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Abstract

This thesis concerns correlation effects in quantum many-particle sys-
tems in one and two dimensions. Such systems show many exotic non-
Fermi liquid phenomena, which can be treated analytically using non-
perturbative field-theory methods.

Quantum phase transitions between topologically ordered phases of
matter, which do not break any symmetries, are studied. It is shown that
although there is no local order parameter, a local measure from quantum
information theory called reduced fidelity can detect such transitions.

Entanglement in quantum impurity systems is also studied. The
general expression for scaling corrections in entanglement entropy from
boundary perturbations is derived within conformal field theory, show-
ing that the asymptotic decay of Kondo screening clouds follow the same
power-law as the impurity specific heat.

Furthermore, the effects from spin-orbit interactions on Kondo physics
in helical Luttinger liquids are studied. Such helical liquids occur on the
edges of two-dimensional topological insulators. It is shown that Rashba
and Dresselhaus interactions can potentially destroy Kondo singlet for-
mation in such a system, and that the coupling to an electric field gives
a mechanism to control transport properties.

The most recent work focuses on correlations in interacting one-
dimensional Bose gases. The asymptotic expression for correlation func-
tions in a generalized Gibbs ensemble, where all the local conservation
laws appear, is obtained from Bethe Ansatz and conformal field theory.

In addition to the research papers with the above results, the thesis
also contains an introductory text reviewing background material.
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Outline

This thesis on correlation effects in low-dimensional quantum many-
particle systems is organized as follows. Chapters 1-6 give a review over
existing literature on the physical systems and methods that are treated
in the thesis. In Chapter 1 we discuss the paradigms that have domi-
nated condensed matter physics for much of the 20th century, and the
new developments in correlated systems that go beyond those paradigms.
Chapter 2 introduces first the bosonization technique to treat interacting
fermions in one dimension, and then conformal field theory which pro-
vides a unifying framework for gapless one-dimensional systems. Chap-
ter 3 treats the Kondo effect in various systems, in particular the bound-
ary conformal field theory approach is reviewed. In Chapter 4 we discuss
an intrinsic phenomena in correlated quantum systems, namely entan-
glement, and review the universal results that can be obtained for gap-
less one-dimensional systems using conformal field theory. In Chapter 5
we review topological phases of matter, discussing topological order and
topological quantum phase transitions as well as two-dimensional topo-
logical insulators and their edge states. Finally in Chapter 6 we introduce
the Bethe Ansatz solution for the interacting one-dimensional Bose gas
and discuss the generalized Gibbs ensemble.

In Chapter 7 we give a brief introduction to Papers I-VI, and sum-
marize the main results in them. The introductory text ends with a
summary and discussion in Chapter 8. Appendix A contains a general
derivation of the conformal field theory results for the von Neumann en-
tropy presented in Papers II-III. Finally the thesis contains Papers I-VI
which are published, or submitted, research papers containing the new
results of this thesis.
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1
Introduction

Our attempts to understand Nature must inevitably take into account
that the whole is often not just a simple sum of its parts [1]. An overly
reductionistic view on physics as merely a development towards an un-
derstanding of smaller and smaller constituents eventually leading to a
”Final Theory” in terms of the most elementary parts [2], would not shed
much light on those rich and fascinating collective phenomena that we
know by experience will emerge when putting many such constituents to-
gether [3,4]. It is usually not possible in practice to reconstruct the laws
governing collective behavior from the underlying laws for the elementary
parts. Understanding the mechanisms that govern human society for ex-
ample, can hardly be accomplished through elementary particle physics.
Similar arguments are valid also within theoretical physics itself. Namely,
although we now believe that we have a good understanding of the quan-
tum mechanics that govern individual particles [5–7], the complexity of
quantum many-particle systems [8, 9] continue to confront us with many
intriguing challenges [10].

The relevant degrees of freedom for the description of a physical sys-
tem are not the same at different energy scales. If one is interested
in the dynamical properties of a system at room temperature one usu-
ally do not need to take subatomic processes into account, and at even
lower temperatures there should be even fewer details needed to formu-
late an effective theory at that energy scale. For a many-particle system
in some condensed phase, i.e. a condensed matter system, an effective
low-energy theory will often be in terms of collective degrees of freedom
varying over large distances. In such situations the effective low-energy
theory should be a field theory [11, 12], where only such details as un-
derlying symmetries need to be accounted for. The notion of symmetry
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2 Chapter 1 Introduction

indeed pervades modern physics, and in particular the physics of con-
densed matter. With symmetries comes conservation laws, generically
associated with low-energy excitations. The framework relating physical
theories at different energy scales is known as the renormalization group.
It explains the mechanism behind the observed universality of physical
phenomena, where low-energy properties of large classes of systems are
remarkably similar as long as they share the same underlying symmetries.
These symmetries thus allows for the classification of different phases of
matter, and with the renormalization group follows an understanding of
phase transitions in terms of scale invariance [13].

It is indeed natural that physical theories in general are just effective
theories for the energy range of their confirmed validity, and that they
in principle always could be just a limiting case of some ”Final Theory”
[14]. We should not be surprised therefore to find exotic new phenomena
regardless if one goes towards higher or lower energies.

1.1 Quantum many-particle systems

It is an easy task to write down a many-particle Hamiltonian, such as

Ĥ =
∑

i

p̂i
2me

+
∑

i

V̂ei(ri) +
∑

i<j

V̂ee(ri − rj) (1.1)

for electrons moving in a static Coulomb potential Vei from lattice ions1

and the Coulomb potential Vee from the other electrons, with me the elec-
tron mass and p̂i the momentum operator. However solving the problem
exactly, i.e. finding the solutions |Ψ〉 to the Schrödinger equation [16]

i~
∂

∂t
|Ψ〉 = Ĥ |Ψ〉 (1.2)

presents a formidable challenge already for just a few particles. Just as
in classical mechanics, no general analytical solution for three or more
interacting particles can be found. Various approximation schemes how-
ever often work very well. An example of the quantum three-particle
problem is the He atom, which can be treated quite accurately using
perturbation theory. In order to treat problems perturbatively one must
however choose a proper reference state to perturb around.

1Already by assuming this lattice potential to be static has a first separation of
energy scales been done. This so called Born-Oppenheimer approximation [15] can
be justified by the large difference in mass between the ions and electrons.
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Correlated systems

Condensed matter systems consists of a macroscopic number of parti-
cles, typically on the order of ∼ 1023 per cm3 for bulk systems. Finding a
good ground state that allows for a perturbative treatment is not a trivial
thing. Remarkably however, for many systems it turns out that although
the electrons interact with strong Coulomb repulsion, they can qualita-
tively be treated as almost non-interacting. These systems show weak
correlations, meaning that they effectively can be described in terms of
single-particle states. For such solid-state systems it is a good first ap-
proximation to consider non-interacting electrons in a periodic potential,
for which the wave functions ψnk(r) = eik·runk(r) are given in terms of the
Bloch wave functions unk(r) which have the periodicity of the lattice [17].
The resulting band theory in terms of some effective single-particle states,
where interactions can be treated within a mean-field framework, works
remarkably well in most cases and forms the basis for our understanding
of electronic structure [18]. However, for some systems such methods
fail because of electronic correlations, and these are then referred to as
strongly correlated systems. For these systems it might not be possible
to find some effective single-particle description. In other cases this may
still be possible, but with new effective particles that are qualitatively
very different from the original electrons.

1.2 Beyond Landau’s paradigms

One may wonder why electrons interacting through the long-ranged Coulomb
potential should possibly allow an effective description as free particles .
The explanation to this is provided by Landau’s Fermi liquid theory [19]
for interacting fermions, which shows that excitations at the Fermi sur-
face are stable and behave as effectively free quasiparticles, ”dressed”par-
ticles with the same quantum numbers as the non-interacting fermions.

An important case where correlations play a role is at continuous
phase transitions. Here increasing fluctuations at all length scales cause
a divergence in the spatial extent of correlations in the system. A phe-
nomenological model by Landau [20], relying solely on the concept of
broken symmetry, has laid the foundations on which most of our under-
standing of critical phenomena, as well as collective excitations, is built.

Together these two theories, Landau’s Fermi-liquid theory and the
Landau theory of continuous phase transitions, have formed a paradigm
dominating much of 20th century condensed matter physics [21].
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1.2.1 Fermi liquids and non-Fermi liquids

For a non-interacting Fermi system at zero temperature all states up to
the Fermi energy will be filled. This implies a distribution function taking
the form of a step function

n(p) = θ(p− pF ) =

{
1 when p < pF
0 when p > pF

(1.3)

as a function of momentum p, defining the Fermi momentum pF . The
basic idea behind the concept of the Fermi liquid is that of ”adiabatic
continuity”. When turning on the interactions, the states will be adia-
batically connected to those in the free system, provided no phase transi-
tion occurs. Hence the interacting system will also have a Fermi surface,
and the excitations will carry the same quantum numbers as the original
electrons but with renormalized, ”dressed”, values of their energy and
dynamical properties such as mass [22]. The fundamental excitations
are thus no longer electrons but so called quasiparticles, which still are
electron-like. In particular, there is still a discontinuity in the distribu-
tion function at the Fermi level, given by the quasiparticle weight Z. The
weight of the delta-function peak in the spectral function for free elec-
trons is Z = 1, becoming Z < 1 for the quasiparticle when interactions
are turned on. The reason why such quasiparticles are stable excitations
is purely kinematic: A quasiparticle with momentum p1 close to pF can
decay into another state with momentum p2 by simultaneously creating
a quasiparticle-quasihole pair. Conservation of energy however severely
restricts the available states for this scattering event to be possible. In
three dimensions it leads to a scattering rate ∼ |p1−pF |2, which vanishes
sufficiently close to the Fermi surface hence showing the stability of the
quasiparticle. This also shows that the resistivity should go as ∼ T 2 at
low temperatures. Similarly, since the quasiparticles qualitatively behave
as the original free electrons, one recovers the free electron expressions
for specific heat, Cv ∼ T , and magnetic susceptibility, χ ∼ const., as the
temperature T → 0. Note that the phase space argument, which can be
confirmed rigorously with a renormalization group analysis [23], does not
assume the original particles to be weakly interacting. Hence it provides
an explanation for how strongly interacting electrons can result in weakly
interacting quasiparticles.

Non-Fermi liquids are simply those metals for which Fermi liquid the-
ory fails [24]. Situations where Landau’s paradigm breaks down include

• Superconductivity. The Fermi liquid is unstable to arbitrarily small
attractive interaction between electrons, leading to the formation
of Cooper pairs [25,26].
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• In one dimension. Here the quasiparticle decay rate ∼ T , which
is comparable to its excitation energy. Hence they are unstable
and the Fermi liquid will never form. The corresponding universal
theory in one dimension is instead the Luttinger liquid [27,28].

• Near a quantum critical point [29]. When there is a continuous
phase transition at zero temperature there are fluctuations at all
length scales, dramatically enhancing the scattering rate destabi-
lizing the quasiparticles.

• Kondo systems with multiple electron channels or impurities. A
Kondo resonance at the Fermi level due to electrons scattering off
magnetic impurities can in many cases lead to a breakdown of the
Fermi-liquid picture [30,31].

As we have seen, reduced dimensionality can play an important role in
invalidating the Fermi-liquid paradigm. This may also be the case for the
still poorly understood high-temperature cuprate superconductors where
the 2d CuO2 planes are expected to be responsible for most of the exotic
properties, including the non-Fermi liquid normal state [32].

Indeed, understanding non-Fermi liquids has become one of the cen-
tral challenges in modern condensed matter physics, pushing the devel-
opment of new ideas and concepts as well as mathematical methods and
experimental techniques.

1.2.2 Symmetry breaking and local order parameters

The second paradigm of condensed matter physics is Landau’s theory of
phase transitions [20, 33]. The approach is to identify a symmetry that
is spontaneously broken in one of the phases. This is unambiguous since
a symmetry always is either present or not present. For example, when
a liquid crystalizes the translational symmetry is broken. The broken
symmetry gives a local order parameter from which one can construct
an effective field theory, allowing for the calculation of critical exponents
from symmetry considerations alone. The paradigm for the classification
of condensed matter thus goes from identifying a symmetry that is bro-
ken in an ordered phase, thereby obtaining a local order parameter. Then
the collective excitations are obtained as fluctuations in this local order
parameter. In particular, for spontaneously broken continuous symme-
tries the these will be the massless Nambu-Goldstone bosons [34–36].
As an example, in a ferromagnetic phase the time-reversal symmetry
is spontaneously broken, and the order parameter is therefore the local
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magnetization. The massless excitations are here the spin waves, also
known as the magnons.

However, some systems defy this kind of analysis, with the fractional
quantum Hall effect [37] as the primary example. Here the different
phases all have the same symmetry (i.e. they all look the same locally)
but they have different topological quantum numbers characterizing such
global quantities as ground state degeneracy and quasiparticle statistics.
This leads to the concept of topological order [38], when these new quan-
tum numbers are of topological origin. An understanding of topologically
ordered phases and the phase transitions between them thus need to go
beyond the Landau paradigm. Attempts to do so have frequently relied
on ideas and concepts from quantum information, such as entanglement
and fidelity [39].

1.3 Why low-dimensional systems are special

Quantum many-body physics can change dramatically when the number
of spatial dimensions is reduced. In this thesis we will concentrate on the
following effects

• As we have seen, in one dimension the Fermi liquid paradigm breaks
down. This is somehow expected since the electrons now can-
not move independently, without constantly colliding. Stable low-
energy elementary excitations will instead be particle-hole pairs,
which are bosons and can propagate coherently, cf. Fig 1.1. The
universal low-energy theory in one dimension, replacing the Fermi
liquid, is the Luttinger liquid [40–42] where the relevant degrees
of freedom are collective bosonic waves. The technique of map-
ping fermions to bosons is known as bosonization, and it turns out
that the interacting fermion problem can be mapped to a free bo-
son problem. The electrons are now no longer the fundamental
particles, instead they are split up into their charge and spin com-
ponents, which can propagate with different velocities [27,28].

• Gapless systems with sufficiently short-ranged interactions have
an emerging conformal symmetry at low energies, and for one-
dimensional quantum systems this makes it possible to use very
powerful predictions from conformal field theory [43].

• Some interacting quantum many-particle systems in one dimension
can be solved exactly, by their so called integrability. The technique
to obtain solutions is known as Bethe Ansatz [44]. It provides
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2d, 3d 1d

E

k0 2kF

E

k0 2kF

k ∼ 0

k ∼ 2kF

E

k
0

EF

kF-kF

k ∼ 2kF

k ∼ 0

Figure 1.1: The qualitative differences between the spectra of particle-
hole excitations in different dimensions. In d > 1 it is possible to create
low-energy excitations for all momenta 0 ≤ k ≤ 2kF , whereas in one
dimension low-energy excitations are restricted to momenta k ∼ 0 and
k ∼ 2kF . The linear dispersion E ∼ vFk at k ∼ 0 means the bosonic
particle-hole excitations can propagate coherently and form density fluc-
tuations [27].

important exact solutions that can be used as input in effective
theories. In higher dimensions integrability is much less powerful,
and only applies to systems that can be reduced to free particles.

• In two spatial dimensions the statistics of quasiparticles is not re-
stricted to being either fermionic or bosonic as it is in higher dimen-
sions. Instead the wavefunction can acquire any phase as particles
are exchanged [45], which has given them the name ”anyons”. In
fact, particle exchange does not even need to commute, and quasi-
particles with that property are called non-Abelian anyons. The ex-
istence of anyons is associated with a ground-state degeneracy that
is dependent on the topology of the system, and they are therefore
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a manifestation of topological order. This is a new type of order
that is not associated with local symmetry-breaking [38]. Hence
topological quantum phase transitions cannot be treated within the
Landau paradigm.

1.4 Quantum criticality and the renormaliza-
tion group

Quantum phase transitions

Phase transitions that take place at zero temperature are called quantum
phase transitions [29, 46]. Hence they do not involve thermal fluctua-
tions but instead quantum fluctuations within the ground state. The
mechanism can be understood by considering the analogy between d-
dimensional quantum systems and d + 1 dimensional classical systems:
In the imaginary-time formalism, the inverse temperature is the size of
the quantum system in the imaginary-time direction, hence calculating
the thermodynamics of a quantum system can be mapped into calculat-
ing the thermodynamics of a classical system in one spatial dimension
higher. In the thermodynamic limit this becomes particularly clear at
zero temperature, as then also the size in the imaginary-time direction
goes to infinity. A phase transition in a classical system can then be
mapped to some phase transition in a quantum system at zero temper-
ature, with some driving parameter in the Hamiltonian. Analyzing the
finite-temperature region around the quantum critical point, sketched in
Fig. 1.2 is on the other hand highly non-trivial.

In typical examples this driving parameter of the quantum phase tran-
sition corresponds to doping, magnetic field, etc. To make this more clear,
and at the same time introduce some other interesting concepts, let us
consider the example of the quantum Ising chain.

