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Correlated Materials – Models & Methods

Hugo U. R. Strand
Department of Physics

University of Gothenburg

Abstract

This thesis encompass a series of studies on methods and models for elec-
tron systems with local interactions, relevant for correlated materials. The
first study focus on the canonical model for local correlation, the Hubbard
model. Using dynamical mean field theory, the critical properties of the fi-
nite temperature end point of the metal insulator transition are determined.
The issue of computing real frequency spectral functions is also addressed
through the development of the novel method, distributional exact diago-
nalization.

Next topic is the multiband Gutzwiller variational method, for which an
efficient solver is presented, applicable to realistic d-electron models when
accounting for lattice symmetries. The solver is applied to the iron based
superconductors FeSe and FeTe, where the Hund’s coupling is found to drive
orbital differentiation in the correlated parent state.

A central issue is how to model the local Coulomb interaction. Imposing
rotational invariance on the complete set of d-states results in the Slater-
Condon interaction, to be compared with the simpler Kanamori interaction,
that is shown to be a Laporte-Platt degenerate point of the former. The
derivation of a minimalistic form for the Kanamori interaction in terms of
density-density, total spin, and total quasi-spin operators enables an exact
parametrization of the Slater-Condon interaction in terms of the Kanamori
parameters.

The additional interactions contained in the Slater-Condon form are
identified as higher order multipole scattering, and the parametrization en-
ables a direct study of the effect of these interaction processes. The mul-
tipole scattering is found to drive charge disproportionation and valence-
skipping for a subset of multipole active d-band fillings, and raises the ques-
tion whether such multipole effects are manifested in real materials.

Keywords: correlated electrons, Hubbard model, multiband Hubbard model,

dynamical mean field theory, exact diagonalization, Landau theory, Mott metal-

insulator transition, Gutzwiller method, many-body point group symmetry, iron
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Chapter 1

Introduction

This thesis is composed by an introduction and a number of publications.
The purpose of the introduction is to give a more in depth description of
the applied models and methods, and a short summary of the main findings.
Every chapter address a specific topic, and the reader interested in a partic-
ular subject is encouraged to selectively read the the most relevant chapters.
As indicated by the thesis title Correlated Materials – Models & Methods
the basic motivation for this work is the family of correlated materials, in
particular materials where local electron-electron correlations play a central
role. Theoretically the field is largely based on building effective models that
capture the essential physics of these materials, and the subsequent solution
of such models using many-body methods. The presentation is selective,
treating only the classes of models applied in the papers, namely the sin-
gle band Hubbard model and its d-electron multi-band generalization. On
the method side, single band Dynamical Mean Field Theory (DMFT) and
multi-band Gutzwiller variational methods are treated. It is the hope of the
author that future students entering the field will benefit from these pre-
sentations. Intentionally the treatments are condensed, and aims at being
self-consistent.

In terms of achievements in research the main contributions of the ap-
pended papers to the field are in my humble opinion: Paper I – The determi-
nation of the DMFT critical exponents of the finite temperature end point
of the metal insulator transition in the paramagnetic single band Hubbard
model. Paper II – The development of the novel distributional exact diago-
nalization impurity solver working directly on the real axis. Paper III – The
development of an efficient solution method for the multiorbital extension of
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the Gutzwiller method able to treat general local interactions. Paper IV –
The Hund’s exchange is shown to play an important role for the orbital de-
coupling in the anomalous high-Tc iron chalcogenide superconductors FeSe
& FeTe. Paper V – The comparison of the two interaction models for five
band d-electron systems, the approximate Kanamori interaction, and the
full rotationally invariant Coulomb interaction. Paper VI – The analysis of
the higher order multipole scattering in the d-electron Coulomb interaction
and its role in driving charge disproportionation. My contribution to these
developments are specified separately for each paper on page vi.

My work has to a large extent been focused on implementing, testing
and performing numerical calculations. During the first years I implemented
the standard exact diagonalization algorithm, with both full diagonalization
and the Lanczos method, and later the distributional-exact diagonalization
method. Another big project has been to implement the new Gutzwiller
multi-band solver, and the point group symmetry reduction of many-body
operators, enabling calculations of d-band models with crystal fields. Apart
from coding much effort has gone in to the reduced matrix element analysis
of rotationally invariant d-band interactions.

The introductory text is structured in the following way; In Chapter 1 the
non-relativistic atomic and electronic problem is introduced in terms of the
Schrödinger equation, and the ab initio treatment of the problem in terms of
Density Functional Theory (DFT) is briefly discussed. The potential use of
DFT results as a starting point for constructing low energy effective models
is outlined, and the chapter is closed by giving some tentative experimental
examples of correlation effects, relevant to the appended papers. From the
general interacting electron model we arrive at the canonical single band
Hubbard model in Chapter 2 and some of its general features are touched
upon. Generalizing to several bands in Chapter 3 yields a more involved
Coulomb interaction, and its rotationally invariant form is dissected mali-
ciously. Then we turn to many-body methods for solving interacting models
in Chapter 4 where Dynamical Mean Field Theory is introduced, accompa-
nied by a number of impurity solvers in Chapter 5. Another many-body
method, the Gutzwiller variational approach is presented in Chapter 6. The
multi-band formalism and our new solution method is outlined. To make
multi-band calculations feasible one need to take wave-function symmetries
in to account. A computational procedure for imposing lattice point group
symmetries is presented in Chapter 7. Finally Chapter 8 summarizes the
appended papers and point out the main findings. The introductory text
is in part an adaptation of the author’s Licentiate thesis [1], in particular
Chapters 1, 2, 4, and 5.
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Section 1.1 - Ab initio electronic structure

1.1 Ab initio electronic structure

The electronic structure on the atomic scale is central for the understanding
of the macroscopic properties of solids. Determining the electronic structure
is a genuine many-body problem involving about 1023 electrons per 1 cm3 in
bulk materials [2]. As inherent quantum objects and spin one half fermions
the electrons must be described using quantum mechanics and Fermi-Dirac
statistics. Without accounting for relativistic effects, the wave-function Ψ
of the system is the solution of the Schrödinger equation

i∂t|Ψ〉 = Ĥ|Ψ〉 (1.1)

with the Hamiltonian [3]

Ĥ =
∑

α

P2
α

2Mα
+

1

2

∑

α6=β

ZαZβ
|Rα −Rβ |

+
∑

i

p2
i

2me
+

1

2

∑

i 6=j

1

|ri − rj |
−
∑

iα

Zα
|ri −Rα|

= T̂nucl + Ĥnucl-nucl + T̂el + Ĥel-el + Ĥnucl-el , (1.2)

where ri, pi and Rα, Pα are the positions and momenta of the electrons
and atomic nuclei respectively, me is the electron mass, and Mα are the
masses and Zα the charges of the nuclei. Due to the large separation in
mass between the atomic nuclei and electrons Mα � me, the nuclei can to
a good approximation be regarded as stationary when solving the electronic
problem. This is the so called Born-Oppenheimer approximation [4], which
reduces the electron-nuclei interaction to a constant background potential
V (r) acting on the electrons, replacing the terms T̂nucl, Ĥnucl-nucl and Ĥnucl-el

in Eq. (1.2).
The second part of the 20th century saw great theoretical and numerical

advances in methods for solving the interacting electron problem of Eq. (1.2).
In 1964 Hohenberg and Kohn published their seminal paper, proving that
the ground state energy of the interacting electron system is a functional of
only the electron density ρ(r) [5]. This celebrated Hohenberg-Kohn theorem
is the basis of Density Functional Theory (DFT) [4], an extremely versatile
method with unprecedented predictive power, for which Valter Kohn re-
ceived the Nobel Prize in Chemistry in 1998. However the existence of a
density dependent ground state energy functional does not solve the inter-
acting electron problem, but it paves the way for developing extremely good
approximations.

3



Chapter 1 - Introduction

The central step making DFT a powerful computational tool is the map-
ping of the electron many-body system to a non-interacting Kohn-Sham
reference system ĤKS with a density dependent single-particle effective po-
tential [6]. The total energy can then be written as the sum of the kinetic
energy of the non-interacting reference system, the classical electron-electron
Coulomb interaction energy, and a correction called the exchange-correlation
energy Exc. The correction term Exc includes the error in the kinetic energy
approximation using the Kohn-Sham reference system, and all quantum me-
chanical effects of electronic exchange and correlation. The corresponding
exchange-correlation potential Vxc(r) = δExc[ρ]/δρ(r), then enters naturally
in the effective potential of the Kohn-Sham system and enables DFT cal-
culations in terms of a non-interacting electron system in a self consistent
effective potential.

The catch is that the exact form of Vxc(r) is unknown and one must
resort to approximations. Two standard approaches are the local density
approximation (LDA) [6], where Exc is approximated in every point by the
exchange correlation energy of the homogeneous electron gas with a den-
sity equal to the local density, and the generalized gradient approximation
(GGA) [7], where also the gradient of the electron density is taken into ac-
count. Amazingly, these simple approximations of Exc gives DFT predictive
power of material properties for a vast set of compounds both metals and
insulators.

Instead of settling down content with the state of things, the basic in-
stinct of any scientist is of course to start exploring compounds that can
not be described by DFT methods. It turns out that there are compounds
such as CoO and LaTiO3 where DFT fails capitally, predicting metallic
ground states while in reality the compounds are good insulators [3]. These
insulators are denoted as Mott-insulators and belong to a larger class of
so called correlated materials containing partially filled bands with transi-
tion metal d-character. The aim of this thesis is to investigate theoretical
models and methods in order to understand and predict properties of this
material class. For the non-chemist an overview of the periodic table and
the transition metals are shown in Fig. 1.1.

Transition metal d-states are generally rather localized, which enhances
the local electron-electron interaction effects and eventually invalidates the
standard exchange-correlation approximations LDA and GGA [8]. Apart
from the Mott-insulators there are also metallic compounds on the verge of
a Mott transition, where the local correlation gives effective electron mass
renormalizations [9], not captured by DFT. Still the correlation effects are
limited to a small energy range of a couple of electron volts around the

4
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Fermi level. As DFT still gives a proper description on higher energy scales
the DFT result can be used as a starting point for constructing low energy
effective models for correlated systems.

To build a low energy effective model of the interacting electron system
requires in principle explicit knowledge of the system’s many-body wave-
function. Unfortunately only the single-particle states of the Kohn-Sham
representation is available from a DFT calculation. We will therefore suc-
cumb to what every DFT purist would consider as a cardinal sin, and re-
gard the Kohn-Sham reference system as a “real” electron system. Or, put
in more kind words, we replace the non-interacting Kohn-Sham reference
system with an interacting one.

The solution of the Kohn-Sham system from DFT provides single-particle
Bloch wave-functions ψknσ(r) and their dispersion εknσ, where k is the wave-
vector, n the band index and σ the spin z-component. In second quantized
form the non-interacting Kohn-Sham Hamiltonian can be expressed as

ĤKS =
∑

knσ

εknσc
†
knσcknσ , (1.3)

where c†knσ creates an electron in the state ψknσ(r). The Hamiltonian ĤKS

can be used as a starting point for developing simplified interacting electron
models for the system in question. The approach presented here is inspired
by the derivation of Hubbard [11].1

Let us assume that the narrow d-bands going into the model are well
separated from any other bands in the system. In this case the band index
n can simply be restricted to the d-subset. The number of required bands
equals the number of atomic orbitals of the valence sub-shell, resulting in
five spin full bands for transition metal d-states. It is possible to transform
the Bloch states ψknσ to a set of real-space Wannier orbitals ψRnσ(r) [12]

ψRnσ(r) =
1√
N

∑

k

ψknσ(r)e−ik·R , (1.4)

each centered at the atomic nuclei positions R. Using the electron creation
and annihilation operators c†Rnσ and cRnσ of the Wannier orbitals, ĤKS can
be written in the tight-binding real-space representation

ĤKS =
∑

RR′

∑

nσ

tnσRR′c
†
RnσcR′nσ , (1.5)

1Although due to the lack of any Kohn-Sham system at the time he had to resort to
using the result of a Hartree-Fock calculation.
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where the single-particle hopping matrix elements are given by [13]

tnσRR′ =
1

N

∑

k

εknσe
ik·(R−R′) . (1.6)

Further, the two body electron-electron interaction Ĥel-el can be reintro-
duced in second quantization form as [14]

Ĥel-el =
∑

αβγδ

(αβ|r−1
12 |γδ)c†αc†βcδcγ =

∑

αβγδ

Vαβγδ c
†
αc
†
βcδcγ , (1.7)

where α, β, γ and δ are super indices containing R, n and σ. The quartic
term in Eq. (1.7) corresponds to the two body vertex diagram

Vαβγδ c
†
αc

†
βcδcγ = ,

γ

α

Vαβγδ

δ

β

(1.8)

where the interaction matrix element Vαβγδ is given by the Coulomb integral
between the respective Wannier wave-functions

Vαβγδ = (αβ|r−1
12 |γδ) = (Rinσ,Rjmσ

′|r−1
12 |Rkn

′σ,Rlm
′σ′)

=

∫∫
dr1dr2 ψ̄Rinσ(r1)ψ̄Rjmσ′(r2)

1

|r1 − r2|
ψRkn′σ(r1)ψRlm′σ′(r2) . (1.9)

Thus our final effective model Hamiltonian Ĥeff is defined using ĤKS, Ĥel-el

and a double-counting term ĤDC [15] that is used to remove the local part
of the electron-electron interaction already included in ĤKS by DFT in a
mean-field fashion

Ĥeff = ĤKS + Ĥel-el − ĤDC . (1.10)

With this Hamiltonian as a starting point, it is straightforward to work out
low energy effective models for materials with strong correlation. Among
all possible models the minimal model is the canonical Hubbard model that
is the subject of Chapter 2. The generalization to multi-band models for
transition metal d-electrons is the subject of Chapter 3.

In order to capture the correlation physics such as Mott-insulating be-
havior and other exotic phenomena generated by the strong local correlation,

7
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Figure 1.2: Experimental phase diagram of V2O3 as a function of Cr and Ti
doping x, (V1−xMx)2O3 with M = Cr for x < 0 and M = Ti for x > 0, results
from Ref. [8].

these models can in turn be solved with more advanced many-body methods.
In this thesis we are going to dwell on two such methods, the Dynamical
Mean Field Theory discussed in Chapter 4 and the Gutzwiller variational
method treated in Chapter 6.

1.2 Correlation effects

As mentioned, strong local correlations can drive a system into a Mott-
insulating state. However this depends on the relative strength of the local
Coulomb interaction usually denoted by Hubbard U and the kinetic energy
of the electrons scaling with the band-width W of the d-band. The ratio
U/W can be controlled by crystal strain induced by, e.g. external pressure or
iso-electronic doping, as in the classical example of Cr and Ti doped V2O3,
where Ti doping acts as an effective positive pressure and Cr doping as
negative pressure. At room temperature V2O3 is a paramagnetic metal, but
a small Cr doping is sufficient to turn it into a Mott-insulator [8], see Figure
1.2. At higher temperature, ∼ 400 K, the first order metal to insulator
transition ends in a critical point.

8
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As in any first order transition, the metal-insulator transition displays
a hysteresis. In a beautiful experiment Limette et al. [16] performed con-
ductivity measurements on Cr doped V2O3 in a pressure cell and was able
to both map out the hysteresis region and determine the critical exponents
of the critical end-point. Interestingly the phase diagram as a function of
temperature and pressure, or equivalently U/W , has the same qualitative
features as the phase diagram of the paramagnetic single band Hubbard
model [17]. In Paper I we investigate the corresponding critical end point,
confirming that the critical exponents of the Hubbard model agree with
those observed in V2O3.

It is not only the immediate vicinity of a Mott-insulating state that makes
local correlation effects important. There are also many metallic systems
where local correlation plays an intricate rôle. Prominent examples are the
well known anomalous superconducting iron based compounds. In order of
degree of correlation these are the iron pnictide families of 1111 materials
(e.g. LaFeAsO), 122 materials (e.g. BaFeAs2), 111 materials (e.g. LiFeAs),
and the most strongly correlated chalcogenides FeSe and FeTe [18].

In these systems not only the strength of the direct Coulomb interaction
U , but also the Hund’s rule exchange coupling J is important [9]. The lo-
cal exchange coupling J stabilize the metallic state but also drives orbital
differentiation and the formation of local moments intermixed with itiner-
ant electrons. Due to their peculiar behavior, this class of compounds are
referred to as Hund’s metals [19]. In Paper IV we employed the multi-band
Gutzwiller formalism, of Chapter 6 and the point group symmetrization of
Chapter 7, to study the detailed role of J in the orbital differentiation of
the more strongly correlated chalcogenides FeSe and FeTe.

Apart from Mott-insulators and Hund’s metals, local correlation also
drives a multitude of different orderings, through spontaneous symmetry
breaking. Well known examples are of course the plethora of different mag-
netic orderings, ferromagnetic, antiferromagnetic, incommensurate antifer-
romagnetic, and different type of glassy magnetic phases. Spin however is
only one of the available degrees of freedom in which transition metal atoms
can undergo symmetry breaking. Other possibilities are, orbital and charge
order, and there is a particularly alluring form of charge order where the
transition metal valence disproportionates as, 2dn → dn−1 + dn+1. Well
known examples of this type of charge disproportionation are the iron based
complex oxides containing nominal valence states Fe4+ with four electrons
in the d-band.

Mössbauer spectroscopy has been used to analyze the distribution of va-
lence states, making charge disproportionation transitions directly evident.

9
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Figure 1.3: Fe valence distribution as a function of temperature in
La1/2Ca1/2FeO3−δ displaying a charge disproportionation transition at TCD ≈
175 K, data from Ref. [20].

An example of the transition in La1/2Ca1/2FeO3−δ is shown in Fig. 1.3. With
a nominal Fe3.5+ valence the system has a mixed-valence state of Fe3+ and
Fe4+ at high temperature, but below the charge disproportionation transi-
tion temperature TCD ≈ 175K the system turns in to a valence-skipping
state containing only Fe3+ and Fe5+ valence states [20].

Usually the charge disproportionation transition is first order and ac-
companied by magnetic ordering, and often a structural lattice deforma-
tion. So it is tempting to assert that charge disproportionation is driven
by magnetism and/or lattice distortions. Interestingly there is one system
that disproves this assertion. The layered perovskite Sr3Fe2O7 undergoes
no structural transformation as a function of temperature, and the mag-
netic and charge order transitions are separated in temperature with the
anti-ferromagnetic Neel temperature at TN ≈ 120 K and charge dispropor-
tionation temperature at TCD ≈ 343 K [21]. These observations are one
motivation for the investigation of the local correlation driven charge dis-
proportionation in Paper VI.
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Chapter 2

Hubbard Model

In 1963 Hubbard published a paper [11] where he deduced and motivated
one of the simplest conceivable model Hamiltonians for interacting electrons
in narrow bands. This model is today called the Hubbard model and has been
extremely important for our understanding of correlated electron phenom-
ena. Starting out from the very general model Hamiltonian in Eq. (1.10) we
here summarize the approximation steps necessary to obtain the Hubbard
model.

Assuming a narrow band implies that the Wannier orbitals ψRnσ(r) are
strongly localized around the lattice sites Ri. The resulting small overlap
between Wannier functions on different sites causes the interaction integrals
Vαβγδ in Eq. (1.9) to have a substantial value only on the same site

Vαβγδ = (Rinσ,Rjmσ
′|r−1

12 |Rkn
′σ,Rlm

′σ′)

≈ δRiRj
δRjRk

δRkRl
(Rinσ,Rimσ

′|r−1
12 |Rin

′σ,Rim
′σ′) . (2.1)

The localized Wannier states also gives small kinetic overlaps between next-
nearest-neighbors so the hopping tRR′,nσ can be approximately restricted
to only nearest-neighbors

tRR′,nσ ≈ δ〈RR′〉tnσ , (2.2)

where 〈RR′〉 denotes nearest-neighbor sites. This restriction can in reality
only be motivated for materials with bands having d- and f-character, but in
the name of model simplicity we consider the equivalent system with a band
having s-character. Describing a s-band requires only one Wannier function
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so the band index n can be dropped. The model parameters then reduce to

Vαβγδ = δRiRj
δRjRk

δRkRl
〈Riσ,Riσ

′|r−1
12 |Riσ,Riσ

′〉 = U ,

tRR′,σ = −δ〈RR′〉t , (2.3)

where the hopping also is assumed to be spin independent. The involved
Hamiltonian in Eq. (1.10) for interacting electrons in a crystal has now been
reduced to a model determined by a single parameter, namely the ratio
U/t. Where the nearest-neighbor single particle hopping t describes the
itinerant property of the electrons, and the extra energy contribution U
when two electrons occupy the same lattice site approximate the electron-
electron interaction. These approximations gives rise to the sought effective
Hamiltonian, the Hubbard Model

Ĥeff ≈ ĤHub = −t
∑

〈RR′〉

∑

σ

c†RσcR′σ + U
∑

R

n̂R↑n̂R↓ , (2.4)

where n̂Rσ = c†RσcRσ is the electron number operator. One of the open ques-
tions is what sort of ordered phases can be found in the Hubbard model.
At half-filling and at finite coupling U 6= 0, it is well established that the
ground state is anti-ferromagnetic. But at finite doping there may be su-
perconducting as well as spin and charge density wave states [22].

However our current focus is the Mott metal-insulator transition at half-
filling. To this end we start out with discussing the basic thermodynamics
of the Hubbard model in Section 2.1, then after a short introduction of the
Green’s function formalism in Section 2.2, we go on to discuss the non-
interacting and atomic limits of the model in Section 2.3. We then treat the
limit of infinite coordination number (or infinite dimension) in Section 2.4
and discuss the qualitative features of the finite temperature phase diagram
at half-filling in Section 2.5. The chapter is closed by Section 2.6 that gives
an introduction to the Landau theory phenomenological description of first
order transitions.

2.1 Thermodynamics

As we are going to work with the metal-insulator phase transition of the
Hubbard model let us first state some useful thermodynamic relations. It is
convenient to work in the grand canonical ensemble, with variable particle
number and fixed chemical potential µ. The grand partition function Z is

14



Section 2.1 - Thermodynamics

then given by

Z = Tr[e−β(Ĥ−µN̂)] , (2.5)

where β is the inverse temperature, β = (kBT )−1, the trace runs over
a complete set of states, and N̂ is the total electron number operator,
N̂ =

∑
iσ n̂iσ. In this formulation the expectation value of an operator

Ô is defined through its mutual trace with the Gibbs distribution ρ̂ =

e−β(Ĥ−µN̂)/Z [23]

〈Ô〉 = Tr[Ôρ̂] = Z−1Tr[Ôe−β(Ĥ−µN̂)] . (2.6)

Returning to the Hubbard model it can be divided in a kinetic part T̂
and an interaction part V̂ as follows

Ĥ = −t
∑

〈RR′〉

∑

σ

c†RσcR′σ + U
∑

R

n̂R↑n̂R↓ =

= T̂ + UD̂ = T̂ + V̂ , (2.7)

where we also have introduced the total double occupancy operator, D̂ =∑
R n̂R↑n̂R↓. In Eq. (2.7) the Hubbard coupling U now enters the Hamil-

tonian as an external field coupled to the conjugate field D̂ [24].
When studying first-order phase transitions one sometimes can find sev-

eral coexisting phases, where the thermodynamical ground state is naturally
the phase with the lowest free energy Ω, related to the Grand partition func-
tion Z through

Ω = − 1

β
lnZ , Z = e−βΩ . (2.8)

Taking the derivative of Ω with respect to U and using Eq. (2.7) gives

dΩ

dU
= − 1

β

d

dU
lnZ = − 1

β

1

Z
d

dU
Tr
[
e−β(Ĥ−µN̂)

]
=

=
1

ZTr

[
e−β(Ĥ−µN̂) ∂

∂U
(Ĥ − µN̂)

]
=

=
1

ZTr

[
e−β(Ĥ−µN̂)

(
D̂ +

∂µ

∂U
N̂

)]
=

= 〈D̂〉+
∂µ

∂U
〈N̂〉 . (2.9)
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Using this, the free energy Ω of the interacting system and the free energy
Ω0 of the non-interacting system can be connected through the integral

Ω− Ω0 =

∫ U

0

dŨ

(
〈D̂〉+

∂µ

∂U
〈N̂〉

)
, (2.10)

and the free energy difference ∆Ω between two systems with different cou-
plings U1 and U2 can be calculated as

∆Ω = Ω2 − Ω1 =

∫ U2

U1

dŨ

(
〈D̂〉+

∂µ

∂U
〈N̂〉

)
. (2.11)

Within a mean-field theory with a hysteresis region of coexisting solutions
this can be used to locate the accompanied thermodynamical first-order
transition [25]. By integrating along the adiabatic connection between co-
existing solutions the transition occur at the coupling U where the coexisting
solutions has zero free energy difference, ∆Ω = 0.

In preparation for the subsequent discussions let us end this thermo-
dynamical discussion by defining the thermodynamical intensive variables
corresponding to the extensive expectation-values 〈N̂〉 and 〈D̂〉

N =
〈N̂〉
N , D =

〈D̂〉
N , (2.12)

where N is the total number of lattice sites and N and D are the average
number of electrons and double occupancies per lattice site.

2.2 Matsubara Green’s functions

The success of DFT mentioned in the introduction stems from its use of
a non-interacting reference system. Although algorithmically efficient, this
approach become increasingly problematic as the local electron-electron in-
teraction effects become prominent. The language of choice for describ-
ing systems with many-body interactions are the Green’s function formal-
ism [26,27].

The single particle Green’s function G describes the propagation of an
electron with spin σ added to the system at a position R′ and time t′ that
is later removed from the system at R, t

Gσ(R, t; R′, t′) = −i〈cRσ(t)c†R′σ(t′)〉 . (2.13)
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For finite-temperature systems the inverse temperature β enters in the same
way as time but with an imaginary prefactor and can be described using a
Wicks-rotation of time t to imaginary time τ . Further the τ dependence of
operators are defined in the Heisenberg representation [14] as

c†Rσ(τ) = eτ(Ĥ−µN̂)c†Rσe
−τ(Ĥ−µN̂) ,

cRσ(τ) = eτ(Ĥ−µN̂)cRσe
−τ(Ĥ−µN̂) . (2.14)

The real-space R and imaginary time τ dependence of the Green’s func-
tion can be transformed into momentum k and Matsubara frequency, ωn =
π
β (2n+ 1) dependence, which simplifies calculations for translational invari-
ant time independent systems. The single-particle Green’s function G0 for
a free system has the form

G0(k, iωn) =
1

iωn − εk + µ
, (2.15)

where εk is the single particle dispersion. The power of using single-particle
Green’s functions is that all contributions from interactions enter the inter-
acting Green’s function G only through the self-energy Σ(k, iωn)

G(k, iωn) =
1

iωn − εk + µ− Σ(k, iωn)
. (2.16)

In the language of Feynman diagrams the self-energy Σ is given by the sum of
all one-particle irreducible amputated diagrams connecting to two external
propagators [14]. In general it is not possible to calculate Σ using this defi-
nition, but it can be used to formulate approximations in the weak coupling
limit by truncating the sum. To go to higher orders is increasingly difficult
as both the number of diagrams and the number of required integrations
over the Brillouin zone increase dramatically.

This section should not be seen as a sufficient introduction Green’s func-
tion theory and its purpose is only to establish the notation. The reader
who wishes to get a throughout treatment of the subject is referred to one
of the works [14, 26, 27]. Now we will take the presented Green’s function
formalism and apply it to the Hubbard model in some simple limits.

2.3 Non-interacting and atomic limits

Before discussing the phase diagram of the Hubbard model it is fruitful
to study more in detail some of the extreme limits. In particular the non-
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interacting and atomic limits are of interest. With these limits as a starting-
point we will try to make it plausible that there should exist an intermediate
phase transition.

In the non-interacting limit the electron-electron interaction is removed
by letting U = 0, and the system simplifies to a single band of non-interacting
electrons with nearest neighbor hopping only. As in Section 1.1, the single
particle hopping is diagonal in momentum space, enabling us to rewrite the
Hamiltonian as

ĤU=0 = −t
∑

〈RR′〉

∑

σ

c†RσcR′σ =
∑

k

εkc
†
kσckσ , (2.17)

where εk is the dispersion of the electrons given by

εk = −t
∑

〈R,0〉
e−ik·R , (2.18)

from which the density of states (DOS) is directly obtained as

ρ(ε) =
∑

k

δ(ε− εk) , (2.19)

and the Green’s function is given by

G(k, iωn) =
1

iωn + µ− εk
. (2.20)

The system is metallic whenever the DOS is non-zero at the chemical po-
tential, ρ(µ) 6= 0. Translated to the number of electrons per site N

N =

∫ ∞

−∞
dε ρ(ε)f(ε) , (2.21)

where f(ε) = (eβ(ε−µ) + 1)−1 is the Fermi distribution function, we see that
the system is metallic whenever the band is not completely filled, N < 2.
Some lattice specific density of states will be shown in next section. The
on-site double occupancy D can be calculated using Wick’s theorem [14]

D =
〈D̂〉
N = 〈n̂R↑n̂R↓〉 = 〈n̂R↑〉〈n̂R↓〉 (2.22)

which for the half-filled paramagnetic system gives, D = 1/4.
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Section 2.3 - Non-interacting and atomic limits

The other extreme case is the atomic limit where the bandwidth goes to
zero and the electron dispersion εk becomes k independent. This makes the
single-particle “hopping” local by

εk = t0 ⇒ tRR′ = δRR′t0 , (2.23)

resulting in a Hamiltonian that is diagonal in real space

Ĥatm =
∑

Rσ

t0c
†
RσcRσ + U

∑

R

c†R↑cR↑c
†
R↓cR↓ . (2.24)

The local Hamiltonian Ĥatm is also diagonal in the occupation number basis,
|0〉, | ↑ 〉, | ↓〉, | ↑↓〉, and its Green’s function Gatm can be calculated using
the Lehman spectral representation [14] giving

Gatm,σ(iωn) =
1− 〈n̂σ̄〉

iωn − t0 + µ
+

〈n̂σ̄〉
iωn − t0 − U + µ

, (2.25)

where σ̄ denotes the opposite spin z-component of σ. Rewriting the Green’s
function on the form of Eq. (2.16) the self-energy contribution can readily
be determined to

Σatm,σ(iωn) = 〈n̂σ̄〉U +
〈n̂σ̄〉(1− 〈n̂σ̄〉)U2

iωn − t0 + µ− (1− 〈n̂σ̄〉)U
. (2.26)

The density of states is also momentum independent having the form

ρσ(ε) = (1− 〈n̂σ̄〉)δ(ε− t0 + µ) + 〈n̂σ̄〉δ(ε− t0 − U + µ) , (2.27)

with two resonance peaks separated by U , giving an insulator at half-filling.
As the occupied low energy resonance only have contributions from singly
occupied states the double occupancy is zero at half-filling

D = 〈n̂↑n̂↓〉 = 0 . (2.28)

Now we can compare the two extreme cases, the non-interacting and the
atomic limit and their respective density of states, see Fig. 2.1. If we treat
U/t as a tunable parameter we see that the system goes from a metallic state
in the non-interacting limit, U/t = 0, to an insulating state in the atomic-
limit, U/t = ∞. Thus at some intermediate value of the electron-electron
interaction U one should expect some form of phase transition going from a
metallic to an insulating density of states. This interaction driven transition
was first proposed by Nevill F. Mott in 1949 and is therefore called the Mott-
transition [28]. The transition occurs approximately when the coupling U is
of the same order as the bandwidth, W ∝ t, of the non-interacting system,
U/W ∼ 1. For this reason it is common to use the ratio U/W instead of
U/t to specify the free parameter in the Hubbard model.
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DOS

W

Figure 2.1: Schematic density of states in the metallic non-interacting limit
(dotted line and gray shaded area) with a bandwidth of W and insulating atomic-
limit (solid lines).

