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Astrocytes, one of the most abundant and heterogeneous cell types in the central 

nervous system, fulfill many important roles in the healthy and injured brain. This 

thesis investigates the role of astrocytes in the neurogenic niche and the astrocyte 

response in stroke and neurotrauma. Using gene expression profiling on a global 

level as well as on a single-cell level and applying it to disease and transgenic models 

in vivo and in vitro, we have addressed molecular bases of these responses and 

molecular signatures of the subpopulations of astrocytes. Following injury, stroke or 

neurodegenerative diseases, astrocytes upregulate intermediate filament 

(nanofilament) proteins glial fibrillary acidic protein and vimentin along with many 

other genes, in a process referred to as reactive gliosis. Results presented in this 

thesis show that mice with attenuated reactive gliosis developed larger infarct 

volumes following experimental brain ischemia, compared to controls, implying that 

reactive gliosis is neuroprotective. Using astrocyte and neurosphere co-cultures, we 

show that astrocytes inhibit neuronal differentiation through cell-cell contact via the 

Notch signaling pathway and that intermediate filaments are involved in this process. 

We found that even a very limited focal trauma triggers a distinct brain plasticity 

response both in the injured and contralesional hemisphere and that this response at 

least partly depends on activation of astrocytes. Finally, using single-cell gene 

expression profiling in vitro and in vivo, we show that the astrocyte population is 

highly heterogeneous, we attempt to define astrocyte subpopulations in molecular 

terms, and we demonstrate that astrocyte subpopulations respond differentially to a 

subtle neurotrauma both in the injured and contralesional hemisphere. 
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intermediate filaments, nanofilaments, GFAP, vimentin, neurogenesis, neural 

stem/progenitor cell, single-cell gene expression profiling 

ISBN: 978-91-628-8702-5                                                                 Gothenburg, 2013 

  



 

This thesis is based on the following studies, referred to in the text by their 

Roman numerals. 

I. Li L, Lundkvist A, Andersson D, Wilhelmsson U, Nagai N, Pardo 

AC, Nodin C, Ståhlberg A, Aprico K, Larsson K, Yabe T, Moons L, 

Fotheringham A, Davies I, Carmeliet P, Schwartz JP, Pekna M, 

Kubista M, Blomstrand F, Maragakis N, Nilsson M, Pekny M.   

Protective role of reactive astrocytes in brain ischemia.  

J Cereb Blood Flow Metab. 2008 Mar;28(3):468-81. 

II. Wilhelmsson U, Faiz M, de Pablo Y, Sjöqvist M, Andersson D, 

Widestrand A, Potokar M, Stenovec M, Smith PL, Shinjyo N, Pekny 

T, Zorec R, Ståhlberg A, Pekna M, Sahlgren C, Pekny M.   

Astrocytes negatively regulate neurogenesis through the 

Jagged1-mediated Notch pathway.  

Stem Cells. 2012 Oct;30(10):2320-9. 

III. Ståhlberg A, Andersson D, Aurelius J, Faiz M, Pekna M, Kubista M, 

Pekny M.  

Defining cell populations with single-cell gene expression 

profiling: correlations and identification of astrocyte 

subpopulations.  

Nucleic Acids Res. 2011 Mar;39(4):e24. 

IV. Andersson D, Wilhelmsson U, Nilsson M, Kubista M, Ståhlberg A, 

Pekna M, Pekny M.  

Plasticity response in the contralesional hemisphere after subtle 

neurotrauma: gene expression profiling after partial 

deafferentation of the hippocampus.  

Submitted 

V. Andersson D, Wilhelmsson U, Möllerström E, de Pablo Y, 

Puschmann P, Nilsson M, Pekna M, Ståhlberg A, Pekny M.  

Molecular definition of astrocytes in unchallenged and injured 

hippocampus, a single-cell gene expression study.  