Quantum phase transition in the quantum Ising chain

We will now outline the technical details of the exact solution of the one-
dimensional quantum Ising model, also known as the transverse Ising
model. This will allow us to discuss some of the concepts introduced
above in a rather simple way. The spin chain is described by the Hamil-
tonian

H = −J
∑

i

[
σzi σ

z
i+1 + hσxi

]
(1.4)

with J > 0. We will here work in the thermodynamic limit where the
number of sites N → ∞, neglecting boundary conditions. The spin
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0

T

h
hc

quantum

critical

ordered disordered

Figure 1.2: Typical phase diagram around a quantum critical point, here
for the quantum Ising chain. At zero temperature, the ordered phase with
h < hc and the disordered phase h > hc are separated by the quantum
critical point at hc, where the system is gapless. In the low-temperature
phase diagram there is a quantum critical region which extends above the
quantum critical point, where non-Fermi liquid behavior can arise [29].

operators, given by the Pauli matrices, satisfy the relations

{σαi , σβi } = 2δα,β , (1.5)

[σαi , σ
β
j ] = 0 i 6= j . (1.6)

To see how a quantum phase transition can arise, consider the ground
state in the two simple limits h→ 0 and h→∞:

|Ψ0〉 =
∏

i

| ↑ 〉i or
∏

i

| ↓ 〉i when h→ 0, (1.7)

|Ψ0〉 =
∏

i

| → 〉i when h→∞ (1.8)

where | ↑ 〉i, | ↓ 〉i are the σzi eigenstate with positive/negative eigenvalue
at site i, and | → 〉i the σxi eigenstate with positive eigenvalue at site i.
When h → 0 the ground state is two-fold degenerate, whereas there is
only one ground state when h → ∞. Since the degeneracy is an inte-
ger, it will not change continuously and there must therefore be a phase
transition in between. With zero magnetic field there is a spontaneous
breaking of the Z2 symmetry of the ground state, and this is the ordered
phase. For high magnetic fields there is no spontaneous symmetry break-
ing, and that phase is called disordered. The order parameter is therefore
the local magnetization 〈0|σzi |Ψ0〉.

Let us now outline the solution of the model, as obtained in Refs. [47–
49]. From Eq. (1.5) we see that the spins have fermionic character at
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the same site but bosonic between different sites, which complicates the
analysis. By the Jordan-Wigner transformation

σxi = 1− 2c†ici , (1.9)

σyi = i (ci − c†i )
∏

j < i

(1− 2c†jcj) , (1.10)

σzi = −(ci + c†i )
∏

j < i

(1− 2c†jcj) , (1.11)

it is possible to map the spin problem to a spinless fermion problem,
where the fermion operators satisfy

{ci , c†j} = δi,j , {ci , cj} = 0 , {c†i , c†j} = 0 (1.12)

This is a first example showing that in one dimension there is no clear
connection between spin and statistics. The Jordan-Wigner transforma-
tion brings the Hamiltonian on the form

H = J
∑

i

[
2hc†ici − c†ici+1 − ci+1ci − c†i+1ci − c†ic†i+1

]
(1.13)

in terms of the spinless fermions, which are seen to have a pairing mech-
anism as in superconductivity [26]. Now, performing a Fourier transfor-
mation

cj =
1√
N

∑

k

cke
ikj , (1.14)

and then the Bogoliubov transformation

ck = ukγk − iv−kγ†−k , (1.15)

where the γ quasiparticle operators are fermionic

{γ†k, γk′} = δk,k′ , {γk, γk′} = 0 {γ†k, γ†k′} = 0 , (1.16)

the Hamiltonian (1.4) is diagonalized:

H =
∑

k

εk (γ†kγk −
1

2
) , (1.17)

The eigenvalues εk are given by

εk = 2J
√

1 + h2 − 2h cos k . (1.18)

and the ground state can be written as

|Ψ0〉 =
∏

k> 0

(uk + ivkc
†
kc
†
−k) |0〉. (1.19)
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The parameters u and v are determined through the Bogoliubov-de Gennes
equations

εkuk = 2J(h− cos k)uk + 2J sin k vk , (1.20)

εkvk = 2J sin k uk − 2J(h− cos k) vk . (1.21)

Now, from Eq. (1.18) it is clear that when h = 1 there will be gap-
less quasiparticles with k = 0. Hence the quantum critical point is at
hc = 1. The energy gap ∆E vanishes as ∆E ∼ |h − 1|, and hence fol-
lows the power-law ∆E ∼ |h − hc|zν with the critical exponent zν = 1.
It is connected to another quantity, the correlation length ξ, through
∆ ∼ ξ−z, where z is called the ”dynamic critical exponent” since it de-
termines the relative scaling between space and time. The correlation
length ξ ∼ |h − hc|−ν , with critical exponent ν, sets the length scale for
the exponential decay of correlation functions 〈σiσi+r〉 ∼ exp[−r/ξ]. The
diverging correlation length as h→ hc implies that the exponential decay
is replaced by a power-law decay at the critical point. Another power-law
is that for the order parameter, which here vanishes as 〈σzi 〉 ∼ |h−hc|1/8
as h approaches hc from below. The exact solution therefore shows the
appearance of power-law scalings in physical quantities near the quan-
tum critical point, just as for classical critical phenomena [13]. In fact,
the quantum phase transition is in the same universality class as that in
the 2d classical Ising model [50], showing a nice example of the analogy
between quantum d-dimensional and classical d+1-dimensional systems.
In the language of the renormalization group, this means that the classi-
cal two-dimensional and the quantum one-dimensional Ising models are
governed by the same fixed-point theory at their phase transitions, which
is that of a free Majorana fermion. Let us see explicitly how this comes
about in the quantum case.

The spinless fermion operator in Eq. (1.13) can be decomposed into
a pair of Majorana operators as [51]

cj =
e−iπ/4

2
(aj + ibj) , (1.22)

where the Majorana particles obey

{ai, aj} = {bi, bj} = 2δij, {ai, bj} = 0. (1.23)

Hence a Majorana fermion is its own antiparticle [52]. With this mapping,
the quantum Ising chain at the critical point h = 1 becomes

H = −iJ
2

∑

j

[ ajaj+1 − bjbj+1 + ajbj+1 − bjaj+1 − 2ajbj] . (1.24)
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Now, since we are interested in the low-energy properties at the critical
point we can take the continuum limit, by letting the positions x be
continuous, with x = ja and a is the lattice constant, and defining the
continuum field

χ1(x) =
1

a
aj , χ2(x) =

1

a
bj . (1.25)

This leads to the low-energy Hamiltonian

H ∼ iv

∫
dx [χ1(x)∂xχ1(x)− χ2(x)∂xχ2(x)] (1.26)

which describes the two free counterpropagating components of the Ma-
jorana field χ = (χ1, χ2)T . This model features a conformal symmetry,
i.e. if the coordinates are expressed in complex form ix±τ where τ is the
imaginary time, then the model (1.26) is invariant under all conformal
coordinate transformations in the complex plane [43]. More on this in
Section 2.2.

It is also interesting to note that in the spinless fermion representation
(1.11), 〈σzi 〉 is a highly non-local order parameter. Since the Hamltonian
(1.13) only conserve the parity of the number of fermions (i.e. the number
being odd/even), the two-fold ground-state degeneracy is connected to the
existence of an even or odd number of the fermions. In the ordered phase
there is an energy gap, so if the fermions were to have open boundary
conditions there must be some gapless edge states responsible for the
degeneracy, and these will be in terms of the Majorana fermions. Hence
if one were to consider the fermions as the physical objects, i.e. in the case
of a quantum wire of spinless fermions with superconducting pairing [53],
the model would feature a topological phase of matter.

The renormalization group

The idea behind the renormalization group [54, 55] is to systematically
study what happens when removing information about the fine structure
of the system, i.e. when ”zooming out”, hence obtaining a new effective
theory at a smaller energy scale. By doing this in an infinitesimal step,
differential equations can be obtained for the change in the coupling
constants of the theory as the energy scale is reduced. Let us now outline
this procedure for a general field theory [12].

A field theory is generally defined through its action S(φ), with the
partition function as a path integral

Z =

∫
D[φ] e−S(φ), (1.27)
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in terms of a set of fields φ, i.e. some smooth mappings z 7→ φ(z) where
z denotes the coordinates (x, τ) in D = d + 1 dimensional space-time.
Since a field theory generically is an effective theory valid only within
some energy scale, there is generally some cutoffs involved. In condensed
matter the continuum theories are naturally restricted to distances larger
than the lattice spacing a. The inverse lattice spacing then sets a high-
energy cutoff Λ ∼ 1/a.

Let us now for simplicity assume there is only one field in the theory,
defined for energies below the cutoff Λ. By Fourier expanding this field

φ(z) =
1

(2π)D

∫

|q|<Λ

dDq φk e
iq·z (1.28)

it follows that it can be decomposed into a low-energy component φ<
and a high-energy component φ>,

φ(z) = φ<(z) + φ>(z) = (1.29)

=
1

(2π)D

∫

|q|<Λ/b

dDq φk e
iq·z +

1

(2π)D

∫

Λ/b<|q|<Λ

dDq φk e
iq·z,

where b is a scale factor and q = (k, ω). Now we wish to see the effect
of successively integrating out the high-energy modes, increasing b > 1.
This will give us the same Z but expressed in terms of only the low-energy
modes, i.e.

Z =

∫
D[φ>]

∫
D[φ<] e−S(φ<+φ>) =

∫
D[φ<] e−Seff(φ<), (1.30)

with a new effective action Seff(φ<) for the low-energy modes. However,
on this form the length/time scale has been altered by the scale factor b,
giving |q| < Λ/b and |x| > ba Hence one needs to rescale the expression
to get the correct units, which is done by

z → z′ = z/b , q → q′ = b q , (1.31)

such that the rescaled variables have the correct units, |q′| < Λ and
|x′| > a. These two steps are the renormalization-group transformation,

(1) Integrate out high-energy modes above cutoff Λ/b,

(2) Rescaling z → z/b, q → bq. (1.32)

Considering the action to be defined by a (perhaps infinite) set of cou-
pling constants, successive renormalization-group (RG) transformations
will generate a flow of these coupling constants as the cutoff Λ succes-
sively decreases. Such a flow will have fixed-points, which will define the
different phases and phase transitions of the system.
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Now, a fixed-point action S∗ is by definition an action for which

S∗eff(φ<) = S∗(φ), (1.33)

i.e. S∗ is invariant under the renormalization-group transformation. Hence
the system has scale invariance, i.e. it ”looks the same”on all length (and
time) scales. This means that the correlation length has to be either zero
or infinite. Zero correlation length, and hence infinite energy gap, means
that there are no fluctuations and thus it describes a stable phase of mat-
ter. Infinite correlation length, hence zero energy gap, means that the
system is critical with fluctuations on all scales. This is the case at a
phase transition, which is an unstable phase where there exists at least
one infinitesimal perturbation that will drive the system away from the
fixed point.

Let us now consider the perturbative renormalization group around a
fixed point. The fixed-point Hamiltonian density H∗ will then be per-
turbed with all the local operators in the theory, H = H∗ +

∑
j gjφj, so

that the action becomes

S(φ) = S∗(φ) +

∫
dDz

∑

j

gjφj(z) (1.34)

with coupling constants gj. Under a scale transformation z → z′ = z/b,
the fields transforms as

φj(z)→ φ̃j(z/b) = b∆jφj(z), (1.35)

which defines the scaling dimension ∆j of the field φj. Hence under the
RG transformation

S(φ) → S∗(φ) +

∫
dDz

∑

j

b∆j−Dgjφj(z) (1.36)

to first order in the coupling constants gj. This means that

gj → g′j = b∆j−Dgj. (1.37)

Writing the rescaling parameter b > 1 as b = e−δ`, in terms of a ”renor-
malization length” `, this can be written as g′j − gj = −(D −∆j)δ`. As
differential equations they become the first-order renormalization-group
equations

∂gj
∂`

= (D −∆j) gj + ... (1.38)

which determine the flow of the coupling constants as the energy scale is
reduced.

We now see that the scaling dimensions ∆j determines whether a
coupling constant increases or decreases as the energy scale is reduced.
Fields can therefore be classified as
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• Relevant: If ∆j < D, the coupling gj grows under the renormal-
ization group and the field φj becomes ”more important” at lower
energy scales.

• Irrelevant: Conversely, if ∆j > D then the coupling gj decreases
and the field φj becomes ”less important” at lower energies.

• Marginal: If ∆j = D, the coupling gj does not change to first
order. To determine whether it grows or not one must go to higher
orders in the perturbation expansion. If it grows due to higher-order
contributions, then φj is marginally relevant, and if it decreases then
φj is marginally irrelevant. Otherwise it is exactly marginal.
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2
Bosonization and conformal

field theory

In this chapter we give a short introduction to bosonization and conformal
field theory1. This provides us with a unifying framework for the low-
energy physics in gapless one-dimensional quantum systems.

Individual motion of electron-like quasiparticles is no longer possible
when they are confined to one dimension. Instead one should expect a
collective behavior. It turns out that this can be described in terms of
density fluctuations. The technique known as bosonization allows a map-
ping from fermions to bosons, which express these collective degrees of
freedom. It is a remarkable result that the low-energy limit of interacting
fermions in one-dimension can be mapped exactly onto a free (i.e. non-
interacting) boson field theory, with the Luttinger liquid replacing the
Fermi liquid as the universal theory in one dimension [40–42,58,59]. To-
gether with the concept of the renormalization group [23] this paradigm
gives effective solutions for a multitude of different kinds of interacting
models.

Emergent conformal invariance at low energies makes complete solu-
tions possible in terms of conformal field theories [60]. In higher dimen-
sions this is no longer true; not only is the general possibility of extending
the bosonization procedure to higher dimensions unclear [61–63], in ad-
dition conformal invariance then no longer provides infinitely many local
symmetries which makes conformal field theory much less powerful.

1See Refs. [27, 28,43,56,57] for more complete accounts.

17
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2.1 Interacting fermions in one dimension: The
Luttinger liquid

2.1.1 Non-interacting Dirac fermions

Consider first non-interacting spinless fermions with some dispersion ε(k),
given by the hamiltonian

H0 =
∑

k

ε(k)c†kck, (2.1)

in terms of the fermion annihilation operator ck at wavevector k, with

{c†k, c†k′} = {ck, ck′} = 0, (2.2)

{c†k, ck′} = δk,k′ . (2.3)

For fermions on a lattice, ε(k) typically describes the cosine-dispersion
of nearest-neighbor hopping, depicted in Fig. 2.1. Now, at sufficiently
low energies all the physics takes place at the Fermi points, and we can
make an approximation by linearizing the dispersion so that E(k) ≈
EF + vF (±k − kF ). While this linearization is only valid for momenta
within some momentum cufoff Λ from the Fermi points k = ±kF , the
Tomonaga-Luttinger model is obtained by extending the linearization
to all momenta, shown in Fig. 2.2, thereby introducing an independent
fermion for each of the two different branches,

H0 =
∑

r=±

∑

k

vF (rk − kF )c†k,rck,r. (2.4)

In the continuum limit, we can introduce the fermion field

Ψ(x) =
1

2π

∫
dk ck e

ikx. (2.5)

for the fermions in Eq. (2.1). The mode expansion of the field Ψ(x) can
be written as

Ψ(x) =
1

2π

∫
dk
[
ckF+k e

i(kF+k)x + c−kF+k e
i(−kF+k)x

]
. (2.6)

Hence we can write Ψ(x) = ΨR(x) + ΨL(x), with ΨR(x) ≡ ψR(x) eikF x

and ΨL(x) ≡ ψL(x) e−ikF x such that

Ψ(x) = ψR(x) eikF x + ψL(x) e−ikF x, (2.7)
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E

k
0 π-π

EF

kF-kF

Figure 2.1: Dispersion relation for an electron nearest-neighbor hopping
model in one dimension without interactions. In the ground state all
the available electron states with energy below the Fermi energy EF are
filled. For sufficiently low energies the excitations can be described within
a linearized approximation of the dispersion at the Fermi points k = ±kF .

