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Abstract

This thesis is devoted to the theoretical investigation of radiative associ-
ation, which is one of the processes contributing to formation of molecules
in the interstellar medium. The formation of the CN, SiN, SiP and CO
molecules through radiative association of the corresponding atoms in their
ground electronic states is studied by the means of classical and quantum dy-
namical calculations. In all cases the Born—Oppenheimer approximation is
employed. The corresponding rate coefficients are calculated and the Breit—
Wigner theory is used to properly account for the resonance contributions.

Some common features of the radiative association process for the con-
sidered systems are discovered. For example, a drop in magnitude of the
cross sections at high energy and, consequently, the high-temperature rate
coefficients is observed. Also, is is shown that in the absence of a potential
barrier the semi-classical formalism provides a good estimate for the rate
coefficients.

A pronounced isotope effect is discovered for the formation of CO by ra-
diative association of C(3P) and O(3P) atoms. It is shown that the presence
of a potential barrier on the Al electronic state of carbon monoxide leads
to different formation channels for the 12CO and 3CO isotopologues at low
temperatures.

The role of spin-orbit and rotational couplings in radiative association of
C(3P) and N(%9) atoms is investigated. Couplings among doublet electronic
states of the CN radical are considered, giving rise to a 6-state model of
the process. Comparison of the energy-dependent rate coefficients calculated
with and without spin-orbit and rotational couplings shows that these have
a strong effect on the resonance structure and low-energy baseline of the rate
coefficient.
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Chapter 1

Introduction

Every attempt to employ
mathematical methods in the
study of chemical questions
must be considered profoundly
irrational and contrary to the
spirit of chemistry...

Auguste Comte
Cours de philosophie positive

Formation of molecules is one of the cornerstones of chemistry and under-
standing molecule formation in different environments is of central interest.
Historically, the knowledge about chemical nature of various processes, for-
mation and properties of new compounds would come from experimental
studies and observations. Over the centuries great knowledge has been ac-
cumulated based solely on experimental studies.

However, with the rapid development of computers in late 20*" cen-
tury theoretical simulations started to play a big role in natural science.
Nowadays, large scale simulations of various chemical processes, which could
range from the formation of a simple diatomic molecule to the structural
re-arrangements in proteins due to reaction with some other molecule, are
possible to perform. Such simulations together with experimental studies
provide a much deeper insight into the nature of things than experiments
alone. Moreover, theoretical calculations can be used to gain an insight into
processes and systems, which are not accessible experimentally.

The present thesis is devoted to the theoretical investigation of radia-
tive association, which is one of the processes contributing to formation of
molecules in the interstellar medium. Experimental studies of such process
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2 Chapter 1. Introduction

are very complicated and, thus, theoretical modeling becomes one of the few
reliable ways to advance the understanding of radiative association.

In this thesis formation of some diatomic molecules such as CN, SiN, SiP
and CO by radiative association is studied by the means of classical and
quantum dynamical calculations. The thesis consists of two parts: an intro-
ductory part, which is followed by the included scientific articles, available
only in the printed version. The rest of the introductory part is organized
as follows. Chapter 2 gives an introduction to radiative association and dis-
cusses its relevance for astrochemistry. In Chapter 3 a theoretical description
of the radiative association process is given. Chapter 4 summarizes quantum
dynamical methods used in the work presented here. A summary of the main
results and findings of this thesis can be found in Chapter 5 and conclusion
and outlook are given in Chapter 6.



Chapter 2

Radiative association

2.1 General discussion

Radiative association is a two-body collisional process in which the colli-
sion of two species, A and B, is followed by spontaneous emission of a photon
in order to stabilize the collision complex:

A+B — AB* — AB + hw. (2.1)

The process is schematically depicted in Fig. 2.1. In the simplest case, A and
B are atoms, but they can also be neutral molecules or ions.

When relatively big molecules are involved, radiative association can be
quite efficient and is believed to be important in the formation of polyatomic
compounds in dense molecular clouds [1, 2]. On the contrary, radiative asso-
ciation of atoms or atomic ions is a slow process and usually the stabilization
of the collisional complex AB* will happen through the collision with a third
body rather than by photon emission. Despite this, radiative association is
still considered as one of the important mechanisms of molecule formation
in dust-poor environments [3], where the densities are too low to allow for

hv

O
e

Figure 2.1: Schematic representation of radiative association.
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Chapter 2. Radiative association

\‘ AB A+B

Figure 2.2: Schematic illustration of the direct (blue arrow) and resonant
(red arrow) mechanisms of radiative association.

ternary collisions, and as a key step in the chemical evolution of protoplane-
tary disks [4]. In addition, formation of certain diatomic molecules through
reaction (2.1) can play an important role in planetary atmospheres. For
example, radiative association of N and O atoms is a significant source of
emission in the terrestrial nightglow and in the atmosphere of Venus (see
Ref. [5] and references therein).

Usually, two different mechanisms, which contribute to the formation of
molecules by radiative association, are distinguished: resonant and direct
(non-resonant) and both are shown in Fig. 2.2. The direct process occurs
when the initial kinetic energy of the colliding particles is high enough to
overcome any barrier (potential or centrifugal) on the initial electronic state
and the spontaneous emission brings the system directly from the continuum
to a bound level. The resonance contribution is due to the quantum mechan-
ical tunneling through the barrier, in which case the colliding particles form
a quasi-bound state. The latter can decay by the tunneling back through the
barrier to reform reactants or undergo a radiative transition to a bound level
leading to molecule formation.

Due to the astrochemical importance, formation of small molecules by ra-
diative association attracts much of attention from researchers and the main
interest is to obtain the rate coefficients of radiative association. As will be
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discussed below (Sec. 2.2) experimental measurements of the rate constant for
such processes is complicated and astronomers who investigate the chemical
evolution in interstellar space can instead rely on computed radiative asso-
ciation rates. The semi-classical and quantum mechanical theories for such
calculations have been worked out before, see e.g. the review by Babb and
Kirby [3] and rate coefficients have been computed for some neutral [5-12]
as well as a number of ionic systems [5, 11, 13-17].

2.2 Experimental studies

The experimental study of radiative association in a laboratory is quite
complicated. At normal densities the process is obscured by ternary collisions
and, thus, the experimental measurements of the radiative association rate
coefficients should be done at low densities. Although very low densities
can be attained experimentally, the probability of observing a single reaction
product increases with the density and the sensitivity of the measurement
becomes crucial. One possible solution is to use ion-trapping techniques in
order to accumulate enough products. However, such an approach limits the
class of system that can be studied [18].

Successful applications of the ion cyclotron resonance technique to mea-
sure the radiative association rate coefficient for reactions between poly-
atomic molecules have been reported [1]. However, this method allows to
study reactions with the rate coefficient being of the order 107° c¢m?3/s or
higher at room temperatures. Thus, it is not sensitive enough to allow for
studies of radiative association of small molecules. Up to date only a few ex-
perimental works based on the use of ion traps for the direct measurements
of the radiative association rate constant for formation of small molecules
are available in the literature [18-20].
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Chapter 3

Theory

I soon realized that the part
of chemistry I liked was called
physics.

Isidor Isaac Rabi

In this chapter an overview of theoretical methods and approaches used to
model the radiative association process is presented. The focus of this thesis
is on the formation of small molecules and, thus, the description of different
kinetics models used for radiative association of poly-atomic molecules [1,
21, 22] is not included.