Manuscript  



 

 

INTRODUCTION ................................................................................................ 1 

BACKGROUND ................................................................................................. 2 

Astrocytes ..................................................................................................... 2 

Intermediate filaments (nanofilaments) ........................................................ 3 

Reactive gliosis ............................................................................................. 4 

Genetic ablation of IFs in astrocytes ............................................................. 5 

RESULTS AND DISCUSSION .............................................................................. 6 

Paper I – Protective role of reactive astrocytes in brain ischemia ................ 6 

Paper II – Astrocytes negatively regulate neurogenesis through the Jagged1-

mediated Notch pathway............................................................................... 7 

Paper III – Defining cell populations with single-cell gene expression 

profiling: correlations and identification of astrocyte subpopulations. ......... 9 

Paper IV – Plasticity response in the contralesional hemisphere after subtle 

neurotrauma: gene expression profiling after partial deafferentation of the 

hippocampus ............................................................................................... 10 

Paper V - Molecular definition of astrocytes in unchallenged and injured 

hippocampus, a single-cell gene expression study...................................... 11 

ACKNOWLEDGEMENT .................................................................................... 14 

REFERENCES .................................................................................................. 17 

 

  



 

Aldh1L1 Aldehyde dehydrogenase 1 family, member L1 

BBB Blood brain barrier 

CNS Central nervous system 

ECL Entorhinal cortex lesion 

ETBR Endothelin B receptor 

GCL Granule cell layer 

GFAP Glial fibrillary acidic protein 

GS Glutamine synthetase 

IF Intermediate filament 

MCA Middle cerebral artery 

PCA Principal component analysis 

RT-qPCR Reverse transcription quantitative real-time PCR 

SGZ Subgranular zone 

SOM Self-organizing map 

SVZ Subventricular zone 

 

  



Daniel Andersson 

1 

Astrocytes, one of the most abundant cell type in the central nervous system 

(CNS)(Markiewicz & Lukomska, 2006), were for long believed to mainly 

provide architectural structure, nutrition and homeostasis in the healthy brain. 

This has changed and astrocytes are today attributed with many essential and 

controlling functions in the healthy as well as in the injured brain. They are 

known to control neuronal activity (Araque et al., 1999; Anderson & 

Swanson, 2000), induce neurogenesis from neural stem cells in the adult 

brain (Song et al., 2002), or act as a source of neural stem cells themselves 

(Buffo et al., 2008; Sirko et al., 2013). 

Following any injury to the brain, astrocytes become reactive and increase 

the expression of the intermediate filament (IF) proteins glial fibrillary acidic 

protein (GFAP), vimentin and nestin and alter the expression of many other 

genes, in a process referred to as reactive gliosis. This is thought to function 

as a way of quickly restoring the homeostasis of the brain, which is crucial 

for proper neuronal transmission to take place. In severe cases, reactive 

gliosis can create a glial scar which isolates the injured tissue, but later 

functions as a major inhibitor of regeneration. Depending on what triggered 

astrocytes to become reactive, reactive gliosis differs. Previous studies have 

shown that mice with astrocytes deficient in the two IF proteins GFAP and 

vimentin (GFAP
-/-

Vim
-/-

 mice)(Pekny et al., 1999a) show attenuated reactive 

gliosis, improved integration of neural grafts and neural progenitor cells 

(Kinouchi et al., 2003; Widestrand et al., 2007) and synaptic regeneration 

(Wilhelmsson et al., 2004).  

This thesis investigates the role of astrocytes in the neurogenic niche, their 

response to stroke and neurotrauma and addresses the astrocyte heterogeneity 

on a single-cell level. 
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Astrocytes, one of the most abundant cell type in the central nervous system 

(Markiewicz & Lukomska, 2006), were for long believed to mainly provide 

architectural structure, nutrition and homeostasis in the healthy brain. The 

last decades have shown that they fulfill many other important roles (Nilsson 

& Pekny, 2007; Oberheim et al., 2012).  

