3), and so on. To
clarify, consider the computation of the electron eigenvalues in the Hydrogen
atom using the FEM with linear basis functions (hat functions) given in Table 1,
see Paper I in the appendix.

Table 1: The first computed eigenvalues, given in atomic unit, of the electron in
the Hydrogen atom for point nucleus.

Level k=1 k=-—1 Exact, x = —1
1 -0.50000665661  -0.50000665659 -0.50000665659
2 -0.12500208841  -0.12500208839 -0.12500208018
3 -0.05555631532  -0.05555631532 -0.05555629517
= -0.03141172061  -0.03141172060 @ Spurious Eigenvalue
4 -0.03118772526  -0.03118772524 -0.03125033803
5 -0.01974434510  -0.01974434508 -0.02000018105

The shaded value in the first level of Table 1 is what meant by the unphysical
coincidence phenomenon, and the other two shaded values are the so-called
instilled spuriosity. The right column contains the exact eigenvalues for k = —1
obtained using the relativistic formula.

3.1.1 Spuriosity in general eigenvalue problems

The numerical computation of the eigenvalue problems that is based on the pro-
jection method onto finite dimensional subspaces is often polluted by the pres-
ence of spurious eigenvalues [7]. The spurious eigenvalues appear particularly
in the computation for those problems with eigenvalues in gaps of their essential
spectrum. To understand why the projection method generates spurious eigen-
values, consider a self-adjoint operator 7' defined on a Hilbert space .7, and
consider an orthogonal projection IT : .7 — L, where L is a finite dimensional
subspace of D(T). Let z € C and define
_ Gz =T)flly

© = ELESER AL ALLL 10
(2) = min = 10
F#0



If ©(p) = 0, then u = p(L) is a solution to the Rayleigh-Ritz problem

T
= min maxR(g) = min X< g,29>’ (11)
dim(S)=k geS dim(8)=k ges g%
SCL SCL

where the opposite of the assertion is also true. Moreover, by assuming ©(u) =
0, we conclude that there exists fo € L such that

(n—T)foLL, (12)

which particularly means that R(fy) = p. Thus u is close to the point spec-
trum o,(T"). But, generally, as ||(x—T') f|| # /|| f|| # is not necessarily small for
f = fo,any other f € L, orany f € .7, then (12) does not guarantee that  is
close to the spectrum o (7") of T'.

To verify the above theory, consider the following operator, see [7],

(Tf)(x) = sgn(z)f (x), (13)

defined on 7 = L?(—m,n), where sgn(x) = z/|x|. Since ||T|| = 1, then
o(T) C [-1,1], but for p € (—1, 1), the resolvent operator (T — 1)~ is well-
defined and bounded, therefore o(7') C {—1,1}. However, it is easy to show
that +1 are eigenvalues of 7', these two eigenvalues are of infinite multiplicity,
ie., N(u — T) is infinite, 4 = +1. Thus these two eigenvalues belong to
0ess(T). On the other hand, if L C .7 is spanned by the set of Fourier basis

{90*717 P—n+1s--+ Pn—1, gpn}, given by
1 .

(r) = —e W, j=-n,—n+1,...,n—1,n, 14
then, the Galerkin approximation applied to 7" in the finite dimensional subspace
L implies that (7', L) are the eigenvalues of the (2n + 1) x (2n + 1) matrix
A with entries (ajy,) defined as

g 0, for k — j even,
wn= [ sm@pat-od={ “a  EETIO s
-7 w(k—j3)° J :
The matrix A looks like
0 N 0 N 0
N 0 N 0 N
0 N 0 N 0
A=l N o N N |’ (16)
0 N 0 N 0



here the letter IV is used just to refer to a quantity different from zero (i.e.,
a number) and does not mean that these quantities are equal. It is clear that
A consists of n + 1 columns (the first set) whose odd entries are zero, and n
columns (the second set) whose even entries are zero. If we disregard the zero
entries (which are only n+ 1 entries) in each element of the first set, then we end
withasetV = {vy,va,..., 0541} wherev; € R", i =1,2,...,n+1. ThesetV
is clearly linearly dependent, therefore the columns of the first set of the matrix
A is linearly dependent, hence 0 € o(A). This, of course, violates the fact that
0 € Res(T'), where Res denotes the resolvent set. In this case, we conclude
that O is a spurious eigenvalue that appears in the computed spectrum of the
operator 7' caused by applying the projection method onto the finite dimensional
subspace L.

3.1.2 Spuriosity in the Dirac eigenvalue problem

The occurrence of the instilled spurious eigenvalues is a general phenomenon of
the projection method in the numerical computations, thus the previous discus-
sion can be considered as a good explanation for this type of spuriosity. Below
we discuss the unphysical coincidence phenomenon as explained in [53].

Consider the radial Dirac eigenvalue problem (8), after applying the shift by
—mec? and assuming m = 1, it can be rewritten in the same form as (8) but with

H - ( C(gm (=4 +7%5) ) (17)

448y 22 +V(r)

r

where the eigenvalues are also shifted but kept denoted as A. Define the follow-

ing transformation
1 %,
Ue = ( Z 1 ) , (18)

where %, = Wiﬁg), with ¢ = y/k? — Z2/c%. We apply the above transfor-
mation to the radial function ¢(r) given by (9) to get

aun = (10 ) = (AT ) = () o

Using this transformation one can write

U H U () = Al %@ (7). (20)



By (20), and after adding the term ¢2(1 — Z)U=-23,.(r) to its both sides, the

S K
radial Dirac eigenvalue problem, (8), can be written in the form

Hy (1) = w23 (1), (21)

where the operator H, , is defined by

_ _ _ 0 cBF
H,, =W P HUS + ApU? = < B o ) , (22)

and where Ay, = ¢2(1— @), e = A+ Dy, By = d/dr+sk/(|k|r)—Z/k,
and B} = —B_,. The same projection U, can be applied to the Galerkin
formulation of the radial Dirac eigenvalue problem in a finite dimensional sub-
space. In other words, if both radial functions f and ¢ are expanded in a finite
orthonormal basis set (orthonormal is assumed for simplicity, and it is not a re-
quirement, since we can normalize, by a suitable linear transformation, any set
of basis functions without changing the spectrum), then the above transforma-
tion applied to the discretization of the Galerkin formulation of the radial Dirac

eigenvalue problem yields

(Hyepr)ij (@n)ij = tlly 2 (B )ij- (23)

Here we have used the notation ();; to denote for the matrices (regardless their
sizes) obtained from the Galerkin formulation. The vector (¢x)i; = ((fx)ij)
(Gr)ij)" is the unknowns, and the matrix (H,, ,);; is given by

o 0 Bl
(Hixp)ij = < c(Bx)ij —202] ) ’ 24)

where (By);; is the matrix of elements resulted from the discretization of the
Galerkin formulation on the finite basis set.
We multiplying (23) from left by the matrix

A 0
AK=<O _A+>, (25)

where A, = (By)ij — it Z/(|K|c*s) and A} = (B)ij — pekZ/(J6|c%s), to
get

(H-rs)ijAn(@n)is = U2 A (Br)igs (26)
where we have used the fact that
A ((Hyp)ij — 1l ?) = (Hnp)ig — psUZ2) Ap. 27



Now we define the normalization factor N, as
Nee = (Ax(fe)igs A(Fe)ig) + (AT (@)igs AL (G)is) (28)

here (-, -) is the scalar product of vectors in the Euclidean space. Then for 1, #
0, the eigenfunctions of (H, ,);; and (H_,);; are related by the following
equation

(P—r)ij = Aw(Pr)ij/ vV N (29)
Substituting (29) in (26) yields

(H )i (P—w)ij = U2 (B—)ij- (30)

Thus by (23) and (30), the nonzero eigenvalues of H, and H_, would coin-
cide in the finite basis set. Since (H_,)i; and (H_, ,);; are of the same size,
then the number of their zero eigenvalues is the same. To conclude, the eigen-
values of H,, and H_, would coincide in the projection method onto the finite
dimensional subspaces in the numerical computations.

3.1.3 More on spuriosity in the Dirac eigenvalue problem

Most of computational methods of the eigenvalues of the radial Dirac operator
consent that incorrect balancing and symmetric treatment of the large and small
components of the wave function are the core of the problem [1, 39, 44]. We re-
late the occurrence of spuriosity of both categories to unsuitable computational
spaces and to the symmetric treatment of the trial and test functions in the weak
formulation of the equation. To get more understanding, we rewrite (8) to obtain
explicit formulae for the radial functions f and g, see Paper I in the appendix,

F(@) + (@, ) f (@) + 72 (2, N () =0, S
g"(x) + 01(x, N g (z) + Oz(z, N)g(z) = 0, (32)
where e —M’ 01(z,\) = —W‘z;()w)_x
SV O A)cg(w_(w) N _ Fvi; - - x(wn‘?;:()x)_ N’
PO G e A)cg(w(@ = ﬁzx; - x(wi‘g:()x)— )’

10



and w* (x) = +mec? 4V (z). Itis a well-known fact that the numerical methods

are not stable when they are applied to convection dominated problems causing

the solution to be disturbed by spurious oscillations. The following two cri-

teria are frequently used to determine whether a given equation is convection

dominated. Let

|ujlhy
2K

and Da; = %, (33)
j

Pej =

where Pe; and Daj are known as the grid Peclet and Damkohler numbers
respectively, h; is the size of the element interval I;, u; and s; are respec-
tively the coefficients of the convection and reaction terms corresponding to
I;, and K is the diffusivity size. In general, when the convection coefficient
or the source term is larger than the diffusion coefficient, i.e., when Pe; > 1
or 2PejDa;j = (sjhi/K) > 1, then the associated equation is a convection
dominated one.

For both (31) and (32), the quantity 2PeDa admits very large values if small
number of nodal points in the discretization of the weak form is considered re-
gardless the sizes of |A|, Z, and k. Even with mesh refinement (increasing the
number of nodal points), 2PeDa still admits very large values. For (31), Pe
is always less than one. As for (32), even with mesh refinement, Pe admits a
value greater than one, see Paper II in the appendix for more details. Therefore,
(31) and (32) are convection dominated equations. This means that the approx-
imated solutions, f and g, will be disturbed by unphysical oscillations, these
oscillations in the eigenfunctions are the cause of spurious eigenvalues.

3.2 Stable computation of the eigenvalues

In the coming discussion we present mesh-based and meshfree stable approaches
for the approximation of the radial Dirac operator eigenvalues. As a mesh-based
approach we use the finite element method (FEM), and as a meshfree approach
we apply the hp-cloud method [18, 62]. For the purpose of obtaining a stability
scheme based on the Petrov-Galerkin formulation with stability parameters for
the particular problem, the hp-cloud method applied in this work is based on
the Galerkin formulation. This means a background mesh must be employed in
evaluating the integrals in the weak form, hence, the hp-cloud method used here
is not really a truly meshfree method (MM). Therefore, the FEM and Galerkin-
based hp-cloud method are similar in principle, while the latter approach can be
regarded as a generalization of the FEM.