2.4 Limit of infinite dimensions

While the atomic and non-interacting limits in the Hubbard model are im-
portant they do not contain any interesting many-body effects. Another
limit that actually does, is the limit of infinite dimensions, which corre-
sponds to the case when the number of nearest neighbors – i.e. the coordi-
nation number z – goes to infinity. The prescription on how to take this
limit was presented in the seminal paper of Metzner and Vollhardt [29]. This
summary follows the appendix on Fermiology in Ref. [17].

Consider a hyper-cubic lattice in d dimensions with nearest neighbor
hopping, and a lattice spacing set to one. Then the dispersion in Eq. (2.18)
takes the form

εk = −2t

d∑

i=1

cos ki . (2.29)

When taking the limit d → ∞ the sum over the cos ki terms for any k
becomes essentially a sum over independent random values each with a
cosine distribution. The central limit theorem can then be applied to obtain
the distribution of ε that we usually call the density of states ρ(ε) in the
form of a normal distribution

ρ(ε) =
1

2t
√
πd
e
−
(

ε

2t
√
d

)2

=
1√

2πσ2
e−

ε2

2σ2 , (2.30)

with a variance σ2 depending on t as σ =
√

2d t. In order to get a finite
density of states when d→∞, the hopping has to be rescaled as

t→ t√
2d

=
t√
z
, (2.31)
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Figure 2.2: Density of states for the square lattice in 1 to 6 dimensions (solid
lines and gray shaded areas) compared with the infinite dimensional limit (gray
dotted line), inspired by [17].

where we in the last step have used that the coordination number z of the
hyper-cubic lattice is two per dimension, z = 2d. This scaling results in
non-trivial many-body physic for the Hubbard model even in the limit of
d, z →∞ [17].

An interesting question is how close the limit of infinite coordination
number real crystalline materials actually are. For example the three di-
mensional lattices, simple cubic, body centered cubic and face centered cu-
bic has coordination numbers, z = 6, 8 and 12 respectively. The DOS of
the hyper-cubic lattice is shown in Fig. 2.2, for dimensions 1 to 6 and ∞,
i.e. for even coordination numbers z = 2 to 12 and ∞. Studying the evo-
lution of the DOS as a function of dimension it is evident that already in
four dimensions and at coordination number z = 8, almost all features of
the finite dimensional lattice is washed out.

While the hypercubic lattice is a nice example of the infinite dimensional
limit its infinite band width makes it qualitative different from finite dimen-
sional systems. Most of the model calculations in this thesis has instead
been performed for the Bethe lattice, with finite bandwidth. It is one of the
most popular reference systems with large amounts of available reference
results. Strictly speaking the Bethe lattice is not a lattice but a graph with
fixed coordination number z, having the special property that if one site is
removed the graph is divided into z disconnected pieces. It is also a bipar-
tite graph as the sites can be partitioned in two groups, A and B having
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Chapter 2 - Hubbard Model

Figure 2.3: Part of the Bethe lattice with coordination number, z = 3, with
all nearest, next-nearest up to (next)5-nearest neighbors of the central site. The
bipartite property is shown by the color coding of the sites for the A (black circles)
and B (gray circles) sub-lattices.

nearest neighbors of the other group only. A sketch of a Bethe lattice with
coordination z = 3 is shown in Fig. 2.3.

In the limit of infinite coordination number the non-interacting DOS
ρ(0)(ε) of the Bethe lattice becomes semi-circular, with a bandwidth W = 4t

ρ(0)(ω) =
2

π

√
1−

(
2ω

W

)2

, |ω| < W

2
. (2.32)

The finite bandwidth of the Bethe lattice is an important property when
studying the Mott transition in the Hubbard model and the special topology
simplifies to some extent the derivation of the Dynamical Mean Field self-
consistency equations, see Chapter 4.
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2.5 Phase diagram

As mentioned above the single parameter determining the Hubbard model
is the ratio U/W (or U/t), but when studying its phase diagram the other
external parameters that must be considered are, the temperature T (or the
inverse temperature β = (kBT )−1), and the average electron occupation N .
At this point a general account for the structure of the phase diagram would
be in place, but in this the particular lattice structure play a decisive role.
Still it is possible to draw some general conclusions for bipartite lattices with
coordination numbers larger than 4, a category containing for example the
cubic lattice in 2 and 3 dimensions.

First limiting the discussion to zero temperature T = 0, the non-inter-
acting system (U = 0) is paramagnetic (PM) for all fillings 0 ≤ N ≤ 2.
While at half-filling N = 1, an infinitesimal U is sufficient to make the
ground state anti-ferromagnetic (AF). For larger values of U this AF region
persist for larger deviations of N away from half-filling. Lastly there are
studies indicating that there exists a ferromagnetic state (FM) for very high
values of U , a result that is readily obtained in mean-field approximation
methods. There seems to still be a controversy whether this is a result of
the approximate methods or a real phase of the Hubbard model [22].

For finite temperatures, the paramagnetic phase persist, while in the
N and U regions of the zero-temperature AF ground state, a transition to
the PM state occur at some Neel temperature TN , shown schematically for
half-filling in Fig. 2.4a. The high-temperature PM state at half-filling is
divided in two regions going from a good metal at low U to an insulator
when increasing U , with a crossover region separating the phases [30,31].

This tendency towards AF is physically a pathology of the over-simplified
Hubbard model on bipartite lattices with only nearest-neighbor hopping.
The fermi surface has perfect nesting and any perturbation drives the in-
stability towards an AF state. In more complicated models and real corre-
lated electron-systems the anti-ferromagnetism is often suppressed by next-
nearest neighbor hopping or inter-band electron-electron interaction. Thus,
to connect results for the simple Hubbard model to these classes of models
the AF state is often removed by hand in calculations.

Now limiting the discussion to half-filling, N = 1, and Fig. 2.4, we su-
perficially suppress the anti-ferromagnetic state restricting the system to be
paramagnetic. This reveals a transition line between the metal and insula-
tor as anticipated in previous section. This first-order transition line ends
in a critical end-point at a coupling Uc and temperature Tc, that is also
the locus of the high temperature crossover region, see Fig 2.4b. For lattices
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Figure 2.4: Qualitative phase diagram of the Hubbard model at half-filling on a
bipartite lattice, a) real phases with the low-temperature anti-ferromagnetic (AF)
ground state and high temperature paramagnetic (PM) metallic and insulating
phases separated by a crossover region, b) phase diagram with suppressed AF
showing the first-order metal insulator transition line (solid black line) ending
in the second-order critical endpoint at (Uc, Tc) (black dot). The asymptotic
behaviors of the Neel temperature are taken from [31].

with non-interacting DOS having bandwidths W of the order of one electron
volt, W ∼ 1 eV, the critical temperature Tc has the same order of magni-
tude as room temperature Tc ∼ 25 meV. The properties of this transition
are studied in detail in Paper I where we determine the critical exponents
of the end point of the paramagnetic first order transition.

2.6 Landau theory

To assist in the understanding of the finite temperature critical point in the
Hubbard model treated by Paper I, a brief introduction to Landau Theory
is in place. In the paper this theoretical framework is used to analyze the
critical behavior.

Landau Theory [32] is a phenomenological theory aimed at describing
phase transitions in thermodynamical systems. First the state of the system
is characterized by some thermodynamical internal observable, conjugate to
the external fields, and its behavior as a function of temperature T and
the external fields are considered. In general whenever the system undergo
a first-order transition the conjugate variable will develop non-analytic be-
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havior. This is modeled in Landau Theory by introducing a continuous
Landau function L, parametrized by the observable, the external fields and
temperature, whose global minimum reflects the state of the system. In this
way the non-analytic behavior of first-order transitions can be described by
jumps between local minima of L. This section is an adaptation of the ideas
in Negele and Orland [14] to the Mott-transition in the Hubbard model.

For the Hubbard model we have already seen in Eq. (2.7) that the ex-
ternal field, relevant for the Mott metal-insulator transition, is the Hubbard
coupling U which together with the temperature T determines the external
parameters of the model. The idea of using the on-site double occupancy
D as the variable conjugate to U was already mentioned in Section 2.1,
and can be traced back to Castellani [24]. Thus one can try to describe
the Mott-transition by introducing a continuous function L(U, T,D) whose
global minima in D coincides with the state of the Hubbard model. As the
Mott-transition has a second-order critical end-point at the critical coupling
and temperature (Uc, Tc), we can try to expand L in powers of D around
this point. In terms of the shifted variables

u = U − Uc , t = T − Tc , d = D −Dc , (2.33)

the expansion to fourth order has the form

L(u, t, d) = a0(u, t)d+ a1(u, t)
d2

2
+ a2(u, t)

d3

3
+
d4

4
, (2.34)

where the coefficients an(u, t) can be taken to linear order in u and t,
an(u, t) = βnu + γnt. It is not directly evident that this expansion can
describe the physics of the transition in the vicinity of the critical point,
but this question is investigated in Paper I. The reason for limiting the ex-
pansion to fourth order is that it is the lowest power expansion that can
describe a second-order transition in the immediate vicinity of a first-order
transition. When constructing the power expansion of the Landau function
one can often reduce the number of parameters γn and βn by imposing the
symmetries of the system on L. Unfortunately this is not the case for the
Mott metal-insulator transition. Still some intuitive understanding of the
expansion in Eq. (2.34) can be gained by studying a simple special case.

Consider the expansion

L(u, t, d) = β0ud+ γ1t
d2

2
+
d4

4
, (2.35)

where the coupling u only enters in the linear term, the temperature t in the
quadratic term and the coefficients are positive, β0 > 0, γ1 > 0. The state
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of the system for fixed external parameters u and t is now determined by
the global minima of L with respect to d. Plotting this minima in (u, t, d)
space generates the surface Smin[L]

Smin[L] = {(u, t, d) : min
d

[L(u, t, d)]} , (2.36)

shown in Fig. 2.5. For u = 0 and t < 0 the system undergoes a first-
order transition as can be inferred from the discontinuity of Smin[L]. The
evolution into a first-order transition through a second-order critical point
can be understood in terms of the d dependence of Smin[L] varying u along
an isotherm. In the right back plane of Fig. 2.5 the isotherms are shown,
going from continuous behavior for t > 0, to a second-order transition at
u = 0 and t = 0, which develops into a first-order transition for t < 0. Thus
the phase diagram of the system is a first-order transition line ending in a
second-order critical point, shown in the bottom plane of Fig. 2.5.

Describing the system with the continuous Landau function L(u, t, d)
the non-analytic first-order behavior is generated through the competition
between local minima. Above the critical temperature (t > 0) the system
has a single global minima, and no phase transition occur when changing
the external field u. At the critical point (u = 0, t = 0) the global min-
imum Landau function has zero first, second, and third order derivatives,
thus yielding a second-order transition ∂dL(0, 0, 0) = 0, ∂2

dL(0, 0, 0) = 0,
∂3
dL(0, 0, 0) = 0. Below the critical temperature (t < 0) the Landau func-

tion has two local minima for small values of u. For u 6= 0 one of these
minima is also the global minima, but when u = 0 both minima becomes
global and the system jumps discontinuously from one to the other for any
perturbations in u. The stationary points of L in the vicinity of the critical
point are shown in Fig. 2.6.

In order to connect to the results in Paper I it is not sufficient to study
the surface of system states given by the global minimum of L. Instead one
have to consider all stationary points of L and investigate the surface of
stationary points SL defined by

SL ={(u, t, d) : ∂dL(u, t, d) = 0} ,
∂dL =βu+ γtd+ d3 = 0 . (2.37)

In the system state space SL is a continuous smooth surface where the
extra stationary points excluded from Smin[L] now continuously connects the
states at the discontinuous first-order phase transition, see Fig. 2.7. The
topology of SL is in catastrophe theory called the cusp catastrophe [33]
being a surface in three dimensions with a single fold. A cusp catastrophe
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Figure 2.5: State of the system in (u, t, d) space. The first-order transition is
accompanied with a discontinuity at u = 0 and t < 0 marked in magenta. The
phase diagram in the (u, t) plane (bottom plane) has a first-order transition line
(magenta) that terminates in a second-order critical end-point (magenta circle).
The isotherms (right back-plane) are continuous for t > 0, singular at t = 0 and
become discontinuous for t < 0.
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Figure 2.6: Behavior of the Landau function L at and around the second-order
critical end-point. The global minima (circles) and the other stationary points
(diamonds) are also shown. In the lowest center plot the first-order transition is
show with its pair of separated global minima. (Inspired by [14])
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Figure 2.7: The continuous surface SL of stationary points (cyan) of the Landau
function L(u, t, d) and the cusp catastrophe at the critical point (u, t, d) = (0, 0, 0).
The first-order transition (magenta circles) on the isotherm (t < 0) (right back
plane) is now continuously connected through a Z-shaped curve of stationary
points combining through saddle-node bifurcations (red and green circle). The
coexistence of stationary points now surrounds the first-order transition (magenta
line in the bottom plane) with a hysteresis region (red and green lines) that mark
the saddle-node bifurcation of two stationary points. Along the surface of the
first-order transition (magenta) a pitchfork bifurcation occurs at the second-order
critical point (central magenta circle).
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is accompanied with a set of general properties, for example the first-order
transition is surrounded by a hysteresis region in the (u, t) plane where
three stationary points coexists, see the bottom plane in Fig. 2.7. Also on
the first-order transition surface of Smin[L] the stationary points exhibit a
pitchfork bifurcation at the critical point, where a single stationary point at
t > 0 separates in to two local minima and one intermediate local maximum.
This type of pitchfork bifurcation is sometimes denoted as supercritical, see
blue and magenta lines in Fig. 2.7. The boundaries of the hysteresis region
are given as the point where one of the local minima annihilate with the
local maximum in a tangent-bifurcation, as seen for the isotherm with t < 0
in the right back plane of Fig. 2.7. The maximum and minimum merge
in to a saddle-point of L causing the second order derivative to be zero,
∂2
dL = 0. Understanding the behavior of SL and Fig. 2.7 greatly facilitate

the interpretation of the results for the single band Hubbard model.
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Chapter 3

Multi-band Models

To study correlated transition metal compounds we return to the full elec-
tron problem in Eq. (1.2), and try to isolate the relevant low energy degrees
of freedom. In these systems correlated phenomena arise when the narrow
transition metal d-band is situated close to the Fermi level.1 Furthermore,
it is in the vicinity of the corresponding Fermi surfaces that low energy
excitations can occur, and these excitations are directly affected by local
interactions. So a minimal requirement on a low energy effective model is a
correct description of the Fermi surface structure.

Returning to the single-band Hubbard model of Chapter 2, its single
band give rise to a single Fermi surface. This situation seldom occurs for
transition metal compounds containing ten d-bands, that in general give
rise to several fermi surfaces. Thus, even though the single-band Hubbard
model exhibit most of the basic correlation phenomena, its single Fermi
surface prohibits a quantitative description of most transition metal com-
pounds. The remedy for this situation is the multi-band generalization of
the Hubbard model.

The chapter is organized as follows: Section 3.1 describes the Projected
Local Orbital (PLO) scheme as one possible approach for constructing lo-
cal single-particle Wannier functions with d-electron angular momentum
symmetry. In this basis the general local multi-band interaction is readily
written down in Section 3.2. As the interaction commonly is assumed to be
rotationally invariant, Section 3.3 investigates the most general form of two-
particle interaction operators with this property. We then become more spe-
cific and derive the general form of the local Coulomb interaction in Section

1On the DFT level of description.



Chapter 3 - Multi-band Models

3.4 assuming rotational invariance, which gives the so called Slater-Condon
form of the Coulomb interaction. The atomic problem is discussed in Sec-
tion 3.5 by the introduction of quasi-spin that together with total particle
number, spin, and angular momentum gives a complete many-body basis
for the local d-electron Fock-space. The Kanamori interaction is introduced
in Section 3.6, and in Section 3.7 we show that it is an approximation of the
Slater-Condon interaction when applied to the entire set of d-electrons. This
opens up for the possibility to parametrize the Slater-Condon interaction in
terms of the Kanamori parameters as outlined in Section 3.8. The chapter
is closed by Section 3.9, where other uses of the Kanamori parameters in
the literature are discussed.

3.1 Single-particle wave-functions

Consider once more a general electron model as in Eq. (1.3) described by the
Bloch wave-functions ψknσ(r) with dispersion εknσ, and the corresponding
local Wannier functions [Eq. (1.4)]

ψRnσ(r) =
1√
N

∑

k

ψknσ(r)e−ik·R , (3.1)

where R is a lattice vector, N is the number of lattice sites, and n and
σ are the Bloch band and spin indices respectively. For this system the
Fermi surface structure is described by the low energy subset C of Wannier
functions ψRnσ that cross the Fermi level εF at some point in the Brillouin
zone, C = {(n, σ) : ∃k, εknσ = εF }. This procedure unambiguously identifies
the set of states C needed to build a low energy effective model with preserved
Fermi surface structure.

Unfortunately the local Wannier wave-functions ψRnσ do not have well
defined symmetry properties. Actually, there is a lot of freedom in the local
Wannier function construction, not shown in Eq. (3.1). Any k-dependent
unitary transform Uan(k) defines an alternative set of orthonormal Wannier
wave-functions

ψRaσ(r) =
1√
N

∑

k

∑

n

Uan(k)ψknσ(r)e−ikR . (3.2)

The freedom in choosing U can be exploited for different purposes. For ex-
ample one can minimize the spatial extent of the Wannier functions ψRaσ(r)
in real space, which yields so called Maximally Localized Wannier functions
(MLWFs) [34].
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Section 3.1 - Single-particle wave-functions

When the transition metal d-band is well separated from other bands,
the MLWF procedure gives local wave-functions with well defined angular
momentum character l = 2. However when the d-band is strongly hybridized
and overlapping with ligand p-bands the localization can produce Wannier
functions of mixed p and d character. This is problematic because, as we will
soon see, the modeling of the local interactions assumes states with known
local angular momentum quantum numbers. One approach that preserves
the angular momentum character of the Wannier functions is to simply
use the first steps in the MLWF algorithm, and stop before minimizing
the spatial spread of the wave-functions. This class of wave-functions are
sometimes referred to as projected local orbital Wannier functions (PLO-
WFs) [35]. Here we give a brief description of their construction.

Following Ref. [35] the first step is to define a set of local wave-functions
χmσ(r), with good total angular momentum l and z-component m quantum
numbers. This means that χmσ(r) has the same angular dependence as
the spherical harmonic functions Y lm(Ω), and a typical choice is to simply
use the corresponding wave-functions of the isolated atom. A related set of
Wannier functions can then be constructed as

ψRmσ(r) =
1√
N

∑

k

∑

n

Pσmn(k)ψknσ(r)e−ik·R , (3.3)

where the unitary projection matrix P is the overlap between the Bloch and
local wave-functions

Pσmn(k) = (χmσ|ψknσ) . (3.4)

The unitarity of P is guaranteed by the completeness of the Bloch wave-
functions, which no longer apply when the sum over n is limited to the
subset C. To counter this, P can be replaced by the re-orthonormalized
projection matrix

P̄σmn(k) =
∑

m′

(
√
Oσ(k))−1

mm′P
σ
m′n(k) , (3.5)

where O is the overlap matrix

Oσmm′(k) =
∑

n∈C
(Pσmn(k))∗Pσm′n(k) . (3.6)

This gives a set of orthonormal Wannier wave-functions for the low energy
subspace as

ψRmσ(r) =
1√
N

∑

k

∑

n∈C
P̄σmn(k)ψknσ(r)e−ikR , (3.7)
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where ψRmσ approximately retains the spherical harmonic angular depen-
dence ψRmσ(r) ∝ Y lm(Ω). Here on we will take the angular properties of
ψRmσ for granted, but keep in mind that the accuracy of this approximation
depends on the particular system and on the extent of the subset C (see also
the discussion in Ref. [35]).

Passing over to second-quantization, let c†Rmσ denote the fermion cre-
ation operator for the state ψRmσ at lattice site R with angular and spin
z-components m and σ respectively. The local total orbital angular momen-
tum operators can then be defined as [36]

L̂z(R) =
∑

mσ

mc†RmσcRmσ ,

L̂±(R) =
∑

mσ

√
l(l + 1)−m(m± 1) c†R,m±1,σcRmσ , (3.8)

and similarly the local total spin operators take the form

Ŝz(R) =
∑

mσ

σ c†RmσcRmσ ,

Ŝ±(R) =
∑

mσ

√
s(s+ 1)− σ(σ ± 1) c†Rm,σ±1cRmσ . (3.9)

Translated to the Wannier basis, the kinetic Hamiltonian of Eq. (1.3)
can be expressed as

T̂ =
∑

k

∑

mm′

εmm
′

kσ c†kmσckm′σ , (3.10)

where c†kmσ is the Fourier transform of c†Rmσ, and the dispersion εmm
′

kσ is
given by the transform of the Bloch dispersion εknσ

εmm
′

kσ =
∑

n∈C
(P̄σmn(k))∗εknσP̄

σ
m′n(k) . (3.11)

This concludes the discussion on the single-particle part of the multi-
band generalization of the Hubbard model, yielding local Wannier functions
with well defined local orbital angular momentum quantum numbers.

3.2 Multi-band interactions

The next step is to model the electron-electron Coulomb interaction. Due to
the localized character of the d-band Wannier functions of transition metals,
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Section 3.3 - Rotational invariance

the electron interactions are approximately local, and can be modeled as
non-zero only when two electrons occupy the same lattice site R. In terms of
the general two-particle interaction vertex defined in Eq. (1.9) this amounts
to the approximation

Vαβγδ = (Ria,Rjb|r−1
12 |Rkc,Rld) ≈ δijkl(ab|r−1

12 |cd) , (3.12)

where each label a encompass all local quantum numbers a = (m,σ). Inser-
tion of the vertex Vαβγδ into Eq. (1.7) gives the second-quantized form of
the most general site-local electron-electron interaction as

Ĥint =
∑

R

∑

abcd

(ab|r−1
12 |cd) c†Rac

†
RbcRdcRc . (3.13)

One fruitful interpretation of Ĥint is as a two-particle scattering process.
Each term in Eq. (3.13) scatters the two-particle state c†Rcc

†
Rd|0〉 with am-

plitude Vabcd = (ab|r−1
12 |cd) into the two-particle state c†Rac

†
Rb|0〉. From here

on we will drop the site label R on fermion operators when dealing with
site-local forms of interactions.

In contrast to the single-band Hubbard model with its single interac-
tion parameter U we now have to deal with a potentially large number of
independent scattering amplitudes Vabcd. However not all values Vabcd are
independent, due to symmetry, as the local interaction must be invariant
with respect to the operations of the lattice point group. We are not going
to develop the theory for point group symmetric interactions here, although
it would be an interesting route. Instead, we will approximate the local
interaction as being rotationally invariant, a good approximation for many
transition metal systems [37]. This assumption also enables us to reuse much
formalism and results from atomic many-body theory [38–40].

3.3 Rotational invariance

An operator Ô that, under any rotation in spin or angular momentum space,
remains unaltered, is defined as spin and angular momentum rotationally
invariant.2 Both rotation groups are continuous and form two Lie algebras
with generators L̂i and Ŝi (i = x, y, z). Given Ô, the condition for invariance
is commutation with the generators of rotations [41]

[L̂i, Ô] = 0 , [Ŝi, Ô] = 0 . (3.14)

2Note that this implies imposing two separate symmetries wrt. S and L separately, as
opposed to invariance only in total angular momentum J = L + S.
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Thus it is straightforward to test rotational invariance. The commutation
relations also show that for an operator to be invariant it must transform as
if having zero total spin and angular momentum S = L = 0. We will now
see how such operators can be constructed.

As an example, take a double tensor operator T
(LS)
MΣ , transforming like

a spherical harmonic function with total L and z-component M in angular
momentum and as a spin function with total S and z-component Σ in spin
[39]. Rotationally invariant operators can then be constructed by the scalar
product [38]

T (LS) · T (LS) ≡ (−1)L+S
√

(2L+ 1)(2S + 1) {T (LS)T (LS)}(00)
00 , (3.15)

defined as the vector coupling {...}(LS) with zero total spin and angular
momentum L = S = 0. It is possible to construct invariant two-particle
scattering operators in exactly the same way [42].

Consider the fermion creation operator c†mσ for a fixed single particle
angular momentum l and spin s = 1/2. Studying the commutation relations
with the generators L̂i and Ŝi then gives, by definition [Eqs. (3.8) and (3.9)]

[L̂z, c
†
mσ] = mc†mσ , (3.16)

[L̂±, c
†
mσ] =

√
l(l + 1)−m(m± 1) c†m±1,σ , (3.17)

[Ŝz, c
†
mσ] = σc†mσ , (3.18)

[Ŝ±, c
†
mσ] =

√
s(s+ 1)− σ(σ ± 1) c†m,σ±1 . (3.19)

This implies that c†mσ is a double tensor operator of rank s in spin and l in
orbital momentum. The same relations holds for the annihilation operator
c̃mσ constructed as

c̃mσ = (−1)s+l−σ−mc−m,−σ . (3.20)

Now equipped with the single-particle double tensor operators

(c†)(ls)
mσ = c†mσ , (c)(ls)

mσ = c̃mσ , (3.21)

we can directly construct vector coupled two-particle double tensor operators
with fixed total L and S

(c†c†)(LS)
MΣ = {(c†)(ls)(c†)(ls)}(LS) , (3.22)

(c c)
(LS)
MΣ = {(c)(ls)(c)(ls)}(LS) . (3.23)
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The operators (c†c†)(LS)
MΣ (c c)

(LS)
M ′Σ′ form an alternative complete basis for

the general two particle operator in Eq. (3.13). However the gain of the
double tensor form is that all rotationally invariant combinations are, as in
Eq. (3.15), given by the scalar product

(c†c†)(LS) · (c c)(LS) . (3.24)

Thus the most general rotational invariant two-particle operator Ô can be
written as [42]

Ô = −1

2

∑

LS

(−1)L+S(llLS||Ô||llLS) (c†c†)(LS) · (c c)(LS) , (3.25)

where the prefactors (llLS||Ô||llLS) are called the reduced matrix elements
of Ô and completely defines the operator. Thus, imposing rotational in-
variance reduces the number of parameters defining the scattering ampli-
tudes Vabcd of the local interaction Ĥloc to the reduced matrix elements
(llLS||Ĥloc||llLS).

As the electron-electron Coulomb interaction is spin independent, its
reduced matrix elements only depends on L. For this case we can construct
the most general rotational invariant two-particle operators as

Ô =
∑

L

(llL||Ô||llL)P̂L , (3.26)

where operators P̂L are constructed from the two-particle scalar products
in Eq. (3.25) summed over S

P̂L = −1

2

∑

S

(−1)L+S(c†c†)(LS) · (c c)(LS)

=
1

2

∑

σσ′

c†maσc
†
mbσ′

cmdσ′cmcσ

[∑

M

〈l,ma; l,mb|LM〉〈LM |l,mc; l,md〉
]
,

(3.27)

where the factors 〈lma; l,mb|LM〉 are Clebsch-Gordan coefficients. For
a spin independent rotationally invariant quartic operator Ô with known
single-particle matrix elements (ab|O|cd) = δσaσcδσbσd(mamb|O|mcmd) the
corresponding reduced matrix elements can be determined by computing
the two particle expectation value 〈LM |Ô|LM〉. Choosing 〈L0|Ô|L0〉 gives
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the particularly simple expression

(llL||O||llL) =
∑

mm′

〈L0|l,m; l,−m〉(m,−m|O|m′,−m′)〈l,m′; l,−m′|L0〉 . (3.28)

The reduced set of operators P̂L and coefficients (llL||O||llL) has proven to
be very useful for comparing different interactions, and will later be applied
to the full Coulomb interaction and the simplified Kanamori interaction.

