

Research Reports in Software Engineering and Management 2012:04 ISSN 1654-4870

A Light-Weight Defect Classification Scheme for
Embedded Automotive Software Development

Niklas Mellegård,
Miroslaw Staron, Fredrik Törner

Department of Computer Science and Engineering

A Light-Weight Defect Classification Scheme for

Embedded Automotive Software Development

© Niklas Mellegård, Miroslaw Staron and Fredrik Törner, 2012

Report no 2012:04

ISSN: 1651-4769

Department of Computer Science and Engineering

Chalmers University of Technology and University of Gothenburg

Chalmers University of Technology

Department of Computer Science and Engineering

SE-412 96 Göteborg

Sweden

Telephone + 46 (0)31-772 1000

Göteborg, Sweden 2012

Research Reports in Software Engineering and Management No. 2012:04

A Light-Weight Defect Classification Scheme for
Embedded Automotive Software Development

Niklas Mellegård
Miroslaw Staron
Fredrik Törner

Department of Computer Science and Engineering
CHALMERS | University of Gothenburg

Gothenburg, Sweden 2012

A LIGHT-WEIGHT DEFECT CLASSIFICATION SCHEME FOR

EMBEDDED AUTOMOTIVE SOFTWARE DEVELOPMENT

Niklas Mellegård, Miroslaw Staron

Software Engineering Division

Department of Computer Science and Engineering

Chalmers University of Technology | University of Gothenburg
{niklas.mellegard, miroslaw.staron}@chalmers.se

Fredrik Törner

Volvo Car Corporation
ftorner@volvocars.com

Abstract–

Objective: Systematic software defect documentation is an essential part of software development process

models as a means of early identification of patterns in defect inflow. Such documentation, however, may

often be a tedious task requiring analysis work in addition to what is necessary to resolve the issue.

Furthermore, generic defect documentation approaches often have a strong focus on source-code aspects

making them unsuitable for development contexts with supplier-side implementation. To increase

documentation efficiency in a development context with limited access to source-code, adapted schemes

are needed. In this paper a light-weight defect classification scheme adapted to automotive software

development is presented.

Method: A case study was conducted at Volvo Car Corporation to adapt the IEEE Std. 1044 for the

development of embedded automotive safety features.

Results: The results consist of a detailed description of a defect classification scheme that complies with

the IEEE Std. 1044. The main adaptations to the scheme consisted of raising the level of abstraction of

the captured data items, shifting the focus from source-code to other artefacts and activities, and by

conforming to the terminology of the company.

Conclusions: We conclude that the IEEE Std. 1044 can be successfully adapted to a development context

where source-code is not the main development artefact. Furthermore, initial evaluation showed that the

adapted classification scheme captures what is currently tacit knowledge and has the potential of

revealing patterns in the defects detected in different project phases. As a result we are currently in the

process of incorporating the classification scheme into the company’s defect reporting system.

Keywords: Software engineering; Defect analysis; Modelling; Process

1 INTRODUCTION

Software reliability is of central importance in modern cars as software controlled systems are
becoming increasingly pro-active – recent safety functions are, for instance, able to automatically apply
brakes to avoid crashes or mitigate their effects. Car manufacturers (OEMs) need, in order to achieve
reliability, effective ways to manage defects during development (in-process) and during run-time (e.g.
fault tolerance mechanisms). For the in-process defects it is important to identify, analyse and remove
defects which could compromise the reliability of the cars. Furthermore, identifying patterns in the in-
process defects enables effective detection and removal of defects, for instance by indicating which test
activities to focus on. In order to identify such patterns, however, systematic and structured defect
documentation is required.

Defect documentation and analysis is common practice in most software development organizations.
Its benefits are further emphasised through the inclusion in process maturity models – such as CMMI [1]
and SPICE [2] – as they require systematic defect documentation, analysis and follow-up. Neither CMMI
nor SPICE, however, specifies how such defect documentation and analysis is to be done. Companies
thus have their own interpretations resulting in varying quality of defect documentation; for instance,
ambiguous interpretation of data or subjective opinions of the reporter. Hence, there is a need for a
structured approach to defect documentation.

There have been several approaches proposed on how to perform structured collection and analysis of
defect information; e.g. defect taxonomies [3], root cause analysis (RCA) [4] as well as various defect

5

classification schemes such as Orthogonal Defect Classification (ODC) [5], the HP scheme [6] and IEEE
Std. 1044 [7]. Although shown to be useful these approaches were designed for specific contexts [8]
causing the need for adaptations [9]; such adaptations have been identified as one of the major challenges
in applying a defect classification scheme [8], [9]. Specifically, defect classification approaches often
assume full knowledge of the defects, i.e. have a source-code focus and assume ownership of the
software components [8]. Consequently, such defect classifications schemes need adaptations to be
applicable to organizations where software is developed by suppliers – a situation common in the
automotive software domain: even though software components (e.g. ABS or collision warning system)
are often developed by suppliers, the quality of the complete product – the car – is the responsibility of
the OEM. The need to systematically analyse and follow-up on the quality of the supplied software
components is, nevertheless, important.

Furthermore, defect documentation – however important – may be seen as a mainly administrative
task that does not directly contribute to the end-product. Thus, the defect documentation approach taken
should require a minimum of analysis effort in addition to what is needed to identify and remove the
defect, while still providing the additional benefit of characterizing the quality of the product and
development process [10].

In this paper we address the challenges of efficient defect classification by pursuing the following
research question: “How to efficiently support defect identification and resolution time by classifying in-
process defects?”. The research question is addressed by investigating how a defect classification
scheme can be adapted to the automotive software development context by studying the development of
active safety features. The aims of our adapted classification scheme – the Light-weight Defect
Classification scheme (LiDeC) – include: (1) as existing classification schemes have a strong source-
code focus, how can such a scheme be adapted to a development setting with limited insight into the
source-code; (2) as adding additional workload on development teams may reduce the likelihood of
adoption, how can a classification scheme be adapted to minimize its process foot-print in terms of
required learning and classification time.

LiDeC was developed as part of a case-study at Volvo Car Corporation (VCC1) and initially
evaluated with a sample of problem reports from a project finished a year prior to the study. As a result
we present a defect classification scheme, compliant with the IEEE Std. 1044 [11], [12], specifically
adapted for the development of automotive safety-critical software. Furthermore, an initial evaluation
showed that developers quickly learned to apply the classification scheme, and that the required time to
classify a defect was substantially lower than with other approaches to defect documentation.

The rest of the paper is structured as follows: section 2 provides the study with background, section 3
describes the method used, section 4 summarizes the results and the final sections conclude the paper and
outline future work.

2 BACKGROUND

This section provides the research presented in this paper with background: first a summary of the
terminology used is outlined, then related work is presented, and finally aspects of developing software
at the case company is presented.

2.1 Terminology

In this report the terminology defined in the IEEE Std. 1044-2009 [7] is used. Specifically the
following terms are used in the report:

─ Defect– An imperfection or deficiency in a work product where that work product does not meet
its requirements or specifications and needs to be either repaired or replaced [7].

─ Failure– (A) Termination of the ability of a product to perform a required function or its inability
to perform within previously specified limits. (B) An event in which a system or system
component does not perform a required function within specified limits.

─ Fault– A manifestation of an error in software.

Figure 1 shows how these terms relate and what is within the scope of the IEEE Std. 1044.

1 http://www.volvocars.com

6

As shown in Figure 1, problems are sufficient but not necessary conditions for the recognition that

the software is failing to behave in a desirable manner. The failure may be caused by faults in the
software, which in turn can be corrected by a software change request. These relationships are described
in Table 1.

TABLE 1. RELATIONSHIPS BETWEEN IEEE STD. 1044 CONCEPTS (FROM [7])

Class/Entity pair Relationships
Problem - Failure A problem may be caused by one or more failures.

A failure may cause one or more problems.

Failure - Fault A failure may be caused by (and thus indicate the precense of) a fault.
A fault may cause one or more failures.

Fault – Defect A fault is a subtype of the supertyp defect.
Every fault is a defect, but not every defect is a fault.

A defect is a fault if it is encoutered during software execution (thhus causing a

filaure).
A defect is not a fault if it is detected by inspection or static analysis and removed

prior to executing the software.

Defect – Change Request A defect may be removed via completion of a corrective change request.

A corrective change request is intended to remove a defect.
(A change request may also be initiated to perform adaptive or perfective

maintanance.)

Figure 1. IEEE Std. 1044 concepts and their relationships (from [7])

7

2.2 Related Work

This report is an extension of our previous work [13]. Whereas our previous work focused on the
evaluation of LiDeC this report instead focus on the description of LiDeC; more specifically:

i. The Background section has been extended with a terminology subsection

ii. The Background section has been extended with more related work

iii. The results has been extended with a new subsection with a comparison between LiDeC and

IEEE Std. 1044

iv. The description of the attributes in the results section has been extended with more details

v. A full description of LiDeC has been added as Appendix A

vi. A classification guide has been added as Appendix B

vii. Two example classifications using LiDeC has been added as Appendix C

viii. An IEEE Std. 1044 compliance matrix has been added as Appendix D

ix. A mapping between attributes of IEEE Std. 1044 and LiDeC has been added as Appendix E

Defect reports are a valuable source of information about issues that arise in development: defect
reports can reveal information about systematic problems with the development process such as the
activities most prone to generating defects, or the efficiency of testing activities with respect to the
number and type of defects they detect. Defect reports, however, are often used as a means to track and
resolve the identified defect. But in order to systematically collect and analyse defect data there is a need
to formalize the information collected about each defect. There are several proposed approaches which
Wagner [9] identifies as belonging to three main categories:

─ Defect taxonomies which are categorizations of faults mainly related to the implementation.
Wagner mentions examples categories such as wrong variable declarations and wrong variable
scope;

─ Root cause analysis (RCA) which is a more detailed approach. RCA not only analyses the fault
itself, but also why the fault was introduced. The goal of RCA is to identify the root causes and
eliminating them, thereby preventing similar faults from being introduced in future projects;

─ Defect classification is an approach in which data is collected about the defect in a similar
manner to both defect taxonomies and root cause analysis, but does so in a more coarse-grained
manner.

Defect taxonomies are focused on the implementation and do not provide support for analysing what
measures to take to prevent or mitigate any systematic issues it may reveal. RCA, in contrast, is focused
on identifying why the identified defect was introduced into the system. RCA, however, is considered to
be effort intensive and its cost/benefit is unclear [9]. Defect classification, on the other hand, aims at
reducing the effort required to analyse a defect while still retaining the power of analysis – such as what
types of defects are most common, which artefacts are most prone to defects. The approach taken is to
gather a wider but more coarse-grained range of data. In this paper we have chosen to adapt a defect
classification scheme given our goal of small process foot-print. Defect classification schemes are
discussed in more detail in the following subsection.

In their paper Li et al. [14] present experience from adapting existing issue tracking systems at two
companies. The adaptations resembles our work as the pre-existing issue tracking system were mainly
intended for in-process progress tracking of defect resolutions and resource management. Their
justification for adapting the issue tracking systems included inadequately designed attributes and
attribute values which made the collected issue data poorly equipped for use as software quality
assessment and software process improvement – data was entered inconsistently or omitted, resulting in
the assembled data “behaving largely as an information graveyard” [14]. By redesigning the issue
tracking systems – incorporating parts of ODC [5] and the IEEE Std. 1044 – Li et al. were able collect
higher quality data and use that data to point out improvement targets in both companies studied.
Furthermore, follow-up analyses conducted after the process changes were able to detect improvement in
terms of lower number of defects.