Based on (31) and (32), the radial functions f and g are continuous and have
continuous first derivatives. Thus, the suitable choice of computational spaces

11



for the radial Dirac eigenvalue problem should possess these properties. Then,
with homogeneous Dirichlet boundary condition for both radial functions, the
proposed space is H(€2) := C*(€2) N Hg (€2). Note that, except the states 1s;
and 2p /9, the radial functions are vanishing on the boundary in a damping
way, consequently homogeneous Neumann boundary condition should be taken
into account. Meanwhile, the upper boundary of the states 1s; /o and 2p; /5 is
treated as the others, but the first derivative of these states at the lower boundary
is not zero, see e.g. [42]. For simplicity and to avoid further remarks, in the
discussion below, general boundary conditions are assumed for all states, that is,
homogeneous Dirichlet boundary condition. Thus the space H(€2) is considered.
However, for better rate of convergence of the approximation of the radial Dirac
operator eigenvalues, the suitable Neumann boundary conditions, as discussed
above, should be also implemented.

In our computation using the FEM, we use cubic Hermite basis functions,
these functions treat also the first derivative values of the approximated function
at the nodal values. Therefore, homogeneous Neumann boundary condition can
be easily implemented by omitting the two basis functions that treat the function
first derivative at the boundary nodal points, see the discussion below. Hence, in
the approximation of the eigenvalues of the radial Dirac operator using the FEM,
homogeneous Neumann boundary condition, as well homogeneous Dirichlet
boundary condition, is implemented for all states. For the approximation using
the hp-cloud method, homogeneous Dirichlet boundary condition is only con-
sidered.

Since the radial Dirac eigenvalue problem is a convection dominated prob-
lem, the FEM and Ap-cloud method for this problem will be unstable, thus the
occurrence of spurious eigenvalues. To stabilize the computation and to get
rid of spurious eigenvalues completely, finite element Petrov-Galerkin (FEPG)
(called also Streamline Upwind Petrov-Galerkin (SUPG)) [2, 14, 28] and hp-
cloud Petrov-Galerkin (hp-CPG) (a technique of the general meshfree local
Petrov-Galerkin (MLPG) methods [3, 19, 31]) methods are used. Apart from
mesh consideration, the principle of the FEPG method is similar to that of the
hp-CPG method, while the two methods mainly vary in the set of basis func-
tions. The FEPG and hp-CPG methods are used to introduce artificial diffusion
terms in the weak formulation of the equation to stabilize the approximated so-
lution in a consistent way so that the solution of the original problem is also a
solution to the weak form. The size of the added diffusivity is controlled by a
stability parameter that is derived for the particular problem we consider.
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To set the scheme, let V;, be a finite dimensional subspace spanned by a
suitable C''-basis set on a partition kj, of the domain 2, where exponentially
distributed nodal points are assumed to get sufficient information about the be-
havior of the radial functions near the origin where they oscillate heavily com-
pared to regions away from it. We consider the weak form of the radial Dirac
eigenvalue problem

/ W H,pdr = A / ubopdr (34)
Q Q

for all test functions u in an appropriate function space, where, we recall that,
H, is the radial Dirac operator given by

d kK
me> +V(r) c(——4 -
.= 0 gt : (35)
c(i + E) —mc® +V(r)
dr r

A

and ¢ is the radial function given by

o(r) = < gg:g > : (36)

The usual Galerkin formulation is to consider the test function u in the weak
form above as (v,0)! and (0, v)*, where v as well f and g is an element of V},.
The FEPG and hp-CPG methods are formulated by considering u in (34) as
(v,7v")t and (70, v)!, where v' means dv/dr and 7 is the stability parameter
that controls the size of the artificial diffusivity. The stability parameter 7 is
the main challenge in constructing the stability scheme and its derivation is the
major task.

The derivation of 7 assumes the operator limit as the radial variable » — oo.
This presumable assumption is inevitable and justifiable: The derivation leads
to an approximation of the limit point eigenvalue depending on 7 which can
be compared to the theoretical limit [23]. Thus, minimizing the error between
these two limits provides 7. By considering the limit operator at infinity, we
consider the part that includes the convection terms of the operator which are
mostly needed to be stabilized. Besides that, the stability parameter should be
applicable at all positions, particularly for the large values of r. The derivation
also considers the dominant terms with respect to the speed of light, ¢, as another
minor simplification.
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3.2.1 The FEPG approximation

In the FEPG method we let V;, be spanned by the cubic Hermite basis functions

@) { hi?(m—xj,l)z—%(m—azj,lf(m—xj), z el
h]2.+1(x ;) +h§;+1($ zj)*(x —xj41), =€ L1,
oy f BB ), wel;,
()=
’ (r—aj) =5 (@ =2))? + (v (€ —wje1), @€ [

These functions are continuous and admit continuous first derivatives, so they
satisfy the continuity properties of the space H({2). Moreover, they consist of
two different bases, one treats the function values and the other treats the func-
tion first derivative values at the nodal points, see Figure 1. Thus any function
w € 'V}, can be written as

w(r) =Y wigji(r)+ Y wigsa(r), (37)
=1 i=1

where w; and w} are respectively the function and the function first derivative
values at the node r;, and n is the number of type one basis functions ¢_; (which
is the same as the number of type two basis functions ¢_») in the basis set.

Figure 1: The CH basis functions with uniformly distributed nodal points (to
the left), and non-uniformly distributed nodal points (to the right).

To treat the homogeneous Dirichlet boundary condition, the two basis func-
tions of type ¢. 1 at the boundary nodal points are omitted. Also, for simplicity,
we omit the two basis functions of type ¢. » at the boundary nodes, thus homo-
geneous Neumann boundary condition is also implemented. In the weak for-
mulation (34), let v, f, g € V},, this leads to the generalized eigenvalue problem

AX = )\BX. (38)
The perturbed block matrices are given by A = A+ 7A and B = B + 73,
where A and B are the matrices obtained from the FEM, and A and B are the
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matrices obtained as a result of the correction part, 7¢, in the test function. Note
that 7 must be correlated with the size of the generated mesh, i.e., for a fine-
structure mesh we expect 7 to be relatively small compared to a coarse mesh.
On the other hand, to avoid the occurrence of complex eigenvalues, 7 should
not be large compared to the mesh size. These properties are clear from the
representation of 7 given by the following theorem, see Paper I in the appendix.

Theorem 1 Considering the behavior of the eigenvalues as r tends to infinity,
together with the dominant terms with respect to the speed of light, the mesh-
dependent stability parameter, 7;, for an arbitrary j th row of the matrices A and
B in the generalized eigenvalue problem (38) has the form

9, (hj+1—hy)

= Dy (39)
35 7" (hjp1 + hy)

7j

where h; is the displacement between the nodes 7; and r;_1.

Below, a numerical example of the computation of the eigenvalues of the
electron in the Hydrogen-like Magnesium ion using the FEPG method is pre-
sented for k = £2. Note that, in all our computations, the eigenvalues are given
in atomic unit. Table 2 shows the computation using the FEM with linear basis
functions with 400 interior nodal points for point nucleus. Table 3 shows the
same computation with the stability scheme.

Table 2: The first computed eigenvalues of the electron in the Hydrogen-like
Magnesium ion using the FEM with linear basis functions for point nucleus.

Level K=2 K= -2 Exact, ks = —2
1 -18.0086349982 -18.0086349982
2 -8.00511829944  -8.00511829944 -8.00511739963
3 -4.50270135222  -4.50270135225 -4.50269856638
= Spurious Eigenvalue
4 -2.88155295096  -2.88155295095 -2.88154739168
5 -2.00096852250  -2.00096852249 -2.00095939879
6 -1.47003410346  -1.47003410350 -1.47002066823
=4 Spurious Eigenvalue
7 -1.12545691681  -1.12545691683 -1.12543844140
8 -.889228944495  -.889228944484 -.889204706429
9 -.720265553198  -.720265553187 -.720234829539
= Spurious Eigenvalue
10 -.595258516248  -.595258516277 -.595220579682
11 -.500185771976  -.500185772005 -.500139887884
12 -426201311278  -.426201311300 -426146735771
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Table 3: The first computed eigenvalues of the electron in the Hydrogen-like
Magnesium ion using the stability scheme for point nucleus.

Level K =2 K= —2 Exact, xk = —2
1 -18.0086349985  -18.0086349982
2 -8.00511739978  -8.00511740020 -8.00511739963
3 -4.50269856669  -4.50269856719  -4.50269856638
4 -2.88154739219  -2.88154739270 -2.88154739168
5 -2.00095939948  -2.00095939991  -2.00095939879
6 -1.47002066888  -1.47002066924  -1.47002066823
7 -1.12543844176  -1.12543844201  -1.12543844140
8 -.889204706068  -.889204706109  -.889204706429

9 -.720234827833  -.720234827687  -.720234829539
10 -.595220575840  -.595220575531  -.595220579682
11 -.500139880950  -.500139880357  -.500139887884
12 -426146724530  -.426146723650 -.426146735771
13 -.367436809137  -.367436807839  -.367436826403
14 -.320073519367  -.320073498169  -.320073665658
15 -.281295132797  -.281293164731  -.281311119433

In Table 4, the computation is performed for extended nucleus using uni-
formly distributed charge with 397 interior nodal points, where 16 nodal points
are considered in the domain [0, R] (R is the radius of the nucleus).

Table 4: The first computed eigenvalues of the electron in the Hydrogen-like
Magnesium ion using the stability scheme for extended nucleus.

Level K =2 K= -2 Exact, k = —2
1 -18.0086349986  -18.0086349982
2 -8.00511739975  -8.00511740015  -8.00511739963
3 -4.50269856673  -4.50269856733  -4.50269856638
4 -2.88154739230  -2.88154739279  -2.88154739168
5 -2.00095939956  -2.00095940014  -2.00095939879
6 -1.47002066903  -1.47002066934  -1.47002066823
7 -1.12543844179  -1.12543844207  -1.12543844140
8 -.889204706021  -.889204706003  -.889204706429
9 -.720234827640  -.720234827433  -.720234829539
10 -.595220575309  -.595220574883  -.595220579682
11 -.500139879906  -.500139879215 -.500139887884
12 -426146722827  -.426146721812  -.426146735771
13 -.367436806543  -.367436805088  -.367436826403
14 -.320073514034  -.320073492344  -.320073665658
15 -.281294966822  -.281292979627  -.281311119433

Note that the exact eigenvalues in the tables above (as well in the computations
below) are obtained, of course for point nucleus, using the relativistic formula.
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3.2.2 The hp-CPG approximation

The hp-cloud basis functions are obtained using moving least-squares (MLS)
approximation method which allows polynomial enrichment and desired funda-
mental characters of the sought solution to be constructed in the approximation.
The hp-cloud basis functions take the form

r—r;

L) P(rj)j, (40)

i (r) = PH(r) M~ (r)g;( y

n
where M (r) = Z@j(r —
) Pj
vector of intrinsic enrichments, ¢; is a weight function, and p; is the dilation
parameter that controls the support of the weight functions.