E

k
0 π-π

EF

kF-kF

Figure 2.2: By extending the linearized dispersion at the Fermi points
k = ±kF in Fig. 2.1 to all momenta k, one obtains the one-dimensional
Dirac Hamiltonian (2.14), for which the ground state is the filled Dirac
sea below EF . The divergences occurring in the theory due to this infinite
Dirac sea are treated by normal-ordering the operators.
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where

ψR(x) =
1

2π

∫
dk ckF+k e

ikx, (2.8)

ψL(x) =
1

2π

∫
dk c−kF+k e

ikx, (2.9)

with

{ψ†R(x), ψ†R(y)} = {ψL(x), ψL(y)} = 0, (2.10)

{ψ†R(x), ψ†R(y)} = {ψR(x), ψR(y)} = 0, (2.11)

{ψ†R(x), ψR(y)} = {ψ†L(x), ψL(y)} = δ(x− y). (2.12)

The fields ψR/L are usually referred to as the slowly varying fields around
the right/left Fermi points, since originally the theory is restricted to
around the Fermi points,

Ψ(x) ≈ 1√
L

[ ∑

−Λ<k−kF<Λ

ck e
ikx

︸ ︷︷ ︸
ψR(x) eikF x

+
∑

−Λ<k+kF<Λ

ck e
ikx

︸ ︷︷ ︸
ψL(x) e−ikF x

]
. (2.13)

In terms of these fields, the Hamiltonian (2.4) becomes

H0 = −ivF
∫

dx
[
ψ†R∂xψR − ψ†L∂xψL

]
(2.14)

which is the one-dimensional massless Dirac Hamiltonian [64]. The time-
dependence of the fields follow from eiH0tψR(k)e−iH0t = ψR(k)e−ivF t and
eiH0tψL(k)e−iH0t = ψL(k)e+ivF kt, such that

ψR(x, t) =
1

2π

∫
dk ψR(k) eik(x−vF t), (2.15)

ψL(x, t) =
1

2π

∫
dk ψL(k) eik(x+vF t), (2.16)

hence ψR is a right-moving, and ψL a left-moving field, and we have that
Ψ(x, t) = ψR(x− vF t)eikF x + ψL(x+ vF t)e

−ikF x.

2.1.2 The Luttinger model

Consider now the interacting problem for electrons with spin. Then
the field is given in terms of the two-component Dirac spinor Ψ(x) =
[Ψ↑(x),Ψ↓(x)]T , with each component Ψσ(x) = ψRσ(x) eikF x+ψLσ(x) e−ikF x.
The Coulomb repulsion between the electrons is given by

Hint =

∫
dx

∫
dy V (x− y) ρc(x) ρc(y), (2.17)
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backward:

gbs = V (q ≈ 2kF )
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Figure 2.3: The four types of low-energy scattering processes for right-
moving (full lines) and left-moving (dashed lines) electrons in one dimen-
sion. Sometimes they are also referred to as g1 = gbs, g2 = gd, g3 = gum
and g4 = gf . Each scattering type is associated with two values of the g
parameter, g⊥ and g|| depending on whether the spins σ and σ′ are equal
or opposite, respectively [27].
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where ρc(x) = Ψ†(x)Ψ(x) = Ψ†↑(x)Ψ↑(x) + Ψ†↓(x)Ψ↓(x) is the electron
charge density and V (x−y) the Coulomb potential. In momentum space
this becomes

Hint =
1

2L

∑

σ,σ′

∑

k,k′,q

V (q) c†k+q,σc
†
k′−q,σ′ck′,σ′ck,σ, (2.18)

where σ is the spin index. At low energies, the scattering processes
around the Fermi points can be categorized into backward, forward, dis-
persive and Umklapp scattering, according to Fig. 2.3. The corresponding
terms added to the Hamiltonian are

Hbs = gbs

∫
dx

∑

σ=↑,↓

ψ†R,σ(x)ψL,σ(x)ψ†L,−σ(x)ψR,−σ(x), (2.19)

Hd =

∫
dx

∑

σ=↑,↓

[
gd|| ψ

†
R,σ(x)ψR,σ(x)ψ†L,σ(x)ψL,σ(x)

+ gd⊥ ψ
†
R,σ(x)ψR,σ(x)ψ†L,−σ(x)ψL,−σ(x)

]
, (2.20)

Hum = gum
1

2

∫
dx

∑

σ=↑,↓

e−i4kF x ψ†R,σ(x)ψ†R,−σ(x)ψL,σψL,−σ(x) + H.c.

(2.21)

Hf =
1

2

∫
dx

∑

σ=↑,↓

∑

r=R,L

[
gf || ψ

†
r,σ(x)ψr,σ(x)ψ†r,σ(x+ a)ψr,σ(x+ a)

+ gf⊥ ψ
†
r,σ(x)ψr,σ(x)ψ†r,−σ(x)ψr,−σ(x)

]
. (2.22)

Here the gf || term in Eq. (2.22) has been point splitted by the short-
distance cutoff a. The Umklapp process Hum arise due to the fact that
the wave vectors are only defined up to a reciprocal lattice vector Q
(i.e. a multiple of 2π, in units of the inverse lattice spacing). Hence in a
scattering process one may have k1 +k2 = k3 +k4 +Q, but if all momenta
are to be at the Fermi surface, i.e. the two Fermi points, one must have
4kF = Q. From this it follows that Umklapp scattering only occurs at
half filling, i.e. when kF = π/2. Away from half filling, and for the
moment neglecting the backscattering, one has the Tomonaga-Luttinger
model [40,41], given by

HTL = H0 +Hd +Hf , (2.23)

which can be solved exactly with bosonization.

2.1.3 Bosonization

The reason that the Tomonaga-Luttinger model can be solved exactly is
that both the non-interacting term H0 and the dispersive and forward
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interactions are quadratic in the density fluctuations of right- and left-
movers. These charge densities

ρR(x) = : ψ†R(x)ψR(x) :, (2.24)

ρL(x) = : ψ†L(x)ψL(x) : (2.25)

are bosonic in character

[
ρ†r(k) , ρ†r′(−k′)

]
= −r δr,r′δp,p′p

L

2π
. (2.26)

Note that the normal-ordering2 in Eqs. (2.24) and (2.25) is crucially
needed due to the infinitely filled Dirac sea. It is readily checked that
Eqs. (2.20) and (2.22) can be rewritten in terms of the densities as

Hd =

∫
dx

∑

σ=↑,↓

[
gd|| ρR,σ(x)ρL,σ(x) + gd⊥ ρR,σ(x)ρL,−σ(x)

]
, (2.27)

Hf =
1

2

∫
dx

∑

σ=↑,↓

∑

r=R,L

[
gf || ρr,σ(x)ρr,σ(x) + gf⊥ ρr,σ(x)ρr,−σ(x)

]
.

(2.28)

That the Dirac Hamiltonian (2.14) is quadratic in the density fluctuations
can heuristically be expected from the naive classical analogue: With a
linear dispersion, shifting the right Fermi point an amount δqF gives an
energy

δE ∼ 1

2π

∫ δqF

0

dq vF q =
vF
4π

(δqF )2, (2.29)

and with ρR ≈ δqF/2π one gets E ∼ πvFρ
2
R. Hence one expects H0 ∼

ρ2
R + ρ2

L.
A more formal approach is to note that the U(1)R⊗U(1)L symmetry,

ψR → eiθRψR and ψL → eiθLψL, of the Dirac Hamiltonian (2.14) means
that the right- and left-moving densities ρR/L(x) are the conserved ”cur-
rents” JR/L(x) associated with the U(1) symmetry. Writing the Hamil-
tonian quadratic in the currents,

H0 = πvF

∫
dx
[

: J2
R(x) : + : J2

L(x) :
]
, (2.30)

is known as the Sugawara construction. We will return to this in Sec-
tion 3.2, when treating the Kondo effect.

2Normal-ordering consists of putting all annihilation operators to the right of the
creation operators, which is the same as subtracting the vacuum expectation value,
: O1O2 : = O1O2 − 〈0|O1O2|0〉.
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Temporarily neglecting the spin of the electrons, the bosonic version
of H0 follows by defining boson creation and annihilation operators

b†p =

(
2π

L|p|

)1/2

ρ†R(p), (2.31)

b†−p =

(
2π

L|p|

)1/2

ρ†L(−p), (2.32)

bp =

(
2π

L|p|

)1/2

ρ†R(−p), (2.33)

b−p =

(
2π

L|p|

)1/2

ρ†L(p), (2.34)

with p > 0, where
[bp, b

†
p′ ] = 2πδp,p′ . (2.35)

In terms of these operators the Hamiltonian is mapped to

H =
∑

k 6=0

vF |k|b†kbk +
πvF
L

[
N2
R +N2

L

]
, (2.36)

i.e. free bosons. Here the last term, corresponding to the zero mode, con-
tains the normal-ordered fermion number operatorsNr =

∑
k : c†r(k)cr(k) :

(i.e. with the infinite vacuum expectation value subtracted), where r =
R/L. The b-operators now define the bosonic field ϕ and its conjugate
Π by mode expansion,

ϕ(x) =
1

2π

∫
dk

(
1

2|k|

)1/2 [
bke

ikx + b†ke
−ikx

]
, (2.37)

Π(x) =
1

2π

∫
dk

( |k|
2

)1/2 [
−ibkeikx + ib†ke

−ikx
]
, (2.38)

with canonical commutation relations

[ϕ(x),Π(y)] = iδ(x− y), (2.39)

[ϕ(x), ϕ(y)] = 0, [Π(x),Π(y)] = 0. (2.40)

The field Π, being conjugate to ϕ, can be written as Π = v−1
F ∂tϕ. In

terms of this free boson field, the Hamiltonian H0 is given by

H0 =

∫
dx

vF
2

[
(∂tϕ(x)/vF )2 + (∂xϕ(x))2] . (2.41)

The boson field ϕ can be separated into a right-moving part φ and a
left-moving part φ̄,

ϕ(x, t) = φ(x− vt) + φ̄(x+ vF t), (2.42)
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with φ and φ̄ being chiral fields as opposed to ϕ and Π. With the complex
notation z = −i(x− vF t), z̄ = i(x+ vF t), which will be used extensively
in Sec. 2.2, we have ϕ(x, t) = φ(z) + φ̄(z̄).

It is now common practice to introduce the so called dual boson field
ϑ(x, t), defined through ∂xϑ = −Π = −v−1

F ∂tϕ, and with commutation
relation

[ϕ(x), ϑ(y)] = −iθ(x− y), (2.43)

where θ is the step function. The chiral fields can now be expressed as,

φ =
1

2
(ϕ+ ϑ), φ̄ =

1

2
(ϕ− ϑ). (2.44)

From the definition of ϑ it is clear that the fields have very non-local
relations.

Bosonization formulas

Let us now write down the bosonization formulas for the electron fields:

ψRσ(x) =
1√
2πa

ησe
−i
√

4πφσ(x), ψ†Rσ(x) =
1√
2πa

ησe
i
√

4πφσ(x), (2.45)

ψLσ(x) =
1√
2πa

η̄σe
i
√

4πφ̄σ(x), ψ†Lσ(x) =
1√
2πa

η̄σe
−i
√

4πφ̄σ(x), (2.46)

with spin indexes σ =↑, ↓. Here the Hermitian so called Klein factors ησ
and η̄σ, obeying the Clifford algebra

{ησ, ησ′} = {η̄σ, η̄σ′} = 2δσ,σ′ , {ησ, η̄σ′} = 0, (2.47)

and hence being Majorana particles, are needed to ensure the correct
anticommutation relations for the fermionic fields. The lattice constant
a enters as a short-distance cutoff.3 For spinless fermions, these formulas
can be compactly written in terms of the non-chiral fields as

ψR/L(x) =
1√
2πa

η e−i
√
π[ϑ(x)±ϕ(x)], (2.48)

with Klein factor η. For spinful fermions, one can introduce the charge
and spin fields

ϕc =
1√
2

(ϕ↑ + ϕ↓) , ϕs =
1√
2

(ϕ↑ − ϕ↓) (2.49)

ϑc =
1√
2

(ϑ↑ + ϑ↓) , ϑs =
1√
2

(ϑ↑ − ϑ↓) (2.50)

3We will see in Eq. (2.80) that this is equivalent to making the exponentiated
expression normal-ordered.
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in terms of which the bosonization formula compactly can be written as

ψrσ(x) =
1√
2πa

ηrσ e
−i
√

2π[rϕc(x)−ϑc(x)+σ(rϕs(x)−ϑs(x)] (2.51)

with r = ± for R/L and s = ± for ↑, ↓. With the fields decomposed into
spin and charge parts, it follows that the Hamiltonian separates into a
spin and a charge sector,

H = Hs +Hc, (2.52)

also in the presence of the interactions. From a detailed analysis it fol-
lows that the independent spin and charge degrees of freedom propagates
with different velocities, and this remarkable fact is known as spin-charge
separation.

Solving the Tomonaga-Luttinger model

For simplicity, we will now restrict ourselves to the spinless case, and
show how to exactly solve the interacting Tomonaga-Luttinger model.
The non-interacting Hamiltonian density is given by

H0(x) =
vF
2

[
(∂xϑ(x))2 + (∂xϕ(x))2] , (2.53)

in terms of the non-chiral fields ϕ and ϑ. The field gradients can be
expressed in terms of the densities as

∂xϕ(x) = −π [ρR(x) + ρL(x)] , (2.54)

∂xϑ(x) = π [ρR(x)− ρL(x)] , (2.55)

such that ∂xϕ(x) is the total density and ∂xϑ(x) the electrical current
operator. Then the forward interaction (2.22) is now given by

Hf (x) =
gf
2

[
ρR(x)ρR(x) + ρL(x)ρL(x)

]

=
gf

2(2π)2

[
(∂xϕ− ∂xϑ)2 + (∂xϕ+ ∂xϑ)2

]

=
gf

(2π)2

[
(∂xϑ(x))2 + (∂xϕ(x))2] . (2.56)

Comparing to Eq. (2.53) one sees that the forward interaction is exactly
the same as the Hamiltonian density, thus only changing the Fermi ve-
locity when they are added together. Similarly, the dispersive interaction
(2.20) becomes

Hd(x) = gd ρR(x)ρL(x) =
gd

(2π)2

[
(∂xϑ(x))2 − (∂xϕ(x))2] . (2.57)
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Thus, while the forward interaction only renormalizes the Fermi velocity,
the dispersive term changes the relative weight between the ∂xϑ and
∂ϕ terms in the Hamiltonian. One can incorporate these two effects by
introducing two parameters, the renormalized Fermi velocity v and the
Luttinger parameter K, such that H = H0 +Hf +Hd can be written as

H =
v

2

∫
dx

[
K (∂xϑ(x))2 +

1

K
(∂xϕ(x))2

]
, (2.58)

with

v =

[(
vF +

gf
π

)2

−
(gd
π

)2
]1/2

, (2.59)

K =

[
πvF + gf − gd
πvF + gf + gd

]1/2

. (2.60)

A rescaling of the fields,

ϕ/
√
K 7→ ϕ, (2.61)

ϑ
√
K 7→ ϑ, (2.62)

brings the Hamiltonian back to canonical form

H =
v

2

∫
dx
[

(∂xϑ(x))2 + (∂xϕ(x))2] , (2.63)

while changing the exponents in the bosonization formula to

ψR/L(x) =
1√
2πa

η e−i
√
π[ϑ(x)/

√
K±

√
Kϕ(x)], (2.64)

2.1.4 Correlation functions

Correlation functions can now readily be obtained since the theory is
quadratic in the bosonic fields. Expectation values are evaluated as

〈O〉 =
1

Z

∫
D[ϕ]

∫
D[ϑ] O e−S[ϕ,ϑ], (2.65)

where the imaginary-time action is given by

S[ϕ, ϑ] = −
∫ β

0

dτ

∫
dx
[ i
π
∂xϑ∂τϕ−

v

2
((∂xϑ)2 + (∂xϕ)2)

]
(2.66)

which is on quadratic form in Fourier space

S[ϕ, ϑ] = − 1

βL

∑

q

∑

ωn

[
− iqωn

π
ϕ(q, ωn)ϑ(−q,−ωn) (2.67)

−v
2

(
q2ϑ(q, ωn)ϑ(−q,−ωn) + q2ϕ(q, ωn)ϕ(−q,−ωn)

) ]
.
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Using the relation −v∂tϑ = ∂xϕ, completing the square in the action,
and using the standard rules for Gaussian integration, one obtains

〈ϕ∗(q1, ωn1)ϕ(q2, ωn2)〉 =
πδq1,q2δωn1,ωn2Lβ

ω2
n1/v + vk2

1

(2.68)

for the boson field, hence giving the correlation function

〈ϕ(x, τ)ϕ(0, 0)〉 − 〈[ϕ(0, 0)]2〉

=
1

2πβ

∑

ωn

∫
dq

2π

ω2
n/v + vk2

(cos(qx+ ωnτ)− 1) . (2.69)

The asymptotic of the correlation function at zero temperature is ob-
tained as

〈ϕ(x, τ)ϕ(0, 0)〉 − 〈[ϕ(0, 0)]2〉 ∼ − 1

4π
ln

[
x2 + τ 2

a2

]
(2.70)

when x, τ � a. The correlator for the dual bosonic field ϑ follows in
exactly the same way. The chiral fields have similar chiral correlators

〈φ(z)φ(z′)〉 − 〈[φ(z)]2〉 ∼ − 1

4π
ln

[
z − z′
a

]
(2.71)

〈φ̄(z̄)φ̄(z̄′)〉 − 〈[φ̄(z̄)]2〉 ∼ − 1

4π
ln

[
z̄ − z̄′
a

]
(2.72)

The Dirac fermion correlation function follows from the same proce-
dure. The imaginary-time action corresponding to the Dirac Hamiltonian
(2.14) is given by

S[ψ†, ψ] = −
∫ β

0

dτ

∫
dx
[
ψ†R(ivF∂x − ∂τ )ψR + ψ†L(−ivF∂x − ∂τ )ψL

]
,

(2.73)
which allows the correlation functions to be evaluated in standard fash-
ion4,

〈ψ†R/L(x, τ)ψR/L(0, 0)〉 − 〈ψ†R/L(0, 0)ψR/L(0, 0)〉

=
1

Lβ

∑

q,ωn

1

−iωn ∓ vF q
e−iqx−iωnτ ≈ 1

2π

(
1

vF τ ∓ ix

)
(2.74)

where the last equality follows in the zero-temperature limit. In complex
coordinates, z = −i(x− vF t) = vF τ − ix, we can write this as

〈ψR(z)ψ†R(z′)〉 ∼ 1

2π

1

z − z′ (2.75)

〈ψL(z̄)ψ†L(z̄′)〉 ∼ 1

2π

1

z̄ − z̄′ . (2.76)

4See e.g. Ref. [11].
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We are now in a position to calculate the correlation functions for
the interacting electrons in the Tomonaga-Luttinger model (2.63). The
bosonization formula (2.64) is an example of a normal-ordered expo-
nential known as a vertex operator. The multiplication rule for vertex
operators of the form eiαφ(z) follows from the Campbell-Baker-Hausdorff
formula eAeB = eA+Be[A,B]/2 when [A,B] is a constant. For a single
bosonic operator b, and A = αb+ α′b†, B = βb+ β′b†,

: eA :: eB := eα
′b†eαbeβ

′b†eβb = eα
′b†eβ

′b†eαbeβbeαβ
′
=: eA+B : e〈0|AB|0〉.

