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Preface

The main task of the Nordic Expert Group for Criteria Documentation of Health
Risks from Chemicals (NEG) is to produce criteria documents to be used by the
regulatory authorities as the scientific basis for setting occupational exposure
limits for chemical substances. For each document, NEG appoints one or several
authors. An evaluation is made of all relevant published, peer-reviewed original
literature found. The document aims at establishing dose-response/dose-effect
relationships and defining a critical effect. No numerical values for occupational
exposure limits are proposed. Whereas NEG adopts the document by consensus
procedures, thereby granting the quality and conclusions, the authors are re-
sponsible for the factual content of the document.

The evaluation of the literature and the drafting of this document on Carbon
monoxide were done by Dr Helene Stockmann-Juvala at the Finnish Institute of
Occupational Health.

The draft versions were discussed within NEG and the final version was
accepted by the present NEG experts on August 21, 2012. Editorial work and
technical editing were performed by the NEG secretariat. The following present
and former experts participated in the elaboration of the document:

NEG experts

Gunnar Johanson Institute of Environmental Medicine, Karolinska Institutet, Sweden
Merete Drevvatne Bugge National Institute of Occupational Health, Norway

Anne Thoustrup Saber National Research Centre for the Working Environment, Denmark
Tiina Santonen Finnish Institute of Occupational Health, Finland

Vidar Skaug National Institute of Occupational Health, Norway

Mattias Oberg Institute of Environmental Medicine, Karolinska Institutet, Sweden
Former NEG expert

Kristina Kjarheim Cancer Registry of Norway

NEG secretariat

Anna-Karin Alexandrie Swedish Work Environment Authority, Sweden

and Jill Jarnberg

This work was financially supported by the Swedish Work Environment
Authority and the Norwegian Ministry of Labour.

All criteria documents produced by the Nordic Expert Group may be down-
loaded from www.nordicexpertgroup.org.

Gunnar Johanson, Chairman of NEG
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1. Introduction

Carbon monoxide (CO) is an odourless and colourless gas. It is a major atmos-
pheric pollutant in urban areas, chiefly from exhaust of combustion engines, but
also from incomplete burning of other fuels. CO is also a constituent of tobacco
smoke. Exposure to CO is common in many occupational areas, mainly in those
associated with exhaust emissions (229). CO is also an important industrial gas,
which is increasingly being used for the production of chemical intermediates
(25). CO is formed endogenously and acts as a signalling substance in the
neuronal system (249).

The main mechanism behind CO-induced toxicity has for long times been known
as the binding of CO to haemoglobin, resulting in carboxyhaemoglobin (COHb)
formation and hypoxia. Health effects associated with acute CO poisoning have
been extensively documented by others. The present document is focused on
examining health effects of low-level CO exposure as this forms the basis for
occupational exposure limit setting. The evaluation builds partly on the reviews
by the World Health Organization/International Programme on Chemical Safety
(WHO/IPCS) from 1999, the United States Environmental Protection Agency
(US EPA) from 2000 which was superseded by an update in 2010, the National
Research Council (NRC) from 2010, and the Agency for Toxic Substances and
Disease Registry (ATSDR) from 2012 (16, 96, 151, 229, 230). Data bases used
in search of literature are given in Chapter 19.

2. Substance identification

Table 1. Substance identification data for carbon monoxide (152).

IUPAC name: Carbon monoxide

Common name: Carbon monoxide

CAS number: 630-08-0

Synonyms: carbon oxide, carbonic oxide
Molecular formula: CcO

Molecular weight: 2801

3. Physical and chemical properties

CO is an odourless and colourless gas with a density close to that of air. General
physical properties of CO are given in Table 2.

The CO molecule consists of one atom of carbon and one atom of oxygen, co-
valently bonded by a double bond and a dative (dipolar) covalent bond. Despite
oxygen’s greater electronegativity, the effects of atomic formal charge and electro-
negativity result in a small bond dipole moment with its negative end on the carbon
atom. Most chemical reactions involving CO occur through the carbon atom, and
not the oxygen. Most metals form coordination complexes containing covalently
attached CO (25).



Table 2. Physical and chemical properties of carbon monoxide (152).

Freezing point at 101.3 kPa: -205°C

Boiling point at 101.3 kPa: -191.5°C

Vapour density (air=1): 0.968

Vapour pressure at 20 °C: >101 kPa (1 atm)
Flammability range in air (vol/vol): 12-75%

Solubility in water at 20 °C: 2.4 ml/100 ml
Conversion factors at 25 °C: 1 ppm=1.145 mg/m’

1 mg/m*=0.873 ppm

4. Occurrence, production and use

4.1 Occurrence

CO is a minor atmospheric constituent. The ambient concentrations range from

a minimum of about 30 ppb during summer in the Southern Hemisphere to about
200 ppb in the Northern Hemisphere during winter. CO originates chiefly as a
product of volcanic activity but also from natural and man-made fires and the
burning of fossil fuels. It occurs dissolved in molten volcanic rock at high pres-
sures in the earth’s mantle. CO is a major atmospheric pollutant in urban areas,
chiefly from exhaust of combustion engines, but also from incomplete burning
of other fuels (including wood, coal, charcoal, oil, kerosene, propane, natural gas
and trash). It reacts photochemically to produce peroxy radicals, which react
with nitric oxide (NO) to increase the ratio of nitrogen dioxide (NO,) to NO. This
reaction reduces the quantity of NO that is available to react with ozone (O3) (229).

CO is also a constituent of tobacco smoke. In various studies, the CO emission
has been estimated to vary between 0.5 and 78 mg per cigarette, and 82-200 mg
for large cigars (229).

The CO levels in indoor air vary depending on whether there are CO producing
sources, like gas stoves, kerosene heaters or smoking in the building. In a study
including 400 homes in the US, the average CO concentration was 2.23+0.17
ppm (measured in 203 homes). Use of gas stoves and kerosene space heaters was
associated with increased CO levels (229).

Small amounts of CO are formed endogenously in the human blood as a result
of breakdown of haemoglobin and other haemoproteins (myoglobin, cytochromes,
peroxidases and catalase) (see Section 7.2).

4.2 Production and use

CO is formed by the incomplete combustion of carbonaceous materials, by the
reduction of carbon dioxide, or by the decomposition of organic compounds (e.g.
aldehydes). CO may also be recovered from the off-gas of industrial processes,
like blast furnace processes or calcium carbide synthesis (25).

In industrial production of CO, the initial product is usually a gas mixture
containing CO. The three most important processes include gasification of coal,
steam reforming/carbon dioxide reforming (for light hydrocarbons), and partial



oxidation of hydrocarbons (for hydrocarbons heavier than naphtha). CO can then
be separated, or the CO-hydrogen ratio can be adjusted, by various procedures.
The most common procedures for separation are: a) Copper ammonium salt wash
(reversible complexation) at elevated pressure, followed by desorption at lower
pressure, b) Cryogenic separation, including low-temperature partial condensation
and fractionation, and liquid methane scrubbing and separation, ¢) Pressure-swing
adsorption, and d) Permeable membranes (25).

Laboratory scale production of CO can be based on the slow addition of con-
centrated formic acid to concentrated sulphuric acid, followed by removal of
traces of sulphur dioxide and carbon dioxide by passing the gas through potassium
hydroxide pellets (25).

Syngas (synthesis gas) is a gas mixture that contains varying amounts of CO
and hydrogen. The name comes from their use as intermediates in creating
synthetic natural gas (SNG) and for producing ammonia or methanol. Most of
the syngas production is nowadays based on natural gas and sulphur-rich heavy
vacuum residues. Other usable raw materials include naphtha, coal, heavy fuel
and residual oil (25).

CO is an important industrial gas which is increasingly being used for the pro-
duction of chemical intermediates (25).

CO s frequently used as a reducing agent in the production of inorganic chemicals
e.g. in the direct reduction of iron to sponge iron and in the preparation of very
pure metals, like nickel metals. The reaction of CO with chlorine yields phosgene
which can be used to prepare aluminium chloride by the chlorination of bauxite
(25).

The major use of CO is in the production of acetic acid, by catalytic carbony-
lation of methanol. Other organic chemicals formed in reactions including pure
CO are formic acid, methyl formiate, acrylic acid and propanoic acid.

The most important chemicals produced using syngas are methanol, hydro-
carbons and linear aliphatic aldehydes (25).

In 2009, the total reported use of CO in preparations in Sweden, Norway and
Finland was 2.4 million tonnes. In 2001, the corresponding value was 2.3 million
tonnes, indicating a stable use, although the number of reported preparations
decreased from 48 in 2001 to 28 in 2009. The main use categories included manu-
facture of basic metals, chemicals, and chemical products, scientific research, as
well as the category “electricity, gas, steam and air condition supply” (207).

Based on studies showing that CO is acting as a secondary messenger mole-
cule in the cell, research is ongoing on the potential use of CO as a therapeutic
gas, using doses of 3 mg/kg body weight (resulting on COHb 12%) (145). It has
been suggested that CO could be used in order to obtain anti-apoptotic or anti-
inflammatory effects through modulation of protein kinase pathways (187, 229).
A large number of experimental studies show promising results, but so far the
number of clinical trials is low, and do not show any clear anti-inflammatory or
other protective effects (18, 116).



5. Measurements and analysis of workplace exposure

5.1 Air samples

The most commonly used techniques for CO detection in air samples are based on
the principle of non-dispersive infrared detection (NDIR), and they may include a
gas filter correlation (GFC) methodology. The most sensitive versions of these
instruments can detect CO at a level of about 0.04 ppm. These techniques are also
the federal reference methods recommended by the US EPA (96, 229).

If a more sensitive technique is needed, gas chromatography with flame ionisa-
tion detector is the best choice (detection limit 0.02 ppm) (96, 229).

The US National Institute for Occupational Safety and Health (NIOSH) method
for the occupational hygienic measurement of CO uses a portable direct reading
monitor. The limit of quantification is reported to be 1 ppm and the working range
is 0-200 ppm (147).

5.2 Biological samples

The exposure to CO is usually estimated by measuring carboxyhaemoglobin
(COHD) in blood (for a definition of COHD, see Section 7.3). CO in exhaled
breath can be used to reflect CO levels in blood.

5.2.1 Blood carboxyhaemoglobin measurement

COHD in blood can be measured using a variety of methods. The majority of
clinical measurements are carried out using direct-reading spectrophotometers,
such as CO-oximeters. Traditionally, these instruments utilised 2—7 wavelengths
in the visible region, but modern instruments use up to 128 wavelengths, thus
allowing for the determination of proportions of oxyhaemoglobin, COHb, reduced
haemoglobin and methaemoglobin. The detection limits of the currently available
oximeters are well below the COHb concentrations of unexposed persons (see
Section 8.1) (26, 96, 193).

Among new methods for CO measurement are the pulse oximeters, which
enable non-invasive measurement of COHb. The pulse oximeters emit near-infra-
red and long-wavelength visible light, which diffuse through the tissue. COHb
levels measured using fingertip pulse-oximetry correlate well with blood COHb
results obtained by traditional blood CO-oximetry, but may slightly overestimate
the CO levels. This device can be used in clinical practise for screening purposes,
but could in theory also be used in field studies at workplaces (26, 96, 193, 214).

The most sensitive techniques measuring COHb are based on gas chromato-
graphy (limit of detection 0.005% COHDb). The basis for these methods is the
analysis of the CO gas released from the blood when COHb is dissociated. The
detection methods include infrared absorption, flame ionisation and thermal
conductivity (17, 44, 75, 121, 131, 229).



5.2.2 Carbon monoxide in expired breath

CO in breath can be measured using any of the techniques used to measure
ambient CO concentrations. The main techniques include portable analysers
with electrochemical detection, infrared spectrometry, gas chromatography and
tuneable diode laser spectrometry. Method development has recently focused
on creating linear and reliable techniques working at a broad range of CO con-
centrations. The sample detection limits are low, even below 1 ppb (106, 118,
119, 150, 229).

In the measurement of CO in exhaled air, it is important to consider the dead-
space gas volume, as it serves to dilute the alveolar CO concentration. Different
methods for taking the dead-space dilution into account have been developed.
The breath-hold technique (20 seconds breath-hold was found to provide almost
maximal values for CO pressures) is the mostly used technique, the others being
the Bohr computation (mathematical determination of the dead space) and the
rebreathing technique (5 litres of oxygen are re-breathed for 2—3 minutes while
the carbon dioxide is removed) (96, 229).

6. Occupational exposure data

Occupational exposure to CO occurs in a large number of situations and is nearly
always concomitant with other exposures (mixed exposure). Workers exposed to
vehicle exhausts, construction workers, firefighters and cooks are at increased risk
for CO exposure. Industrial processes producing CO directly or as a by-product,
including steel production, nickel refining, coke ovens, carbon black production
and petroleum refining have also been associated with CO exposure (96).

CO exposure levels in different occupational situations in Norway and Finland
are listed in Tables 3 and 4, respectively.

CO emissions from logs, and in particular from wood pellets, have been reported
in Sweden and Finland as causes of accidents (5, 81, 216-218). During the transport
and storage, the auto-oxidation of unsaturated lipids and other organic compounds
gives rise to high CO concentrations which, in combination with significantly de-
creased oxygen levels, may be life-threatening or lethal in confined spaces like the
hatches in ships and warehouses (217).

The distribution of biomonitoring data on COHb concentrations in 585 blood
samples from workers, measured at the Finnish Institute of Occupational Health
during 2000-2010, are presented in Table 5. Most of the samples were from
workers exposed to CO, and some were also exposed to methylene chloride. One
hundred and thirty four of the 585 workers showed COHb concentrations above
the Finnish reference value of 5% (206). These high concentrations were mainly
observed among different types of foundry workers.



Table 3. Carbon monoxide (CO) levels measured at various workplaces in Norway 2000—
2009. About 15% of the measurements were obtained by personal monitoring in the
breathing zone and the remaining 85% by stationary monitoring (EXPO data base ).