The weight function ¢; is the main feature in the definition of ¢, it is needed
to be C'-function in order to guarantee the continuity property of the space
H(2). For this purpose, we will consider quartic spline (which is a C2-function)
as a weight function defined as

i )P(r;)P'(r;) is the momentum matrix, P is a

[ 1—6r2 8 =3, F <,
where 77 = % While the set of functions {; ?:1 builds a partition of
unity (PU) (E?=1 Y(r) = 1, for all 7 € Q), the set of their first derivatives
{srny = {247 builds a partition of nullity (PN) (31, 9j,-(r) = 0

for all » € ), see Figure 2.

hp-cloud shape functions for exponentially distributed nodal points first derivative of hp-cloud functions for exponentially distributed nodal points
2

lues

hp-cloud function first derivative val

Figure 2: PU hp-clouds (to the left) and their PN first derivatives (to the right).
Quartic spline is used as a weight function.

The invertibility of M depends on p;, as p; gets smaller as the matrix M has
more tendency to be singular. So, in order to maintain the invertibility of M,
it is necessarily to keep p; sufficiently large. However, p; can be chosen fixed
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or arbitrary, in this work we consider (exponentially distributed nodal points are
used)
pj =v-max{h;, hji1} = vhji, (42)

where v is the dimensionless size of the influence domain [30] which is chosen
to be fixed in our computation. Note that the maximum in (42) is crucial to
guarantee less possibility for singularity of M. The choices of v are constrained
by two restrictions; the values of v should not be very small to ensure that any
region is covered by at least two clouds, thus the invertibility of M. On the other
hand, the values of v should not be very large to guarantee the local character
of the approximation. Noting that as v—1, the hp-cloud, v, will act as a finite
element basis function, and thus the features of the hp-cloud approximation are
gradually lost. The optimal choices of v are left undetermined in general, but
they can be individually specified for each problem by running numerical exper-
iments [33, 60]. For the computation of the radial Dirac eigenvalue problem, for
v € [2.2,2.7] good approximation is achieved, see Table 7 and Figure 5 below,
with complete elimination of the spurious eigenvalues.

The intrinsic enrichment basis vector P is a very important ingredient in the
construction of the hp-cloud functions. Using the vector P, all fundamental
features of the sought solution as well as singularities and discontinuities can
be inherited by the hp-cloud basis functions. This distinguishes the hp-cloud
approximation by solving particular problems where much care is needed about
the approximated solution such as solving equations with rough coefficients,
problems with high oscillatory solutions, or eigenvalue problems that admit
spurious eigenvalues. Note that yet another type of enrichment, called extrinsic
enrichment, can be considered in the construction of the Ap-cloud functions, but
this type of enrichment is not adequate when applying the hp-CPG method [3].
Thus, in this work, extrinsic enrichment is not considered.

The number and type of the intrinsic enrichment functions in the basis set
P can be chosen arbitrary for each cloud [21, 34], but for practical reasons
(lowering both the condition number of M and the computational costs) we
shall assume P(z) = [1,p1(z)], where the choices of p;(x) follow two main
properties; since v; is needed to be a C' !_function, which is guaranteed only
if both the weight function ¢; and the elements of P are also in C''(2), p; ()
should be a C''-function as well. Secondly, pi(z) should possess the global
behavior of the electron motion.

Slater type orbital functions (STOs) and Gaussian type orbital functions
(GTOs) provide good description of the electron motion [10, 25]. But the
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quadratic term in the exponent of the GTOs causes some numerical difficulty,
in the sense that, the matrix M rapidly becomes poorly conditioned, this is also
what is observed when applying quadratic basis enrichments, see [5]. Conse-
quently, the STOs are considered as the intrinsic enrichment of the hp-cloud
functions, thus p; () can have, e.g., one of the following forms

exp(—x), x exp(—x/2), z(1 — x/2) exp(—z/2),... etc.

Other possible intrinsic enrichments for the computation of the radial Dirac op-
erator eigenvalues can be found in Paper II in the appendix. In the computations
presented below, we consider p; () = z(1 — z/2) exp(—z/2).

The boundary conditions need special treatment: For the computation of the
radial Dirac eigenvalue problem we assume homogeneous Dirichlet boundary
condition, while it is well-known that imposing essential boundary conditions
(EBCs) in MM, in general, is a difficulty which needs to be treated with care.
The reason is that the meshfree basis functions lack the Kronecker delta property
(1 (r;) # 0;), thus EBCs are not directly imposed as for the FEM. To circum-
vent this difficulty, a coupling with finite element basis functions is considered,
see Figure 3. By coupling with finite element basis functions at the lower and
upper boundaries, the imposition of the homogeneous Dirichlet boundary condi-
tion is straightforward, e.g., by eliminating the two finite element basis functions
at the boundary nodes.

hp~cloud and finite element coupled functions for exponentially distributed nodal points hp~cloud and finite element coupled functions for exponentially distributed nodal points

1t 1t

hp~cloud and finite element coupled function values
hp~cloud and finite element coupled function values

Figure 3: Coupled hp-cloud and finite element functions: general coupling (to
the left), and coupling for the purpose of imposing EBCs (to the right) (two
finite element shape functions are sufficient). Linear functions are used as finite
element functions, and quartic spline as a weight function in the hp-clouds.

Two efficient approaches of coupling MMs with the FEM are coupling with
Ramp functions [4] and coupling with reproducing conditions [26]. Using the
former one, the derivative of the coupled approximation function on the bound-
ary of the interface region, Q'" in Figure 3, is discontinuous, for this reason we
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use the latter coupling approach, see e.g. [20]. The coupled hp-cloud and finite
element function with the reproducing conditions is given as

0i(r) = (P0) = S5 P (ry)xaren(r) ) M s (570
X P(r;)xamm(r5); + G5(r) xarem ()5,

where xorem and xoww are respectively the characteristic functions of the do-
mains QFEM and OMM  gee Figure 3, and §; is the finite element function.

To enhance the stability of the computation and to maintain the accuracy that
may be affected or lost due to the round-off error, and also to get a lower con-
dition number for the matrix M, the origin should be shifted to the evaluation
point in the meshfree basis functions in general [20, 27, 30].

After constructing the hp-cloud basis functions, the hp-CPG method is for-
mulated by assuming the weak form (34) where u, as before, takes the forms
(v,7v") and (70, v), and v, f,g € Vj, where V}, is now spanned by a set of
functions of the form (43). This yields similar generalized eigenvalue problem
as of (38). The stability parameter, 7, is now different from the one given by
Theorem 1, and can be considered as a generalization of it. The same principle
as in Theorem 1 is used in deriving 7 by using the hp-cloud basis functions. The
following theorem provides the representation of 7 which will be still denoted
by the same notation.

Theorem 2 Let Myyo and Migy be the n x n matrices (n is the number of
hp-cloud basis functions) defined as

(Mooo)sj / ;i dr, and (Migo)sj / Yj Y dr, (44)
and let 0; and 7;; be the corresponding entries respectively. Define ¥ as
- Z hk ; i < Ja
k=i+1
79]'7; = 0 s i = ]7
i
> bk, P>,
k=341

where hy is the displacement between the adjacent nodes r; and r;_1. Then the
stability parameter, 7;, for an arbitrary 4% row of the matrices A and B in the
generalized eigenvalue problem (38) is given by

n n
T = }Zgjiﬁji/znjiﬁji -
i=1 i=1

(45)
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The advantage of the hp-CPG stability parameter (45) is that it can be applied
for general basis functions and not for particular ones as of the FEPG stability
parameter (39).

Remark 1 To capture the behavior of the radial functions near the origin where
they oscillate heavily compared to regions away from it, the computation of the
radial Dirac operator eigenvalues requires, as we mentioned before, exponen-
tially distributed nodal points. In this regard, the following formula is used to
discretize )
(ln(]b+€) —In(Z, +E))i> e i=0.12.....m.
(46)
where 7 is the total number of nodal points, I, and I, are the lower and upper
boundaries of €2, and ¢ € [0, 1] is the nodes intensity parameter. The main
role of ¢ is to control the intensity of the nodal points close to the origin ().
As ¢ gets smaller as more nodes are dragged to the origin. In Paper II in the
appendix, a study is carried out concerning the suitable choices of ¢, it is shown
that the most appropriate values for ¢ that provide good results are in the interval
(1076, 1074).

r; = exp (1n([a +e)+ -

The results of the computation using the hp-CPG method with the stability
parameter (45) are presented in Tables 5 and 6. In Table 5, the approximated
eigenvalues of the electron in the Hydrogen-like Ununoctium ion are obtained
using the usual and the stabilized hp-cloud methods. The computation is ob-
tained at p; = 2.2hj11, € = 1075, and n = 600. In the hp-cloud method,
the instilled spurious eigenvalues appear for both positive and negative ~ (the
two shaded values in the fourteenth level). Also the the so-called unphysical
coincidence phenomenon occurs for the positive « (the shaded value in the first
level). Note that these spurious eigenvalues are removed by the stability scheme.

Table 6 represents the stabilized hp-cloud approximation of the electron in
the Hydrogen-like Ununoctium ion with different numbers of nodal points. The
convergence rate of the first five eigenvalues is studied in Figure 4. In Figure 4,
h is the maximum of the distances between the adjacent nodes, which equals to
hn = rn — rn—1 for exponentially distributed nodal points. It can be verified
from the figure that the convergence rates of the approximation of the first five
eigenvalues, A1, Ao, ... A5, are nearly 3.09, 2.66, 2.62, 2.59, and 2.56 respec-
tively.
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Table 5: The first computed eigenvalues of the electron in the Hydrogen-like
Ununoctium ion using the ~Ap-cloud and hp-CPG methods for point nucleus.

Level

[clEN e Y R I

— = = \O
NN = O

13
14
15

hp-cloud hp-cloud Exact hp-CPG hp-CPG
K =2 K= —2 K= —2 K= —2 K=2
_ -1829.6307  -1829.6307 -1829.6283

-826.76981  -826.76981  -826.76835 -826.77147 -826.77388
-463.12149  -463.12149  -463.11832  -463.12471 -463.12611
-294.45523  -294.45523  -294.45098 -294.45915  -294.46006
-203.24689  -203.24689  -203.24195 -203.25115 -203.25179
-148.55882  -148.55882  -148.55344  -148.56324  -148.56372
-113.25360  -113.25360 -113.24791 -113.25808 -113.25845
-89.163854  -89.163854  -89.157945 -89.168323  -89.168622
-72.004533  -72.004533  -71.998465 -72.008947 -72.009194
-59.354813  -59.354813  -59.348624  -59.359134  -59.359342
-49.764290  -49.764290  -49.758009  -49.768490  -49.768669
-42.321471  -42.321471 42315117  -42.325523  -42.325679
-36.430396  -36.430396  -36.423983  -36.434277 -36.434414
-31.681730  -31.691878  -31.692001

-31.688189  -31.688189 -27.808134 -27.818109 -27.818219

Table 6: The first computed eigenvalues of the electron in the Hydrogen-like
Ununoctium ion for x = —2 for point nucleus with different number of nodes,
where v = 2.2 and ¢ = 107 are used.