3.1 Cross sections

The radiative association cross section can be calculated by a variety of
approaches based on classical or quantum dynamics for the description of the
nuclear motion. In this thesis three methods, viz. the perturbation theory
(PT), optical potential (OP) and semi-classical (SC) approaches, are applied
to study radiative association and the outline of those is given below.

3.1.1 Perturbation theory (PT) approach

A common theoretical treatment of radiative association is based on the
dipole approximation for the interactions between the electric field and molec-
ular system and thermodynamical relations for the Einstein A coefficient de-
scribing the spontaneous emission of a photon.! Under such approximations

IDerivations of both dipole approximation and Einstein A coefficient can be found in
many standard quantum mechanics textbooks, see e.g. [23].

Antipov, 2013. 7



8 Chapter 3. Theory

Table 3.1: Notations of quantum numbers.

Lx Electronic orbital angular momentum of atom X

L Total electronic orbital angular momentum of the diatomic system:
L=1La+Lg

Electronic spin of atom X

— —

Total electronic spin of the diatomic system: S = Sa + Sg
Rotational angular momentum of the nuclei

Total angular momentum of the diatomic system: J=L+S+1
Projection of L on the internuclear axis

Projection of J on the space-fixed z-axis

Vibrational quantum number

@§>%NCQ;Q

the radiative association cross section is given by the Fermi Golden Rule-type
formula (Paper V):

5
on(E) = E 04 al g (W sar5 DY yar) [, (3.1)
3 (47T€0)k2 )\BE ! J!
Jo!J’ nEVT MM

where F is the kinetic energy of the colliding particles, £ = % is the
wavenumber for the initial channel n, P, is the statistical weight factor for
approaching through the channel n, \,g, s is the wavelength of the emit-
ted photon, D is the dipole moment operator and ¥, ;yp and Wy, are
the continuum wavefunction of the initial state and the final rovibrational
wavefunction, respectively. Notations for the quantum numbers used in this
chapter are listed in Table 3.1.

In Eq. (3.1) no assumptions are made about the structure of the wavefunc-
tions. However, the majority of publications, which use the PT approach to
study formation of diatomic molecules through radiative association, rely on
the Born-Oppenheimer (BO) approximation (see e.g. [3, 7, 9-11, 13, 17, 24—
26]). The total wavefunctions are expressed as a product

U, inig = YasiqlJM)|AS), (3.2)

where 1557, is the radial wavefunction, and |JM) and |AS) are the rotational
and electronic wavefunctions, respectively. Here ¢ stands for the energy E for
the continuum states and for the vibrational quantum number v, if the state
is bound; index n is substituted by the quantum numbers characterizing a
particular electronic state AS. In practice the BO approximation means that
all couplings between different electronic states of the systems are neglected
and only the radiative transitions due to spontaneous emission are allowed.
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Thus, it allows us to study radiative association from the continuum of the
initial electronic state AS to the bound levels of the final electronic state
N S2.

Expansion (3.2) allows to factorize the matrix element of the dipole op-
erator in Eq. (3.1) in the following form:

> KD yar)® =
MM’
=Sassnsr|(¥assel Dasars(R)|[arsi)|?, (3.3)
where the summation over M, M’ and integration over rotational and elec-
tronic coordinates are carried out to give the matrix element of the dipole

operator DASA/S’<R) and the Honl-London factors SASJA/SJ/ [27, 28}. Sub-
stitution of Eq. (3.3) into Eq. (3.1) yields

5
64 7 Prg Sasinss

ors—ns(E) =

9 3
oy 3 47T€[) k2 )\EA’S’U'J/

x| (Yasse|Dasns(R)|¥arsn) }2. (3.4)

Unless stated otherwise, for the rest of the introductory part of the thesis it
is assumed that the BO approximation is used and Eq. (3.4) is valid.

The PT approach in form of Eq. (3.4) was applied to model radiative
association in Papers I-IV and in Paper V perturbation theory is used to
study the role of spin-orbit and rotational couplings in radiative association
of C(®P) and N(*S) atoms.

3.1.2 Optical potential (OP) method

Addition of a negative imaginary potential to the Hamiltonian operator
causes loss of incident flux, which mimics the decay of the system through
some process. Thus, the general idea of the explicit optical potential method
is to modify the Hamiltonian operator in such a way that the loss of flux cor-
responds to the radiative decay due to spontaneous emission. Zygelman and
Dalgarno [29] showed that the appropriate optical potential can be written
as

ih
Vopt(R) = _EAAS—A’S(R)a (3.5)
where

A S A’S! R)=—
AS AS< ) 2—(5071\ )\?\SHA’S(R)

3 (4meg)h
2Since the dipole transitions between states of different multiplicity are forbidden
S =5.
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is the semi-classical transition rate of spontaneous emission. In Eq. (3.6)
As—ars(R) is the optimal wavelength of the emitted photon:

1 Vas(R) — VArS(R))
————— =max | 0, )
As—ars(R) < he

The optical potential of the form (3.5) was applied before to study other
radiative processes such as quenching [29], charge transfer [30] and electron
capture[31].

Derivation of Eqgs. (3.5)-(3.7) uses the completeness of the final states. It
means that the defined transition rate describes spontaneous emission to both
bound (radiative association) and continuum states (radiative quenching).
In order to ensure that only radiative association is taken into account the
restricted transition rate is defined

(3.7)

R2J(J+1)
AAS—>A’S(R) VAls(R) + TouRz <0U

E <V, -V
ARs_ns(R) = < Vas(R) = Vivs(R) (3.8)
0 otherwise,

where the first condition checks that the final effective potential may support
bound states and the second that the initial kinetic energy of the system is
below the optimal energy of the emitted photon, i.e. a vertical transition
to the bound region is possible. The centrifugal term in the final effective
potential is approximate (J'a~.J and A’~0), but the corresponding conditions
mostly important for large J, which justifies the approximation.

Within the OP method the radiative association cross section is deter-
mined by

h2
onsvs(B) = 5 pPrs DT+ (1= e i) (39)
J

where %7,/ is the imaginary part of the phase shift of the radial wavefunc-
tion ¥¥Z 1/ s(R), which obeys the the Schrodinger equation with the optical
potential

LR R +1) =AY
21 dR? 2uR?

+Vas(R) (3.10)

7
- §Af§HA/S(R) - E) lbféLA/s(R) =0.

From Egs. (3.9) and (3.10) it is clear, that the presented implementation
of the OP method does not require knowledge of the bound states of the



3.2. Rate coefficients 11

system. It makes this approach computationally more effective than PT.
However, for exactly the same reason the presented method does not allow
calculation of the radiative association emission spectrum. Further details,
about theory, limitations and performance of the method are given in Pa-
per II.

3.1.3 Semi-classical (SC) formalism

The semi-classical expression for the radiative association cross section
can be derived from Eq. (3.9) by applying the distorted wave and JWKB
approximations [29]. The resulting cross section is given by

[\ 1/2
ors—ns(E) = 4r (ﬁ) Pys

<[ AR ws(R)dRdb
7 11
" /0 b/c (1 —Vas(R)/E — b2/ R2)1/2’ (3.11)

where R, is the classical turning point (distance of closest approach) for the
corresponding value of the impact parameter b and the restricted transition
rate is defined in the same way as in Sec. (3.1.2), namely

Vis(R) + 25 <o U

AASHA’S(R) E < VAS(R) o VA’S(R)

AEZ‘—A’S(R) = (3~12)

0 otherwise.