Occupational field Number of CO max CO mean
measurements (ppm) (ppm)
Defence activities (incl. submarines) 20 1189 273
Manufacture of carbides 859 NA 124
Scheduled air transport 7 NA 44
Casting of iron 15 375 43
Other preventive health care 6 175 30
Stuff, tunnel, construction site 5 892 19
Manufacture of electrical equipment 4 NA 17
Manufacture of coke oven products 12 NA 14
Wholesale of mining, construction and civil 10 NA 11
engineering machinery
Operation of gravel and sand pits 5 NA 11
Construction 107 210 10
Maintenance and repair of motor vehicles 9 37 6
Construction of motorways, roads, airfields 83 650 5
and sport facilities
Installation of electrical wiring and fittings 9 38
Manufacture of veneer sheets, plywood, 8 682 3
laminboard, particle board
Manufacture of other non-metallic mineral 30 NA 3
products n.e.c.
Production of primary aluminium 9 63 2
Aluminium production 4 NA
Mining of non-ferrous metal ores, except 7 160 <2
uranium and thorium ores
Toll bar stations 15 20 <2
Manufacture of industrial gases 5 9 <2
Manufacture of paper and paperboard 4 3 <2

*Description of data base in Rajan et al (174).
NA: not available.

There are some welding operations where CO exposure should be considered,
although welding in general is not associated with CO formation. Blood COHb
concentrations reaching 20% have been demonstrated after metal active gas
(MAG) welding with shielding-gas containing carbon dioxide (47). The CO
concentration in the breathing zone may reach 100 ppm during arc-air gouging
with a carbon-graphite electrode (189). Acetylene gas welding or cutting is
generally not related to hazardous CO-exposure. Some serious CO intoxications
have, however, been reported during acetylene gas welding of pipes, when
acetylene gas has degraded to CO in an atmosphere with oxygen depletion (10).



Table 4. Finnish occupational carbon monoxide (CO) air concentration ranges according

to exposure situations, measured 2004—-2007. Data obtained by personal monitoring in the
breathing zone (18% of the measurements), fixed sampling at the working site (60%) and
room air samples (22%) (188).

Occupational field Number of measurements

Total <3 3-15 15-30 >30
ppm  ppm ppm _ ppm

Metal ore mining 11 5 6

Production of wood products (except furniture) 36 8 10 4 14
Production of paper and paper products 64 61 3

Production of coke, oil products and nuclear fuel 2 1 1

Production of rubber and plastic products 3 3

Production of non-metallic mineral products 12 10 2

Refining of metals 61 6 28 14 13
Production of metal products (except machines) 52 34 14 2 2
Production of machines 33 17 15 1
Production of cars and trailers 9 6 3

Production of other vehicles 4 4

Recycling of waste 4 2 2

Electricity-, gas- and heating service work 11 9 2
Building/construction work 9 7 2

Vehicle repairing, selling and service, fuel retail trade 3 3

Official and defence sector 45 37 6 2
Control of the environment 9 9

Work in the recreational, cultural and sports sector 4 1 1 2
Total 372 216 101 22 33
% 100 58 27 6 9
Table 5. Carboxyhaemoglobin (COHb) concentrations (%) measured in 585 blood
samples from workers in 2000-2010 (unpublished data from the Finnish Institute of
Occupational Health, 2011). The effects of cigarette smoking cannot be excluded.

Type of work Mean Median 95" per- Maximum  Number of samples

(%) (%) centile (%) (%) COHb>5%" Total

Foundry 5.2 5.0 9.6 16.9 121 245
Car inspection 1.7 1.5 3.5 8.8 1 83
Laboratory work 1.8 1.7 4.2 5.5 1 62
Vehicle repairing, service 1.7 1.3 4.8 6.2 3 59
and selling

Production and maintenance 2.3 2.0 5.4 6.9 3 49
of plastic products

Waste treatment, recycling 2.8 2.2 8.0 8.5 3 26
Production of chemicals 0.7 0.6 1.7 2.2 0 20
Production of metal products 2.5 1.8 5.4 7.6 2 19
Heating, use of smoke oven 2.6 2.7 3.9 4.5 0 12
Chimney sweeping 2.5 1.9 4.4 4.6 0 10

*Finnish reference value: 5% COHDb (206).



7. Toxicokinetics

7.1 Absorption, distribution, metabolism and excretion

7.1.1 Uptake

The pulmonary uptake of CO is affected not only by the ambient CO concentration
but also by physical (mass transfer, diffusion) as well as physiological factors
(mainly alveolar ventilation and cardiac output) and environmental conditions.
Dead space volume, gas mixing and homogeneity, and ventilation/perfusion
matching are additional factors that affect the rate of CO uptake (96).

Inhaled CO diffuses from the alveolar gas phase to the red blood cells. To reach
and bind to haemoglobin, CO has to pass across the alveoli-capillary membranes,
diffuse in the plasma, pass across the erythrocyte cell membrane and diffuse in the
cytosol to bind to haemoglobin. In the other cells, CO can bind to other haeme-
containing molecules like myoglobin and cytochromes (229).

There are no reports indicating any significant uptake of CO via the oral or
dermal route. Schoenfisch et al studied the COHb formation after a 5-second
exposure of the oronasal cavity of four monkeys with 400 ppm CO. This exposure
increased the COHb to <3.5% (mean change in COHb <0.5%) whereas compara-
tive exposures of the lungs elevated COHD to almost 60% (194). This indicated
that CO diffusion across the oronasal mucosa has a very small effect on the over-
all COHD concentration.

Factors modifying CO uptake are discussed in Section 7.4.

7.1.2 Distribution

7.1.2.1 Respiratory tract

Although generally all CO is taken up via the respiratory tract, there is not any
detectable storage in these organs. A study with human volunteers inhaling CO in-
dicated that CO was only taken up from the alveolar region of the lungs. Thus, a
slight inhalation, leaving the gas just in the mouth and large airways, did not have
any effects on blood levels (79). Similar results were also obtained in monkeys
when cigarette smoke was passed either into the oronasal cavities only, or directly
into the lungs (194). Post-mortem samples of humans exposed to CO showed a
significant correlation between COHD levels and lung tissue CO concentrations. In
patients who had died from CO poisoning (n=7), the mean lung tissue CO concen-
tration, expressed as % of blood CO concentration, was 52%. The corresponding
value for non-exposed controls (patients that died for other reasons) was 34% (248).

7.1.2.2 Heart and skeletal muscles

Myoglobin (Mb) is a haemoprotein that binds oxygen in muscle tissues and
facilitates its diffusion from the muscle sarcoplasm to the mitochondria. Small
changes in tissue partial oxygen pressure (pO,) can thus allow the release of a
large amount of O, from oxymyoglobin (O,Mb), in order to maintain a stable
pO; in the mitochondria. CO binds reversibly to Mb with an affinity constant
approximately 8 times lower than for haemoglobin (80, 190). Notable is that the



dissociation constant is approximately 630 times lower for carboxymyoglobin
(COMD) than O,Mb, making it possible for CO to be retained and stored in muscle
tissue (73). In addition, the binding of CO to Mb decreases the storage capacity of
0O, to Mb, which may have marked consequences on the supply of O, to tissues.

The transfer of CO into muscle tissue is generally larger in males, than in
females, most likely due to differences in muscle mass and capillary density (29).
COlevels of 15 and 31 pmol CO/100 g wet weight on average have been measured
in human muscle and heart tissue, respectively, when the background levels of
COHb were less than 2%. During CO asphyxiation with COHb levels over 50%,
the tissue concentrations increased to 265 pmol CO/100 g wet weight for muscle,
and to 527 pmol CO/100 g wet weight for heart muscle, the inter-individual
differences being marked (248).

7.1.2.3 Other tissues

CO can bind to other haemoproteins (cytochrome P450, cytochrome ¢ oxidase,
catalase and some peroxidases) but the significance of such binding on the whole
body (CO/0O) toxicokinetics has not been established.

Recent studies on the transport kinetics of CO show that redistribution to the
extravascular tissues continues long after exposure has ended (31). The tissue CO
concentrations of humans, rats and mice under various exposure conditions were
studied by Vreman et al (247, 248). In humans, the correlation between COHb
levels and tissue CO concentrations was strongest for the spleen (tissue CO 48—
67%, expressed as % of blood CO). The tissue concentrations of adipose and
kidney remained low (<20% of the blood CO) even in tissues from persons who
died due to CO asphyxiation.

7.1.3 Elimination

The absorbed CO is eliminated from the body by exhalation and oxidative meta-
bolism. Endogenous oxidative metabolism has been estimated to account for only
a small fraction of the elimination, and exhalation of CO is thus the major route of
elimination of absorbed CO. The exhalation is based on diffusion, which occurs
due to the difference in partial pressure of CO in alveolar air and alveolar capillary
blood. Also the release of CO from intracellular stores to blood occurs due to
diffusion mechanisms, driven by CO binding to extravascular haemoproteins and
blood haemoglobin (16).

Recent reports have indicated that the elimination of CO is biphasic, especially
after short-term (< 1 hour) CO exposure (31, 198). The elimination can be charac-
terised by a 2-compartment model with an initial rapid decrease, followed by a
slower phase.

The elimination half-times in sheep exposed to 2% CO for 1-3 minutes (peak
COHb 30-40%) were 5.7+ 1.5 minutes for the first fast phase and 103 £20.5
minutes for the subsequent slow phase (198).

Bruce and Bruce used model simulations to interpolate between measured
COHBD levels in 15 human volunteers after exposure to CO, in order to calculate



COHD half-times. The mean half-time for washout (ty_so) was 4.1 +£0.7 hours
(range 3.4-5.5) (31).

The fact that the COHb elimination half-time depends on the inspired O, con-
centration has also been shown by others. At sea level, atmospheric pressure, the
average expected COHb half-time when breathing air was 4.8 hours, according
to Landaw (117). Inhalation of normobaric 40% O, decreased the expected half-
times to 75 minutes, and further to 21 minutes when inhaling 100% O,. The report
by Weaver et al showed a COHb half-time of 74 minutes (range 26—148 minutes)
when breathing 100% O, (235).

Elimination of foetal CO is slower than maternal elimination, showing half-
times of 7.5 hours and 4 hours for foetal and maternal COHb, respectively (87).

7.2 Endogenous formation of carbon monoxide

The COHD levels of non-smokers are typically below 2%. Approximately 0.4—
0.7% stem from endogenous formation of CO. For comparison, the COHb levels
may in worst cases reach 10% immediately after cigarette smoking (16). Approxi-
mately 0.4 ml CO/hour is formed endogenously by haemoglobin catabolism and
0.1 ml/hour by catabolism of other haemoproteins. CO formation by catabolism of
other than haemoproteins is minimal (41). The first indications of endogenous CO
formation were observed already in the end of the 19th century, and in the early
1950s it was demonstrated that decomposition of haemoglobin in vivo produced
CO (43, 202, 203).

A significant increase in the endogenous CO formation can be observed among
neonates (average 0.9 +0.3%) (246) and pregnant women (98, 138) as well as in
the premenstrual phase of the menstrual cycle (52, 130) due to increased breakdown
of red blood cells (96). CO formation during pregnancy is 2—5 times that of the
production during the oestrogen phase of the menstrual cycle, and returns to pre-
pregnancy levels within a few days following delivery (124). The formation of CO
is also accelerated during certain pathological conditions, like anaemia, haema-
tomas, thalassaemia, Gilbert’s syndrome and other haematological diseases (96).
The CO formation rates are 2—3 times higher in patients with haemolytic anaemia
than in healthy individuals (42).

The degradation of haemoglobin is induced by haeme oxygenase (HO). The
porphyrin ring of the haeme molecule is broken resulting in the formation of iron,
CO and biliverdin, which is further broken down to bilirubin. The reaction is in-
duced by HO, which is complexed with reduced nicotinamide adenine dinucleo-
tide phosphate (NADPH) cytochrome P450 reductase and biliverdin reductase
(96).

There are two main isoforms of HO. HO-1 is an inducible isoform, which is
present in high amounts in the spleen and other tissues participating in the erythro-
cyte degradation, including specialised reticuloendothelial cells of the liver and
bone marrow. In most other tissues, the basal level of HO-1 is very low, but
increases rapidly upon stimulation by different chemical and physical stimuli
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like haeme and haeme derivatives, oxidative stress, hypoxia (including altitude-
induced hypoxia), various metals, cytokines, and exogenous CO (reviewed in
(1, 134, 186, 249)).

The isoform HO-2 is expressed constitutively in the brain and central nervous
system, vasculatory system, liver, kidney and gut. The highest expression seems
to occur in the testes. HO-2 may respond to developmental regulation by adrenal
glucocorticoids in the brain, but the expression is not affected by environmental
factors (reviewed in (186, 249)).

A third isoform, HO-3, has only been found in rat brain, liver and spleen (136).
Gene characterisation, however, indicates that there are no functional HO-3 genes
in rat (84).

Currently, numerous studies focus on the potential role of induction of HO-1
and endogenous CO as targets for pharmaceutical applications, utilising the
signalling molecule properties of CO (reviewed in (1, 186, 249)).

7.3 Carboxyhaemoglobin formation

COHBD (%) describes the percentage of the total CO binding capacity of haemo-
globin. COHb (%) can be defined by the following formula:

COHb (%) = [CO content/(Hbx1.389)] x 100

where CO content is the CO concentration (ml/dl) in blood at standard temperature
and pressure, Hb is the haemoglobin concentration (g/dl), and /.389 is the stoichio-
metric combining capacity of CO for Hb (ml CO/g Hb) (96).

Different types of models for predicting COHb formation have been created.
Empirical models may be used to estimate COHb formation as a function of con-
centration and duration of exogenous CO exposure (229).