3.4 Coulomb interaction

We now turn to the local rotationally invariant electron-electron Coulomb
interaction. When expressed in terms of local angular momentum states
we will refer to it as the Slater-Condon interaction [43]. The two-particle
matrix elements of Eq. (1.9) has the form

(ab|r−1
12 |cd) = δσaσcδσbσd

×
∫∫

dr1dr2 ψ̄ma(r1)ψ̄mb(r2)
1

|r1 − r2|
ψmc(r1)ψmd(r2) , (3.29)

in the Wannier basis ψmσ(r) with angular momentum l, factorizable in radial
Rl(r), angular Y lm(Ω), and spin parts χσ

ψmσ(r) = Rl(r)Y
l
m(Ω)χσ . (3.30)

To compute the matrix elements in Eq. (3.29) the Coulomb pair potential
can be written in terms of the multipole expansion [43]

1

r12
=

∞∑

k=0

rk<
rk+1
>

4π

2k + 1

k∑

q=−k
Ȳ kq (Ω1)Y kq (Ω2) , (3.31)

where r> = max(r1, r2), r< = min(r1, r2), and Ωi denotes solid angles. In
terms of tensor scalar products the expansion takes the form [39]

1

r12
=
∑

k

rk<
rk+1
>

(
C(k)(1) ·C(k)(2)

)
, (3.32)

38



Section 3.4 - Coulomb interaction

using the spherical harmonic tensor C
(k)
q =

√
4π/(2k + 1)Y kq . Inserting the

multipole expansion in Eq. (3.29) now gives

(ab|r−1
12 |cd) = δ(σa, σc)δ(σb, σd)

∑

k

F (k)(ll, ll)

∑

q

(−1)q〈lma|Ck−q|lmc〉〈lmb|Ckq |lmd〉 , (3.33)

where F (k) is the radial Slater-integral

F (k)(ll, ll) =

∫∫
dr1dr2 R̄l(r1)R̄l(r2)

rk<
rk+1
>

Rl(r1)Rl(r2) ,

and the matrix elements of C
(k)
q have the form

〈lm|Ckq |l′m′〉 =

(−1)m
√

(2l + 1)(2l′ + 1)

(
l k l′

0 0 0

)(
l k l′

−m q m′

)
, (3.34)

where the last two factors are Wigner 3j symbols. This now completely
determines the matrix elements (ab|r−1

12 |cd) but still contains the full angular
dependence. The corresponding reduced matrix elements can be derived
using the rules of higher order vector couplings and results in [38,40]

(llL||r−1
12 ||llL) = (−1)L

∑

k

{
l l L
l l k

}
(l||C(k)||l)2F (k) , (3.35)

where {. . . } is a Wigner 6j symbol and (l||C(k)||l) is the reduced matrix
element of the spherical harmonic tensor

(l||C(k)||l′) = (−1)l
√

(2l + 1)(2l′ + 1)

(
l k l′

0 0 0

)
. (3.36)

From the properties of the Wigner 3j symbol in Eq. (3.36) all odd factors
of k become zero and the triangle identities for the Wigner 6j symbol in
Eq. (3.35) limits L and k to 0 ≤ L, k ≤ 2l. Thus for d-orbitals with l = 2
the only radial integrals F (k) that survives are F (0), F (2) and F (4), which we
will treat as parameters of the model. For the d-band it is also convenient
to introduce the rescaled parameters

F (0) = F0 , F (2) = 49F2 , F (4) = 441F4 , (3.37)
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when working with multiplet energies as we will see in the coming sections.
Thus we can express the local Coulomb interaction in the Slater-Condon

form ĤSC as a sum of operators Ĥk multiplying the parameters F (k)

ĤSC =
∑

k

F (k)Ĥk , (3.38)

where Ĥk is given by

Ĥk =
∑

L

(llL||Ĥk||llL)P̂L , (3.39)

with reduced matrix elements

(llL||Ĥk||llL) = (−1)L
{
l l L
l l k

}
(l||C(k)||l)2 , (3.40)

and P̂L as defined in Eq. (3.27).
To conclude we have derived the Slater-Condon interaction as the result-

ing rotationally invariant form for the Coulomb interaction. For d-electrons
with single-particle angular momentum l = 2, we obtain a local interaction
Hamiltonian ĤSC parametrized by three parameters F (0), F (2) and F (4).

3.5 Atomic limit

In the atomic limit the kinetic single-particle contribution [Eq. (3.10)] to
the Hamiltonian disappears, and we are left with an ensemble of isolated
atoms. A description of the system can then be obtained from the eigen-
states of the local Slater-Condon Coulomb interaction in Eq. (3.38). The
atomic multiplet eigenstates can in principle be computed by a diagonal-
ization in the local Fock-space. However the interpretation of the resulting
eigenstates is simplified enormously by using a well suited many-body basis
that incorporates all the symmetry properties of the interaction.

As the local Hamiltonian ĤSC is both spin and angular momentum ro-
tationally invariant, it commutes with the corresponding Casimir operators
Ŝ2 and L̂2 and one of the respective spin and angular momentum com-
ponents, e.g., Ŝz and L̂z. Furthermore, the interaction conserves particle
number and therefore commutes with the total number operator N̂ . Thus,
a basis having good quantum numbers N , S, Σ, L, and M automatically
block-diagonalizes ĤSC , where Σ and M are the z-components of total spin
and angular momentum respectively.
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Section 3.5 - Atomic limit

Assuming that we are dealing with d-electrons with a single-particle
angular momentum l = 2, the aforementioned set of quantum numbers
are not sufficient to fully enumerate all many-body states. However, in the
special case of d-electrons it is possible to use the seniority quantum number
ν to separate the remaining states. The seniority quantum number was first
introduced by Racah [44] and counts the number of unpaired electrons in
the state. For example, a state with N = 3, L = 2 and S = 1/2 can be
constructed from a single unpaired electron with l = 2 and s = 1/2 and an
electron pair with L = 0 and S = 0 producing a state with seniority ν = 1.
In terms of operators, ν is related to the quasi-spin generators [40]

Q̂
(1)
1 = − i

2

√
2l + 1(c†c†)(00) ,

Q̂
(1)
−1 = − i

2

√
2l + 1(c c)(00) ,

Q̂
(1)
0 = − i

2
√

2

√
2l + 1

(
(c c†)(00) + (c†c)(00)

)
, (3.41)

and their corresponding Casimir operator

Q̂2 = 2Q̂
(1)
1 Q̂

(1)
−1 + Q̂z(Q̂z − 1) , (3.42)

where Q̂z = −iQ̂(1)
0 = (N̂ − 2l − 1)/2. The eigenvalues of Q̂2 are Q(Q+ 1)

where Q depends on the seniority quantum number as

Q =
1

2
(2l + 1− ν) , (3.43)

see Ref. [40] for more details.
Studying Q̂2 we see that the only non-trivial part is generated by the first

raising and lowering factor, and combining Eq. (3.41) with the definition of
the two-particle scattering operators in Eq. (3.27) this term can be written
as

2Q̂
(1)
1 Q̂

(1)
−1 = (2l + 1)P̂L=0 , (3.44)

where P̂L=0 scatters paired electrons with L = 0 and S = 0, and counts the
number of possible pairings of such two-electron pairs.

Returning to the construction of a many-body basis for the d-shell: by
simultaneously diagonalizing the operators N̂ , L̂2, L̂z, Ŝ

2, Ŝz, and Q̂2, we
obtain a complete basis on the form |NLMSΣν〉. Casting ĤSC in this basis
gives a block-diagonal structure in all but the seniority quantum number.

〈NLMSΣν|ĤSC |NLMSΣν′〉 = (HSC)
(NLS)
νν′ . (3.45)
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The resulting matrices are at most 3 × 3 and can readily be diagonalized
algebraically, if the freedom in phase is appropriately treated. The multiplet
eigenvalues obtained in this way are listed in Appendix A. The agreement
between our calculation in the two and tree particle sectors with Ref. [43]
and for all particle sector ground states with Ref. [45], is a good sanity check
of our implementation of the Slater-Condon interaction.

3.6 Kanamori interaction

For compounds with octahedrally coordinated transition metal atoms, the
local crystal field splits the local d-electron single-particle states into two
irreducible sets, the t2g (triply degenerate) and eg (double degenerate) rep-
resentations. For strong enough crystal field the low energy physics is iso-
lated to only one of the representations and it is possible to construct a
low energy model involving only states from that irreducible representation.
The corresponding reduction of the Slater-Condon interaction to just one
irreducible representation was first proposed by Kanamori [46], to describe
ferromagnetic metals.

Before writing down the interaction we first define a diagonalizing uni-
tary transform of the spherical harmonics that block-diagonalizes the single-
particle t2g and eg irreducible representations. One such basis is the cubic
harmonics Y lα that are composed by all real linear combinations of spherical
harmonics Y lm [43]

Y lα(Ω) =





1√
2
(Y l−α + (−1)αY lα) , α > 0

Y l0 , α = 0

1
i
√

2
(Y l−α − (−1)αY lα) , α < 0

. (3.46)

Collecting the transformation rules into the unitary transform Uαm gives the
corresponding cubic harmonic second-quantization operators cασ in terms
of the previously defined spherical harmonic fermion operators cmσ

cασ =
∑

m

Uαmcmσ . (3.47)

In condensed matter physics the cubic harmonics are often called atomic
orbitals and discussed in terms of their Cartesian dependencies, which for
the d-electrons are, x2 − y2 ∝ Y2

2 , xy ∝ Y2
1 , 3z2 − r2 ∝ Y2

0 , yz ∝ Y2
−1,
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and xy ∝ Y2
−2. The octahedral symmetry group divides these states in the

irreducible representations xy, xy, yz ∈ t2g and x2 − y2, 3z2 − r2 ∈ eg.
The rotationally invariant Coulomb interaction mapped on to one of the

irreducible representations now takes the form of the Kanamori interaction
Hamiltonian [47]

ĤK = U
∑

α

n̂α↑n̂α↓ +
1

2

∑

α6=β

∑

σσ′

(U ′ − Jδσσ′)n̂ασn̂βσ′

−
∑

α6=β

(
J c†α↑cα↓c

†
β↓cβ↑︸ ︷︷ ︸

spin-flip

+J ′ c†β↑c
†
β↓cα↑cα↓︸ ︷︷ ︸

pair-hopping

)
, (3.48)

where the interaction parameters are given by the matrix elements

U = (αα|r−1
12 |αα) , U ′ = (αβ|r−1

12 |αβ)

J = (αβ|r−1
12 |βα) , J ′ = (αα|r−1

12 |ββ) , (3.49)

that depend on each other as U ′ = U − 2J , J ′ = J due to rotational
invariance.

The interaction terms of the Kanamori Hamiltonian [Eq. (3.48)] are di-
vided up, from the beginning to the end, in intra-orbital density-density in-
teraction, inter-orbital density-density interaction, spin-flip interaction, and
pair-hopping interaction. Among the terms the pair-hopping is interesting
as it scatters spin paired two-particle states in the same cubic harmonic
state to a pair in another cubic harmonic state. Such scattering could be
suspected to not conserve angular momentum, but it actually does. This
stems from that the cubic harmonic states themselves carry a net zero angu-
lar momentum, as they are linear combinations of spherical harmonic states
with m and −m angular momentum z-components.

From the form of the Kanamori interaction in Eq. (3.48) the spin and
rotational invariance is not directly evident, but the symmetry becomes
apparent when normal ordering the interaction. In fact, all terms can be
expressed using normal ordered operators on the form

Ôαβγδ =
1

2

∑

σσ′

c†ασc
†
βσ′cδσ′cγσ , (3.50)

where the two-particle scattering is explicitly spin independent, and thus
spin rotationally invariant.

In terms of the Ô operators, ĤK separates into

ĤK = (U − 2J)
∑

αβ

Ôαβαβ + J
∑

αβ

(
Ôαββα + Ôααββ

)
, (3.51)
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where the first scattering term is a general orbital preserving scattering,
the second is an orbital exchange scattering, and the last is a orbital pair
scattering term.

Now the total spin Casimir operator can be expressed as

Ŝ2 =
∑

ab

[
−1

2
Ôαβαβ − Ôαββα

]
+

3

4
N̂ , (3.52)

and the raising and lowering term of Eq. (3.44), contained in the expression
in Eq. (3.42) for the quasi-spin Casimir operator Q̂2, is equal to

(2l + 1)P̂L=0 =
∑

αβ

Ôααββ . (3.53)

Using these relations the Kanamori interaction can be written in terms of
spin and quasi-spin as

ĤK = (U − 3J)
1

2
N̂(N̂ − 1) + J

(
Q̂2 − Ŝ2

)
, (3.54)

neglecting an irrelevant constant shift, and a N̂ dependent chemical poten-
tial shift.

Computing the matrix elements in Eq. (3.49) from the Slater-Condon
form of the Coulomb interaction in Eq. (3.38) we obtain

Ut2g = F0 + 4F2 + 36F4 , (3.55)

Jt2g = 3F2 + 20F4 , (3.56)

for the t2g states, and

Ueg = F0 + 4F2 + 36F4 , (3.57)

Jeg = 4F2 + 15F4 . (3.58)

for the eg states, with F0, F2, and F4 as defined in Eq. (3.37), in agreement
with Ref. [9].

The focus of this thesis is the full d-band, so in a sense the specialization
of the Kanamori model for the reduced t2g and eg model is not directly
relevant. Our current interest in the Kanamori interaction is motivated by
a series of studies [47–53], applying the Kanamori interaction [Eq. (3.48)] to
the full set of d-states. For this case the Kanamori interaction, having one
interaction parameter less than the full Slater-Condon interaction, can not
be a complete general description of the Coulomb interaction. It is not even
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clear whether the Kanamori interaction applied to the full d-band is con-
tained within the possible configurations of the Slater-Condon interaction,
or not.

However from the t2g and eg mappings we see that the only point where
the Kanamori interaction correctly describes the interactions within both
irreducible representations is when Jt2g = Jeg , i.e. when F (4)/F (2) = 9/5.
But we do not know a priori whether the t2g – eg interaction in the Slater-
Condon interaction at F (4)/F (2) = 9/5, is reduced to the Kanamori form.
To investigate this we turn to an analysis of the reduced matrix elements of
both interactions.

3.7 Reduced matrix elements

The structure of the Kanamori and Slater-Condon interactions applied to the
full set of d-orbitals can be analyzed due to the fact that both interactions
are rotationally invariant, expressible in the form of Eq. (3.26), and thus
completely determined by their respective reduced matrix elements.

To compute the reduced matrix elements of the Kanamori interaction
ĤK the single particle operators have to be transformed, from the cubic
harmonics used in Eq. (3.48) to the spherical-harmonic basis using the uni-
tary transform in Eq. (3.47). The two degrees of freedom in the coupling
parameters U and J can be separated giving

ĤK = UĤU + JĤJ . (3.59)

In the spherical harmonic basis, Eq. (3.28) is then used to compute the re-
duced matrix elements of the two operators (llL||ĤU ||llL) and (llL||ĤJ ||llL).
For the Slater-Condon interaction ĤSC , Eq. (3.40) directly gives the reduced
matrix elements of all three operators Ĥk multiplying the coupling param-
eters F (0), F (2), and F (4). The results are listed in Table 3.1, where the
different values of L are denoted by the corresponding two particle multi-
plets on the form 2S+1L.

The reduced matrix elements in Table 3.1 are vector representations
of the two-particle operators in the five dimensional vector-space of two-
particle multiplets. For an operator Ô, the corresponding reduced matrix
element vector is given by

v(Ô) = [(ll0||Ô||ll0), . . . , (ll(2l)||Ô||ll(2l))] . (3.60)

The interactions ĤK and ĤSC then reduce to two and three dimensional
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Table 3.1: Reduced matrix elements (llL||Ô||llL) for the Hamiltonian compo-
nents ĤU and ĤJ in the Kanamori interaction [Eq. (3.59)], and the Slater-Condon
interaction components Ĥ1, Ĥ2, and Ĥ4 [Eq. (3.39)], for the d-shell (l = 2). Note
the scaling of the Slater-Condon operators.

l = 2 Kanamori Slater-Condon Operators

2S+1L ĤU ĤJ Ĥ0 49Ĥ2 441Ĥ4 N̂2/2 (Q̂2 − Ŝ2)

1S 1 4 1 14 126 1 7
3P 1 −3 1 7 −84 1 0
1D 1 −1 1 −3 36 1 2
3F 1 −3 1 −8 −9 1 0
1G 1 −1 1 4 1 1 2

linear combinations of reduced matrix element vectors

v(ĤK) = Uv(ĤU ) + Jv(ĤJ) , (3.61)

v(ĤSC) = F (0)v(Ĥ0) + F (2)v(Ĥ2) + F (4)v(Ĥ4) . (3.62)

The question whether the Kanamori interaction can be faithfully described
by the full Slater-Condon interaction can now be reformulated as whether
the simple vector equations

[v(Ĥ0),v(Ĥ2),v(Ĥ4)]xU = v(ĤU ) , (3.63)

[v(Ĥ0),v(Ĥ2),v(Ĥ4)]xJ = v(ĤJ) , (3.64)

are solvable. It turns out that they are, which implies that the Kanamori
interaction spans a subspace of the Slater-Condon interaction

span{v(ĤU ),v(ĤJ)} ⊂ span{v(Ĥ0),v(Ĥ2),v(Ĥ4)} . (3.65)

The solution gives that the Slater-Condon interaction applied to the d-shell
is identically equal to the Kanamori interaction when

F (0) = U − 8

5
J , F (2) = 7J , F (4) =

63

5
J , (3.66)

where the ratio of F (4) and F (2) is fixed to

F (4)

F (2)
=

9

5
. (3.67)
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Thus at this fixed ratio, we have proved that, in addition to our previous
observation the interaction within the t2g and eg are the same for this ratio,
and also the eg – t2g interaction has exactly the Kanamori form of Eq. (3.48).

This observation now enables us to seek a parametrization of the Slater
parameters F (k) in terms of the Kanamori parameters U and J plus an extra
parameter that that control the departure from the Kanamori interaction
case of Eq. (3.66).

3.8 Slater-Condon (U , J) parametrization

The prospect of using U and J to determine F (k) is interesting in part due
to the fact that many aspects of the Hubbard U and Hund’s rule J are
already understood from studies of two and three band models [9], but also
for comparison with previous studies of the full d-band using the Kanamori
interaction [47–53].

How to introduce a third parameter to regain the full three parameter
freedom of the Slater-Condon interaction is in a sense arbitrary, but forced
to make a choice we have constructed a parametrization based on preexisting
formalism. Let us first introduce the Racah parameters [54]

A = F0 − 49F4 , B = F2 − 5F4 , C = 35F4 . (3.68)

This is a one-to-one alternate parametrization to the Slater parameters F (k).
In terms of the Racah parameters the Kanamori limit given in Eq. (3.66)
takes the form

A = U − 3J , B = 0 , C = J . (3.69)

Note that B turns out to be zero for the Kanamori interaction. Looking
further into the early literature on the Slater-Condon interaction, Tanabe-
Sugano [55] introduced the ratio C/B = γ and noted that it is nearly con-
stant for all elements, γ ≈ 4 – 5. With this background we suggest the use
of 1/γ as the third parameter, which gives

A = U − 3J , B = J/γ , C = J . (3.70)

Translated back to the Slater parameters F (k), the introduction of the
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Tanabe-Sugano ratio γ gives

F (0) = U − 8

5
J ,

F (2) = 49

(
1

γ
+

1

7

)
J ,

F (4) =
63

5
J . (3.71)

Tanabe-Sugano’s observation that γ is approximately constant directly trans-
lates into the F (4)/F (2) ratio

F (4)

F (2)
= 9

F4

F2
=

9

5

1

7/γ + 1
. (3.72)

The fact that the F (4)/F (2) ratio varies weakly for the transition metal el-
ements has been reported by several authors [37, 55, 56], and the reported
range is F (4)/F (2) ≈ 0.65 – 0.85. The fact that the Kanamori interac-
tion applied to the full d-shell corresponds to the slightly unphysical ratio
F (4)/F (2) = 1.8, sheds doubt on its applicability as interaction model for
this case.

The point in the parameter space of the Slater-Condon interaction, cor-
responding to F (4)/F (2) = 9/5 (or equivalently 1/γ = 0), has previously
been noted as special by Judd et al. [57], who identified it as a so called
Laporte-Platt degenerate point with large accidental degeneracies in the
multiplet spectra. However, to the best of our knowledge, the connection to
the Kanamori interaction has not previously been shown.

The degree of accidental degeneracy at 1/γ = 0 can directly be inferred
from the spin and quasi-spin form of the Kanamori interaction in Eq. (3.54).
The interaction only split multiplets with respect to total spin S and quasi-
spinQ, or equivalently the seniority quantum number ν. Thus, as opposed to
the general Slater-Condon interaction that do not commute with the quasi-
spin Casimir operator, at the Laporte-Platt point, seniority also becomes a
good quantum number. At this point the interaction becomes degenerate
in total angular momentum L, leading to large accidental degeneracies. In
Figure 3.1 the multiplet energies for all fillings are plotted as a function of
1/γ, and it is directly evident that multiplets with the same spin S and
seniority ν becomes degenerate at 1/γ = 0, independent of their angular
momentum quantum numbers L.

The motivation and derivation of the Kanamori-Tanabe-Sugano para-
metrization of the Slater-Condon interaction is a central theme in Paper V,
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Figure 3.1: Slater-Condon multiplet energies E as a function of 1/γ, for U = 3
and J/U = 1/3. The multiplet labels indicate the total spin S, angular momentum
L, and seniority ν, on the form 2S+1Lν . The multiplets with same spin S and
seniority ν at 1/γ = 0 share color.
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where it is used to investigate how the paramagnetic phase boundaries of
the d-band Hubbard model differ between the Kanamori limit 1/γ = 0 and
the more physical range 1/γ = 1/4, corresponding to F (4)/F (2) ≈ 0.65. For
some integer fillings, the Kanamori model has an accidental degeneracy of
two multiplets even for the ground state. The effect of this ground state
degeneracy is also investigated in Paper V.

In Paper VI, the focus is instead put on the generated effective Hub-
bard repulsion, and the ability of the Slater-Condon interaction to stabilize
valence-skipping charge disproportionate ground states for finite values of
1/γ.

3.9 Parameters U and J in the literature

In the literature there is wide a spread use of U and J for other purposes than
as the coupling parameters entering in the Kanamori interaction [Eq. (3.48)].
One such example is the LDA+U formalism that models the local interaction
in terms of density-density interactions only. For this type of Ising like
interaction the orbital averaged Hubbard Ūorb and Hund’s rule J̄orb are
used as effective interaction parameters [58]. In terms of the Slater-Condon
interaction the orbital averages gives

Ūorb = F (0) , J̄orb =
1

14
(F (2) + F (4)) . (3.73)

These averages then enters as coupling parameters in the density-density
interaction

ĤIsing = Ūorb
∑

m

n̂m↑n̂m↓ +
1

2

∑

m 6=m′

∑

σσ′

(Ūorb − δσσ′ J̄orb)n̂mσn̂m′σ′ . (3.74)

Note however that this is an approximation of the Slater-Condon interaction,
while the Kanamori interaction of Eq. (3.48) together with Eq. (3.66) is an
exact form of the Slater-Condon interaction when F (4)/F (2) = 9/5. To
make this point clear we compute the orbital averages of the Slater-Condon
interaction at the Kanamori point in terms of the Kanamori Hubbard U and
Hund’s rule J

Ūorb = U − 8

5
J , J̄orb =

7

5
J , (3.75)

which clearly shows that the orbital averages and the Kanamori parameters
are not the same. It is not uncommon that Ūorb and J̄orb are simply de-
noted by U and J in the literature [37], in conflict with Kanamoris original
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definition [46]. So interpreting general statements on magnitudes of U and
J requires explicit knowledge of the applied interaction model. In addition,
the relevant values are also dependent on the choice of Wannier function
construction, making effective interaction parameters non-transferable even
between studies of the same compound [37].

Another occurring use of U and J are to denote the multiplet averaged
Hubbard and Hund’s rule interactions [59]. This type of averages gives yet
another set of expressions in terms of F (k)

Ūmult = F (0) − 2

63
(F (2) + F (4)) , J̄mult =

1

14
(F (2) + F (4)) , (3.76)

that translate to the relations

Ūmult = U − 20

9
J , J̄mult =

7

5
J . (3.77)

for the Kanamori U and J at F (4)/F (2) = 9/5.

51





Part II

Methods





Chapter 4

Dynamical Mean Field
Theory

The manifold of approximation methods for many-body systems are by tra-
dition composed mainly of perturbation expansions in some small parameter
of the system Hamiltonian. This approach generates approximations that
capture the physics in only a part of the accessible parameter space and
are therefore ill suited for systems with competing energy-scales. Dynami-
cal Mean Field Theory (DMFT) [17,60] takes a slightly different approach.
Instead of considering the Hamiltonian parameters it is possible to make an
expansion in the lattice coordination number z. Keeping only the zeroth or-
der term in such and expansion gives a simplified but still non-trivial theory
that is exact in the limit z →∞, for any parameter values.

In this chapter we give an introduction to the limit of infinite coordina-
tion number and its implications. The DMFT equations are derived using
the cavity construction [17] in Section 4.1, and the set of self-consistent
equations are determined in Section 4.2. The self-consistency is readily for-
mulated in terms of a fix-point problem, therefore some basic methods for
solving this class of problems are reviewed in Section 4.3.

For the Hubbard model in Eq. (2.4) the local two body electron-electron
interaction makes exact evaluation of the self-energy a hard problem. Al-
though weak coupling expansions are possible, going to higher order is en-
cumbered with an increasing number of Brillouin zone integrations. An
important simplification of this problem is obtained in the limit of infinite
coordination number z →∞, when applying the appropriate scaling of the
hopping parameter t→ t√

z
. For models with only local interactions like the



Chapter 4 - Dynamical Mean Field Theory

S →

→ Bath
G0

Seff

Figure 4.1: The lattice problem and associated auxiliary impurity problem.

Hubbard model, this scaling makes momentum conservation irrelevant in the
interaction vertices of all self-energy diagrams and makes the self-energy Σ
momentum independent [29,61,62]

Σ(k, iωn) −→
z→∞

Σ(iωn) . (4.1)

The corresponding interacting lattice Green’s function

GL(k, iωn) =
1

iωn − εk + µ− Σ(iωn)
, (4.2)

then only depends on the momentum k through the non-interacting disper-
sion εk. Due to this the local interacting lattice Green’s function GL(iωn)
can be calculated from the self-energy Σ(iωn) and the non-interacting den-
sity of states ρ(0)(ε) as

GL(iωn) = GL(R = 0, iωn)

=
∑

k

eik·0GL(k, iωn) =

∫
dε

ρ(0)(ε)

iωn − ε+ µ− Σ(iωn)
. (4.3)

The locality of the self-energy is the main starting point in the devel-
opment of DMFT. The basic idea is to introduce an auxiliary impurity
problem, with the same local interaction as the lattice, connected to a non-
interacting bath. Requiring that the impurity self-energy is equal to the
lattice self energy gives the self-consistency condition

G−1
0 = G−1

L + Σ , (4.4)

where G0(iωn) is the bath Green’s function. This procedure amounts to
map the action S of the lattice problem to an effective impurity action Seff

as depicted in Fig. 4.1.
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S =

=

S(0) +

+

S0 +

+

∆S

Figure 4.2: The cavity construction.

One of the possible routes to derive the impurity problem and the self-
consistency condition is through the cavity construction [17], where the ac-
tion of the lattice problem S is separated in three parts. By removing one
site and its connection to the rest of the lattice, a lattice with a cavity S(0)

is formed. The removed parts are the local terms on the cavity site S0 and
its connection to the rest of the lattice ∆S. All in all the separation can be
expressed as

S = S(0) + S0 + ∆S , (4.5)

see Fig. 4.2 for a schematic picture.
Integrating out all electronic degrees of freedom except the one at the

cavity site now gives an effective description of the auxiliary impurity model
and the self-consistency Eq. (4.4) for the bath Green’s function G0. In the
next section we go through the details of this construction using the coherent
state path integral formalism [14,23].

4.1 Cavity construction

In the coherent-state path-integral formalism the partition function Z of
Eq. (2.5) can be written as

Z =

∫
D(ψ†, ψ)e−

∫ β
0
dτ (

∑
Rσ ψ

†
Rσ(τ)(∂τ−µ)ψRσ(τ)+Ĥ[ψ†(τ),ψ(τ)]) , (4.6)

where ψ† and ψ are the Grassman fields of the second quantization creation
and annihilation operators, c† and c, and D(·) is the standard integration
measure of Ref. [14]. In the following we shall make no notational distinction
between operators and Grassman fields and use c† and c to denote both. The
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action S[c†, c] of the system is identified as the expression in the exponent
of Eq. (4.6)

S[c†(τ), c(τ)] =

∫ β

0

dτ

(∑

Rσ

c†Rσ(τ)(∂τ − µ)cRσ(τ) + Ĥ[c†(τ), c(τ)]

)
.

(4.7)
For the Hubbard model given by Eq. (2.4) this becomes

S[c†(τ), c(τ)] =

∫ β

0

dτ

(∑

Rσ

c†Rσ(τ)(∂τ − µ)cRσ(τ)

+
∑

RR′

∑

σ

tRR′c
†
Rσ(τ)cR′σ(τ) + U

∑

R

n̂R↑(τ)n̂R↓(τ)

)
, (4.8)

where the general hopping-matrix tRR′ later will be replaced with the nearest-
neighbor hopping tRR′ = −δ〈RR′〉t. Now we perform the cavity construction
for the site R = 0, and partition the lattice action S in the local part S0

at R = 0, the action ∆S for all connections between this and all other sites
R 6= 0, and the action S(0) for all other sites R 6= 0 as in Eq. (4.5). In
terms of the partition function Z this amounts to

Z =

∫
D(c†, c)e−S[c†,c] =

∫
D(c†, c)e−(S(0)+∆S+S0) , (4.9)

where the actions S0, ∆S, and S(0) are given by

S0 =

∫ β

0

dτ

(∑

σ

c†0σ(τ)(∂τ − µ)c0σ(τ) + Un̂0↑(τ)n̂0↓(τ)

)
, (4.10)

∆S =

∫ β

0

dτ
∑

Rσ

tR0

(
c†Rσ(τ)c0σ(τ) + c†0σ(τ)cRσ(τ)

)
, (4.11)

S(0) =

∫ β

0

dτ


 ∑

R6=0,σ

c†Rσ(τ)(∂τ − µ)cRσ(τ)

+
∑

R,R′ 6=0

∑

σ

tRR′c
†
Rσ(τ)cR′σ(τ) + U

∑

R6=0

n̂R↑(τ)n̂R↓(τ)


 . (4.12)
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As the first step in integrating out all sites R 6= 0, we separate out the
integration of the cavity site at R = 0

Z =

∫
D(c†0, c0)e−S0

∫ ∏

R6=0

D(c†R, cR)e−(S(0)+∆S)

=

∫
D(c†0, c0)e−S0Z(0)〈e−∆S〉S(0) . (4.13)

Our aim is to obtain an effective local description of the lattice in terms of
an auxiliary impurity problem. For this reason we introduce the effective
action Seff of the impurity as

Z =

∫
D(c†0, c0)e−Seff =

∫
D(c†0, c0)e−S0Z(0)〈e−∆S〉S(0) . (4.14)

Collecting the exponent of the right hand side gives

Seff = S0 + ln〈e−∆S〉S(0) + lnZ(0) , (4.15)

where S0 is purely local and the connection to the lattice is described by the
logarithm of the expectation value of the hybridization ∆S. Investigating
this term in detail reveals that it is possible to rewrite it as an expectation
value of a source term with respect to the lattice (with cavity) action S(0)

ln〈e−∆S〉S(0) = ln


 1

Z(0)

∫ ∏

R6=0

D(c†R, cR)e−S
(0)

e−∆S




= ln
〈
e−
∫ β
0
dτ
∑

Rσ tR0(c†Rσc0σ+c†0σcRσ)
〉
S(0)

= ln
〈
e−
∫ β
0
dτ
∑

Rσ(c†RσηRσ+η†RσcRσ)
〉
S(0)

, (4.16)

introducing the local source fields ηRσ = tR0c0σ. In this form Eq. (4.16)
takes the exact form of the generating functional W(0)(η†, η) for the con-

nected Green’s functions G
(0)
n of the action S(0) (to any order n), for a

detailed exposé see Ref. [14]

W(0)(η†, η) = ln
〈
e−
∫ β
0
dτ
∑

Rσ(c†RσηRσ+η†RσcRσ)
〉
S(0)

,

G
(0)
n;R1...Rn,R′1...R

′
n
(τ1...τn, τ

′
1...τ

′
n) =

(−1)n
∂2nW(0)(η†, η)

∂η†R1
(τ1)...∂η†Rn

(τn)∂ηR′1
(τ ′1)...∂ηR′n(τ ′n)

∣∣∣∣∣
η†,η=0

. (4.17)
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With the derivatives of W(0) known, it is straight forward to write down its
perturbation expansion as

W(0)(η†, η) =
∑

n=1

(−1)n

n!