Here the classical expression for the rotational kinetic energy is used.

It should be mentioned that originally the semi-classical formula for the
cross section (3.11) based on the unrestricted transition rate (3.6) was derived
by Bates [32] using arguments of classical mechanics.

Within the present thesis the SC formalism was applied to study forma-
tion of CN (Paper I), SiN (Paper II), SiP (Paper III) and CO (Paper IV)
through radiative association.

3.2 Rate coefficients

When the cross section for a collisional process such as radiative associ-
ation is obtained, the rate coefficient at a temperature T' can be calculated
using the general expression

kAS*}A/S(T) - /OOOU(E)W(E,T)O’ASHAls(E)dE, (313)
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2F
v(E) = \/7

is the relative velocity of colliding particles and W (E,T) is the normalized
energy distribution. Assuming that the system is in thermodynamic equilib-
rium, i.e. the Maxwell-Boltzmann distribution of energies,

where

E
IIf E T -9 —E/kgT
(B,T) W(kBT)?’e ’

the rate coefficient is defined by

k - (2 v 1 v OOE E)e  B/RTqp  (3.14
AS—>A’S( )— T lenT ; UAS—»A’S( )6 ) ( )

where kg is the Boltzmann constant.

Let us consider practical applications of Eq. (3.14). A typical SC cross sec-
tion is a smooth curve (see Papers I-IV) and, thus, the integral in Eq. (3.14)
can be easily evaluated using standard numerical techniques. However, quan-
tum mechanical (PT and OP) cross sections usually have a complex resonance
structure and the widths of some of those resonances can be vanishingly
small (see e.g. Refs. [9, 13-16, 24, 25] and Papers I-IV). Such features make
it practically impossible to evaluate the integral in Eq. (3.14) numerically.
Moreover, the PT approach tends to overestimate the heights for the long-
lived resonances with the tunneling width being smaller than or comparable
to the radiative width [9, 14]. Thus, using the PT cross section in Eq. (3.14)
for the calculation of the rate coefficient is not correct in the first place. It
is obvious, that some other approach is required.

The established method to account for the resonance contribution to the
radiative association rate constant is the Breit—Wigner theory [33, 34]. First,
the rate constant is divided into two terms

kns—as(T) = k{5 ns(T) + ks ps(T), (3.15)

where k$Z (T is the direct contribution, which arises from the baseline
of the cross section, and k%5 ,,¢(T) is the contribution due to quantum
mechanical resonances. According to the Breit—-Wigner theory the latter is
calculated as

o 3/2 (2J + l)efEASUJ/kBT
kresﬁ) , (T) — hQPAS < ) n Tau ) (316)
AS—A’S pksT ; 1/T%8 4+ 1/TR4, s
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where the summation is carried out over all resonances. Here Eyg,s is the en-
ergy at the peak of the resonance, '8 ; is the tunneling width and I"¢, ;1/g
is the width due to the radiative decay to all final bound levels:

[RSosns = Z Avgor - (3.17)
v'J!

Here A,y is the Einstein A coefficient for spontaneous emission from the
initial quasi-bound state (v, J) to the final bound state (v'.J’).
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Chapter 4

Quantum dynamical methods

Devil is in the detail.

The present chapter provides a brief summary of the quantum dynamical
methods used in this thesis. In quantum mechanics solution of any dynamical
problem can be obtained within the time-dependent or time-independent
formalism and the choice depends on the problem at hand. In the case of
radiative association the low temperature rate constants and, consequently,
the low-energy part of the cross sections are usually desired. This makes
application of time-dependent methods numerically complicated since very
long propagation times and very wide initial wave packets are required [10].
Thus, the time-independent approach has been chosen for the simulation of
the radiative association process.

4.1 Bound states

Various methods developed for the calculations of the bound states can
be grouped into two general categories: methods using a basis or grid repre-
sentation of the problem and methods based on the numerical integration of
the Schrédinger equation. In this section two methods used in the theses to
obtain bound state energies and wavefunctions are described.

4.1.1 Discrete Variable Representation

One of the most common techniques to find eigenvalues and eigenfunc-
tions of the Hamiltonian operator corresponding to the bound states is the
discrete variable representation (DVR) method. The general theory of the

Antipov, 2013. 15



16 Chapter 4. Quantum dynamical methods

method is well described in the literature (e.g see [35, 36]). Here a brief
summary of the main ideas is presented.

Without a loss of generality let us consider a one-dimensional time-independent
Schrodinger equation (TISE)

H(x)¥(z) = E¥(x) (4.1)
with a Hamiltonian operator

H(z)=T(z)+ V(z) = —;1;; + V(z). (4.2)

The eigenfunction W(x) is expanded in an orthonormal complete basis { ¢, }:

U(z) = Zan(x)¢n(m)7 (4.3)

n

and the expansion coefficients a,(z) are given by the integral

an(x) = /_OO o (2)¥(z)d. (4.4)

If a truncated basis set consisting of N functions {¢,(z),n =1,..., N} is used
then we define the variational basis representation (VBR) of an operator in
such a basis as

AVER — (5,1 4]¢;) = / 61 (2)Ady (). (4.5)

The name applies since, according to the variational principle, the eigenval-
ues obtained using an N-function representation of the Hamiltonian opera-
tor (4.2) are higher than or equal to those of the original problem.

Using the spatial grid {z;} of N points the integrals (4.4) and (4.5) can
be approximated by the corresponding numerical quadratures as

an(r) ~ Y w P (w) (), (4.6)
A~ S (o) (A6 ) (), (4.7)

where wy, is the quadrature weight. It was shown [36] that there exists a
general unitary transformation between the N-dimensional functional space
(VBR) and the N-dimensional point space (DVR) representations. Thus, if a
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VBR matrix of an operator is known then the discrete variable representation
matrix can be calculated as

APVE — JAVBRUT, (4.8)
The transformation matrix is given by
U=M"zY! (4.9)

where Y;y = ¢f(z;) and M = Y'Y. Constructed in such a way DVR is
isomorphic with VBR and can be used, for example, to recover the coordinate
dependence of a function from its matrix elements.

In most practical applications coordinate operators are (usually) approx-
imated in the DVR by their values at the grid points. This approximation
greatly simplifies construction of the DVR matrix of the potential V' (z), since
it becomes diagonal:

However, it has strong consequences making DVR a non-variational method
[36], which means that the computed energies of states can be higher or
lower than the true eigenenergies. Nevertheless, in general it is possible to
converge the results by increasing the number of grid points involved in the
calculation.