(2.77)

Since they are just combinations of independent harmonic oscillators, it
follows that Eq. (2.77) also applies to the boson field φ and φ̄. Hence we
arrive at the important formula

eiαφ(z)eiβφ(z′) = eiαφ(z)+iβφ(z′)e−αβ〈φ(z)φ(z′)〉, (2.78)

where normal-ordering of the vertex operators is implied. From the ex-
pression (2.71) for the boson correlator, it follows that

eiαφ(z)eiβφ(z′) = eiαφ(z)+iβφ(z′)(z − z′)αβ/4π. (2.79)

It also follows that the normal-ordering is the same as normalizing the
vacuum expectation value of the vertex operator,

: eiαφ(z) : =
eiαφ(z)

〈eiαφ(z)〉 =
eiαφ(z)

e〈[iαφ(z)]2〉/2 =
eiαφ(z)

e−2α2〈φ(a)φ(0)〉

=
eiαφ(z)

e(α2/8π) ln a
=
eiαφ(z)

aα2/8π
. (2.80)

Since the bosonization formula (2.48) has α =
√

4π in the exponent, we
see that the prefactor a−1/2 is simply another way of writing that the
operator is normal-ordered.

We can now obtain the electron correlation function in the Tomonaga-
Luttinger model. First, note that in the non-interacting case (i.e. gf =
gd = 0 ⇒ K = 1), the bosonization formula (2.48) gives

〈ψ†R(x, τ)ψR(0, 0)〉 =
1

2πa
〈 ei
√
π[ϑ(x,τ)+ϕ(x,τ)]e−i

√
π[ϑ(0,0)+ϕ(0,0)]〉

=
1

2πa
〈 ei
√

4πφ(x,τ)e−i
√

4πφ(0,0)〉 =
1

2πa
〈 ei
√

4π[φ(x,τ)−φ(0,0)]〉

=
1

2πa
e−2π〈[φ(x,τ)−φ(0,0)]2〉 =

1

2πa
e4π[〈φ(x,τ)φ(0,0)〉−〈[φ(0,0)]2〉]

=
1

2πa
e4π[〈φ(x,τ)φ(0,0)〉−〈[φ(0,0)]2〉] =

1

2πa
e− ln[(vF τ−ix)/a]

=
1

2π

1

vF τ − ix
, (2.81)
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and similarly 〈ψ†L(x, τ)ψL(0, 0)〉 = (2π)−1(vF τ+ix)−1. Hence the bosoniza-
tion formula (2.48) reproduces the correct correlation functions (2.74) for
non-interacting electrons. For interacting spinless fermions, we instead
get

〈ψ†R(x, τ)ψR(0, 0)〉 = =

=
1

2πa
〈 ei
√
π[ϑ(x,τ)/

√
K+
√
Kϕ(x,τ)]e−i

√
π[ϑ(0,0)/

√
K+
√
Kϕ(0,0)]〉

=
1

2πa
〈 ei
√
π
(√

K+ 1√
K

)
φ(x,τ)

e
i
√
π
(√

K− 1√
K

)
φ̄(x,τ)

×e−i
√
π
(√

K+ 1√
K

)
φ(0,0)

e
−i
√
π
(√

K− 1√
K

)
φ̄(0,0)〉

=
1

2πa
〈 ei
√
π
(√

K+ 1√
K

)
φ(x,τ)

e
−i
√
π
(√

K+ 1√
K

)
φ(0,0)〉

×〈ei
√
π
(√

K− 1√
K

)
φ̄(x,τ)

e
−i
√
π
(√

K− 1√
K

)
φ̄(0,0)〉

=
1

2π

1

(vτ − ix)(
√
K+1/

√
K)/2

1

(vτ + ix)(
√
K−1/

√
K)/2

,

(2.82)

and similarly for the left-moving fermion,

〈ψ†L(x, τ)ψL(0, 0)〉 =

=
1

2π

1

(vτ + ix)(
√
K+1/

√
K)/2

1

(vτ − ix)(
√
K−1/

√
K)/2

. (2.83)

We thus see that the interactions (in fact, only the dispersive) mix the
right- and left-moving bosonic fields, such that a fermion which is right-
moving in the unperturbed theory becomes a mixture of right- and left-
moving fields. For the spinless fermion field we thus have

〈Ψ†(x, τ)Ψ(0, 0)〉 = (2.84)

=
1

2π

1

(vτ − ix)(
√
K+1/

√
K)/2

1

(vτ + ix)(
√
K−1/

√
K)/2

+
1

2π

1

(vτ + ix)(
√
K+1/

√
K)/2

1

(vτ − ix)(
√
K−1/

√
K)/2

.

The density-density correlator is obtained from

ρ(x) = ψ†R(x)ψR(x) + ψ†L(x)ψL(x)

+ψ†R(x)ψL(x)e−i2kF x + ψ†L(x)ψR(x)ei2kF x (2.85)

=
1

2π

[
∂xϕ(x) + ei

√
4πϕ(x)e−i2kF x + e−i

√
4πϕ(x)ei2kF x

]
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which gives

〈ρ(x, τ)ρ(0, 0)〉 =
K

4π2

[
1

(vτ + ix)2
+

1

(vτ − ix)2

]

+
2

(2πa)2
cos(2kFx)

(x
a

)−2K

(2.86)

in the large-distance limit x� a.
In order to get the above correlation functions in real time one needs

to perform the analytic continuation τ → it.

2.1.5 Backscattering interactions

Even though we now have solved the Tomonaga-Luttinger model, we
must understand the effects of the electron backscattering terms (2.19)
from the Coulomb interaction in order to get a full understanding of the
spinful Luttinger liquid. On bosonized form we have

Hbs = gbs
1

2π2

∫
dx cos

[√
8πKϕs(x)

]
, (2.87)

where ϕs = (ϕ↑ − ϕ↓)/
√

2. With the Hilbert space completely separated
into a charge and a spin sector, known as the spin-charge separation,
the backscattering takes place in the spin sector. The charge sector is
thus completely described by a free boson Hamiltonian, whereas the spin
sector is governed by a Hamiltonian Hs = Hs0 + Hbs. This is known as
the sine-Gordon model, and is solved, in the sense of obtaining the phase
diagram and critical exponents, using the renormalization group5.

As seen, the electron-electron backscattering interaction in Eq. (2.19)
can only occur if the fermions have spin. However, in the presence of im-
purities there can also be single-particle backscattering generated at the
impurity site. Such single-particle backscattering operators, ψ†R(x)ψL(x)
and ψ†L(x)ψR(x), will also be described by vertex operators after bosoniza-

tion. The equal-time, equal-position vertex operators e±i
√

4πϕ and ∂xϑ
have the same commutation relations as the spin matrices σ± and σz,
which is what one expects from the identification ψ†RψL = σ+, ψ†LψR = σ−

and ψ†RψR − ψ†LψL = σz.

5For a pedagogical review, see Ref. [65].
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2.2 Conformal field theory

One of the most striking features of the linearization procedure at low
energies above, resulting in the relativistic Dirac fermions and the free
bosonic field, is that it shows the appearance of conformal symmetry.
This roughly corresponds to translational, rotational and scale invari-
ance, and field theories with these symmetries are known as conformal
field theories. They provide a unified framework for describing univer-
sal low-energy properties of gapless one-dimensional quantum and two-
dimensional classical systems [60]. There are also other applications: For
some topological quantum systems (which will be discussed in Chapter
5) there is a correspondence between the gapless one-dimensional edge
and the gapped two-dimensional bulk that seems to allow the bulk wave-
functions to be described using a 2D conformal field theory [66]. For
some other special systems there are ”conformal quantum critical points”
where a two-dimensional conformal theory represents the ground state
wave function in two spatial dimensions [67]. Boundary conformal field
theory provides a powerful way to understand non-Fermi liquid behavior
in quantum impurity problems [68,69], as we will see in Section 3.2.

2.2.1 Conformal invariance in two dimensions

In the imaginary-time formalism, a one-dimensional quantum system and
a two-dimensional classical system are both effectively two-dimensional.
When discussing conformal field theory in two dimensions, we do not
need to make a distinction between the two.

Conformal transformations

Let us first define conformal transformations in arbitrary dimensions.
Distances are given through

ds2 = gµνdx
µdxν , (2.88)

with metric gµν . Under a coordinate transformation x → x′, the metric
transforms covariantly,

g′µν(x
′) =

∂xα

∂x′µ
∂xβ

∂x′ν
gαβ(x). (2.89)

The coordinate transformation is a conformal transformation if it leaves
the metric invariant up to a local scale factor, i.e. if

g′µν(x
′) = Λ(x)gµν(x). (2.90)
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The name comes from the fact that these transformations preserve the
angle between two vectors.

Under an infinitesimal transformation xµ → xµ + εµ(x) the metric
transforms as gµν → gµν − (∂µεν + ∂νεµ). For the transformation to
be conformal, the expression in parenthesis must be proportional to the
metric. This leads to the constraint

∂µεν + ∂νεµ =
2

d
∂ρε

ρgµν (2.91)

in D dimensions. For D > 2 it can be shown that this constraint on
the infinitesimal transformations only allows translations, dilations, ro-
tations and what is known as ”special conformal transformations”. Upon
”exponentiation” the finite versions of these transformations are

x′µ = xµ + aµ translation, (2.92)

x′µ = αxµ dilatation, (2.93)

x′µ = Mµ
νx

ν rotation, (2.94)

x′µ = xµ−bµx2

1−2b·x+b2x2 ”special conformal transformation”. (2.95)

Hence the group of conformal transformations is finite-dimensional for
D > 2.

For D = 2 dimensions however, Eqs. (2.91) become the Cauchy-
Riemann equations, ∂1ε1 = ∂2ε2 and ∂1ε2 = ∂2ε1. This shows that
the conformal transformations in two dimensions are the analytic func-
tions, hence the conformal group is infinite-dimensional. Let us Introduce
complex coordinates,

z = τ − ix, z̄ = τ + ix. (2.96)

Then, under a change of coordinates z → w(z), z̄ → w̄(z̄), Eq. (2.89) for
the transformation of the metric becomes

g → (∂w/∂z)(∂w̄/∂z̄)g, (2.97)

and the Cauchy-Riemann equations are

∂w2

∂z1
=
∂w1

∂z2
and

∂w1

∂z1
= −∂w

2

∂z2
(2.98)

for holomorphic functions w(z) and

∂w2

∂z1
= −∂w

1

∂z2
and

∂w1

∂z1
=
∂w2

∂z2
(2.99)

for antiholomorphic functions w̄(z̄), with (z1, z2) the coordinates in the
complex z plane and similarly for w.
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Generators and global conformal transformations

Now, any infinitesimal transformation can be written as w(z) = z+ ε(z),
w̄(z̄) = z̄ + ε̄(z̄). Assuming ε(z) and ε̄(z̄) can be Laurent expanded
around the origin, one arrives at the following infinite set of generators

`n = −zn+1∂z , ¯̀
n = −z̄n+1∂z̄ (2.100)

for the effect on a classical field. They have the commutation relations

[`n, `m] = (n−m)`m+n[
¯̀
n, ¯̀

m

]
= (n−m)¯̀

m+n, , (2.101)[
`n, ¯̀

m

]
= 0,

known as the loop, or Witt, algebra. It shows that the infinite-dimensional
conformal algebra is decomposed into a direct sum of one generated by
the set of `n and the other by the set of ¯̀

n.
The algebra (2.101) has two finite-dimensional subalgebras generated

by {`−1, `0, `1} and
{

¯̀−1, ¯̀
0, ¯̀

1

}
respectively. These generate transla-

tion, dilatation, rotation and special conformal transformations. Each
set generates so called projective conformal transformations, also known
as Möbius transformations,

w(z) =
az + b

cz + d
, ad− bc = 1, (2.102)

with a, b, c and d complex numbers.

Two-dimensional conformal field theories

Now we are ready to state what conformal field theory is [60]: Given a set
of local scaling fields Aj(z, z̄), transforming as Aj → λ−djAj under scale
transformations and forming a complete set in the sense that they can
generate all states, a conformal field theory is described by the correlation
functions of this set of scaling fields. In particular,

(a) There is a subset of the fields Aj(z, z̄) consisting of primary fields
φn(z, z̄), which transform under any conformal transformation as

φn(z, z̄)→
(
∂w

∂z

)∆n
(
∂w̄

∂z̄

)∆̄n

φ′n(w(z), w̄(z̄)), (2.103)

when inside a correlator. Here ∆n and ∆̄n are real non-negative
numbers known as the dimension of the field φn(z, z̄), and xn =
∆n + ∆̄n as the scaling dimension and sn = ∆n − ∆̄n as the ”spin”.
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(b) A complete set of the scaling fields Aj consists of ”conformal fami-
lies” or ”towers” [φn]. The tower [φn] contains the primary field φn
and infinitely many secondary, or descendant, fields, with dimensions

∆
(k)
n = ∆n + k, ∆̄

(k̄)
n = ∆̄n + k̄, where k, k̄ = 0, 1, 2, .... Under con-

formal transformations, a secondary field Aj is transformed into a
linear combination of other fields in the same tower. Hence, each
conformal tower corresponds to some irreducible representation of
the conformal group.

(c) Correlation functions of any secondary field can be obtained from
the corresponding primary fields, therefore the correlation functions
of the primary fields contain all the information about the conformal
field theory.

(d) The fields which transform as in Eq. (2.103) under projective confor-
mal transformations (2.102) are called quasi-primary fields. Hence
every primary field is also quasi-primary, but a secondary field may
or may not be quasi-primary.

(e) Any local field Aj can be written as a linear combination of quasi-
primary fields and their derivatives to all orders.

(f) The assumed completeness of the set {Aj} of local fields means that
there is an operator algebra, the operator product expansion,

Aj(z)Aj(0) =
∑

k

Ck
ij(z)Ak(0) (2.104)

inside correlators, where Ck
ij(z) are c-number functions which should

be single-valued for locality.

(g) The vacuum is invariant under projective conformal transformations.

2.2.2 Correlation functions

The expectation values 〈φ(x)〉 will generally vanish unless there is some
spontaneous symmetry breaking. Therefore two-point functions are the
same as correlation functions. The form (2.103) for the correlation func-
tions of the quasi-primaries under projective conformal transformations
determine their two-point functions up to a non-universal constant. Con-
sider first a scale transformation x→ λx, for which Eq. (1.35) gives

〈φ1(x1)φ2(x2)〉 = λ∆1+∆2〈φ1(λx1)φ2(λx2)〉, (2.105)
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and then invariance under translation and rotation which means that
the two-point function can only depend on the distance |x1 − x2|. This
constrains the form of the two-point function to

〈φ1(x1)φ2(x2)〉 =
C12

|x1 − x2|∆1+∆2
. (2.106)

Furthermore, invariance under the special conformal transformations con-
strains it even further, such that two quasi-primary fields are only corre-
lated if they have the same dimension

〈φ1(x1)φ2(x2)〉 =

{
C12|x1 − x2|−2∆1 ∆1 = ∆2,
0 ∆1 6= ∆2.

(2.107)

In complex coordinates

〈φ1(z1, z̄1)φ2(z2, z̄2)〉 =
C12

(z1 − z2)2∆(z̄1 − z̄2)2∆̄
, (2.108)

when ∆1 = ∆2 = ∆ and ∆̄1 = ∆̄2 = ∆̄ . The coefficient C12 is in fact
just a normalization parameter, one can always choose a basis such that
Cij = δij.