∫ β

0

dτ1...dτndτ
′
1...dτ

′
n

×
∑

i1...in

∑

j1...jn

η†R1
(τ1)...η†Rn

(τn)ηR′1
(τ ′1)...ηR′n(τ ′n)

×G(0)
n;R1...Rn,R′1...R

′
n
(τ1...τn, τ

′
1...τ

′
n) . (4.18)

Now we are ready to take the limit of infinite connectivity z in W(0),
z → ∞. For simplicity we limit the derivation to the Bethe lattice with
nearest-neighbor hopping and in the end indicate how to generalize to other
lattices. Thus tRR′ = −δ〈RR′〉t by Eq. (2.2), and in order to maintain
finite kinetic energy t scales as t ∝ 1/

√
z. This causes the source fields

(η†η)n ∝ t2n in the nth order term to scale as 1/zn. Counteracting this is
the number of terms in the sums over lattice sites Rn and R′n. But here the
topology of the Bethe lattice simplifies the analysis. Removing one lattice
site creates z disconnected lattices with no intermixing in their respective
connected greens functions

G
(0)
n;R1...Rn,R′1...R

′
n
(τ1...τn, τ

′
1...τ

′
n) = δR1,R2

...δR1,Rn
δR1,R′1

...δR1,R′n

×G(0)
n;R1...R1,R1...R1

(τ1...τn, τ
′
1...τ

′
n) . (4.19)

Thus the sum scales as z in all orders and the total scaling is 1
zn−1 . In the

limit z →∞, only the first-order term contributes andW(0) is exactly given
by

lim
z→∞

W(0)(η†, η) =−
∫ β

0

∫ β

0

dτdτ ′
∑

σ

c†0σ(τ)t2G(0)(τ − τ ′)c0σ(τ ′) (4.20)

where we have assumed translational invariance, G
(0)
RR = G(0).

This rather non-trivial result shows that the influence on a single site
by the surroundings are governed by simple single-particle scattering with-
out any of the many-body effects of the higher order Green’s functions

G
(0)
n;R1...Rn,R′1...R

′
n

that otherwise contribute for finite z. Incorporating the
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Section 4.1 - Cavity construction

expression for W(0) in the effective action Seff now gives

Seff =S0 + ln〈e−∆S〉S(0) + lnZ(0) = S0 + lim
z→∞

W(0)(η†, η) + lnZ(0) =

=

∫ β

0

dτ

(∑

σ

c†0σ(τ)(∂τ − µ)c0σ(τ) + Un̂0↑(τ)n̂0↓(τ)

)

+

∫ β

0

∫ β

0

dτdτ ′
∑

σ

c†0σ(τ)t2G(0)(τ − τ ′)c0σ(τ ′) + lnZ(0) =

=

∫ β

0

∫ β

0

dτdτ ′
∑

σ

c†0σ(τ)
[
δ(τ − τ ′)(∂τ − µ)− t2G(0)(τ − τ ′)

]
c0σ(τ ′)

+

∫ β

0

dτ Un̂0↑(τ)n̂0↓(τ) + lnZ(0) , (4.21)

where the expression in brackets of the third last term can be identified as
the inverse of the effective bath Green’s function G0 of the auxiliary impurity
problem

G−1
0 (τ − τ ′) = δ(τ − τ ′)(∂τ − µ)− t2G(0)(τ − τ ′) . (4.22)

The equation above only relates G0 to the local connected Green’s function
G(0) of the lattice with cavity (S(0)), but in the limit of infinite connectivity
the creation of a cavity has negligible effect on the rest of the system and
G(0) becomes equal to the local Green’s function GL of the full lattice system
(S)

lim
z→∞

G(0)(τ − τ ′) = lim
z→∞

G
(0)
Rσ(τ − τ ′) = lim

z→∞
〈cRσ(τ)c†Rσ(τ ′)〉S(0) =

=〈cRσ(τ)c†Rσ(τ ′)〉S = GL,σ(τ − τ ′) = GL(τ − τ ′) .
(4.23)

Thus replacing G(0) with GL and transforming Eq. (4.22) to Matsubara
frequencies gives the specific form of the self-consistency equation for the
Bethe lattice

G−1
0 (iωn) = iωn + µ− t2GL(iωn) . (4.24)

To obtain the general self-consistency relation in Eq. (4.4) we have to take
a slight detour and consider the non-interacting limit U = 0 of the above
equation where we have that G0 = GL and

ξ = iωn + µ = t2GL +G−1
L ⇒ GL =

ξ −
√
ξ2 − 4t2

2t2
, Im[ξ] > 0 . (4.25)
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Chapter 4 - Dynamical Mean Field Theory

As the non-interacting DOS ρ(0)(ε) is the inverse Hilbert transform of the
Green’s function it can now be calculated

GL(ξ) =

∫
dε
ρ(0)(ε)

ξ − ε , ρ(0)(ε) =
1

2πt2

√
ε2 − 4t2 . (4.26)

Returning to the interacting system U 6= 0, the interacting local Green’s
function GL can also be calculated using ρ(0)(ε) by including the local self-
energy, Σ(iωn)

GL(R = 0, iωn) =
∑

k

GL(k, iωn) =

∫
dε

ρ(0)(ε)

iωn + µ− ε− Σ(iωn)
, (4.27)

and replacing ξ with ξ̃ = iωn + µ−Σ, it has the same Hilbert transform as
in Eq. (4.25) and the relation

iωn + µ− Σ = t2GL +G−1
L , (4.28)

holds. Insertion in Eq. (4.24) finally gives the general self-consistency rela-
tion of Eq. (4.4) for the bath Green’s function G0 of the auxiliary impurity
system

G−1
0 = G−1

L + Σ . (4.29)

The same relation can be shown to hold for more general lattices where the
power counting in the coordination number z becomes more elaborate [17].
Note that Eq. (4.29) is not the Dyson equation for the full lattice Green’s
function GL(k, iωm), because only the local lattice Green’s function GL(iωn)
of Eq. (4.3) enters.

4.2 Self-consistent equations

When brought together the equations for the lattice and impurity system
forms a set of connected self-consistent equations. Given a lattice with
infinite coordination and its non-interacting density of states ρ(0)(ε), and an
initial guess of the lattice self-energy ΣL(iω), it is possible to compute the
corresponding impurity self-energy ΣI through the following steps:

1. Calculate the local lattice Green’s function GL by integrating over the
non-interacting density of states ρ(0)(ε)

GL(iωn) =

∫
dω

ρ(0)(ω)

iωn − ω + µ− ΣL(iωn)
. (4.30)
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2. Determine the impurity bath Green’s function G0 using the self-con-
sistency relation in Eq. (4.4) between the lattice and impurity

G−1
0 = G−1

L + ΣL . (4.31)

3. Form the action Seff of the auxiliary impurity problem using the bath
Green’s function G0

Seff[G0] =

∫ β

0

dτ Un̂↑(τ)n̂↓(τ)−

−
∫ β

0

dτ

∫ β

0

dτ ′
∑

σ

c†σ(τ)G−1
0 (τ − τ ′)cσ(τ ′) , (4.32)

and calculate the local impurity Green’s function

GIσσ′(iωn) =

∫ β

0

dτ eiωnτ 〈cσ(τ)c†σ′(0)〉Seff[G0] . (4.33)

4. Calculate the impurity self-energy ΣI using the Dyson equation

ΣI(iωn) = G−1
0 (iωn)−G−1

I (iωn) . (4.34)

It is helpful to hide the details of the calculations by introducing a higher
level of abstraction. To achieve this, the calculation steps 1 to 4 can be
incorporated into a single function F that takes the lattice self-energy ΣL
as an argument, and returns the resulting impurity self-energy ΣI

FUβ(ΣL) = ΣI , (4.35)

where the external parameters of the calculation, the Hubbard coupling U
and the inverse temperature β are indicated as subscripts of F . In terms
of the function F the self-consistent DMFT solutions are nothing but the
fix-point solutions

FUβ(Σ∗) = Σ∗ , Σ∗ = ΣL = ΣI , (4.36)

where the lattice and impurity self-energies coincide. The coupled equations
and the fix-point function F is schematically shown in Fig. 4.3.

A closer inspection of the equations shows that the choice of the self-
energy as fix-point variable is not unique. It is also possible to formulate
the fix-point problem in terms of the bath Green’s function G0. This gives
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GL =
∫

dερ(0)

iωn−ε−ΣL

G0 = [G−1
L + ΣL]−1

GI = 〈cc†〉Seff[G0]

ΣI = G−1
0 −G−1

I

FUβ(ΣL) = ΣI

F̃Uβ(G0) = G0

GL,ΣL G0

GI , G0

ΣL = ΣI

ΣI

ΣL

Figure 4.3: The self consistent DMFT equations and the two possible fix-point
function formulations FUβ(ΣL) and F̃Uβ(G0).

a function F̃ that takes the bath Green’s function of the impurity as an
argument and returns the bath Green’s function generated by the lattice
Green’s function and self-energy

F̃Uβ(G0) = G0 . (4.37)

This parametrization of the fix-point function is also indicated in Fig. 4.3. In
our calculations we have employed both formulations and they yield formally
exactly the same solutions. Although it is often more beneficial to use one
of the formulations depending on the particular method chosen to solve the
impurity problem.

In later chapters we will study the properties of the fix-point function F
in detail by explicitly calculating its Jacobian JF . As F is a vector valued
function, in the self-energy Σ at all Matsubara frequencies Σn = Σ(iωn), its
Jacobian is formally given by

JF (Σ) = ∇ΣmF (Σ) =
∂Fn(Σ)

∂Σm
. (4.38)
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Unfortunately Σn is an infinite dimensional vector and the Jacobian JF
becomes an infinite dimensional matrix. To perform numerical calculations
some finite dimensional (approximate) parametrization of Σ is needed, for
example by mapping the impurity problem to a finite Anderson model or
by simply using a finite number of Matsubara frequencies.

4.3 Fixpoint Solvers

In the previous section it was shown that the solutions to the DMFT self-
consistent equations can be defined as fixpoints to the DMFT fixpoint func-
tion FUβ of Eq. (4.36). It was also noted that there exists more than one
possible choice of parametrization for FUβ , as indicated in Figure 4.3, us-
ing either the self-energy Σ(iωn) or the bath Green’s function G0(iωn). In
next chapter yet another alternative parametrization, in terms of the finite
Anderson Model parameters x = {εk, Vk} [Eq. (5.28)], will be treated.

Although these mappings do differ in numerical aspects they all share
leading order properties as they are re-parametrizations of the same funda-
mental DMFT mapping. In the following section we will discuss the general
properties of FUβ and adopt Σ as the fixpoint variable

FUβ(Σ) = Σ′ , (4.39)

keeping in mind that re-parametrizations in terms of G0 and x are possible.

The task of finding fixpoints Σ∗ to the fixpoint equation FUβ(Σ∗) = Σ∗ is
a standard problem with large set of applicable numerical algorithms [63]. A
common property of these algorithms is that they are local, in the sense that
given some initial guess Σ0 only the solution Σ∗ “close” to the initial guess
will be found. Thus finding all fixpoint solutions requires the use of several
initial guesses as is the case for FUβ in the vicinity of the Mott-transition.

In the DMFT literature the most commonly used fixpoint solver is for-
ward recursion [17], but Newton methods has also received some atten-
tion [64]. Both algorithms experience numerical problems when applied at
the Mott-transition. In this section we will review the merits and deficien-
cies of forward recursion and Newton methods giving special attention to
the local stability in the vicinity of a fixpoint. The connection between the
local stability properties and the spectral properties of the Jacobian JF in
Eq. (4.38) of the fixpoint function FUβ will be shown. Finally, the under-
standing of the stability problems will be used to formulate the phase space
extension method which is stable throughout the Mott-transition.
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Chapter 4 - Dynamical Mean Field Theory

4.3.1 Forward recursion

The forward recursion algorithm is the most widely used fixpoint algorithm
used in the DMFT community [17]. Its popularity can probably be traced
back to the tradition of thinking in terms of the self-consistency cycle, shown
in Fig. 4.3. The algorithm is a simple iterative evaluation of the DMFT
fixpoint function FUβ . Given an initial guess Σ0 the series {Σn} is generated
using the recursion relation

Σn+1 = FUβ(Σn) , (4.40)

and a fixpoint Σ∗ is found if the series converges Σ∗ = Σ∞. The convergence
properties of the series in the vicinity of a fixpoint Σ∗ can be assessed by
Taylor-expanding FUβ to first-order around Σ∗

FUβ(Σ∗ + δΣ) ≈ FUβ(Σ∗) + JF (Σ∗) · δΣ , (4.41)

where δΣ is a small perturbation. In the linear approximation of Eq. (4.41)
the forward recursion series of a perturbed initial guess Σ0 = Σ∗+ δΣ takes
the form

Σ0 =Σ∗ + δΣ ,

Σn =Σ∗ + (JF (Σ∗))n · δΣ . (4.42)

From this it is evident that the convergence is determined by the proper-
ties of the Jacobian at the fixpoint JF (Σ∗). The nth power of JF is best
described by expressing JF in terms of its normalized eigenvectors ji and
eigenvalues εi

JF =
∑

i

εi ji · (ji)† ,

(JF )n =
∑

i

εni ji · (ji)† , (4.43)

where the orthonormality of ji was used to obtain the last relation. Thus
the convergence of Σn to Σ∗ for a general perturbation δΣ is determined by
the eigenvalues εi of the Jacobian. To obtain convergence the powers of εi
has to go to zero as n→∞, which requires that εi obey

|εi| < 1 ,∀i . (4.44)

So forward recursion is only locally convergent if the spectral distribution
of the fixpoint Jacobian JF (Σ∗) is bounded from above and below by one.
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Σn+1

Σn

Σ1 Σ2 Σ3 Σ4 Σ∗

a)

Σn+1 = Σn

Σn+1 = F (Σn)Σn+1

Σn

Σ1Σ2Σ3Σ4 Σ∗

b)

Figure 4.4: Forward recursion in one dimension for, a) the convergent case when
|∂ΣFUβ(Σ∗)| < 1 and b) the divergent case when when |∂ΣFUβ(Σ∗)| > 1.

The speed of convergence of the forward recursion series {Σn} is, due to
Eq. (4.43), limited by the in magnitude largest eigenvalue ε as its nth power
εn has the slowest decrease with respect to increasing n. This has the un-
pleasant effect that if ε→ 1−, when tuning the external parameters U and
β the rate of convergence display a critical slowing down [65].

This very general statement can be more intuitively understood in one
dimension where the Jacobian simplifies to the derivative of the fixpoint
function JF (Σ) = ∂ΣFUβ(Σ). In a two dimensional xy-plot of FUβ as a
function of Σ, FUβ crosses the function x = y at a fixpoint. In the same plot
the forward recursion series can be generated by moving in zig-zag between
these two functions, see Fig. 4.4. In the case when |∂ΣFUβ(Σ∗)| < 1 this
causes the series {Σn} to converge towards Σ∗ while if |∂ΣFUβ(Σ∗)| > 1 even
an initial guess Σ0 very close to the fixpoint causes the series to diverge away
from the fixpoint, see Fig. 4.4a and 4.4b respectively.

Thus when using forward recursion it is only possible to find the subset
of all fixpoints that happens to have Jacobians with spectral distributions
bounded by one in magnitude. Even though this is a large limitation of the
accessible fixpoint space, forward recursion has the great advantage of being
extremely simple to implement and to converge fast when the interesting
fixpoints have small Jacobian eigenvalues |εi| � 1.
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4.3.2 Newton methods

The family of Newton methods are actually multidimensional root solvers
but can easily be applied to find fixpoints of a function FUβ by finding roots
of the associated root function RUβ defined by

RUβ(Σ∗) ≡ FUβ(Σ∗)− Σ∗ = 0 . (4.45)

The original Newton’s method [63] then generates the series

Σn+1 = Σn − (JR(Σn))−1RUβ(Σn) , (4.46)

where JR is the Jacobian of the root function RUβ . The required explicit
computation of JR at each iteration makes this approach ill suited for high-
dimensional problems, as a numerical approximation of JR requires as many
function evaluations as the dimension of RUβ . To overcome this limitation
a zoo of algorithms has been developed that approximates the Jacobian
using information from previous iterations. In this work Broyden’s second
method [66], which approximate the Jacobian by rank-one updates, has
been used. The application of Broyden’s method directly to the DMFT
root function RUβ has already been explored in Ref. [64].

To assess the local stability of Newton’s method in the vicinity of a
fixpoint Σ∗ we again apply a perturbation δΣ sufficiently small to stay in the
linear regime where RUβ(Σ∗+δΣ) ≈ JR(Σ∗)·δΣ and JR(Σ∗+δΣ) ≈ JR(Σ∗).
Now the series Σn converges in one iteration when given the perturbed initial
guess

Σ0 =Σ∗ + δΣ ,

Σ1 =Σ0 − J−1
R (Σ0)RUβ(Σ0) ≈ Σ∗ , (4.47)

where we have assumed that the Jacobian JR(Σ∗) is invertible (non-singular).
Thus Newton’s method is locally convergent as long as JR(Σ∗) has no zero
eigenvalues. To compare with forward recursion JR is connected to JF by

JR(Σ) = ∇RUβ(Σ) = ∇FUβ(Σ)− 1 = JF (Σ)− 1 , (4.48)

so in terms of the eigenvalues εi of the Jacobian JF of the DMFT function
FUβ Newton’s method is stable when

εi 6= 1 ,∀i . (4.49)

This requirement is a large improvement compared to forward recursion and
Eq. (4.44), the respective ranges of stability are sketched in Fig. 4.5. Using
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ε
1−1

Forward recursion

Newton’s method

Figure 4.5: Local stability regions of Newton’s method and forward recursion in
terms of the spectral distribution of eigenvalues of the Jacobian JF of the DMFT
fixpoint function FUβ at a fixpoint Σ∗. Open circles denotes missing points on the
intervals.

one of the modified Newton methods, approximating the Jacobian, the gain
in stability comes with only a slight increase in computational cost. The less
restrictive local stability requirements of Newton methods make is possible
to find a larger set of all fixpoints of FUβ . In particular it is possible to
locate fixpoints that are impossible to find using forward recursion.

4.3.3 Phase Space Extension

As shown in Paper I the Jacobian JF of the DMFT fixpoints becomes singu-
lar at the hysteresis boundaries of the Mott-transition, causing both forward
recursion and Newton’s method to fail. This behavior is highly undesirable
when studying the development of the fixpoints as a function of the external
parameters, the Hubbard U and the inverse temperature β, in the vicinity of
the Mott-transition. To counter this we have devised a simple phase space
extension algorithm that can continuously map out the DMFT fixpoints
throughout the entire hysteresis region.

The phase space extension is based on the idea of using the external pa-
rameters as additional degrees of freedom in the search for fixpoint solutions.
By viewing U as an external field it is possible to find a scalar conjugate
field A(Σ) having different values for the full set of coexisting fixpoints. This
property causes A to have non-zero derivative with respect to the fixpoint
parametrization Σ, ∇ΣA(Σ) 6= 0, at the points where JF becomes singu-
lar. Now given the scalar function A(Σ) the extended root problem R̃αβ is
constructed as

R̃αβ(U,Σ) = (α−A(Σ), RUβ(Σ)) = 0 , (4.50)

where U is a free parameter and the value of A is restricted to the new
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external parameter α by requiring that the first entry in R̃αβ is zero, α −
A(Σ) = 0 . The fact that A lifts the degeneracy of coexisting fixpoints
causes the Jacobian JR̃ of the extended root problem to be invertible even
when JR is singular. Thus when sweeping α, all fixpoints of FUβ along an
isotherm can be determined by solving Eq. (4.50) using a (quasi) Newton
method.

In the case of the Mott-transition of the Hubbard model and the cou-
pling strength U , one of the possible choices of conjugate the field is the
double occupancy D(Σ). But in the numerical studies of this thesis the
value of the self-energy at the first Matsubara frequency, A(Σ) ≡ Σ′(iω0) =
FUβ(Σ)(iω0), was used. This choice is motivated by Σ′(iω0) being one-to-
one to the Eliashberg estimate of the quasi-particle weight, see Ref. [67] for
details.

Example

The reason why the phase space extension gives an invertible Jacobian even
in the cases when the original root problem does not can be understood
when applied to a simple solvable model. In Section 2.6 a phenomenological
simplified Landau function L was introduced and defined as

L(u, t, d) = β0ud+ γ1t
d2

2
+
d4

4
, (4.51)

where β0 and γ1 are model parameters. The analog of the DMFT fixpoints
are the stationary points of the Landau function and the surface SL

SL = {(u, t, d) : ∂dL(u, t, d) = β0u+ γ1td+ d3 = 0} . (4.52)

This can be put in the form of a fixpoint problem Fut(d) by rearranging the
terms in the stationary point equation

Fut(d) = −d
3 + β0u

γ1t
, (4.53)

where the points on (u, t, d∗) ∈ SL are fixpoint solutions, Fut(d
∗) = d∗. To

formulate the phase space extension, also the root function Rut is needed
and the definition in Eq. (4.45) gives

Rut(d) = Fut(d)− d = − 1

γ1t

(
β0u+ γ1td+ d3

)
= 0 . (4.54)

70



Section 4.3 - Fixpoint Solvers

The scalar function conjugate to the coupling u can in this case be chosen
as the double occupancy d′ = Fut(d), given by the fixpoint function. The
extended root problem R̃d̃t(u, d) is then given by

R̃d̃t(u, d) = (d̃− Fut(d), Rut(d)) = (d̃+
d3 + β0u

γ1t
,− 1

γ1t

(
β0u+ γ1td+ d3

)
) .

(4.55)

Knowing R̃ analytically enables a direct calculation of its Jacobian

JR̃ = ∇R̃d̃t(u, d) =
1

γ1t

(
β0 3d2

−β0 −(γ1t+ 3d2)

)
, (4.56)

having the eigenvalues

λ = −1

2
(−β0 + γ1t+ 3d2)±

√
1

4
(−β0 + γ1t+ 3d2)2 + β0γ1t . (4.57)

Now the points where the Jacobian JR of the root function Rut(d) becomes
singular are the saddle-node bifurcation lines as discussed in Section 2.6. For
our simple Landau function JR is scalar and equal to zero when singular

JR = −1− 3d2

γ1t
= 0 ⇒ γ1t+ 3d2 = 0 . (4.58)

Insertion into the equation for the eigenvalues λ of the extended root problem
R̃ gives

λ =
β0

2
±
√
β2

0

4
+ β0γ1t . (4.59)

As β0, γ0 > 0 criticality occur when t . 0, which makes the eigenvalues
λ real and non-zero and ensures that JR̃ is invertible. In other words a

Newton’s method applied to R̃d̃t(u, d) converges locally for the points where
the Jacobian of Rut(d) is not invertible.
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Auxiliary Impurity
Problem

The mapping of the lattice system to an auxiliary impurity system in DMFT
was described in Chapter 4, where also the self-consistency condition deter-
mining the impurity bath Green’s function G0 was derived. Combined with
the local interaction of the lattice, G0 fully specifies the effective action Seff

of the impurity

Seff[G0] =

∫ β

0

dτ Un̂↑(τ)n̂↓(τ)

−
∫ β

0

dτ

∫ β

0

dτ ′
∑

σ

c†σ(τ)G−1
0 (τ − τ ′)cσ(τ ′) . (5.1)

In order to close the self-consistent DMFT loop of Fig. 4.3 the local inter-
acting Green’s function GI of the impurity has to be calculated

GIσσ′(iωn) =

∫ β

0

dτ eiωnτ 〈cσ(τ)c†σ′(0)〉Seff[G0] . (5.2)

This is of course still a formidable task and much research has been put into
developing analytical and numerical methods for this particular problem. In
the literature this family of methods are commonly referred to as impurity
solvers. For an overview of methods see Refs. [17, 68,69].

I this thesis we will only treat the impurity solvers Iterated Perturbation
Theory (IPT), Exact Diagonalization (ED), and the Distributional Exact
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Diagonalization extension (Dist-ED) of ED that we have developed. In the
following sections we will introduce IPT, discuss ED in more detail, and give
a background to Dist-ED that is treated in more detail in Paper II.

5.1 Iterated Perturbation Theory

The approach of Iterated Perturbation Theory [70–72] is based on a simple
truncation of the diagrammatic expansion of the impurity self-energy ΣI to
second order in U , giving the four diagrams

ΣI = + + + +O(U3)

. (5.3)

The effective action of the impurity in Eq. (5.1), is actually mappable to an
Anderson impurity model [73] for which the bath Green’s function G0 plays
the role of the free propagator. The next section is devoted to the details
of the mapping. Here we just note that perturbation theory applied to the
Anderson model were studied before the dawn of DMFT [74–77].

In the case of the Hubbard model the resulting DMFT impurity model
only contains a density-density interaction, Un̂↑n̂↓, which requires different
spin labels for the propagators on each side of an interaction vertex. This
symmetry is only fulfilled by the Hartree and bubble diagram in the general
expansion while the others give zero contribution. Thus approximating ΣI
to second order requires the calculation of

ΣI ≈ +

ΣI ≈ Σ(1) + Σ(2)

. (5.4)

The standard rules for unlabeled Feynman diagrams [26] give algebraic ex-
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pressions for the first- and second-order contributions Σ(1) and Σ(2) as

Σ
(1)
σ (τ − τ ′)

στ ′

στ
σ̄

= = −δ(τ − τ ′)UG0σ̄(0−) ,

Σ
(2)
σ (τ − τ ′)

στ ′

σ

στ

σ̄

σ̄
= = −U2G0σ(τ − τ ′)G0σ̄(τ − τ ′)G0σ̄(τ ′ − τ) .

(5.5)

Now assuming a paramagnetic solution where the bath Green’s function
G0 is independent on spin G0,↑(iωn) = G0,↓(iωn), and transforming G0 from
imaginary frequencies iωn to imaginary time τ gives

G0(τ) =
1

β

∑

n

G0(iωn)e−iωnτ

Σ
(1)
I (iωn) = −UG0(0)

∫ β

0

dτ δ(τ)eiωnτ = −U〈n̂〉

Σ
(2)
I (iωn) = −U2

∫ β

0

dτ G2
0(τ)G0(−τ)eiωnτ ,

where we have used that G0(0) = 〈n̂〉. As the first-order Hartree diagram

Σ
(1)
I only give a constant contribution it can be absorbed in to the chem-

ical potential µ̃ = µ − 〈n̂〉U . Thus, the numerical implementation of IPT
mainly consists of a Fourier transformation F and its inverse F−1 and can
be summarized as

G0(τ) = F−1 {G0(iωn)} ,
ΣI(iωn) = −U2F

{
G2

0(τ)G0(−τ)
}
.

An important question to ask is why IPT is relevant at all for the de-
scription of the Hubbard model for any sizable electron-electron coupling
U . Being a second order approximation one could expect it to work in some
range of weak coupling where higher order diagrams does not contribute. To
be able to describe both weak any strong correlation physics any impurity
solver also have to contain the atomic limit.
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In the case of IPT some further investigation of this limit is required.
Taking the atomic limit causes the electron dispersion to become momentum
independent εk = t and the non-interacting Green’s function takes the form

Gatm,0 =
1

iωn − t+ µ
(5.6)

and the analytical IPT approximation to the self-energy can be evaluated
to

ΣIPT
atm,σ[Gatm,0] = Σ(1)

σ + Σ(2)
σ = 〈n̂σ̄〉U +

〈n̂σ̄〉(1− 〈n̂σ̄〉)U2

iωn − t+ µ− 〈n̂σ̄〉U
, (5.7)

if one includes the Hartree term in the chemical potential. Comparing with
the self-energy for the real atomic system in Eq. (2.26) the only difference is
the prefactor for the U term in the denominator. But by a lucky coincidence
these two prefactors coincide at half-filling and because of this IPT also has
the correct atomic limit at half-filling.

IPT was one of the first impurity solvers applied to DMFT and for the
half-filled single-band Hubbard model it has been particularly important for
understanding the Mott-Hubbard metal insulator transition [70–72]. It has
also acted as a reference for the development of more sophisticated methods
like Quantum Monte Carlo solvers [67]. On the downside IPT is limited
to the single-band case at half-filling in its original formulation. However
there has been some attempts to perform the same type of non-interacting
to atomic limit interpolation for arbitrary fillings [78].