Choosing spatial grid {z;} judiciously one could construct a DVR matrix
for the kinetic energy, which is the most suitable for the problem at hand.
One of the most universal and most common choice is a uniform grid, sug-
gested by Colbert and Miller [37]. Consider a one-dimensional system with
the Hamiltonian (4.2), where the coordinate z is restricted to the interval
(a,b). The grid points are defined as

(b—a)
N

and the associated basis functions are given by

bul) = = sin (m(rb@_ ;f)) | (412)

T =a+ i, (4.11)

Since ¢, (rg = a) = ¢p(xy = b) = 0 there are a total number of N — 1 basis
functions and corresponding points.
The matrix elements of the kinetic energy operator in the DVR are defined

as
9 N-1

h d2¢n j
TH = —Ar ) dm(m)d(%), (4.13)

72
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where Az = b_T“ is the grid spacing. Calculating the second derivative in
Eq. (4.13) and substituting the expressions for z; the general formula for the

kinetic energy matrix elements in the DVR is obtained

TOVR — (b - a>2Nzln sin ( ) sin (:Z) . (4.14)

Since in the present study DVR is applied to a radial coordinate R, which
changes in the interval (0, 00), a simplified formula for the matrix elements
can be obtained [37]:

, 2 1 .
B o = " 53 =]

TOVE = " (1) 3 . 2 (4.15)
ij 2 2 2 S
2mAR - i#]

(-3 (i+J)

4.1.2 Renormalized Numerov method

Another family of methods is based on the use of numerical integration
techniques to calculate bound state wavefunctions.! Here we are going to
describe a method, originally proposed by Johnson [38, 39], which is using
the renormalized Numerov algorithm for integration of differential equations.

Solution of many multidimensional quantum mechanical problems is based
on the expansion of the total wavefunction in a basis set of the following type

W(R,q) = D" Fn(Ron(a) (4.16)

where R is the radial coordinate, which usually changes the most for the
problem at hand, v, (R) are the radial wavefunctions and ¢,,(¢) are some ap-
propriate orthonormal basis functions, which depend on all other coordinates
of the system. Substitution of the expansion (4.16) into the Schrodinger equa-
tion transforms the original problem of solving a partial differential equation
for the total wavefunction W(R, ¢) into the problem of solving a system of N
coupled ordinary differential equations for 1, (R). The latter is also known
in literature as the coupled-channel Schrodinger equation and can be written
as

{ ddz; +Q(R >} ¥(R) =0, (4.17)

I Also known in literature as propagation or ”shooting” methods.
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where I is the unit matrix, ¥(R) is the N-component vector wavefunction
with elements ¢, (R) and

2
Q(R) = hi; [EH - V(R)] . (4.18)
Here 1 is the reduced mass of the system, F is the energy of the bound state
and V(R) is the potential energy matrix in the basis {¢,(¢)}. All terms
corresponding to the rotational kinetic energy are assumed to be included in
V(R).

Numerical solution of Eq. (4.17) requires the knowledge of the wavefunc-
tion’s derivative at the boundaries. In order to avoid this, N linearly in-
dependent solutions with linearly independent derivatives can be calculated
simultaneously [40]. Those solutions are grouped into a N x N matrix V(R),
which replaces ¥(R) in eq. (4.17):

d2
[]IdR2 + @(R)} V(R) = 0. (4.19)
The columns of W(R) span the whole space of initial derivatives and, thus,
the correct vector wavefunction ¢ (R) is defined by some linear combination
of those.

Numerical solution of Eq. (4.19) can be obtained using the Numerov
method, which requires the equally spaced grid {Rx,k = 0,..., K} to be
chosen. When the grid is set, the wavefunction matrix W(R) can be calculated
using the three-points recursion relation:

[]I — Tk+1]\11k+1 — [2]1 + IOTk]\I/k + [H — kal]q}kfl =0, (420)
where ¥, = U(Ry), and
AR?
Ty = =5 Q(Ry) (4.21)

with AR being the grid spacing and the index k& runs from 0 to K. Let us
define the following matrices

W, = I—T;, (4.22)
Fr, = WU, (4.23)

Substitution of Fy into Eq. (4.20) gives
Fri1 — UpFy +Fr_qy =0, (4.24)
where Uy = 12W,;1 — 10I. Now defining the ratio matrix as
Ry, = Fp i Fy? (4.25)
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and substituting it into Eq. (4.24) we arrive at the two-point renormalized
Numerov recurrence
R, =U; - R, (4.26)

The inward solution of Eq. (4.19), when the integration starts at the outer
boundary Ry and continues to Ry, can be obtained using a similar relation

Ry, = Uy — R}, (4.27)
where R
Ry, = Fp 1 F ' (4.28)
The initial conditions for Eqs. (4.26) and (4.27) are given by
Ry = Ry = 0. (4.29)

Those can be used for all cases, except when the second derivative of the
wavefunction is not equal to zero at the boundaries. A detailed discussion of
that issue and possible solutions can be found in Ref. [39].

From Eq. (4.19) the bound state energies can be obtained by an itera-
tive procedure, which is based on counting nodes of the wavefunction. If
eigenvalues are sorted in ascending order, and each of them is labeled by a
vibrational quantum number v then, according to the oscillation theorem,
the corresponding wavefunction has v nodes. Johnson [39] defined the node
of a multichannel wavefunction as a point at which det |U(R)| = 0. Thus,
if there is a node between two adjacent grid points then in terms of the R
matrices used in the renormalized Numerov method the corresponding con-
dition reads det |Rg| < 0. In order to avoid miscounting when there is more
than one node per grid step, the ratio matrix (4.25) is diagonalized at every
grid point and the number of its negative elements is tracked.

The procedure of finding the energy of the n-th bound state includes the
following steps:

1. Define the energy interval (Ej, E},), which contains the desired eigen-
value.?

2. Using Eq. (4.26), construct the outward solution at the trial energy
E = (E, + E;)/2 and count the nodes of the wavefunction.

3. If the node count is greater than n, then set Ej = FE else set k) = F.

4. Repeat steps 2 and 3 until the desired convergence is reached.

2The obvious interval, which contains energies of all bound states of the system is from
the bottom of the potential to the dissociation limit.
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The procedure above is general and will converge to correct energies even
when the system has degenerate bound states.

In order to calculate the wavefunction, the inward and outward solutions
of Eq. (4.19) are constructed first. The proper bound state wavefunction and
its first derivative must be continuous. The alternative requirement is that
the inward and outward solutions are equal at two adjacent grid points,

U,(Ry)-0=Y;(Ry)-i=¢(Ry), (4.30)
‘I’o(RmH) 0= ‘I/i(RmH) 1= w(RmH), (4~31)
where subscripts o/7 mark the outward and inward solutions and o and i are

some unknown vectors. Using Eqgs. (4.22)-(4.23) the same conditions can be
written as

F,(Rp)-0=Fi(Rp) - i=f(Ry), (4.32)
FO(Rm+1) c0 = Fi(Rm+1) -i= f(Rm—i-l)a (433)

where
£(Ry) = [I— Toulto(Ron). (4.34)

Substituting the definitions of the ratio matrices (4.25) and (4.28) into
Eq. (4.33) gives

RyF,(Ry) -0 =RL Fi(R,,) - i. (4.35)
Finally, combining Egs. (4.32) and (4.35) we obtain the following equation
for the vector f(R,,)

R, — R f(R,,) = 0. (4.36)

The above equation is the eigenvector problem. The eigenvalues of the matrix
R, _R;ﬁu are calculated at every point and the matching point R, is chosen
as the one at which the eigenvalue closest to zero is found. When f(R,,) is
known the vectors f(Ry) are obtained as

f(Ry) :]R,Zlf(RkH), k=m-—1,m—2,...,0 (4.37)
f(Ry) = R;YH(Ry1), k=m+1,m+2,.., K (4.38)

and the corresponding bound state wavefunction ¢ (Ry) is calculated using
Eq. (4.34).