Mechanistic models are commonly used for COHDb prediction. The most
common and well known model is the Coburn-Forster-Kane (CFK) equation (42):

Vsd[ COHb/dt =V dotco-| COHbP.0o/MB[O,Hb]+P;CO/B

where

B=1/D;CO + P/V dot,

Vs = blood volume (ml) (5 500 ml)

[COHDb] = CO volume/blood volume (ml/ml)

V dotco = endogenous CO production (ml/minute) (0.007 ml/min)

P.O, = average partial pressure of oxygen in lung capillaries (mmHg) (100 mmHg)
M = Haldane affinity ratio (ratio: 218)

[O2Hb] = volume of oxygen/volume of blood (maximum is 0.2)

P,CO = partial pressure of CO in inhaled air (mmHg)

D;CO =pulmonary diffusing capacity for CO (ml/min/mmHg) (30 ml/min/mmHg)
Py = pressure of dry gases in the lungs (mmHg) (713 mmHg)

V dot, = alveolar ventilation rate (ml/min) (6 000 ml/min)
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The values in parentheses indicated for the variables are standard values given
by Peterson and Stewart (167). The binding affinity of CO for human adult Hb is
about 218 times greater than that of O, (60, 182, 185). The Haldane coefficient (M
=210-250) in the Haldane equation presented in 1912 (58) is a measure of this
relationship, and is used in the CFK model.

The CFK equation is linear when the oxyhaemoglobin (O,Hb) concentration is
constant (COHD concentration is low). The model gives a good approximation of
the COHb concentration at a steady level of inhaled CO. However, the linearity
of the relationship also assumes equilibration of COHb concentrations between
venous and arterial blood and gases in the lung, as well as between blood and
extravascular tissues. Various modifications of the CFK model have been created
to take into account physiological aspects in a more accurate way (24, 204, 205).
Modifications for COHb prediction in rats have also been made (22).

As the CFK model does not account for extravascular storage sites of CO, a
multicompartment model was created by Bruce et al (29-31). This model consists
of separate compartments for lung, arterial blood, venous blood, muscle tissue and
non-muscle tissue. Compared to the CFK model, the Bruce et a/ model predicts
COHD levels better when the inhaled CO levels are rapidly changing. It also gives
better predictions of the CO washout time course compared to the CFK model.

The affinity of human foetal Hb for CO is higher than that of adult Hb. Model-
ling maternal and foetal COHb concentrations with a modified CFK model in-
dicates that foetal COHb can be up to 10% higher than the maternal levels. After
treatment with 100% O,, the foetal COHb levels are not reduced as fast as the
mother’s COHD levels (53, 87).

A competitive situation is related to the binding of CO and O, to Hb. The greater
the number of haeme sites bound to CO is, the greater is the affinity of the re-
maining free haeme sites for O,. CO binding to Hb also results in changes in the
normal O,Hb dissociation curve, causing tissues to have difficulties in obtaining
O, from the blood (the so called Haldane effect) (6, 185).

7.4 Factors modifying carbon monoxide uptake and carboxyhaemoglobin
formation

Altitude
At high altitudes, physiological changes occur to compensate the decreased baro-
metric pressure. This can result in hypobaric hypoxia, causing humans to hyper-
ventilate, which then results in reduced arterial blood carbon dioxide, and increased
blood pressure and cardiac output. The compensatory mechanisms also include re-
distribution of blood from blood vessels to extravascular compartments and from
skin to organs. As a general outcome, increased CO uptake and COHb formation
as well as CO elimination can be observed (229).

In a study with human volunteers breathing ambient air, the COHb levels
measured at an altitude of 3 500 meters were significantly higher than at sea level
(0.95 versus 0.79%). The result was similar for both men and women. Breathing
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9 ppm CO at rest at an altitude of 3 500 meters increased the COHb from the basal
level of 0.95% at this altitude to 2.0% (137). On the contrary, the COHb levels
measured in healthy volunteers after exposure to 150 ppm CO combined with exer-
cise at an altitude of 3 000 meters were comparable to or even lower than the levels
observed after the same exposure at sea level (90).

Exercise

During exercise, the respiratory exchange ratio and cardiac output are increased,
red blood cell reserves are mobilised from the spleen and the diffusing capacity
of CO increases. When the gas exchange efficiency increases, the CO uptake is
promoted. As a consequence, the rates of CO uptake and COHb formation are
proportional to the intensity of exercise (229).

Kinker et al studied the CO inhalation kinetics in six male volunteers by ex-
posing them to about 500 ppm CO while changing from rest to increased work-
load levels corresponding to 40%, 60% and 80% of the maximal oxygen uptake
(Vo2max)- Oxygen uptake (Voz), CO uptake (Vo) and diffusing capacity for CO
(DL¢o) were measured. DL¢o increased more steeply than Vo with increased
workload and V¢o rose more steeply than V,. Furthermore, the increase in DLco
plateaued at about 60—-80% Voomax. The faster kinetics of CO compared to oxygen
was interpreted by the authors as a consequence of increased recruitment of
alveolar-capillary surface areas with increased exercise up to about 60% Vozmax,
where after no further recruitment occurs (105).

Gender

Male subjects generally have higher COHb concentrations than females and the
COHBD half-time is longer in healthy men than in women of the same age. How-
ever, the difference in half-time between male and female subjects is usually <6%
(101). Women are showing variations in the COHb levels through the menstrual
cycle, and during pregnancy the endogenous COHb production is increased (52).
No differences in COHb levels between males and females were observed at high
altitude (137).

Age

Age has been shown to have a greater effect on the half-time of COHDb than does
the gender (101). The CO uptake and elimination rates decrease with age. It has
been established that the diffusing capacity for CO decreases with increasing age.
In middle-aged women, the decline in CO-diffusing capacity with age is lower
than in men, but at older ages, the rates are similar (146). The steady state transfer
capacity of the lung for CO has been shown to be about 35 ml/min/kPa/m” in old
persons (76 subjects, average age 82 years), which is approximately 50% of the
capacity observed in younger persons (76, 229).

13



8. Biological monitoring

CO exposure is usually estimated by measuring COHb in blood, which can be
considered as a reliable biomarker. CO in exhaled breath can also be used as
an estimate of CO exposure. The relation between CO exposure and COHb is
affected if exposure to dihalomethanes occurs, and therefore it is important to
check the possibility for such co-exposure.

8.1 Carboxyhaemoglobin levels in blood

The COHD levels of non-smokers are typically <2%. Approximately 0.4-0.7%
is formed through endogenous production of CO (16).

During exogenous exposure to CO, the COHb levels increase based on the
duration time and CO concentrations (see Figure 1).

Non-occupational factors affecting and modifying the basal COHD levels are
for example:
. smoking (COHb may be up to 10% directly after smoking)
. metabolism of dihalomethanes (see below)
. environmental CO exposure
. altitude, exercise, gender, age (see Section 7.4)

Metabolism of dihalomethanes to CO

Dihalomethanes, including dichloromethane (methylene chloride) are industrial
chemicals known to be metabolised to CO via a cytochrome P450 dependent
pathway, both in humans and experimental animals. The metabolism results in
elevated levels of COHDb in the blood and increased levels of CO in expired air.
In addition to CO, carbon dioxide and chlorine (or iodine or bromine) are also
formed (95). Exposure of healthy volunteers to methylene chloride alone at 180
and 350 mg/m’, levels which are within the range of occupational exposure limits
for most countries, for 7.5 hours resulted in COHD levels of 1.9 and 3.4%, re-
spectively (55).

Other sources causing CO formation

Other sources of CO production are for example the HO catalysis of products
of auto-oxidation of phenols, photo-oxidation of organic compounds and lipid
peroxidation of different cell membrane lipids (96).

8.2 Carbon monoxide levels in expired air

The partial pressure of CO in arterial blood is in equilibrium with the partial
pressure of CO in the alveolar gas. COHb levels can be estimated by measuring
CO in breath and by using the CFK relationship (Section 7.3).

As the CFK relationship is based upon attainment of an equilibrium, the results
are always estimates (96).
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Figure 1. COHbD levels for different CO exposure concentration-time combinations
based on the CFK equation, taking into consideration the workload; a) at rest, b) at
light workload, and ¢) at heavy workload. Modified from NRC 2010 and Peterson

and Stewart 1975 (151, 168).
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9. Mechanisms of toxicity

Binding of CO to haemoglobin and replacing oxyhaemoglobin with COHD has
for decades been considered as the main mechanism behind CO toxicity. Studies
during later years do, however, provide evidence that CO poisoning is a combined
effect of COHb formation, direct cellular effects, and increased nitric oxide
activity. Even long after the COHb levels have decreased to a normal level, the
cellular energy metabolism is inhibited. This may explain the observations that
measured COHD levels do not correlate with the severity of clinical effects (28,
103, 169, 170). The proposed mechanisms behind CO toxicity are presented in
Figure 2.

The best known of the pathways behind CO toxicity is the haemoglobin binding,
resulting in hypoxia or ischaemia. Other suggested pathways are the direct cellular
toxic effects and the increased nitric oxide formation. Direct cellular toxicity is
caused by CO binding to other haeme-containing proteins, like cytochromes, myo-
globin and guanylyl cyclase. The clinical outcomes of such protein binding include
arrhythmias and cardiac dysfunction, direct skeletal muscle toxicity and loss of
consciousness. Nitric oxide activity is thought to cause loss of consciousness and
is also important for oxidative damage, which can culminate in increased brain
lipid peroxidation, and a clinical syndrome with delayed neurologic sequelae.
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Figure 2. Proposed mechanisms for CO toxicity; a) Haemoglobin binding, b) Direct

cellular toxicity, and ¢) Increased nitric oxide formation, and their biological and clinical
effects. Modified from Kao and Nanagas 2006 (103).
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Increased brain lipid peroxidation may also be an outcome of the combined effects
of induced nitric oxide levels, hypoxia/ischaemia and direct cellular toxicity. It
has been speculated that this cascade of events may require initiation by an immuno-
logical mechanism, but this has not been confirmed (reviewed in (103)).

The pathophysiological changes seen in relation to CO poisoning are often
similar to those observed with post-ischaemic reperfusion injuries. The same type
of pathology occurs also in the brain when hypoxia, followed by intervals of
ischaemia, is created under circumstances other than CO exposure. The formation
of oxygen radicals during reperfusion has thus been implicated as the major com-
ponent of post-ischaemic brain injury caused by CO (112, 153, 232). Rat studies
showing CO-induced brain lipid peroxidation after, but not during, CO exposure
support this theory (221).

Endogenously produced CO (see Section 7.2) acts as a signalling substance in
the neuronal system. The functions of endogenous CO involve the regulation of
neurotransmitters and neuropeptide release, and it is thought to have an important
role for neuronal activities like odour adaptation, learning and memory (249).

9.1 Haemoglobin binding

The major toxic effect of CO is hypoxia, which is caused by COHb formation
resulting in impaired oxygen carrying capacity of the blood. CO can also cause
injury by causing ischaemia due to impaired tissue perfusion. Both human and
animal studies indicate that myocardial depression, peripheral vasodilatation and
ventricular dysrhythmia, causing hypotension, may contribute to the generation
of neurologic injury (reviewed in (158, 234)).

The most clear-cut mechanism by which CO toxicity occurs is the competitive
binding of CO to the haemoglobin haeme groups (for details, see Section 7.1.1).
When CO is bound at one of the four haeme sites of the haemoglobin molecule,
its tetrameric structure undergoes a conformational change, resulting in an in-
creased affinity of the remaining haeme groups for oxygen. The oxygen-haemo-
globin dissociation curve is shifted to the left and the final result is a haemoglobin
molecule which releases oxygen poorly at the tissue level. The decreased oxygen
delivery is sensed centrally, stimulating ventilator efforts and increasing minute
ventilation. The latter will increase uptake of CO and raise COHb levels. In ad-
dition, exhalation of carbon dioxide increases, resulting in respiratory alkalosis
and further shifting of the oxygen-haemoglobin dissociation curve to the left. The
clinical outcome of COHb formation may be hypoxia or ischaemia, resulting in
ischaemic cardiac and neurological injuries (78, 96, 155, 183, 234).

Oxygen has been used as the main treatment for CO poisoning since the 1860s.
In order to inhibit an induction of tissue hypoxia, the supplementation with 100%
of normobaric oxygen is a critical step. The duration of the oxygen treatment is
dependent of the COHD levels. If arrhythmia, ischaemia or haemodynamic in-
stability occurs despite the therapy with 100% oxygen, treatment with hyperbaric
oxygen (pressure >1.4 atm) should be considered. Hyperbaric oxygen treatment
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increases the partial pressure of oxygen in the blood and the rate of displacement
of CO from haemoglobin (242).

9.2 Direct cellular toxicity and protein binding

CO binds to many haeme-containing proteins other than haemoglobin (37, 86).
Cytochrome binding may result in impaired oxidative metabolism and formation
of free radicals. Inactivation of mitochondrial enzymes and impaired electron
transport from oxygen radicals may also be responsible for the impaired cellular
respiration (225, 251, 252).

Binding of CO to myoglobin causes reduced oxygen availability in the heart,
which can cause arrhythmias and cardiac dysfunction. CO binding to myoglobin
may also result in direct skeletal muscle toxicity leading to rhabdomyolysis, or
indirect muscle toxicity due to local ischaemia (49, 68, 177, 190).

9.3 Increased nitric oxide formation

CO-induced elevation of nitric oxide (NO) has been documented in vivo in both
lung and brain of experimental animals, as well as in different in vitro studies
(bovine lung endothelial cells, human and rat platelets). The elevation of NO
appears to be caused by competition between CO and NO for intracellular haemo-
protein binding sites, and not on an increase in enzymatic production of NO (222,
224,226).

Cerebral vasodilatation, associated with temporal loss of consciousness and
increased NO levels, has been observed in animals exposed to CO. It has thus
been speculated that syncope may be related to NO-mediated low blood flow and
cerebral vessel relaxation (97, 103, 201).