5.2 Anderson model mapping

The Anderson model [73] was initially proposed by P. W. Anderson in 1961
as an effective model for magnetic impurities in metallic systems. Since
then a plethora of approximate methods has been developed to handle the
model, one notable example is the renormalization group method [79]. The
basic ingredients in the single-band version is a single impurity site with lo-
cal electron-electron interaction and a surrounding itinerant non-interacting
electron system with dispersion εk. The coupling of the impurity to its
surroundings is described by a hybridization Vk with the eigenstates of the
non-interacting electrons. In second quantization the Hamiltonian takes the
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form

ĤAM =
∑

σ

(εI − µ)c†σcσ + Un̂↑n̂↓

+

∞∑

k=1

∑

σ

[
εkc
†
kσckσ + Vk

(
c†σckσ + c†kσcσ

)]
, (5.8)

where c†σ and cσ are impurity creation and annihilation operators, c†kσ and
ckσ are the equivalent operators for the non-interacting system and the
momentum k has been replaced with a general quantum label k.

The connection between the Anderson model and the auxiliary impurity
problem can be established using the philosophy of the cavity construction
derivation of DMFT. The local electron-electron interaction is the same in
both cases but the representability of the general bath Green’s function
G0(iωn) by the non-interacting electron system in the Anderson model is
not straight forward. A division of the action of the Anderson model in an
impurity S0, a non-interacting surrounding S(0) and a hybridization term
∆S gives

S0 =

∫ β

0

dτ

[∑

σ

c†σ(τ)(∂τ + εI − µ)cσ(τ) + Un̂↑(τ)n̂↓(τ)

]
,

S(0) =

∫ β

0

dτ

∞∑

k=1

∑

σ

c†kσ(τ)(∂τ + εk − µ)ckσ(τ) ,

∆S =

∫ β

0

dτ

∞∑

k=1

∑

σ

Vk(c†kσ(τ)cσ(τ) + c†σ(τ)ckσ(τ)) =

=

∫ β

0

dτ

∞∑

k=1

∑

σ

(c†kσ(τ)ηkσ(τ) + η†kσ(τ)ckσ(τ)) , (5.9)

where the source terms η are defined as, ηkσ = Vkcσ. Integrating out the
ckσ and c†kσ fields gives again the generating functional W(0)(η†, η) for con-
nected Green’s functions of the non-interacting electron system. The non-
interacting property causes only the single particle connected Green’s func-
tion to be non-zero so only the first term in the perturbation expansion of
W(0)(η†, η) contribute to the effective local action of the Anderson impurity

W(0)(η†, η) = ln〈e−∆S〉S(0)

=

∞∑

k=1

∑

σ

c†σ
|Vk|2

iωn − εk
cσ =

∑

σ

c†σ∆(iωn)cσ , (5.10)
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⇔ εI

...

V−2

ε−2

V−1

ε−1

V0
ε0

V1 ε1

V2
ε2

...

Bath
G0

Figure 5.1: Schematic mapping between the auxiliary impurity problem (left)
to the Anderson model (right).

where we have introduced the hybridization function ∆(iωn)

∆(iωn) =

∞∑

k=1

|Vk|2
iωn − εk

. (5.11)

The effective action Seff for the Anderson impurity is then given by

Seff =

∫ β

0

dτ Un̂↑(τ)n̂↓(τ)

+

∫ β

0

∫ β

0

dτdτ ′
∑

σ

c†σ(τ) [δ(τ − τ ′)(∂τ + εI − µ)−∆(τ − τ ′)] cσ(τ ′) .

(5.12)

In terms of the hybridization function ∆(iωn) the final relation between the
auxiliary impurity bath Green’s function and the Anderson model formula-
tion after transforming to Matsubara frequency becomes

G−1
0 (iωn) = iωn + µ− εI −∆(iωn) , (5.13)

where the representability of G0(iωn) is guaranteed by the infinite num-
ber of poles in ∆(iωn), for a schematic view of the mapping see Fig. 5.1.
Although the mapping of the auxiliary impurity model to an Anderson
model is straight forward once the theoretical framework of DMFT is estab-
lished, it has been important for the rapid development of the field. When
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.
.
.U

V1
V2

VNb−1

VNb

Energy

εI

ε1

ε2

εNb−1

εNb

Impurity

Bath

Figure 5.2: Finite single-impurity Anderson model, with one correlated impurity
level εI , bath levels εk, 1 ≤ k ≤ Nb, hybridizations Vk and Hubbard repulsion U .

DMFT was formulated in the beginning of the 90s, numerical methods for
the Anderson model had already been under development for 30 years. The
emergence of DMFT has ever since been a driving force for the development
of more powerful methods.

5.3 Exact Diagonalization

The second impurity solver used in this thesis is Exact Diagonalization (ED)
introduced by Caffarel and Krauth [80]. As the name indicates ED is based
on the exact solution of a finite model by finding all eigenstates through
diagonalization of its matrix-representation in some basis. The auxiliary im-
purity problem is first mapped to the infinite dimensional Anderson model
which is then truncated to a finite number of sites. By limiting the summa-
tion over k in Eq. (5.8) to some number Nb, this gives the truncated finite
single-impurity Anderson model used in ED with the Hamiltonian

ĤED =
∑

σ

(εI − µ)c†σcσ + Un̂↑n̂↓

+

Nb∑

k=1

∑

σ

εkc
†
kσckσ +

Nb∑

k=1

∑

σ

Vk

(
c†σckσ + c†kσcσ

)
. (5.14)

see Fig. 5.2 for a schematic picture. With a finite set of states {kσ} the
Hilbert space of ĤED is finite and in principle it is possible to construct its
matrix representation, determine all eigenstates and calculate the interacting
impurity Green’s function GI(iωn).
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The gain of getting an exactly solvable model comes at the price of ap-
proximating the impurity bath Green’s function G0(iωn), having an infinite
set of poles, with a bath Green’s function G0,ED(iωn) having only a finite
number of poles. Using the exact impurity hybridization function ∆(iωn)
and Eqs. (5.13) and (5.11) this approximation can be written as

G−1
0 (iωn) = iωn + µ− εI −∆(iωn)

≈ iωn + µ− εI −∆ED(iωn) = G−1
0,ED

(iωn) ,

∆ED(iωn) =

Nb∑

k=1

|Vk|2
iωn − εk

, (5.15)

where the energies εk and hybridization strengths Vk of the electronic states
with labels {kσ} are called bath states as they determine the bath Green’s
function G0,ED.

5.3.1 Bath mapping

In practical DMFT calculations the bath Green’s function G0 is obtained
numerically and the corresponding finite model is determined by fitting the
bath Green’s function G0,ED of the finite system to G0 by treating εk and Vk
as fitting parameters. Although this minimization only has a small number
of free parameters the Green’s functions are complex vectors in the infinite-
dimensional vector-space of the Matsubara frequencies iωn. On top of that
there is no natural norm in this vector space that can be used to measure
the distance between two vectors, Fig. 5.3 gives a schematic picture of the
situation.

The issue of the infinite number of Matsubara frequencies are usually
solved by disregarding all frequencies above some cut-off frequency ωNc .
This is possible since the analytical structure of Matsubara Green’s functions
gives the asymptotic behavior ∼ 1

iωn
. Setting Nc large enough then only

discards the known asymptotic tail.

Regarding what distance measure χ2 to use in the now finite dimensional
vector space, Caffarel and Krauth [80] proposed that the absolute square
sum of the difference between the inverse of the two bath Green’s functions
could be used

χ2
CK(εk, Vk) =

1

Nc + 1

Nc∑

n=0

∣∣∣G−1
0 (iωn)− (G

(εk,Vk)
0,ED

)−1(iωn)
∣∣∣
2

. (5.16)
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G0

G
(εk,Vk)
0,ED

χ2

Figure 5.3: Schematic picture of the projection of the impurity bath Green’s
function G0 on to the hyper-surface of finite Anderson Model representable ED
bath Green’s functions G0,ED by minimization of the distance function χ2.

Note that χ2 sometimes is referred to as the “penalty function” as it has to
be minimized in ED. Since the proposal of Eq. (5.16) many authors have
investigated numerous other forms of the distance function χ2 [81–84]. One
of the problems with the original form of Eq. (5.16) is that it does not
discriminate between low and high frequencies. This causes the particular
choice of Nc to be important, and when set too high the fit is only sensitive
to the asymptotic tail. One proposed way to counter this behavior is to
weight the Green’s function differences with some negative power of the
Matsubara frequencies. In Paper I we used the distance function

χ2(εk, Vk) =
1

Nc + 1

Nc∑

n=0

∣∣∣G0(iωn)−G(εk,Vk)
0,ED

(iωn)
∣∣∣
2

, (5.17)

and found when comparing it to the forms based on differences between
inverses of the Green’s functions that it is more stable when setting a high
Nc. To compare it with the original form of Eq. (5.16) it can be rewritten
as

χ2[εk, Vk] =
1

Nc + 1

Nc∑

n=0

|G0G0,ED|
∣∣G−1

0 −G−1
0,ED

∣∣2 , (5.18)

showing that its high frequency behavior is equal to Eq. (5.16) with an extra
1/ω2

n factor damping out the weight of the asymptotic tail.
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The arbitrariness in the choice of χ2 is generally seen as one of the weak-
nesses of ED as different choices potentially could produce different results.
Calculations using the distance functions of both Eq. (5.16) and Eq. (5.17)
indicate that the properties of the critical second-order end-point of the
metal-insulator transition is insensitive to this choice. Given a distance
function χ2 the free parameters εk and Vk are readily determined using a
standard conjugate gradient minimization algorithm, which fully determines
the ED Hamiltonian ĤED.

5.3.2 Diagonalization

Given the Hamiltonian ĤED in second quantization form, its corresponding
matrix representation can only be found relative to some many-body basis
{Γ}. A convenient choice is the occupation-number basis containing every
possible combination of local occupations

|Γ〉 = |n↑n1↑...nNb↑;n↓n1↓...nNb↓〉 , (5.19)

where nσ = 0, 1 are the occupations of the impurity, and nkσ = 0, 1 the
occupations of the bath sites. The representations of the creation and an-
nihilation operators c†i , ci can be determined by their action on a general
occupation-number state [14]

c†i |n1 . . . n2Nb+2〉 = (1− ni)(−1)
∑
j<i nj |n1 . . . (ni + 1) . . . n2Nb+2〉 ,

ci|n1 . . . n2Nb+2〉 = ni(−1)
∑
j<i nj |n1 . . . (ni − 1) . . . n2Nb+2〉 ,

(5.20)

where i is a super index of all site and spin labels 1 < i < 2Nf , where Nf
is the number of electron sites Nf = Nb + 1. Knowing the particular repre-
sentations of the creation operator (c†)ΓΓ′ and annihilation operator (c)ΓΓ′

it is straight forward to construct (ĤED)ΓΓ′ [85]. Numerical diagonalization
can now be used to calculate all eigenvalues Eν and eigen-states |ν〉 of ĤED,
ĤED|ν〉 = Eν |ν〉.

With access to the full set of eigenstates the impurity Green’s function
GI is given by the Lehman spectral representation [14,86]

GIσ(iωn) =
1

Z
∑

νµ

|〈µ|c†σ|ν〉|2
iωn + Eν − Eµ

(
e−βEν + e−βEµ

)
, (5.21)

where the grand partition function Z of the impurity is calculated by the
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trace over eigenstates

Z = Tr
[
e−βĤED

]
=
∑

ν

e−βEν . (5.22)

As the local Green’s function of the impurity and lattice coincide for self-
consistent DMFT solutions local properties of the lattice coincide with the
impurity. Such an important local quantity is the on-site double occupancy
D of Eq. (2.12) that is obtained as

D =
〈D̂〉
N =

∑

ν

〈ν|n̂↑n̂↓|ν〉e−βEν . (5.23)

The full diagonalization and Lehman representation are both straight
forward to implement but both operations scales as N3

Γ with respect to the
size of the Hilbert space NΓ. This scaling is highly relevant as the size of
the Hilbert space scales exponentially with the number of electronic states
Nf giving NΓ = 22NF .

To reduce the dimensions of the diagonalization problem it is possible
block-diagonalize the Hamiltonian by using its symmetry properties [85].
The single-band Anderson model Hamiltonian conserves both particle num-
ber, magnetization, and total spin, as can be confirmed by evaluating the
commutations

[ĤED, N̂ ] = 0 , [ĤED, Ŝz] = 0 , [ĤED, Ŝ
2] = 0 . (5.24)

The two first symmetries can be equivalently expressed in terms of the total
number of spin up and spin down N̂ = N̂↑+N̂↓, Ŝz = N̂↑−N̂↓. Thus group-
ing states Γ with the same number of spin up and down states (N↑, N↓),
block-diagonalizes the Hamiltonian in blocks with dimensions

(
Nf
N↑

)(
Nf
N↓

)
.

The rotational invariance can be used to further reduce this but requires
actual diagonalization, and does not correspond to a simple regrouping of
the occupation-number states, as they are not eigenstates of Ŝ2. As an
example of the gain in block diagonalization the case of Nf = 6 gives a
Hilbert space with the dimension NΓ = 4096, that after block diagonaliza-
tion consist of 12 blocks where the largest one is (N↑, N↓) = (3, 3) with the
dimension 400.

An interesting further development is the Krylov subspace methods [87]
that can be used to diagonalize even larger matrices requiring only the ma-
trix vector multiplication operation. These methods have also been extended
to the calculation of finite temperature Green’s functions through a two step
method [86, 88, 89] enabling the treatment of finite Anderson models with
up to 15 sites [50].
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5.3.3 Fixpoint function

Recalling that the input from the DMFT framework to the impurity solver is
the bath Green’s function G0(iωm), see Fig. 5.4, we can now summarize the
required steps of the ED algorithm for calculating the interacting Green’s
function GI of Eq. (5.2),

1. Determine the finite Anderson model parameters {εk, Vk} by fitting
the corresponding non-interacting Green’s function G0,ED(iωn) to G0

by minimization of χ2 in Eq. (5.17)

min
εk,Vk

χ2(εk, Vk)→ {εk, Vk} . (5.25)

2. Given {εk, Vk} construct the matrix representation of ĤED in the occu-
pation number basis and determine its eigenvectors |ν〉 and eigenvalues
Eν by diagonalization

ĤED|ν〉 = Eν |ν〉 . (5.26)

3. Use the eigenspectrum of ĤED to calculate the interacting impurity
Green’s functionGI using the Lehman spectral representation Eq. (5.21)

GIσ(iωn) =
1

Z
∑

νµ

|〈µ|c†σ|ν〉|2
iωn + Eν − Eµ

(
e−βEν + e−βEµ

)
. (5.27)

These steps are schematically shown to the right in Fig. 5.4, replacing the
impurity Green’s function block in the DMFT coupled equations of Fig. 4.3.

In the view of the fixpoint function formulation of DMFT and Eq. (4.37)
in terms of the bath Green’s function G0 the ED algorithm enables a third
very interesting parametrization. By breaking the DMFT coupled equations
after the χ2 minimization procedure the resulting fixpoint function depends
on the small set of parameters x = {εk, Vk}

F̃Uβ(G0) = G0 −→
ED

FUβ(x) = x . (5.28)

The low dimensional vector-space spanned by x provides a great simplifica-
tion when studying the properties of the DMFT fixpoint mapping F , com-
pared to the infinite-dimensional vector-space of Matsubara Green’s func-
tions and self-energies (G0(iω) or Σ(iωn)).
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GI = 〈cc†〉Seff

G0

GI { ĤED|ν〉 = Eν |ν〉

minεk,Vk
χ2

GI =
∑
ν,µ ...

G0

[εk, Vk]

Eν , |ν〉

GI

Figure 5.4: Detailed schematic (right) of the Exact Diagonalization impurity
solver (left).

In the low dimensional vector-space x it is straight forward to numerically
evaluate the Jacobian JF of the DMFT fixpoint function FUβ(x). To this
end we have used the modified central finite differences formula

Jf (x) = ∇xFUβ(x) =
∂FUβ(x)

∂xj
≈ FUβ(x + hjx̂j)− FUβ(x− hjx̂j)

2hj
,

(5.29)

where hj is the discretization and x̂j is the unit-vector in the jth dimension.
Due to the spread of the parameters in x = {εk, Vk} a relative scaling of hj
was used to stabilize the Jacobian calculation

hj = h̄xj , (5.30)

with fixed h̄ on the order of 1% to 10%. With access to JF the DMFT
fixpoint problem lends it self to an in-depth analysis using dynamical system
methods, providing a deeper understanding of the critical behavior at the
Mott metal-insulator transition, as discussed in Paper I.

5.3.4 Implementation

An important part of the work has been the implementation of the Exact
Diagonalization routine. The main part of the DMFT-ED calculation was
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implemented in the scripting language Python [90]. The benefit of this lan-
guage is that it comes with “batteries included” in the sense that it comes
with an extensive and useful standard library. Especially the numerical
modules Numpy and Scipy [91] has simplified and speeded up the develop-
ment by providing basic array manipulation routines, linear algebra through
its LAPACK front-end, multi dimensional root solvers like Broyden’s second
method (used to solve the DMFT equations) and multidimensional minimiz-
ers like the conjugate gradient and the non-linear least squares methods.

As any interpreted language Python comes with a cost, the avoidance of
compilation makes explicit loops slow. Numpy solves most of this through its
compiled implementation of array operations. But in the case of the speed-
critical Lehman summation in Eq. (5.21) the Numpy based implementation
did not suffice. After profiling the sum was re-implemented in Fortran and
interfaced with Python using the wrapper tool f2py [92].

To further increase the computational throughput the Lehman sum was
parallelized over Hilbert space blocks with fixed number of spin up and spin
down (N↑, N↓). This is possible as the matrix element 〈µ|c†σ|ν〉 in Eq. (5.21)
only connects eigenstates in the block (Nσ, Nσ̄) to eigenstates in the block
(Nσ+1, Nσ̄). Using this the summation over eigenstates µ and ν in Eq. (5.21)
can be rewritten as

GIσ(iωn) =
1

Z
∑

Nσ,N−σ




∑

µ∈(Nσ,N−σ)
ν∈(Nσ+1,N−σ)

|〈µ|c†σ|ν〉|2
iωn + Eµ − Eν

(
e−βEν + e−βEµ

)



=
1

Z
∑

Nσ,N−σ

G(Nσ,N−σ)(iωn) , (5.31)

where the calculation of the partial Green’s function G(Nσ,Nσ̄)(iωn) only re-
quires the eigenstates from two blocks. Using the Message Passing Interface
(MPI) and the Python module mpi4py the sum over blocks was distributed
over MPI ranks. Load balancing was performed through a simple algorithm
taking into account the block size of the required blocks for each partial
Green’s function, the N3

Γ scaling of the diagonalization and the remaining
Lehman sum.
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5.4 Distributional Exact Diagonalization

In Exact Diagonalization the bath Green’s function G0, obtained from the
lattice Green’s function and self-energy by Eq. (4.4), is approximated by
the Green’s function of a finite Anderson model G0,ED defined in Eq. (5.15).
The model has only a finite number of poles on the real axis, while the
lattice has a continuum of states, so it is not a priori clear how to motivate
this approximation. Looking at the spectral functions of G0 and G0,ED, the
ED method attempts to fit a continuous set of states with a finite set of
resonances.

However this is a much to harsh view on the method. Exact Diagonal-
ization, applied as an impurity solver in DMFT, should be viewed as the
thermodynamical best fit of a finite Anderson model to the continuous bath.
This is the case as the actual fitting take place on the finite temperature
Matsubara frequencies, not on the real axis. The use of the Matsubara
frequency Green’s functions turns ED into an approximation optimized for
computing thermodynamical averages, like the double occupancy and quasi-
particle weight studied in Paper I.

Distributional Exact Diagonalization attempts to address the deficiency
of ED in representing the real frequency response functions by considering
not just a single Anderson model, but an entire ensemble. A continuous bath
Green’s function is then readily obtained by taking the ensemble average of
many finite models. The basic idea is to use the spectral function A0 of G0,
given by

A0(ω) = − 1

π
Im[G0(ω + i0+)] (5.32)

as a probability distribution. An ensemble of bath Green’s functions G
(ν)
0

containing n poles can then be generated by drawing random pole positions

b
(ν)
i having the probability distribution A0

G
(ν)
0 (z) =

n∑

i=1

a
(ν)
i

z − b(ν)
i

, (5.33)

and requiring that the residues ai sum to one. The ensemble sample G
(ν)
0

can then be mapped directly to a finite Anderson model with Nν − 1 bath
states and solved using ED.

The bath Green’s function ensemble average Ḡ0 of N finite Anderson
model realizations

Ḡ0 =
1

N

∑

ν

G
(ν)
0 , (5.34)
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is equal to the original continuous bath Green’s function G0 in the limit

Ḡ0 −−−−→
N→∞

G0 . (5.35)

While the use of ensemble averages trivially reproduce the non-interacting
limit its bearing on the interacting system is not directly evident.

In a leap of faith the same ensemble average approximation on the im-
purity self-energy can be performed

Σ̄I =
1

N

∑

ν

Σ
(ν)
I . (5.36)

This ensemble averaged impurity self-energy is a non-trivial approximation.
It corresponds to replacing cross-correlations between different finite An-
derson model samples with internal correlations. Consider for example the
second order weak coupling diagrammatic expansion of ΣI that is approxi-
mated as

G0

G0

G0
=

1

N3

∑

νστ



Gν0

Gσ0
Gτ0


≈ 1

N

∑

ν



Gν0

Gν0
Gν0




. (5.37)

The ensemble averaging procedure gives this approximation applied to all
orders in the self-energy.

It is important to note that the self-energy can not be approximated
by applying the Dyson equation to the ensemble averaged interacting and
non-interacting Green’s functions, i.e. Σ̄I 6≈ Ḡ−1

0 +Ḡ−1, as such a procedure
requires the zeros of Ḡ0 to be zeros of Ḡ in order to produce a proper self-
energy.

5.4.1 Mapping poles to an Anderson model

To map the bath Green’s function with a finite number of poles in Eq. (5.33),

determined by the coefficients {a(ν)
i , b

(ν)
i }, to the an Anderson model with

bath greens function

G
(ν)
0 =

1

z − ε(ν)
0 −∆(ν)(z)

, (5.38)

and hybridization function

∆(ν)(z) =
∑

k

(V
(ν)
k )2

z − ε(ν)
k

, (5.39)
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is a simple algebraic problem. The bath level energies ε
(ν)
k are the roots of

G0

G
(ν)
0 (ε

(ν)
k ) = 0 , (5.40)

determined by the polynomial

∑

i

a
(ν)
i

∏

j 6=i
(z − b(ν)

j ) = 0 . (5.41)

The bath hybridization Vk can be obtained from the derivatives of G0 at
the roots εk,

∂zG
(ν)
0 (z)|

z=ε
(ν)
k

= − 1

(V
(ν)
k )2

, (5.42)

and the impurity energy level can be obtained from

ε
(ν)
0 = −(G

(ν)
0 )−1(z)−∆(ν)(z) + z , (5.43)

where one can use the fact that G0 is zero at the poles an to get

ε
(ν)
0 = −∆(b(ν)

n ) + b(ν)
n . (5.44)

Another possible route for computing ε0 is by comparing the asymptotic
1/z2 behaviors of the two forms, such an analysis gives

ε
(ν)
0 =

∑

j

a
(ν)
i b

(ν)
i . (5.45)

5.4.2 Exploratory study

There are other methods like the Numerical Renormalization Group (NRG)
and Density Matrix Renormalization Group (DMRG) solvers that can com-
pute spectral functions on the real axis [93, 94]. These approaches have yet
to be generalized to large scale multiorbital models, but the available high
quality results for the single band Hubbard model are ideal benchmarks for
the Dist-ED approach.

In Paper II we make several comparative studies of Dist-ED finding
astonishing good agreement when comparing to NRG and Quantum Monte
Carlo calculations. These results should be taken as a strong indication that
there is more to be learned from the Dist-ED cross correlation neglecting
class of approximations. The exploratory calculations also raised a couple of
issues. For weak coupling the replacement of cross correlations with internal
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correlations in Eq. (5.37) overestimates the low energy spectral weight. This
is caused by an overrepresentation of low energy weight in G0 that can be
compensated for by dropping configurations. A remaining open questions is
how to deal with the freedom in choosing the relative residue strengths an
in the ensemble of Anderson models. They can either be chosen randomly
or used to further tune the properties of the finite model. To conclude Dist-
ED is an interesting approach and an interesting approximation of the local
impurity problem that deserves further attention. By being inherently and
trivially parallelizable it holds promise for computing real frequency spectral
functions of multi-orbital systems.
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Chapter 6

Gutzwiller Variational
Method

In the 60s Martin C. Gutzwiller wrote a series of papers introducing a varia-
tional wave-function ΨG aimed at describing the physics of itinerant fermion
systems with local correlation [95–97]. Originally the wave-function ΨG was
designed exclusively for the single-band Hubbard model, and constructed
by combining an uncorrelated Slater determinant wave-function Ψ0 with a
many-body operator P̂G that reduced the energetically costly double occu-
pancy locally on every site

|ΨG〉 = P̂G|Ψ0〉 . (6.1)

However evaluating expectation values even for this seemingly simple wave-
function is a non-trivial many-body problem. Guided by intuition Gutzwiller
therefore suggested an approximation enabling analytic evaluation of expec-
tation values [97].

It was not until two decades later, in 1989, that Metzner and Voll-
hardt [29] realized that fermionic systems have a non-trivial limit in infi-
nite dimensions. With this insight they could show that the proposal by
Gutzwiller was actually exact in the limit of infinite dimensions. These
ideas started an entire sub-field in the strong-correlations community. To-
day Gutzwiller’s proposed wave-function and its generalizations bear his
name and are simply called Gutzwiller wave-functions, and the approxima-
tion scheme is referred to as the Gutzwiller Approximation.

The generalization of the Gutzwiller wave-function and the Gutzwiller
approximation to more realistic multi-band Hubbard models, with general
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local interactions, turned out to be involved. The issue was solved in 1998
by Bünemann et al. [98], whose initial theoretical paper was later followed
by a throughout calculation for the correlated transition metal Ni [99–101],
and more recently a study of antiferromagnetism in the iron pnictides [102].

However, method papers on numerical methods for solving the multi-
band Gutzwiller problem has been scarce. A powerful approach has been
developed by Deng et al. [103, 104], albeit limited to density-density inter-
actions. In Paper III we generalize Deng’s ideas to general interactions.
After publishing Paper III on the ArXiv, another paper by Bünemann et
al. appeared with details on their numerical procedure [105]. Although
both methods solve the multi-orbital Gutzwiller problem the two numerical
approaches differ. The idea of Bünemann et al. [105] is that of a direct min-
imization while our method in Paper III directly exploits the separability of
the problem.

In 2007 Lechermann et al. [106] published a generalization of the Kotliar-
Ruckenstein slave-boson formalism [107] to multi-band Hubbard models.
The final equations was later shown to be identically equal to the equations
of the corresponding Gutzwiller problem [108]. However, even though the
slave-boson approach in the end gives the same variational problem as the
Gutzwiller method its derivation takes a very different path, and opens up
for different interpretations and extensions.

One such important line of thought is the Gutzwiller formalism devel-
oped by Fabrizio and Lanatà [109–111], who realized the merit of rewriting
the Gutzwiller problem in a slave-boson like form. This was done by re-
placing the projector P̂G variational variable with an associated operator φ
that encodes all local properties of ΨG. One of the benefits of this rewrite
is that local expectation values no longer explicitly depends on the Slater
determinant. This is one important step in separating the problem which is
one of the main topics of Papers III and V.

This chapter has the following structure; Section 6.1 treats the gen-
eral Gutzwiller wave-function together with the corresponding variational
minimization problem that can be tackled analytically using the Gutzwiller
approximation described in Section 6.2. By the introduction of the mixed
basis representation in Section 6.3 the Gutzwiller minimization problem is
partially separated in local and non-local parts. How wave-function sym-
metries translate to this form is derived in Section 6.4 and it also enables
direct calculation of the entanglement entropy as outlined in Section 6.5.
We then go on to formulate our minimization algorithm by introducing a
vector-space representation in Section 6.6 that is used to completely sep-
arate the local and non-local minimization problems in Section 6.7. The
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insights from the separation of the problem are then used in Section 6.8 to
formulate an efficient Lagrange based solver.

6.1 Gutzwiller wave-function

We will adopt the multi-orbital formulation of the Gutzwiller wave-function
using the notation of Fabrizio and Lanatà [109–111]. The Gutzwiller wave-
function takes the general form of Eq. (6.1) where Ψ0 is assumed to be an
uncorrelated Slater determinant wave-function

|Ψ0〉 =
∏

εkn<εF

c†kn|0〉 , (6.2)

filled up to the Fermi surface of some non-interacting Hamiltonian with
dispersion εkn and Fermi level εF . The operator P̂G is constructed as a

product of local operators P̂R acting separately on each lattice site

P̂G =
∏

R

P̂R , (6.3)

where P̂R in turn is a completely general operator in the local Fock-space
that can be written, without any loss of generality, as

P̂R =
∑

ΓΓ′

λΓΓ′(R)|Γ,R〉〈Γ′,R| , (6.4)

where |Γ,R〉 are the local many-body occupation number states, and λΓΓ′(R)
are our variational parameters, that we will refer to as configuration weights.
The local many-body occupation number states |Γ,R〉 can in turn be con-
structed as

|Γ,R〉 =

(∏

α∈Γ

c†Rα

)
|0,R〉 , (6.5)

using the site local vacuum state |0,R〉, and the fermion creation operator

c†Rα, creating an electron on site R with composite quantum-number α
(including all local spin and orbital degrees of freedom). In the following

treatment we are going to refer to P̂R as the Gutzwiller projector.1 To
conclude, the Gutzwiller wave-function ΨG is parametrized by Ψ0 and λ,
ΨG = ΨG(Ψ0, λ).

1Note however that P̂R is not a projection operator in the mathematical sense, as

P̂RP̂R 6= P̂R.
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Our interest lies in using ΨG and the variational principle [112], to obtain
an approximate ground state for multi-orbital Hubbard models Ĥ with the
general form

Ĥ = T̂ + Ĥint =
1

N
∑

RR′

∑

αβ

tαβRR′c
†
RαcR′β +

1

N
∑

R

Ĥloc(R) , (6.6)

with a kinetic term T̂ containing single-particle hopping tαβRR′ from states
with composite quantum numbers β at site R′ to states α at R, and an inter-
action Ĥint term composed by purely local many-body interactions Ĥloc(R),
and N is the number of lattice sites.2

The variational principle gives an upper bound to the ground state energy
E0 in terms of the minimization program

E0 ≤ min
ΨG
{〈ΨG|Ĥ|ΨG〉 : 〈ΨG|ΨG〉 = 1}

≡ min
Ψ0,λ
{〈Ψ0|P̂†ĤP̂ |Ψ0〉 : 〈Ψ0|P̂†P̂ |Ψ0〉 = 1} . (6.7)

Thus, we seek to minimize the expectation value 〈ΨG|Ĥ|ΨG〉 with respect to
Ψ0 and λ, under the constraint that ΨG is normalized 〈ΨG|ΨG〉 = 1. Unfor-
tunately, exact evaluation of 〈ΨG|Ĥ|ΨG〉 is in itself a many-body problem
requiring Wick contractions [113] to infinite orders, which can in principle
be performed using variational Monte Carlo [114,115].