Level n = 200 n = 400 n = 600 n = 800 n = 1000 Exact, k = —2
1 -1829.5628  -1829.6224  -1829.6283  -1829.6297 -1829.6302 -1829.6307
2 -826.82670  -826.77726  -826.77147  -826.76987  -826.76923 -826.76835
3 -463.23292  -463.13630 -463.12471 -463.12146 -463.12016 -463.11832
4 -294.59147  -294.47367  -294.45915  -294.45503  -294.45336 -294.45098
5 -203.39386  -203.26721 -203.25115 -203.24654  -203.24466 -203.24195
6 -148.70878  -148.58009  -148.56324  -148.55835 -148.55635 -148.55344
7 -113.40170  -113.27527 -113.25808 -113.25304 -113.25096 -113.24791
8 -89.306709  -89.185557 -89.168323  -89.163201 -89.161076 -89.157945
9 -72.139617  -72.026008  -72.008947  -72.003802 -72.001653 -71.998465
10 -59.480154  -59.375861  -59.359134  -59.354006 -59.351849 -59.348624
11 -49.878353  -49.784751  -49.768490 -49.763410 -49.761256 -49.758009
12 -42.423104  -42.341207  -42.325523  -42.320517 -42.318374 -42.315117
13 -36.518814  -36.449288  -36.434277 -36.429365 -36.427242 -36.423983
14 -31.762955 -31.706134  -31.691878 -31.687081 -31.684984 -31.681730
15 -27.875610 -27.831538 -27.818109 -27.813442 -27.811376 -27.808134
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Rate of convergence
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Figure 4: Studying the convergence rate of the first five eigenvalues in Table 6.

In Table 7, the computation of the eigenvalues of the electron in the Hydrogen-
like Ununoctium ion is provided, the computation is obtained for kK = —2 for
point nucleus at n = 600 and £ = 1075,

Table 7: The first computed eigenvalues of the electron in the Hydrogen-like
Ununoctium ion for x = —2 for point nucleus with different values of v, where
n = 600 and € = 10~° are used.

Level v =20 v=22 v=25 v=2"7 Exact solution
1 -1829.6287  -1829.6283  -1829.6276  -1829.6270 -1829.6307
2 -826.77119  -826.77147 -826.77197 -826.77233 -826.76835
3 -463.12417  -463.12471  -463.12567 -463.12638 -463.11832
4 -294.45850  -294.45915  -294.46033  -294.46120 -294.45098
5 -203.25046  -203.25115 -203.25244  -203.25340 -203.24195
6 -148.56255  -148.56324  -148.56460 -148.56562 -148.55344
7 -113.25741  -113.25808 -113.25949 -113.26054 -113.24791
8 -89.167688  -89.168323  -89.169756  -89.170831 -89.157945
9 -72.008358  -72.008947 -72.010396 -72.011489 -71.998465
10 -59.358602  -59.359134  -59.360592  -59.361700 -59.348624
11 -49.768025  -49.768490  -49.769950 -49.771070 -49.758009
12 -42.325133  -42.325523  -42.326981 -42.328113 -42.315117
13 -36.433970  -36.434277 -36.435728 -36.436870 -36.423983
14 -31.691663  -31.691878  -31.693318  -31.694472 -31.681730
15 -27.817992  -27.818109 -27.819533  -27.820699 -27.808134

In Figure 5, we study the rate of convergence of the approximation for the
first five eigenvalues in Table 7.
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The effect of the influence domain factor, v, on the convergence
T
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> > >
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influence domain factor v

Figure 5: Studying the convergence rate with respect to v.

Figure 5 shows that smaller v gives better approximation. However, as we
have mentioned, the appropriate values of v lie in [2.2, 2.7], while other smaller
values of v cause spurious eigenvalues, see Paper Il in the appendix. This is
seen evident since for small values of v the clouds are not stretched enough to
capture the behavior of the sought solution. Also for small v, some regions of {2
are covered only with one cloud function, which makes the momentum matrix
M singular.

The stability of our computations is measured by the complete elimination
of the spurious eigenvalues. This is tested using the relativistic formula which
Z2a?

is defined as
K pr—
1+
(ny — 14+ VK2 — Z2a2)?

where m and c are, as defined before, the electron rest mass and the speed of
light respectively, « is the fine structure constant which is equal to 1/¢, and
n, = 1,2, ...1s the orbital level number. Note that, the relativistic formula only
applies in the case of point nucleus. Since Z € {1,2,...,137} and k € Z\{0},
this makes testing the computations with the derived stability scheme for all Z
and x a tedious work, but it is performed for all Z and xk = £1,+£2,...,+£30.
Our computations report no spurious eigenvalues, thus the numerical scheme is
stable.

It is worth to mention that the FEPG method has a convergence rate higher than
that of the hp-CPG method. Further, the hp-CPG method is more expensive
due to the time consumption in evaluating the cloud functions that demand more
integration points as v gets larger, which is the main disadvantage of MMs in
general.

’ITLC2

Any, ; (47)
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4 G-convergence and eigenvalue problems

In this part, we study the convergence of the eigenvalues and the corresponding
eigenvalue problems for families of positive definite self-adjoint operators us-
ing the theory of G-convergence. First we discuss G-convergence of a class of
elliptic and bounded positive definite self-adjoint operators. Then we consider
G-convergence of a family of Dirac operators. Using the spectral measure, we
consider projected positive definite parts of this family and then apply the theory
of G-convergence.

The theory of G-convergence was introduced in the late 1960’s [13, 45, 46,
47] for linear elliptic and parabolic operators with symmetric coefficient ma-
trices. The concept was further extended to non-symmetric coefficient matri-
ces [36, 48, 49, 50] and referred to as H-convergence. The theory was then
generalized to positive definite self-adjoint operators [11] under the name G-
convergence. The study of G-convergence of positive definite self-adjoint oper-
ators is often connected to the study of convergence of the associated quadratic
forms in the calculus of variations via the notion of I'-convergence which was
introduced in the mid 1970’s [12]. The monographs [8, 11] contain comprehen-
sive material on the topic, where [11] deals with the connection to G-convergence.
In this work, we will use the name G-convergence for the case of non-symmetric
matrices as well.

4.1 Elliptic operators
4.1.1 An overview

Let Q be an open bounded set in RN, N > 1. To present the idea of G-
convergence, a heat conduction example is considered. The h-dependent sta-
tionary heat equation with heat source f(x) € H~!(£2) and periodic heat con-
ductivity matrix Ay, (x) = A(hz), A is Y-periodic, is given by

{ 2 (An@))iy ) = fla) i, .
up =0 on Of).

The operator —%((Ah(m))ija%j) is defined on L?(Q) with domain H}(12),
h € N is a parameter that tends to infinity, and L>®(Q)M*N > (A(z));; is
positive definite and bounded.

The difficulty arises when A tends to infinity, where the highly oscillating
coefficient matrix, Ay, makes (48) hard to solve with direct numerical methods
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with good accuracy. The idea we will advocate is to consider instead the limit
equation as h — oo where the material is expected to behave as a homogeneous
one. In other words, we are interested in finding the properties of a homoge-
neous equation that gives the same overall response as the heterogeneous one.
This means that we look for the global macroscopic behavior of the solution.
The limit problem of (48), as h — oo, can formally be written as
— 0 (B(2))ij ) = f(z) inQ, 49)
u=0 on 0f.
In a successful approach, the problem (49) contains no oscillations and hence is
easier to be treated numerically. Thus, the task is to characterize the matrix B.
The way of specifying the limit matrix B is to let A — oo in the weak form
of (48): Find uy, € H{ () such that

(An(2)Vup (@), Vo(z)) = (f(z),v(z)), Yo € Hy(). (50)

By the boundedness and coercivity of Ay, the existence and uniqueness of a
solution wuy, to (48) are guaranteed by the Lax-Milgram theorem. Also these
assumptions imply the boundedness of uy, and Vuy, in H}(Q) and L?(Q) re-
spectively. Therefore, up to a subsequence of uy, still denoted by uy,

up(z) = u(z) in HY(Q), (&)
Vup(z) — Vu(z) in L2(Q)N, (52)

where the notation — refers to the weak convergence. Since Ay, is an element
of L>(Q)V*N  then up to a subsequence denoted by Ay,

Aj x— M(A), in L®°(Q)VV (53)
where M (A) = ﬁ Jy A(y)dy is the average of Ay, and »— refers to the weak*

convergence. We recall that (53) is also true in the L?(Q)V*" sense, this is
because L? is continuously embedded in L', which implies L> = (L')* cC
(L?)* = L? (x refers to the duality), hence the same topology on L°°(£2) can
be also defined on LQ(Q). Thus, we have two sequences, Vuy, and Ay, which
converge only weakly. This is the intricate task that we face to pass to limit
as h — oo in (50) as nothing can be concluded about the limit of the product
of two sequences that are only weakly convergent, and generally the following
result is not true

Ap(x)Vuy(z) = M(A) Vu(z), in L2(Q)V. (54)

Here, another technique is employed to study the existence and characterization
of the asymptotic limit of Ay, (z)Vuy(x), namely the theory of G-convergence.
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4.1.2 A one dimensional example

Consider the following Dirichlet boundary value problem, see [15],

~ i (An(2)Gh) = f inQ = (zo,21) CR, (55)
up € H&(Q),

where f € L?(2), and L>(Q) > A (z) = A(hz), with A : R — Risa Y-
periodic function satisfying, for o, 5 € R, 0 < a« < A(z) < # < o0 a.e on R.
The bounds for Aj, give the existence and uniqueness of a solution uy to (55).
Moreover, the a priori estimate |[up||f1(q) < C implies that the sequence uj,
is uniformly bounded in H&(Q) Hence by Rellich-Kondrachov compactness
theorem, up to a subsequence still denoted by uy, there exists u € Hg () such
that

up — win HY(Q). (56)

By the periodicity assumption on A we have
Aj +— M(A) in L>(f2), (also weakly in L?(f)). (57)
One may hastily conclude that the asymptotic limit of (55) is

d du .
—=(MA)E)=f inQ,
{ w e HY(9). (58)

But this is not the case in general, since the weak limit of the product of two
sequences that are only weakly convergent is not the product of their individual
weak limits. Here, the role of G-convergence theory comes in, it gives a strategy
of identifying the correct limit of the problem.