The role of CO-induced NO in the events culminating in oxidative damage of
the brain, and possibly also the clinical syndrome delayed neurologic sequelae,
is presented in Figure 2. NO can affect the adherence of neutrophils to the endo-
thelium resulting in oxidative damage, lipid peroxidation and delayed neurologic
sequelae (97, 221, 223, 225, 251).

9.4 Other mechanisms

CO is known to be a messenger molecule, affecting mechanisms like activation of
cyclic guanosine monophosphate (cGMP), direct activation of calcium dependent
potassium channels, and acting as a signalling molecule in modulating mitogen-
activated protein kinases (MAPKs) (18).
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10. Effects in animals and in vitro studies

10.1 Irritation and sensitisation

No animal studies on irritation or sensitisation caused by CO have been located.

10.2 Effects of single exposure

A number of lethality studies on acute inhalation of CO have been published.
Table 6 summarises lethal concentrations at single inhalation exposure to CO. A
clear inverse relation is seen between exposure duration and lethal concentration
in both rats and mice.

The chemical company DuPont (E.I. du Pont de Nemours and Co) determined
the LCs values for male rats by exposure to CO for 5, 15, 30 and 60 minutes
(Table 6). The exposures were carried out by head-only or in exposure chambers.
The COHD levels were 50—-60% for the rats which died after the treatment (151).

In the study by Rose et al, LCs values were determined for rats, mice and
guinea pigs exposed to CO for 4 hours (Table 6). The COHD levels for animals
that had died were 50-80% and 57-90% for rats and guinea pigs, respectively.
The COHD levels of mice were not reported (184).

Table 6. Lethal concentrations, expressed as LCsy, observed in animals after single
inhalation exposure to carbon monoxide (CO).

LCs value Exposure duration  Species Reference
(ppm) (min)
14200 5 Rat Darmer ef al 1972 in (151)
10151 5 Rat DuPont 1981 in (151)
8636 15 Rat Hartzell et al 1985 (82)
5664 15 Rat DuPont 1981 in (151)
5607 30 Rat Herpol et al 1976 in (151)
5500 30 Rat Kimmerle 1974 in (151)
5207 30 Rat Hartzell et al 1985 (82)
4710 30 Rat DuPont 1981 in (151)
4070 30 Rat Haskell laboratories 1978 in (151)
4670 60 Rat Kimmerle 1974 in (151)
3954 60 Rat DuPont 1981 in (151)
1807 240 Rat Rose et al 1970 (184)
10127 15 Mouse Kishitani and Nakamura 19791in (151)
3570 30 Mouse Hilado et al 1978 (85)
8000 30 Mouse Hilado et al 1978 (85)
2444 240 Mouse Rose et al 1970 (184)
5718 240 Guinea pig Rose et al 1970 (184)

DuPont: E.I. du Pont de Nemours and Co., LCs: lethal concentration for 50% of the animals at
single inhalation exposure.
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The study design and outcome of a number of single exposure studies (exposure
time up to 24 hours) are compiled in Table 7.

Low-dose studies have demonstrated pulmonary vascular effects already after
single exposure to 50—100 ppm CO in rats. Thom et a/ showed that 1 hour of ex-
posure to 50 ppm CO (COHD not reported) resulted in increased rat lung capillary
leakage. Furthermore, elevated nitrotyrosine concentrations in aorta and lung
homogenates and increased nitric oxide levels in the lungs were detected, in-
dicating an induction of pulmonary vascular stress (222, 224). In a study by Ghio
et al signs of direct cellular effects were observed, as 24-hour exposure of rats to
50 ppm CO (COHb 6.9%) resulted in markedly increased levels of lavagable iron
and decreased concentrations of non-haeme iron in the lungs, indicating an active
removal of cellular iron. Similar results were also obtained in vitro in cultured
normal human bronchial epithelium (BEAS-2) cells. The authors stated that the
loss of non-haeme iron after CO reduced cellular oxidative stress (72).

Haemodynamic alterations, occurring as compensatory mechanisms for CO-
induced hypoxia, were observed in rats at higher exposures (150-250 ppm). The
observations included increased heart rate, cardiac output, coronary perfusion
pressure and contractility, and decreased tissue oxygen tension (61, 102, 238).
Reduction of the threshold for ventricular fibrillation was observed both in
dogs (COHD 6.4%) and monkeys (COHb 9.3%) with induced myocardial injury,
but also in healthy animals, after exposure to 100 ppm CO for 2 or 6 hours, re-
spectively (13, 14, 49).

10.3 Effects of short-term exposure (up to 90 days)

Animal studies examining the effects of repeated short-term exposure (up to 90
days) are summarised in Table 8. The main parameters studied are the haemato-
logical, pulmonary and cardiovascular effects.

Many of the older studies focus on haematological effects, occurring as com-
pensatory mechanisms due to the hypoxia induced by CO. These effects include
increased blood volume, haemoglobin, haematocrit, erythrocyte count and erythro-
cyte volume, and have been observed for example in rats at >7.5% COHb and in
monkeys at >10% COHD (50, 100, 156, 157).

Exposure of rats to 50 ppm CO for up to 21 days under hypobaric condition re-
sulted in increased pulmonary vascular resistance and increased number of small
muscular vessels. No such effects were seen when the exposure was carried out
under normobaric condition (36).

Alterations in cardiac rhythm have been followed in a number of studies, also
involving animals with induced myocardial ischaemia. Right ventricle ischaemia
and dysfunction were observed in rats with pulmonary hypertension after expo-
sure to 50 ppm CO (COHDb 4.1%) for 1 week (71). Continuous exposure of healthy
dogs to 50 or 100 ppm CO for 6 weeks caused significant histopathological
changes in the brain. Both doses also caused alterations in the cardiac rhythm,
heart dilation, and small histological alterations, like fatty degeneration of the
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heart muscle (172). DeBias et al exposed two groups of dogs, healthy ones and
dogs with induced myocardial infarction, to 100 ppm, 23 hours/day for 14 weeks
(COHD 14%). Neither group showed any signs of abnormalities in electrocardio-
grams, serum enzymes or haematological parameters (51). Exposure of monkeys
(100 ppm, 23 hours/day, 12 or 24 weeks; COHb 12%), on the other hand, resulted
in significant cardiac effects. Electrocardiograms showed higher P-wave ampli-
tudes in both infarcted and non-infarcted monkeys, and higher incidence of T-
wave inversion in infarcted monkeys (50).

In some reports it has been suggested that CO might induce changes in lipid
metabolism, resulting in atherosclerosis, or that atherosclerosis could be promoted
by CO-induced oxidative stress, causing injuries of the vascular epithelium (229).
In the evaluation by US EPA it was concluded that there is conflicting evidence,
but that based on the weight-of-evidence there are no strong indications that CO
exposure would result in atherosclerosis (229).

10.4 Mutagenicity and genotoxicity

No genotoxicity studies performed according to standard protocols were retrieved.
The genotoxic potential of CO was tested in pregnant ICR mice. One group of
animals was given a single exposure of 0, 1 500, 2 500 or 3 500 ppm CO for 10
minutes during gestation day 5, 11 or 16. The other groups were repeatedly ex-
posed to 0 or 500 ppm CO for 1 hour/day on gestation days 0-6, 7-13 or 14-20.
The incidence of micronuclei and sister chromatid exchanges in bone marrow
cells from animals in the first group showed a dose-dependent increase in both
maternal and foetal cell samples. These effects were also observed in both
maternal and foetal samples from the repeatedly exposed group (500 ppm) (115)
(see also Table 9). Some concern can be raised regarding the validity of the
report, e.g. timing between exposure and cell harvesting and timing between
labelling of the cells for the sister chromatid exchange assay and cell sampling.
No other valid studies were found.

10.5 Effects of long-term exposure and carcinogenicity

No carcinogenicity studies were retrieved. Serhaug et al exposed 51 female rats to
200 ppm CO for 72 weeks (Table 8). The mean COHb concentration was 14.7%.
No changes in morphology of the lungs, but significantly increased left and right
ventricle weights, were reported (220).
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10.6 Reproductive and developmental effects

A large number of studies on the developmental effects of exposure during the
gestational or early postnatal period have been published (Table 9).

Exposure of rabbits to 90 ppm CO throughout gestation resulted in decreased
birth weights and increased neonatal mortality (15). Decreased birth weights
were also observed among rats exposed to CO concentrations of 100—-150 ppm
or higher during the gestational period (62, 129, 173). The pups of rats exposed
to 75-300 ppm CO throughout the gestation and until postnatal day 10, showed
dose-dependently decreased body weights at 10 days of age (211).

Adverse effects of CO on the development of the central nervous system have
been observed in many studies. Impairment of aerial righting was observed at
postnatal day 1 in mice pups exposed to 65 ppm or 125 ppm CO during pregnancy.
Impairment of the righting reflex and negative geotaxis were observed in the pups
of the 125 ppm-group on postnatal days 1 and 10, respectively (199). Delays in
the development of negative geotaxis and homing behaviour were seen in rat pups
of dams exposed throughout the gestation to 150 ppm CO (63). Exposure to 150
ppm CO throughout gestation resulted also in impairment of acquisition and
retention of a learned active avoidance task in male rat pups at postnatal days 30—
31 (133). De Salvia et al showed impairment of acquisition of a two-way active
avoidance task in 90-day-old rats and impairment of acquisition and reacquisition
of a two-way active avoidance task in 18-month-old rats after exposure of the
mothers to 150 ppm CO throughout gestation. No effects were seen in a lower
dose group (75 ppm) (48).

In a study on the developing peripheral auditory system of rats exposed to CO
on postnatal days 822, swollen nerve terminals innervating the inner hair cells
were observed at 25 ppm. No morphological differences were observed in the
inner and outer hair cells of the organ of Corti. No effects were seen at 12 ppm
(125). When studying the expression of neuroglobin and cytochrome ¢ in the
cochlea of the developing rat, Lopez et al observed a decrease in neuroglobin
immunoreactivity and mRNA in the spiral ligament cells and spiral ganglia
neurons but not in supporting cells after prenatal only or pre- and postnatal ex-
posure to 25 ppm CO. Cytochrome ¢ immunoreactivity decreased in the spiral
ligament, spiral ganglia neurons and also in supporting cells. No significant
changes were observed in rats exposed postnatally only (128). In a study on ox-
idative stress in the cerebellum of the developing rat, three study groups were
included: prenatal only, prenatal and postnatal, and postnatal only exposure of rats
to 25 ppm CO. Evidence for oxidative stress was seen in all groups, as indicated
by increased expression of superoxide dismutase-1 and -2, and HO-1 in the cere-
bellar cortex and by an increase in inducible nitric oxide synthase and nitrotyrosine
in blood vessels and Purkinje cells. The most marked effects were observed after
prenatal or pre- and postnatal exposure (127). The same parameters related to
oxidative stress were investigated in the cochlea of rats exposed to 25 ppm CO
prenatally or pre- and postnatally. Superoxide dismutase-1 and HO-1 immuno-
reactivity increased in the stria vascularis and blood vessels in pups exposed pre-
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and postnatally, but not in those exposed only during pregnancy. Inducible nitric
oxide synthase and nitrotyrosine immunoreactivity increased in blood vessels of
the cochlea of rats in both exposure groups. Vacuolisation of the afferent terminals
at the basal portion of the cochlea was observed in both exposure groups (126). The
same research group also investigated the effects of 25 ppm CO on the expression
of neuroglobin and cytoglobin, which are potentially protective against hypoxia
and oxidative stress. The mRNAs of neuroglobin and cytoglobin in the cerebellum
were not affected in any of the exposed groups (prenatal only, pre- and postnatal,
and postnatal only), but the cytoglobin protein levels were significantly increased
in each of the exposed groups. This indicates that cytoglobin may play a role in
protecting cerebellar cells from hypoxia-related oxidative stress (20). Few animals
were used and the clinical relevance of the changes in protein levels is unclear.

The same research group also studied the effects of mild CO exposure on audi-
tory function. Exposure of newborn rats to 12, 25, 50 or 100 ppm on postnatal
days 6-22 resulted in an attenuation of the amplitude of action potential of the 8"
cranial nerve. At the age of 73 days, the effect was not completely reversed in the
50 ppm group (not examined in the other groups). The authors stated that this re-
duction could affect the processing of auditory input, and could be a link to a mild
form of the disorder auditory neuropathy, if exposed to CO during childhood. The
otoacoustic emission amplitude was reduced at 50 ppm, but not at 25 ppm (not
examined at 12 ppm). Auditory brainstem conduction times did not differ from
those of the control animals in any of the study groups (208).

Exposure of rat pups to 12.5, 25, and 50 ppm CO, using the same protocol as
in the study above (208) caused a significant decrease in the number of cells ex-
pressing a basal level of c-Fos in the central nucleus of the inferior colliculus.
The expression of c-Fos was not attenuated in the other subregions of the inferior
colliculus. At 75-77 days of age (55 days after the ending of the exposures), the c-
Fos expression was still significantly lower than in the control animals. The authors
concluded that this indicates a persistent effect. c-Fos belongs to the immediate
early gene family of transcription factors. Its expression is increased by sound
stimulation, and it is considered as a good marker for neuronal activation in the
auditory system. However, the persistent decrease in basal c-Fos activity from
CO exposure may not necessarily indicate that the central nucleus of the inferior
colliculus is the location of the deficit (236).

CO also affects the development of the peripheral nervous system of the off-
spring of exposed dams. Significantly reduced myelin sheath thickness of sciatic
nerve fibres was observed in rats after exposure to 75 ppm or 150 ppm CO during
gestation days 0-20. No changes in axon diameters or motor activity were ob-
served (33). Another study, with the same exposure pattern (75 and 150 ppm on
gestation days 0-20), showed effects on ion channel development, as indicated
by significantly slowed inactivation kinetics of transient sodium current in sciatic
nerves isolated on postnatal day 40. A negative shift in sodium equilibration
potential was observed both on postnatal days 40 and 270 (35).
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Decreased haemoglobin and haematocrit values were observed in rats after
exposure to 200-250 ppm CO throughout the gestation (160, 173). Gestational
exposure (60—157 ppm) resulted also in a dose-related increase in absolute and
relative heart weight of newborn rat pups (162, 173).