The work presented in this paper complements the scheme presented by Li et al. in that our
classification scheme targets a development context in which code to a large extent is written by sub-
contractors and where the sub-contractors own the source-code; thus, limiting the possibilities to analyse
the exact nature of the defects. Furthermore contrary to the work presented by Li et al., where the
classification scheme had to comply with legacy issue tracking systems – attributes were added to or
modified in already existing defect databases -- we had the opportunity to work alongside the team

8

setting up a new issue management system. As a result, LiDeC is compliant with the IEEE Std. 1044. In
addition, Li et al. identifies a number of lessons learned that are of great interest in our work, as we
currently are in the process of incorporating LiDeC in a new issue tracking system at our industrial
partner.

Dubey [15] reports on a case-study applying ODC scheme to a project developing embedded systems
in which a substantial amount of software was developed by suppliers. They concluded that the
classification scheme’s focus on source-code required it to be adapted. Specifically, the attribute defect
type needed adaptation. In their case there were many defects classified as “Functional” defects leading
them to propose additional attribute values related to the design phase (as ODC originally only contained
one value: “Functional defect”).

In [4], [16] Lezsak et al. report that conducting RCA on up to a year old defect reports in a
distributed, component-based development process required on average 19 minutes per defect. Leszak et
al. also concluded that analyses conducted in-process when detailed knowledge about the defects can
easily be recalled would further reduce the required effort.

Cavalcanti et al. [17] investigated the problem of identifying duplicate defect reports in a number of
private and open source projects. Specifically, they examined the amount of time required to analyse a
defect to determine whether it was a duplicate or not. The time required varied in the projects they
examined from 5-10 minutes per defect to 20-30 minutes, with an average of 12.5 minutes. Furthermore,
based on the size of staff and amount of defects reported, Cavalcanti et al. calculated that on average 48
man-hours per day was spent in search of duplicate defects in the examined projects.

Software reliability growth models (SRGM) [18] estimate software reliability by statistically
correlating the cumulative number of defects discovered to a known function [19]. SRGMs can be used
to predict the number of residual defects in a product. SRGMs, however, do not provide any data about
the type of defects, or in which part of the product they are likely to occur. Consequently, SRGM
provides limited guidance as to which testing activities should be focused on to detect the yet unknown
defects. Defect classifications, on the other hand, provide more detailed information – e.g. about
detection and injection phase, and type of defect – and can be more precise than traditional SRGM [20].

There have been many methods on fault prediction proposed. Liparas et al. [21] examine a statistical
method for analysing what factors in a multivariate data set that are best suited for predicting the number
of defects contained in a software module. In their paper, Liparas et al. use a set of complexity metrics –
such as McCabe’s cyclomatic complexity, lines of code and branch count – to predict the fault-proneness
of the modules. The method described predicted whether a module is within a normal cluster or not –
where a module not in the normal cluster would contain more than the standard amount of defects. Such
information is valuable when assigning resources; more resources can be assigned to the modules that are
most likely to contain defects. While the number of defects may be used to indicate the modules in most
need to testing, it does not, however, provide the testers with any indications of what to test for, nor
which modules contain the most sever defects. In fact, in the comprehensive systematic literature review
where Hall et al. [22] examined 36 studies (from a selection of 2,073) on fault prediction models
published between January 2000 and December 2010, they found that few studies differentiate between
the faults predicted; for instance, only one [23] of the 36 studies used fault severity in their prediction
model. In order to differentiate between defects, more nuanced data about the defects are needed; our
work aims at contributing to a model for assembling such defect data, thus enabling prediction of
additional defect attributes.

2.2.1 Defect classification schemes

Defect classification schemes define a set of attributes, where each attribute captures a specific aspect
of the defect – e.g. how the defect was detected, its severity and type. Moreover, for each attribute the
schemes typically provide a set of values that can be chosen from; this contributes to the efficiency as
well as to the reliability of the classification. The most commonly referred [10] classification schemes in
literature are ODC from IBM [5], the HP approach [6] named Defect Origins, Types and Modes [9] (here
referred to as the HP scheme) and the IEEE Std. 1044 [7].

Regardless of which classification scheme is applied, the main challenge is to select the attributes and
attribute values which are relevant to the specific development context [8]. In [10], Freimut provides a
framework for developing and using classification schemes; this framework has been followed in the
work presented in this paper. Furthermore, in [10] Freimut provides a comparison between the ODC, HP
and IEEE Std. 1044 classification schemes and a mapping between the attributes of the different
classification schemes.

9

2.2.1.1 The HP Scheme

The approach taken by the HP scheme is to define only three attributes: Origin, Type and Mode. The
Type attribute is dependent on the value chosen for the Origin attribute. This first requires analysis of
when the defect was injected into the system before its type can be established. Furthermore, the HP
scheme does not explicitly capture data about how a defect was detected (its trigger [5], [24]); there is
thus no attribute available to identify which testing activities are effective in detecting particular defect
types. Moreover, applying the HP scheme makes it difficult to identify effective testing techniques and
investigate how late and severe defects can be identified earlier as the scheme does not include attributes
such as:

─ Severity of the defect from an end-user perspective
─ The method by which the defect was detected
─ Timing of defect detection
─ The cause of the defect

Such issues considered important for VCC, thus a wider range of attributes than provided by the HP
scheme needed to be collected.

TABLE 2. IEEE STD. 1044 ATTRIBUTES (ADAPTED FROM [10])

Life-cycle Phase Attribute Name Attribute Meaning

Recognition Project activity What were you doing when the defect occurred?

Project Phase In which life-cycle phase is the product?

Suspected Cause What do you think might be the cause?

Repeatability Could you make the defect appear more than once?

Symptom How did the defect manifest itself?

Product Status What is the usability of the product with no changes?

Investigation Actual Cause What caused the anomaly to occur?

Source Where (part of the system and its documentation) was

the origin of the defect?

Type What type of defect/enhancement at the code level?

Action Resolution What to do to prevent the defect from happening

again?

Corrective action What action to take to resolve the defect?

Impact Identification Severity How bad was the defect in more objective engineering
terms?

Priority Rank the importance of resolving the defect?

Customer value How important is a fix to the customer?

Mission safety How bad was the defect wrt. project objectives or

human well-being?

Project schedule Relative effect on the project schedule to fix?

Project cost Relative effect on the project budget to fix?

Project risk Risk associated with implementing a fix?

Project
Quality/Reliability

Impact to the product quality or reliability to make a
fix?

Societal Impact of society of implementing the fix

Disposition Disposition What actually happened to close the anomaly?

10

2.2.1.2 IEEE Std. 1044

The IEEE Std. 1044 and ODC, in contrast, define a set of failure and defect life-cycle phases each
containing a number of attributes (independent of each other) that are to be recorded; the life-cycle
defined by IEEE Std. 1044 is shown in Table 2. The phases represent the states the defect can be in:
initially a failure is recognized, then investigated, which might lead to discovering the cause of the failure
(fault), an action to resolve the defect is then planned and the possible impacts of the chosen
action/resolution are analysed, and finally what was actually done to close the defect. The attributes that
are to be recorded in each of the phases represent information about the defect that is relevant for that
particular phase; the information would be required to understand/resolve defects regardless of whether a
defect classification is applied or not. This matched our requirements for LiDeC in that we – in order to
minimize the process foot-print – intended to capture what was currently tacit knowledge in the defect
analysis process.

2.3 Study context – Automotive Software Development

The case-study presented in this paper was conducted at the department developing active safety
features – such as collision warning, lane departure warning and driver alert control – at Volvo Car
Corporation (VCC). In the following subsection we describe the development of software for such
features at VCC.

2.3.1 Development process

The development process of active safety features at VCC [25], [26] can at a high level of abstraction
be visualized by the V-model [27]. As shown by the left leg in Figure 2: product requirements are
specified on vehicle-level and then refined through the development process into (sub-)system
requirements and design. The system specifications are further refined into requirements and design of
the individual hardware and software components that will realize them.

The bottom of Figure 2 shows the implementation of the components which is often done by
suppliers; VCC commissions a component from a supplier based on requirement and design
specifications. As VCC may have limited insight or control over the implementation phase – the in-house
development activities are to an extent limited to design, specification and integration testing – applying
defect classification schemes that have code focus consequently presents a challenge.

Furthermore, the test phases are shown by the right leg in Figure 2: components delivered by the
suppliers are tested on unit level, subsystems are integrated and tested and finally the whole car is tested;
it is in this phase that defects are reported.

Even though the overarching development process can be visualized by the V-model, in practice the

process is better described as a federated development process [28]. As shown in Figure 3 development
is iterative in three stages. In the first stage, corresponding to “System Design” in Figure 2, a system –
e.g. collision detection or driver alert control – is designed and specified. The main focus of this stage is

Figure 2. The V-model

11

to develop algorithms that fulfil the high-level requirements. In addition to system requirements and
design, the results from this stage may include executable models (e.g. Simulink models) that can be
validated in simulated environments, e.g. using a test rig, or cars equipped with simulated hardware (e.g.
dSPACE2).

The second stage of development is shown in Figure 3 as “Software, Component” and corresponds to

“Software / Component Design” in Figure 2. The focus of this stage is to decompose a system into
individual software and hardware components that realize the system. The result of this stage is a set of
component specifications that are used as base when commissioning components from suppliers.

In the final loop in Figure 3 – corresponding to the right leg of Figure 2 – software testing is done. As
shown in Figure 3, the component design and test stages are intertwined. In practice, this means that the
suppliers are involved from an early stage delivering a number of revisions of the components; each
revision is tested by VCC, defects are discovered and corrected, and a new iteration is started. More
specifically, the testing procedure done by VCC at each iteration of the third loop can be separated in
three categories:

─ Component/Unit tests. The algorithms – often in the form of executable models [29] – are tested
on unit level before being provided to the supplier. The supplier provides VCC with an
implementation in the form of a component (e.g. optimized binary software component, or a
hardware component with the software installed). VCC verifies that the component complies
with the requirements;

─ System tests. System tests are done on simulations of the system on a test rig using recorded data.
The focus of this phase is on initial integration testing;

─ Functional tests. Finally, function tests are done on builds of the system in a real car. Initial
functional tests are run on test tracks, while in later project phases expeditions on roads are done.
The focus of this test phase is on the whole vehicle, i.e. that high-level requirements are met (e.g.
that features behave as intended from an end-user perspective)

In addition to the test activities done by VCC, suppliers conduct units test which may not be reported
to the OEM.

In this case-study the focus was on defects discovered during the last two stages in Figure 3
(indicated in the figure by “Defect Discovery”). The reasons for this delimitation include the challenges
associated with supplier implemented software – it is in this stage that the suppliers get involved in the
development. Furthermore, initial analysis of the defect inflow – shown in Figure 4 as the defect
backlog3 (number of open defects over time) – revealed that there was a considerable spike in defects
during the component development and integration testing phase (the start of which is shown in the
figure as “Software Phase”). The increasing inflow of defects is expected as testing of supplier developed
hardware and software – specifically integration testing – is conducted during this phase.

2 http://www.dspace.com
3 The total number of defects has been scaled to 100 and the time scale has been removed due to confidentiality reasons. In addition,

the time scale has been cropped (indicated by the ellipsis in the star and end of the curve) and does therefore not include the last

phase leading up to start of production.

Figure 3.Federated development process (adapted from [28])

12

However, the increase in open defects (i.e. unresolved defects) during the software phase, and

especially the peak close to software release (a major in-development milestone), raised the interest of
our case company. Therefore, in the evaluation of LiDeC we analysed a sample of defects from the last
peak shown in Figure 4.