Similarly, the three-point function must have the form

〈φ1(z1, z̄1)φ2(z2, z̄2)φ3(z3, z̄3)〉
= C123z

−(∆1+∆2−∆3)
12 z

−(∆2+∆3−∆1)
23 z

−(∆1+∆3−∆2)
13

×z̄−(∆̄1+∆̄2−∆̄3)
12 z̄

−(∆̄2+∆̄3−∆̄1)
23 z̄

−(∆̄1+∆̄3−∆̄2)
13 . (2.109)

If one normalizes the coefficient in the two-point function to Cij = δij,
then the coefficient C123 is universal, and equal to the constant part of
the coefficient Ck

ij in the operator product expansion (2.104).

2.2.3 Stress-energy tensor and Virasoro algebra

The stress-energy tensor

The stress-energy tensor T µν , also known as the energy-momentum ten-
sor, is the conserved current associated with translational invariance as
given by Noether’s theorem. The effect on the Hamiltonian from a gen-
eral infinitesimal local coordinate transformation xµ → xµ + εµ(x) can
therefore be written as

δH = − 1

2π

∫
d2xT µν∂µεν (2.110)
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which can be seen as the definition of T µν . Hence the energy-momentum
tensor encapsulates the departure from the fixed-point by non-conformal
transformations. Invariance under rotations implies that T µν = T νµ is
symmetric, and global scale invariance implies zero trace T µµ = 0.

Now, the effect of this infinitesimal transformation on correlation
functions 〈φ1...φn〉 of primary fields can be obtained perturbatively from
H → H + δH, giving the so called conformal Ward identity

δ〈φ1(z1, z̄1)...φn(zn, z̄n)〉 =

= − 1

2πi

∮

C

dz ε(z)〈T (z)φ1(z1, z̄1)...φn(zn, z̄n)〉

+
1

2πi

∮

C

dz̄ ε̄(z̄)〈T̄ (z̄)φ1(z1, z̄1)...φn(zn, z̄n)〉, (2.111)

with T (z) = T11 − T22 − 2iT12, T̄ (z̄) = T11 − T22 − 2iT12 being the holo-
morphic and antiholomorphic components of the stress-energy tensor.
On local form this can be written as

〈T (z)φ1(z1, z̄1)...φn(zn, z̄n)〉 = (2.112)

=
∑

i

(
∆i

(z − zi)2
+

1

z − zi
∂zI

)
〈φ1(z1, z̄1)...φn(zn, z̄n)〉+ reg.,

〈T̄ (z̄)φ1(z1, z̄1)...φn(zn, z̄n)〉 = (2.113)

=
∑

i

(
∆̄i

(z̄ − z̄i)2
+

1

z̄ − z̄i
∂z̄I

)
〈φ1(z1, z̄1)...φn(zn, z̄n)〉+ reg.,

where ”reg.”means the terms that are regular as the coordinates approach
each other. Hence we have the operator product expansion

T (z)φ(w, w̄) ∼ ∆

(z − w)2
φ(w, w̄) +

1

z − w∂wφ(w, w̄), (2.114)

and similarly for the antiholomorphic part, where ∼ means considering
the singular part. Since the holomorphic and antiholomorphic parts es-
sentially decouple we can treat them separately in the following.

The central charge

Eqs. (2.112)-(2.113) show that the stress-energy tensor has scaling di-
mension equal to 2. Hence, since 〈T (z)〉 = 0 by translational invariance,
the correlation function is given by the two-point function

〈T (z)T (w)〉 =
c/2

(z − w)4
, (2.115)
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where the coefficient defines the central charge c. It is a universal number
which characterizes the different conformal field theories. In a sense,
it somehow corresponds to the effective number of gapless degrees of
freedom: A free boson or fermion has c = 1, whereas a theory with N
such fields has c = N , and a free Majorana fermion (1.26) has c = 1/2.
It also gives the proportionality constant for the finite-size scaling of the
free energy and hence encodes the analogue of the Casimir effect. It
enters into the operator product expansion of the stress-energy tensor
with itself

T (z)T (w) ∼ c/2

(z − w)4
+

2

(z − w)2
T (z) +

1

z − w∂zT (z). (2.116)

Comparing to Eq. (2.114) for a primary field, we see that the stress-
energy tensor is not a primary. Instead, under conformal transformations
it transforms as

T (z)→
(
∂w

∂z

)2

T ′(w) +
c

12
{w, z} , (2.117)

where the Schwarzian derivative is given by

{w, z} =
∂3
zw

∂zw
− 3

2

(
∂3
zw

∂zw

)2

. (2.118)

Hence the central charge somehow encodes how much the stress-energy
tensor deviates from being a primary field of dimension 2 (which is what
one expects classically, it therefore describes an anomaly).

The Virasoro algebra

In order to treat quantum systems, one must employ the operator for-
malism where a distinction is made between space and time. A suitable
choice is to use what is known as radial quantization, where the radial
direction is taken as the direction of time. Then equal-time commutators
of operators can be expressed as contour integrals in the complex plane,

[A1, A2] =

∮

0

dw

∮

w

dz a1(z)a2(w) , Ai =

∮
dz ai(z). (2.119)

Now, the generator Q of conformal transformations, i.e. the charge Q
which gives δφ(z) = −[Q, φ(z)] for the transformation of an operator
φ(z) under an infinitesimal coordinate transformation, is given in terms
of the stress-energy tensor as

Q =
1

2πi

∮
dz ε(z)T (z). (2.120)
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If T (z) is mode expanded,

T (z) =
∑

n

z−n−2Ln , Ln =
1

2πi

∮
dz ε(z)T (z), (2.121)

and similarly for ε(z), then

Q =
∑

n

εnLn, (2.122)

with n integers. Hence the mode operators Ln (and L̄n) of the stress-
energy tensor are the generators of conformal transformations on the
Hilbert space, being the quantum version of Eq. (2.100). They obey the
Virasoro algebra

[Ln, Lm] = (n−m)Lm+n +
c

12
n(n2 − 1)δn+m,0,

[
L̄n, L̄m

]
= (n−m)L̄m+n +

c

12
n(n2 − 1)δn+m,0, (2.123)

[
Ln, L̄m

]
= 0.

So we have two commuting infinite-dimensional algebras. For the subal-
gebras with n = −1, 0, 1, the terms proportional to the central charge c
vanish and one recovers the loop algebra (2.101) for the projective con-
formal transformations.

The representation theory of the Virasoro algebra gives the struc-
ture of the Hilbert space. Given a vacuum |0〉 which is invariant under
projective conformal transformations, and imposing vanishing vacuum
expectation value of the stress-energy tensor, one has

Ln|0〉 = 0, L̄n|0〉 = 0 for n ≥ −1. (2.124)

The Hermitian conjugate of the Virasoro generators are given by L†n =
L−n. With states obtained by acting with the operators on the vacuum,

|∆, ∆̄〉 ≡ φ(0, 0)|0〉, (2.125)

one has

L0|∆, ∆̄〉 = ∆|∆, ∆̄〉, and Ln|∆, ∆̄〉 = 0 for n > 0 (2.126)

and the state at any z is obtained through φ(z)|0〉 = exp[zL−1] |0〉. States
with higher dimensions can now be obtained from the state |∆, ∆̄〉 by
acting with the generators L−m (m > 0). By the Virasoro algebra,

L0(L−k1 ...L−kn)|∆, ∆̄〉 = (∆ + k1 + ...+ kn)(L−k1 ...L−kn)|∆, ∆̄〉. (2.127)
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These states are the descendants of the state |∆, ∆̄〉, hence defining the
descendant fields in the conformal tower of the primary φ(0, 0).

Conformal field theories with a finite number of primary operators,
and hence of conformal tower, are called minimal models. The Kac for-
mula, relating the value of the central charge c to the possible values of
the dimensions ∆ of the operators, then provides a complete classifica-
tion of all unitary (i.e. without negative-norm states) minimal models
with c < 1.

As a last remark, let us note that the quantum Hamltonian can be
expressed in terms of Virasoro generators by

H =
2π

L

(
L0 + L̄0

)
(2.128)

as the system size L→∞.

2.2.4 Finite-size effects

It is now an important question to ask what sort of effects it has on
correlation functions to put the system in a finite geometry, by either
imposing periodic boundary conditions in the spatial direction or being at
finite temperature [70,71]. Since the results so far has been for the infinite
complex plane, these results can actually be extended to finite geometries
rather straight-forwardly by conformal transformations. Consider the
transformation

w(z) =
L

2π
ln z ⇔ z = e2πw/L (2.129)

from the infinite z-plane to the w-cylinder. Using the transformation
properties (2.117) for the stress-energy tensor, one obtains a non-zero
vacuum expectation value of the stress-energy tensor on the cylinder.
This results in a finite-size correction for the ground-state energy given
by

δE = −πcv
6L

, (2.130)

showing that the central charge c serves as the proportionality constant
for the Casimir effect.

From Eq. (2.103) is follows that the effect of the conformal transfor-
mation (2.129) on the two-point correlation function (2.108) is

〈φ(w1, w̄1)φ(w2, w̄2)〉 =

=

(
∂w

∂z

)−∆

w=w1

(
∂w

∂z

)−∆

w=w2

(
∂w̄

∂z̄

)−∆̄

w̄=w̄1

(
∂w̄

∂z̄

)−∆̄

w̄=w̄2

〈φ(z1, z̄1)φ(z2, z̄2)〉

=

(
L

π
sinh

[π
L

(w1 − w2)
])−2∆(

L

π
sinh

[π
L

(w̄1 − w̄2)
])−2∆̄

(2.131)
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Note that for |w1 − w2| � L one recovers the usual correlation function
(2.108) for the infinite plane. An important relation will follow by taking
the other limit, |w1 − w2| � L:

〈φ(w1, w̄1)φ(w2, w̄2)〉 =

=

(
2π

L

)∆+∆̄

exp

[
−2π

L
∆(w1 − w2)− 2π

L
∆̄(w̄1 − w̄2)

]

=

(
2π

L

)∆+∆̄

exp

[
−2π

L
(∆ + ∆̄)v(τ1 − τ2)− i2π

L
(∆− ∆̄)(x1 − x2)

]
,

(2.132)

where the complex coordinates are given by w = vτ − ix = −i(x −
vt) and w̄ = vτ + ix = i(x + vt). This should be compared to the
spectral decomposition of the correlation function obtained by inserting
a resolution of the identity,

〈φ(w1, w̄1)φ(w2, w̄2)〉 =

=
∑

Q

|〈0|φ(0, 0)|Q〉|2 exp [−(En − EQ)(τ1 − τ2)− i(PQ − P0)(x1 − x2)] ,

(2.133)

where |Q〉 is a complete set of states labelled by their quantum numbers
Q, with energy eigenvalues EQ and momentum eigenvalues PQ. Hence
we arrive at the important relations

EQ − E0 =
2πv

L

(
∆ + ∆̄

)
, (2.134)

PQ − P0 =
2π

L

(
∆− ∆̄

)
, (2.135)

relating the dimensions of the operators in the conformal field theory
to the finite-size corrections of the energy and momentum of the states.
It is therefore possible to extract the dimensions, which determine the
correlation functions, from finite-size corrections which are usually much
easier to obtain. In particular, the correlation length ξ, determining the
exponential decay 〈φ(x, τ)φ(0, 0)〉 ∼ exp[−x/ξ], follows as

ξ =
L

2πx
, (2.136)

where x = ∆ + ∆̄ is the scaling dimension.
Replacing the finite length L in the conformal transformation (2.129)

with the finite ”length”β in the imaginary time direction, i.e. the inverse
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temperature, one instead obtains the finite-temperature correlation func-
tions. Hence

〈φ(w1, w̄1)φ(w2, w̄2)〉 =

=

(
β

π
sinh[

π

β
(w1 − w2)]

)−2∆(
β

π
sinh[

π

β
(w̄1 − w̄2)]

)−2∆̄

, (2.137)

at temperature T = 1/β, where the correlation function is given by
〈φ(w1, w̄1)φ(w2, w̄2)〉 = Tr ρ φ(w1, w̄1)φ(w2, w̄2), with ρ = exp[−βH]/Z
the density matrix.

2.2.5 Boundary conformal field theory

Another important case is systems with a boundary [72–74]. This is for
example often the case in quantum impurity problems, where effectively
the system can be described as one-dimensional with a boundary at the
impurity position [68]. Let us therefore consider a conformal field theory
with complex coordinates restricted to the upper half-plane (C+).

A model with a boundary now restricts the conformal transformations
to those that map the boundary onto itself. This implies that the holo-
morphic and antiholomorphic sectors are no longer independent. It also
implies that the boundary conditions must be homogeneous, for example
as the ”free” boundary condition where the field vanish at the boundary,
φ|∂ = 0.

The lack of independence between the holomorphic and antiholo-
morphic sectors makes it possible to introduce a mirror image of the
system on the lower half-plane, by the identification z̄ = z∗, where
z, z̄ ∈ C+ and therefore z∗ ∈ C−. Thus T (z∗) = T̄ (z), T̄ (z∗) = T (z),
etc.. The conformal Ward identities then show that the correlation func-
tion 〈φ(z1, z̄1)...φ(zn, z̄n〉C+ , which is a function of z1, ..., zn, z̄1, ..., z̄n in
the upper half-plane, is the same as 〈φ(z1)...φ(zn)φ(z∗1)φ(z∗n)〉C. This is
analogous to the method of images in electrostatics, since the correlation
functions behave just as if the fields interact with their mirror images
on the other side of the boundary. The theory with holomorphic and
antiholomorphic dependence on the upper half-plane has therefore been
mapped to a theory with only holomorphic dependence on the entire com-
plex plane. In particular, the expectation value of a field in the half-plane
no longer vanish, instead it has correlations with its mirror image,

〈φ(z, z̄)〉C+ = 〈φ(z)φ(z∗)〉C ∼ y−∆ (2.138)

where y is the distance from the boundary, see Fig. 2.4.



2.2 Conformal field theory 43

ix

τ

z

z∗

iy

−iy

Figure 2.4: In the presence of a boundary, here the real axis x = 0,
correlation functions on the upper half-plane are obtained by introducing
mirror images on the other side of the boundary (the shaded lower half-
plane).

One may now wonder what will happen as an operator approaches
the boundary. The operator product expansion with its mirror image
then gives

φ(z)φ(z∗) ∼
∑

i

C
(φ)
i

(z − z∗)2x−x(i)
b

φ
(i)
b (τ) (2.139)

where x = ∆ is the scaling dimension of the holomorphic field φ(z) on
the upper half-plane, and the sum is over primary boundary operators φb,
with scaling dimensions xb. They live on the boundary and have corre-
lation functions 〈φb(τ1)φb(τ2)〉 = |τ1 − τ2|−2xb . Boundary operators with
xb < 1 are relevant under the renormalization group, and will therefore
be boundary condition changing operators since they will cause the sys-
tem to flow away from the fixed point when inserted. One can introduce
boundary states, in analogy with the states introduced above, by acting
with such operators on the vacuum. In general, every conformally in-
variant boundary condition (CIBC) can be associated with a boundary
state. If the space and imaginary time directions are interchanged, then
one can formally write the partition function for a strip between two
CIBCs A and B as ZAB = 〈A| exp[−LH ′]|B〉, where H ′ is a Hamiltonian
that propagate the system across the distance L in the space direction
between the two boundaries A and B. In the limit where L � β one
obtains the thermal entropy

SThAB =
∂

∂T

[
T lnZAB

]
=
πcLT

3
+ ln gAB, (2.140)
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where
gAB = 〈A|0〉〈0|B〉 (2.141)

is the boundary entropy [75]. Here |0〉 is the ground state of the space-
time-exchanged Hamiltonian H ′. This part of the thermodynamic en-
tropy therefore depends on the boundary conditions as opposed to the
extensive term, and it encodes the entropy of the boundaries. Interest-
ingly, it does not vanish at zero temperature. Therefore it is referred
to as the ground-state degeneracy, but note that it does not need to be
an integer. In quantum impurity problems a non-integer ground-state
degeneracy encodes non-Fermi liquid properties of the system.

Irrelevant boundary operators however will appear as perturbations
around the conformally invariant fixed point without changing the CIBC,
and they play an important role in quantum impurity problems where
they determine the thermodynamics of the system.