The main advantage of the described renormalized Numerov method is
that the eigenenergies can be calculated with an arbitrary precision, which
is set in advance. This is especially useful when the system has bound states
very close to (within 1 ecm™) the dissociation limit. Also, the method nat-
urally allows calculation of a subset of states within a certain energy range.
As drawbacks we should mention that it gives only one state at a time and
relatively dense spatial grids are required to perform accurate calculations.
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4.2 Continuum states

In the present thesis the calculation of the continuum wavefunctions was
done only for the single-channel problems, and the method is described below.
We are looking for solutions of the time-independent Schrodinger equation

HY = FVU, (4.39)

which correspond to positive energies 3. The Hamiltonian operator in spher-
ical polar coordinates is given by

n o 7

H=— R V(R). 4.40
2uR OR? +2MR2+ (F) (4.40)

Here V(R) is the potential energy function and ¢ is the orbital angular mo-
mentum operator:

- 1 0 0 1 9?
P=-0|——(sinf= | + ——-=|. 4.41
Lmeaa <Sm ae> T 2 H@gb?] (4.41)
It is a well-known [23] that the eigenfunctions of the Hamiltonian (4.40) can
be expressed as a product of the radial and angular parts:

\PElm(Rv 0, ¢) - wEZ(R)YZm(a ¢)’ (442)

where Y, (0, ¢) are the spherical harmonics [41]. Substitution of (4.42)
into (4.39) gives the radial equation for ¥ g,(R). Asymptotically, when the
potential V(R) is negligible, it reduces to the free-particle Schrodinger equa-
tion:

dR? " RdR R?
where k = —VQ;L‘E Using the substitution p = kR, Eq. (4.43) can be rewritten

as
2
(d NEX W; ”) Yie(p) = 0. (4.44)

The last equation is the spherical Bessel equation, particular solutions of
which are known to be the spherical Bessel and the spherical Neumann func-
tions:

< > 2d  +1) N k2> pe(R) = 0, (4.43)

jelp) = (27;) Jess(0) (1.45)

™

mip) = -0

=) sl (4.46)

31t is assumed that the energy is set to be zero at the dissociation limit.



4.2. Continuum states 23

and J,(p) is the ordinary Bessel function of the order v [42]. Thus, the radial
wavefunction is given by the linear combination:

VYie(R) = Beje(kR) + Cony(kR). (4.47)

The coefficients B, and C, can be complex, but their ratio must be real for
hermitian Hamiltonians. Using the asymptotic expressions for j,(kR) and
ne(kR) we can write

oo 1 ) l 1
Yo R) = R |:Bg sin (kR — ;) — Cycos (kR — ;)] , (4.48)

Introducing the quantities A, and d,, such that

Bg = Ag COS (5@, (449)
Og = —Ag sin (Sg, (450)
Eq. (4.48) reduces to
oo Ay 128

wEg(R) R é sin <]€R ) + (Sg) , (451)

where o
0y = arctan <—£> . (4.52)

By

The quantity &, is called the phase shift and characterize the strength of the
scattering.

The radial part of the continuum wave function can be calculated by nu-
merical integration of Eq. (4.43) using the Numerov method [43]. However,
to get the correct normalization, knowledge of the phase shift is required.
The numerical calculation of the phase shift is done in a few steps. First,
Eq. (4.43) is numerically integrated to the point Ry, at which the wavefunc-
tion is assumed to have asymptotic behavior. # Then, the integration is
continued to the point R;, where the wavefunction equals zero. At this point
the trial phase shift is calculated using Eqgs. (4.47) and (4.52)

§; = arctan ( i‘f{;j{%) . (4.53)

Then, Eq. (4.43) is integrated to the next point, at which the wavefunction
vanishes R;,1, and the new phase shift §;;; is calculated in the same way.

4The location of such a point strongly depends on the form of the potential and should
be found for the particular calculation.
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Figure 4.1: Schematic effective potential energy diagram. For a collision
energy E the classical turning points are shown by small letters.

The procedure is repeated until the set of phase shifts {d;} converges to the
final value. Finally, the integrated wavefunction is normalized according to

Yre(Ro) * N = ji(kRy) cosd — nyg(kRg) sin d, (4.54)

where N is the normalization constant.

4.3 Quasi-bound states

In order to apply the Breit—Wigner analysis to compute the resonance
contribution to the radiative association rate coefficient (3.16) the parame-
ters of quasi-bound states (which manifest themselves in the cross section
as resonances) should be known. In the present thesis such parameters are
calculated using Le Roy’s LEVEL program [44], in which the Airy function
boundary conditions are implemented to obtain the quasi-bound state wave-
functions. A short summary of the method is given below and for additional
details and explanations the reader is referred to Ref. [45].

In this section we will consider the effective potential with a centrifugal
barrier, which has three classical turning points (see Fig. 4.1). The radial
wavefunction ¢ g¢(R) of a quasi-bound state with the energy F and the orbital
angular momentum quantum number £ obeys the equation

(5 +2 — W) vt =, (4.55)
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where k is defined in section 4.2 and the effective potential is given by

_ 2uV(R) N ((l+1)

ViR) = Fo2 S

. (4.56)

Using the semi-classical approximation the wavefunction ¢ g¢(R) in the
asymptotic region (R > ¢) can be written as [45]

) ~ (cre]i [“rmar

R
+C" exp [—z/ kg(R)dR:|> ., (4.57)
where ky(R) = \/k? — Vi(R). The coefficients C" and C” satisfy the equa-

tions:
o4 B 1 2# eié
( C// ) - 5 WﬁQk < e_l'(s ) (458)

with the semi-classical phase shift § given by
-9 _

§ = arctan(e ?" tanay) + 5 %, (4.59)
b
0
o = /kg(R)dR—;(b. (4.60)

Here v, 6, ¢ are phase integrals over different parts of the effective potential.
The main difference between quasi-bound and truly continuum states is

in the amplitude of the wavefunction in the region between a and b turning

points. It was shown [45] that this amplitude reaches its maximum when

ap=m (v + ;) . (4.61)

Thus, Eq. (4.61) is the semi-classical quantization conditions, where v is the
vibrational quantum number assigned to the quasi-bound level. In order to
use this equation one needs to know values of the phase integrals v, 8, ¢. One
way to determine them is to use the Airy functions boundary conditions.

For an energy E well below the top of the centrifugal barrier, where the
turning points a, b and ¢ are well separated, at the outermost turning point
Vi(R) can be approximated by a straight line

dVi(R.)
dR

Vi(R) =k*— (R—c¢) (4.62)
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Then the asymptotic form of the radial wavefunction ¢ g,(R) can be expressed
in terms of Airy functions as

z

Yie(R) ~ <I€?(R)>i <D1Ai(—z) + DQBi(—z)), (4.63)

where Ai(—z), Bi(—z) are the Airy functions of the first and second kind,
D, and D, are distance independent coefficients [45] and

1
dVi(R.) |3
=(R-c .

s= (R0 |

Using the same linear approximation for V;(R) at the second turning
point allows for construction of a similar form of the radial wavefunction
in the region (a,b). Matching it to ¥ g(R) given by Eq. (4.63) gives semi-
classical expressions for the phase integrals:

v = /bc |k¢(R)| +1In2, (4.65)

0=¢=0. (4.66)

Together Egs. (4.60), (4.61) and (4.66) allow us to determine the energies
Ey, of the quasi-bound levels.