3 METHOD

The research presented in this paper followed the case-study method described by Yin [30]. The case-
study method was considered appropriate as the applicability of the adapted classification scheme was of
importance; adapting a classification scheme in the same context as it will be deployed would increase
the chances of it being useful in that context. Specifically, we have used a single-case design by applying
the classification scheme to defect reports from one project at our case company. The rationale of this
was that the defect inflow profile from the project (shown in Figure 4) was considered representative by
the developers – similar inflow profiles had been observed in other projects. Using the defect reports
from the project, we developed an adapted defect classification scheme; in particular, we addressed the
following main research question:

RQ: How to efficiently support defect identification and resolution time by classifying in-process
defects?

As the development context under study have specific properties (described in section 2.3), the main
research question was broken down into:

RQ 1 In an automotive safety feature development context where source-code is often not available,
how can a standard defect classification scheme be suitably adapted?

RQ 2 As defect classification may often be considered an administrative task, how can the
adaptation of a standard defect classification scheme be done to minimize required learning
and classification time?

As a practical guideline to adapting a defect classification scheme we followed [10]. The study was
conducted in the following three stages:

Stage 1: Establish terminology. The aim of the first stage of the study was to establish a set of
classification attributes using terminology aligned with the case company.

As a base for developing the classification scheme we used the IEEE Std. 1044 [7] and its guide [12].
In this stage we began by choosing attributes and the set of values available for each attribute from the
IEEE Std. 1044 that we – based on our previous research [25], [29], [31] – found relevant for the specific
development context at the company; for instance attributes related to customer value was not considered
relevant for the development phase under study.

Figure 4. Defect backlog from the studied project

13

During two one hour-long interviews, we explained the initial classification attributes to the
interviewee (project leader), and asked the interviewee to relate these attributes to the case company. We
took notes during these interviews and refined the classification scheme according to these notes.

Stage 2: Tune feasibility. The second stage of the case-study aimed at streamlining the set of values each
attribute could be assigned.

The stage consisted of a two hour long interview with a developer in which a number of defects were
classified. The set of values available for each attribute was evaluated during the classification session,
where for each attribute:

i. If an attribute value was never used and the interviewee could not think of an example when the

value would be used, the value was considered for removal;

ii. If the interviewee did not consider any of the available values described the defect sufficiently,

a new value was considered for addition.

As a result the final classification scheme was defined and depicted in the form of flowcharts with
short questions providing a guide to arrive at the correct attribute value. Each attribute value was
provided with a short illustrative example.

Stage 3: Evaluate scheme. The final stage of the study aimed at evaluating the efficiency and
effectiveness of the classification scheme.

In this stage defect reports were classified according to the scheme. Four subjects involved in the
project participated in six separate two hour long classification sessions (two subjects participated in two
consecutive classification sessions). Three of the subjects were not involved in the previous two stages of
the project.

The project used as case had finished one year prior to the study and contained over 100 problem
reports4. All subjects involved in the study had been part of the project with the following roles: two
developers, one tester and one project leader.

During the third stage of the study we were able to classify 22 defects. Of the 22 defects 12 were
randomly selected from the last peak (as shown in Figure 4) and the remaining 10 from the rest of the
project. This selection was done because of an expressed interest by members of the project to gain more
insights in the defect peak. The results of the evaluation are reported in [13].

3.1 Validity Evaluation

We have identified and grouped the threats to validity in our study according to recommendations of
Yin [30]:

─ Construct validity– By basing our defect classification scheme on the IEEE Std. 1044 and by
keeping careful notes on how to map concepts specific to our case to the standard, we consider
that the threat to construct validity to have been minimized. Furthermore, as both the adaptation
of the classification schemes and the evaluation was done using real defect data from an
industrial project with the assistance of the developers involved in the project, we consider the
threat to construct validity to have been further reduced.

─ Internal validity– As any interview study we anticipated some personal bias in the answers from
the interviewees. In order to minimize this threat we triangulated the results by including
multiple subjects in our interviews. In addition, a set of defects were classified by multiple
subjects thereby allowing evaluation of the repeatability of the classification scheme; section 4.2
reports the results from this evaluation.

─ External validity– There is a risk that the results are too specific to Volvo Car Corporation.
However, as we documented and justified the modifications done to the IEEE Std. 1044 as well
as described the particular development context of our case, we believe that our results can be
generalized to similar contexts outside our specific case. Moreover, we consider the mapping
between attributes of the classification schemes provided by Freimut [10] to contribute to the
generalizability of our classification scheme; e.g. the mapping between classification schemes
enables analysis methods utilized with other schemes to be applicable to LiDeC as well, and
therefore we believe that results are also comparable.

4 Exact number cannot be disclosed due to confidentiality reasons

14

─ Reliability– As part of the case study design, we have created a case study protocol which
ensured that we conducted the study and collected the data in a consistent manner. By using this
protocol, we believe that the study can be reliably reproduced.

4 RESULTS

The main challenge of adapting the IEEE Std. 1044 included tailoring the attributes relating to the
fault and its resolution; specifically attributes in the phases Investigation, Action and, Impact
Identification as the attributes in these phases have a strong focus on source-code aspects.

The results are reported below in two parts; first, the classification scheme is presented, and second, a
comparison with the IEEE Std. 1044 is presented; for results from the initial industry evaluation of
LiDeC, see [13].

4.1 LiDeC

LiDeC captures – as shown by the scheme overview in Figure 5 – attributes from four phases of the
defect life-cycle [12] (described in more detail below as well as in Appendix A and Appendix B): the
first phase captures information about the recognition of the defect, i.e. observing a deviation (failure)
from intended or specified requirement [32]; the second phase captures information about the underlying
cause of the defect (referred to as Investigation in [12]); in phase three information about the defect
resolution is captured (referred to as Action in [12]); and the last phase captures information about what
was actually done about the defect (referred to as Disposition in [12]. Table 3 shows a comparison
between the life-cycle phases of IEEE Std. 1044, ODC and LiDeC.

Figure 5. Overview of the LiDeC Scheme

15

As can be seen by the number of attributes in each phase (described in tables Table 4–Table 7 in the

subsections below), the main focus of LiDeC is on recognition and analysis of a defect. The justification
is that the later a defect is discovered the more costly its resolution tend to be [33]. In addition, as
implementation is done mainly by suppliers, the most promising areas of process improvement lies in
more efficient verification and validation. Consequently, the main focus of the classification scheme is
on how defects are discovered, how the product is affected by them, and what types of defects they are.
Analysing this information will contribute to understanding which phases of the development process
contain the most improvement potential.

The phases of the classification scheme are aligned with the defect management process at the case
company and directly correspond to the states a defect can be assigned: recognized, analysed, resolution
proposed and post-mortem. The following sections describe the attributes of each phase. Appendix A
provides an exhaustive list of attributes and their description and Appendix B provides a classification
guide that was used in the case-study. The classification guide in Appendix B contains a more detailed
description of each attribute value along with typical examples expressed in the terminology of the
company; the purpose is to maintaining consistency of the classification over time and between reporters.
In addition, Appendix C contains classification examples.

4.1.1 Recognition

The attributes in the first phase of the defect life-cycle (shown in Table 4) relate to data about the
discovery of a failure and its effects on the system in question, i.e. the manifestation of the defect. The
attributes capture project related information:

─ Timestamp of detection
─ Resolution urgency
─ End-user perceived severity of the defect, and
─ How the defect affects the product, including whether ASIL requirements are affected (ISO/IEC

26262 [34]).

This information will be used in analysis, for example, to assess how timely the most serious defects
are detected, or which activities are more effective in detecting defects.

TABLE 3 MAPPING OF LIFE-CYCLE PHASES

Defect life-

cycle phase
IEEE 1044 ODC LiDeC

1
Recognition

Open

Recognition

2
Investigation Analysis

3
Action

Close

Resolution

4
Impact

Identification

5
Disposition Post-mortem

16

4.1.2 Analysis

The attributes in the second phase of the defect life-cycle (shown in Table 5) aim at capturing data
about the cause of the failure; e.g. in what work product and product component contained the defect,
what type of defect it was, and which process step caused the problem.

TABLE 4 SUMMARY OF ATTRIBUTES IN THE RECOGNITION PHASE

Attribute Question Values

Timing / Detection When was the defect detected? Date and project phase

Timing / Preferred When should the defect have been

detected (subjective)?

Project phase if different from Timing

/ Detection

Affects S/W Does the defect affect software? Yes / No

Detection Activity What was done to detect the defect? Inspection/Requirements,

Inspection/Design,

Unit test/In-house,
Unit test/Supplier,

System test/bench,

Functional test/Test track,
Functional test/Expedition

Production/Manufacturing

Production/Customer report

Urgency How urgently does the defect need

to be addressed?

Immediately,

Next development release,
Before start of production,

Deferrable

Severity How severe is the defect with

respect to product quality?

None,

Nuisance,

Limited Functionality,
Show-stopper

Effect How does the defect primarily
affect the product?

Capability/Undesired activation,
Capability/Inactive on true positive,

Capability/Other,

Function Safety,
Maintainability,

Usability,
Testability,

Configurability

Functional Safety

Impact

Does the defect have impact on a

software compontent with ASIL-

classified requirements?

Yes,

No

17

4.1.3 Resolution

The attributes in the third phase of the defect life-cycle (shown in Table 6) aim at capturing data
about the proposed resolution. As implementation specific details of the resolution may not be available,
the attributes in this phase focus on capturing the cost of resolving the defect in terms of development
effort. More specifically, to capture what impact a resolution would have on the product and on the
process; the impact on the product is captured in terms of how much of the product would be affected by
the modification, and impact on the process in terms of amount of regression testing needed.

Furthermore, the attributes of the Resolution phase capture data about a proper resolution of the

defect. In practice, a defect could be resolved by means of workarounds (this data is captured in the final
phase of LiDeC).

TABLE 6 SUMMARY OF ATTRIBUTES IN THE RESOLUTION PHASE

Attribute Question Values

Removal time When was the defect

report closed?

Date and project phase

Product impact What would the impact of

a proper resolution be on

the product?

None,

Local (unit) modification,

Multiple components,
Funct. changes (re-design)

Required Verification
Level

What level of regression
testing would a proper

resolution require?

None,
Inspection,

Unit test,

System test,
Expedition

TABLE 5 SUMMARY OF ATTRIBUTES IN THE ANALYSIS PHASE

Attribute Question Values

Artefact Which software work
product contained the

defect?

Req./Internal,
Req./Cross-function,

Req./External,

Design model,
Impl./Executable model,

Impl./Code,

Impl./Configuration params,
Tool

Injection activity When was the defect
injected?

Specification,
Design,

Impl./In-house modelling,

Impl./Suppl. mdl. transform.,
Impl./Supplier coding,

Configuration

Component / Asset Which design component

contained the defect?

Internal (product) module name also

identifying its version

Type What type of defect was it? Description,

Data,

Interface / Timing,
Logic / Algorithm,

Tooling,

Tuning

18

4.1.4 Post-mortem

In the last phase of the defect life-cycle the single attribute (shown in Table 7) records what was
finally done to close the defect; to what extent the defect was resolved.

4.2 Comparison with IEEE Std. 1044

In the process of adapting IEEE Std. 1044 compliance with the standard was considered an important
requirement (Appendix D shows the compliance matrix as proposed in [12]). Retaining compliance with
the standard contributes to the generalizability of the results – e.g. data collected with LiDeC and
analyses conducted on that data should be comparable with IEEE Std. 1044 compliant data from other
companies.