Classically, astrocytes were divided into protoplasmic or fibrous subtypes 

based on their anatomical location and cellular morphology. Using silver 

impregnation techniques protoplasmic astrocytes, spread throughout all grey 

matter, appear as cells with several main branches which in turn give rise to 

smaller processes. Fibrous astrocytes, on the other hand, located in all white 

matter, exhibit many fiber-like processes (Sofroniew & Vinters, 2010). They 

were for long treated as a homogenous group of cells, but are now 

acknowledged to be highly heterogenous (Matyash & Kettenmann, 2010; 

Zhang & Barres, 2010). Specialized subtypes of astrocytes have been 

characterized, including the Bergmann glia of the cerebellum and the Müller 

glia of the retina, based on morphology, as well as the expression of various 

proteins, physiological properties, function and response to injury or disease, 

(Emsley & Macklis, 2006; Zhang & Barres, 2010). Knowing the functional 

heterogeneity of astrocytes is essential as astrocytes are involved in almost all 

diseases of central the nervous system (Zhang & Barres, 2010).  

Due to the heterogeneity of the astrocytes, no perfect astrocyte-specific 

marker has been found. The expression of the intermediate filament (IF) 

protein glial fibrillary acidic protein (GFAP) has for long been the most 

useful marker to immunohistochemically identify astrocytes, but not all 

astrocytes in the healthy brain express GFAP. Other astrocyte markers, such 

as S100β and glutamine synthetase have similar shortcomings (Sofroniew & 

Vinters, 2010). Recently, the aldehyde dehydrogenase 1 family, member L1 

(Aldh1L1), also known as 10-formyltetrahydrofolate dehydrogenase (FDH), 

was suggested as a pan-astrocyte marker based on transcriptome gene 

profiling and in situ hybridization (Cahoy et al., 2008). 
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Astrocytes are essential for cell-cell communication in the neural tissue, 

being directly in contact with neurons, oligodendrocytes, microglia, as well 

as with endothelial cells and pericytes of blood vessels. Astrocytes, unlike 

neurons, cannot signal via action potentials. Instead, they are connected via 

gap junctions into syncytia and communicate through propagated waves of 

Ca
2+

 and other active substances (Parpura & Verkhratsky, 2012). In the 

human brain a single astrocyte can have up to two million synapses within its 

domain (Oberheim et al., 2009). Astrocyte cellular processes enwrap synapse 

terminals (Araque et al., 1999) and modulate neuronal activity by recycling 

molecules involved in neurotransmission (Anderson & Swanson, 2000), 

releasing gliotransmitters that regulate the activity of neighbouring cells, 

including neurons (Parpura et al., 1994; Schell et al., 1995; Beattie et al., 

2002). This concept of the ‘tripartite synapse’ was recently called into 

question as it appears only to occur in the immature brain (Sun et al., 2013). 

Astrocytes affect synapse plasticity by having an active part in the formation, 

maintenance and pruning of synapses (Ullian et al., 2001; Christopherson et 

al., 2005; Stevens et al., 2007; Kucukdereli et al., 2011). Astrocytes control 

cerebral blood flow (Zonta et al., 2003; Takano et al., 2006) and are thought 

to induce and maintain the blood brain barrier (BBB) properties in 

endothelial cells, which is essential for the regulation of the 

microenvironment to allow for reliable neuronal signaling (Abbott et al., 

2006). Astrocytes have also been shown to regulate neurogenesis by 

instructing neural stem cells to adopt neuronal fate (Song et al., 2002) and by 

acting as neural stem cells themselves (Doetsch et al., 1999; Buffo et al., 

2008; Sirko et al., 2013). 