6.2 Gutzwiller approximation

To circumvent the many-body problem posed by the expectation value of
ΨG in Eq. (6.7), Gutzwiller proposed an approximation scheme enabling
analytic calculations [97], without explicitly using the limit of infinite di-
mensions. Gutzwiller did actually realize that, even though his analytic ap-
proximation failed in predicting a ferromagnetic ground state in one dimen-
sion, its relevance would improve in two and three dimensions [97]. Metzner
and Vollhardt where later able to prove that Gutzwiller’s approximation
becomes exact in the infinite dimensional limit [29].

In our generalized multi-band formalism this Gutzwiller Approximation

2The slightly unorthodox 1/N scaling of Ĥ simplifies the notation by making subse-

quent kinetic expectation values 〈T̂ 〉 intensive rather than extensive, see Section 2.1.
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takes the form of the constraints [109]

〈Ψ0|P̂†RP̂R|Ψ0〉 = 1 , (6.8)

〈Ψ0|P̂†RP̂Rc
†
αRcβR|Ψ0〉 = 〈Ψ0|c†αRcβR|Ψ0〉 , (6.9)

in combination with the limit of infinite dimensions. We will henceforth
refer to Eqs. (6.8) and (6.9) as GA1 and GA2 respectively. Under these
assumptions analytic expressions for 〈ΨG|Ĥ|ΨG〉 can readily be derived.
As shown in Appendix B, imposing GA1 and GA2, and taking the limit
of infinite dimensions, results in a tremendous cancellation of Gutzwiller
projector contributions to expectation values.

For a general local many-body operator Ô(R) acting on site R, all con-

tractions of Gutzwiller projector pairs P̂†R′P̂R′ acting on other sites R′ 6= R
are zero [Eq. (B.34)] and results in

〈ΨG|Ô(R)|ΨG〉
= 〈Ψ0|

(∏

R′

P̂†R′
)
Ô(R)

(∏

R′′

P̂R′′

)
|Ψ0〉 = 〈Ψ0|P̂†RÔ(R)P̂R|Ψ0〉 . (6.10)

The same results holds for quadratic operators acting on two different
sites R and R′ [Eq. (B.35)] and the remaining operators can be ordered as

〈ΨG|c†RαcR′β |ΨG〉 = 〈Ψ0|[P̂†Rc
†
RαP̂R][P̂†R′cR′βP̂R′ ]|Ψ0〉 . (6.11)

The remaining non-trivial contractions in Eq. (6.11) can be absorbed
in a renormalization matrix R, see Eq. (B.40), giving non-local quadratic
expectation values on the form

〈Ψ0|[P̂†Rc
†
RαP̂R][P̂†R′cR′βP̂R′ ]|Ψ0〉

=
∑

γδ

Rγα(R)〈Ψ0|c†RγcR′δ|Ψ0〉R†βδ(R′) , (6.12)

where R can be obtained [Eq. (B.44)] from purely local expectation values
through

〈Ψ0|P̂†Rc
†
RβP̂RcRα|Ψ0〉 =

∑

γ

Rγβ(R)〈Ψ0|c†RγcRα|Ψ0〉 . (6.13)

Now, as every contribution to the kinetic energy T̂ in Eq. (6.6) will be
affected by R, it is convenient to define the renormalized kinetic operator
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[Eq. (B.42)]

T̂ G(R) =
1

N
∑

RR′

∑

αβ

t̃αβRR′(R)c†RαcR′β , (6.14)

where R is absorbed in the renormalized hopping [Eq. (B.43)]

t̃αβRR′ =
∑

γδ

Rαγ(R)tγδRR′R
†
δβ(R′) . (6.15)

Thus applying the Gutzwiller approximation in terms of Eqs. (6.10) –
(6.15) on the total energy expectation value 〈ΨG|Ĥ|ΨG〉 gives the energy
expression

E = 〈Ψ0|T̂ G(R)|Ψ0〉+ 〈Ψ0|P̂†RĤloc(R)P̂R|Ψ0〉 , (6.16)

where we have dropped the sum over all sites in the local interaction energy
by assuming translational invariance. The variational problem of Eq. (6.7)
can then, in the Gutzwiller approximation, be stated as the minimization of
E in Eq. (6.16)

min
λ,Ψ0

{E [λ,Ψ0] : 〈Ψ0|Ψ0〉 = 1, 〈Ψ0|P̂†RP̂R|Ψ0〉 = 1,

〈Ψ0|P̂†RP̂Rc
†
αRcβR|Ψ0〉 = 〈Ψ0|c†αRcβR|Ψ0〉} , (6.17)

under the constraints GA1, GA2, and Ψ0 normalization. In this formulation
the mathematically most involved inter-dependency is hidden in the renor-
malization matrix R, that enters into the kinetic energy through Eqs. (6.14)
and (6.15). The renormalization matrix R in itself is a function of both Ψ0

and P̂R by virtue of Eq. (6.13), R = R(Ψ0, P̂R).
In the following sections we will systematically rewrite and reduce the

variational problem of Eq. (6.17). For multi-orbital models there is much
to gain from a formulation that lends itself to an efficient numerical imple-
mentation.

6.3 Mixed basis representation

Our first step in reducing the variational problem is to pass over to the
mixed basis representation introduced by Lanatà et al. [110]. Through this
change of variables in the variational problem we are going to decouple all
local expectation values from the Slater determinant Ψ0.
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We begin by exploiting that the variational problem is invariant under
local unitary transformations of the single-particle operators c†Rα. This free-

dom can be gauged away by introducing a set of natural basis operators d†Rα
for the Slater determinant Ψ0. The operators d†Rα are uniquely defined (up

to a phase) as the unitary transform U of c†Rα

d†Rα =
∑

β

Uαβc†Rβ , (6.18)

that diagonalize the local single-particle density matrix of the Slater deter-
minant Ψ0

〈Ψ0|d†RαdRβ |Ψ0〉 = δαβn
0
α , (6.19)

whose diagonal components will be denoted by n0
α. Expressing the renor-

malization matrix R in this basis cancels the sum in its original defining
expression Eq. (6.13) and gives the simplified relation

〈Ψ0|P̂†Rc
†
RβP̂RdRα|Ψ0〉 = Rαβ(R)〈Ψ0|d†RαdRα|Ψ0〉 . (6.20)

Along the same line it is also possible to rewrite the constraints in the
Gutzwiller variational problem Eq. (6.17) in terms of dRα.

To proceed with the derivation of the mixed basis representation we are
going to take a slightly different route from the original derivation [110], and
use the exponential form for the local many-body density matrix ρ̂0 of Ψ0

to arrive at the necessary equations. Formally, the local many-body density
matrix ρ̂0 at site R is defined as the partial trace of the full many-body
density matrix |Ψ0〉〈Ψ0| over all other sites,3

ρ̂0(R) = TrR′ 6=R[|Ψ0〉〈Ψ0|] . (6.21)

However, the reduced many-body density matrix ρ̂0 of a Slater determinant
is as a matter of fact completely determined by its corresponding single-
particle density matrix. In the natural basis, where the local single-particle
density matrix is diagonal [Eq. (6.19)], ρ̂0 is directly given by the exponential
operator [116]

ρ̂0(R) =
1

Z e
−∑α εαd

†
RαdRα , (6.22)

where the normalization factor Z and εα are determined by the local density
matrix n0

α(R)

Z−1 =
∏

α

(1− n0
α) , εα = ln

(
1− n0

α

n0
α

)
. (6.23)

3I.e. tracing out the many-body states of the rest of the system in a proper Schmidt
decomposition of |Ψ0〉〈Ψ0| [116].
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This definition shows that ρ̂0 is also diagonal, when expressed in the many-
body occupation number basis |η〉 of the natural basis operators d†α. Fur-
thermore all density matrices are by definition positive semi-definite. These
two properties of ρ̂0 make it possible to directly perform a Cholesky factor-
ization

ρ̂0(R) = φ0φ
†
0 , where φ0 =

1√
Z
e−

1
2

∑
α εαd

†
RαdRα . (6.24)

The exponential form of Eq. (6.24) also makes it possible to derive the
commutation relations between φ0 and d†α, dα

dRαφ0 = e−
εα
2 φ0 dRα =

√
n0
α

1− n0
α

φ0 dRα, d†Rαφ0 =

√
1− n0

α

n0
α

φ0 d
†
Rα ,

(6.25)

where φ†0 = φ0 was used to obtain the last relation.
It is of course also possible to write φ0 as

φ0 =
∑

η

φ0,η|η,R〉〈η,R| , (6.26)

using projectors in the many-body occupation number basis |η,R〉 of the
natural basis

|η,R〉 =
∏

α∈η
d†Rα|0,R〉 . (6.27)

The coefficients φ0,η do of course only depend on n0
α and are given by

φ0,η =
∏

α

(
√

1− n0
α)1−nα(η)(

√
n0
α)nα(η) , (6.28)

where nα(η) = 〈η|d†αdα|η〉.
The question that now arises is of course whether we also can write

down the Cholesky factorization of the local many-body density matrix ρ̂ of
the Gutzwiller wave-function ΨG. This proves to actually be quite straight
forward. Equipped with φ0 and the Gutzwiller Approximation we obtain

ρ̂(R) = TrR′ 6=R[|ΨG〉〈ΨG|] =

P̂RTrR′ 6=R[|Ψ0〉〈Ψ0|]P̂†R = P̂Rφ0φ
†
0P̂†R = φφ† , (6.29)

where we have identified φ = P̂Rφ0 as the corresponding Cholesky factor-
ization of the local many-body Gutzwiller density matrix ρ̂ = φφ†.
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Let us now investigate the object φ in detail. As stressed in [110] the
operator φ is expressed in a “mixed basis”, in the sense that it is a combina-
tion of P̂R written in terms of c†Rα [Eqs. (6.4) and (6.5)] and φ0 expressed

in d†Rα [Eq. (6.24)]. This is even more clear if we use the explicit expression

in Eq. (6.4) for P̂R in terms of the configuration weights λ and Eq. (6.26)
for φ0. We then obtain φ as

φ ≡ P̂Rφ0 =
∑

Γη

φΓη|Γ,R〉〈η,R| , (6.30)

where φΓη =
∑

Γ′ λΓΓ′φ0,η〈Γ′,R|η,R〉.
The beauty of writing it like this is that, as we are at the liberty of

choosing our variational parameters, we can now decide to work with φ
instead of λ. By making this choice we eliminate the gauge freedom of
unitary transforms of the Slater determinant single-particle density matrix,
and on top of that φ fully determines the local density matrix ρ̂ of ΨG.

These merits can better be seen by rewriting the variational program of
Eq. (6.17) in terms of φ and Ψ0. To accomplish this we need to write all

expectation values containing P̂R in Eq. (6.17) as traces of φ. The following
derivation follows the ideas of Lanatà [110, 117], but extends its validity to
the limits n0

α = 0, and 1, by using the operator form of φ0 in Eq. (6.24).
Starting with the left-hand side of the GA1 normalization constraint of

Eq. (6.8) we get

〈Ψ0|P̂†RP̂R|Ψ0〉 = Tr[P̂R|Ψ0〉〈Ψ0|P̂†R] = Tr[φφ†] , (6.31)

by using the trace invariance under cyclic permutations. In the natural basis
the left-hand side of the GA2 density constraint [Eq. (6.9)] takes the form

〈Ψ0|P̂†RP̂Rd
†
αRdβR|Ψ0〉

= Tr[φ0φ
†
0P̂†RP̂Rd

†
αRdβR] =

√
n0
β(1− n0

α)
√
n0
α(1− n0

β)
Tr[φ†φd†αRdβR] , (6.32)

where we have used the commutation relations in Eq. (6.25) in the last step.
Now performing the same steps in the right-hand side of Eq. (6.9) gives

〈Ψ0|d†αRdβR|Ψ0〉 = Tr[φ0φ
†
0d
†
αRdβR] =

√
n0
β(1− n0

α)
√
n0
α(1− n0

β)
Tr[φ†0φ0d

†
αRdβR] .

(6.33)
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Combining the left and right hand sides [Eqs. (6.32) and (6.33)] the square-
root prefactors cancels, giving the density constraint as

Tr[φ†φd†αRdβR] = Tr[φ†0φ0d
†
αRdβR] . (6.34)

Note that since φ0 is diagonal and real we have φ0 = φ†0 and can without
ambiguity still use the Slater determinant density matrix on the right-hand
side

Tr[φ†0φ0d
†
αRdβR] = Tr[φ0φ

†
0d
†
αRdβR] = 〈Ψ0|d†αRdβR|Ψ0〉 . (6.35)

We must also rewrite the expression for the renormalization matrix R in
Eq. (6.13). The left-hand side written in terms of φ and the natural basis
becomes

〈Ψ0|P̂†Rc
†
RβP̂RdRα|Ψ0〉

= Tr[φ0φ
†
0P̂†Rc

†
RβP̂RdRα] =

√
n0
α

1− n0
α

Tr[φ†c†RβφdRα] , (6.36)

and the left-hand side is simplified by the diagonal natural basis single-
particle density matrix [Eqs. (6.19), (6.13) and (6.20)]

∑

γ

Rγβ〈Ψ0|d†γRdαR|Ψ0〉 = Rαβ n0
α . (6.37)

Combining left and right-hand sides gives

Tr[φ†c†RβφdRα] =
√
n0
α(1− n0

α)Rαβ , (6.38)

a much simplified expression compared to the original Eq. (6.13). Interest-
ingly, the equation for the renormalization-matrix R can be rewritten even
more symmetrically in terms of φ0 by noting that

n0
α = Tr[φ0φ

†
0d
†
RαdRα] =

√
n0
α

1− n0
α

Tr[φ†0d
†
Rαφ0dRα] . (6.39)

Thus the renormalization matrix R is the ratio of the traces

Tr[φ†c†RβφdRα] = RαβTr[φ†0d
†
Rαφ0dRα] , (6.40)

only differing in the operator (c† or d†) that is sandwiched between φ and
φ0.
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The last term requiring our attention is the expectation value of the local
interaction Hamiltonian Ĥloc(R) in Eq. (6.16). As any expectation value of
a local operator is the trace of the product of the operator and the local
density matrix ρ̂ we get

〈Ψ0|P̂†RĤloc(R)P̂R|Ψ0〉 = Tr[Ĥlocρ̂(R)] = Tr[Ĥlocφφ
†] . (6.41)

By now we have expressed all parts of the original variational problem
[Eq. (6.17)] in terms of Ψ0 and φ, and can write down the corresponding
minimization problem

min
φ,Ψ0

{E [φ,Ψ0] = 〈Ψ0|T̂ G[R]|Ψ0〉+ Tr[Ĥlocφφ
†] :

〈Ψ0|Ψ0〉 = 1, 〈Ψ0|d†αRdβR|Ψ0〉 = 0, α 6= β,

Tr[φφ†] = 1, Tr[φ†φd†αRdβR] = 〈Ψ0|d†αRdβR|Ψ0〉} , (6.42)

where Tr[φ†c†RβφdRα] =
√
n0
α(1− n0

α)Rαβ and 〈Ψ0|d†αRdαR|Ψ0〉 = n0
α.

So what are the merits of the mixed basis variational problem formula-
tion in Eq. (6.42)? The diagonal constraint on the Ψ0 single-particle density
matrix causes φ to automatically absorb the freedom of unitary transforms
of fermion operators, and the expression for the renormalization-matrix R
[Eq. (6.38)], is now a single equation instead of a matrix problem. Another
seemingly trivial point, that will become very important, is that the inter-
action energy contribution to the total energy E no longer depends on Ψ0,
due to Eq. (6.41). This is the first step towards obtaining a fully separated
problem where Ψ0 and φ can be optimized independently. The final step is
the subject of Section 6.6.

6.4 Wave-function symmetries

In terms of the new parametrization of the Gutzwiller wave-function ΨG

using the Slater determinant Ψ0 and the local many-body density matrix
factorization ρ̂ = φφ† it is not directly evident how wave-function symme-
tries apply to φ.

Let Ô(R) be a local operator under which the Gutzwiller wave-function is

invariant Ô(R)|ΨG〉 = |ΨG〉. This is true if the local projector P̂R commutes

with Ô(R)

[P̂R, Ô(R)] = 0 , (6.43)
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and if the Slater determinant wave-function also is invariant with respect
to Ô(R), i.e. Ô(R)|Ψ0〉 = |Ψ0〉. Locally this is equivalent to that the local
many-body density matrix ρ̂0 of Ψ0 commutes with Ô(R)

[ρ̂0, Ô(R)] = 0 . (6.44)

The commutation relation directly implies that any integer power α of ρ̂0

fulfill the same commutation relation. Non-integer powers α > 0 can be
directly defined in terms of their Taylor expansions in integer powers. Thus,
also the square root of ρ̂0 = φ0φ0 commute with the operator

[φ0, Ô(R)] = 0 . (6.45)

Now as the factorization of ρ̂ = φφ† is by Eq. (6.29) given as φ = P̂Rφ0,
also φ commutes with the invariant operator

[φ, Ô(R)] = 0 . (6.46)

In the case of finite symmetry groups, like the lattice point group G its
transform law of the single particle states

g−1ψRmσ(r)g =
∑

m′

D(l)
mm′(g)ψRm′σ(r) , (6.47)

with g ∈ G, defines an unitary operator representation ĝ of g in the local
occupation number Fock-space

ĝ =
∑
DΓΓ′(g)|Γ〉〈Γ′| . (6.48)

If the Gutzwiller wave-function is invariant with respect to the group

ĝ|ΨG〉 = |ΨG〉 ,∀g ∈ G , (6.49)

then by the same argument as for the general operator Ô(R) the factoriza-
tion φ of ρ̂ must commute with the group elements

[φ, ĝ] = 0 ,∀g ∈ G . (6.50)

How to exploit point group symmetries are further discussed in Chapter 7.
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6.5 Entanglement entropy

Having direct access to the local many-body density matrix ρ̂ through the φ
operator ρ̂ = φφ†, do not only enables the calculation of expectation values
of arbitrary local operators by a trace expression as in Eq. (6.41). Another
useful quantity is the local entanglement entropy SE [118] defined as

SE = Tr[ρ̂ log ρ̂] . (6.51)

The entanglement entropy is a measure on the entanglement between a
subset of a system with the rest. Here the subset is the local many-body
space on a lattice site, while the rest of the system is the entire lattice with
one lattice point removed.

The extreme limits of SE is obtained from the non-interacting system
at half-filling. In this limit all local many-body states are occupied with
equal probability and SE simplifies to the logarithm of the size of the local
Fock-space NΓ

SE = logNΓ . (6.52)

In the atomic limit with no hopping SE simply counts the degeneracy d of
the atomic ground state and gives

SE = log d . (6.53)

The entanglement entropy is also sensitive to phase transitions [118] and is
a relevant “observable” for mapping out phase diagrams. Papers V and VI
employ the entanglement entropy for exactly this purpose.

Apart from being an interesting property to measure, the entanglement
entropy has recently been used to extend the Gutzwiller method to finite
temperatures [119]. This is a very interesting development, and a multi-band
generalization of these ideas certainly deserves attention.

6.6 Vector-space representation

The variational parameter φ can practically be represented in terms of the
coefficient matrix φΓη defined in Eq. (6.30), having the dimension of the
local Fock-space squared. However, the number of independent coefficients
can be vastly reduced by explicitly taking into account the symmetries of the
Gutzwiller wave-function. How to practically do this is discussed in Section
6.4, Chapter 7, and Paper III.
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For our present purpose it suffices to note that a symmetry analysis
yields a set of basis-matrices φi that are orthonormal in the trace

Tr[φiφ
†
j ] = δij , (6.54)

and that the most general φ obeying these symmetries can be written as a
linear combination of the φi matrices

φ =
∑

i

ciφi , (6.55)

using a set of complex coefficients ci. Thus we can replace the matrix-
coefficients φΓη with a coefficient vector |c〉, and effectively express the local
configuration in a well defined vector-space.

To pass from traces over φ in Eq. (6.42) to expressions in terms of the
coefficient vector |c〉 we define the matrices

Uij = Tr[Ĥlocφjφ
†
i ] , Mαβ

ij = Tr[φ†i c
†
βφjdα] , Nαβ

ij = Tr[φ†iφjd
†
αdβ ] ,

(6.56)

that act as operators on |c〉. In this formulation the φ trace expressions are
replaced with the |c〉 expectation values

Tr[Ĥlocφφ
†] = 〈c|U|c〉 ,

Tr[φ†c†βφdα] = 〈c|Mαβ |c〉 ,
Tr[φ†φd†αdβ ] = 〈c|Nαβ |c〉 . (6.57)

The minimization problem of Eq. (6.42) expressed in terms of |c〉 takes the
form

min
c,Ψ0

{E(c,Ψ0) = 〈Ψ0|T̂ G(R)|Ψ0〉+ 〈c|U|c〉 :

〈Ψ0|Ψ0〉 = 1, 〈Ψ0|d†αdβ |Ψ0〉 = 0, α 6= β,

〈c|c〉 = 1, 〈c|Nαβ |c〉 = 〈Ψ0|d†αdβ |Ψ0〉} , (6.58)

where the renormalization matrix R is given by

〈c|Mαβ |c〉 =
√
n0
α(1− n0

α)Rαβ , n0
α = 〈Ψ0|d†αdα|Ψ0〉 . (6.59)

Taking a closer look at the minimization problem in Eq. (6.58) we see that
every |c〉 dependency is quadratic, similar to all persisting explicit Ψ0 de-
pendencies. The only remaining non-quadratic terms now stems from the
renormalization matrix R in the kinetic term T̂ G(R) ∝ R2, where R in turn
depends quadratically on |c〉, and on Ψ0, through the square root expression
of the local density matrix n0 due to Eq. (6.59).
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6.7 Program separation

Looking at Eqs. (6.58) and (6.59) one realizes that the bothersome direct
connection between Ψ0 and φ through R and n0 actually can be exploited.
The connection can be made implicit by promoting R and n0 to free pa-
rameters, and using Eq. (6.59) as a constraint instead of a direct relation.
This procedure gives the extended minimization problem

min
Ψ0,c,R,n0

{E(Ψ0, c,R, n0) = 〈Ψ0|T̂ G(R)|Ψ0〉+ 〈c|U|c〉 :

〈Ψ0|Ψ0〉 = 1, 〈Ψ0|d†αdβ |Ψ0〉 = δαβn
0
α,

〈c|c〉 = 1, 〈c|Nαβ |c〉 = δαβn
0
α,

〈c|Mαβ |c〉 =
√
n0
α(1− n0

α)Rαβ} . (6.60)

At first sight it might seem like the problem only has been complicated, but
promoting R and n0 to free parameters makes the minimization separable
in Ψ0 and |c〉. In fact, we can directly write Eq. (6.60) in two steps, as an
outer minimization with respect to R and n0

min
R,n0
{EΨ0(R, n0) + Ec(R, n0)} . (6.61)

of the minimal kinetic energy

EΨ0(R, n0) = min
Ψ0

{〈Ψ0|T̂ G(R)|Ψ0〉 : 〈Ψ0|Ψ0〉 = 1,

〈Ψ0|d†αdβ |Ψ0〉 = δαβn
0
α} , (6.62)

and the minimal interaction energy

Ec(R, n0) = min
c
{〈c|U|c〉 : 〈c|c〉 = 1,

〈c|Mαβ |c〉 =
√
n0
α(1− n0

α)Rαβ , 〈c|Nαβ |c〉 = δαβn
0
α} , (6.63)

at fixed R and n0. The result is two separate inner minimizations in Ψ0 and
|c〉 [Eqs. (6.62) and (6.63)]. Both these minimization problems are Quadratic
Constrained Quadratic Programs (QCQPs), as all target functions and con-
straints are quadratic forms.

In general QCQPs are non-deterministic polynomial-time hard (i.e. NP-
hard), but when the operators are positive semi-definite they become convex
problems. Thus, even though finding the global solution is hard in general,
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local minima can be computed in a straight forward manner using for ex-
ample Sequential Least SQuares Programming (SLSQP) [120]. The SLSQP
method uses the gradients of both the target and constraint functions, which
for a QCQP is a cheap matrix vector multiplication.

We have performed exploratory tests of solving the separated minimiza-
tion of Eq. (6.61) using the bounded Simplex Algorithm, applying SLSQP
for the |c〉 minimization, with promising results. However this approach is
computationally much more costly than the Lagrange based approach that
is the subject of next section.

6.8 Lagrange formulation

The alternative to direct minimization of Eqs. (6.62) and (6.63) is to use the
Lagrange multiplier method to find stationary feasible points of the energies
EΨ0

and Ec. The Slater determinant problem Eq. (6.62) has the associated
Lagrange function

LΨ0(Ψ0, EΨ0 , λ
(Ψ0)) = 〈Ψ0|T̂ G(R)|Ψ0〉+ EΨ0(1− 〈Ψ0|Ψ0〉)

+
1

2

∑

αβ

[
λ

(Ψ0)
αβ (〈Ψ0|d†αdβ |Ψ0〉 − δαβn0

α) + c.c.
]
, (6.64)

where every constraint enters multiplied by one of the Lagrange multipliers
EΨ0

and λ(Ψ0). In writing down the density constraint we have used the
relations for complex constraints and Lagrange multipliers discussed in Ap-
pendix C. A necessary and sufficient condition for feasible stationary points
of EΨ0 is that the associated Lagrange function LΨ0 is stationary ∇LΨ0 = 0
(in all variables Ψ0, EΨ0

and λ(Ψ0)). In principle it is possible to solve for
stationarity directly.

Calculating the explicit partial derivatives with respect to the Lagrange
multipliers EΨ0 and λ(Ψ0) reproduces the constraints of Eq. (6.62)

∂LΨ0

∂EΨ0

= 1− 〈Ψ0|Ψ0〉 = 0 , (6.65)

2
∂LΨ0

∂λ
(Ψ0)
αβ

= 〈Ψ0|d†αdβ |Ψ0〉 − δαβn0
α = 0 . (6.66)

The partial derivative with respect to 〈Ψ0| is more intriguing

∂LΨ0

∂〈Ψ0|
=


T̂ G(R) +

1

2

∑

αβ

(
λ

(Ψ0)
αβ d†αdβ + h.c.

)
− EΨ0


 |Ψ0〉 = 0 , (6.67)
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as it takes the form of an eigenstate problem in |Ψ0〉. The ground state
gives the minimal constrained kinetic energy, so Ψ0 is uniquely determined
by λ(Ψ0) through Eq. (6.67), Ψ0 = Ψ0(λ(Ψ0)). This allows us to replace
the stationarity problem ∇LΨ0(Ψ0;EΨ0 , λ

(Ψ0)) = 0 with the root problem
R(λ(Ψ0)) = 0, where the function R(λ(Ψ0)) incorporates the steps:

i) Given λ(Ψ0), compute the ground state eigenvector Ψ0 of Eq. (6.67).

ii) Normalize Ψ0 as to fulfill the normalization constraint of Eq. (6.65).

iii) Use Ψ0 to evaluate the only remaining constraint (Eq. (6.66)) and
return the result.

Finding the root of R(λ(Ψ0)) = 0 now gives a solution of the higher di-
mensional problem ∇LΨ0(Ψ0;EΨ0 , λ

(Ψ0)) = 0. The great benefit of this
embedding of Eqs. (6.65) and (6.67) in R(λ(Ψ0)) is the reduction in dimen-
sionality of the root problem that in the end has to be solved using a Newton
based numerical method.

Applying the same procedure to the minimization problem with respect
to |c〉 in Eq. (6.63) gives the associated Lagrange function

Lc(c;Ec, λ(c),Λ) = 〈c|U|c〉+ Ec(1− 〈c|c〉)

+
1

2

∑

αβ

[
λ

(c)
αβ(〈c|Nαβ |c〉 − δαβn0

α) + c.c
]

+
1

2

∑

αβ

[
Λαβ(〈c|Mαβ |c〉 −

√
n0
α(1− n0

α)Rαβ) + c.c
]
, (6.68)

where we, apart from the normalization and density constraints, have in-
troduced extra Lagrange multipliers Λ to fulfill the constraint on |c〉 with
respect to the renormalization matrix R. We also here seek to solve for
stationary points to the Lagrange function ∇Lc = 0. The Lagrange multi-
plier partial derivatives again reproduce the constraints of the minimization
problem [Eq. (6.63)]

∂Lc
∂Ec

= 1− 〈c|c〉 = 0 , (6.69)

2
∂Lc
∂λ

(c)
αβ

= 〈c|Nαβ |c〉 − δαβn0
α = 0 , (6.70)

2
∂Lc
∂Λαβ

= 〈c|Mαβ |c〉 −
√
n0
α(1− n0

α)Rαβ = 0 . (6.71)
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The partial derivative with respect to 〈c| also takes the form of the eigenstate
problem

∂Lc
∂〈c| =


U +

1

2

∑

αβ

(
λ

(c)
αβNαβ + ΛαβMαβ + h.c.

)
− Ec


 |c〉 = 0 , (6.72)

where λ(c) and Λ enters as “single-particle” potentials. In analogue with the
Slater determinant Ψ0 case, the ground state |c〉 of Eq. (6.72) is completely
determined by the Lagrange multipliers λ(c) and Λ, |c〉 = |c(λ(c),Λ)〉. Thus
the stationarity problem in Lc can be replaced by a reduced root problem,
along the same lines as outlined for Ψ0.