In order to get the correct limit problem, we define

duy,

§h = Ah(ﬂf)ﬂ- (59)

By the boundedness of Aj, and the estimate ||“hHH(}(Q) < C, &, is uniformly
bounded in L2(f2). Since — %2 = f € L2(1), we conclude that &, is uniformly

T

bounded in H}(2). By the compact embedding of H{(Q2) in L%(Q2), up to a
subsequence still denoted by &;,, we have

& — €in L2(Q), (60)
for some &, consequently
&, dg . o
. - in L*(Q). (61)
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1 1 1
Note that 0 < 3 < ey <5 < oo, hence

1 1
— x— M(—)in L*°(2), (also weakly in L?()). (62)
A, A
Since ﬁ(m)fh = d;‘xh , by (56) and (62) one gets
du 1
— = M(—-)E. 63
dr (A)§ (63)

By the result (61) together with (63) and a limit passage of —% = f, we
conclude that u is the solution to the limit problem

{ sl i) = f i€ (64)

u € HY Q).

By the uniqueness of the solution u to (64), and using Urysohn property, it fol-
lows that the whole sequence uy, converges weakly to u. The above conclusion
can be summarized as A;, G-converges to (1/M(1/A)) which is known as the
harmonic mean of A,

It is important to point out that in the previous example the weak™® limit of Aih
characterizes the limit problem. This is only true for one dimensional problem,
and it is not the case in higher dimensions (RN, n > 2). For more discussion
on this issue we refer to [36].

4.1.3 The definition

Let o and 3 be two real numbers such that 0 < o < § < o0, and let S(a, 3,2)
be defined as S(a, 3,Q) = {A € LX(Q)VN: (A(x,€),€) > af¢|?and
A(z,6)| < Bl¢|, Ve € RN and ae = € Q).

Definition 1 The sequence A, C S(a,3,(2) is said to be G-convergent to
A € S(a, 3,9), denoted by Ay, 2, A, if forevery f € H~1(9), the sequence
uy, of solutions to the equation

—div(Ap(x, Duy)) = fin Q, 65)
up € H& (Q)
satisfies
up, — u in HY(Q),
Ah(‘,DUh) - A(,DU) in LQ(Q)N’
where w is the unique solution of the problem
—div(A(z, Du)) = fin Q,
{ we HH(Q). (66)
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G-convergence possesses the compactness property, i.e., if Ay, C S(«, 3, 2),
then there exists a subsequence, denoted by Ay, and A € S(«, 3, (2), such that
Ay -, A. The G-limit is unique and local, also if Ay, S, A, then A',fI SN Al
here ¢ denotes the transpose operator.

4.1.4 Convergence of elliptic eigenvalue problems

For elliptic boundary value problems with source function f; we have the fol-
lowing result, see e.g. [15] and Paper IV in the appendix.

Theorem 3 Consider the Dirichlet boundary value problem

—diV(Ah(l')Vuh) = fh in Q, (67)
up € H&(Q)

If A;, € S(a, 3,9Q) and f;, converges in H () to £, then the sequence uy, of

solutions to (67) is weakly convergent in H}(€2) to the solution of the problem

{ —div(A(z)Vu) = f inQ, (68)

u € Hi(Q),
where A is the G-limit of A;,.

The strength of G-convergence can be evidently seen by applying the concept
to elliptic eigenvalue problems. Consider the linear elliptic eigenvalue problem

{ —div(Ap(z)Vuf) = \fuf  in Q, 69)

uy, € H(Q),

where A, € S(a, 3,Q) is symmetric and positive definite. Then, the set of
eigenvalues {Aﬁ} is bounded and 0 < )\}l < )\%L < )\% < .-, also the multiplic-
ity of each )\’fL is finite. For the eigenvalue problem (69), the following result is
formulated.

Theorem 4 The sequences of eigenvalues )\]fb and the corresponding eigenfunc-
tions qu of (69) converge to \* in R and weakly to «* in H&(Q) respectively,
where the eigencouple {\*, u*} is the solution to the G-limit problem

{ —div(A(x)VuF) = \uF  in Q, (70)

uf € HE(Q).
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4.2 Positive definite self-adjoint operators
4.2.1 The definition

Let 7 be a Hilbert space and let A > 0 be a real number, by P (.7) we denote
the class of self-adjoint operators A on a closed linear subspace D(A) of J#
such that (Au, u) > N |u|%,, Yu € D(A).

Definition 2 Let A > 0, and let A, C Py (7). If A > 0, we say that A, BN
A € Py(H) in A if Ay Pyu — A™'Puin A, Yu € A, where Pj, and P
are the orthogonal projections onto D(Ay,) and D(A) respectively. If A = 0, we
say that A, C Po(F) converges to A C Py(.7) in the strong resolvent sense
(SRS) if (yuf + Ap) —— (u + A) in 2, Yy > 0.

G-convergence of positive definite self-adjoint operators can be studied us-
ing I'-convergence of the corresponding quadratic forms [11], where, gener-
ally, proving I'-limits is simpler than proving G-limits. Below we define I'-
convergence and discuss its relation to G-convergence. First we need the fol-
lowing definitions.

Definition 3 A function F' : 5 — [0, oo] is said to be lower semi-continuous
(Isc)at u € F2, if
F(u) < sup inf F(v),
UeN(u) v€U

where N(u) is the set of all open neighborhoods of u in 7.

Definition 4 A function F' in ¢ is called a quadratic form if there exists a
linear dense subspace 2" of 7#” and a symmetric bilinear form B : 2" x 2 —
[0, 00) such that

[ B(u,u), Yue Z,
F(u)_{oo, Vue O\

Let F' and B be as in the above definition, where D(F) = {u € 7 ; F(u) <
oo}. Then the operator associated to F is the linear operator A on D(F) with
the domain being the set of all u € D(F) such that there exists v € D(F)
satisfying B(u, f) = (v, f), Vf € D(F) and Au = v,Vu € D(A). If f = u
then F'(u) = (Au,u), Yu € D(A).

Let A > 0, by Q) (%) we denote the class of quadratic forms F : % —
[0, 0¢] such that F'(u) > Al|ul|%,. And by Q,(5#) we denote the subset of
0, () whose elements are Lsc.
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Definition 5 A sequence of functionals F}, : % — R is said to I'-converge to
F: A — R, writien as F(u) =T — lim Fj(u) and denoted by F, L Fif
—00

F(u) =T —liminf Fj(u) =T — limsup Fp,(u),
h—o0 h—o0
where I' — liminf Fj,(u) = sup liminf inf Fj,(v) and I' — lim sup Fj,(u) =
h—o0 UeN(u) h—oo velU h—00
sup limsup inf Fj(v).
UeN(u) h—oo VEU

Note that if .77 satisfies the first axiom of countability (the neighborhood system
of every point in .7 has a countable base), then F}, L, Fin 4 if and only
if the following two conditions (called respectively the lim inf-inequality and
lim-equality) are satisfied

(1) Yu € A and Vuy, converging to u, F'(u) < liminf F} (up).

h—o0

(79) Yu € €, Juy, converging to u such that F'(u) = hlim Fy,(up,).
— 00

It is worth to mention that I'-limit is always [sc and unique, also I'-limit of
non-negative quadratic form is a non-negative quadratic form. I'-convergence
possesses the compactness property, that is, if 77 is a separable metric space,
then every sequence F}, : % — R has a I'-convergent subsequence.

The following theorem demonstrates the relation between G-convergence of
operators of the class Py (.#”) for A > 0 and I'-convergence of the associated
quadratic forms of the class Q) (7).

Theorem 5 Let Fj, and F' be elements of Qp(57), and let Ay, , A € Po(F) be

the associated operators respectively. Then F}, L. Fifand only if A, — A
in the SRS. Also, for o > 0, if F},, F' € Q,(J€),and A}, , A € P, () are the

associated operators respectively, then Fj, L, Fifand only if Ap G A

4.2.2 G-convergence of positive definite self-adjoint operators

Let Hy be a positive definite bounded self-adjoint operator defined on L?()
and let D(Hy) = H}(€2). Consider the perturbed operator Hy, = Ho+V}, where
Vi (z) is a positive bounded real-valued multiplication operator in L?(£2). Using
G-convergence together with I'-convergence, we state the following results, see
Paper IV in the appendix.

Theorem 6 Let 1}, be a sequence in L>°(€2) that converges weakly* to V, then
Hj, G-convergesto H = Hy+ V.
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Theorem 7 1If V}, is a weakly convergent sequence in LP(Q2) for 2 < p < oo
with a weak limit denoted by V/, then Hy, G-converges to H=Hy + V.

Let 2" and . be two Hilbert spaces, and let B(.7#) be the set of bounded
linear operators on 7. As a generalization of Theorem 4, below we state the
relation between the eigenvalue problems of an operator and its G-limit of the
class Py () for A > 0, see Paper I1I in the appendix.

Theorem 8 Let A > 0, let Ay, be a sequence in Py () G-converging to A €
P (o), and let {up, up} be the solution of the eigenvalue problem Apup =
prun. I {pp,up} — {p,u} in R x S, then the limit couple {p, u} is the
solution of the eigenvalue problem Au = pu.

It is clear that the assertion of Theorem 8 is also true if the sequence A;, €
Po(H) is convergent in the SRS to A € Py (H).

Note that if a sequence Ay, is convergent in the SRS (or strongly convergent)
to A, then every A € o(A) is the limit of a sequence A, € o(Ay), but not the
limit of every sequence A\, € o(Ap) lies in the spectrum of A, see [55]. Despite
of this fact, the following theorem provides conditions by which G-convergence
of an operator in Py () (consequently the strong resolvent convergence in
Po(Y")) implies the convergence of the corresponding eigenvalues, see Paper I1I
in the appendix.

Theorem 9 Let 2" be compactly and densely embedded in 77, and let Ay, be
a family of operators in Py (), A > 0, with domain 2. If A;, G-converges to
A € Py\(S), then A, * converges in the norm of B(J#) to A~1. Moreover, the
k" eigenvalue be of Ay, converges to the k" eigenvalue ¥ of A, Vk € N.

Theorem 9 implies that, for those perturbations considered in Theorems 6 and
7, the eigenvalues of H}, converge to the eigenvalues of the G-limit operator H.
Moreover, Theorem 8 guarantees that the eigenvalue problem Hpup = ppup
converges to the limit problem Hu = pu, where u is the limit of uy, in L?(€2).

Remark 2 Let E» and E¥ be the spectral measures of H}, and H respec-
tively, then G-convergence of Hj, to H implies that En(\) — E()) strongly
for all A € R such that E7(\) = EH(—-)).