2.2.6 The free boson

Let us end this Section by giving a concrete example of a conformal field
theory. In fact we have already encountered it before: the free boson. It
has a Hamiltonian (2.63), rewritten as

H =
v

2

∫
dx
[

(∂tϕ(x)/v)2 + (∂xϕ(x))2] , (2.142)

and an action which in complex coordinates and with the usual conven-
tion v = 1 is written as

S =
1

8π

∫
dz

∫
dz̄ ∂zϕ(z, z̄) ∂z̄ϕ(z, z̄). (2.143)

The large-distance correlation function (2.70) in complex coordinates,

〈ϕ(z, z̄)ϕ(0, 0)〉 = − 1

4π
ln [z/a]− 1

4π
ln [z̄/a] (2.144)

shows that the boson field ϕ(z, z̄) ≡ ϕ(z)+ϕ̄(z̄) is not a primary. However
its derivatives ∂zϕ(z, z̄) = ∂zϕ(z) and ∂z̄ϕ(z, z̄) = ∂z̄ϕ̄(z) have correlation
functions

〈∂zϕ(z)∂wϕ(w)〉 = − 1

4π

1

(z − w)2
(2.145)

〈∂z̄ϕ̄(z̄)∂w̄ϕ̄(w̄)〉 = − 1

4π

1

(z̄ − w̄)2
(2.146)

and operator product expansions with the stress-energy tensor, which is
given by

T (z) = −2π : ∂zϕ(z)∂zϕ(z) : (2.147)
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show that ∂zϕ(z) and ∂z̄ϕ̄(z) are primary fields. The correlator 〈T (z)T (w)〉 =
(1/2)(z−w)−4 for the stress-energy tensor shows that the free boson the-
ory has central charge c = 1.

There is in fact an infinite number of primary fields that can be con-
structed from ϕ. These are the vertex operators,

Vα(z) = : eiαϕ(z) : V̄α(z̄) = : eiαϕ̄(z̄) : (2.148)

familiar from the previous discussion of bosonization. The non-vanishing
operator product expansions are

Vα(z)V−α(w) =
1

(z − w)α2/2π
+ ... (2.149)

and similarly for the antiholomorphic part, showing that their dimensions
are given by

∆α =
α2

8π
∆̄α =

α2

8π
. (2.150)
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3
The Kondo effect

The Kondo effect is one of the paradigms of strongly correlated phe-
nomena [30]. It is historically associated with the surprising increase in
electrical resistivity ρ(T ) as the temperature T → 0 in normal metals
containing magnetic impurities [76, 77]. When T → 0 the usual scatter-
ing mechanisms in Fermi liquids give a resistivity ρ(T ) ∼ const. + T 2

according to Matthiessen’s rule. The constant term comes from scatter-
ing off non-magnetic impurities and the term quadratic in temperature
from electron-electron scattering [18]. In the presence of magnetic impu-
rities, i.e. localized spins that can scatter the electrons, there is instead
a resistivity minimum at a temperature typically on the order of 10 K,
see the sketch in Fig. 3.1.

Resistivity

Temperature

Figure 3.1: Sketch of the resistivity minimum in metals with magnetic
impurities, compared to non-magnetic (dashed line).

47
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3.1 The Kondo model

The resistance minimum was explained by Kondo [77], using a simple
model now known as the ”Kondo model”. It describes a magnetic s = 1/2
impurity interacting with a single band of conduction electrons:

HKondo =
∑

~k,α

ε(~k)ψ†~kαψ~kα + J ~S ·
∑

~k,~k′,α,β

ψ†~kα
~σαβ
2
ψ~k′β , (3.1)

where α, β =↑, ↓ are spin indices, ψ is the electron annihilation operator,
~σ is the vector with the Pauli matrices as components and ~S is the
impurity spin-1/2 magnetic moment localized at the origin.

When combined with the contribution from phonons, this simple
model accurately predicts the existence of a resistance minimum. How-
ever, the calculations showed a breakdown of perturbation theory as the
temperature was further reduced. Acquiring a solution below this break-
down temperature, the ”Kondo temperature” TK , became known as the
”Kondo problem”. In fact, it was the quest to solve this problem that
spurred the development of scaling analysis by Anderson [78] and the
renormalization group by Wilson [55]. The picture that emerged was
that for antiferromagnetic coupling, the magnetic impurity gets screened
at low temperatures by singlet formation with the conduction electrons.
This occurs at a length scale ξK ∼ vF/TK , the ”Kondo length” (see
Fig. 3.2). Hence when T → 0 the impurity effectively becomes non-
magnetic, only contributing a finite residual resistivity. As shown by
Nozières [79], this low-temperature fixed-point corresponds to a Fermi
liquid. An exact solution of the Kondo model, giving all the thermo-
dynamic properties, was finally obtained independently by Andrei [80]
and Wiegmann [81], using the Bethe Ansatz1. The simple Kondo model
was also extended to incorporate more realistic situations, such as when
the impurity interacts with several bands of conduction electrons. Hence
Nozières and Blandin [83] introduced the multichannel Kondo model,
which was shown by Andrei and Destri [84], and independently by Tsve-
lik and Wiegmann [85], in their Bethe Ansatz solutions to exhibit exotic
non-Fermi-liquid behavior. A new approach to Kondo physics based on
conformal field theory was developed by Affleck [86], and independently
by Tsvelik [87], and further refinement by Affleck and Ludwig [88, 89]
allowed the technique to give new insights to the non-Fermi-liquid phe-
nomena.

The Kondo lattice model [90], believed to describe heavy-fermion sys-
tems displaying a rich variety of physical phenomena including quantum

1Reviwed in [82].
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ξK

singlet

Figure 3.2: The Kondo screening cloud is formed when the conduction
electrons try to screen the impurity spin by forming a singlet. The screen-
ing takes place on the scale of the ”Kondo length” ξK ∼ vF/TK , where
TK is given by Eq. (3.4).

phase transitions and non-Fermi-liquid behavior as well as unconven-
tional superconductivity, still remains unsolved although much progress
has been made. One of the principal physical mechanisms in the Kondo
lattice, the competition between Kondo screening and indirect exchange
between the impurities, is captured already in the two-impurity Kondo
model.

Interest in the Kondo effect then experienced a revival when advance-
ments in nanofabrication enabled its observation in artificially created
quantum dot systems [91], where a tunable Kondo resonance provides
new opportunities for device technology. Recently the Kondo effect has
also attracted attention from the quantum information community, as
the Kondo screening cloud has been recognized as a mechanism that
may generate long-range entanglement between qubits [92, 93]. There
also exists a mapping between the spin-anisotropic Kondo model and
the spin-boson model, describing a qubit interacting with a dissipative
environment [94].

An estimate of the Kondo temperature TK can be obtained using the
renormalization group perturbatively at weak coupling. By successively
integrating out high-energy electrons, thus effectively reducing the band-
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width D, one obtains the RG equation for the coupling constant J

dJ

d(logD)
= −νJ2 + ... (3.2)

where ν is the density of states at the Fermi level. This gives the solution

Jeff =
J0

1− νJ0 log(D0/D)
(3.3)

for the effective coupling Jeff in terms of the bare values of the coupling
J0 and band-width D0. Thus, for antiferromagnetic coupling (J0 > 0)
the effective coupling diverges as the cutoff is approaching D ∼ TK , the
Kondo temperature

TK ∼ D0e
− 1
νJ0 . (3.4)

This shows the appearance of a new length scale in the problem, the
Kondo length ξK ∼ vF/TK . It is within this length scale that the screen-
ing occurs, hence defining the extent of the ”Kondo screening cloud”. The
crossover on this length scale has proven notoriously difficult to detect
experimentally, and the nature of the Kondo screening cloud is hence
perhaps the only remaining open question in what once was ”the Kondo
problem”. For a more detailed account, see Refs. [95] and [96].

3.2 The boundary conformal field theory ap-
proach

Conformal field theory techniques have been very successful in the study
of a large number of quantum impurity systems. The approach is based
on the possibility to reduce the problem to one dimension with the im-
purity as a boundary. The low-energy physics can then be described
by one-dimensional non-interacting fermions with the impurity spin hav-
ing disappeared, its only effect being a (possibly non-trivial) conformally
invariant boundary condition and a modified operator content of the re-
sulting boundary conformal field theory. For a thorough review of the
BCFT approach to the Kondo effect, the reader is referred to Ref. [68],
or to the original articles by Affleck [86], and Affleck and Ludwig [88,89].
Let us only give a brief account here.

First, even when the impurity is interacting with bulk conduction
electrons and the Kondo model (3.1) hence describes a three-dimensional
system, it can always be mapped onto a one-dimensional model. Ex-
panding the electron fields in partial waves

ψ(~r) =
1√
2πr

ψ0(r) + ... (3.5)
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it follows that it is only the s-wave (i.e. zero angular momentum) com-
ponent ψ0(r) that interacts with the impurity since the interaction in the
Kondo Hamiltonian (3.1) is a delta function and the s-wave is the only
non-vanishing component at the origin. Thus we are left with only the
radial coordinate and the resulting one-dimensional model

HKondo =
∑

k,α

ε(k)ψ†0α(k)ψ0α(k) + J ~S ·
∑

~k,~k′,α,β

ψ†0α(k)
~σαβ
2
ψ0β(k′) (3.6)

can then be treated with the bosonization techniques introduced in Chap-
ter 2. First, consider a linearization around the Fermi level

ε(k) ≈ vF (k − kF ) (3.7)

and then decomposing the s-wave electron field in left and right movers,
corresponding to in- and outgoing waves,

ψL/Rα = e±ikF r
∫ ±kF+Λ

±kF−Λ

dk eikrψ0α(k) . (3.8)

This puts the Kondo Hamiltonian on the form

HKondo =
vF
2π

∫ ∞

0

dr
[
ψ†Lα(r)i∂rψLα(r)− ψ†Rα(r)i∂rψRα(r)

]

+J ~S · ψ†αL (0)
~σαβ
2
ψLβ(0) . (3.9)

Note that the definition (3.8) of the left and right movers gives the bound-
ary condition

ψL(0) = ψR(0) . (3.10)

But as Jeff → ∞ under renormalization, the impurity and a conduction
electron get so strongly bound into a local singlet that no other conduc-
tion electron can be at the origin, then ψ(0) = ψL(0)+ψR(0) = 0 so that
the boundary condition (3.10) is effectively changed to

ψL(0) = −ψR(0) when Jeff →∞ . (3.11)

This is at the core of Nozière’s Fermi-liquid description, the strong-
coupling regime corresponds to a phase shift of the otherwise unaffected
electrons.

A purely chiral theory can be obtained by ”folding”, i.e. by extending
to negative values of r by identifying

ψRα(r) ≡ ψLα(−r) , (3.12)
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Figure 3.3: The ”folding” process of the out- and in-going s-wave fields,
represented as right- and left-moving fields ΨR(r) and ΨL(r) on the pos-
itive half-line. A chiral theory with only left-moving fields on the entire
real line is obtained by the identification ψR(r) ≡ ψL(−r).

see Fig. 3.3, so that

HKondo =
vF
2π

∫ ∞

−∞
dr ψ†Lα(r)i∂rψLα(r) + J ~S · ψ†Lα(0)

~σαβ
2
ψLβ(0) . (3.13)

Spin-charge separation is obtained by introducing the charge and spin
currents

Jc = : ψ†LαψLα : , (3.14)

~Js = ψ†Lα
~σαβ
2
ψLβ , (3.15)

where : : denotes normal ordering. Their commutation relations are

[Jc(r), Jc(r
′)] = 4πi∂rδ(r − r′) , (3.16)

[Jc(r), J
a
s (r′)] = 0 , (3.17)

[Jas (r), J bs(r
′)] = 2πiεabcJ cs(r)δ(r − r′) + πiδab∂rδ(r − r′) . (3.18)

with εabc the Levi-Civita antisymmetric tensor. This puts the Hamilto-
nian on the spin-charge separated form

HKondo =
πvF

2
J2
c +

2πvF
3

~J2
s + J ~S · ~Js(0) (3.19)
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and the Kondo interaction only takes place in the spin sector. However,
due to the boundary condition on the electrons, the two sectors are in
fact not completely separated. To recover the correct free-fermion spec-
trum the states of the separate sectors must be combined according to
particular ”gluing conditions”.

The charge current Jc(r) has the same commutation relations as the
derivative of the chiral free boson field, ∂zφ(r),

[∂zφ(r), ∂zφ(r′)] = 2i∂rδ(r − r′) (3.20)

so the identification

Jc = ∂zφ (3.21)

can be made. Thus the charge sector is simply the chiral free boson
conformal field theory, with Hamiltonian

Hc =
1

4
(∂zφ)2 , (3.22)

for the ”charge boson” field φ = φc.
In the spin sector, the Fourier transformed spin current

~Jn =
1

2π

∫ L

−L
dreiπnr/L ~J(r) (3.23)

(where L is the system size) obeys the SU(2)1 Kac-Moody algebra

[Jan, J
b
m] = iεabcJ cn+m +

1

2
δabδn,−m (3.24)

which is the SU(2) level k = 1 case of the general Kac-Moody algebra
(affine Lie algebra)

[Jan, J
b
m] = ifabc J

c
n+m +

k

2
nδabδn,−m . (3.25)

Thus the quadratic part of the spin sector Hamiltonian can be put on
the Sugawara form

Hs =
π

3L

∞∑

n=−∞

: ~J−n · ~Jn : , (3.26)

hence giving the SU(2)1 Wess-Zumino-Witten (WZW) model. Bosoniza-
tion can no longer be done only in terms of the currents. Non-Abelian
bosonization, where the symmetry is explicitly preserved, expresses the
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spin part of the electron field as a field g that takes its values in the
symmetry group SU(2), so that

ψ ∝ gei
√

2πφc . (3.27)

When including the Kondo interaction

Hs =
π

3L

∞∑

n=−∞

: ~J−n · ~Jn : +J
π

L

∞∑

n=−∞

~S · ~Jn , (3.28)

the above no longer holds. However, the approach is that the fixed points
should correspond to removing the impurity and replacing it with a con-
formally invariant boundary condition (CIBC) on the free theories. The
CIBC for the low-temperature fixed point of the Kondo model, where
the electrons experience a π/2 phase shift at the origin, is equivalent to

letting ~Jn 7→ ~Jn, with

~Jn(r) = ~Jn(r) + δ(r)~S (3.29)

giving

Hs =
π

3L

∞∑

n=−∞

~J−n · ~Jn , (3.30)

and

[J a
n ,J b

m] = iεabcJ c
n+m +

1

2
nδabδn,−m . (3.31)

Hence the theory is the same, showing that the strong-coupling fixed
point is the same as the weak-coupling fixed point, i.e. as having no
impurity. The effect of having the new spin operator (3.29) is instead
that, as the impurity has spin s=1/2, the half-integer spin states will
become integer-spin states, and vice versa, thus interchanging these two
conformal towers. Equivalently, the spectrum at the strong-coupling fixed
point is obtained by acting on all states with the spin j=1/2 field in the
free theory. This way of obtaining new conformally invariant boundary
conditions from the free theory is known as ”fusion”.

Thermodynamics

The BCFT formulation allows for a straight-forward calculation of ther-
modynamic properties at the fixed-points once the operator content has
been found [89]. At a fixed point, the singular behavior of thermodynamic
quantities is governed by the leading irrelevant operator in the operator
content, not breaking the symmetries of the fixed-point Hamiltonian.
The presence of the screened impurity will induce local perturbations at
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the boundary, in the form of boundary operators, so that the effective
Hamiltonian becomes

H = HFP + λφb , (3.32)

where HFP is the fixed-point Hamiltonian and φb is an irrelevant bound-
ary operator with scaling dimension xb > 1 localized on the boundary.
The partition function in the finite-temperature geometry on the upper
half-plane C+ (with z = τ + ir, r ≥ 0), is then written as

Z = e−βF (β,λ) = e−βF (β,0)
〈

exp
(
λ

∫ β/2

−β/2
dτ φb(τ)

)〉
, (3.33)

where F is the free energy. Then the impurity free energy contributed
by the perturbation, δFimp(β, λ) = δF (β, λ)− Fimp(β, 0) is given by

e−βδFimp(β,λ) =
〈

exp
(
λ

∫ β/2

−β/2
dτ φb(τ)

)〉
. (3.34)

The conformally invariant boundary conditions imply 〈φb〉 = 0 so that

δFimp(β, λ) = −λ
2

2

∫ β/2

−β/2
dτ1

∫ β/2

−β/2
dτ2〈φb(τ1)φb(τ2)〉+O(λ3) . (3.35)

From

〈φb(τ1)φb(τ2)〉 =
1

|β
π

sin(π
β
(τ1 − τ2))|2xb

(3.36)

the leading singular behavior of δFimp(β, λ) can be calculated exactly
using partial integration. The impurity specific heat Cimp is found from

Cimp = −T ∂
2Fimp
∂T 2

(3.37)

which, in terms of the inverse temperature β becomes [89,97]

Cimp =





λ2Aβ2−2xb if 1 < xb < 3/2
λ2π2β−1 log(β/τ0) if xb = 3/2
λ2Bβ−1 if xb > 3/2 ,

(3.38)

in the limit β →∞, where A = 2(xb−1)2π2xb−1Γ(3/2−xb)Γ(1/2)/Γ(2−
xb), B = π22xbτ

3−2xb
0 /3(2xb − 3) and τ0 is the short-time cutoff.