10.7 Combined exposures

The auditory effects of CO have recently been reviewed (99). In rat inhalation
studies, CO alone did not affect the auditory function in adults at concentrations
up to 1500 ppm (no observed adverse effect level, NOAEL). However, it can
potentiate the effects of noise even when noise levels alone would not cause a
change in hearing. In combination with excessive noise (100 dB at 13.6 kHz
OBN), the experimental NOAEL was 300 ppm and the lowest observed adverse
effect level (LOAEL) 500 ppm. The calculated lower bounds for benchmark
doses of CO that produced either an increase in auditory threshold equivalent to
10% of the effect of noise alone (100 dB at 13.6 kHz OBN) or produced a 5-dB
potentiation of noise-induced hearing loss were 194 and 320 ppm (LOAELS),
respectively (38, 64, 99).

Dihalomethanes are known to be metabolised via a cytochrome P450 dependent
pathway to CO and to induce the CO levels, and an additive effect on blood COHb
concentration by simultaneous exposure to CO and dichloromethane has been
observed (95, 114).

Animal studies with combined exposure to CO and hydrogen cyanide indicate
a synergistic effect (141, 149, 171). Dodds et al observed a synergistic effect
for neurologic index and blood glucose concentration in rats exposed to CO and
hydrogen cyanide. No synergistic relationship was observed with respect to hae-
matocrit, blood pressure, body temperature or lactate concentration (56).

CO has been shown to inhibit the oxidation of acetonitrile to cyanide in rats (66,
69).
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11. Observations in man

11.1 Irritation and sensitisation

No studies or reports on skin, eye or respiratory irritation in humans have been
found. Based on its chemical and physical properties and the lack of reports, CO
is not likely to be irritating at relevant exposure levels.

No studies or reports on dermal sensitisation have been found. Based on its
chemical and physical properties, CO is not likely to be a skin sensitiser.

11.2 Effects of single and short-term exposure

11.2.1 Acute poisoning

CO intoxication resulting in COHDb levels of 50-60% is often lethal. However,
much lower concentrations of CO may cause lethality in susceptible subgroups,
primarily persons with coronary artery disease and foetuses. Patients with severe
coronary artery disease may die, due to coronary events, if their COHD levels are
around 20% (96, 151).

The acute symptoms depend on the CO concentration and the exposure duration.
Exposure to low CO levels may result in subtle changes in time discrimination,
visual vigilance and choice response. The symptoms observed after exposure to
high concentrations of CO include severe headache, dizziness, nausea, vomiting,
mental confusion, visual disturbances, reddening of the skin, compartment
syndrome (increased pressure within muscles, leading to decreased blood flow
and lack of oxygen), fatigue, hypotension and coma (59). The main symptoms
occurring at different COHD levels are summarised in Table 10. The effects
observed in healthy individuals are grouped separately from the effects in risk
groups. The main susceptible subgroups for non-lethal CO effects are patients
with coronary artery disease and children.

Acute poisoning cases have been reported in relation to CO exposure in closed
rooms, like wood pellet storages and the hatches in ships and warehouses (5, 81,
216-218).

11.2.2 Effects in children
Retrospective data is available from some case studies on children accidentally
exposed to CO.

A total of 564 persons, of whom 504 children, were exposed to CO in an ele-
mentary school due to a CO leak. One third of the children (n=177) (mean age
8.7 years) were examined at one hospital and their mean COHb level was shown
to be 7.0%. Of these 177 children, 139 reported headache, 69 nausea, 30 dizziness,
19 dyspnoea, 13 vomiting, 11 abdominal pain and 9 drowsiness. The authors con-
cluded that there was a correlation between the COHb concentrations and total
number of symptoms reported (109).
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Table 10. Acute effects related to CO exposure in healthy adults and susceptible sub-
populations at different COHb levels. Taken from IPCS 1999 and NRC 2010 (96, 151).

COHb%  Effects

Background concentrations

cal Physiological background concentration.

3-8 Background concentration in smokers.

Effects observed in healthy adults

10 Shortness of breath on vigorous exercise, dilation of cutaneous blood vessels,
possible tightness across the forehead.

20 Shortness of breath on moderate exercise, occasional headache.

30 Headache, irritability, disturbed judgement, possible dizziness, dimness of
vision.

40-50 Headache, confusion, collapse, fainting on exertion.

60-70 Unconsciousness, intermittent convulsion, respiratory failure. Death if exposure
is long continued.

80 Rapidly fatal.

Effects observed in susceptible subpopulations

2 Reduced time to onset of angina and signs of myocardial ischaemia after
physical exercise in persons with coronary artery disease.

5-6 Increase in cardiac arrhythmias in persons with coronary artery disease.

7 Headache and nausea in children.

13 Cognitive development deficits in children.

15 Myocardial infarction in persons with coronary artery disease.

25 Syncopes in children.

25 Stillbirths.

CO: carbon monoxide, COHb: carboxyhaemoglobin.

In a study analysing 16 children with CO poisoning (mean age 7.0 years,
COHb > 15%) the following symptoms were reported: nausea (16/16 patients),
vomiting (12/16), headache (13/14), lethargy (11/16), visual problems (3/14), at
least one syncopal episode (9/16) (45).

More examples on case studies on children are presented in NRC 2010 and
White 2000 (151, 241).

The observations in human studies are supported by a large number of animal
studies indicating developmental effects at relatively low doses. In conclusion,
children can be regarded as being more sensitive towards the hazardous effects
caused by CO.

11.2.3 Cardiovascular and circulatory effects

Studies on the cardiovascular effects of CO in adults are summarised in Table 11.
The reports include controlled exposure studies in healthy persons and in patients
with diagnosed cardiovascular disease, as well as one study of a group exposed
occupationally.

The clinical studies carried out with healthy subjects were mainly focusing on
exercise performance after acute CO exposure. Davies and Smith exposed healthy
volunteers to CO for 8 days continuously in indoor air in a closed exposure room.
Smoking was not allowed during the experiment, or three days before it began.
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The electrocardiograms of 3 of 15 subjects exposed at 15 ppm CO (COHb 2.4%)
showed P-wave deviations and the same effect was observed in 6 of 15 subjects
exposed at 50 ppm CO (COHb 7.1%). The smoking status of the subjects was not
reported (46). In the evaluation by ATSDR it was concluded that the interpretation
ofthese effects is limited due to lack of statistical analyses and data on confounding
factors (e.g. smoking) (16). Unspecific P-wave changes are quite common and may,
for example, occur as a result of stress. The clinical relevance of these changes is
not clear, therefore the effects observed in the study by Davies and Smith (46)
cannot be considered as adverse effects.

Horvath et al exposed 4 healthy male volunteers to 75 or 100 ppm CO in an
environmental exposure chamber resulting in COHb levels of 3.4% and 4.3%,
respectively. After exposure, the volunteers participated in an exercise challenge
test. The CO exposure caused decreased lung ventilation at maximum performance
at both exposure levels and decreased maximal aerobic capacity (Voomax) at 4.3%
COHD only. No signs of abnormalities in electrocardiograms were observed (91).
No explanation for the decreased lung ventilation was given. The COHb of 4.3%
is taken as the LOAEL.

Adir et al exposed 15 healthy male volunteers to a high concentration of CO
for 4 minutes resulting in COHb levels of 5.1%. In the exercise test following the
exposure, decreased exercise duration and maximal effort were observed. No
arrhythmias, ST-segment changes or changes in myocardial perfusion were de-
tected (4). Similarly, Kizakevich et al reported that CO exposure of 16 healthy
male volunteers resulting in COHb levels of 5.0%, did not induce any exercise-
induced ST-segment changes or other signs of cardiac arrhythmias, which have
commonly been observed among coronary artery disease patients exposed to CO
(107). In the evaluation by US EPA (229) it was concluded that in the controlled
studies with healthy volunteers, the reported reductions in maximal exercise
duration and performance were small, and thus likely to affect only competing
athletes.

The controlled exposure studies on patients with exertional angina clearly in-
dicate an induction of symptoms, as measured by evaluating the effects on several
different parameters. The lowest COHb level at which significant symptoms
occurred was 2.4%. At this concentration, Allred et al observed decreased time
to onset of angina symptoms, time to onset of ischaemic ST-segment changes (in-
dicative of myocardial ischaemia) and mean duration of exercise (7, 8). A number
of other studies on patients indicate similar results at COHb levels between 2.9
and 5.9% (3, 9, 12, 111). However, Sheps et a/ did not observe any change in time
to onset of angina, ST-segment depression, heart rate, blood pressure or exercise
duration in patients exposed to CO (COHb 4.1%) compared to the same subjects’
responses to air exposure (196).

Significantly increased number of ventricular arrhythmias and increased heart
rate during exercise were observed in exercise challenge tests with angina patients
(COHD 5.9%) (197). In contrast, another study did not show any effects on fre-
quency of arrhythmias in patients after CO exposure resulting in 5.8% COHD (88).
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11.2.4 Central nervous system and behavioural effects

Central nervous system effects occur commonly in acute CO poisoning cases
(COHDb >20%), and have unambiguously been demonstrated in humans (see
Section 11.2.1). The central nervous system effects after exposure to lower con-
centrations are less known, and available study results are inconsistent.

Studies of central nervous system effects of controlled CO exposure have mostly
been carried out with healthy volunteers, mainly at COHb concentrations of 5-20%,
and the study results include observations on decreases in visual and auditory
vigilance and visual tracking (229). Benignus performed extensive meta-analyses
of the available CO-behavioural literature and concluded that 18-25% COHb
would be required to produce a 10% decrement in behaviour (21). Furthermore,
Benignus concluded that the studies focusing on CO induced effects on behaviour
suffer from some technical problems, as single-blind and non-blind experiments
tend to show a much higher rate of significant effects than do double-blind studies
(21). The same authors concluded in another literature review that COHb should
not be expected to produce behavioural effects at concentrations lower than 20%
(175).

Benignus and Coleman estimated using a whole-body human physiological
model that the brain aerobic metabolism remains unaffected at COHb levels <25%
in healthy subjects. A similar simulation of the situation in subjects with stenosis
showed that the brain aerobic metabolism, which might affect behaviour, was
impaired immediately as COHD increased above the baseline. No threshold level
could thus be identified for these types of patients (23).

The effect on visual luminance and contrast detection was studied by a battery
of visual tests in healthy male volunteers exposed to CO. At a COHD level of
15.8-19.8%, no effects on the studied parameters were observed (92).

In the study by Aronow et al, 20 men with diagnosed cardiovascular disease
were exposed to 100 ppm CO resulting in 3.9% COHb (mean) and to compressed
air under the same exposure conditions on another day (double-blind, randomised,
crossover study). After the exposure, the effect of CO was evaluated by carrying
out a set of performance tests, including seven measures of higher mental pro-
cesses, the critical flicker fusion test, and one measure of reaction time. The results
showed impairment in the visualisation test performance (P < 0.001). In that test,
the ability to visualise the contemplated outcome of objects manipulated in space
was followed. Perceptual speed, flexibility of closure, number facility, digit symbol,
time perception, flicker fusion, or reaction time tests did not indicate any effects
of CO (11).

It can be concluded that relatively high doses of CO may cause central nervous
system and behavioural effects. The majority of the studies are also focusing on CO
poisoning or exposure to high concentrations of CO. Due to lack of valid reports
on studied performed at low CO concentrations it is not possible to establish a
dose-response relationship or to identify a reliable NOAEL for central nervous
system effects caused by CO.

45



11.3 Effects of long-term exposure

Chronic CO poisoning is generally characterised by headache, dizziness and tired-
ness. CO poisoning was commonly occurring during the World War II, due to the
use of wood as fuel for generator vehicles. These cases are uncommon nowadays,
although some case reports have been found. Tvedt and Kjuus reported on a crane
driver at a smelting works, who developed permanent symptoms after 20 years of
exposure. Long-lasting symptoms have also been observed in residents exposed to
CO due to a faulty oil fired central heating system (228).

Electrocardiographic changes among indoor barbeque workers occupationally
exposed to CO (mean work duration 15.6 years) were investigated by Sari ef al.
The average COHb level among the exposed was 6.5%, whereas the corresponding
value in the control group was 2.2%. Several electrocardiographic parameters
differed between the groups with increased values for maximum P-wave duration,
P-wave dispersion, maximum QT interval, QT dispersion and corrected QT disper-
sion in the exposed group. Significant correlations were found between COHb and
P-wave dispersion, maximum QT interval, QT- and corrected QT dispersion (191).
However, no exposure measurements other than COHb were carried out in this
study, and therefore it cannot be ruled out that the electrocardiographic distur-
bances were caused by other environmental pollutants.

Many studies focusing on air quality and pollution have also evaluated the pres-
ence of asthma among study subjects. Positive associations between long-term
exposures to CO and asthma or asthma symptoms were observed in population
studies among 6—16-year-old children in Taiwan and Germany (77, 89, 94, 233).
Hirsch et al concluded that the increased prevalence of cough and bronchitis was
related to exposure to traffic-related air pollutants (i.e. NO,, CO and benzene) (89).
Hwang et al conducted a co-pollutant analysis and concluded that long-term expo-
sure to traffic related air pollutants (NOy, CO and Os) increased the risk of asthma
in children, and that the risk of asthma was not related to the levels of PM( (particu-
late matter with acrodynamic diameter up to 10 um) and SO, (94). However, there
is a strong correlation between NOy and NO; and CO, making it difficult to separate
the effects attributed to each pollutant. The other reports either did not interpret
the association between long-term exposure to CO and adolescent asthma (233) or
concluded that it is unlikely that CO directly affects the respiratory system (77).