4.3 Families of Dirac operators

Here we consider an h-dependent perturbation added to the Dirac operator with
Coulomb potential. The purpose is to apply G-convergence theory for positive
definite parts of the perturbed operator and to investigate the asymptotic behav-
ior of the corresponding eigenvalues in the gap.
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4.3.1 The Dirac operator with perturbation (ff(h)

Let H}, be defined as
Hp=H+V, (71)

where V}, = Vj(x) is a 4 x 4 matrix-valued function and, as defined before,
H = Hy + V, where again Hy and V are respectively the free Dirac operator
and the Coulomb potential. We recall here the spaces X = H'(R3 C*) and
Y =L%(R3,C*).

Recall that a function F' is called homogeneous of degree p if for any nonzero
scalar a, F'(ax) =aP F'(z). The next theorem is of profound importance [54, 56].

Theorem 10 Let, for o > 0, V}, be a measurable (—1)-homogeneous Hermi-
tian 4 x 4 matrix-valued function with entries in L7 (R3), p > 3. Then 3},
is essentially self-adjoint on C§° (R3;C*) and self-adjoint on X. Moreover,
o(H) = (—oo, —mc?] U {\Fhren U [mc?, 4+00), where {AF}ren is a dis-
crete sequence of h-dependent eigenvalues corresponding to the Dirac eigen-
value problem Hpup = Apup.

We assume further that the 4 x 4 matrix-valued function V}, is of the form
Vi(z) = Vi(x)Va(hz), where V] is (-1)-homogeneous and where the entries of
Va(y) are 1-periodic in y, i.e.,

V' (y+ k) = Vo' (y), k ez
We also assume that the entries of Va belong to L>°(IR3). It is then well-known
that
Vi) M) = [ Viwdy i 1@, 02)
T3

where T? is the unit torus in R3. It easily follows from this mean-value property
that
Vi = ViM(Va), in LP(R3), p > 3.

In the sequel, we consider a shifted family of Dirac operators denoted by Ky,
and defined as H;, = H + Vj,, where H = H + mc?1. Also without loss of
generality we set i = ¢ = m = 1. By Theorem 10, for h > 0, we then get
o(Hp) = (=00, 0] U {)\Z}keN U [2, 00).

4.3.2 G-convergence of projected parts of K,

Let X and Y be defined as before, and let E¥0 and EH be the spectral measures
of the families H}, and H respectively, by the spectral theorem

5G), = / CXNAETGR()). (73)
U(j{h)
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Define X,’l’ = @keNJth where </I§lk = {uy € X Hpuy, = )\ﬁuh}. Note that
X }’; is a closed subspace of Y invariant with respect to 3. Then we have the
following theorem, see Paper III in the appendix.

Theorem 11 Let E¥? be the point measure of ), and consider the restric-
tion FC;, of FC;, to X7 defined as

Fo = > AETOR(). (74)
)\EO'p(j{h)

The operator f]iCh is positive definite and self-adjoint on X with compact inverse
(f]:Ch) 1. Then there exists a positive definite self-adjoint operator H” such
that, up to a subsequence, J-Ch G- converges to H". The operator H” is given
by (H + ViM (Va))| x», where D(H") = XP = @penA* and #F = {u €
X H u = Mew).

Now we can apply Theorem 9 to conclude that the sequence of kth eigenvalues
)\ﬁ associated to f}Ch converges to the k" eigenvalue \* of H.

For the absolutely continuous part of the operator ., we let first Xp¢ =
X;:C’Jr ® X", where ch’+ and X, “ are the closed subspaces, invariant

with respect to 3, corresponding respectively to the absolutely continuous
spectra o (Hp,) = [2, +00) and o, (H}) = (—o0, 0]. Let EFwact()\) be the
absolutely continuous spectral measure corresponding to f]:(fZC’Jr and define

ac,+

FOot = /  METGeet (). (75)
)\Edac(ﬂ{h)

By this construction, the operator 5(26’+ is the restriction of H(j, to X ZC’JF, thus it
is positive definite and self-adjoint on X . Therefore, there exists a subsequence
of H:CZC’JF, still denoted by }~CZC’+, which G-converges to a positive definite self-
adjoint operator FT Moreover, convergence in the SRS can be drawn for

= .ac,—

—H,,

ac,—

FGT = /  MEPGee(), (76)
)\EU;C(H}L)

where E%n-2¢=()) is the absolutely continuous spectral measure correspond-
ing to the operator S-CZC’_
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5 The wave operators for /-dependent self-adjoint op-
erators

Scattering theory is a frame for comparing the dynamic behaviors of two quan-
tum systems, and is well-known as perturbation theory of self-adjoint opera-
tors on the absolutely continuous spectrum. More specifically, scattering theory
concerns studying the behavior, for large times, of the absolutely continuous
solution of the convolution equation i0u/0t = Hu = (Hy + Interaction)u
in terms of the absolutely continuous solution of the simple convolution equa-
tion i0ug/0t = Hyug. Here Hy and H are self-adjoint operators acting on
Hilbert spaces %) and ¢ respectively. That is, for a given initial solution f to
the equation with interaction above, if f is an eigenvector corresponding to an
eigenvalue 1, then u(t) = exp (—iut)f, so that the time behavior is clear. But
if f € (2 (the absolutely continuous subspace of H), it is not possible, in
general, to calculate u(t) explicitly. Using scattering theory, one may study the
asymptotic behavior of u(t) = exp (—iHt)f ast — oo, f € #(%), in terms
of ug(t) = exp (—iHot) fo for fy € J“i”o(ac) (the absolutely continuous subspace
of H 0).

5.1 A simple overview

Consider a self-adjoint operator Hy in a Hilbert space 7), and assume that
its absolutely continuous spectrum can be identified. Let H be another self-
adjoint operator in a Hilbert space 7 so that H is close to Hy in a certain
sense. Scattering theory concerns the study of the absolutely continuous spec-
trum of the operator H and its connection to that of Hy. It is generally assumed
that H = Hy + V, where V is, in a particular measure, small compared to Hy,
and thus the deduction of the spectral properties of the absolutely continuous
spectrum of H depends on the presumed knowledge of the absolutely continu-
ous spectrum of Hy.

Consider the free evolution problem

igpun(w,t) = Houo(x,t) 77
uo(z,0) = ud(z)
which has the solution ug(t) = e~ Let now
;0
igru(z,t) = Hu(x,t),
{ ey )



be the evolution problem of the perturbed operator H = Hy + V/, which has
the solution u(t) = e~ "1%,% The main task of scattering theory is to study the
conditions under which, for all u° € 7 (“C), there exist ug’i € %(ac), such
that

lim |[u(t) = duo(®)|.~ =0, (79)
t—=oo
for a bounded operator J, where ug(t) = e_iHOtug’i. Equivalently, scattering

theory concerns the study of existence and completeness of the wave operator
(WO) W4.(H, Ho; d),

. i H —iHot 0,%
We(H, Ho; ) = s lim ¢’ tgetHolqy =, (80)
where the letter s refers to the strong sense convergence.

For comprehensive materials on scattering theory we refer to the monographs
[40, 57]. Following the general notation in scattering theory, below we use
s—lim and w—lim to denote the strong and weak limits respectively. Let H
and Hj be self-adjoint operators in 7 and %) with spectral families £ and Fj
respectively, below we define the time-dependent and stationary WOs.

5.2 The time-dependent WO
There are two time-dependent WOs, the strong and weak WOs. In what follows,
the strong time-dependent WO will be referred to just as WO.

5.2.1 The strong time-dependent WO

The (modified or generalized) strong time-dependent WO W is defined as fol-
lows

Definition 6 Let ] : 54 — 57 be a bounded operator (identification), the WO
Wy = Wy (H, Hy; d) for H and H)) is the operator

W (H, Ho: ) = s lim_U(~t)3Un(t) ", 81)

provided that the corresponding strong limits exist (s refers to the strong sense
convergence), where Po(ac) is the orthogonal projection onto the absolutely con-
tinuous subspace .7 of Hy, U(t) = ¢ ", and Up(t) = e *Ho! If 2 =
%) and J is the identity operator, then the WO is denoted by W (H, Hy).
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The WO Wy = Wi (H, Hy;d) is bounded, and possesses the intertwining
property, that is, for any bounded Borel function ¢,

¢(H)Wi(H7 HO;H) = W:E(Ha HO;H)¢(H0)7 (82)
also for any Borel set AC R,

The WO W admits the chain rule, i.e., if Wi (H, Hy;3d1) and W (Hy, Ho; do)
exist, then the WO Wi(H, Hy; 31,0) = Wi(H, Hy; Hl)Wi(Hl, Hy; 30) also
exists, where J10 = J1do.

Note that the operator W (H, Hy) is isometric. To prove that W4 (H, Hy; J) is

isometric, it is equivalent to prove that for any u € %(ac),

Jim (|30 (8l = [|ull -
—3o0

The following remark states the equivalence between WOs with different
identifications.

Remark 3 Assume that, with an identification J;, the WO W (H, Hy;J1)
exists, and suppose that Jo is another identification such that J; — g2 is compact,
then the WO W (H, Hy;J2) exists and Wi (H, Ho;J1) = Wi(H, Hy; J2).
Moreover, the condition that J; — 2 is compact can be replaced by st—Li?oo(H 1—

32)Uo(t) P = 0.

Assume the existence of the WO W, another task that is not less important
is to show the completeness of W.

Definition 7 The WO W is said to be complete if R(W.) = (@),

If the WO W is complete, then the absolutely continuous operators H (@¢)
and H, éac) are unitary equivalent. Since, by the chain rule, P\®0) =W (H, H) =
Wi (H, H))WZ%(H, Hy) where P(%°) is the orthogonal projection onto the ab-
solutely continuous subspace 7% of H, to prove the completeness of the
WO W4 (H, Hy) is equivalent to prove the existence of the WO Wi (H, Hy) =
W (Hop, H). On the other hand, the completeness of the WO W (H, Hy;J)
is equivalent to the existence of W (Hy, H;J*) and that the identification J is
boundedly invertible.
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5.2.2 The weak time-dependent WO
The weak time-dependent WO Wi is defined as follows

Definition 8 Let J : 74 — ¢ be a bounded identification, the weak WO
W4 (H, Hy;d) for H and H)) is the operator

Wi (H, Ho; 9) = w-tim _ PUU(=)3Us (1) Py, (84)

provided that the corresponding weak limits exist (w refers to the weak sense
convergence).

Note that the boundedness and intertwining properties of the WO W are
preserved for the WO W, whereas the chain rule property is not valid for the
weak WO. This is evident since the weak limit of the product of two sequences
that are only weakly convergent is not necessarily the product of their weak
limits, even more this weak limit does not necessarily exist. On contrast to W,
if the weak WO W (H, Hy; J) exists, then it is necessarily that W (Hy, H; J*)
also exists.