The previous treatments of the Ψ0 and |c〉 optimizations where performed
under the assumption of fixed n0 and R. However, this is not necessary and
we are now going to lift this limitation and reformulate also the minimization
with respect to n0 and R for fixed total density N . To this end we look
for stationary solutions to the associated Lagrange function L of the full
problem in Eq. (6.60)

L(Ψ0, c;R, n0;EΨ0 , Ec;λ
(Ψ0), λ(c),Λ;µ)

= LΨ0
(Ψ0;EΨ0

, λ(Ψ0)) + Lc(c;Ec, λ(c),Λ) + µ

(∑

α

n0
α −N

)
, (6.73)

where L is simply the combination of LΨ0
, Lc and the Lagrange multiplier

term for the total density constraint. The promotion of n0 and R to free
variables and the introduction of the chemical potential µ now gives the
extra partial derivatives

∂L
∂µ

=
∑

α

n0
α −N = 0 , (6.74)

∂L
∂Rαβ

= 〈Ψ0|
∂T̂ G(R)

∂Rαβ
|Ψ0〉+

1

2

√
n0
α(1− n0

α)Λαβ = 0 , (6.75)

− ∂L
∂n0

α

=
1

2

1− 2n0
α√

n0
α(1− n0

α)

1

2

∑

β

(ΛαβRαβ + c.c.) + λ(Ψ0)
αα + λ(c)

αα − µ = 0 ,

(6.76)

while the other partial derivatives of L still are given by Eqs. (6.65), (6.66),
(6.67), (6.69), (6.70), (6.71) and (6.72).
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We can of course still benefit from the mappings λ(Ψ0) → Ψ0 and
(λ(c),Λ) → |c〉 by constructing a root function R in a reduced set of vari-
ables. Just as was done in the separated minimization for EΨ0 and Ec. Let

R(R, λ(Ψ0), λ
(c)
α6=β , µ) and take the steps

i) Given R and λ(Ψ0), compute the ground state eigenvector Ψ0 of Eq.
(6.67).

ii) Use Ψ0 and the diagonal part of Eq. (6.66) to calculate the density
matrix in the natural basis n0

α = 〈Ψ0|d†αdα|Ψ0〉.

iii) Use R, Ψ0, and n0 to compute Λ using Eq. (6.75).

iv) Use R, n0, λ(Ψ0), µ, and Λ to compute λ
(c)
αα through Eq. (6.76).

v) Use the now complete λ(c) and Λ to compute |c〉 as the ground state
of Eq. (6.72).

vi) With all parameters known, evaluate the left hand side of all Lagrange
partial derivative equations [Eqs. (6.66), (6.70), (6.71) and (6.74)] that
have not previously been used

〈Ψ0|d†αdβ |Ψ0〉 = 0 , for α 6= β ,

〈c|Nαβ |c〉 − δαβn0
α = 0 ,

〈c|Mαβ |c〉 −
√
n0
α(1− n0

α)Rαβ = 0 ,
∑

α

n0
α −N = 0 ,

and return the result.

Thus solving for R(R, λ(Ψ0), λ
(c)
α 6=β , µ) = 0 ensures that the solution is a

stationary point of the full Lagrange function L.
In most applications in this thesis the Hamiltonians under study have

diagonal single-particle density matrices by construction. This makes the
original basis c†α equal to the Slater determinant natural basis d†α = c†α and
guarantees that

〈Ψ0|c†αcβ |Ψ0〉 = 〈Ψ0|d†αdβ |Ψ0〉 . (6.77)

In this case there is no need for off-diagonal Lagrange multipliers to impose
diagonality of the single-particle density matrices, and it is enough to work

only with λ
(Ψ0)
αα and λ

(c)
αα.
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Chapter 7

Point Group Symmetry

This chapter describes how lattice point group symmetries can be incorpo-
rated in local many-body operators. The basis of symmetric operators is
considerably reduced compared to the most general basis, and the reduction
has been essential for making Gutzwiller calculations for d-electron mod-
els computationally feasible. As the theory of finite groups is text-book
material, theorems and lemmas are simply stated, omitting proofs. The in-
terested reader is encouraged to indulge in Refs. [41] and [121], which have
inspired this summary.

The discussion is organized as follows; Section 7.1 briefly introduces fi-
nite groups, irreducible representations, and the Schur lemma. The concept
of character vectors and Dirac characters are developed in Section 7.2 and
used to analyze the irreducible content of a general representation. The
great orthogonality theorem1 is also presented and used to find the block-
ing transform of a representation. The general discussion on group theory is
closed by Section 7.3, where we develop a general scheme for constructing all
irreducible representations of a group from any faithful representation. Sec-
tion 7.4 introduces proper lattice point groups and the two explicit examples
of the cubic and tetragonal point groups. The angular momentum repre-
sentation is presented in Section 7.5, and used in Section 7.6 to construct a
basis for point group invariant many-body operators.

1One of the most versatile tools in the group theory toolbox.
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7.1 Finite groups

Consider a general finite group G with group elements g. Every homomor-
phic mapping of g to non-singular matrices R(g) with dimensions d × d is
then a d dimensional representation R(G) of G. For finite groups the repre-
sentation can be chosen to be unitary without any loss of generality, as this
merely corresponds to the choice of an orthogonal basis [41]. Two represen-
tations R(g) and R′(g) are said to be equivalent R ≈ R′, if they are related
by an unitary transform U

R′(g) = U†R(g)U , ∀g ∈ G . (7.1)

A representation R is said to be reducible if it can be block-diagonalized

U†R(g)U =




R(1)(g) 0 . . . 0

0 R(2)(g)
. . .

...
...

. . .
. . . 0

0 . . . 0 R(n)(g)



, ∀g ∈ G , (7.2)

by an unitary transform U , which we will write in shorthand as

U†R(g)U =

n⊕

i=1

R(i)(g) . (7.3)

Conversely, if a representation R is not reducible by any unitary transform
then it is irreducible. Thus, a reducible representation R can always be
block-diagonalized in blocks of irreducible representations R(i) as indicated
in Eq. (7.2).

The special properties of the block-diagonal form is described by the
Schur lemma [41]. Let R be a reducible representation that can be brought
to block-diagonal form with n irreducible representations R(i) each one re-
peated ri times, i.e. R can be written as

U†R(g)U =

n⊕

i=1

(
ri⊕

r=1

R(i)(g)

)
. (7.4)

The Schur lemma now states that the most general matrix B that commutes
with all group elements [B,R(g)] = 0, ∀g ∈ G, has the form

U†B U =
n⊕

i=1

(
b(i) ⊗ 1di

)
, (7.5)
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where di is the dimension of R(i), 1di is the di-dimensional identity matrix,
b(i) are matrices with arbitrary coefficients and dimension ri × ri, and the
Kronecker product gives

b(i) ⊗ 1di =




b
(i)
11 1di . . . b

(i)
1ri

1di
...

. . .
...

b
(i)
ri1

1di . . . b
(i)
riri1di


 . (7.6)

Thus, the number of independent parameters nb =
∑n
i=1 r

2
i in b(i), produc-

ing matrices B invariant under R(G) is considerably lower than the total

number of elements NB = (
∑n
i=1 diri)

2
in B.

The space of matrices B is isomorphic to the vector space of coefficients
cη with respect to a set of basis matrices Bη

B =
∑

η

cηBη , (7.7)

where Bη can be directly constructed from the general invariant expression
in Eq. (7.5) by letting b(i) have only one non-zero coefficient

U†Bη U ≡ U†B(j)(rr′)U =

ni⊕

i=1

(
b
(ij)
rr′ ⊗ 1di

)
, (7.8)

where η is an enumeration of all possible elements in b(i), η = (j, rr′), and

b
(ij)
rr′ = 1√

di
δij ê

(ri)
r · (ê(ri)

r′ )T . Here ê
(ri)
r is the ri dimensional unit vector

pointing in dimension r, and ê
(ri)
r · (ê(ri)

r′ )T is a ri × ri matrix with the
element in row r and column r′ equal to one and zero everywhere else.

By this choice the basis matrices Bη are orthonormal with respect to the
trace

Tr[B†ηBξ ] = δηξ , (7.9)

and the coefficients cη of a general matrix are given by

cη = Tr[B†ηB] . (7.10)

Thus, imposing invariance of a matrix with respect to a representation
of a finite group G, amounts to finding the unitary transform U and using
the Schur lemma. However, determining U is non-trivial.
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7.2 Character vectors and Dirac characters

There are more than one way to find the blocking transform of a repre-
sentation. Here we will present a method directly based on group theory
considerations.

The irreducible representations R(i) are intimately connected with the
conjugacy classes C of a group G, which are defined as the subsets of elements
g ∈ G related by the conjugacy transform

g1, g2 ∈ C ⇐⇒ ∃g ∈ G : g1 = g−1g2g . (7.11)

The number of classes nc in G is equal to the number of irreducible repre-
sentations n = nc, and there are several class properties that can be used
to determine the decomposition into irreducible representations.

One such class property is the character χ of a representation R, defined
as the trace of R(g)

χ(g) = Tr[R(g)] = χ(C) , g ∈ C , (7.12)

where χ(g) is equal for elements in the same class, due to the invariance of
the trace with respect to a unitary transform.

The character vector χ for all classes in G uniquely determines the ir-
reducible representations contained in a representation R. The occurrence
and number of repetitions ri of an irreducible representation R(i) in R is
given by the vector dot product between the character vectors of the two
representations χ(i) and χ respectively

ri = χ · χ(i) =
1

ng

∑

g∈G
χ(g)χ(i)(g)∗ =

1

nc

∑

C
χ(C)χ(i)(C)∗ . (7.13)

As a consequence, a sufficient and necessary condition for a representation
to be irreducible is that the norm of its character vector is unity

χ(i) · χ(i) =
1

ng

∑

g∈G
|χ(i)(g)|2 =

1

nc

∑

C
|χ(i)(C)|2 = 1 . (7.14)

Thus, the decomposition of a representation R as given in Eq. (7.4) can
unambiguously be determined from its character vector χ, but it does not
give the form of the blocking unitary transform U .

Another property of the classes that gives a partial description of U are
the matrices ΩC , constructed as sums over all elements in each class C

ΩC =
1

ng

∑

g∈G
R†(g)R(g′)R(g) =

1

nc

∑

g∈C
R(g) , g′ ∈ C . (7.15)
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The matrices ΩC are called the Dirac characters of R. By the class rearrange-
ment theorem [121], they commute with all group elements [ΩC , R(g)] = 0,
and among themselves [ΩC ,ΩC′ ] = 0. In other words, the Dirac characters
are the finite group equivalent to the Casimir operators of continuous Lie
groups. Simultaneous diagonalization of all ΩC gives a transform UD that
diagonalizes R in blocks for each irreducible representation R̃(i).

However, UD can not separate repeated irreducible representations R̃(i),
as the eigenvalues of ΩC are the same for every pair of equivalent irreducible
representations R̃(i) = U†R(i) U . Therefore, the particular form of the irre-
ducible representations R̃(i) produced by UD is determined by the applied
diagonalization algorithm, due to the invariance with respect to similarity
transforms of R̃(i).

Fortunately, the great orthogonality theorem can be used to determine
a transformation that separates all repeated irreducible representations and
produces the blocked form in terms of a specific set of known irreducible

representations R(i), as described by Koster in Ref. [122]. The part U (i)
r

of the blocking transform U corresponding to the matrix-block of the rth
repetition of the irreducible representation R(i) in R can be obtained from

1

ng

∑

g∈G
R(g)αβR

(i)(g)γδ = (U (i)
r )∗αδ(U (i)

r )βδ , (7.16)

by finding a fixed pair (α, δ) for which (U (i)
r )αδ 6= 0. This procedure gives

U (i)
r up to a constant factor, fixed by a subsequent normalization. When
R(i) is repeated ri times in R there are ri different pairs (α, δ) that give the

transform U (i)
r for every repetition.

The obtained matrices can be collected into the complete transform ma-
trix

U =
[
U (1)

1 . . . U (1)
r1 U (2)

1 . . . U (n)
rni

]
, (7.17)

that cast R in to the block form of Eq. (7.4)

U†R(g)U =

n⊕

i=1

(
ri⊕

r=1

R(i)(g)

)
. (7.18)

The above procedure is a complete prescription for finding the blocking
transform U of a representation R when a complete set of irreducible repre-
sentations R(i) is known beforehand. Thus, we are left with the problem to
construct all irreducible representations R(i) of the group G.
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7.3 The regular representation

All properties of a finite group are determined by the result of the group
element multiplications

g−1
i gj = gk . (7.19)

described by the group multiplication table. By enumerating all group
elements g1, . . . , gng , the multiplication table can be written as a matrix
with integer entries Mij = k specified by the result of the multiplication in
Eq. (7.19).

The multiplication table M can be constructed from any faithful repre-
sentation Rf that is isomorphic with G, and can in turn be used to construct
a special representation R called the regular representation, containing all
irreducible representations if G. The elements of R(gl) are directly obtained
from M by setting all entries to zero except those corresponding to the
particular element gl, which instead are set to one

R(gl) = δ(Mij − l) . (7.20)

The regular representation R is reducible and contains all irreducible rep-
resentations R(i) repeated the same number of times ri as the dimension di
of the irreducible representation ri = di, i.e.

U†R(g)U =

ni⊕

i=1

(
di⊕

r=1

R(i)(g)

)
. (7.21)

The Dirac characters of R are real and symmetric, and have a real block-
ing transform UD, that gives the blocks of repeated irreducible representa-
tions the particular internal block structure

[
A0 A1

A1 A0

]
,



A0 A1 A2

A2 A0 A1

A1 A2 A0


 ,




A0 A1 A2 A3

A3 A0 A1 A2

A2 A3 A0 A1

A1 A2 A3 A0


 , etc.,

(7.22)
where the block-matrices have dimensions ri × ri, the blocks Ai dimensions
di×di, and every row in the block-matrix is a cyclic shift of the previous row.
It turns out that the block structure can always be put on diagonal form,
and that there is only one corresponding real eigenvector. This eigenvector
is the “unity” vector with a factor one in every element, and it can be used
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to construct the part U (i) of the blocking-transform

U (i) =
1√
di




1
...
1


⊗ 1di , (7.23)

that gives a real representation of the irreducible representation R(i). So
collecting U (i) in

Ũ =

ni⊕

i=1

U (i) , (7.24)

gives the real irreducible representations R(i) of G through

Ũ†U†DR(g)UDŨ =

ni⊕

i=1

R(i)(g) . (7.25)

Combining this scheme with the previous section, any representation R
can be decomposed in irreducible representations R(i), as long as we have
one faithful representation Rf of the group as starting point. The necessary
steps are then:

i) Compute the multiplication table M from Rf .

ii) Construct the regular representation R.

iii) Determine all irreducible representations R(i) from R.

iv) Use the character theorems to determine the irreducible content of R.

v) Block R in irreducible representations using the Dirac characters ΩC .

vi) Use the great orthogonality theorem to fix the representations and to
separate repeated irreducible representations.

7.4 Lattice point groups

Let us now narrow the discussion down to the case of G being a proper lattice
point group, defined as the finite group of proper rotations leaving a periodic
lattice unchanged. The defining representation for G is a sub-group of the
special orthogonal Lie group SO(3), i.e. the group of proper 3×3 real space
rotation matrices. The reason for not considering standard lattice point
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groups, which also includes inversion and improper rotations, is that the
spherical harmonics has an inversion symmetry (with parity (−1)L) [121].

For a given atomic structure there are today algorithms for automatic
symmetry analysis that determine the point group, and returns its repre-
sentation in SO(3). One freely available implementation is the SPGlib li-
brary [123]. For a given point group the representation can also be obtained
from the Atomic Simulation Environment (ASE) [124]. As the SO(3) rep-
resentation of G is faithful, the procedure outlined in the previous section
can be used to determine all irreducible representations. However, it is of
course also possible to refer to standard tables over point groups, e.g. the
Bilbao Crystallographic Server [125].

As an example, the irreducible representations and their character vec-
tors for all classes of the cubic point group O (432) and the tetragonal point
group D4 (422) are shown in Tables 7.1 and 7.2, respectively. Note that
the number of classes and irreducible representations are the same. The di-
mension of each irreducible representation can be directly read of from the
character of the unit element E, which forms a class on its own. The other
classes contain n-fold rotations denoted by NCn, where N is the number of
class elements.

The knowledge of the SO(3) rotation matrix representation and all irre-
ducible representations R(i) can now be combined with the decomposition
scheme in Section 7.2 and the Schur lemma from Section 7.1 to construct
matrices invariant with respect to the point group. More specifically, to
construct all point group invariant operators in the local many-body basis
from the total angular momentum basis. But to accomplish this, we first
need the representation of the point group rotations in angular momentum
space.

However, before treating angular momentum we first consider two alter-
native ways of representing real space rotations. The defining representa-
tion SO(3) gives the group elements g in terms of 3× 3 orthogonal matrices
R(g). An alternative to this is to use a rotation axis ~n and a rotation angle

θ combined in the versor ~θ = θ~n, which gives the SO(3) rotation matrix
representation as [41]

R(g) = e−i
~θ(g)·l , (7.26)

where the components of l = [lx, ly, lz] = [iε1ij , iε2ij , iε3ij ], are the real space
generators of rotations, and εkij is the Levi-Civita tensor. Another useful
form for rotations is the Euler angles α, β, γ, which define a series of three
rotations around specific axes

R(g) = e−iαlze−iβlye−iγlz . (7.27)
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Table 7.1: Character table for the cubic point group O
(432).

Irrep
Class

E 6C4 8C3 6C2 3C2

A1 1 1 1 1 1
A2 1 -1 1 -1 1
E1 2 0 -1 0 2
T1 3 1 0 -1 -1
T2 3 -1 0 1 -1

Table 7.2: Character table for the tetragonal point
group D4 (422).

Irrep
Class

E 2C4 2C2 2C2 1C2

A1 1 1 1 1 1
A2 1 1 -1 -1 1
A3 1 -1 1 -1 1
A4 1 -1 -1 1 1
E1 2 0 0 0 -2
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The representation of the rotations R(g) in some other basis can now be ob-
tained by simply replacing l with the generators of rotation in the particular
space of interest.

7.5 Angular momentum representation

The generators of rotations Li in the angular momentum basis with total
angular momentum L have the same form as their second quantized expres-
sions in Eq. (3.8)

(Lz)MM ′ = MδMM ′ , (7.28)

(L±)MM ′ =
√
L(L+ 1)−M(M ± 1)δM±1,M ′ . (7.29)

Using the versor ~θ(g) of a rotation R(g) the corresponding angular momen-
tum representation D(L) can be obtained by

D(L)(g) = e−i
~θ(g)·L , (7.30)

with L = [Lx, Ly, Lz] and Lx = (L+ +L−)/
√

2 and Ly = (L+−L−)/(
√

2i).
For every L this gives a (2L+1)-dimensional representation D(L) of the point
group G. Instead of resorting to compute matrix exponents to determine
D(L)(g), the Wigner functions give a direct algebraic expression for the
corresponding rotation in terms of the Euler angles

D(L)
MM ′(α, β, γ) = e−iαLze−iβLye−iγLz

= e−i(Mα+M ′γ)e−iβLy = e−i(Mα+M ′γ)d
(L)
MM ′(β) , (7.31)

where the function d
(L)
MM ′ is called Wigner’s formula and has the form [112]

d
(L)
MM ′(β) =

∑

k

√
(L+M ′)!(L−M ′)!(L+M)!(L−M)!

(L+M ′ − k)!k!(L− k −M)!(k −M ′ +M)!

× (−1)k−M
′+M

(
cos

β

2

)2L−2k+M ′−M (
sin

β

2

)2k−M ′+M
, (7.32)

where the sum is taken over all k for which the denominator is positive.
The D(L) representation is readily decomposed in irreducible representations
using the scheme of Section 7.2 giving the blocking transform

U†LD(L)(g)UL =
⊕

i∈L



r
(L)
i⊕

r=1

R(i)(g)


 , (7.33)
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where i is summed over the irreducible representations R(i) contained in

D(L), repeated r
(L)
i times. For the cubic point group O (432) and the

tetragonal point group D4 (422) this produces the decompositions listed
in Tables 7.3 and 7.4, for the relevant total angular momentum states L of
all d-electron many-body states.

Now for every fixed number N of particles we get the complete repre-
sentation of the point group as

D(N)(g) =
⊕

L∈N
D(L)(g) , (7.34)

which is readily decomposed in the irreducible representations R(i) by the
blocking transform UN

U†ND(N)(g)UN =
⊕

i∈N

(
ri⊕

r=1

R(i)(g)

)
. (7.35)

Finally, applying the Schur lemma from Section 7.1 gives a basis for all point
group invariant matrices in the space of N particles as

B(N)
η = UN

[⊕

i∈N

(
b
(ij)
rr′ ⊗ 1di

)]
U†N . (7.36)

The basis matrices B
(N)
η can in turn be used to construct all local point

group invariant many-body operators.

7.6 Invariant many-body operators

The point group invariant local many-body operators for d-electrons can be
expressed directly using the total number N , spin S, angular momentum L,
and seniority ν basis |NSΣLMν〉, defined in Section 3.5. A basis for the
most general spin rotational and angular momentum point group invariant
operator is given by

φk =
1√

2S + 1

∑

Σ

∑

LM,L′M ′

|NSΣLMν〉
(
B(N)
η

)
LM,L′M ′

〈NSΣL′M ′ν′|

(7.37)
where k = (N,S, η, ν, ν′). The spin rotational invariance is ensured by
summing over the diagonal spin components and the point group invariance
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Table 7.3: Decomposition of the angular momentum
L representations D(L) in irreducible representations for
the cubic point group O (432).

L D(L) ≈⊕R(i)

S A1

P T1

D E1 ⊕ T2

F A2 ⊕ T1 ⊕ T2

G A1 ⊕ E1 ⊕ T1 ⊕ T2

H E1 ⊕ 2T1 ⊕ T2

I A1 ⊕ A2 ⊕ E1 ⊕ T1 ⊕ 2T2

Table 7.4: Decomposition of the angular momentum L
representations D(L) in irreducible representations for the
tetragonal point group D4 (422).

L D(L) ≈⊕R(i)

S A1

P A2 ⊕ E1

D A1 ⊕ A3 ⊕ A4 ⊕ E1

F A2 ⊕ A3 ⊕ A4 ⊕ 2E1

G 2A1 ⊕ A2 ⊕ A3 ⊕ A4 ⊕ 2E1

H A1 ⊕ 2A2 ⊕ A3 ⊕ A4 ⊕ 3E1

I 2A1 ⊕ A2 ⊕ 2A3 ⊕ 2A4 ⊕ 3E1
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is imposed by using the invariant matrices B
(N)
η , constructed in the previous

section.
The many-body operators φk now span the space of all angular momen-

tum point group and spin rotationally invariant operators, and can directly
be used to parametrize the φ-operator of the Gutzwiller formalism in terms
of complex coefficients ck

φ =
∑

k

ckφk , (7.38)

as outlined in Section 6.6.
The use of a point group symmetric basis for many-body operators is

essential to reduce the number of free parameters in a Gutzwiller calculation.
As an example the d-electron model has roughly a million of free parameters
(the Fock-space dimension squared) if one does not consider any symmetry,
to be compared to the 873 parameters of a cubic point group symmetric
paramagnetic system. The point group symmetric basis construction was
used in Paper III to enable bench-mark calculations of d-electrons in cubic
crystal fields. The analogous tetragonal construction was later used in Paper
IV for a realistic electron structure calculation of the parent states of the
iron chalcogenide anomalous superconductors.
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Summary of papers

This chapter gives brief summaries of the appended papers and how they
relate to the introductory text of this thesis. The goal is to complement
rather than replace the abstracts of the papers in question.

Paper I – Dynamical mean field theory phase-space extension and
critical properties of the finite temperature Mott transition

The subject of study in Paper I is the finite temperature Mott metal-
insulator transition, in the paramagnetic state of the single-band Hubbard
model, on the infinite dimensional Bethe lattice. The transition bears many
similarities with the Mott transition in Cr-doped V2O3 mentioned in Sec-
tion 1.2, with a first order line ending in a critical end point. This feature
is contained in the paramagnetic state of the Hubbard model as outlined in
Section 2.5, where also the Bethe lattice and the limit of infinite dimensions
where treated.

In the paper we apply Dynamical Mean Field Theory, introduced in
Chapter 4, and the impurity solvers Exact Diagonalization and Iterated
Perturbation Theory, from Chapter 5, to study the critical properties of the
end point. For this purpose we perform an analysis of the DMFT fixpoint
function and its Jacobian, and develop the phase-space extension method
from Section 4.3.3 to map out the DMFT fixpoint solutions. The emerging
picture is that, within DMFT, the critical end point is a cusp catastrophe
in the parameter space in direct analogy to the fourth order Landau model
for first order transitions studied in Section 2.6.

The critical exponents are found to have mean field character with a 1/3
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exponent on the dependence of the double occupancy D on the interaction
U and temperature T , in agreement with previous theoretical studies. The
Maxwell construction is applied to determine the location of the first order
transition, which enables us to explicitly show that the critical exponent
for D along the first order transition line is 1/2, in agreement with the
experimental result for V2O3.

Paper II – Distributional exact diagonalization formalism for quan-
tum impurity models

In Paper II we develop a novel solver for the interacting impurity coupled to
a continuous bath, from Chapter 5. The basic idea is to extend the Exact
Diagonalization formalism, where the continuous bath is approximated with
a single Anderson model with a finite number of bath states, by using a
representable ensemble of finite models to mimic the continuous problem.

The resulting approximation was discussed in Section 5.4, and amounts
to replacing cross-correlations between finite models with internal correla-
tions. This is a non-trivial approximation and the results gives surprisingly
good agreement with high precision methods like NRG, on the real axis,
and CT-QMC on the Matsubara axis. The main advantage of our method
is that it can be directly extended to compute real axis spectral functions
for multi-band problems, currently out of reach for other real axis methods.
Also the cross-correlation approximation is interesting per se and its range
of applicability deserves a systematic study.

Paper III – Efficient implementation of the Gutzwiller variational
method

In Paper III we develop the vector space representation for the Gutzwiller
variational problem presented in Section 6.6, and use it to construct a solver
for arbitrary local interactions. The solver is a first incarnation of the La-
grange method presented in Section 6.8, limited to fixed variational density
n0, requiring an extra outer minimization of the total energy.

Also the general idea for how to incorporate point group symmetries is
presented and a primitive form of the symmetry algorithm treated in Chap-
ter 7 is used to construct the cubic symmetry basis used in the calculations.

The solver is bench marked on a number of standard models by com-
parison with slave-boson and DMFT results, with nearly exact agreement
in the first case and in good agreement in the metallic state for the former.
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Paper IV – Orbital selectivity in Hund’s metals: The iron chalco-
genides

Paper IV is a study of correlation effects in the iron chalcogenide anoma-
lous super conductors FeSe and FeTe, mentioned in Section 1.2. A realistic
low energy model is constructed from a DFT calculation along the lines of
Sections 1.1 and 3.1. The local d-band interaction is modeled using the
Kanamori interaction introduced in Section 3.6, and the low energy model
is then solved using the Gutzwiller solver with a tetragonal symmetric basis
constructed using the method of Chapter 7.

The results show that the Hund’s rule exchange coupling J plays a central
role for driving orbital differentiation in these compounds. At intermediate
Hubbard interaction U a cross over in to a strongly correlated metal occur,
and the rather strongly correlated chalcogenides are classified as Hund’s
correlated metals.

Paper V – Local correlation in the d-band, Slater-Condon vs.
Kanamori

In Paper V we use the parametrization of the full Slater-Condon form of the
d-band Coulomb interaction, in terms of the Kanamori parameters U and
J and the multipole factor 1/γ, discussed in Section 3.8, to compare the
full interaction with the simplified Kanamori form. Special attention is put
on the fillings where the Kanamori model has two accidentally degenerate
ground state multiplets. The degeneracy increases the overall ground state
degeneracy, which in turn modifies the paramagnetic phase diagram.

In the paper we also present the Gutzwiller Lagrange solver in Section
6.8, incorporating also the variational density in the inner Lagrange solver.
Moreover, the general theory of rotational invariant operators from Section
3.3 is discussed and the Kanamori parametrization of the Slater-Condon in-
teraction is derived. We find that a non-zero multipole factor 1/γ pushes the
phase boundary between the Mott insulator and the split-valence insulator
down to lower J/U , enhancing the tendency to form the Hund’s metal for
even lower values of J/U . Our findings show that the full Coulomb inter-
action contain a number of aspects that is not captured by the Kanamori
interaction.
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Paper VI – Valence-skipping and negative-U in the d-band from
repulsive local Coulomb interaction

Paper VI investigates a subtle aspect of the multipole interaction in the full
Slater-Condon form of the Coulomb interaction. A study of the atomic
ground state multiplet energy contributions reveal that for finite 1/γ a
charge disproportionate phase separation occur for a range of J/U . In this
range the d-band occupancy becomes valence-skipping, i.e. dn → dn−1 +
dn+1, but only for the particular multipole active d-band fillings d1, d4, d6,
and d9. The boundaries for the phase separation is derived and the effect
on the paramagnetic metal is investigated.

We find a novel valence-skipping metallic phase in direct contact with
the Hund’s metal, displaying qualitatively different charge fluctuations. The
emergence of valence-skipping is driven by a negative effective U , known
to drive charge order and anomalous superconductivity. The results are
related to experimental observations of valence-skipping in iron d4 and gold
d9 compounds. We also note that the multipole active fillings correlate with
all current known families of anomalous superconductors, the d9 cuprates,
the d4 ruthanates, and the d6 iron pnictide and chalcogenides.
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[117] N. Lanatà, The Gutzwiller variational approach to correlated systems,
PhD thesis, International School for Advanced Studies (SISSA/ISAS),
2009.

[118] L. Amico, R. Fazio, A. Osterloh, and V. Vedral, Rev. Mod. Phys. 80,
517 (2008).

[119] W.-S. Wang et al., Phys. Rev. B 82, 125105 (2010).

[120] D. Kraft, ACM Transactions on Mathematical Software 20, 262
(1994).

[121] M. Lax, Symmetry Principles in Solid State and Molecular Physics
(Dover Publications Inc., 2001).

[122] G. F. Koster, Phys. Rev. 109, 227 (1958).

[123] A. Togo, Spglib, http://spglib.sourceforge.net.

[124] The Atomic Simulation Environment (ASE),
https://wiki.fysik.dtu.dk/ase.

135



BIBLIOGRAPHY

[125] Bilbao crystallographic server, condensed matter physics dept. of the
university of the basque country, http://www.cryst.ehu.es/.

[126] W. Metzner, Z. Phys. B 77, 253 (1989).