The cytoskeleton provides the cell with structure and shape. Eukatyotic cells 

contain three kinds of cytoskeletal filaments: the microfilaments, the 

intermediate filaments (IFs) and the microtubules. Of these, the IFs are the 

least understood, partly due to having more than 70 different genes coding for 

IF proteins (Goldman et al., 2012) and are composed of different IF proteins 

depending on cell type, developmental and activity state of the cell (Fuchs & 

Cleveland, 1998). IFs have been shown to give the cell the means to 

withstand mechanical and non-mechanical stress, thus preserving cellular 

functions (Parry et al., 2007). IF dysfunction can result in various diseases, 
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such as epidermolysis bullosa simplex (EBS), caused by mutations in keratin 

IF proteins (Omary et al., 2004; Pekny & Lane, 2007). IFs also regulate cell-

adhesion, migration and function as signaling platforms (Jones et al., 1998; 

Lepekhin et al., 2001; Ivaska et al., 2007). 

Four different IF proteins are expressed in astrocytes: GFAP, vimentin, nestin 

and synemin. Their expression is dependent on developmental stage as well 

as astrocyte activity (Eliasson et al., 1999; Sultana et al., 2000; Jing et al., 

2007). Astrocyte precursors express vimentin, nestin and synemin. In 

maturing astrocytes vimentin expression is decreased while nestin and 

synemin are progressively replaced by GFAP (Pixley & de Vellis, 1984; 

Lendahl et al., 1990; Sultana et al., 2000). Following neurotrauma, stroke or 

neurodegenerative diseases, vimentin and nestin are re-expressed, as is 

synemin in some cells (Pekny & Nilsson, 2005; Jing et al., 2007; Luna et al., 

2010). 

A part of the response of the CNS to neurotrauma, stroke or 

neurodegenerative diseases is activation of astrocytes, a process referred to 

also as reactive gliosis or astrogliosis (Eddleston & Mucke, 1993; Nilsson & 

Pekny, 2007; Sofroniew & Vinters, 2010). It is thought to be an attempt of 

the CNS to quickly restore homeostasis. The classical hallmark of reactive 

gliosis is the upregulation of GFAP and vimentin in astrocytes (Pekny et al., 

1999b). Depending on the severity of the injury, the effects of reactive gliosis 

on the morphological level can range from slight, to moderate, to very 

prominent. In the first case, more cells show expression of GFAP (Sofroniew 

& Vinters, 2010). In more severe cases of reactive gliosis, GFAP and 

vimentin are upregulated and there is a typical hypertrophy of the cellular 

processes of astrocytes and re-expression of the IF proteins nestin and 

synemin (Eliasson et al., 1999; Jing et al., 2007); the IF network becomes 

very prominent, especially in the soma and main cellular processes (Pekny & 

Nilsson, 2005). In its most extreme form, reactive gliosis results in 

proliferation of astrocytes and demarcation of the injury via glial scar 

formation in an attempt to isolate it (Eddleston & Mucke, 1993; Sofroniew, 

2009), and constitutes a major impediment to axonal regeneration in the CNS 

(Ridet et al., 1997). Reactive gliosis is also accompanied by the alteration in 

the expression of many genes (Eddleston & Mucke, 1993; Zamanian et al., 
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2012) and this expression depends on the nature of CNS injury, suggesting 

that reactive gliosis is disease specific (Zamanian et al., 2012; Sirko et al., 

2013). 