5.3 The stationary WO

Let R(z) and Ry(z) be the resolvent operators of H and Hj respectively, and
let My and M be dense sets in 77) and J# respectively.
Let € > 0, and let 6(\, €) be defined as

O\ €) = (2mi) L (R(A +i€) — R(\ —i€)) = m LeR(\ +ie) R(\ —ie). (85)

Further, let $ be an auxiliary Hilbert space, the concept H-smoothness in
the strong and weak senses is defined as follows

Definition 9 An H-bounded operator, A : 5 — §, is called H-smooth (in
the strong sense) if one of the following bounds is satisfied

o
sup / | Ae~Hty||3 dt < oo.
[v]| 5 =1,0€D(H)

—0o0

sup ||AR(u +ie)||* < oc.
e>0,ucR
Definition 10 An H-bounded operator, A : 5 — §, is called H-smooth in

the weak sense if
w—lim Af(\ e)A* (86)

€E—00

exists fora.e. A € R.
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Equivalent conditions for the weak H-smoothness are stated by the following
remark (other conditions can be found in [57]).

Remark 4 An operator A : 77 — ) is weakly H-smooth if and only if any of
the following two conditions is satisfied

|AG(N, e)A™|| < C(X), ae. AeR. (87)

e2|AR\ +ie)| < C(N), ae. AeR. (88)
To define the stationary WO, we first define the following

1 (H, Hy; 3) = lim 7 (IR (N £ i€)ug, R\ £ i€)u). (89)

Let, for all ug € My and v € M, the limit (89) exist for a.e. A € R, then
the stationary WO Wy = W, (H, Hy; J) for the operators H and H with the
identification J is the operator on My x M defined by the following sesquilinear
form

<Wiu0,u> = / gi(H, H();g)CD\. (90)

The WO W is bounded, satisfying the intertwining property, and R(W4) C
(@) Moreover, by the existence of Wi (H, Ho;d), then the adjoint WO
W (H, Ho; J) also exists and given by

Further more, on the relation to the weak time-dependent WOs, if both of
Wi (H, Ho;d) and W (H, Ho;J) exist, then they coincide with each other.
This statement is also true if (H, Ho;d) is replaced by any of the collections
(Ho, H;3*), (H,H;33%), or (Hy, Hy; 3*3).

The importance of the stationary approach in scattering theory can be sum-
marized as: .
Let the WOs W (H, Hy;J) and W (Hy, Ho; J*3) exist, and let

WL (H, Ho; J)W+(H, Ho; d) = W (Ho, Ho; 3°9) 92)
be satisfied, then the WO W (H, Hy; J) exists.
Below we define a particular class of pseudo-differential operators (PSDOs)

that are necessary to state the results on the convergence of the WOs for a family
of Dirac operators.
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5.4 Pseudo-differential operators

The class S} s(R3,R3) of symbols is defined as follows

Definition 11 The class 8 ;(R?, R?) is the vector space of all smooth func-
tions P(z,¢) : R? x R® — C such that for all multi-indices o and

020 P(, Q)] < capfa)” PN, (93)

where 7 € R, p > 0,6 < 1, and (z) = (1 + |z|?)'/2. The function P is called
the symbol of the PSDO and r is called the order of P.

Let P(x,¢) € 8;75(R3, R3), the associated PSDO, 2, to P is defined by the
following integral

(P1)(x) = (2m)"3/2 / e <Pz, ) F(0) de, ©4)

R3

where f € . and f(¢) = (277)_3/2/ e~ f(z) dx is the Fourier transform
R3
of f.

5.5 A family of Dirac operators

Consider the free Dirac operator Hy, and let V be a short-range potential (de-
caying faster than the Coulomb potential), then the WO W1 (Hy+V, Hy) exists
and is complete. The proofs of existence and completeness of W4 (Hp+V, Hy)
are similar to that of the Schrodinger operator. For V being the Coulomb poten-
tial, the WO Wy = Wi (Hy + V,Hy; J), with a bounded identification g, has
been studied in [16, 17]. If V is of long-range type (decaying as the Coulomb
potential or slower), the existence and completeness of the WO W have been
studied in [22, 37, 38, 52]. The asymptotic behavior of the WO W with respect
to the speed of light, ¢, as ¢ — oo, has been discussed for short-range potentials
in [58] and for long-range potentials in [59].

5.5.1 An h-dependent perturbation and the WO

Consider the free Dirac operator Hy, and let Vj, be an h-dependent potential.
We define the following family of Dirac operators

H;, =Hy+ Vy. 95)

We assume that the potential V7, is real and bounded, thus the operators Hy, and
Hj have the same domain X and that Hy, is self-adjoint on X, for A > 0. Also,
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for simplicity, we let A = ¢ = 1.
We assume further that V, is of long-range type for all & > 0, that is, for all
multi-index «, V, fulfills the following condition

0%V, (z)| < Clz)~?71el forall h > 0, and p € (0, 1], (96)

where we recall that () = (1 + |z|?)'/2, and C is a constant independent of
and h.

Let P}Eac) be the orthogonal projection onto the absolutely continuous sub-
space of Hy, and define Uy, (t) = e ™Hr? and Uy(t) = e~"ol, Now, by (96),
and according to [22], the WOs W4, j, and W7 ,, defined as

Wip=Wi(Hp, Ho;d4p) = S;EﬁgnZYh(—iﬁﬂﬁ;hlﬂﬂt) 97)
and
W1 = W (Ho Hiyi L) = solim_Up(—0)3% 1Un()P", (98)

exist, moreover the WO W ;, is complete. The identification g 5, is defined by
the following PSDO

(99)(x) = (2m) 732 / TP EOP L (2, )G (2, Ow(C2)G(C) dC,

R3
(99)
where ¢y € C§°(R,) is introduced to localize J+ j in compact intervals of
the positive part of the absolutely continuous spectrum, (m, o), and where
¢+ (x, () is a cut-off function defined as

Ci(2,¢) = 0(x)ws((%,C)), forally € R\{0},5=y/lyl.  (100)

The function 6 is smooth and is introduced to avoid the singularity of  at x = 0,
and w4 (7) = 1 near £1 and w4 (7) = 0 near F1. Thus the cut-off function €1
is supported in the cone

E+(0) = {(z,¢) € R® : £(z,¢) > olz[[¢[}, o€ (~1,1). (101)

Below, in a chain of definitions, we give the construction of the phase function
4 (x,() and the amplitude function Py p,(x, (). The function ¢4 p(x,() is
defined as follows

N
O ip(z,¢) =Y 07 (2,¢), zeEx(o) (102)

n=1
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where N satisfies (N + 1)p > 1, and for n > 0, <I>(n+1 (x,¢) = Qi(()Fj(En})L
which is defined as

QuOF) @) =% [ (Fl+16.0 - F@c.)dr (03
The functions Fj([n})L are defined as

FO\(@,0) = QO V@) —5 Vi), F.0) = 2 [vad) @ O, (104)

and forn > 2

n—1
F{")(2,¢) = Y _(Vel) (2,¢), Vel (z,0)) + f|v<1> 12,07 (105)
k=1

The amplitude function P4 ;,(x, ¢) is defined as
Pin(z,¢) = = Sen(@ ) 'p(C),  z€Zx(e),  (106)

where po(¢) = p+0(¢), and

(I 971 (Ca +me®B)), (107)

l\.’)\»—l

p£o(C) =

3

with n(¢) = v/[¢|> + m2ctand {, = a - ( = Zakgk. Finally, S 5,(z, () is
k=1
given by

Stn(z,¢) = (2n(¢))” (Vh + Zak%:h z C)O‘k> z € E4(0).

k=1
(108)
Note that the WOs defined above are for the positive part of the absolutely
continuous spectrum, (m, co). For the negative part of the absolutely continu-
ous spectrum, (—oo, —m ), the WOs can be defined in a similar way with minor
modifications, see [22]. The asymptotic study carried out below can be applied
for the WOs on the negative part as well.

5.5.2 The asymptotics of the WOs and some particular cases

Define the WOs Wi = s—hm W4, and Wi = s—hm Wi n» Where W p,

and W3 , are given respectlvely by (97) and (98). Let the perturbed Dirac op-
erator Hh converge in the SRS to H, and assume that the identification J 5,
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converges strongly to J+ o, then the WOs Wl and Wl* exist. The task now
is to characterize the limits, as h — oo, of the WOs W4 j, and W7 ,, which is

equivalent to the problem of interchanging s—hlim and s ligl . To this end, we
—00 — =00

state the following two lemmas.

Lemma 1 Define the function %, (a )h as

()= H (Hh¢(Hh)Hi,h¢(Ho) —qs(Hh)gi,hHOgs(Ho)) UD(”“OHY’

where ug € X. Then for some continuous function ¢ : R — R such that
) is bounded on R and for any ¢ > 0 there exist D1, Dy € R such that

/% dt<5and/ A () dt < e forall h > 0.

Lemma 2 Define the function Ji/u(i) as

.50 = | (oo (H0)% 6 (Hy) — 6(H)L ) Hud(H) ) Un(B)u|

where ug € X. Then for some continuous function ¢ : R — R such that
) is bounded on R and for any £ > 0 there exist D3, Dy € R such that

/D h dt<5and/ j{uh()dtgsforallh>0.
3

By Lemmas 1 and 2, and according to [9], the limits s—hlim and s?lim in
—00 — =00

the definition of the WOs Wl and Wi* are interchangeable. Thus we have the
following result.

Theorem 12 Let the WOs W_. j, and W7 , be defined by (97) and (98) respec-
tively. Suppose that, as h — oo, the Dirac operator H;, converges to H,, in
the SRS, and the identification J. j, converges strongly to J+ .. Then the WOs
Wl and Wl* exist,

W1 =W (Heu, Ho; 02 00),

and
W* = Wi (Ho, Hoo; 9% o).

Remark 5 In Theorem 12 we assume that J j, converges strongly to J+ o,
this also implies that g7, , converges strongly to J% . However, in general,
the strong convergence of an operator does not imply the strong convergence of
its adjoint operator to the adjoint of its strong limit. Hence, in order to study
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the convergence of the adjoint WO in the strong sense for other self-adjoint
operators, we should assume if necessary, the strong convergence of the identi-
fications adjoint operators as well.

In what follows we assume the hypotheses of Theorem 12 and study differ-
ent cases of the identification J ;. Note that, in the first case we also consider
short-range potentials, so the identification is just the identity operator. On the
other hand, the other two cases are stated briefly, where a dwell-upon discussion
is available in Paper V in the appendix.

The case p > 1.