When the energies are known the tunneling widths (I'ji") are calculated
as [46]

(4.64)

E -1
i = 2efe(Eu)] (52 ) (4.67)
where the explicit form of the function wle,(F)] is defined in Eq. (3.7) in
Ref. [46]. The radiative widths I'® are obtained using Eq. (3.17), where the
Einstein coefficient Ag,e, is calculated from the transition dipole moment
D(R), the corresponding bound state wavefunction 1y, and the quasi-bound
state wavefunction in the region (a,b).

The method gives highly accurate results for the parameters of the low-
lying quasi-bound levels and for the levels close to the top of the centrifugal
barrier the inaccuracy in width is estimated to be 10-20% [45]. Unfortunately,
the method does not work for broad resonances just above the centrifugal
barrier.

4.4 L’-type methods for the calculation of
cross sections

A typical calculation of the radiative association cross section within the
perturbation theory formalism requires the computation of the bound and
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scattering wavefunctions (corresponding numerical methods are described in
Sec. 4.1 and 4.2) and the matrix elements of the dipole moment operator
between them. An alternative approach which eliminates the necessity of
solving the scattering problem relies on non-hermitian quantum mechanics.
In such an approach the Hamiltonian operator is modified by the addition
of a complex absorbing potential (CAP) or by the complex scaling (CS) of
the reaction coordinate and an L? method (such as DVR) is used to obtain
a discrete set of eigenstates with complex eigenvalues:

<xifu, E, — Zn) .
2

Those eigenstates can be used instead of the continuum states in calculations
of the dipole operator matrix elements in Eq. (3.1).

L2-type methods were successfully applied for calculations of the posi-
tions and widths of resonances [47], to model photodissociation [48, 49] and
radiative association [26] processes. In Paper V the CAP method was applied
to study the role of non-adiabatic couplings in radiative association of C(*P)
and N(*S) atoms and here a brief summary is presented.

The square of the dipole operator matrix element in Eq. (3.1) can be
written as [48]

(Wit DI par) [ = [(@rsars]€GT(E)DIW yarw) |2, (4.68)
where E; = E + V,(c0) is the total energy of the system, ®,, ;g is defined
by the asymptotic boundary conditions and

. _ 1
GH(E) = lim ———— (4.69)
e~oo [ +je — H

is the Green operator. The key idea of the CAP method is to use the modified
Green operator in Eq. (4.68)

GH(E) = T (4.70)

where H is obtained from the Hamiltonian operator by adding a complex
absorbing potential: .
H=H-iW, (4.71)

where W is a real positive function of R. Thus, Eq. (4.68) transforms to

{018 DI a2 = [(Prsar | WG (E)D| ) 2. (4.72)
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As noted in the Ref. [48] adding a CAP to the Hamiltonian operator is
equivalent to interpreting the formal convergence parameter € in Eq. (4.69)
as a coordinate dependent operator.

The spectral resolution of the Green operator (4.70) can be expressed in
terms of the eigenfunctions of the modified Hamiltonian H:

~ \Tj u)(\NPJ]\/[u’
GHE :§ LERY Mul 4.73
(E1) B, — Ej, + T, (473)

u

It should be noted that the proper normalization of U JMu Tequires the use
of the so-called C-product [47]:

(B nta[ B ontr) = (T[T yapar) = / UonraUnwdV = S (4.74)
174

Substitution of Eq. (4.73) into Eq. (4.72) gives the working formula for the
matrix elements of the dipole operator

. . . 2
Z (Prsni 2l WY sas) (W g asu | DI g agrer)

U, e DI ) = :
[(Woare DI g Ei— Ept il

(4.75)

u

If all initial channels of the system are asymptotically degenerate and we
choose V,00 = 0, i.e. E; = E, then Eq. (4.75) can be simplified to the
following form [26, 48]

U 10| DI yiag )2
E— EJu + %FJU .

~ 1
(W2l DI g ) [* = —;Imz ( (4.76)

In the presented approach the complex absorbing potential (CAP) is basi-
cally a mathematical tool, which is used to modify the asymptotic behavior
of the wavefunctions corresponding to the continuum spectrum. The only
requirement imposed on the CAP is that it does not perturb the dynamics of
the system in the interaction region and its actual functional form is, other-
wise, arbitrary. In contrast, in the optical potential (OP) method described
in Sec. 3.1.2 the imaginary potential is meant to alter the dynamics of the
system and penetrates the interaction region. However, the form of OP is
chosen in a specific way which mimics the radiative decay by spontaneous
emission.



Chapter 5

Summary of included papers

The research presented in this thesis is based on Papers I-V, which are
included in the printed version. Due to this fact, in the current chapter
merely an abstract and highlights of the obtained results are given. For full
details the reader is referred to the corresponding papers at the end of this
thesis.

5.1 Diatomic systems

In Papers I-IV the formation of the CN, SiN, SiP and CO molecules
through radiative association of the corresponding atoms in their ground
electronic states is studied by the methods described in Chapter 3. In all
cases the Born-Oppenheimer approximation is employed. The considered
molecules possess a certain astrochemical interest and their formation rates
are of importance [4, 50-54] and, thus, the emphasis is on the calculation of
the rate coefficients.

Paper I

In Paper I the formation of the CN radical in the two lowest electronic
states X2?X% and A?II through radiative association of C(*P) and N(*9)
atoms is investigated using the PT and SC approaches. This process can
occur through four reactions:

C(*P) + N(*S) — CN(A%I) — CN(X25T) + hy, (5.1)
C(P) + N(*S) — CN(A’M) — CN(AT) + hv, (5.2)
C(*P) + N(*S) — CN(X?%T) — CN(X*2) + hy, (5.3)
C(*P) + N(*S) — CN(X2%T) — CN(A2) + hv. (5.4)

Antipov, 2013. 29
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The cross sections for reaction (5.1) are calculated using the PT and SC
approaches and the radiative association rate coefficient is presented for
T =40 — 2 000 K. Comparison shows (Fig. 1 in Paper I) that the SC cross
section fits the baseline of the PT one well and, thus, the former can be
used to determine the direct component of the rate coefficient. The obtained
direct contribution (Table I in Paper I) is in good agreement with the results
of the SC study published previously by Singh and Andreazza [8]. The res-
onance contribution was found to be significant for T < 2 000 K. At room
temperature it amounts to 25% of the total rate constant. The overall effect,
however, is much less important than for hydrogen-containing species (see
e.g. [7,9, 13]).

The radiative association through reactions (5.2)-(5.4) is considered and
the corresponding PT cross sections are computed. Comparison of all four
cross sections establishes that the baseline for the A%l — X?%* transition is
several orders of magnitude higher than for the other transitions. Therefore,
the contribution to the radiative association rate coefficient from the other
transitions is expected to be negligible.

It should be noted that the calculated direct component of the rate con-
stant is based on the unrestricted transition rate (3.6) rather than on the
restricted one (3.12). However, since the rate coefficient is not calculated for
T > 2 000 K, it should not affect the results of the study.