The main differences between the IEEE Std. 1044 and LiDeC are described below. The full mapping
of attributes between the IEEE Std. 1044 and LiDeC is presented in Appendix E.

4.2.1 General Modifications

The main adaptation made to LiDeC consists of raising the abstraction level of the attributes, i.e.
choosing attribute values that are less fine-grained than their IEEE Std. 1044 counterpart. Furthermore,
the set of values available for each attribute expressed in the terminology of the company and provided
with examples; for example the attribute “Type” has been shown to be problematic (e.g. “to me
everything is a logic problem” [8]); in LiDeC typical examples for each available value (see for instance
Figure 15 in Appendix B) are provided.

Furthermore, attribute values that in IEEE Std. 1044 consisted of “Low, Medium and High” (e.g.
Project Risk and Priority) has been replaced by more descriptive values (see, for instance, the LiDeC
attributes Urgency and Severity in Appendix A and figures Figure 10 and Figure 11 Appendix B), also
contributing to making values less ambiguous by limiting the amount of interpretation needed by the
reporter.

Moreover, supporting data items from the standard, e.g. cost and time estimations, defect reporter,
developer assigned to the defect) has been omitted from LiDeC unless they have a specific purpose
related to the analysis of the defect data (e.g. the LiDeC attribute Component/Asset is originally a
supporting data item in the IEEE Std. 1044 Action phase). Such supporting data items, however, are
assumed to be part of the company’s normal issue tracking process as needed.

4.2.2 Added Attributes

The attributes described in the following subsections were added in LiDeC.

4.2.2.1 Timing/Preferred

The attribute was added to the Recognition phase in order to capture – at the time of detection – the
reporter’s subjective opinion of whether there was a previous test phase in which this type of failure
should have been uncovered. The intention of the attribute is to be able to gauge the fault-slip-through
rates of the test activities.

4.2.2.2 Affects Software

The attribute was added to the Recognition phase in order to capture whether the defect has an impact
on software. As the products developed are software intensive mechatronic systems, there may be defects

TABLE 7 SUMMARY OF ATTRIBUTES IN THE POST-MORTEM PHASE

Attribute Question Values

Resolution state What was the final state
of the defect when the

problem report was

closed?

Corrected (proper resolution applied),
Workaround/Fix,

Workaround/Product de-scoped,

No Action/Deferred,
No Action/Referred,

No Action/Not found,

No Action/No action

19

that are not related to software; the purpose of the attribute is thus to be able to filter defects based on
whether they affect the software. The definition of whether a defect affects software, however, is broad;
see the example given in the classification guide in Figure 8 in Appendix B.

4.2.2.3 Component/Asset

The attribute was added to the Analysis phase in order to be able to evaluate the distribution of faults
among components in the system. The attribute is originally part of the supporting data items of the IEEE
Std. 1044 Action phase – thus whereas the IEEE Std. 1044 records the component(s) in need of
modification, LiDeC records the component(s) containing the fault. This redefinition was made as the
main focus of LiDeC is on capturing data about the defects rather than their solution; as the majority of
implementation is done by suppliers, it is of more interest to the company to identify which components
contain the defects rather than which components need modification (e.g. a workaround may require
modifications to other components than the one containing the defect).

4.2.2.4 Removal Time

The attribute Removal Time was to the Resolution phase added in order to allow evaluation of defect
longevity. The attribute is originally part of the supporting data items in the IEEE Std. 1044 Action
phase.

4.2.3 Omitted Attributes

In this section the attributes available in the IEEE Std. 1044 that were omitted in LiDeC are listed. All
omitted attributes are listed as optional in IEEE Std. 1044.

4.2.3.1 Suspected cause

While the Suspected cause attribute may provide valuable input during the process of analysis a
failure, it was not considered important from LiDeC’s point of view. LiDeC aims at capturing attributes
of the defect itself, rather than speculations done as part of the defect analysis process.

4.2.3.2 Repeatability

The Repeatability attribute was omitted (as a separate attribute) in the LiDeC for the same reasons as
the Suspected cause attribute (see 4.2.3.1). In LiDeC, the attribute is instead partly represented as an
attribute value in the Disposition attribute of the Post-mortem phase; non-repeatable defects would be
reported as No action / Not found.

4.2.3.3 Corrective action

The IEEE Std. 1044 attribute Corrective action records detailed data about what action was taken in
order to resolve the issue. The attribute values proposed by the standard – such as revising the developing
process or implementing a training program – would not generally be applicable to the context of VCC
based on a single observed defect; rather such actions would instead be taken on the basis of analysing
defect data from a number of projects.

Furthermore, the exact action taken may not easily be identified as a substantial amount of defects
relate to code, and code is generally produced by suppliers. Instead, LiDeC captures data about the
estimated repercussions of the corrective action(s) by the attributes Resolution Impact and Required
Verification Level.

4.2.3.4 Customer value, Mission/safety and Project risk

As the roles responsible for reporting defects may not have the necessary insight in, for instance,
product planning the (explicit) attributes Customer value and Mission/Safety were omitted. Instead the
data are in LiDeC implicit in the attribute Severity – i.e. how severely the defect affects the product from
a customer perspective.

The attribute Project risk was omitted in LiDeC as a defect reporter may not have necessary
knowledge of project planning (defects may be reported by suppliers, as well as various in-house testers)
to be able to assess project risk. The risk can, however, be assessed by analyzing the LiDeC attributes
Resolution impact and Required verification level together with Severity and Time of detection; late sever
defects that have a large impact on the product and/or require the more costly verification types would
constitute a higher risk.

4.2.3.5 Project quality/reliability

The intention of the IEEE Std. 1044 attribute Project quality/reliability is to appraise the impact on
the project quality if a defect is addressed. The attribute was omitted in LiDeC as the data was not
considered to be relevant to study context – the subjects in the case-study had difficulty relating the

20

attribute to the defects analysed, indicating that the roles responsible for defect reporting may not have
the necessary insight in project planning to be able to reliably assess the attribute.

The LiDeC field Required Verification Level, however, captures data with similar intentions: when
addressing the defect how much additional re-verification effort would be required (also see 4.2.4.7
Project schedule below).

4.2.4 Redefined Attributes

A number of IEEE Std. 1044 attributes have in LiDeC been redefined. The redefinitions have been
done with care to retain the intention of the original attribute, but adapted to the context of VCC; e.g. by
changing the available attribute values (for instance the Symptom attribute) or by using a different
measurement unit than the IEEE attribute originally specified (for instance the Project cost attribute).

The following subsections describe the attributes that have been redefined.

4.2.4.1 Symptom

The IEEE Std. 1044 attribute Symptom has been redefined in LiDeC in that, whereas the original
attribute captured more detailed data about the behaviour of the system, the LiDeC attribute Effect
captures less fine-grained data about what quality aspect of the product – i.e. the product’s “-ablities” – is
affected.

Furthermore, the attribute values chosen for the Effect attribute has been tailored specifically for the
context of active safety systems; e.g. the Capability attribute values (which would correspond to the
values available in the Symptom attribute) has been subdivided into the two categories that are most
relevant (the function triggering on a false positive and the function being inactive despite a true positive)
as well as a catch-all third capability related value, see Figure 12 in Appendix B.

4.2.4.2 Product Status and Severity

Both the IEEE Std. 1044 attributes Product status and Severity are included in the LiDeC attribute
Severity. Whereas the IEEE attribute Severity captures the severity of the fault, the LiDeC attribute
Severity captures the severity of the failure (i.e. the manifestation of the fault) – as does the IEEE
Product Status attribute. LiDeC’s focus on the failure aspect of a defect rather than the fault causing it is
due to the limited in-house implementation done, and the specific interest in the ability to evaluate test
activities.

Furthermore, the attribute values available in the LiDeC attribute Severity have been defined to
describe the impact of the failure in more objective terms than the original values proposed by the IEEE
Std. 1044 (which are “Urgent, High, Medium, Low and None), see Figure 11 in Appendix B.

4.2.4.3 Societal

The attribute Societal is in LiDeC covered by the attribute Functional Safety Impact. Whereas the
IEEE Std. 1044 does not define the Societal attribute clearly, in the attribute Functional Safety Impact is
specific with respect to defects that may cause harm. In particular, LiDeC attribute captures whether the
defect have impact on a software component that has ASIL-classified requirements (as defined by
ISO/IEC 26262 [34]).

4.2.4.4 Actual cause

Whereas the IEEE Std. 1044 captures data about the artefact that caused the defect, LiDeC captures
data about in which project phase the fault was injected. This redefinition was made as it was, in the
case-study, found that the attributes Actual cause and Artefact was treated identically. By referring to the
activity causing the defect it was clearer to the subject how to use the attribute (see Example 2 Appendix
C).

4.2.4.5 Type

The IEEE Std. 1044 attribute Type has a strong focus on source code, and provides a detailed set of
attribute values. In the LiDeC case-study the attribute was found difficult to assign of two main reasons:
i) as the access to source-code may be limited, identifying detailed data about type of defect is often not
possible, ii) the detailed set of values proposed by the IEEE Std. 1044 were shown to make distinction
between values difficult (this is also corroborated in [8] by the quote “to me everything is a logic
problem”).

The approach taken in LiDeC is to substantially reduce the resolution in the available attribute values,
and to provide each attribute value with a typical example in the terminology of the company (see
Appendix A for a description of the LiDeC attribute and Figure 15 in Appendix B for examples of each
attribute value).

21

4.2.4.6 Resolution and Priority

The IEEE Std. 1044 attribute Resolution captures data about both the urgency of the resolution and
what type of resolution that will be applied [12]. In LiDeC, the urgency of resolving a defect is captured
by the Urgency attribute while data about the type of resolution is not explicitly captured by LiDeC
(instead, it is partly covered by the Disposition attribute).

Furthermore, whereas the IEEE Std. 1044 Resolution attribute relates to the urgency of applying a
specific resolution, the LiDeC attribute Urgency relates to the urgency of removing a failure from the
system; thus, the focus is on detecting and prioritizing the removal of the manifestation of defects rather
than on details of the actual resolution (as the resolution may be developed and applied by the supplier,
the OEM may not have the necessary insight).

4.2.4.7 Project schedule

The IEEE Std. 1044 attribute Project schedule aims at capturing data about the direct impact of the
resolution on the project schedule. In LiDeC this is instead captured in terms of amount of re-testing
needed after applying a resolution; as verification activities constitutes a substantial amount of the
development efforts, the attribute captured data with the same intention as the Project schedule attribute.
Furthermore, the amount re-testing needed for a resolution is more straight-forward to assess for an
engineer reporting the defect than objectively estimating the impact on project schedule.

4.2.4.8 Project cost

Whereas IEEE Std. 1044 attribute Project cost captures data about the cost of a resolution in terms of
real money, LiDeC instead makes the estimate in terms of how much of the product will be affected by
the resolution in the attribute Product Impact – the assumption is that the more of the product that is
affected the more expensive the resolution will be. This redefinition was made as the engineer reporting a
defect may not have sufficient insight into the budget or may have limited ability to make a reliable
estimation of the cost of applying a resolution. Thus, LiDeC captures data with the same intention as the
Project cost attribute but in more objective engineering terms.