In this case we can set J+, = I, this is due to the fact that for short-range
potentials, the WOs W (Hj,, Hy) and W (Hp, Hj) exist and are complete.
Therefore, the limits s1im and s—lim are interchangeable in the definitions of

h—o0 t—=o0
the WOs Wl and Wl* Thus, if the perturbed Dirac operator Hj, is convergent
to H, in the SRS, then

W1 = W, (Hy, Hp) (109)

and
W = Wi (Ho, Hoo ). (110)

The case p = 1.
Let . (x,() be an h-free function satisfying

1090 @+ (2, )] < canle)' 771, 2 € Ei(o), (111)

and let 3;1 ) (with adjoint operator denoted by J S_Ll )’*) be defined as

@Lg)(w) = (275 [ e e (), (€316 e

]RB
(112)
Then
Wi = Wi (Hee, Hy; 49) (113)
and
Wi* = W (Hp, Hoo; 87, (114)

The case p € (1/2,1).

Let Hf)h (with adjoint operator denoted by Hf )’*) be given by (99), but with
O j(z, () defined as

D n(2,0) = £n(0) /0 C(Vale 10 - Vi) de (115)
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and with py(¢) instead of Py j,(x, ). Assume further that V, is given so that
H; = Hy + V} and &4 ;,(z, () converge in the SRS respectively to Hy, =
Hy + V and

Bion(o.) = 20(0) [ (Voo 240 = Vo tO) . (116)
Then
Wi = Wi (Hw, Ho; 47) (117)
and
W™ = W (Ho, Hoo; 3C50), (118)
where

(OL.co)(@) = (2m) 22 [ O (), Q)
(119)

5.6 Self-adjoint /-dependent operators

Let %) and JZ be two Hilbert spaces, and let My and M be dense sets in J7j
and 7 respectively. Let Hy and Hy, be two self-adjoint operators in .7 and
S respectively, with D(Hp) = £ and D(H},) = 27, and with corresponding
resolvent operators Ry and R;, respectively. Let also Po(ac) and P,Eac) be re-
spectively the orthogonal projections onto the absolutely continuous subspaces
of Hy and Hj,. Assume that H;, = Hg + V},, where V}, admits the following
factorization

Vi = Hpdyn — dnHo = A}, Ao, (120)

where J;, : %) — 5 is a bounded identification, and A;, : 5 — $ and
Ay : I — 9 are respectively Hp-bounded, for all A > 0, and Hy-bounded
operators, where ) is an auxiliary Hilbert space. Note that (120) is understood
as the equalities of the corresponding sesquilinear forms.

Define the time-dependent WO Wl (H,Hy;J) as
WL(H, Hy: ) = s-lim We(Hy, Ho:3r)
—00

— S_hILm St_—lgtnoo Uh(—t)HhUo(t)P(gac)»

o0

(121)

where Uy, (t) = et Uy(t) = e~*Hot and H and J are some limit operators
in appropriate sense of H}, and Jj, respectively.

45



Let Eﬂ (H, Hp; J) be defined as

91 (H,Hy; ) = lim lin%w_le(HhRg()\j:z'e)uo,Rh()\j:ie)u), (122)

h—00 €—

where ug € My andu € M. We define the stationary WO Wl = Wl (H, Hop;d)
on My x M by the sesquilinear form

(Whug, u) = /OO 1 (H, Hy; ) dX. (123)

We also define the weak WO /W/l(H ,Ho;3) as

WL(H, Ho;3) = w—lm W (Hy, Ho; 31)
=w— hm w—hgl P(aC)Uh( t)dnUo(t) P, (ac).

—00 t—

(124)

In the commg dlscuss10n we state some results regarding the existence of the
WOs Wi, Wi, Wi, and their adjoint operators that are denoted respectively

by wh*, Wi , and Wi . These results are briefly stated, where the details are
available in Paper VI in the appendix.

Theorem 13 Assume the following
() A is weakly Hp-smooth.

(1) For all h > 0, ApRp(\ £ i€) is strongly convergent as ¢ — 0 for a.e.
AeR.

(zit) If Ty, is the strong limit of Ay, Ry (A % i€) as e — 0 obtained in (i), T,
converges weakly to some Tt for a.e. A € R.

(iv) Jp converges weakly to Joo.

Then the WO Wl(H, Hy; ) exists, also WL(HO, H:; J*) exists and
WY (H, Ho; ) = Wi, (Ho, H; ). (125)

Note that the assertions of Theorem 13 remain unchanged if its first three hy-
potheses are replaced as: For a.e. A € R, as e — 0, the operator Agfy(\, €) is
strongly convergent and T}, . := Ap Ry (X £ i€) is weakly convergent to some
Th,o for all h > 0, and the resulting limit 7}, o converges weakly to some T o
as h — oo.

Similar assertions as of Theorem 13 can be formulated as in the following
theorem.
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Theorem 14 Assume the following
(4) Forall h > 0, A, is weakly Hj-smooth.
(17) The operator Ay Ry(A=Lie) is strongly convergent as e — 0 fora.e. A € R.

(7i7) If Ty, is the weak limit of A0y (A, €) as € — 0 obtained in (i), T}, con-
verges weakly to some T for a.e. A € R.

(1v) If E}, is the spectral family of Hp,, then E},(\) and Jp, converge weakly to
E()) and J, respectively for a.e. A € R.

Then the WO Wl(H, Hy; ) exists, also WL(HO, H:; J*) exists and
WL (H, Ho: 3) = WL (Ho, H: 7). (126)

The assertions of Theorem 14 are also true if its first three hypotheses are
replaced by the following: For a.e. A € R, as € — 0, the operator Ay Ro(\ £ i€)
is weakly convergent and Sy, . := Ap0p(\, €) is strongly convergent to some
Sh,o for all h > 0, and the resulting limit Sy, o converges weakly to some S o
as h — oo.

The existence of W:rt(H, H;33*) and W:rt (Ho, Hy; d*3) is proved in Theo-
rems 15 and 16 respectively.

Theorem 15 Let the hypotheses of Theorem 13 be satisfied, and let further g7

and Ry, be strongly convergent. Then the WO Wit (H, H;33") exists, moreover
we have
Wi (H, Ho; §)WL* (H, Ho; §) = WL (H, H; 33%). (127)

Theorem 16 Let the hypotheses of Theorem 14 be satisfied, and let J; be
strongly convergent. Then the WO Wl (Ho, Hy; d*3) exists and

Wi (H, Ho; §)WL(H, Ho; §) = W1 (Ho, Ho; 3°9). (128)

Similarly to the coincidence between the usual stationary and weak time-
dependent WOs, we have the coincidence between the stationary WO WL and
the weak time-dependent WO WL that is, if both of Wl (H, Hp;J) and Wl (H,
Hy; J) exist, then they coincide with each other. The same assertion can be con-
cluded for any of the collections (Hy, H;J*), (Ho, Ho;3*9), and (H, H;JJ%)
as well.
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Also, by the hypotheses of Theorem 13 (equivalently the hypotheses of The-
orem 14), the WO Wi(H Hy; J) exists, consequently Wi(Ho, H:;J*) exists
and - .

WL (H, Hy: 3) = WL(Ho, H:3"). (129)

For the WOs /V[v/l (H,H;JJ")and WJE(HO, Hy; J*3), we have the following two
theorems.

Theorem 17 Suppose the hypotheses of Theorem 15 are satisfied, then the WO
Wl(H, H;JJ*%) exists.

Tvlleorem 18 Suppose the hypotheses of Theorem 16 are satisfied, then the WO
WJL_(HO, Hy; 3*J) exists.

The existence of the time-dependent WOs Wl (H, Hy;J) and Wi (Ho,H; 7%
is summarized in the following theorems.

Theorem 19 If the hypotheses of Theorem 15 are satisfied, then Wl (Ho,H; 7%
exists.

Theorem 20 If the hypotheses of Theorem 16 are satisfied, then Wl (H,Ho;d)
exists.

After proving the existence of the WOs Wi(H7 Hy; 3) and WJ_]:(HO, H;J%),
we would like to study the asymptotic behavior, as h — oo, of the WOs
W (Hy, Ho; dp,) and W (Hy, Hp; d3). The problem of finding these asymp-
totic limits is reduced, as we mentioned before, to the problem of interchanging
s—lim and s—lim . By the existence of WL (H, Hy:J) and W1 (Hy, H; %),
Lemmas 1 and 2 are satisfied for the collections (Hy,, Hy, Jp, #¢) and (H,
Hy, 3;;, I) respectively. This implies that, according to [9], in the definitions
of Wi(H Hp;J) and Wi(HO,H J*), the limits s— hm and s—lim are in-

t—+oo

terchangeable. Therefore, if H}, converges to H, in the SRS, and J;, and J;,
converge strongly to J~ and J7_ respectively, then

S—hlingo Wi (Hp, Ho; dn) = Wi (Heo, Ho; d0) (130)
and
S—hhH;O Wi (Ho, Hp; 3},) = W (Ho, Hoo3 35,)- (131)
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6 Conclusion and future work

The numerical scheme we provide for approximating the eigenvalues of the
Dirac operator is of vital importance in the sense that it results to the complete
removal of the spurious eigenvalues. The stability approach for the FEM in
Paper I yields a better rate of convergence compared to the Galerkin-based hAp-
cloud approach, Paper II. Though the computation using the hp-cloud method
is more time consuming compared to the FEM, but as the method is applied for
the first time to the Dirac operator makes it a considerable novel effort toward
getting faster computation. An ongoing work concerns improving the rate of
convergence of the approximations using these two approaches, where the fo-
cus is on the computational aspects of the hp-cloud approach. Also, as a future
work, we will consider developing of approximation methods for the eigenval-
ues of the electron in the Helium-like ion systems.

In Paper III, we apply G-convergence theory for positive definite parts of the
Dirac operator where our purpose is to study the behavior of the eigenvalues of
a family of perturbed Dirac operators by abstract h-dependent potentials. That
the Dirac operator is not bounded affects construction of operator convergence
methods. So, the results in Paper III can be viewed as a modest progress for
certain abstract potentials that may not appear in applications. Our conclud-
ing paper in G-convergence, Paper 1V, gives a simplified and brief knowledge
on the theory of G-convergence. It includes some review material about G-
convergence of elliptic as well as some positive definite self-adjoint operators.
To extend the asymptotic analysis of the perturbed Dirac operator, we intend to
use suitable variational convergence techniques. We believe that this can lead to
useful results, but they are not completely formalized and still under scrutiny.

In Paper V, we apply scattering theory for the free Dirac operator with long-
range h-dependent potentials and study the strong convergence of the wave op-
erator (WO). Though the application of this study is not seemingly evident for
the Dirac operator, but it is manifest for other differential operators, in particular
the Schrodinger operator. In Paper VI, we provide a general asymptotic study
for the WOs for general self-adjoint h-dependent operators. This study has not
come with new results regarding the strong convergence of the time-dependent
WO, but it conforms to the existence result in Paper V and the references therein.
In addition, in Paper VI, we extend the study and prove the convergence of the
weak time-dependent and stationary WOs in a general setting. As a future work,
we intend to study the asymptotics of the WOs for other self-adjoint operators.
Also we like to study other classes of perturbations with different factorizations.
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