136



Acknowledgments

This thesis, although written by the author, is not the product of a
single person. As Newton pointed out, we all stand on the shoulders of
giants, especially in physics. Therefore I would like to mention some people
who have, sometimes unknowingly, carried me on their shoulders during my
years as a Ph.D. student.

First of all I would like to thank my supervisor Prof. Bo Hellsing for
believing in me; your continuous support and encouragement has been in-
valuable. My two closest collaborators have also been very important, my
assistant supervisor Prof. Mats Granath; thank you for your patience with
all my confused questions, and Nicola Lanatà; your energy and drive is truly
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Appendix A

dN multiplets

The d-electron Slater-Condon multiplets for all fillings are listed in Ta-
bles A.1, A.2, A.3, A.4, and A.5, in terms of the scaled Slater parameters
Fk.

Table A.1: d5 multiplets.

d5

2S 10F0 − 3F2 − 195F4
2P 10F0 + 20F2 − 240F4
2D 10F0 − 4F2 − 120F4

10F0 − 3F2 − 90F4

±3
√

57F 2
2 − 500F2F4 + 2300F 2

4

2F 10F0 − 17F2 − 90F4

±
√

(8F2 − 75F4)2

2G 10F0 − 5F2 − 150F4

±
√

(8F2 − 5F4)2

2H 10F0 − 22F2 − 30F4
2I 10F0 − 24F2 − 90F4
4P 10F0 − 28F2 − 105F4
4D 10F0 − 18F2 − 225F4
4F 10F0 − 13F2 − 180F4
4G 10F0 − 25F2 − 190F4
6S 10F0 − 35F2 − 315F4



Appendix A - dN multiplets

Table A.2: d0, d1, d2, d3 multiplets.

d0

1S 0

d1

2D 0

d2

1S F0 + 14F2 + 126F4
1D F0 − 3F2 + 36F4
1G F0 + 4F2 + F4
3P F0 + 7F2 − 84F4
3F F0 − 8F2 − 9F4

d3

2P 3F0 − 6F2 − 12F4
2D 3F0 + 5F2 + 3F4

±
√

193F 2
2 − 1650F2F4 + 8325F 2

4

2F 3F0 + 9F2 − 87F4
2G 3F0 − 11F2 + 13F4
2H 3F0 − 6F2 − 12F4
4P 3F0 − 147F4
4F 3F0 − 15F2 − 72F4

Table A.3: d10, d9, d8, d7 multiplets.

d10

1S 45F0 − 70F2 − 630F4

d9

2D 36F0 − 56F2 − 504F4

d8

1S 28F0 − 28F2 − 252F4
1D 28F0 − 45F2 − 342F4
1G 28F0 − 38F2 − 377F4
3P 28F0 − 35F2 − 462F4
3F 28F0 − 50F2 − 387F4

d7

2P 21F0 − 34F2 − 264F4
2D 21F0 − 23F2 − 249F4

±
√

193F 2
2 − 1650F2F4 + 8325F 2

4

2F 21F0 − 19F2 − 339F4
2G 21F0 − 39F2 − 239F4
2H 21F0 − 34F2 − 264F4
4P 21F0 − 28F2 − 399F4
4F 21F0 − 43F2 − 324F4
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Table A.4: d4 multiplets.

d4

1S 6F0 + 10F2 + 6F4

±2
√

193F 2
2 − 1650F2F4 + 8325F 2

4

1D 6F0 + 9F2 − 153
2 F4

± 3
2

√
144F 2

2 − 1160F2F4 + 3425F 2
4

1F 6F0 − 84F4
1G 6F0 − 5F2 − 13

2 F4

± 1
2

√
708F 2

2 − 7500F2F4 + 30825F 2
4

1I 6F0 − 15F2 − 9F4
3P 6F0 − 5F2 − 153

2 F4

± 1
2

√
912F 2

2 − 9960F2F4 + 38025F 2
4

3D 6F0 − 5F2 − 129F4
3F 6F0 − 5F2 − 153

2 F4

± 3
2

√
68F 2

2 − 540F2F4 + 2225F 2
4

3G 6F0 − 12F2 − 94F4
3H 6F0 − 17F2 − 69F4
5D 6F0 − 21F2 − 189F4

Table A.5: d6 multiplets.

d6

1S 15F0 − 4F2 − 120F4

±2
√

193F 2
2 − 1650F2F4 + 8325F 2

4

1D 15F0 − 5F2 − 405
2 F4

± 3
2

√
144F 2

2 − 1160F2F4 + 3425F 2
4

1F 15F0 − 14F2 − 210F4
1G 15F0 − 19F2 − 265

2 F4

± 1
2

√
708F 2

2 − 7500F2F4 + 30825F 2
4

1I 15F0 − 29F2 − 135F4
3P 15F0 − 19F2 − 405

2 F4

± 1
2

√
912F 2

2 − 9960F2F4 + 38025F 2
4

3D 15F0 − 19F2 − 255F4
3F 15F0 − 19F2 − 405

2 F4

± 3
2

√
68F 2

2 − 540F2F4 + 2225F 2
4

3G 15F0 − 26F2 − 220F4
3H 15F0 − 31F2 − 195F4
5D 15F0 − 35F2 − 315F4
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Appendix B

Gutzwiller Approximation

In this appendix we re-derive the results of the Gutzwiller approximation,
which was only stated as fact in Chapter 6. The goal is to make it clear why
the evaluation of expectation values with respect to the Gutzwiller wave-
function ΨG is in itself a many-body problem, and to show how Eqs. (6.10)
and (6.11) arise from the constraints GA1 and GA2 [Eqs. (6.8) and (6.9)] and
the limit of infinite dimensions. Finally, the relations for the renormalization
factors and effective hopping of Eqs. (6.13) and (6.14) are derived.

B.1 Wick’s theorem

The main weapon in the calculation of expectation values is the fact that
Ψ0 is a Slater determinant wave-function. For this class of wave-functions
we can use Wick’s theorem [113]. The theorem states that the expectation
value of a product of fermion operators with respect to Ψ0 is given by the
sum of all combinations of paired quadratic expectation values.

First we introduce some notation, by denoting expectation values with
respect to Ψ0 as 〈Ψ0| · |Ψ0〉 = 〈·〉0, and defining the fermion operators qRa
as to span all local creation and annihilation operators cRα and c†Rβ

qRa = {cR1, . . . , cRm; c†R1, . . . , c
†
Rm} , (B.1)

where m is the number of single-particle fermion states. Thereby 〈q†RaqRb〉0
includes all possible combinations

〈c†RαcRβ〉0 , 〈cRαc
†
Rβ〉0 , 〈cRαcRβ〉0 , and 〈c†Rαc

†
Rβ〉0 .
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As an example of Wick’s theorem, consider a quartic term of fermion op-
erators. All possible contractions (i.e. pairings), denoted by lines connecting
operators, can then be expressed as

〈q1q2q3q4〉0 = 〈 q1q2q3q4 〉0 + 〈 q1q2q3q4 〉0 + 〈 q1q2q3q4 〉0 =

〈q1q2〉0〈q3q4〉0 + 〈q1q4〉0〈q2q3〉0 + 〈q1q3〉0〈q2q4〉0 (B.2)

Generalizing to a term of order 2n, it can be written as the sum over all
ordered pairs

〈qa1
. . . qa2n

〉0 =
∑

P

〈qbP1
qcP1
〉0 . . . 〈qbPn qcPn 〉0 , (B.3)

where the sum goes over all pairings P conserving order, i.e. for every set of
pair indices bPl = ak, cPl = am, k < m.

It will also turn out to be useful to write the expectation value of a general
operator product in terms of Wick contractions. Such a product takes the
form of a sum of all possible orders p of inter-operator contractions

〈ÂB̂〉0 = 〈Â〉0〈B̂〉0 +

∞∑

p=1

〈ÂB̂
×p

〉0 = 〈Â〉0〈B̂〉0 + 〈ÂB̂〉0 + 〈ÂB̂〉0 + . . . ,

(B.4)

between the operators Â and B̂, that in turn can be any combination of
fermion qRα operators.

If the two operators act exclusively on two different sites R and R′, the
contractions can formally be written as

〈ÂR B̂R′〉0 =
∑

ab

〈ÂāR〉0〈B̂b̄R′〉0〈qRaqR′b〉0 (B.5)

〈ÂR B̂R′〉0 =
∑

abcd

〈Âāb̄R 〉0〈B̂c̄d̄R′〉0〈Q̂Rab Q̂R′cd〉0 , (B.6)

using the notation ÂāR for an operator ÂR with a fermion operator qRa re-

moved, and the generalized single-particle density operator Q̂Rab = qRaqRb.
By now we are well prepared to appreciate the problem of evaluating expec-
tation values of the Gutzwiller wave-function ΨG.
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Section B.2 - Gutzwiller expectation values

B.2 Gutzwiller expectation values

Let us at this point recall the definition of the Gutzwiller wave-function ΨG

in Eqs. (6.1) to (6.3), and write down the complete expectation value with
respect to a local operator Ô(R)

〈ΨG|Ô(R)|ΨG〉 = 〈Ψ0|P̂†RÔ(R)P̂R

( ∏

R′ 6=R

P̂†R′P̂R′

)
|Ψ0〉 . (B.7)

That this is not directly equal to 〈Ψ0|P̂†RÔ(R)P̂R|Ψ0〉 as indicated in Eq.
(6.10) is clear from Wick’s theorem and Section B.1. An exact evaluation
must also account for the contractions between the operators at R and all
projectors acting at the other sites R′.

To handle the explosion of possible contractions we rewrite the product of
projector pairs P̂†RP̂R in terms of the associated operator ŴR = P̂†RP̂R−1,
which gives

∏

R

P̂†RP̂R =
∏

R

(
1 + ŴR

)
= 1 +

∞∑

m=1

1

m!

′∑

R1,...,Rm

ŴR1 · · · ŴRm , (B.8)

where R1, . . . ,Rm are all different in the primed sum. Thus, the local
expectation value can be written as the sum

〈ΨG|Ô(R)|ΨG〉 = 〈P̂†RÔ(R)P̂R〉0

+

∞∑

m=1

1

m!

′∑

R1...Rm 6=R

〈P̂†RÔ(R)P̂RŴR1
. . . ŴRm

〉0 . (B.9)

As P̂†RÔ(R)P̂R is a local operator we can, for the sake of brevity, and

without loss of generality, denote it as a general local operator Ô. Now, for
the anticipated result [Eq. (6.10)] to hold only the first term should survive
in the Gutzwiller approximation. To prove this we start by studying the
first order term in terms of its Wick contractions

∑

R′ 6=R

〈Ô(R)ŴR′〉0 = 〈Ô(R)〉0
∑

R′ 6=R

〈ŴR′〉0 +
∑

R′ 6=R

∞∑

p=1

〈Ô(R)ŴR′

×p

〉0 .

(B.10)
and show how each order of contractions vanishes.
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The zeroth order contraction in Eq. (B.10) is zero by virtue of GA1
[Eq. (6.8)] and the definition of ŴR.

1 = 〈P̂†RP̂R〉0 = 1 + 〈ŴR〉0 , ⇒ 〈ŴR〉0 = 0 . (B.11)

This also causes all disconnected contractions of ŴR to disappear at higher
orders in Eq. (B.9).

B.3 First and second order contractions

To understand why the first order contraction – and all odd order contrac-
tions for that matter – are zero, it is instructive to return to the definition
of the projector P̂R in Eq. (6.4) and construct the corresponding expression

for ŴR

ŴR =
∑

ΓΓ′

wΓΓ′ |Γ,R〉〈Γ′,R| (B.12)

where the coefficients wΓΓ′ are determined by the configuration weights λΓΓ′

of P̂R in Eq. (6.4)

wΓΓ′ = −δΓΓ′ +
∑

Γ′′

λ∗Γ′′ΓλΓ′′Γ′ (B.13)

Before performing any Wick contractions we first express ŴR in terms of
fermion operators. This is achieved by using the definition of the local
occupation number states in Eq. (6.5) and noting that the projector onto
the site local vacuum state |0,R〉〈0,R| can be written as

|0,R〉〈0,R| =
∏

α

(1− n̂αR) . (B.14)

Thus, ŴR can be expressed as

ŴR =
∑

ΓΓ′

wΓΓ′(R)
∏

α∈Γ

c†αR
∏

β

(1− n̂βR)
∏

γ∈Γ

cγR . (B.15)

We already know that the projector, and thus ŴR, conserve particle number,
which in turn guarantees that there is an even total number of fermion
operators in every term of Eq. (B.15). This causes the expectation value of
ŴR with an odd number of operators qa removed to disappear

〈Ŵ ā
R〉0 = 0 , 〈Ŵ āb̄c̄

R 〉0 = 0 , etc.. (B.16)
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as in each case there is an unpaired fermion operator that gives a factor
〈qb〉0 = 0 in all Wick contractions. These terms occurs of course in every
odd order p of Wick contractions, hence

〈Ô ŴR

p

〉0 = 0 , ∀p = 2n+ 1 . (B.17)

The zeroth and first order contractions can now be used to understand
the consequences of GA2 that gives the relation

〈qRaqRb〉0 = 〈P̂†RP̂RqRaqRb〉0 = 〈qRaqRb〉0 + 〈ŴRqRaqRb〉0

= 〈qRaqRb〉0 + 〈ŴR〉0〈qRaqRb〉0 + 〈ŴRQ̂Rab〉0 + 〈ŴRQ̂Rab〉0 , (B.18)

where on the last line the second term is zero due to GA1 and Eq. (B.11),
and the third term is an odd contraction and zero due to Eq. (B.17). In
other words the second order contraction of ŴR with the local single-particle
density operator Q̂Rab = qRaqRb is also zero

〈ŴRQ̂Rab〉0 = 0 , (B.19)

for any a and b, and any Slater determinant Ψ0, i.e. for any values of 〈qcqd〉.
Performing the second order contraction explicitly

〈ŴRQ̂Rab〉0 =
∑

cd

〈Ŵ c̄d̄
R 〉0〈Q̂Rcd Q̂Rab〉0

=
∑

cd

〈Ŵ c̄d̄
R 〉0 (〈qcqa〉0〈qdqb〉0 + 〈qcqb〉0〈qdqa〉0) , (B.20)

the only way this can be zero is that the expectation value of ŴR with two
fermion operators removed is identically equal to zero

〈Ŵ āb̄
R 〉0 = 0 . (B.21)

This has consequences far beyond local contractions as this is exactly the
factor that appear in every second order contraction of Ŵ

〈ÔRŴR′〉0 =
∑

abcd

〈Ôāb̄R 〉0〈Ŵ c̄d̄
R′〉0〈Q̂Rab Q̂R′cd〉0 = 0 . (B.22)

Thus GA2 actually causes all second order contractions of ŴR to be zero.
So what we have left now, after treating the zeroth, the second, and all

odd order contractions, are the even contractions of fourth order and higher.
To handle them we first need to introduce the limit of infinite dimensions.
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Appendix B - Gutzwiller Approximation

B.4 Infinite dimensional limit

The infinite dimensional limit (d→∞) is a powerful starting point for con-
structing non-trivial theories for interacting electrons. In our case, for the
Gutzwiller wave-function ΨG, the limit simplifies Wick contractions consid-
erably due to the dimensional scaling of the single-particle density matrix
〈Ψ0|c†RαcR′β |Ψ0〉.

Following Ref. [126], consider for example a single-band Slater determi-
nant which obeys the innocent looking relation1

∑

R′

|〈Ψ0|c†RcR′ |Ψ0〉|2 = 〈Ψ0|c†RcR|Ψ0〉 = n0 . (B.23)

The sum over R′ can be partitioned over all sites at New York distance2 l
(i.e. the l1 norm l = |R−R′|1) that belong to the same irreducible represen-

tation j of the point group. Using the short hand notation |〈Ψ0|c†RcR′ |Ψ0〉| =
CR′R = Cj for these correlators, Eq. (B.23) takes the form

∞∑

l=1

∑

j

nj(l)C2
j = n0 − (n0)2 , (B.24)

where nj(l) is the number of sites belonging to the irreducible representation
at distance l. This directly gives an upper bound on the correlators

|〈Ψ0|c†RcR′ |Ψ0〉| ≤
√
n0(1− n0)

nj(l)
∝ 1

dl/2
, (B.25)

as nj(l) scales like nj(l) ∝ dl. The derivation can directly be generalized
to multi-band Slater determinants using orbital averages, and in the end the
same scaling relation is obtained for the general correlators 〈Ψ0|c†RαcR′β |Ψ0〉.
Applied to a sum of correlators to some integer power p the scaling gives

∑

R′ 6=R

(
〈Ψ0|c†RαcR′β |Ψ0〉

)p
∝
∞∑

l=1

dl(d−
l
2 )p ∝

∞∑

l=1

d(1− p2 )l . (B.26)

Thus for powers p > 2, the sum goes to zero as d → ∞. This property
causes the sum of all p-order Wick contractions of an operator Ô at site R

1Obtained using the idempotence of 〈Ψ0|c†kck|Ψ0〉, 〈Ψ0|c†kck|Ψ0〉 = 〈Ψ0|c†kck|Ψ0〉2.
2The know-it-alls call this the Manhattan distance. The author is going the long

distance to New York to find it, but only after finishing this thesis.
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Section B.4 - Infinite dimensional limit

with another operator ŴR′ on every other site to vanish for p > 2

∑

R′ 6=R

〈Ψ0|Ô(R)ŴR′

×p

|Ψ0〉 −−−→
d→∞

0 , iff p > 2 . (B.27)

Returning to the first order term in Eq. (B.10) of the expansion in
Eq. (B.9), we can now treat all orders of contractions

∑

R′ 6=R

〈Ô(R)ŴR′〉0 =
∑

R′ 6=R

[
〈Ô(R)〉0〈ŴR′〉0 + 〈Ô(R)ŴR′〉0

+ 〈Ô(R)ŴR′〉0 + 〈Ô(R)ŴR′〉0 +

∞∑

p=4

〈Ô(R)ŴR′

×p

〉0
]
−−−→
d→∞

0 , (B.28)

where the zeroth order contraction term is zero due to GA1, the first and
third order due to number conservation, the second order due to GA2, and
finally all orders ≥ 4 are zero due to the limit of infinite dimensions.

In the same way we can treat all higher order terms, where there is no
need to keep track of the explicit contraction structure, only the contraction
order pn of each ŴRn

term matters

′∑

R1...Rm

∑

p0...pm

〈Ô(R)ŴR1 . . . ŴRm〉0 . (B.29)

p0 p1 pm

If any of the contraction orders p1, . . . pn are less than 3, the contribution is
identically equal to zero, due to GA1, GA2 and number conservation. When
all orders p1, . . . pn are greater than 4, the expectation value scales as d−p/2

where p is the total number of contractions given by

p =
1

2

∑

m

pm ≥
p0 + 4m

2
(B.30)

and the sum scales as dm giving the over all scaling d−p0/2. Thus the
connected contraction with p0 = 2 goes to zero, but the disconnected con-
traction does not! However, all is not lost. Just like in perturbation theory
prevailing disconnected contractions (i.e. diagrams) are a reminder that we
need to properly normalize our wave-function. This is accomplished by com-
puting the expectation values on the form

〈ΨG|Ô(R)|ΨG〉
〈ΨG|ΨG〉

, (B.31)
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Appendix B - Gutzwiller Approximation

where by the linked cluster theorem [14], all disconnected terms in the nomi-
nator are canceled by the denominator. Defining {. . . }c0 as all fully connected
contractions, we have thus established that to all orders the connected terms
vanish

∞∑

m=1

1

m!

′∑

R1...Rm

{Ô(R)ŴR1
. . . ŴRm

}c0 −−−→
d→∞

0 (B.32)

Returning to the correctly normalized expectation value of a local oper-
ator with respect to ΨG, it is exactly given by

〈ΨG|Ô(R)|ΨG〉
〈ΨG|ΨG〉

= 〈P̂†RÔ(R)P̂R〉0

+

∞∑

m=1

1

m!

′∑

R1...Rm

{P̂†RÔ(R)P̂RŴR1 . . . ŴRm}c0 (B.33)

So, by imposing GA1, GA2 and taking the limit of infinite dimensions
the expectation value simplifies to

〈ΨG|Ô(R)|ΨG〉
〈ΨG|ΨG〉

= 〈P̂†RÔ(R)P̂R〉0 . (B.34)

Along the same lines the quadratic non-local expectation value reduces to

〈ΨG|c†RαcR′β |ΨG〉
〈ΨG|ΨG〉

= 〈[P̂†Rc
†
RαP̂R][P̂†R′cR′βP̂R′ ]〉0 , (B.35)

under the same assumptions.

B.5 Renormalized hopping

The quadratic hopping expression in Eq. (B.35) can be simplified further
as indicated in Eq. (6.12). To derive this relation we write the non-local
quadratic expectation value of Eq. (B.35) as

〈Ψ0|[P̂†Rc
†
RαP̂R][P̂†R′cR′βP̂R′ ]|Ψ0〉 = 〈Ψ0|R̂†RαR̂R′β |Ψ0〉 (B.36)

by introducing the compound operator R̂Rα = P̂†RcRαP̂R. Now the Wick
decomposition of Eq. (B.36) contains all orders of contractions between these
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Section B.5 - Renormalized hopping

operators

〈Ψ0|R̂†RαR̂R′β |Ψ0〉 = 〈Ψ0|R̂†Rα|Ψ0〉〈Ψ0|R̂R′β |Ψ0〉+ 〈Ψ0|R̂†RαR̂R′β |Ψ0〉

+ 〈Ψ0|R̂†RαR̂R′β |Ψ0〉+ 〈Ψ0|R̂†RαR̂R′β |Ψ0〉+ . . . , (B.37)

with each line corresponding to a Wick contraction joining a pair of fermion
operators on sites R and R′, respectively. Assuming that the projector P̂R

is number conserving, only containing terms with an even number of fermion
operators, then R̂Rα is guaranteed to only have odd terms. This causes all
even number of contractions to be zero due to unpaired fermion operators.
Terms with three or more fermionic lines joining R and R′ on the other
hand disappears in the limit of infinite dimensions. The only remaining
term is the single contraction, which can be explicitly written in terms of

the operators R̂b̄R′β , obtained from R̂R′β after removal of a qR′b fermion
operator

〈Ψ0|R̂†RαR̂R′β |Ψ0〉
=
∑

ab

〈Ψ0|R̂ā†Rα|Ψ0〉〈Ψ0|R̂b̄R′β |Ψ0〉〈Ψ0|q†RaqR′b|Ψ0〉 (B.38)

Thus, quadratic expectation values of the form 〈c†RcR′〉G are related to the

corresponding Slater determinant expectation values 〈q†RqR′〉0 through a

renormalization provided by 〈R̂b̄R′β〉0. Fortunately, 〈R̂b̄R′β〉0 occurs also in
other Wick contractions, such as

〈Ψ0|[P̂†Rc
†
RαP̂R]qRb|Ψ0〉 = 〈Ψ0|R̂†RαqRb|Ψ0〉

=
∑

a

〈Ψ0|R̂ā†Rα|Ψ0〉〈Ψ0|q†RaqRb|Ψ0〉 =
∑

a

Raα(R)〈Ψ0|q†RaqRb|Ψ0〉 (B.39)

where we have introduced the shorthand notation Raα(R) = 〈Ψ0|R̂ā†Rα|Ψ0〉
for the renormalization factors. In other words, non-local quadratic expec-
tation values can be written as

〈ΨG|c†RαcR′β |ΨG〉 =
∑

ab

Raα(R)〈Ψ0|q†RaqR′b|Ψ0〉R†βb(R′) . (B.40)

Using this we can rewrite the kinetic energy 〈T̂ 〉G of the Gutzwiller wave-
function in Eq. (6.6) directly in terms of Slater determinant expectation
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Appendix B - Gutzwiller Approximation

values and the renormalization factors R as

〈ΨG|T̂ |ΨG〉 =
∑

RR′

∑

αβ

tαβRR′〈ΨG|c†RαcR′β |ΨG〉

=
∑

RR′

∑

ab


∑

αβ

Raα(R)tαβRR′R
†
βb(R

′)


 〈Ψ0|q†RaqR′b|Ψ0〉

=
∑

RR′

∑

ab

t̃abRR′〈Ψ0|q†RaqR′b|Ψ0〉 = 〈Ψ0|T̂ G[R]|Ψ0〉 , (B.41)

where T̂ G is an effective kinetic Hamiltonian

T̂ G[R] =
∑

RR′

∑

ab

t̃abRR′q
†
RaqR′b , (B.42)

with hopping amplitudes

t̃abRR′ =
∑

αβ

Raα(R)tαβRR′R
†
βb(R

′) , (B.43)

renormalized by R. The renormalization factors R can be calculated from
purely local expectation values through

〈Ψ0|P̂†Rc
†
RαP̂RqRb|Ψ0〉 =

∑

a

Raα(R)〈Ψ0|q†RaqRb|Ψ0〉 . (B.44)

Note that q†Ra span both c†Rα and cRα, so inserting the creation and
annihilation operators explicitly still gives the original expression of Fabrizio
[109]

〈Ψ0|P̂†Rc
†
RαP̂RcRβ |Ψ0〉

=
∑

γ

Rγα(R)〈Ψ0|c†RγcRβ |Ψ0〉+
∑

γ

∆γα(R)〈Ψ0|cRγcRβ |Ψ0〉 (B.45)

where ∆γα is the last part of Raα, ∆γα = R(n+γ)α, for n local fermions,
as 1 ≤ α ≤ n and 1 ≤ a ≤ 2n. Further, ∆γα is only non-zero when Ψ0

is a BCS type of wave-function with non-vanishing fermion pair creation
and annihilation expectation values 〈c†c†〉0 6= 0. Note that this case is not
treated in Chapter 6, but is a straightforward generalization.
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Appendix C

On the method of
Lagrange multipliers

In this appendix we outline the essential steps required to use the method
of Lagrange multipliers for constrained optimization problems in complex
variables with real valued target functions and complex valued equality con-
straints. The approach where the complex variable z and its conjugate z̄ are
considered as independent variables is explained and the method of complex
Lagrange multipliers for complex valued constraints is re-derived.

C.1 Lagrange formulation

For a general real valued minimization problem with an equality constraint

min
x
{f(x) : g(x) = c} , (C.1)

the method of Lagrange multipliers provides a strategy to find feasible sta-
tionary points. The corresponding Lagrange function is defined as

L(x, λ) = f(x) + λ(g(x)− c) . (C.2)



Appendix C - On the method of Lagrange multipliers

A necessary condition for optimality of a solution is that ∇L = 0. Thus,
solving the root problem in x and λ

∇L[x, λ] = 0 ⇒





∂L
∂x

= f ′(x) + λg′(x) = 0

∂L
∂λ

= g(x)− c = 0

, (C.3)

gives feasible stationary solutions of the minimization problem.

C.2 Real functions and complex variables

A real-valued function L in one complex variable z ∈ C, L : C → R can
equivalently be written as a function of two independent real variables L :
R2 → R, by letting z = x+ iy. The condition for a zero gradient is then

∇L(x, y) = 0 ⇒





∂L
∂x

= 0

∂L
∂y

= 0

. (C.4)

Making a change of variables from x and y to the complex linearly indepen-
dent z and z̄

{
z = x+ iy

z̄ = x− iy ⇒





x =
1

2
(z + z̄)

y =
1

2i
(z − z̄)

, (C.5)

gives another set of partial derivatives, with respect to either z or z̄. Using
the chain rule the corresponding gradients takes the form

∂L
∂z

∣∣∣∣
z̄

=
∂x

∂z

∂L
∂x

+
∂y

∂z

∂L
∂y

=
1

2

∂L
∂x
− i

2

∂L
∂y

∂L
∂z̄

∣∣∣∣
z

=
∂x

∂z̄

∂L
∂x

+
∂y

∂z̄

∂L
∂y

=
1

2

∂L
∂x

+
i

2

∂L
∂y




⇒ ∂L

∂z̄
=

(
∂L
∂z

)∗
. (C.6)

Thus as L is real-valued it suffices to impose either ∂zL = 0 or ∂z̄L = 0
to fulfill the zero gradient condition.
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C.3 Complex variables and constraints

Consider the optimization problem

min
z
{f(z) : g(z) = c} , (C.7)

where z, c ∈ C, f : C → R and g : C → C. From the previous section
we know that the complex variable poses no problem, and we turn our
attention to the complex constraint. By separating the constraint in real
and imaginary parts we get the problem

min
z
{f(z) : gR(z) = cR, gI(z) = cI} , (C.8)

using the notation gR(z) = Re[g(z)], gI(z) = Im[g(z)]. The two real val-
ued constraints can of course be imposed separately by using two Lagrange
multipliers by the Lagrange function

L(z, λR, λI) = f(z) + λR(gR(z)− cR) + λI(gI(z)− cI) , (C.9)

and using the two previous sections the necessary gradient equations for an
optimal solution are

∂L
∂z̄

∣∣∣∣
z

= 0 ,
∂L
∂λR

= gR(x, y)− cR = 0 ,
∂L
∂λI

= gI(x, y)− cI = 0 . (C.10)

Instead of considering the real and imaginary parts of the constraint
separately it is possible to use a complex Lagrange multiplier λ and rewrite
the constraints using λ and λ̄. By defining λ ≡ λR−iλI it is straightforward
to show that

λR(gR(z)− cR) + λI(gI(z)− cI) =
1

2
λ(g(z)− z) +

1

2
λ̄(ḡ(z)− c̄) . (C.11)

Thus the equivalent Lagrangian function with one complex Lagrange
multiplier is given by

L(z, λ) = f(z) +
1

2
λ(g(z)− c) +

1

2
λ̄(ḡ(z)− c̄) . (C.12)

The factor 1/2 can of course be absorbed in the Lagrange multiplier.
Finally the gradient equations for our Lagrange function in one complex

variable and one complex Lagrange multiplier now takes the deceptively
simple form

∂L
∂z̄

∣∣∣∣
z

= 0 ,
∂L
∂λ

∣∣∣∣
λ̄

= 0 . (C.13)
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In what follows we will keep the factor 1/2 in the Lagrange function in
order to simplify the treatment of the case with a real constraint (g(z), c ∈
R). In that case also λ ∈ R and we regain the original form of the Lagrange
multiplier theorem

L(z, λ) = f(z) + λ(g(z)− c) . (C.14)
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