5 CONCLUSIONS

In this report we have described the adaptation of IEEE Std. 1044, the IEEE standard for defect
classification, to the automotive safety feature development context. The specific properties of the
development context that influenced the adaptation include a strong reliance on supplier side
implementation, which may limit the access and insight into the source-code. Furthermore, as defect
classification does not directly contribute to the development of the end-product, it was considered
important to adapt the classification scheme to minimize the time required to use the scheme while still
providing the additional benefits of characterizing the defects. More specifically, we have addressed the
research questions:

 RQ 1 In an automotive safety feature development context where source-code is often not available,
how can a standard defect classification scheme be suitably adapted?

RQ 2 As defect classification may often be considered an administrative task, how can the
adaptation of a standard defect classification scheme be done to minimize required learning
and classification time?

We addressed RQ 1 by:

─ Shifting the focus of the classification scheme from detailed aspects of the fault and its resolution
to aspects of the discovery of the defect. As the implementation is mainly done by suppliers,
most in-house process improvement potential lies in more efficient defect discovery activities.
LiDeC reflects this by providing more detailed attributes in the Recognition phase (e.g. Detection
activity, Urgency, Severity and Effect), while granularity of the attributes in subsequent phases
have been reduced; e.g. the Type attribute is less granular than in IEEE Std. 1044 and detailed
aspects of the resolution (captured by the IEEE attribute Resolution) has been omitted;

─ Adapting attributes for safety specific purposes. In LiDeC the attribute Functional Safety Impact
(which maps to the IEEE attribute Societal) records whether a defect impacts ASIL-classified
requirements [REF: ISO 26262]. In addition, the values of the Effect attribute (which maps to the
IEEE Symptom attribute) was adapted specifically to provide a high-level characterization of
safety feature problems (e.g. unintentional activation of a feature).

22

We addressed RQ 2 by:

─ Raising the level of abstraction of attributes. For instance, by providing only higher-level
categories as values for the Type attribute

─ Providing more descriptive attribute values (Low, medium high)
─ Providing attribute descriptions and values phrased using the terminology of the company
─ Providing a classification guide with a flow-chart structure, and including typical examples for

each attribute value
─ Streamlined the attributes by removed or redefining attributes that required insights that the

typical reported may not have (project schedule and risk). Attributes were redefined with care to
retain the intentions of the original attribute but measured in more specific engineering terms; for
instance, whereas the IEEE Std. 1044 attribute Project schedule aimed at appraising the direct
impact on the project plan, LiDeC instead appraises the estimated amount of re-verification (an
activity that may have a large impact on the project schedule).

In conclusion, by putting focus on capturing data about the discovery of defects, streamlining the
available attributes with respect to the expertise of the engineers reporting defects, and conforming to the
terminology of the company, we have developed an IEEE Std. 1044 compliant classification scheme well
suited to the development of automotive safety features at VCC. As a result, we are now in the process of
incorporating LiDeC into the issue tracking system of the company.

6 FUTURE WORK

The next step in our research concerns analysis recipes – guidelines on how to analyse the collected
data. We envision two distinct types of analysis recipes: post-mortem and in-process – post-mortem
recipes will mainly be support for organizational learning, whereas in-process would serve as a tool for
project control.

Post-mortem recipes would concentrate on analysing the collected data in order to learn about a
finished project; e.g. evaluating whether changes in the way of working in the project yielded any
noticeable effects, or analysing weak spots in the way of working as promising candidates for future
improvements.

In contrast, in-process recipes would be guidelines on how to use collected defect data from previous
project phases in order to predict future phases within the project. As part of this we will need to identify
relevant predictors. The challenges include the absence of source-code predictors; instead there is a need
to identify predictors based on specification and design artefacts, e.g. requirements and design model
complexity.

By establishing a defect profile baseline per development phase, we aim at developing a way to
predict future defect inflow. Such a prediction model would, for instance, assist in resource planning in a
similar way as presented by Bijsma et al. [35] where mainly source-code related predictors were used to
estimate the time it would take to resolve a defect – a metric that can be used to assist in prioritizing
defects.

ACKNOWLEDGEMENTS

This research is partially sponsored by The Swedish Governmental Agency for Innovative Systems
(VINNOVA) under the Intelligent Vehicle Safety Systems (IVSS) programme. In addition, the authors
would like to thank all the people at VCC who participated in the study, and people who generously took
the time to review this manuscript.

23

REFERENCES

[1] CMMI Product Team, “CMMI for Acquisition,” Software Engineering Institute, Carnegie Mellon

University, Pittsburgh, Pennsylvania, Technical Report CMU/SEI-2010-TR-032, 2010.

[2] The SPICE User Group, “Automotive SPICE,” Automotive SPICE, 20-Jun-2011. [Online].

Available: http://www.automotivespice.com/. [Accessed: 20-Jun-2011].

[3] B. Beizer, Software Testing Techniques, 2nd Edition, 2 Sub. Intl Thomson Computer Pr (T), 1990.

[4] M. Leszak, D. E. Perry, and D. Stoll, “A case study in root cause defect analysis,” in Software

Engineering, 2000. Proceedings of the 2000 International Conference on, 2000, pp. 428–437.

[5] R. Chillarege, I. S. Bhandari, J. K. Chaar, M. J. Halliday, D. S. Moebus, B. K. Ray, and M.-Y.

Wong, “Orthogonal defect classification-a concept for in-process measurements,” Software

Engineering, IEEE Transactions on, vol. 18, no. 11, pp. 943–956, 1992.

[6] R. B. Grady, Practical Software Metrics for Project Management and Process Improvement.

Prentice Hall, 1992.

[7] “IEEE Std. 1044-2009. Standard Classification for Software Anomalies.” IEEE, 2010.

[8] B. Freimut, C. Denger, and M. Ketterer, “An industrial case study of implementing and validating

defect classification for process improvement and quality management,” in Software Metrics, 2005.

11th IEEE International Symposium, 2005, p. 10 pp.–19.

[9] S. Wagner, “Defect classification and defect types revisited,” in Proceedings of the 2008 workshop

on Defects in large software systems, New York, NY, USA, 2008, pp. 39–40.

[10] B. Freimut, “Developing and using defect classification schemes,” Fraunhofer IESE, IESE- Report

No. 072.01/E, Sep. 2001.

[11] “IEEE Std. 1044-1993 Standard Classification for Software Anomalies.” IEEE, 1994.

[12] “IEEE Std. 1044.1-1995 -- Guide to Classification for Software Anomalies.” IEEE, 1996.

[13] Niklas Mellegård, Miroslaw Staron, and Fredrik Törner, “A Light-weight Defect Classification

Scheme for Embedded Automotive Software and its Initial Evaluation,” presented at the Manuscript

submitted for publication in IEEE International Symposium on Software Reliability Engineering,

Dallas, Tx USA, 2012.

[14] J. Li, T. Stalhane, R. Conradi, and J. M. W. Kristiansen, “Enhancing Defect Tracking Systems to

Facilitate Software Quality Improvement,” Software, IEEE, vol. 29, no. 2, pp. 59 –66, Apr. 2012.

[15] A. Dubey, “Towards adopting ODC in automation application development projects,” in

Proceedings of the 5th India Software Engineering Conference, New York, NY, USA, 2012, pp.

153–156.

[16] M. Leszak, D. E. Perry, and D. Stoll, “Classification and evaluation of defects in a project

retrospective.,” Journal of Systems and Software, vol. 61, no. 3, pp. 173–187, 2002.

[17] Y. C. Cavalcanti, P. A. Mota Silveira Neto, D. Lucrédio, T. Vale, E. S. Almeida, and S. R. Lemos

Meira, “The bug report duplication problem: an exploratory study,” Software Quality Journal, Oct.

2011.

[18] S. H. Kan, Metrics and Models in Software Quality Engineering, 1st ed. Addison-Wesley

Professional, 1995.

[19] A. Wood, “Software reliability growth models,” Tandem Computers Inc.,, Technical Report 96.1,

1996.

[20] J. Ploski, M. Rohr, P. Schwenkenberg, and W. Hasselbring, “Research issues in software fault

categorization,” SIGSOFT Softw. Eng. Notes, vol. 32, no. 6, Nov. 2007.

[21] D. Liparas, L. Angelis, and R. Feldt, “Applying the Mahalanobis-Taguchi strategy for software

defect diagnosis,” Automated Software Engineering, vol. 19, no. 2, pp. 141–165, Jul. 2011.

[22] T. Hall, S. Beecham, D. Bowes, D. Gray, and S. Counsell, “A Systematic Review of Fault

Prediction Performance in Software Engineering,” IEEE Transactions on Software Engineering, vol.

PP, no. 99, pp. 1–1, 0.

[23] R. Shatnawi and W. Li, “The effectiveness of software metrics in identifying error-prone classes in

post-release software evolution process,” J. Syst. Softw., vol. 81, no. 11, pp. 1868–1882, Nov. 2008.

[24] R. Chillarege and K. Ram Prasad, “Test and development process retrospective - a case study using

ODC triggers,” in Dependable Systems and Networks, 2002. DSN 2002. Proceedings. International

Conference on, 2002, pp. 669–678.

24

[25] N. Mellegård and Miroslaw Staron, “Use of Models in Automotive Software Development: A Case

Study,” in The First Workshop on Model Based Engineering for Embedded Systems Design,

Dresden, Germany, 2010.

[26] N. Mellegård, “Method and Tool Support for Automotive Software Engineering,” Licentiate Thesis,

No 74L, Chalmers University of Technology, 2010.

[27] S. L. Pfleeger, Software Engineering: Theory and Practice, 2nd ed. Prentice Hall, 2001.

[28] T. L. Bennet and Paul W. Wennberg, “Eliminating embedded software defects prior to integration

test,” CrossTalk, vol. 18, no. 12, pp. 13–18, 2005.

[29] N. Mellegård and M. Staron, “Characterizing Model Usage in Embedded Software Engineering: A

Case Study,” in 8th Nordic Workshop on Model Driven Software Engineering (NW-MoDE),

Copenhagen, Denmark, 2010.

[30] R. K. Yin, Case Study Research: Design and Methods, Third Edition, Applied Social Research

Methods Series, Vol 5, 3rd ed. Sage Publications, Inc, 2002.

[31] N. Mellegård and M. Staron, “Distribution of Effort Among Software Development Artefacts: An

Initial Case Study,” in Exploring Modelling Methods for Systems Analysis and Design, Hammamet,

Tunisia, 2010, vol. LNCS.

[32] “ISO 9000:2005 — Quality management systems - Fundamentals and vocabulary,” International

Organization for Standardization / Technical Committee 176 (ISO/TC 176), Geneva, Switzerland,

2005.

[33] B. W. Boehm, Software Engineering Economics, 1st ed. Prentice Hall, 1981.

[34] “ISO/DIS 26262 - Road vehicles — Functional safety,” International Organization for

Standardization / Technical Committee 22 (ISO/TC 22), Geneva, Switzerland, Jul. 2009.

[35] D. Bijlsma, M. A. Ferreira, B. Luijten, and J. Visser, “Faster issue resolution with higher technical

quality of software,” Software Quality Journal, May 2011.

Appendix A. LIDEC ATTRIBUTE DESCRIPTION

Life-cycle phase 1 – Recognition

TABLE 8 LIDEC SCHEME – ATTRIBUTES IN THE RECOGNITION PHASE

Attribute Attribute Description Values Value Description

Timing/Detection
[RTD]

When was the defect discovered? Date

 [RTD1]

Date/project phase of detection

Timing/Prefered

[RTP]

Was the defect discovered in the proper test phase

according to the goals of the phase?

Yes

[RTP1]

The defects discovery was timely ; there was no previous test phase in which the specified goal

included detection of this type of defect

No

[RTP2]

This value is only provided if it is apparent that the defect should have been caught in an earlier test

phase.