The effects of long-term exposure to air pollutants and the prevalence of allergic
rhinitis were studied among school children in Taiwan. An association between
CO, but also NOy, exposure and allergic rhinitis was observed (93, 120).

11.4 Combined exposure

The principal mechanism underlying the hypoxic effects of CO is the binding
to haemoglobin and myoglobin and concomitant displacement of O, (see also
Chapter 7) (30, 31, 247, 248). Decreased levels of O, facilitates CO binding,
whereas increased O, concentration in inspired air reverses the binding, thereby
increasing the elimination rate of CO.
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Methylene chloride and other dihalomethanes are metabolised to CO in the
body (see Section 8.1). Therefore, combined exposure to dihalomethanes and CO
results in COHD levels which are higher than could be expected based on the CO
exposure alone (95).

Acute human CO poisoning has been associated with hearing loss, despite lack
of excessive noise exposure. However, most field studies lack noise exposure esti-
mates. It is therefore not clear if noise exposure is a prerequisite for the auditory
effects seen following long-term occupational exposure to CO. In a study analysing
6 812 audiograms, exposure to CO and noise levels below 90 dBA had no effect
on hearing thresholds, whereas workers who were exposed to CO and noise levels
above 90 dBA displayed significantly poorer hearing thresholds at high frequencies
(CO levels not given) (conference proceedings cited in (99)). In a small subset
(two subjects), the adjusted ORs for audiometric hearing loss were significant for
exposures in the 16 to 35 ppm range in combination with noise exposure (reviewed
by (99)).

There is no direct information available on CO interactions with drugs, but some
studies provide data on the effects of combined exposure to CO and alcohol. In
the report by IPCS, it was concluded that there is some evidence that CO toxicity
may be enhanced by drug use, and also that the toxicity of other drugs may be
altered after exposure to CO (96). Enhanced CO induced central nervous system
toxicity has been reported at concomitant intake of barbiturates, amphetamine,
chlorpromazine, nicotine, diazepam and morphine. Drugs used to treat patients
with coronary artery disease might also affect the susceptibility to CO (229).

Rockwell and Weir investigated interactive effects of CO and alcohol on actual
driving and driving-related performances in young non-smoking college students.
Combined exposure (resulting in COHb levels of 0, 2, 8 and 12% and blood alco-
hol levels of 0.5%o) caused perceptual narrowing and decreased eye movement.
The effects of CO and alcohol were often additive. At the 12% COHb level, a
supra-additive interaction between CO and alcohol was observed, indicating
effects many times higher than would have been expected by summarising the
effects caused by CO and alcohol separately (96, 181).

11.5 Genotoxic effects

Only one study focusing on the potential of CO to induce genotoxic effects has
been found.

Orztiirk et al studied the frequency of sister chromatide exchanges among non-
smoking persons visiting the emergency room due to acute CO intoxication,
caused by dysfunctioning coal or wood stoves. A significant increase in the mean
frequency of sister chromatide exchanges was observed among the CO-exposed
group as compared to the healthy non-smoking controls. No dose-response cor-
relation was seen between COHb level and frequency of sister chromatide ex-
changes (154).
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11.6 Carcinogenic effects

No data on carcinogenic effects of CO have been found.

11.7 Reproductive and developmental effects

11.7.1 Effects on fertility
No data have been found related to fertility effects of CO.

11.7.2 Developmental effects

CO is transferred to the foetus via the placenta, and foetal haemoglobin has higher
affinity for CO than maternal haemoglobin. Therefore, it is not possible to assess
the severity of foetal intoxication based on the state of the mother. The rate of
COHBb formation and dissociation differs between the mother and the foetus, re-
sulting in a delay in foetal CO elimination and a prolonged exposure (16, 96).

High doses of CO may result in preterm birth, developmental disorders, reduced
foetal growth or even foetal death (16, 96). Epidemiological data also show some
evidence that exposure to CO via ambient air pollution during early pregnancy
may be associated with an increased risk of preterm birth or with reduced birth
weight. However, the interpretation of epidemiological studies is often complicated
due to lack of specific exposure level data during particular periods of gestation.
There is usually a clear correlation between ambient CO concentrations and other
air quality variables that may affect developmental outcomes which should also
be considered. Therefore, based on the available epidemiological data, it is not
possible to make any conclusions on dose-response relationships, or to define any
safe levels of exposure (16, 87, 96, 124).

In the assessment by US EPA, a large number of epidemiological studies of
birth outcomes and developmental effects in relation to ambient CO exposure
among the general population were reviewed. It was concluded that there is some
evidence that ambient CO exposure during the first trimester is associated with
preterm birth. A relationship between reduced foetal growth and CO levels was
also suggested. However, there was an inconsistency concerning the results on
the correlation between CO and the parameters “low birth weight”; “intrauterine
growth restriction”; and “small for gestational age” obtained in the different
studies (230).

Some of the most extensive retrospective cohort studies were conducted in
California by Ritz et al (178-180, 245). The mean air CO concentrations ranged
from 0.75 to 2.4 ppm. The cohorts included 97 000 births in 1989—1993 and
106 000 births in 1994-2000. In the study by Ritz and Yu published 1999, ex-
posure to > 5.5 ppm CO (3-month average) in the outdoor air during the last
trimester was associated with a significantly increased risk of low birth weight
(odds ratio 1.22, 95% confidence interval (CI) 1.03—1.44). The relative risks of
preterm birth, low birth weight and congenital anomalies were estimated after
adjustment for other risk factors and ambient air concentrations of NO,, O3, and
PM,. The relative risk of preterm birth was estimated to be 1.12 (95% CI 1.04—
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1.21) per 3 ppm increase in CO during the last 6 weeks of pregnancy (180). In the
follow-up, a relative risk of 1.10 (95% CI 1.03—1.08) per ppm increase in air CO
during the last 6 weeks of pregnancy was obtained when no adjustment was made
for PM. No significant association was seen, however, when the results were
adjusted for PM (relative risk 0.98; 95% CI 0.83—1.18) (245). When considering
the correlation between CO and low birth weight, and including NO,, O3, and PM
in the model, an elevated risk was observed in the first study, covering 126 000
births (179), but not in a follow-up (245).

Sixty case reports related to CO exposure, pregnancy, and teratogenicity were
evaluated by Norman and Halton. Among the 60 cases, there was only one de-
scription of an acute occupational CO exposure affecting pregnancy (32). CO
exposure was not related to occupational situations in any of the other cases. In
the studied cases, there was a direct relationship between foetal effects, maternal
COHb and maternal toxicity. Norman and Halton concluded that, although no
such cases have been reported, there is a risk of occupationally related develop-
mental toxicity of CO, as exposure to CO is very likely at certain working places
(148).

In a prospective study, data on the foetal outcome following accidental CO poi-
soning during pregnancy were collected and followed. The main conclusion was
that no indications of adverse effects could be observed among the babies of the
mothers (n=31) with mild signs of CO poisoning (COHb range 0.8—18%). Among
the mothers suffering from severe CO poisoning (COHb =21-50%) during preg-
nancy (n=>5), two were giving birth to babies with no signs of developmental
effects, whereas the babies of three of the mothers showed developmental delays
during follow-up examinations (113).

12. Dose-effect and dose-response relationships

The main mechanism behind CO-induced toxicity has for long times been known
as the binding of CO to haemoglobin, resulting in COHb formation and hypoxia.
The relations between CO in air and the subsequent COHb levels are also well-
known, and can be calculated using the CFK equation for rest or during exercise
(42).

Endogenous CO formation leads to a background COHb concentration in blood
of about 0.4-0.7%. Non-smokers typically have COHb levels up to 2% whereas
smokers may have COHb levels up to 10% immediately after smoking (16).

Studies examining acute health effects of low CO levels have focused on organ
systems particularly vulnerable to hypoxia, including the heart and the brain.
Patients with coronary artery disease as well as the developing foetus appear
especially sensitive to CO.

Human studies
The effects of single/short-term exposure to CO (summarised in Table 11) have

been investigated in several controlled exposure studies in healthy volunteers
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and patients with coronary artery disease. Generally, the CO exposures were de-
signated to reach target blood COHb levels between 2 and 6% and cardiovascular
function assessments were made during exercise challenge.

In controlled exposure studies of healthy volunteers, CO exposures producing
COHbD levels between 3.4 and 5.1% have been related to effects on exercise per-
formance including decreased lung ventilation at maximum performance, decreased
maximal aerobic capacity, decreased maximal effort and decreased exercise dura-
tion (4, 91). Exposure to CO (COHD levels up to 5.1%) was not observed to induce
myocardial ischaemia or cardiac arrhythmias (4, 91, 107).

In a large controlled exposure study of patients with coronary artery disease,
CO exposures resulting in COHb concentrations of 2.4% (lowest concentration
evaluated) and 4.7% significantly reduced the time to onset of angina symptoms
and of ST-segment changes during exercise in a dose-dependent manner (7, 8).
Other studies on patients have also shown that CO exposure (COHb 2.9-5.9%)
aggravated exercise-induced myocardial ischaemia including decreased time to
onset of angina symptoms, decreased time to onset of ST-segment changes and
increased duration of angina symptoms (3, 9, 111). In another study on patients,
no change in time to onset of angina and of ST-segment changes were observed at
a COHD of 4.1% (196). At a COHD level of 5.9%, but not at 4.0%, an increase in
number of ventricular arrhythmias was reported (197). In contrast, no such effect
was seen in another study on patients at same COHb level (5.8%) (88).

Behavioural effects, including decrease in visual and auditory vigilance and
visual tracking, following controlled CO exposures resulting in COHb levels
between 5 and 20% have been observed in healthy subjects. The findings have,
however, not been consistent across studies and dose-response relationships have
not been firmly established (229). In the only study conducted on patients with
coronary artery disease, impaired performance in a visualisation test following
controlled CO exposure resulting in a COHb level of 3.9% was observed. Other
performance tests did not indicate any effects of CO at this level (11).

Effects in individuals suffering acute CO poisoning cover a wide range, de-
pending on severity of exposure (Table 10). At COHD levels of 20%, the effects
observed are mild, like shortness of breath during exercise or occasional headache.
At higher levels (COHb >30%) symptoms include headache, dizziness, disturbed
judgement, dimness of vision, confusion, unconsciousness, intermittent convulsion
and respiratory failure. COHb levels of 50-60% are often lethal. For patients
with coronary artery disease, COHb levels around 20% may be lethal. Children
appear also to be particularly vulnerable to CO and experience headache and
nausea already at COHD levels of 7%. At higher levels, cognitive development
deficits (COHb 13%) and syncopes and stillbirths (COHb 25%) have been re-
ported (96, 151).

In studies investigating health effects of occupational and environmental ex-
posures to CO, the presence of other pollutant gases and particles hamper the
interpretation. The utility of these types of studies for establishing dose-response
relationships is therefore limited.
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Animal studies

The findings in the animal studies (summarised in Tables 7 and 8) are consistent
with those in humans, indicating effects on the cardiovascular and the central
nervous systems.

Brief exposure to CO increased myocardial ischaemia (as indicated by ST-
segment alteration) in coronary artery ligated dogs at a COHb level of 4.9% and
increased further with increasing CO exposure (19). In another study, single CO
exposure (COHb 6.4%) reduced the threshold for ventricular fibrillation in healthy
dogs and in dogs with myocardial injury (13, 14). This effect was also seen in
healthy and infarcted monkeys following single exposure to CO (COHb 9.3%)).
The cardiovascular disease made the animals more vulnerable to CO exposure,
i.e. the voltage required to induce fibrillation was lowest in infarcted animals
breathing CO (49).

Abnormal cardiograms were observed for dogs exposed to CO for 6 weeks
(COHD 2.6-12%) and monkeys exposed for 24 weeks (COHb 12.4%) (50, 172).
In contrast, no sign of such abnormalities was seen in a study on dogs exposed to
CO for 14 weeks (COHb 14%) (51). Exposure to CO for 30 days (COHb 15.8%)
or for 72 weeks (COHb 14.7%) induced cardiomegaly in rats (156, 157, 220).
Haematological effects, occurring as compensatory mechanism due to hypoxia,
including increases in haemoglobin and/or haematocrit following repeated ex-
posure CO, were seen in rats at COHb > 7.5% and in monkeys at COHb > 10%
(50, 100, 156, 157).

Gestational and early postnatal exposures to CO have been shown to cause ad-
verse effects in e.g. the central and peripheral nervous system, in behaviour and
the cardiovascular system (Table 9). Effects on the developing auditory system,
i.e. a consistent attenuation of the amplitude of action potential of the 8" cranial
nerve, were observed in newborn rats exposed from 12 ppm (lowest dose tested,
estimated to correspond a COHDb level of 2%) up to 50 ppm on postnatal days
6-22 (208). Using the same protocol, decreased c-Fos immunoreactivity in the
central inferior colliculus (marker for neuronal activation in the nervous system)
was observed over all dose groups (12.5, 25 and 50 ppm) (236). Furthermore,
CO exposure of newborn rats caused swelling of the nerve terminals innervating
the inner hair cells of Corti at 25 ppm but not at 12 ppm (125) and decreased oto-
acoustic emission at 50—100 ppm but not at 25 ppm (208). Gestational exposure of
rats to 75 ppm CO caused effects in offspring peripheral nervous system including
reduced myelin sheath thickness of sciatic nerve fibres (33, 35).

Gestational exposures to CO have also been shown to impair multiple be-
haviour outcomes in offspring including aerial righting (65 ppm CO, mice),
negative geotaxis (125 ppm, mice), homing behaviour (150 ppm, rats) and
avoidance behaviour (150 ppm, rats) (48, 63, 65, 199).

Cardiovascular effects have also been observed in offspring of dams exposed
during gestation from 60 ppm CO (i.e. cardiomegaly) (173) and higher (Table 9).
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In addition, there are consistent data showing that gestational exposure to CO
significantly decreased birth weight in a dose-related manner in rabbits (> 90 ppm
CO) and rats (= 100 ppm CO) (15, 129, 173).