The impurity specific heat Cimp is related to the thermodynamic im-
purity entropy SThimp via the relation Cimp = −β ∂SThimp/∂β. Thus they
describe the same power law, and one has the leading behavior

SThimp = log g +





λ2Aβ2−2xb if 1 < xb < 3/2
λ2π2β−1 log β if xb = 3/2
λ2Bβ−1 if xb > 3/2 ,

(3.39)

as β →∞.
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3.3 Non-Fermi liquid fixed points in Kondo
systems

While the usual Kondo model in Eq. 3.1) has a low-temperature behavior
described by Fermi-liquid theory [79], this will not necessary be the case
when generalizing the model to include several electron bands, more im-
purities, and so on [31]. Below we give the two most prominent examples
of such situations.

3.3.1 The multi-channel Kondo model

Let us consider the generalization of the Kondo model in Sec. 3.1 to the
situation of a single SU(2) spin-s impurity interacting with k degenerate
bands of conduction electrons, the multi-channel Kondo model

HMC =
∑

~k,α,i

ε(~k)ψ†~kαiψ~kαi + J ~S ·
∑

~k,~k′,α,β,i

ψ†~kαi
~σαβ
2
ψ~k′βi , (3.40)

where i = 1, 2, ..., k is the additional channel index. For the overscreened
multichannel Kondo model, i.e. when k > 2s, the system flows un-
der renormalization for any non-zero Kondo coupling J towards a sta-
ble non-Fermi-liquid fixed point [68]. The model was first solved by
Andrei and Destri [84], and by Tsvelik and Wiegmann [85], using the
Bethe Ansatz. Later the BCFT solution was worked out by Affleck and
Ludwig [88, 89]. At the fixed point there is a Kac-Moody symmetry
U(1)× SU(2)k × SU(k)2, corresponding to the charge, spin and channel
sectors, respectively. The Kondo interaction only involves the spin sector,
and the non-Fermi-liquid fixed point is obtained from the free fermions
by double fusion with the spin-s primary field in the level-k SU(2) WZW
model. The non-trivial boundary condition corresponds to a boundary
entropy given by [75,84]

log g = log

[
sin(π(2s+ 1)/(2 + k))

sin(π/(2 + k))

]
. (3.41)

The leading irrelevant boundary operator is the singlet ~J−1 ·~φ (a Kac-

Moody descendant, where ~φ is the spin-1 primary field in the spin sector).
This is a Virasoro primary with scaling dimension xb = 1 + 2(2 + k).
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3.3.2 The two-impurity Kondo model

Adding a second spin-1/2 impurity to the Kondo model gives the two-
impurity Kondo model (TIKM)

HTIKM = H0 + J [ ~sc(~r1) · ~S1 + ~sc(~r2) · ~S2 ] +K ~S1 · ~S2 ,

(3.42)

where H0 =
∑

~k,α ε(
~k)ψ†~kαψ~kα is the kinetic energy and

~sc(~r) =
∑

α,β

ψ†α(~r)
~σαβ
2
ψβ(~r) (3.43)

where α, β =↑, ↓ are the spin indices [98]. K is the RKKY interaction

strength between the two s=1/2 impurities ~Si located at ~ri, with i=1,2.
The RKKY interaction is an indirect exchange interaction to second order
in perturbation theory, mediated by the conduction electrons [99–101].
The two important energy scales are K and the (single-impurity) Kondo
temperature TK . The limits K → ±∞ correspond to Fermi-liquid fixed
points, but for K = Kc ∼ TK there is an unstable non-Fermi-liquid fixed
point. The BCFT solution of the two-impurity Kondo model was found
by Affleck, Ludwig and Jones [102]. Applying non-Abelian bosonization,
they represented the fermionic theory as two level-1 Wess-Zumino-Witten
(WZW) models (the two charge sectors; two since there are two impuri-
ties), a level-2 WZW model (the total spin sector) and an Ising model.
The primary fields of the SU(2)1 WZW models are the identity operator
with spin j=0, and the j=1/2 field (hi)A (where i=1,2 is the ”channel”
index and A is an ”isospin” index). The SU(2)2 WZW model has the

primary fields 1 (the identity), gα (with j=1/2) and ~φ (with j=1). Their
scaling dimensions are given by x = j(j+ 1)/(2 + k), where k is the level
of the Kac-Moody algebra. The primary fields of the Ising model are the
identity operator 1, the order parameter σ with x=1/16 and the energy
density ε with x=1/2. The fermion field then has the representation

ψαi = (hi)1gασ . (3.44)

The operator content at the non-Fermi-liquid fixed point is in this rep-
resentation obtained from the free theory by double fusion with the σ
operator in the Ising sector. This gives log g = log

√
2, showing a non-

integer ground-state degeneracy. The irrelevant boundary operators that
can appear as perturbations to the fixed-point Hamiltonian can then be
found by symmetry considerations. The leading irrelevant operator at
the unstable non-Fermi-iquid fixed point is L−1ε, the Virasoro first de-
scendant of the ε field, with scaling dimension x = 3/2. However, being
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a Virasoro first descendant, L−1ε will not give any contribution to ther-
modynamic quantities to any order in perturbation theory. This follows
from the evaluation of integrals of the type

∫∞
−∞ dτ〈L−1ε〉 =

∫∞
−∞ dτ∂τ 〈ε〉

which vanish due to the periodicity in the τ direction. The leading con-
tributions to thermodynamic quantities therefore come from the stress-
energy tensor, precisely as in the single-impurity case. The non-Fermi
liquid behavior thus manifests itself mainly in the residual entropy log g.

3.4 The Kondo effect in a Luttinger liquid

The one-dimensional formulations of the Kondo models considered above
have all been concerned with non-interacting electrons coupled to the
Kondo impurities, which follows from considering the model to origi-
nally describing a three-dimensional system. However, for a truly one-
dimensional system the Fermi-liquid picture of non-interacting quasipar-
ticles breaks down, and gets replaced by collective degrees of freedom
described by the Tomonaga-Luttinger model as we saw in Chapter 2.
Now, let these interacting fermions

HTL =
1

2π

∫
dx
{
vF
[
ψ†L,α(x)i∂xψL,α(x)− ψ†R,α(x)i∂xψR,α(x)

]

+g′
∑

±

[ 1

2

∑

r,s=L,R

ψ†r,α(x)ψr,α(x)ψ†s,±α(x+ a)ψs,±α(x+ a)

+ψ†R,α(x)ψL,α(x)ψ†L,±α(x)ψR,±α(x)
]}
, (3.45)

be coupled to a spin-1/2 impurity by the Kondo interaction term

HK = J
∑

r,s=L,R

ψ†r,α(0)
~σα,β

2
ψs,β(0) · ~S , (3.46)

where in both Eqs. (3.45) and (3.46) there is an implicit summation over
the spin indices α, β =↑, ↓. Note the point-splitting on the second line
in Eq. (3.45), where a is the short-distance cutoff (typically the lattice
parameter). For repulsive electron-electron interaction the parameter
g′ is positive. One can now proceed with standard bosonization and
renormalization group analysis [103,104].

At low temperature the Kondo coupling flows under renormaliza-
tion towards infinity so that the impurity gets completely screened [105].
Thus, at the fixed point log g = 0. In the boundary conformal field the-
ory picture, there are two possible scenarios for this strong-coupling fixed
point: either it describes a local Fermi liquid with an exactly marginal
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boundary operator or an operator with xb > 3/2 as leading boundary
perturbation, or it describes a non-Fermi-liquid strong-coupling fixed
point [97,106]. The non-Fermi-liquid fixed point scenario is the one real-
ized [97,105], and the leading perturbation then comes from a boundary
operator with xb = 1

2
(e2θ + 1), where θ is given by tanh 2θ = g′/(g′+ vF ).

3.4.1 The Kondo effect in a helical Luttinger liquid

If one locks the spin of the electrons to their direction of propagation,
such that right-movers only have spin-up and left-movers only have spin-
down,

HHLL =
1

2π

∫
dx
{
vF
[
ψ†L↓(x)i∂xψL↓(x)− ψ†R↑(x)i∂xψR↑(x)

]

+
g′

2

∑

s=R↑,L↓

ψ†s(x)ψs(x+ a)ψ†s(x+ a)ψs(x)

+g′ψ†R↑(x)ψR↑(x)ψ†L↓(x)ψL↓(x)
}
, (3.47)

one obtains the helical Luttinger liquid. This system will be discussed
in Section 5.2.3 in connection to its realization as the edge state of a
two-dimensional topological insulator. The Kondo effect in this model,
with Hamiltonian H = HHLL +HK , where

HK = J
∑

α,β=R↑,L↓

ψ†α(0)
~σα,β

2
ψβ(0) · ~S, (3.48)

was studied early on [107,108] as a truncated version to gain some insight
to the problem in the standard Luttinger liquid. It was found that the
Kondo effect in this truncated model can be mapped exactly onto that in
a Fermi liquid [107], hence resulting in a fully screened impurity at zero
temperature with the usual Fermi-liquid scaling exponents. Previously
being just a ”toy model” model for the full Luttinger liquid, the discovery
of the quantum spin Hall insulator with its helical edge states [109, 110]
has now provided a physical realization of the helical Luttinger liquid
stimulating much interest in the physics of quantum impurities in this
system [111–114].



60 Chapter 3 The Kondo effect



4
Quantum entanglement

Entanglement lies at the very heart of quantum theory [115–118]. It has
been recognized as the crucial resource needed for performing quantum
computing and teleportation, and therefore constitute the foundation of
quantum information science [119]. But it has also entered as an impor-
tant concept in a wide range of other fields spanning from the studies
of black holes [120] to biological systems [121]. In condensed matter
physics, entanglement has been used as a theoretical tool to study zero-
temperature quantum phase transitions and critical phenomena [122–134]
as well as characterizing novel phases of matter [135–137] and developing
numerical algorithms [138,139]. A particularly important result has been
for one-dimensional critical systems, where conformal field theory yields a
universal prediction for the scaling of the entanglement entropy [126,127].
Much effort has been put into relating entanglement entropy to exper-
imentally measurable quantities [140–144], a task complicated by the
very non-local feature that makes it such a powerful theoretical tool.
For a thorough review on entanglement in many-particle systems, see
Ref. [145].

4.1 Entanglement of quantum states

Two parts of a system are said to be entangled if the state of the system
cannot be written as a direct product of the states of the two parts. That
is, if the Hilbert space H = HA⊗HB of the system is divided into a part
called A and the rest which is called B, and the system is in a pure state
|Ψ 〉 in H, then A and B are entangled if

|Ψ 〉 6= |ψ 〉A ⊗ |φ 〉B (4.1)

61
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for any states |ψ 〉A and |φ 〉B of the parts. When the whole system is
in a mixed state, the parts are instead entangled if the density matrix ρ̂
cannot be written as a linear combination of product states,

ρ̂ 6=
∑

i

pi ρ̂
i
A ⊗ ρ̂iB , (4.2)

where ρ̂iA and ρ̂iB are density matrices pertaining to part A and B, re-
spectively, and pi are probabilities1.

4.2 Quantum correlations and entanglement

Let us give a simple, yet profound , example of an entangled state. Sup-
pose we have two spin-1/2 particles that are in a singlet state

|Ψ 〉 =
1√
2

(
| ↑ 〉A ⊗ | ↓ 〉B − | ↓ 〉A ⊗ | ↑ 〉B

)
. (4.3)

It is easily seen that one cannot write this as a product state, Eq. (4.1).
Let us now see what happens if we perform measurements on the par-
ticles. There is equal probability that A points either up or down, and
there is also equal probability that B points either up or down. However,
if the first measurement gives the outcome that spin A pointed up, then
the state (4.3) has collapsed onto the product state |Ψ 〉 = | ↑ 〉A ⊗ | ↓ 〉B
and a subsequent measurement on B will with complete certainty give
the outcome that B points down. On the other hand, had the first mea-
surement given that A pointed down, then the subsequent measurement
would with complete certainty have shown that B pointed up. Thus, even
though we have complete knowledge about the global state of the system,
we cannot predict the outcome of a measurement. However, the measure-
ments show perfect correlations, in that the result of a measurement on
one particle completely decides the outcome of a subsequent measurement
on the other. In the words of Schrödinger [117], entanglement means that
”the best possible knowledge of a whole does not necessarily include the
best possible knowledge of all its parts”, something he ”would not call one
but rather the characteristic trait of quantum mechanics, the one that
enforces its entire departure from classical lines of thought”. Adding even
more to this fascinating phenomenon, consider what happens if the two
particles A and B are taken far apart from each other, while they remain
in their common singlet state (4.3). Then a measurement on A will in-
stantaneously affect a subsequent measurement on B, even if they are

1For a review on the theoretical aspects of entanglement, see Ref. [146]
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light-years apart. This clearly violates the locality principle of classical
physics, and the non-local correlations in quantum theory forms what
has been known as the ”EPR paradox” [115]. In fact, any local (”hidden
variable”) theory has been shown to impose serious constraints, known
as ”Bell inequalities”, on possible measurement outcomes whereas they
can be violated in quantum theory [147]. Later experimental evidence for
the violation of Bell inequalities have provided some of the most striking
confirmations of quantum mechanics [148–150]. However, it is important
not to consider non-local correlations and entanglement to be equivalent.
In fact, there are states that are entangled but do not generate non-
local correlations [151]. Entanglement is a necessary, but not sufficient,
condition for non-locality.

4.3 Entanglement entropy

For a bipartite many-body system in a pure state there is essentially
one unique measure of the entanglement between the two parts, namely
the von Neumann entropy of the reduced density matrix of (either) one
of the parts. For a system in a pure state |Ψ 〉 and with the Hilbert
space partitioned into a direct product H = HA⊗HB, the entanglement
between A and B is given by the von Neumann entropy

SA = −Tr ρA log ρA , (4.4)

with SA = SB. Here the reduced density matrix ρA of subsystem A is
obtained by tracing out all degrees of freedom of subsystem B from the
density matrix ρ̂ of the entire system,

ρ̂A = TrB ρ̂. (4.5)

We can get a clear picture of the meaning of the von Neumann entropy
by performing the Schmidt decomposition of the pure state |Ψ 〉,

|Ψ 〉 =
∑

i

αi |ψi 〉A ⊗ |φi 〉B , (4.6)

where αi are non-negative real numbers satisfying
∑

i α
2
i = 1, and {|ψi 〉A}

and |φi 〉B are orthonormal bases for part A and B, respectively. When
taking the partial trace in Eq. (4.5) to obtain the reduced density matri-
ces ρ̂A and ρ̂B, one gets

ρ̂A =
∑

i

α2
i |ψi 〉A A〈ψi |, ρ̂B =

∑

i

α2
i |φi 〉B B〈φi |. (4.7)



64 Chapter 4 Quantum entanglement

Hence
Sν = −Trρ̂ν log ρ̂ν = −

∑

i

α2
i log(α2

i ) , (4.8)

with ν=A,B. Note that SA = SB. Thus the von Neumann entropy
is just the Shannon entropy of the squares of the Schmidt coefficients,
characterizing the spread of the pure state |Ψ 〉 over different (separable)
basis states and thus giving a quantitative measure of the non-separability
of the pure state (4.6). Equivalently, the von Neumann entropy is the
Shannon entropy of the eigenvalues of the reduced density matrix of either
one of the parts, as seen from Eq. (4.7), therefore quantifying how mixed
the subsystem has become by tracing out the rest. The ”mixedness”,
or disorder, of the subsystem measures how much information about it
that was shared with the rest of the system. The von Neumann entropy
therefore gives the quantitative version of Schrödinger’s [117] observation
that in quantum mechanics complete information about the whole does
not necessarily imply complete knowledge about its parts. More precisely,
the entropy (disorder) of a subsystem can be larger than the entropy of
the total system only when the state is entangled [152].

The von Neumann entropy (4.10) is a single number that measures the
amount of entanglement in a bipartite system. However, there is often an
interest in a more complete characterization of the entanglement. Such a
characterization is most straight-forwardly based on the eigenvalues {αi}
of the reduced density matrices, the distribution of which is referred
to as the ”entanglement spectrum” [137]. As a way to characterize the
full entanglement spectrum one may extend the definition of the von
Neumann entropy by introducing an additional parameter n, with n a
positive real number, and define the Rényi entropies

S
(n)
A =

1

1− n log Tr ρ̂nA , (4.9)

with limn→1 S
(n)
A = SA. Thus the Rényi entropies encode the moments of

the eigenvalue distribution, via

S
(n)
A =

1

1− n log
∑

i

αni . (4.10)

4.3.1 Entanglement entropy from conformal field the-
ory

The entanglement entropy has been found to be a powerful tool for char-
acterizing the scaling behavior of a one-dimensional quantum system
near a critical point [127]. For an infinite system with an interval A
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r

A B

Figure 4.1: A one-dimensional system with a boundary, divided into a
part A of size r next to the boundary, and the rest of the system in part
B.

of length r the asymptotic behavior of the von Neumann entropy is given
by [120,124–126]

SA ∼
c

3
log

r

ε
+ c′1 (4.11)

near the critical point. Here c is the central charge of the underlying
conformal field theory. The constant ε is an arbitrary cutoff scale, with
c′1 also being a non-universal number.