Also specify which test phase, e.g. E1-Ex, M, VP, TT

Affect SW

[RAS]

Does the defect affect software?

 “Affect” here is used to denote either defects that are
caused by anomalies in the software or whose

resolution have an impact on software – an example of

the latter may be that dirt causes a sensor to degrade,
but if the system fails to detect this (through diagnostic

software) and notify the driver of degraded

performance, it still affects software.
This attribute will be used as a way to filter the defect

reports as we are mainly interested in defects that are

either caused by software or where the resolution may
affect the software

Yes

[RAS1]

The defect affects software

No

[RAS2]

The defect has no relationship with software at all, e.g. testing of vibration resilience of the physical

component failed

Detection activity

[RDA]

What was done when the defect was discovered?

Detection activity captures what was done when the
defect was detected.

Inspection / Requirements

[RDA11]

The defect was detected during inspection of requirements specification

Inspection / Design

[RDA12]

The defect was detected during inspection of design specification, e.g FMEA

 Component test / VCC

[RDA21]

The defect was detected while running a unit test in-house, e.g. unit testing of an isolated component

using a SimuLink model.

 Component test / Supplier

[RDA22]

D.o but the defect was detected by the supplier

System test / System-bench

[RDA31]

The defect was detected while runing an integration test (multiple cooperating components realizing

functionality) on a simulation of the target platform done in-house. As “simulation” of the target

platform are considered “box-car” (early E-series) as well as “mules” (M-series)

26

Attribute Attribute Description Values Value Description

System test / Whole car-

bench

[RDA32]

This refers to system testing done on system simulation on rigs with the whole electrical system

present; though not necessarily with the final hardware present

E.g bench tests with the whole electrical system

Functional test / Test track

[RDA41]

Functional testing of system using a car-build – a mule of a test build of the final hardware. Test-track

refers to testing isolated scenarios on a test-track i.e.with real sensor input, but a simulated test-setup

(e.g. with balloon cars or dummies)

Functional test / Expedition

[RDA42]

Functional testing of the whole car using a test-build – mule or the final hardware build.
The defect was detected on an expedition with real data

Production platform /
Manufacturing

[RDA51]

Defect was detected during manufacturing, e.g. calibration or configuration of a function, such as
calibration of sensors in the production line

Production platform /

Customer reported

[RDA52]

The defect was detected by customer post-release, e.g.car owner or maintanence staff

Urgency
[RU]

How urgently does the defect need to be addressed?
Denotes how urgent the defect needs to be removed

from the product – thus urgency is related to the

project.
In late stages of the project defect will naturally be

more urgent than in earlier stages. However, defects in

early project phases that are blockers (i.e. blocking
other functionality from being testable), should be

considered urgent

Immediate

[RU1]

The defect should be removed in the current development cycle; i.e. before the next development
release (e.g. detected in E3.1 and should be removed in E3.2).

E.g. defects that are blocking vital functionality should be classified as “immediate” (as they are

inhibiting testing of that functionality)

Next major release

[RU2]

The defect should be removed before the next major development release.

E.g. detected in E3.x and should be removed by E4.

 Before SoP

[RU3]

The defect should be removed before the software is released.

E.g. minor flaws or functionality that can be adjusted using tunable parameters, or documentation
issues

 Deferrable

[RU4]

Defects that are not considered to have much of an impact on product, and can be deferred until later

versions or revisions of the product

Severity
[RS]

How severly does the defect affect the product?
Severity denotes the end-user perceived impact on the

product if the defect is left in the released product –

thus severity is related to the product (i.e. vehicle) not
the project.

Note, this attribute shall not consider the timing of the

defect detection, i.e. regardless of when a defect is
detected during the project it shall receive the same

severity (whereas its Urgency may vary)

None

[RS1]

The defect would not be noticed by the end-user

Nuisance

[RS2]

The defect would be limited to a nuisance for the end-user – though the product would still realize the

full functional specification.

E.g. a warning system would still be able to function in all scenarios originally specified, but may

give an increase amount of false warnings

 Limited functionality

[RS3]

The defect would limit the functionality of the product – e.g. the product would still function but not

to the extent originally specified.

Show-stopper

[RS4]

A “show-stopping defect” is one that would prevent the product from being released; e.g. defect that

would result in increased risk of injury, or that block other functions from performing according to
specifications.

27

Attribute Attribute Description Values Value Description

Effect
[RE]

How does the defect primarily affect the product?
Note that these may be overlapping to some extent but

classification should be done on the effect, not the
cause (as life-cycle phase 1 is focussed on the detection

of defects) – e.g low performance of the software in a

sensor may affect the functionality of the system, thus
defect should be classified as 'Functionality'

Capability /
Undesired activation

[RE11]

The defect causes the function to trigger on a false positive

Capability / Inactive despite

True Positive

[RE12]

The defect inhibits activation of functionality despite presence of a true positive

 Capability /
Other capability related

defect

[RE13]

The defect affects the capability of the product; i.e. the product does not behave as intended or to the
extent intended

Maintainability

[RE4]

The defect would affect the maintainability of the system; e.g. documentation issues, too complex
design, cryptic internal error codes, wrong or missing diagnostic codes.

Usability

[RE5]

The defect affects the systems ease of use; e.g. complex user interface, missing or wrong visual cues
to driver

 Configurability

[RE6]

The defect affects configuration or calibration of the function; e.g. configuration of vehicle model
variations or calibration of components during manufacturing

Testability

[RE7]

The defect affects the testability of the product; e.g. radar software the fails to detect a balloon car at
the test site

Functional Safety
Impact

[RFS]

Does the defect have an impact on a software
component with ASIL-classified requirements (IS

26262)?

Yes
[RFS1]

The defect have an impact on ASIL-classified requiremetns according to the ISO 26262 standard
[34].

 No

[RFS2]

The defect does not affect ASIL-classified requirements.

28

Life-cycle phase 2 – Analysis

TABLE 9 LIDEC SCHEME – ATTRIBUTES IN THE ANALYSIS PHASE

Attribute Attribute Description Values Value Description

Artefact

 [AA]

Which software work product contained the defect?

This attribute relates to the work product in which the

fault causing the failure was contained. Note that the

underlying reason for introducing the fault may lie in
another work product (see Injection activity)

Requirement /

Internal

[AA11]

Defect was contained in a requirement for the module itself

Requirements / Internal
cross-function

[AA12]

The defect was contained in a requirement the module posed on an external module. E.g wrong
required resolution posed on a sensor which is not part of the module itself.

 Requirements / External

[AA13]

The defect was contained in a requirement posed on the module by another module. E.g an external

module required wrong resolution of a sensor which is part of the module itself.

Design model

[AA2]

The defect was contained in a design model, e.g logical design (class diagram)

 Implementation /
Executable model

[AA31]

The defect was contained in a simulation model, e.g. Simulink

Implementation /

Code

[AA32]

The defect was contained in code, either written in-house or by supplier, or code generated from

models.

Note, if code was correctly generated from a defective model, the defect should be classified as

[AA31]

 Configuration Parameters

[AA33]

The defect was contained in the tuning parameters for the function

 Tool

[AA4]

Defect was contained in tools used during development; e.g. simulation environments for sensors

Injection activity

[AI]

When was the defect injected?

This attribute shall capture the reason why the defect
was contained in the work product (as specified in

[AA]); i.e. what caused the defect to have been

introduced in the system.

Note, it may defer from the artefact the defect was

contained in , e.g. a design defect may have been

injected due to a poor or missing requirement
(artefact='Design model', Injection='Requirement')

Specification

[AI1]

The defect was injected in the requirements phase; e.g. a missing, faulty, misrepresented, ambiguous

requirement caused the defect

Design

[AI2]

The defect was injected in the design phase eventhough the specification was stated correctly; e.g.

missing or faulty signal between modules, problems with the modularization

Implementation /

In-house model

[AI31]

The defect was injected when constructing the simulation model in-house. Requirements and design

were correctly specified, but mistake was made in an implementation model.

29

Attribute Attribute Description Values Value Description

Implementation /
Supplier Auto-coding

[AI32]

The defect was injected when transforming an executable model into code by supplier. Specification
and simulation model were correct, but mistake was made in code generation by the supplier.

Implementation /

Supplier implementation

[AI33]

The defect was injected in implementation at the supplier side (code not generated from simulation

model by VCC); implementation based on correct specification and design from VCC

Configuration

[AI4]

The defect was injected in the configuration of the function (specification, design and implementation
is correct); i.e. a faulty value of a tuning parameter

Component /Asset
[AC]

Which design component contained the the defect?
This attribute shall identify the component (at code

level) at the lowest level available.

The purpose is the attribute is to identify which

components are most likely to contain defects.

Component name or ID

[AC1]

A unique ID of the component containing the defect. The higher the resolution the better

Type

[AT]

What type of defect was it?

The type attribute describes the character of the defect.
The values of the type attribute may depend on which

artefact/component it affects

Data

[AT1]

Defect in data definition, initialization, mapping, access, or use, as found in a model, specification, or

implementation [11].
E.g. initialization of a variable, incorrect assignment of a value, incorrect carinality in data model,

using wrong variable, assuming wrong variable type (e.g. assuming vehicle speed in km/h when it is

stored as mph)

Interface / Timing

[AT2]

Defect in specification or implementation of an interface between two design components, e.g.

missing or wrong signals specified or errors in the timing of communication

 Tooling

[AT4]

The defect is present in tools used in development; e.g. simulation environments that are used in

development (e.g. simulating external components such as sensors etc.)

Logic / Computation

[AT3]

A defect in the logic of execution; eg. an algorithmic defect either because of a faulty implementation

of a correct specification or a faulty specification (or any combination thereof)

 Tuning

[AT5]

The defect relate to tuning parameters of the function.
E.g. missing or misinterpreted tuning parameters (errors in design) or faulty values assigned to tuning

parameters (implementation)

Description

[AT6]

Defect in specification, e.g. missing or wrong description (such as a requirement)

Standards

[AT7]

Non-conformity with a defined standard

30

Life-cycle phase 3 – Resolution

TABLE 10 LIDEC SCHEME -- ATTRIBUTES IN THE RESOLUTION PHASE

Attribute Attribute Description Values Value Description

Timing/Removal

[ET]

When was the defect removed?

Note, this does not necessarily mean that the defect

was fixed (see attribute 'Resolution state' in life-cycle
phase 4)

Date / Project phase

[ET1]

The date/project phase when the defect was considered removed from the system, i.e. when the defect

report was closed.

Defect not yet closed

[ET2]

The defect has not yet been closed.

NOTE! This refers to the defect/problem report not the fault or failure; i.e. a defect report can be

closed without having the underlying fault addressed.

Product Impact

[EI]

What is/would be the impact on the product of a

proper resolution?

Note, this is an estimate of a proper resolution of the
defect; i.e. an issue that would require major redesign

to resolve, but that can be worked around with a small

local fix shall be classified as a “Re-design' (the scope

of the change made is captured by 'Resolution state' in

life-cycle phase 4)

None

[EI1]

There is no resolution (e.g. the reported defect was intended behaviour) or the resolution has no

impact on the product

Local modification

[EI2]

The resolution is limited to a fixing a local module; other modules are not affected

E.g. modification of a tuning parameter or code modifications to a single module that does not affect

other modules

Multiple components

[EI3]

The resolution requires changes in multiple existing modules

Functional Changes

[EI4]

The resolution require a redesign, e.g. adding, removing or redefining modules

Required Verification
Level

[EV]

What level of regression testing would a proper
resolution require?