One approach to study the role of astrocytes in health and disease is to 

genetically ablate GFAP and vimentin (Colucci-Guyon et al., 1994; Pekny et 

al., 1995; Eliasson et al., 1999). Mice lacking GFAP and/or vimentin develop 

and reproduce normally. Non-reactive astrocytes in GFAP
-/-

 mice are 

deficient in IFs as vimentin cannot self-polymerize, whereas reactive 

astrocytes in GFAP
-/-

 mice contain reduced amounts of IFs composed of 

vimentin and nestin (Eliasson et al., 1999; Pekny et al., 1999a). Reactive 

astrocytes in Vim
-/-

 contains reduced amounts of IFs, composed solely of 

GFAP into abnormally compacted IFs since GFAP and nestin cannot co-

polymerize and nestin does not self-polymerize into IFs (Eliasson et al., 

1999). Mice deficient of both GFAP and vimentin, GFAP
-/-

Vim
-/-

 mice, are 

devoid of astrocytic IFs (Pekny et al., 1999b) and show attenuated reactive 

gliosis and scar formation after neurotrauma (Pekny et al., 1999b). Compared 

to wildtype, GFAP
-/-

Vim
-/-

 mice show improved posttraumatic regeneration of 

neuronal synapses and axons (Menet et al., 2003; Wilhelmsson et al., 2004), 

and integration of neural grafts and neural progenitor cells (Kinouchi et al., 

2003; Widestrand et al., 2007), despite a more severe synaptic loss at the 

initial stage after neurotrauma (Wilhelmsson et al., 2004). 
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Astrocytes are believed to play a major role in the brain and spinal cord 

pathologies. Although it has never been directly proven, astrocytes are 

thought to exert a neuroprotective effect in stroke by shielding neurons from 

oxidative stress (Kraig et al., 1995). In the absence of a suitable experimental 

model, a direct proof has been lacking. To address the role of reactive 

astrocytes in stroke, we subjected GFAP
-/-

, Vim
-/-

, and GFAP
-/-

Vim
-/-

 mice, to 

experimental brain ischemia induced by middle cerebral artery (MCA) 

transection. After 7 days of ischemia, infarct volume was 2- to 3.5-fold larger 

in GFAP
-/-

Vim
-/-

 mice than in wildtype, GFAP
-/-

, or Vim
-/-

 mice, implying that 

the increased infarct size seen in the GFAP
-/-

Vim
-/-

 mice was a consequence 

of the absence of IFs in astrocytes. Endothelin B receptor (ETBR) expression 

by astrocytes in the injured CNS was proposed as one of the steps leading to 

astrocyte activation and reactive gliosis (Koyama et al., 1999). Whereas 

ETBR immunoreactivity was strong in cultured astrocytes and reactive 

astrocytes around the ischemic penumbra in wildtype mice and colocalized 

extensively with bundles of IFs, it was undetectable in the cytoplasm of 

GFAP
-/-

Vim
-/-

 astrocytes. Compared to wildtype, GFAP
-/-

Vim
-/-

 astrocytes also 

showed reduced ETBR-mediated inhibition of astrocyte gap-junctional 

communication which has been proposed to promote secondary expansion of 

focal injury via propagation of cell death signals or undesirable backflow of 

ATP from living to dying cells (Lin et al., 1998). In addition, in comparison 

with wildtype, GFAP
-/-

Vim
-/-

 astrocytes showed lower glutamate transport, as 

well as reduced expression of plasminogen activator inhibitor-1 (PAI-1), an 

inhibitor of the tissue plasminogen activator (tPA) which has neurotoxic 

effect in the ischemic penumbra (Sheehan & Tsirka, 2005). 

In summary, we have shown a neuroprotective effect of reactive gliosis in 

brain ischemia, which limits the extent of the infarct following MCA 

transection. The absence of IFs in reactive astrocytes seems to result in an 

altered gap junctional communication, and reduced glutamate transport. 
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In this study, we investigated the role of astrocyte membrane-associated 

factors in the regulation of neurogenesis. Adult neurogenesis is restricted to 

two specific neurogenic niches: the subgranular zone (SGZ) of the 

hippocampus and the subventricular zone (SVZ) of the lateral ventricles. 