13. Previous evaluations by national and international bodies

The Nordic Expert Group for Documentation of Occupational Exposure Limits
(previous name for NEG) concluded in 1980 that when setting an occupational
exposure limit value, the effects of CO on the following organs and functions
have to be considered: heart, arteries, central nervous system, foetus and maximal
aerobic capacity (114).

In the International Programme on Chemical Safety (IPCS) report from 1999, the
basis for the recommendations is that the COHD level should not exceed 2.5%
even during moderate or light exercise. The values aim to protect the most sensitive
groups, non-smokers with coronary artery disease from acute ischaemic heart
attacks, and to protect foetuses of non-smoking pregnant women from hypoxic
effects. In addition, the Task Group agreed that the COHbD of workers exposed
occupationally to CO should not exceed 5%. This recommendation was based

on the assumption that workers are mainly healthy, physiologically resilient and
under regular supervision. The guideline values for CO in ambient air given were:
87 ppm for 15 minutes, 52 ppm for 30 minutes, 26 ppm for 1 hour and 9 ppm for
8 hours (96).

The World Health Organization (WHO) guideline values from 2000 for outdoor
air are 90 ppm for 15 minutes, 50 ppm for 30 minutes, 25 ppm for 1 hour, and 10
ppm for 8 hours. WHO based its recommendation on the same assumptions that
were made by IPCS (96), meaning that the COHb should not exceed 2.5% in
order to protect patients with coronary artery disease and foetuses from the health
hazards caused by CO (243).

The updated WHO indoor air recommendations from 2010 are 90 ppm for 15
minutes and 30 ppm for 1 hour, assuming light exercise and that such exposure
levels do not occur more than once per day. The recommended upper level for 8
hours is 9 ppm (arithmetic mean concentration, light to moderate exercise) and
6 ppm for 24 hours (arithmetic mean, assuming that the exposure occurs when a
person is awake but not exercising). The exposure-related decrease in maximal
exercise performance and increase in symptoms of ischaemic heart disease after
CO exposure in persons with stable angina were identified as the critical effects.
Based on these symptoms, it was concluded that the COHb should not be over
2%, and the corresponding CO levels were calculated accordingly (244).

The US Environmental Protection Agency (US EPA) published a document on air
quality criteria for CO in 2000 (229). The document contains an extensive evalua-
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tion and synthesis of the exposure and health hazard data relevant for reviewing
national ambient air quality standards. It was concluded that young, healthy non-
smokers are not at risk when exposed to CO at ambient concentrations resulting

in COHb below 5%. Patients with exercise-induced angina were identified as a
susceptible subgroup. US EPA’s latest evaluation on health effects associated with
ambient CO exposure were released 2010 (230). It was concluded that consistent
and coherent evidence from epidemiologic and human clinical studies, along with
biological plausibility provided by the role of CO in limiting O, availability, is
sufficient to conclude that a causal relationship is likely to exist between relevant
short-term exposures to CO and cardiovascular morbidity.

In the National Research Council (NRC) documentation published 2010 (151)
Acute Exposure Guideline Levels (AEGLs) were proposed for CO as follows:

No AEGL-1 values (Airborne concentration causing “notable discomfort,
irritation, or certain asymptomatic, nonsensory effects”, which are transient and
reversible, in the general population, including susceptible subgroups) were given
as it was concluded that serious effects may occur among susceptible persons at
concentrations which are not causing AEGL-1 effects in the general population.

The AEGL-2 values (Airborne concentration above which the general popula-
tion, including susceptible individuals, could suffer from “irreversible or other
serious, long-lasting adverse health effects, or an impaired ability to escape”) given
were: 10 minutes for 420 ppm, 30 minutes for 150 ppm, 1 hour for 83 ppm, 4 hours
for 33 ppm and 8 hours for 27 ppm. The AEGL-2 values were based on observed
cardiovascular effects in coronary artery disease patients, who were considered as
the most susceptible subpopulation.

The AEGL-3 values (Airborne concentration above which life-threatening
health effects or death might occur among the exposed general population, in-
cluding susceptible subgroups) given were: 10 minutes for 1 700 ppm, 30 minutes
for 600 ppm, 1 hour for 330 ppm, 4 hours for 150 ppm and 8 hours for 130 ppm.
The starting points for the AEGL-3 values were analyses of poisoning cases, in-
dicating that the threshold for lethality is 40% COHb.

In the Agency for Toxic Substances and Disease Registry (ATSDR) evaluation from
2012 no minimal risk levels (MRLs) were proposed. This decision was justified
by the fact that the LOAELSs observed in clinical and experimental animal studies
(2.4% COHD and 12 ppm CO, respectively) are relatively low. Application of
standard uncertainty factors to the LOAELSs would thus result in CO concentrations
within the range of ambient CO levels in the US. The decision not to propose any
minimal risk levels was also justified by the fact that if there is a threshold for the
toxic effects, it is likely to be very close to the endogenous production rate of CO.
It was also concluded that an exposure level determined to be of minimal risk at
sea level might not be applicable at higher altitudes with lower partial pressures of
0O, (16).
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14. Evaluation of human health risks

14.1 Assessment of health risks

The effects seen in acute CO poisoning cover a wide range (Table 10) from mild
symptoms, like shortness of breath during exercise or occasional headache at
COHDb 20% to more severe ones like headache, dizziness, disturbed judgement,
dimness of vision, confusion, unconsciousness, intermittent convulsion and re-
spiratory failure at COHb above 30%. COHb levels of 50-60% are often lethal.
Even COHb levels of 20% may be lethal for patients with coronary artery disease.
The foetus is at higher risk than the healthy adult because of higher CO haemo-
globin affinity. Children appear also to be particularly vulnerable to CO and
experience headache and nausea already at COHD levels of 7%. At higher levels,
cognitive development deficits (COHb 13%) and syncopes and stillbirths (COHb
25%) have been reported (96, 151).

Exposure to low or moderate CO levels causes different kinds of symptoms,
the major ones related to cardiovascular or central nervous system effects. These
types of effects have been observed in both animal tests and controlled human
exposure studies.

The clinical studies carried out with healthy subjects were mainly focusing on
exercise performance after acute CO exposure (Table 11). In the study by Horvath
et al, 4 healthy males were exposed to concentrations of 75 or 100 ppm CO in an
environmental exposure chamber, resulting in COHb levels of 3.4% and 4.3%,
respectively. After exposure, the volunteers participated in an exercise challenge
test. The maximal aerobic capacity was decreased in the group exposed to the
higher concentration. The LOAEL identified in this study was 4.3% COHb (91).
In the study by Adir et al, 15 male volunteers were exposed to a high concentration
of CO for 4 minutes, resulting in 5.1% COHb. In the exercise test following the
exposure, the maximal effort and the duration of the exercise were significantly
decreased. No arrhythmias, ST-segment changes or changes in myocardial per-
fusion were detected (4). In the evaluation by US EPA (229) it was concluded that
in the controlled studies with healthy volunteers, the reported reductions in maxi-
mal exercise duration and performance were small, and thus likely to affect only
competing athletes. In the study by Davies and Smith, healthy volunteers were
exposed continuously to 15 or 50 ppm CO for 8 days. The electrocardiograms of
3 of 15 subjects exposed to 15 ppm CO (COHb 2.4%) showed P-wave deviations
and the same effect was observed in 6 of 15 subjects exposed to 50 ppm CO
(COHD 7.1%). Marked ST-segment depression was seen in one subject (heavy
smoker) exposed at 15 ppm but in none of the subjects exposed at 50 ppm (46).
P-wave changes are generally not considered as being specific markers of toxicity
or as clinically relevant, and are therefore not considered as adverse effects. COHb
4.3% is identified as an overall LOAEL in healthy volunteers.

In other clinical studies, the effect of controlled CO exposure on various per-
formance parameters were investigated in patients with diagnosed coronary artery
disease (Table 11). In the studies by Allred et a/, 63 men with stable angina were
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exposed to a mean concentration of 117 ppm CO for 1 hour, resulting in COHb
levels of 2.4%. The exposure resulted in decreased time to onset of angina
symptoms and ischaemic ST-segment changes, and decreased mean duration of
exercise in exercise tests. Similar, dose-dependent effects were also seen after
exposure to a mean CO concentration of 253 ppm (COHb 4.7%) (7, 8) as well as
in other studies on patients exposed to CO (COHb 2.9-5.9%) (3, 9, 111). Aronow
et al reported impaired results in a visualisation test among angina patients after
exposure to CO (COHD 3.9%, only dose tested) compared with the results of the
same test persons without previous CO exposure (11). COHb 2.4% is identified
as an overall LOAEL in patients with coronary artery disease.

The lowest CO exposure causing health effects in animals have been observed
in studies evaluating effects of CO on the developing auditory system (Table 9).
In the study by Stockard-Sullivan et al, exposure of rats to 12—-50 ppm CO post-
natally caused a consistent attenuation of the amplitude of the action potential of
the 8" cranial nerve in all dose groups and decreased otoacoustic emission at 50
ppm (208). Using the same protocol, decreased c-Fos immunoreactivity in the
central inferior colliculus (marker for neuronal activation in the nervous system)
was observed in all dose groups (12.5, 25 and 50 ppm) (236). Exposure of new-
born rats to 25 ppm CO, but not to 12 ppm, caused swelling of the nerve terminals
innervating the inner hair cells of the organ of Corti. No morphological changes
were observed on the inner and outer hair cells of the Corti (125). In other studies
by the same group, exposure to 25 ppm CO was also up-regulating markers of
oxidative stress (superoxide dismutase-1, HO-1, and inducible nitric oxide) in the
cerebellum of rat pups exposed prenatally, pre- and postnatally, or postnatally.
The effects were most significant if the exposure period included the prenatal
period (days 5-20) (127). Superoxide dismutase-1 and HO-1 were also elevated in
the stria vascularis and blood vessels of rat pups exposed to 25 ppm CO pre- and
postnatally. Inducible nitric oxide synthase and nitrotyrosine immunoreactivity
were increased in blood vessels of the cochlea both in the group exposed pre-
natally and in that exposed pre- and postnatally. Afferent terminals innervating the
inner hair cells were swollen in both exposure groups (126). Based on these studies,
all performed by the same research group, 12 ppm is identified as an overall
LOAEL in animals (NOAEL not identified).

No or limited data were found regarding genotoxicity, carcinogenicity, irritation
and sensitisation.

Combined exposure to CO and dihalomethanes causes increased formation
of COHb. Combined exposure to CO and noise may potentiate noise-induced
hearing loss.
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14.2 Groups at extra risk

In relation to CO exposure, the following sensitive risk groups have been

identified:

« Subjects with coronary heart disease, as both human and animal data clearly
indicate that these patients may get symptoms at lower CO exposure levels
than healthy subjects (see Section 11.2.3).

« Pregnant women and their offspring, because CO is causing developmental
toxicity (Sections 10.6 and 11.7.2).

« Children, who are known to be more sensitive towards the hazardous effects
caused by CO than adults (Section 11.2.2).

« Smokers, as their basal COHb levels are significantly elevated (Section 8.1).

« Subjects performing heavy exercise, including those with heavy work load, as
the rates of CO uptake and COHbD formation are proportional to the intensity
of exercise (Section 7.4).

« Subjects at low oxygen pressure, including high altitude, as those conditions
may result in elevated CO uptake and COHb formation (Section 7.4).

« Subjects co-exposed to chemicals that are metabolised to CO in the body (e.g.
dihalomethanes), resulting in increased COHD levels (Sections 8.1 and 11.4).

« Subjects co-exposed to asphyxiants such as hydrogen cyanide, as synergistic
effects may occur (Section 10.7).

« Subjects co-exposed to noise, as CO may potentiate noise-induced hearing loss
(Sections 10.7 and 11.4).

14.3 Scientific basis for an occupational exposure limit

When inhaled, CO binds rapidly to haemoglobin forming COHb. Upon continued
exposure COHD builds up in a curvilinear fashion. COHb correlates better with
the observed health effects than the concentration of CO in air or the product of
CO concentration and exposure time. COHb is therefore regarded as a more
accurate dose measure than the two latter ones.

Several adverse effects appear at approximately the same COHb level, there-
fore no single critical effect can be identified. The adverse effects of concern
are impaired exercise performance in healthy volunteers, increased myocardial
ischaemia in patients with coronary artery disease and persistent changes in the
developing auditory system of the rat.

Decreased maximal aerobic performance at COHb 4.3% and decreased maximal
effort and exercise duration at COHb 5.1% were observed in two independent
controlled exposure studies on healthy volunteers. According to the CFK equation, a
COHBD level of 4.3% corresponds to a concentration of CO in air of 33 ppm and 26
ppm, assuming 8 hours of constant exposure at rest and heavy work, respectively.

Induced myocardial ischaemia, i.e. decreased time to onset of exercise induced
angina symptoms and of ST-segment changes, were observed at COHb levels of
2.4% (LOAEL, corresponding to 17 ppm and 14 ppm at rest and heavy work, re-
spectively) and 4.7% in a large controlled exposure study on patients with coronary
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artery disease. Other studies on patients have also shown that CO exposure (COHb
2.9-5.9%) aggravated exercise-induced myocardial ischaemia.

Persistent changes in the developing auditory system of the rat, i.e. a consistent
attenuation of the amplitude of action potential of the 8" cranial nerve, were ob-
served in pups exposed to 12—50 ppm on postnatal days 6—22. Using the same pro-
tocol, decreased c-Fos immunoreactivity in the central inferior colliculus (marker
for neuronal activation in the auditory system) was observed at 12.5-50 ppm. In
addition, the nerve terminals innervating the inner hair cells of Corti were swollen
and the otoacoustic emission decreased at 25 and 50 ppm, respectively. The
LOAEL of 12 ppm corresponds to a COHb level in humans of 1.8% and 2.0% at
rest and heavy work, respectively.