None

[EV5]

No re-verification needed

Inspection

[EV1]

Review of documentation, report or code is sufficient means of verification/validation of the modified
component/system

Component test

[EV2]

Re-verification of the modified component using recorded data (Resim) is sufficient.

E.g. running an executable model in Simulink with the recorded data

System test

[EV3]

Re-verification at system level using recorded data (Resim) is sufficient

E.g. a new software build of all components of the system is needed in order to validate the changes;

it is sufficient to re-verify the system on bench with recorded data (Resim)

Expedition

[EV4]

The resolution would need re-validation with real data, e.g. in a full car-build on test-site or on an

expedition
(“Breddprovning”)

31

Life-cycle phase 4 – Post-mortem

TABLE 11 LIDEC SCHEME -- ATTRIBUTES IN THE POST-MORTEM PHASE

Attribute Attribute Description Values Value Description

Resolution state

[PS]

What was the state of the resolution when the defect

was marked as closed?

This attribute is meant to track how the defect was
eventually handled

Corrected

[PS1]

A proper resolution, addressing the root cause, was applied

Workaround / Fix

[PS21]

The underlying fault remains, but workarounds were made to avoid failure. The workaround retains

the intended capability of the original specification

Workaround / Product de-

scope

[PS22]

D.o. but the workaround forced de-scoping of the system, e.g. limiting the functionality or quality of

service

No Action / Deferred

[PS31]

The defect was left in the system, and resolution deferred to a later revision

No Action / Referred

[PS32]

The source of the defect lies in another system. Defect was referred and closed in this system

No Action / Not Found

[PS33]

The defect was not found again; e.g. the failure could not be reproduced or the defect was not
observed in a later revision of the software

No Action / No Action

[PS34]

No action taken, defect remains in system

32

Appendix B. LIDEC CLASSIFICATION GUIDE

Figures Figure 6 to Figure 18 below show the classification guide used during the classification sessions, as described in section 3 Method. Initially, LiDeC was
presented to the person responsible for defect classification by an overview of the classification scheme. The overview was described by using Figure 6, in which all
available LiDeC attributes are represented and grouped into the phases of the defect life-cycle (further described in 2.2.1 Defect classification schemes).

During the classification sessions, each defect was classified according to the attributes in LiDeC. For each attribute, the developer was shown the corresponding image
(shown below). In each image, the question that guides the reporter is shown at the top in an orange rectangle (e.g. “What was done when the defect was detected?”). The
values that can be assigned the attribute is shown in blue rectangles below the question. The white boxes, shown e.g. in the attribute “Detection Activity”, represent
categories of values and serve only to provide the values with a clearer structure. For instance, for the attribute “Detection activity” the categories serve to make an initial
separation on types of activities, and then breaks down those into the sub-activities that are to be chosen as the value for the attribute.

Note, in this appendix the guides for trivial attributes (i.e. attributes with simple Yes/No values or dates) have been omitted.

33

Attribute overview

Figure 6 Detailed LiDeC Scheme attribute overview

34

Life-cycle phase 1: Recognition – Detection of the defect

Figure 7 Classification guide for the attribute Preferred detection time

35

Figure 8 Classification guide for the attribute Affect Software

36

Figure 9 Classification guide for the attribute Detection activity

37

Figure 10 Classification guide for the attribute Urgency

38

Figure 11. Classification guide for the attribute Severity

39

Figure 12 Classification guide for the attribute Effect

40

Life-cycle phase 2: Analysis – Investigating the cause of the defect

Figure 13 Classification guide for the attribute Artefact

41

Figure 14 Classification guide for the attribute Injection activity

42

Figure 15 Classification guide for the attribute Type

43

Life-cycle phase 3: Resolution – The action leading to defect removal

Figure 16 Classification guide for the attribute Product impact

44

Figure 17 Classification guide for the attribute Required verification level

45

Life-cycle phase 4: Post-mortem – Final state of defect

Figure 18 Classification guide for the attribute Resolution state

Appendix C. EXAMPLE CLASSIFICATION

In this section the classification of two example defects is described. Due to confidentiality
reasons, the defects described below are construed examples. The example defects, however, are
inspired by defect reports encountered during the case-study.

Example 1

The first defect caused a faulty diagnostic flag to be set indicating that part of software installed
on an ECU failed. The defect was detected during testing of the vehicle at the factory manufacturing
line late in the project. The problem occurred when updating the software and its configuration
parameters on the ECU. In the process of deploying software and configuration parameters, the ECU
was first set into a programmable mode in which a diagnostic routine is executed; it was in the
diagnostic routine that the faulty error-mode was set.

During the root cause analysis it was found that the flag indicating component’s (programmable)
mode was stored to an incorrect output port which caused the programmable mode to be interpreted
as a faulty error mode. Although the defect manifested itself during manufacturing (when software
was first deployed to the ECU), it could occur during the software maintenance phase when software
updates are deployed to the ECUs. It would, however, have had no effect on the normal operational
mode of the component, the system or the complete vehicle (e.g. the driver would not have been
affected by the defect).

Recognition phase
The date on which the defect report was submitted in the issue management system was used for

the Timing/Detection attribute (2009-04-14). In addition, the development phase in which the
detection was made was also noted (though this is redundant information, as the development phase
can be derived from the date using the project plan, but it was convenient to have that information
readily available). The detection time was considered (subjectively by the reporter) as significantly
late in the project. The reporter considered it to be a software unit problem and that it should have
been detected in an earlier test phase (either during unit testing at the supplier side, or during unit
testing at the OEM side; the internal name of the preferred test phase was U2). The defect was,
furthermore, considered to affect software, as (according to the reporter) it was probably an
implementation error that led to the wrong diagnostic flag being set.

The defect was discovered during the testing of the manufacturing line when the car was
assembled in factory, thus the value Manufacturing was selected for the Detection Activity attribute.
As the defect in this case made it difficult to assess whether deploying the software to the ECU was
successful it was considered impossible to release the software into production in its current state,
and its resolution to be very urgent; the value Immediately was chosen for the Urgency attribute (as
the defect was discovered late, a fix was promptly needed) and the value Show-stopper for the
Severity attribute (as the software could not be released while containing the defect).

The Effect attribute was set to Maintenance as the main effect of the defect related to problems
when software and configuration parameters were to be updated. The defect would, furthermore,
have affected any future maintenance updates to both software and configuration parameters. Finally,
the defect was considered to have no impact on any ASIL-classified requirements (if the software
update had truly failed, it would have successfully triggered other diagnostic functions indicating that
the component was not operating properly), it was thus considered not to have any impact on
functional safety (as defined by ISO 26262).

Table 12 summarizes the classification for the Recognition phase.

47

Analysis phase
During the root cause analysis of the failure it was found that the defect was contained in the

binary code deployed on the ECU. It was, furthermore, found that the requirements clearly stated to
which port the diagnostic flag should be written, and the executable model which served as base for
the binary code was correctly implemented according to the requirements. Consequently, the fault
was introduced during transformation from executable model to source-code; an activity done by a
supplier. Therefore, the attribute Artefact was assigned the value Implementation / Code, and the
attribute Injection Activity was assigned the value Implementation / Supplier auto-coding. The
Component/Asset attribute was assigned the company’s internal code identifying the software
module as well as the software version.

Finally, the Type attribute was assigned the value Data, because the underlying cause of the
defect related to data being written to the wrong location. Note that the Type attribute in IEEE Std.
1044 has a higher resolution which allows for more precision in defect analysis. In our case,
however, such resolution is not possible, as the source-code (which carries the necessary information
to allow for more detailed classification) is owned by the supplier. In effect, LiDeC’s Type attribute
captures a black-box alternative to the Type attribute in IEEE Std. 1044.

Table 13 summarizes the classification for the Analysis phase.

Resolution
The urgency of the defect (due to its late discovery) resulted in the resolution being applied in the

same development phase in which it was discovered; the date (and development phase) of successful
verification of the resolution was noted as the Removal time.

The necessary resolution was determined to be confined to a single software module, as no other
components would need any modifications; thus the Product Impact attribute was set to Local
modification. Finally, a test report from the supplier showing successful test of the binary component
was considered sufficient means of verification; thus Inspection was set as value for the attribute
Required Verification Level.

Table 14 summarizes the classification for the Resolution phase.

TABLE 14. EXAMPLE CLASSIFICATION; EXAMPLE 1, RESOLUTION PHASE

Attribute Value

Timing / Removal 2009-05-09 (Manufacturing test)

Product Impact Local modification

Required Verification Level Inspection

TABLE 13. EXAMPLE CLASSIFICATION; EXAMPLE 1, ANALYSIS PHASE

Attribute Value

Artefact Implementation / Code

Injection Activity Implementation / Supplier auto-coding

Component / Asset XYZ-1256

Type Data

TABLE 12. EXAMPLE CLASSIFICATION; EXAMPLE 1, RECOGNITION PHASE

Attribute Value

Timing / Detection 2009-04-14 (Manufacturing test)

Timing / Preferred U2 (unity testing)

Affect SW Yes

Detection activity Manufacturing

Urgency Immediate

Severity Show-Stopper

Effect Maintenance

Functional Safety Impact No

48

Post-mortem
In the final defect life-cycle phase, the single attribute Disposition records what finally was done

to resolve the defect. In this example, a proper resolution was applied; thus the value Corrected was
assigned to the Disposition attribute.

Table 15 summarizes the classification for the Post-mortem phase.

Example 2

The defect was found in a feature that issues an audible warning if the driver is unintentionally
drifting off-lane. The function monitors the vehicle’s position by tracking the lane markers in the
road and gives a warning signal when a lane is about to be crossed and the driver does not use the
turn signals. During the first field test (also called expedition) – where a mature build of the full
vehicle is tested on a large variety of road types – it was found that the sensitivity of the warning was
too high, resulting in frequent false alarms. The problem was detected on specific road types were
the lanes were narrower than what had been anticipated.

Recognition phase
The date on which the defect report was submitted in the issue management system was used for

the Timing/Detection attribute (2008-10-04) and noted along with the development phase in which it
was detected. The detection time was considered (subjectively) by the reported as appropriate. The
defect was, furthermore, considered to affect software, as (according to the reporter) it was the
behaviour of the software that caused the problem.

The defect was discovered during the functional testing of the vehicle on an expedition, thus the
value Functional Test / Expedition was selected for the Detection Activity attribute. As the defect in
this case caused considerable nuisance to the driver on specific road types, it was considered to
impossible to release the software into production with the defect remaining (the value was thus set
to Show-stopper). As the resolution of the defect was considered to need further testing (on the
problematic road type, as well as other types to ensure no regressions had been introduced) and that
additional development releases had already been planned for testing, the Urgency attribute was set
to Next Major Release.

The Effect attribute was set to Capability / Undesired Activation as its main effect related to false
warnings. Initially, there was some confusion whether the defect should be classified as having effect
on the Usability. However, as the problem was not related to the way the user was warned (i.e.
through an audible cue), the problem did not have impact on usability.

Finally, the defect was considered to have no impact on any ASIL-classified requirements, it was
thus not considered to have any impact on the functional safety (as defined by ISO 26262). If, on the
other hand, the feature had been able to autonomously intervene in steering or braking, it would
indeed have had impact on functional safety.

Table 16 summarizes the classification for the Recognition phase.