Increasing evidence suggests an important role for astrocytes in the 

neurogenic niche as they share certain properties with neural stem cells 

(Laywell et al., 2000; Seri et al., 2001; Buffo et al., 2008) and create an 

environment conducive to neurogenesis (Song et al., 2002). Astrocytes 

regulate neurogenesis by the secretion of various factors of which several 

have been characterized (Lie et al., 2005; Barkho et al., 2006; Lu & Kipnis, 

2010), while the astrocyte membrane-associated factors have been far less 

studied (Song et al., 2002). Ablation of IF proteins GFAP and vimentin in 

mice has been shown to create an environment more permissive to 

transplantation of neural grafts or neural stem cells (Kinouchi et al., 2003; 

Widestrand et al., 2007) and increased axonal and synaptic regeneration 

(Menet et al., 2003; Wilhelmsson et al., 2004; Cho et al., 2005). In addition, 

neuronal differentiation of neural progenitor cells is increased when 

cocultured with GFAP
-/-

Vim
-/-

 astrocytes (Widestrand et al., 2007). Although 

the altered distribution of Wnt3 in GFAP
-/-

Vim
-/-

 astrocytes could be 

associated with changed secretion of this pro-neurogenic factor and thus 

explain this finding, it could also be explained by a direct cell-cell signal 

from astrocyte to neural stem/progenitor cells. 

We show that neurosphere cells plated on top of GFAP
-/-

Vim
-/-

 astrocytes 

showed enhanced neuronal differentiation compared to when plated on top of 

wildtype, GFAP
-/-

, or
 
Vim

-/-
 astrocytes. This effect was shown to be dependent 

on direct cell-cell contact and could be abolished by mixing GFAP
-/-

Vim
-/-

 

and wildtype astrocytes which suggests the presence of an inhibitory 

signaling from wildtype astrocytes to neurosphere cells. Compared to 

wildtype astrocytes, GFAP
-/-

Vim
-/-

 astrocytes showed similar levels of 

membrane bound Jagged1, the principal Notch ligand, but lower total 

expression levels of Jagged1, as well as decreased Notch signaling capacity, 

total endocytosis and Notch ligand-mediated internalization of the Notch 
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extracellular domain. When GFAP
-/-

Vim
-/-

 neurosphere cells were cultured in 

the presence of immobilized Jagged1, neuronal differentiation was decreased 

to levels comparable to wildtype neurosphere cells. This decrease was 

abolished by adding to the culture a γ-secretase inhibitor which prevents 

activation of the Notch receptor, implying that the proneurogenic effect of 

GFAP
-/-

Vim
-/-

 astrocytes is mediated via the Notch signaling pathway. 

No difference in number of proliferating cells in the SGZ and granule cell 

layer (GCL) was seen in the hippocampus of adult wildtype and GFAP
-/- 

Vim
-/-

 mice 24 hours after labeling of dividing cells, suggesting that reduced 

Jagged1-mediated Notch signaling from GFAP
-/-

Vim
-/-

 astrocytes in the adult 

hippocampus does not affect neural stem pool maintenance or proliferation. 

But, at 6 weeks after the first labeling of proliferating cells, GFAP
-/-

Vim
-/-

 

mice showed a increase in number of labeled cells and a higher number of 

newly born neurons compared with wildtype mice, implying an enhanced 

survival of newly formed cells in the dentate gyrus of the hippocampus in 

mice deficient of astrocytic IFs. Lastly, two weeks after being subjected to 

entorhinal cortex lesion (ECL), GFAP
-/-

Vim
-/-

 mice showed decreased number 

of newborn cells in the SGZ and GCL on the lesioned side compared to 

wildtype mice, however, the number of newly born neurons was higher in 

GFAP
-/-

Vim
-/-

 compared to wildtype mice. Thus, while the lesion-triggered 

proliferative response in the hippocampus was lower, the cell fate was more 

directed towards neuronal lineage in GFAP
-/-

Vim
-/-

 compared to wildtype 

mice. 