Paper II

Paper II is devoted to comparison of various methods for calculations of
the radiative association cross sections, which are described in Chapter 3.
The advantages and limitations of each approach are presented and those
are applied to study the formation of SiN through the following transitions

Si(*P) + N(*S) — SiN(A%I) — SiN(X?%H) + hy, (5.5)
Si(*P) + N(*S) — SiN(X2%T) — SiN(A2I) + hv. (5.6)

A detailed comparison of peak heights of some long-lived (I'''"" < I'ad)
resonances (Table III in Paper II) shows that the results of the OP method
are in a good agreement with the predictions of the Breit-Wigner theory,
while the PT approach overestimates the peak heights by one-two orders
of magnitude. In the case of resonances for which the tunneling through
centrifugal barrier is the dominant channel of decay, i.e. T'*' > I"ad  a]]
three approaches predict similar resonance heights. Unfortunately, the OP
method still cannot be used directly to obtain the radiative association rate
coefficient, due to numerical reasons (see discussion in Sec. 3.2).
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The rate coefficients for reactions (5.5) and (5.6) are calculated for 7' =
10 — 20 000 K (Fig. 5 in Paper II). A rapid decrease in the rate constant for
formation of ground state SiN is observed above 2 000 K which was not seen
previously [55] and which is a consequence of using the restricted transition
rate (3.12) in the simulation of radiative association. The A?Il — X237
transition is shown to be the main formation channel with the total rate co-
efficient being roughly an order of magnitude larger than for X2+ — AZII.
The resonance contribution to the rate constant of reaction (5.5) monoton-
ically decreases with temperature; it is 35% at 7' = 10 K and is negligible
for T > 500 K. For the X?¥* — AZII transition the resonances add up to
15 — 25% to the total rate constant for all considered temperatures.

Paper 111

In Paper III formation of the SiP radical through radiative association
of Si(®P) and P(*S) atoms is investigated. The following four reactions are
considered

Si(*P) + P(*S) — SiP(A?X) — SiP(X?M) + hv, (5.7)
Si(*P) + P(*S) — SiP(X?II) — SiP(A?SH) + hu, (5.8)
Si(*P) + P(*S) — SiP(a'Il) — SiP(b*ST) + h, (5.9)
Si(*P) + P(*S) — SiP(b*2t) — SiP(a'Il) + hv. (5.10)

The radiative association cross sections for all reactions are calculated using
the SC and PT methods. The PT cross sections show the same qualitative
behavior: complex resonance structure with baselines showing a monotonic
decrease up to certain threshold energies above which the cross sections decay
fast. The results of the SC calculations reproduce the quantum mechanical
baselines for all studied transitions.

Radiative association rate constants are calculated in a wide temperature
range 10—20 000 K. Comparison of the direct rate coefficient for reaction (5.7)
with the results of the previous semi-classical study [56] reveals a strong
disagreement between the two (Fig. 3 in Paper III). While no explanation
is found, the author is confident in the results of Paper III, since the direct
contribution is calculated from the SC cross section, which agrees well with
the baseline of the PT cross sections. Moreover, reasonable agreement for
T = 300 — 2 000 K is found between the SC rate coefficients for the a*II —
V'Y T transition (Fig. 4 in Paper I1I). The difference at higher T is due to the
use of the restricted transition rate in the calculations.

The X?II — A%Y* transition is shown to have the biggest rate coefficient
and, thus, to be the main channel for formation of SiP. The corresponding
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resonance contribution is as big as the direct one at 10 K and monotonically
decreases with increasing temperature. For the A2X T — X?2II transition the
resonances add up to 10 — 40% of the total rate constant at all considered
temperatures. The radiative association rate coefficients for formation of
SiP in the quartet spin states (Fig. 4 in Paper IIT) show the same features as
those for the doublets, while being generally smaller by a factor of 2-3 than
those for transitions between the doublet states of the same symmetry.

Paper IV

Formation of carbon monoxide (CO) in its ground electronic state X1XT
by radiative association is discussed in Paper IV. Previous theoretical stud-
ies [11, 25] showed that the two most important formation channels are

CEP) + O(®P) — CO(ATI) — CO(X'S™) + hv (5.11)

and
C(*P) + O(*P) — CO(X'ST) — COX'ST) + hu. (5.12)

The electronic potential of the Al state has a barrier of 636 cm™! ~ 79 meV,
which determines the low-energy behavior of the cross sections for reac-
tion (5.11). For the energies below the barrier top the SC cross section
is zero, but the PT cross section has a finite magnitude coming from the
quantum mechanical tunneling through the barrier (Fig. 2 in Paper IV). The
difference between the PT and SC cross sections at high collision energies is
attributed to the non-Franck—Condon transitions.

The rate constant for reaction (5.11) is calculated for 7' = 10—20 000 K. It
is shown that the rate coefficient is dominated by the resonance contribution
at temperatures below 600 K and it amounts to 30% at T'= 1 000 K (Fig. 4a
in Paper IV). The contribution from the X'¥* — X'3* transition is found
to vary from small (7" = 10 K) to negligible (7" > 20) K.

Based on the obtained results it is obvious that the SC theory does not
predict the correct rate constant for the radiative association through the
AT — X!'37* transition even at relatively large temperatures. The contri-
bution from the quantum mechanical resonances should be included in order
to get correct qualitative behavior of the rate coefficient as a function of
temperature.

5.2 Special aspects of the process

In the present section some special aspects of the radiative association
process, which are left untouched in the majority of the theoretical studies
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performed so far and which caught the attention of the author during his
time as a doctoral student, are discussed.

5.2.1 Isotope effect

In the previous section it was discussed that the radiative association
rate coefficient for the formation of CO through the Al — X3 transition
at temperatures below 600 K is dominated by the resonance contribution.
Those resonances arise due to the quantum mechanical tunneling through
the barrier on the Al potential. Tunneling is known to depend strongly
with the reduced mass, thus a pronounced isotope effect in the corresponding
rate constant could be expected.

In Paper IV the formation of the 2CO and ¥CO isotopologues through
reactions (5.11) and (5.12) is investigated. Comparison of the cross sections
reveals that the main differences are in the resonance structure of the PT
cross sections for the A'Il — X!'37* transition at collision energies smaller
than the barrier height (Figs. 2 and 3 in Paper IV). The difference is caused
by the change in the reduced mass of the system, which affects the vibrational
spacing and, ultimately, the resonance structure.

The observed difference in the cross sections translates to the rate coeffi-
cients (Fig. 4 in Paper IV). Thus, it is shown that the presence of a barrier
on the potential energy curve of the A'II electronic state leads to different
formation channels for the isotopologues of CO at low temperatures. In the
case of 2CO the Al — X!'¥+ transition is the dominant formation channel
for T = 10 — 20 000 K. In contrast, for ¥CO at T' < 36 K the rate coefficient
for reaction (5.12) is higher than that for reaction (5.11), which is explained
by the difference in the resonance contribution between the isotopologues.

Figure 5.2.1 shows the total (summed over various electronic transitions)
radiative association rate coefficients for the formation of the considered iso-
topologues. As can be seen from the figure for 7" < 100 K the overall rate
constant for formation of 12CO through radiative association is much higher
than that of 3CO. Thus, in cold astronomical environments, where carbon
monoxide is mainly formed by radiative association, depletion of *C in CO
should be expected®.

5.2.2 Non-adiabatic couplings

Paper V presents an attempt to go beyond the Born—Oppenheimer ap-
proximation in studies of the radiative association process. In this paper

!By the time of publication of this thesis the author is not aware of any experimental
observation of the isotope effect in radiative association.
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Figure 5.1: Total radiative association rate coefficient for the formation of
12C0 and 3CO.

the effects of spin-orbit and rotational couplings on the radiative associa-
tion of C(®P) and N(19) are investigated. Only couplings between doublet
electronic-rotational states of the CN radical are included, which leads to a
6-state model of the process. The main emphasis is placed on the low-energy
collisions.