TABLE 16. EXAMPLE CLASSIFICATION; EXAMPLE 2, RECOGNITION PHASE

Attribute Value

Timing / Detection 2008-10-04 (First full vehicle functional test)

Timing / Preferred -

Affect SW Yes

Detection activity Expedition

Urgency Next major release

Severity Show-Stopper

Effect Capability / Undesired activation

Functional Safety Impact No

TABLE 15. EXAMPLE CLASSIFICATION; EXAMPLE 1, POST-MORTEM PHASE

Attribute Value

Disposition Corrected

49

Analysis phase
The problem occurred in running code (i.e. in the binary code of on one of the software

components realizing the feature). However, as the feature was designed to be configurable (using
tuning parameters) with respect to the width of the lanes, the Artefact attribute was set to
Implementation / Configuration Parameters. It was, furthermore, found that the requirements
specification for the feature did not take the particular road type into consideration. Additionally, the
design as well as the executable model and the binary code were found to have been correctly
derived and implemented from the requirements specification. Consequently, the attribute Injection
Activity was assigned the value Specification. The Component/Asset attribute was assigned the
company’s internal code identifying the software module as well as the software version.

Finally, the Type attribute was assigned the value Description because the requirements did not
take the particular road type into consideration.

Table 17 summarizes the classification for the Analysis phase.

Resolution
The resolution was applied in next major release of the software; the date (and development

phase) of successful verification of the resolution was noted as the Removal time.
The necessary resolution was determined to be confined to one component (specifically, the

configuration parameters of a software module). However, as the particular module also provided
other features in the vehicle with data, and thus might be affected by the modification, the Product
Impact attribute was set to Multiple Components. Finally, it was considered necessary to verify the
resolution in a full vehicle build, where all features dependent on the modified software model were
tested; thus Expedition was set as value for the attribute Required Verification Level.

Table 18 summarizes the classification for the Resolution phase.

Post-mortem
The resolution of the defect was finally done in two parts: first, the configuration parameters of

the software module were modified, and; second, the requirement specification was updated with a
description of the road type that caused the problem. Thus, the value Corrected was assigned to the
Disposition attribute. If, on the other hand, the requirements specification had not been updated, it
should have been set to Work-around / Fix as the problem would have been mitigated, but the root
cause not properly removed.

Table 19 summarizes the classification for the Post-mortem phase.

TABLE 19. EXAMPLE CLASSIFICATION; EXAMPLE 2, POST-MORTEM PHASE

Attribute Value

Disposition Corrected

TABLE 18. EXAMPLE CLASSIFICATION; EXAMPLE 2, RESOLUTION PHASE

Attribute Value

Timing / Removal 2009-02-09 (Second full vehicle functional test)

Product Impact Multiple modules

Required Verification Level Expedition

TABLE 17. EXAMPLE CLASSIFICATION; EXAMPLE 2 ANALYSIS PHASE

Attribute Value

Artefact Implementation / Configuration Parameters

Injection Activity Specification

Component / Asset ABC-5431

Type Description

Appendix D. IEEE STD. 1044 COMPLIANCE MATRIX

Table 20 shows the IEEE Std. 1044 compliance matrix (see table 3 in [12]). In the table green cells indicates attributes that map between the IEEE 1044 and LiDeC
schemes, red cells indicate IEEE 1044 attributes not available in LiDeC, while white cells indicate IEEE 1044 attributes that are implicit in other LiDeC attributes.
Furthermore, an asterisk indicates that the LiDeC attribute has a different definition than its IEEE Std. 1044 correspondence.

TABLE 20 IEEE STD 1044 COMPLIENCE MATRIX

IEEE Std 1044-1993
Category

LiDeC equivalent
category

Mandatory in
IEEE Std. 1044-
1993

Comment

Actual cause Injection activity
*

√

Whereas IEEE records actual cause as the artefact that
caused the defect, LiDeC records in which activity it was
injected

Corrective action

Customer value

Implicit in LiDeC.Severity

Disposition Resolution state
√

Mission/safety Implicit in LiDeC.Severity

Priority Implicit in LiDeC.Urgency

Product status Severity

Project activity Detection activity
√

Project cost Product impact
*

√

The level of impact on the product – in terms of required
change – is considered a better estimate of “cost” than
money

Project phase Timing / Detection
√

Project
quality/reliability

Project risk

51

IEEE Std 1044-1993
Category

LiDeC equivalent
category

Mandatory in
IEEE Std. 1044-
1993

Comment

Project schedule Re-verification level
*

√

Whereas IEEE.ProjectSchedule is described as “an
appraisal of the amount of effort required to address the
defect”, LiDeC instead expresses it in terms of the
amount of re-verification required. This is because
verification is a costly activity, and it is a more
convenient way for individual teams to estimate impact
on schedule

Repeatability

Resolution Urgency
*

√

Whereas the LiDeC.Urgency records how quickly the
defect needs to be removed, the attribute IEEE.Resolution
also records the type of resolution applied

Severity Severity
*

√

The IEEE attribute also includes whether a solution exist
in the severity attribute. LiDeC, however, assesses
“Severity“ on the observed failure, and does thus not take
the availability of a fix into consideration

Societal Functional Safety
Impact

The attribute Functional safety impact captures whether
the defect may risk causing harm to persons (as defined
by the ISO 26262 [34]). This maps to the IEEE Std. 1044
attribute Societal in that it captures data about the impact
of the defect on environment (e.g. driver, passenger or
other persons in the vehicle’s surroundings).

Source Artefact
√

Suspected cause

Symptom Effect
√

Type Type
√

52

Appendix E. MAPPING BETWEEN IEEE STD. 1044 AND LIDEC

TABLE 21 MAPPING BETWEEN IEEE STD. 1044 AND LIDEC

Life-Cycle

Phase

IEEE

Std. 1044
Description LiDeC Description Mapping comment

Recognition Project

Activity

What were you doing when the

anomaly occurred?
Detection

activity

How was the defect detected?

 Project Phase In which life cycle phase is the

product?
Timing /

detection

When was the defect detected?

 Suspected

cause

What do you think might be the

cause?
n/a

Speculation of the cause would mainly be of interest

when analysing the fault. This is done as part of the

defect management process at the company, but is not

of interest for our analysis

 Repeatability Could you make the anomaly

happen more than once? n/a
This attribute is captured by Disposition

 Symptom How did the anomaly manifest

itself?
Effect What requirements category does

the defect affect?

The IEEE Std. 1044 has a very detailed symptom

classification. In our approach we analyse instead the

type of impact the symptom would have on the product;

e.g. Capability, maintainability etc

 Product

Status

What is the usability of the product

with no changes?
Severity How severely does the defect

affect the product?

n/a

Timing /

Preferred

When should the defect have been

detected?

The attribute records the developers (subjective)

opinion on whether this defect's discovery was timely

or if there was an earlier project phase in which it

reasonably should have been detected. No such

attribute exist in IEEE 1044

n/a

Affects

Software

Does the defect affect software? As the development of automotive software is a hybrid

of hardware and software development, and that our

main interest lies in studying aspects related to software

development, we use this attribute to make an initial

coarse filtering of the defects

53

Life-Cycle

Phase

IEEE

Std. 1044
Description LiDeC Description Mapping comment

Investigation Actual cause What caused the anomaly to occur? Injection

Activity

When was the defect introduced

in the product?

Closely related to IEEE.Source and LiDeC.Component.

Where as the IEEE maps this on product parts LiDeC

captures the activity in which the defect was injected;

i.e. a defect discovered in code may have been

introduced due to ambiguous requirements.

 Source Where was the origin of the

anomaly?
Artefact Which software work product

contained the defect?

 Type What type of anomaly/enhancement

at the code level?
Type What type of defect was it? Directly mappable, though LiDeC use a much higher

abstraction level of the selection of types. There were

still cases where the distinction between types was not

straight-forward – mainly because the types were not

easily understandable (rather than lack of

understanding of the defect itself)

Action supporting data item

Component

/Asset

Which design component

contained the defect?

The attribute captures which part of the product

contained the defect. This relates to IEEE.ActualCause

and is also part of the supporting data items in the

Action life-cycle phase, although that data item

captures which part of the product will need changing

(which may not be the same as the one containing the

defect!)

Action Resolution What action to take to resolve the

anomaly?
Urgency How urgent is it to resolve the

defect?

LiDeC.Urgency also maps to the IEEE.Priority

attribute. However, investigating the defect to arrive at

the priority requires resources; we have in LiDeC

chosen to record the Urgency attribute on failure-level

instead of on fault level. Consequently, 'Urgency'

relates to how urgent it is to remove the manifestation

of the fault rather than the fault itself (which the

IEEE.Priority attribute specifies)

 Corrective

action

What to do to prevent the anomaly

from happening again
n/a

Whereas IEEE records the exact resolution we have

chosen instead to record the extent of impact the

resolution would have on the product (see

IEEE.ProjectCost).

54

Life-Cycle

Phase

IEEE

Std. 1044
Description LiDeC Description Mapping comment

Action supporting data item

Removal

Time

When was the defect closed? LiDeC captures the time of closing the problem report

(regardless of the state of the resolution) in order to be

able to measure the longevity of defects and the project

workload. This information is interesting as it serves as

a measurement of the pressure on the project –

assuming mistakes are more likely to be made under

pressure one would like to keep the number of open

defects to a minimum

Impact

Identification

Severity How bad was the anomaly in more

objective engineering terms?
Severity What would the impact on the

product be if defect remain in

system on release?

Also see IEEE.ProductStatus

 Priority Rank the importance of resolving

the anomaly (subjective)

(Urgency) How urgent is it to resolve the

defect?

See the IEEE.Resolution attribute

 Customer

value

How important a fix is to

customers? n/a

This is implicit in the LiDeC.Severity attribute

 Mission /

Safety

How bad was the anomaly with

respect to project objectives or

human well-being?
n/a

This is implicit in the LiDeC.Severity attribute

 Project

schedule

Relative effect on the product

schedule to fix
Required

Verification

Level

What level of regression testing

would a proper resolution

require?

Required effort to apply a resolution is not only

captured by the amount of necessary modification to

the product. As automotive software have very high

reliability requirements, V&V activities require

substantial amount of resources. This attribute records

the estimated level of regression testing that a proper

resolution would require (as order of magnitude)

 Project cost Relative effect on the project

budget to fix
Product

Impact

What would the impact on the

product be if a proper resolution

was applied? Value is intended as

order of magnitude – from no

impact, local modification to a

system re-design

Whereas IEEE.ProjectCost specifies to record an

appraisal of the cost of a resolution in dollars, LiDeC

instead records an estimation of the impact a resolution

would have on the product (in terms of the amount of

modification needed). We stipulate that the impact of a

resolution on the product will correlate with the cost of

applying it; the impact, however, is easier to estimate

by the person reporting the defect

55

Life-Cycle

Phase

IEEE

Std. 1044
Description LiDeC Description Mapping comment

 Project risk Risk associated with implementing

a fix n/a

 Project

quality /

reliability

Impact to the product quality or

reliability to make the fix n/a

 Societal Impact to society of implementing

the fix
Functional

Safety

Impact

Does the defect have an

impact on a software

component with ASIL-

classified requirements (ISO

26262)?

The attribute Functional safety impact captures

whether the defect may risk causing harm to

persons (as defined by the ISO 26262 [34]). This

maps to the IEEE Std. 1044 attribute Societal in

that it captures data about the impact of the defect

on environment (e.g. driver, passenger or other

persons in the vehicle’s surroundings).

Note, the Functional Safety Impact attribute is

captured in the recognition phase

Disposition Disposition What actually happened to close the

anomaly
Resolution

State

What was the final state of the

resolution when defect was

closed?

Directly mappable – values modified