In summary, we conclude that astrocytes inhibit neuronal differentiation of 

neural stem/progenitor cells through cell-cell contact. Notch signaling from 

astrocytes to neural stem/progenitor cells plays an essential role in this 

process and is dependent on IFs. 
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In contrast to neurons, we have limited knowledge about the functional 

diversity of astrocytes and its underlying molecular basis. Cell diversity has 

commonly been studied using immunohistochemical analysis and gene 

expression profiling. The first method is restricted to few markers and cannot 

be used in a truly quantitative manner, and the second method only reflects 

global transcript levels, consequently any important heterogeneity among the 

cells remains undetected. With single-cell gene expression profiling it is 

possible to study heterogeneity among and within cell types in a precise 

manner. Reverse-transcription quantitative real-time PCR (RT-qPCR) has the 

sensitivity to detect a single mRNA molecule.  

We applied single-cell gene expression profiling as a novel research tool to 

identify and characterize distinct subpopulations of cells and demonstrated 

how gene correlations can be applied to determine gene interactions. We 

collected single cells derived from primary mouse astrocyte cultures and 

dissociated mouse neurospheres by flow cytometry, lysed them, and analyzed 

them by RT-qPCR. We found that the majority of cells in the primary 

astrocyte cultures and cells from the dissociated neurospheres expressed 

mRNA encoding for markers characteristic of astrocytes as well as markers 

characteristic for neural stem/progenitor cells, implying that the activation 

might be linked to a transition into a more stem cell like state as suggested 

previously (Buffo et al., 2008). In primary astrocytes, the transcription of 

genes encoding proteins associated with astrocyte activation seems to be 

regulated by a common mechanism where vimentin and GFAPδ have key 

functions in cell lineage determination.  
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Neurotrauma or focal brain ischemia are known to trigger molecular and 

structural response in the uninjured hemisphere. Several studies showed that 

the gene expression profiles in the contralesional hemisphere are altered both 

within hours (Hori et al., 2012) and days after injury (Buga et al., 2008). 

These responses are thought to have implications for tissue repair processes 

as well as for the recovery of function (Kim et al., 2005; Buga et al., 2008). 

However, whether subtle indirect injury to the brain elicits any detectable 

contralesional changes in gene expression, in particular the expression of 

genes involved in neural plasticity, is unknown. 

In this study we sought to determine the gene expression profile of selected 

genes known to be involved in neural plasticity in the affected and 

contralesional hippocampus at 4 and 14 days following stereotactically 

performed unilateral entorhinal cortex lesion (ECL). In this injury model, 

hippocampus is not directly injured but is indirectly affected via partial 

deafferentation and Wallerian degeneration (Turner et al., 1998; Deller et al., 

2007). To elucidate the role of activated astrocytes in the contralesional 

response to ECL, we made use of GFAP
-/-

Vim
-/-

 mice, which exhibit 

attenuated reactive gliosis. 

We could see that a partial deafferentation of the hippocampus leads to 

upregulation of GFAP and vimentin mRNA in the affected as well as 

contralesional hippocampal tissue. These findings demonstrate that even a 

very subtle focal injury to the CNS induces astrocyte activation also in the 

contralateral hemisphere. Further, this glial cell response is less pronounced 

on the contralesional side but has the same temporal pattern in both 

hemispheres. 

We show that genes involved in synaptic re-organization and plasticity, 

namely ezrin, thrombospondin 4 and synaptotagmin (Arber & Caroni, 1995; 
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Dunkle et al., 2007; Gardzinski et al., 2007; Lavialle et al., 2011) are 

upregulated both in the affected and contralesional hippocampal tissue. Of 

these three genes, only thrombospondin 4 was significantly affected by the 

absence of GFAP and vimentin, such as the 4 days post injury upregulation 

observed in wildtype mice was abrogated in both hemispheres in GFAP
-/- 

Vim
-/-

 mice. Thus, presence of GFAP and vimentin and normal gliosis are 

necessary for the upregulation of thrombospondin 4 in response to injury in 

both the affected and contralesional brain tissue.  