The spin-orbit couplings, the potential energy curves and dipole moments,
are obtained using ab initio calculations. The CASSCF/MRCI method with
full valence active space (9 electrons on 8 orbitals) is used. The rotational
couplings are obtained by the transformation of matrix representation of the
orbital angular momentum operator ¢? (nuclear rotation) from the Hund’s
case (e) to Hund’s case (a) basis set. The description of the procedure is given
in Paper V. The calculation of the cross sections is carried out within the
time-independent formalism using the L? method with the complex absorbing
potential (CAP) as described in Sec. (4.4).

The radiative association cross sections are computed for each of the
initial channels (Fig. 5 in Paper V). Careful investigation shows that the
channel-specific cross sections have similar patterns in their resonance struc-
tures (Fig. 6 in Paper V) and the origin of these is explained.

The total energy-dependent rate coefficient for the process is calculated
(Fig. 7 in Paper V). Comparison with the results obtained ignoring the cou-
plings show two main features: an increase of the baseline of the energy-
dependent rate coefficient at low collision energies and significant increase in
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the number of resonances. The origins of both features are related to the
splitting of the asymptotic energy levels in the system caused by the spin-
orbit couplings. In general, the observed behavior of the energy-dependent
rate coefficient is expected to have a strong influence on the temperature-
dependent rate coeflicients for the process at low and moderate temperatures.

5.3 Summary

From the results reported in Papers I-IV, an overview of which is pre-
sented above, certain conclusions can be made about the formation of di-
atomic molecules by radiative association. For all considered molecules, the
high-energy cross sections have a drop in magnitude, which leads to the de-
crease of high-temperature rate coefficients. This is caused by the fact that
at high collision energies the Franck-Condon (a.k.a vertical) transitions lead
to the continuum of the final electronic state rather than to molecule for-
mation in a bound level. Thus, it is expected to be a general feature of the
diatomic radiative association.

At low collision energies, when the initial electronic state of approach
does not have a potential barrier (as for CN, SiN and SiP) the contribution
from the direct (non-resonant) process prevails even at temperatures as low
as 10 K and the SC approach provides a good estimate for the rate coefficient
of the process. However, this statement applies only to systems which do not
include hydrogen atoms. For the hydrogen containing species it was shown
that at low temperatures the resonance contribution could be several times
higher than the direct one (see e.g. [7, 9, 13]).

The situation is different if the barrier is present on the initial potential
(CO). In this case the contribution from the quantum mechanical resonances
becomes crucial to get the correct description of the process even at relatively
high temperatures (600 K in the case of CO). Moreover, in such situation a
pronounced isotope effect in the rate constant can be expected.
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Chapter 6

Conclusion and outlook

Everything is going to be okay
at the end. If it is not okay, it is
not the end.

Common believe

Formation of small molecules through radiative association is an astro-
chemically relevant process, which is actively studied via theoretical simu-
lations. The research presented in this thesis sheds light on some common
features of radiative association of some non-hydrogen containing diatoms.
The author also hopes that some findings and conclusions drawn from those,
which are described in the included papers, contributes to a better under-
standing of the radiative association process in general.

Despite a considerable progress in simulations of radiative association
there are still questions left to be answered even in the case of diatomic
systems. Here the author would like to outline what are, in his opinion, the
most prominent directions of research in the field of radiative association.

1. Non-adiabatic dynamics
In Paper V it was shown that the inclusion of non-adiabatic couplings
leads to substantial changes in the low-energy part of the radiative
association cross section, which in turn should affect the rate coefficient.
At present the quantitative effect on the rate constant has not been
investigated. Since radiative association can be important at relatively
low temperatures, additional study is required.

2. Method development
As discussed in Paper II a standard approach to the calculation of the
radiative association rate coefficient for formation of a diatomic system

Antipov, 2013. 37
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is to use the SC method to obtain the direct contribution and account
for the resonances through the Breit—Wigner theory. However, the dis-
cussed SC method has serious limitations: it can only describe radiative
association which involves transition between different electronic states.
Also, in the current formulation there is no straightforward generaliza-
tion of the theory to treat polyatomic systems. Thus, an additional
work on the extension of the SC approach is required.!

3. Radiative association in polyatomic systems

As mentioned in Sec. 2.1 radiative association of polyatomic molecules
is important in dense molecular clouds and, thus, the rate constants of
this process are of interest in astrochemistry. However, even a rigorous
quantum mechanical study of triatomic systems is a complicated task
and only few calculations exist [14, 16, 24]. Currently, the author is
working on radiative association of H(2S) and CO(X'X*) and some
details of the project are given below.

6.1 Towards radiative association of polyatomic
molecules: H(2S)+CO(X'ZT)

Calculating the quantum mechanical PT cross section for radiative as-
sociation requires the bound and scattering wave functions to be computed
for each value of the total angular momentum J of the system. In addi-
tion, parameters (energies and widths) of the resonances should be obtained
in order to estimate their contribution to the rate constant. In the case of
triatomic systems each of these tasks can be non-trivial and demands a seri-
ous effort. Moreover, accurate potential energy and dipole moments surfaces
are necessary in order to get reliable results. The combination of those fac-
tors explains why only a few studies of atom-diatom radiative association,
which are based on rigorous quantum mechanical treatment, are available in
the literature. Moreover, all published work [14, 16, 24] deals with van der
Waals complexes and a study on formation of a chemically bound triatomic
by radiative association is yet to be seen.

As one of the ongoing projects, the author plans to continue his research
on the formation of the HCO radical in its ground electronic state through
the following reaction:

H(’S) + CO(X'E") — HCO(X?A") — HCO(X?A') + hu. (6.1)

LCertain progress in this area has been achieved recently in our group [57].
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Since CO is the second most abundant (after Hy) molecule in the interstellar
medium this reaction is of the astrochemical interest.

For the purpose of studying the radiative association of HCO, a new
potential energy (PES) and dipole moment surfaces were developed in our
group [58]. The ab initio calculations were performed with a coupled cluster
method with both single and double excitation terms and perturbed triple
corrections (CCSD(T)) together with a large diffuse correlation consistent
basis set aug-cc-pVQZ. The potential energy surface demonstrates the pres-
ence of a high barrier (= 0.15 eV) and, thus, quantum mechanical effects are
expected to be extremely important in reaction (6.1).

At the present stage, the bound state wavefunctions and corresponding
energies have been obtained on new PES. In calculating the bound states the
total wavefunction of the system is expanded in the scattering basis:

Ui = Z;@ijjz(R)‘JMjw (6.2)
jl

where 1,;/(R) are the radial wavefunctions and

[TMly = (T M |jmlmi) | jmg) )

mimy

are the rotational basis functions. The radial wavefunctions v, (R) are
calculated using the renormalized Numerov method as described in Sec. 4.1.2.

Preliminary calculations show that new PES supports at least 4 van der
Waals states for J = 0, which have not been observed before on other existing
potentials. Due to the high barrier, at low temperatures two competing
paths would exist for radiative association: tunneling through the barrier
and formation of a van der Waals complex. Which of these path plays a
dominant role in the process is yet to be seen.
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