No NOAELs have been identified for the cardiovascular and developmental
effects described above.

It should be noted that endogenous CO formation leads to a background COHb
level of about 0.4-0.7%. Non-smokers typically have COHb levels up to 2% where-
as smokers may have COHDb levels up to 10% immediately after smoking.

15. Research needs

Although numerous studies on the health effects of CO have been published,

further information would be needed in order to complete the data on the potential

health hazards related to exposure levels relevant for occupational exposure. The

following data gaps and research needs were identified:

« Exercise performance test at low CO exposure levels.

« Electrocardiographic alterations during controlled exposure and occupational
exposure.

. Epidemiological studies on co-exposure to noise and CO and hearing impair-
ment.

57



16. Summary

Stockmann-Juvala H. The Nordic Expert Group for Criteria Documentation of
Health Risks from Chemicals. 147. Carbon monoxide. Arbete och Hilsa
2012;46(7):1-78.

Carbon monoxide (CO) is an odourless and colourless gas produced by in-
complete burning of carbon-based fuels. CO is also a constituent of tobacco
smoke. Exposure to CO is common in many occupational areas, including those
associated with vehicle exhaust. CO is an important industrial gas used in the
production of chemical intermediates. CO is formed endogenously and acts as
a signalling substance in the neuronal system.

The main mechanism behind CO-induced toxicity is the binding of CO to haemo-
globin in the blood, resulting in carboxyhaemoglobin (COHb) formation, reduced
oxygen transport capacity of the blood and hypoxia. The relation between CO in
air and COHD is well known and can be calculated using the Coburn-Forster-Kane
(CFK) equation. Endogenous CO formation leads to a background COHb of 0.4—
0.7%. Non-smokers typically have COHD levels up to 2% whereas smokers may
have COHb levels up to 10% immediately after smoking.

The effects seen in acute CO poisoning cover a wide range, from mild symptoms,
like shortness of breath during exercise or occasional headache at COHb 20%, to
more severe ones like headache, dizziness, disturbed judgement, dimness of vision,
confusion, unconsciousness, intermittent convulsion and respiratory failure at
COHb above 30%. COHD levels of 50-60% are often lethal. Even COHD levels
of 20% may be lethal for patients with coronary artery disease. The foetus is at
higher risk than the healthy adult because of higher CO haemoglobin affinity.

From controlled human and animal exposure studies the adverse effects of con-
cern are impaired exercise performance, i.e. decreased maximal aerobic capacity in
healthy volunteers (lowest observed adverse effect level (LOAEL) COHb 4.3%),
increased myocardial ischaemia in patients with coronary artery disease (LOAEL
COHb 2.4%), and persistent changes in the developing auditory system of the rat
(LOAEL 12 ppm, corresponding to COHb 1.8% and 2.0% assuming 8 hours con-
stant exposure at rest and heavy work, respectively). It was not possible to identify
any no observed adverse effect levels (NOAELSs) in these studies.

No or limited data were found regarding genotoxicity, carcinogenicity, irritation
and sensitisation.

Combined exposure to CO and dihalomethanes causes increased formation of
COHb. Combined exposure to CO and noise may potentiate noise-induced hearing
loss.

Keywords: auditory, carbon monoxide, carboxyhaemoglobin, cardiovascular,

central nervous system, developmental, occupational exposure limit, review, risk
assessment, toxicity.
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17. Summary in Swedish

Stockmann-Juvala H. The Nordic Expert Group for Criteria Documentation of
Health Risks from Chemicals. 147. Carbon monoxide. Arbete och Hilsa
2012;46(7):1-78.

Kolmonoxid (CO) ér en luktfri och férglos gas som bildas vid ofullstandig for-
brénning av kolbaserade brinslen. CO finns ocksa i tobaksrok. Exponering for
CO ir vanligt inom manga yrkesomraden, bland annat de som férknippas med
bilavgaser. CO ér en viktig industriell gas som anvinds vid framstdllning av
kemiska intermedidrer. CO bildas endogent och fungerar som en signalsubstans
1 nervsystemet.

Den huvudsakliga mekanismen for CO-inducerad toxicitet dr bindning till hemo-
globin i blodet, dvs bildning av karboxyhemoglobin (COHb), vilket resulterar
i forsdmrad syretransport i blodet och hypoxi. Relationen mellan CO i luft och
COHD ér vilkédnd och kan berdknas med hjélp av Coburn-Forster-Kane (CFK)
ekvationen. Endogen bildning av CO leder till bakgrundsnivéer mellan 0,4 och
0,7% COHDb. Icke-rokare har vanligtvis COHb-nivaer upp till 2%, medan rokare
kan ha nivéer upp till 10% omedelbart efter rokning.

Effekterna vid akut CO-forgiftning omfattar ett brett spektrum fran milda sym-
tom som andfaddhet och sporadisk huvudviérk vid 20% COHD, till mer allvarliga
som huvudvirk, yrsel, forsémrat omdome, synstorningar (dimsyn), forvirring,
medvetsloshet, kramper och andningssvikt vid 30% COHb. COHb-nivéer runt 50-
60% &r ofta dodliga. For patienter med kranskérlsjukdom kan &ven COHDb nivéer
runt 20% vara dodliga. Foster 16per hogre risk &n friska vuxna pa grund av att
deras hemoglobin har hogre affinitet till CO.

Kontrollerade exponeringsstudier visar att de viktigaste negativa hélsoeffekterna
ar forsamrad fysisk prestation i form av nedsatt maximal syreupptagningsférméga
hos friska frivilliga (14gsta observerade effektniva (LOAEL) 4,3% COHb) och 6kad
myokardiell ischemi (kdrlkramp) hos patienter med kranskarlssjukdom (LOAEL
2,4% COHD). Paratta har bestdende fordndringar under den tidiga utvecklingen av
horselsystemet observerats vid 12 ppm (LOAEL), vilket motsvarar 1,8% och 2,0%
COHD vid 8 timmars konstant exponering under vila respektive tungt arbete. I
dessa studier kunde inga icke-effektnivaer (NOAEL) identifieras.

Det géar inte att bedoma om CO har genotoxisk eller carcinogen potential eller
om CO orsakar irritation och sensibilisering eftersom data saknas eller &r begrin-
sade.

Kombinerad exponering for CO och dihalometaner orsakar 6kad bildning av
COHb. Kombinerad exponering for CO och buller kan forvirra bullerinducerad
horselnedsattning.

Nyckelord: centrala nervsystemet, hygieniskt gransvirde, horsel, karboxyhemo-
globin, kardiovaskular, kolmonoxid, riskbedomning, toxicitet, utveckling, oversikt.
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Appendix 1. Occupational exposure limits

Occupational exposure limits for carbon monoxide (CO) in different countries.

Country 8-hour TWA STEL Reference
(organisation) ppm mg/m’ ppm mg/m’

Denmark 25 29 50 58 (1)
Finland 30 35 75 87 2)
Norway 25 29 - - 3)
Sweden 35 40 100 120 “4)
The Netherlands - 29 - - 5)
Germany (DFG) 30 35 60 70 (6)
United Kingdom 30 35 200 232 7
US (ACGIH) 25 - - - ®)
US (NIOSH) 35 40 200C 229C ©9)
US (OSHA) 50 55 - - ©9)
EU - - - - (10-12)

C: ceiling value, STEL: Short-term exposure limit (15-min TWA), TWA: time-weighted average
(8 hours or for NIOSH up to 10 hours).
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Appendix 2. Previous NEG criteria documents

NEG documents published in the scientific serial Arbete och Hélsa (Work and Health).

Substance/Agent
Acetonitrile

Acid aerosols, inorganic
Acrylonitrile

Allyl alcohol

Aluminium and aluminium compounds
Ammonia

Antimony

Arsenic, inorganic

Arsine

Asbestos

Benomyl

Benzene
1,2,3-Benzotriazole

Boric acid, Borax
1,3-Butadiene

1-Butanol
v-Butyrolactone

Cadmium

7/8 Carbon chain aliphatic monoketones
Carbon monoxide
Ceramic Fibres, Refractory
Chlorine, Chlorine dioxide
Chloromequat chloride
4-Chloro-2-methylphenoxy acetic acid
Chlorophenols
Chlorotrimethylsilane
Chromium

Cobalt

Copper

Creosote

Cyanoacrylates

Cyclic acid anhydrides
Cyclohexanone, Cyclopentanone
n-Decane

Deodorized kerosene
Diacetone alcohol
Dichlorobenzenes

Diesel exhaust
Diethylamine
2-Diethylaminoethanol
Diethylenetriamine
Diisocyanates
Dimethylamine
Dimethyldithiocarbamates
Dimethylethylamine
Dimethylformamide
Dimethylsulfoxide
Dioxane

Endotoxins

Enzymes, industrial

Arbete och Hilsa issue
1989:22, 1989:37*
1992:33, 1993:1*
1985:4

1986:8

1992:45, 1993:1%*, 2011;45(7)*D
1986:31, 2005:13*
1998:11*

1981:22, 1991:9, 1991:50*
1986:41

1982:29

1984:28

1981:11
2000:24*D
1980:13

1994:36*, 1994:42
1980:20
2004:7*D
1981:29, 1992:26, 1993:1*
1990:2*D

1980:8

1996:30*, 1998:20
1980:6

1984:36

1981:14

1984:46

2002:2

1979:33

1982:16, 1994:39*, 1994:42
1980:21

1988:13, 1988:33*
1995:25%, 1995:27
2004:15*D
1985:42

1987:25, 1987:40*
1985:24

1989:4, 1989:37*
1998:4*, 1998:20
1993:34, 1993:35*
1994:23*, 1994:42
1994:25*N
1994:23*, 1994:42
1979:34, 1985:19
1994:23*, 1994:42
1990:26, 1991:2*
1991:26, 1991:50*
1983:28

1991:37, 1991:50*
1982:6
2011;45(4)*D
1994:28*, 1994:42

75



NEG documents published in the scientific serial Arbete och Hélsa (Work and Health).

Substance/Agent Arbete och Hilsa issue
Epichlorohydrin 1981:10

Ethyl acetate 1990:35*
Ethylbenzene 1986:19
Ethylenediamine 1994:23*, 1994:42

Ethylenebisdithiocarbamates and Ethylenethiourea
Ethylene glycol

Ethylene glycol monoalkyl ethers
Ethylene oxide

Ethyl ether

2-Ethylhexanoic acid

Flour dust

Formaldehyde

Fungal spores

Furfuryl alcohol

Gasoline

Glutaraldehyde

Glyoxal

Halothane

n-Hexane

Hydrazine, Hydrazine salts
Hydrogen fluoride

Hydrogen sulphide
Hydroquinone

Industrial enzymes

Isoflurane, sevoflurane and desflurane
Isophorone

Isopropanol

Lead, inorganic

Limonene

Lithium and lithium compounds
Manganese

Mercury, inorganic
Methacrylates

Methanol

Methyl bromide

Methyl chloride

Methyl chloroform
Methylcyclopentadienyl manganese tricarbonyl
Methylene chloride

Methyl ethyl ketone

Methyl formate

Methyl isobutyl ketone

Methyl methacrylate
N-Methyl-2-pyrrolidone
Methyl-tert-butyl ether

Microbial volatile organic compounds (MVOCs)
Microorganisms

Mineral fibers

Nickel

Nitrilotriacetic acid

Nitroalkanes

Nitrogen oxides

N-Nitroso compounds

1993:24, 1993:35*
1980:14

1985:34

1982:7

1992:30% N

1994:31%, 1994:42
1996:27*, 1998:20
1978:21, 1982:27, 2003:11*D
2006:21*

1984:24

198417

1997:20*D, 1998:20
1995:2%, 1995:27

1984:17

1980:19, 1986:20

1985:6

1983:7

1982:31, 2001:14*D
1989:15, 1989:37*
1994:28*

2009;43(9)*

1991:14, 1991:50*
1980:18

1979:24, 1992:43, 1993:1*
1993:14, 1993:35*
2002:16*

1982:10

1985:20

1983:21

1984:41

1987:18, 1987:40*
1992:27*D

1981:12

1982:10

1979:15, 1987:29, 1987:40*
1983:25

1989:29, 1989:37*
1988:20, 1988:33*
1991:36*D

1994:40%, 1994:42
1994:22%D

2006:13*

1991:44, 1991:50*
1981:26

1981:28, 1995:26*, 1995:27
1989:16, 1989:37*
1988:29, 1988:33*
1983:28

1990:33, 1991:2*
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NEG documents published in the scientific serial Arbete och Hélsa (Work and Health).

Substance/Agent

Arbete och Hélsa issue

Nitrous oxide

Occupational exposure to chemicals and hearing impairment

Oil mist

Organic acid anhydrides

Ozone

Paper dust

Penicillins

Permethrin

Petrol

Phenol

Phosphate triesters with flame retardant properties
Phthalate esters

Platinum

Polychlorinated biphenyls (PCBs)

Polyethylene,

Polypropylene, Thermal degradation products in the
processing of plastics

Polystyrene, Thermal degradation products in the
processing of plastics

Polyvinylchloride, Thermal degradation products in the

processing of plastics

Polytetrafluoroethylene, Thermal degradation products in

the processing of plastics
Propene

Propylene glycol
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* in English, remaining documents are in a Scandinavian language.

D = collaboration with the Dutch Expert Committee on Occupational Safety (DECOS).

N = collaboration with the US National Institute for Occupational Safety and Health (NIOSH).
To order further copies in this series, please contact:

Arbets- och miljomedicin, G6teborgs universitet

Att: Cina Holmer, Box 414, SE-405 30 Goteborg, Sweden

E-mail: arbeteochhalsa@amm.gu.se

The NEG documents are also available on the web at:

www.nordicexpertgroup.org or www.amm.se/aoh
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