We also report that the expression of genes coding for complement proteins 

C1q and C3, which are involved in the elimination of synapses from 

maturing, injured or degenerating neurons (Stevens et al., 2007; Berg et al., 

2012) and thus participate in synaptic plasticity, was both upregulated in the 

deafferented tissue in response to ECL, and that C1q mRNA was upregulated 

also in the contralesional hippocampal tissue. 

In conclusion, we show that genes associated with astrocyte activation and 

neural plasticity show very pronounced response to even a very mild and 

indirect injury to the brain tissue, and that this response is clearly detectable 

also in the contralesional hemisphere. In addition, we conclude that the 

upregulation of some plasticity-related genes is dependent on reactive gliosis. 

Attempts that aim at molecular classification of astrocyte subpopulations are 

ongoing in a number of laboratories with the emergence of new astrocytes 

markers, such as Aldh1L1 (Cahoy et al., 2008; Zamanian et al., 2012). 

Expression profiling of individual astrocytes would advance our 

understanding of the heterogeneity of these cells and their functions in the 

healthy and diseased CNS. 

Here we have studied the heterogeneity of astrocytes and their response to 

trauma by applying single-cell gene expression profiling by reverse 

transcription quantitative real-time PCR (RT-qPCR) on freshly isolated cells 

as a novel approach to molecular characterization of astrocytes and their 
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subpopulations. The cells were isolated from the hippocampus of adult 

healthy mice or from the ipsilateral or contralateral hippocampus of adult 

mice 4 days after partial deafferentation of the hippocampus by unilateral 

ECL. The cells were individually analyzed for the mRNA levels of selected 

genes known to be expressed in non-reactive and reactive astrocytes. 

In hippocampus from the unchallenged mice, we observed a substantial 

overlap between GFAP, the classical marker of astrocytes, and AldhL1, 

which persisted after injury. We also the saw correlations between the five 

astrocyte markers GFAP, GS, GLT-1, GLAST, and Aldh1L1, in individual 

cells isolated from unchallenged mice. Combining our current results, 

showing co-regulation between GFAP and vimentin only in cells derived 

from affected and contralesional hippocampus, but not from unchallenged 

mice, with the data generated in our in vitro study (Paper III), suggests that 

GFAP and vimentin are co-regulated only in reactive astrocytes. 

In a response to partial hippocampal deafferentation, the subpopulations of 

cells expressing GFAP, GLT-1, GLAST, or Aldh1L1, all decreased in both 

affected and contralesional hippocampus, which could, at least partly, be 

explained by the expansion of the C1qc positive microglial population 

(Schafer et al., 2000; Lynch et al., 2004; Depboylu et al., 2011). Interestingly, 

the proportion of GFAP positive astrocytes that express the astrocyte markers 

GLT-1, GLAST, or Aldh1L1, was decreased in the hippocampus on the 

injured side, and to some degree also in the contralesional hippocampus. 

While the expression of GFAP in GFAP positive cells increased after injury, 

the expression in these cells of GS, GLT-1 and GLAST, decreased, while the 

expression of Aldh1L1 remained stable. These findings point to the existence 

of two subpopulations of astrocytes after injury: reactive astrocytes that 

increase expression of GFAP while decreasing the expression of GLT-1 and 

GLAST, and GFAP expressing astrocytes that show less mature phenotype 

with undetectable expression of GLT-1, GLAST as well as Aldh1L1, in line 

with the concept that some astrocytes show a more immature phenotype 

following injury (Buffo et al., 2008).  

In conclusion, our results show that distinct subpopulations of astrocytes can 

be identified in the uninjured and injured hippocampus, and that these 

subpopulations respond differentially to injury. Further, the gene expression 

profiles of individual astrocytes from the injured and contralesional side are 
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surprisingly similar and these findings are in line with the notion that 

astrocytes are important modulators of brain plasticity in the injured and 

contralesional hemisphere. 
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