For a one-dimensional system with a boundary and at a finite inverse
temperature β, a subsystem A of size r next to the boundary (see Fig. 4.1)
will have a von Neumann entropy that scales as [126,132]

SA =
c

6
log

[
β

επ
sinh

(
2πr

β

)]
+ log g + c′ + ... , (4.12)

where log g is the universal boundary entropy [75], ε is the short-distance
cutoff, and c′ is a non-universal constant. Here ”...” denotes the correc-
tions to scaling of SA. These are governed by the irrelevant operators (in
the language of the renormalization group) in the boundary conformal
field theory (BCFT), with both bulk and boundary contributions.

Let us briefly review how the scaling of entanglement entropy in
Eq. (4.11) is calculated within the framework of conformal field theory,
introduced in Chapter 2. For a more complete account the reader is re-
ferred to the extensive review by Cardy and Calabrese [127], or to their
original article [126]. For simplicity, we first concentrate on the case with-
out boundary, and then show how the result is extended to Eq. (4.12)

First, note that Eq. (4.9) can be rewritten as

S
(n)
A = − ∂

∂n
Tr ρnA . (4.13)

Writing the density matrix ρ = e−βH of the total system as a path integral
with ”open ends”, i.e. with boundary conditions specified by which matrix
element that is considered (see Fig. 4.2), gives

ρ =
1

Z

∫
D[{φ}] e−

∫ β
0 L[{φ}] , (4.14)
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Figure 4.2: Left: The density matrix ρ of the system is a path integral
in imaginary time τ , with ”open ends” at τ = β/2 and τ = −β/2. The
partition function Z = Trρ is obtained by ”sewing together” the ”open
ends”. Right: The reduced density matrix ρA = TrBρ is obtained from ρ
by only sewing together those parts of the ends that belong to subsystem
B (shown in blue). See also Fig. 4.3.

where {φ} is a complete set of fields, L the Euclidean Lagrangian, and

Z = Tr e−βH (4.15)

the partition function. Then the reduced density matrix ρA = TrBρ is
obtained by ”sewing” together the open boundaries at τ = β/2 and τ =
−β/2, but only along the part of the boundaries that are not in subsystem
A (which here is a single interval of length r), see again Fig. 4.2.

When we then form Tr ρnA it corresponds in the path integral picture
to sewing together n copies of ρA in a cyclic fashion so that the previously
open boundaries in subsystem A now connects copy number i with copy
number i+1 (and copy number n is connected to number 1), see Fig. 4.3.
This is equivalent to evaluating the partition function on an n-sheeted
Riemann surface Rn, and is therefore denoted as

TrρnA =
ZRn
Zn

. (4.16)

Now, the important point is that instead of having a simple Lagrangian
on a complicated surface, one can rewrite the problem as having a com-
plicated Lagrangian on a simple surface. This will introduce a new type
of fields which turns out to make the problem solvable. Hence we rewrite

ZRn =

∫
D[{φ}]Rn exp

[
−
∫

Rn
dy dτ L[{φ}](y, τ)

]
, (4.17)
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Figure 4.3: Left: The reduced density matrix ρA of subsystem A as a path
integral on a cylinder with circumference β in the imaginary time direc-
tion. There is an open cut (shown as a red dashed line) corresponding to
the ”open ends” in Fig. 4.2, with boundary conditions corresponding to
each matrix element (ρA)ij. Right: The n-sheeted Riemann surface Rn

representing Tr ρnA, here with n = 3, is formed by ”sewing together” the
open cuts in a cyclic fashion corresponding to the matrix multiplication∑

ijk(ρA)ij(ρA)jk(ρA)ki.

where L is the local Lagrangian density, as

ZRn =

∫

CA
D[{φ1}...{φn}] exp

[
−
∫

C
dy dτ

(
L[{φ1}](y, τ) + ...

+ L[{φn}](y, τ)
) ]

. (4.18)

Here C is the ordinary complex plane w = τ + iy, and with
∫
CA

it is
meant that the integration is to be done with the conditions

φi(y, 0
+) = φi+1(y, 0−) , y ∈ A , i = 1, ..., n (4.19)

and the periodicity n+ 1 ≡ 1. The Lagrangian density on C is therefore

L(n)[{φ1}, ..., {φn}](y, τ) = L[{φ1}](y, τ) + ...+ L[{φn}](y, τ) . (4.20)

There is a global symmetry under cyclic permutations of the n copies.
Thus what has been done is that the path integral is now evaluated on
the ordinary complex plane but with n sets of fields, and when taking a
field φi through the branch cut it is transformed into the field φi±1. This
is equivalent to having twist fields in the branch points, in such a way
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that they induce a branch cut in between them. Denoting the twist fields
as

Φn ≡ Φσ , σ : i 7→ i+ 1 mod n , (4.21)

Φ−n ≡ Φσ−1 , σ−1 : i 7→ i− 1 mod n , (4.22)

the normalized partition function can be written as a two-point function
of the twist fields,

ZRn
Zn

= 〈Φn(0, 0)Φ−n(r, 0) 〉C . (4.23)

The two-point function 〈Φn(0, 0)Φ−n(r, 0) 〉C is calculated by consid-
ering the conformal Ward identity. The conformal transformation that
maps the n-sheeted Riemann surface Rn to the complex plane C is given
by

w =

(
z

z − ir

)1/n

. (4.24)

The holomorphic part of the stress-energy tensor transforms as

T (z) =
(∂w
∂z

)2

T (w) +
c

12
{w, z} , (4.25)

where {w, z} = (w′′′w′ − 3
2
w′′2)/w′2 is the Schwartzian derivative, as

discussed in Section 2.2.3. Taking the expectation value of Eq. (4.25)
gives

〈T (z) 〉Rn =
c

12
{w, z} =

c

24
(1− n−2)

r2

z2(z − ir)2
, (4.26)

since 〈T (w) 〉C = 0 by translational and rotational invariance. But

〈T (z) 〉Rn =
〈Φn(0, 0)Φ−n(r, 0)T (z) 〉C
〈Φn(0, 0)Φ−n(r, 0) 〉C

(4.27)

and for the stress-energy tensor T (n) of L(n) this is multiplied with n,

〈Φn(0, 0)Φ−n(r, 0)T (n)(z) 〉C
〈Φn(0, 0)Φ−n(r, 0) 〉C

=
c

24n
(n2 − 1)

r2

z2(z − ir)2
. (4.28)

Now, the conformal Ward identity reads

〈Φn(w1)Φ−n(w2)T (n)(z) 〉C =

(
1

z − w1

∂

∂w1

+
hΦn

(z − w1)2

+
1

z − w2

∂

∂w2

+
hΦ−n

(z − w2)2

)
× 〈Φn(w1)Φ−n(w2) 〉C , (4.29)
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where in fact the scaling dimensions of the twist fields Φn and Φ−n are
equal, hΦn = hΦ−n ≡ dn, and dn = d̄n. Comparing Eqs. (4.28) and (4.29)
shows that the twist fields transform as primary fields,

〈Φn(0, 0)Φ−n(r, 0) 〉C = r−4dn , (4.30)

with

dn =
c

24

(
n− 1

n

)
. (4.31)

Hence

TrρnA = cn

( r
ε

)−c(n−1/n)/6

, (4.32)

where ε is the short-distance cutoff, inserted for dimensional reasons, and
cn are constants. Note that c1 = 1, since the trace of a density matrix is
unity. Now Eq. (4.13) gives the scaling of the Rényi entropies,

S
(n)
A =

c

6

(
1 +

1

n

)
log

r

ε
+ c′n , (4.33)

with c′n = (1−n) log cn. The scaling of the von Neumann entropy follows

from SA = limn→1 S
(n)
A , giving

SA =
c

3
log

r

ε
+ c′1 , (4.34)

The calculation is similar when the one-dimensional system at zero
temperature has a boundary. For the system to still be conformally
invariant, the boundary must be associated with a conformally invariant
boundary condition (CIBC). The conformal transformation to be used is
now

w =

(
z − ir
z + ir

)1/n

, (4.35)

which maps the n-sheeted Riemann surface Rn, which now has a bound-
ary, to the unit disc |w| ≤ 1 where 〈T (w) 〉 = 0 by rotational invariance.
Now Eq. (4.25) gives

〈T (z) 〉Rn =
c

12
{w, z} =

c

24
(1− n−2)

(2r)2

(z − ir)2(z + ir)2
, (4.36)

which implies that TrρnA ∼ 〈Φn(ir) 〉C+ , where C+ is the upper complex
half-plane z = τ + iy, y ≥ 0. Hence

TrρnA = c̃n

( 2r

ε

)−c(n−1/n)/12

, (4.37)
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where c̃n is a constant. This leads to the scaling

S
(n)
A =

c

12

(
1 +

1

n

)
log

2r

ε
+ c̃′n . (4.38)

The finite-temperature expressions are easily obtained by conformal
transformations. Using that w = β

π
sin(π

β
z) maps the complex plane onto

a cylinder of circumference β, the finite-temperature two-point function
of the twist operators is given by

〈Φn(ir) 〉C+ ∼
∣∣β
π

sinh(
π

β
2r)
∣∣−2dn

(4.39)

so that Eq. (4.38) becomes

S
(n)
A =

c

12

(
1 +

1

n

)
log
[ β
πε

sinh
(π
β

2r
)]

+ c̃′n (4.40)

at finite inverse temperature β. As β → ∞ this of course reduces to
Eq. (4.38). However, in the limit β � r it follows from Eq. (4.40) that

the von Neumann entropy SA = limn→1 S
(n)
A scales as

SA =
2πc

6
r +

c

6
log
[ β

2πε

]
+ c̃′ (4.41)

up to terms O(e−4πr/β). This is very similar to the expression for the
thermodynamic entropy SThA for a system of size r in the same limit
β � r,

SThA =
2πc

6
r + log g + const., (4.42)

also with corrections that decay exponentially in r/β. Here log g is the
universal boundary entropy [75], which is the only term that depends
on the boundary conditions. It is therefore possible to identify the part
of the constant term in Eq. (4.40) that depends on the specific bound-
ary condition as the thermodynamic boundary entropy, writing the von
Neumann entropy on the final form

SA =
c

6
log
[ β
πε

sinh
(π
β

2r
)]

+ log g + s′ , (4.43)

where s′ is a non-universal constant.

4.3.2 Entanglement in quantum impurity systems

Summarizing the results above, the scaling of the entanglement entropy
of a block of size r next to the boundary of a semi-infinite one-dimensional
system described by a BCFT is at zero temperature given by [126,132]

S(r) =
c

6
log

2r

ε
+ log g + s′ + ... , (4.44)
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Figure 4.4: At a fixed point, the entanglement entropy of a region A of
radius r around the impurity will in the BCFT picture correspond to a
path integral on the upper complex half-plane z = τ + ir′ with a branch
point at z = ir and a conformally invariant boundary condition.

where c is the central charge, log g is the boundary entropy [75] encoding
the conformally invariant boundary condition (CIBC), ε is the short-
distance cutoff, and s′ is a non-universal constant. Here ”...” denotes
the corrections to scaling of S(r), which are governed by the irrelevant
operators in the BCFT, with both bulk and boundary contributions.
Here we are interested in the boundary contributions, showing up due to
defects or impurities [153–156].

The Kondo formation of a screening cloud when a quantum impurity
interacts with surrounding itinerant electrons means that the impurity
gets entangled with the electrons. It is therefore important for the under-
standing of the resulting correlated state [157–159], and for possible appli-
cations of the Kondo cloud in quantum information purposes [92,93], to
obtain the spatial distribution of the entanglement in these systems. For
this purpose one may define the impurity entanglement entropy, which
is given as Simp = S(with impurity) − S(no impurity) and hence is the
contribution to the entanglement entropy of a subsystem coming from
the impurity [158].

As reviewed in Section 3.2, the low-energy physics of a quantum im-
purity system can be described as a BCFT with the effect of the impurity
encoded in the specific CIBC and boundary operator content of the the-
ory [86]. This make it possible to use the BCFT approach to obtain
the large-distance asymptotics of the entanglement entropy of a region
of radius r around the impurity. Note that when the models describe
two- (three-) dimensional quantum impurity systems, the size r of the
block at the boundary will correspond to the radius of a disc (sphere)
centered at the impurity (or the midpoint between the impurities when
they are two), see Fig. 4.4. Since the impurity only affects the boundary
condition and operator content of the BCFT, we see from Eq. (4.44) that
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the impurity contribution Simp to the entanglement entropy S(r) is

Simp = log g + ... . (4.45)

Here ”...” is the boundary contribution to the scaling corrections of S(r),
which are governed by those irrelevant boundary operators in the opera-
tor content that do not break the symmetries of the theory. This means
that corrections to scaling of the entanglement entropy from perturbing
boundary operators in conformal field theory provide important informa-
tion about entanglement in quantum impurity problems.



5
Topological states of matter

In this chapter we discuss different forms of topological states of mat-
ter. A topological phase is characterized by some topological invari-
ant [160–162], i.e. a quantum number that is unaffected by smooth de-
formations of the system. Such topological phases appear in the integer
quantum Hall effect [163], the fractional quantum Hall effect [37], one-
dimensional antiferromagnets with ”Haldane phases” [164–166] and topo-
logical insulators and superconductors [167], as well as two-dimensional
frustrated magnets with spin-liquid states [168,169]. These systems fea-
ture gapless edge states, which are topologically protected from local per-
turbations. The gapped bulk manifests an order which does not break
any symmetry, instead there is a topological order. However, this term is
usually reserved for those globally entangled topological states exhibiting
”anyonic” quasiparticles in the bulk and topology-dependent degenera-
cies insensitive to local perturbations. Examples of such states appear in
the fractional quantum Hall effect and some two-dimensional frustrated
magnets. Topological insulators are also topological states of matter, but
they do not have many of the characteristic properties of topological or-
der. They can be understood from single-electron band theory for the
bulk and there is a unique ground state. The topological protection of
the edge states of topological insulators require time-reversal symmetry
to be unbroken, hence they belong to the class of topological phases
of matter said to possess ”symmetry-protected topological order” [170].
This concept also encompass topological states in one-dimensional quan-
tum systems [171], such as the Haldane phase [164, 165] in spin chains,
and the AKLT model [166]. The AKLT chain has a gapped bulk ground
states but a degeneracy that depends on boundary conditions, with gap-
less edge states for open boundaries. Another way of realizing this type

73
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of gapless edge states is to have some pairing mechanism for spinless
fermions, in which case there can be gapless edge states of non-local
Majorana fermions [53,172]. It is important to remember that these one-
dimensional topological phases, just as topological insulators, need some
symmetry to be preserved and therefore are not as robust as phases with
”intrinsic” topological order [170].

With this distinction between topological order and topological in-
sulators, we discuss these two aspects of topology in condensed matter
separately.

5.1 Topological order

Topological order is a concept introduced by Wen [173] to encompass
those new phases, like in the fractional quantum Hall effect, falling out-
side of the standard Landau symmetry-breaking theory [20, 33]. Topo-
logically ordered phases instead have a globally entangled structure char-
acterized by some topological quantum numbers [38]. Such states, with
anyonic quasiparticles and topologically protected degeneracies, have at-
tracted much attention due to the potential applications for topological
quantum computing [174].

5.1.1 Anyons and topological quantum computation

Nontrivial quasiparticle statistics is a phenomenon that only occurs in
systems in two spatial dimensions, for very profound reasons [45]. It
is only in two spatial dimensions that it can make a difference how one
takes two particles around each other, in all higher dimensions the world-
lines of this process can always be continuously deformed to the trivial
operation that nothing happened. Thus exchanging particles can only
give a plus or a minus sign to the wave function, meaning that there
are only fermions or bosons. But in two dimensions there is no such
restriction, see Fig. 5.1, hence there can exist particles called ”anyons”
that can have any statistics. The anyonic statistics might even be non-
Abelian, meaning that the order in which the particles are exchanged
matters! The existence of anyons that are neither fermions or bosons
is one of the characteristics of a topological phase in two dimensions.
Note that it is not the electrons that can be anyons, since these of course
still are fermions, instead it is the many-particle excitations known as
quasiparticles that can have this peculiar property.

Another characteristic feature of topological order is a ground state
degeneracy that is topology-dependent. To be more precise, in a topologi-
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⇔/
time

Figure 5.1: Exchanging identical particles can only give a plus or minus
sign to the wavefunction in three or higher dimensions. In two dimensions
this is no longer true. The left sketch shows one particle being taken
around another particle, which is equivalent of exchanging them twice.
Since the spatial dimensions are only two, there is no way that without
crossing them one can continuously deform the world lines into the trivial
process of doing nothing at all shown in the right sketch. Hence the
statistical phase acquired can be arbitrary.

cal phase of matter the ground state degeneracy will depend on the topol-
ogy of the manifold on which the system is defined. This means that if we
place the system on a torus (i.e. impose periodic boundary conditions),
then the ground-state degeneracy will be different compared to having the
same system defined on the sphere or the infinite plane. There is actually
an underlying connection between this statement about the ground-state
degeneracy and the previously mentioned anyonic quasiparticle statistics,
that follows from the observation that different ground states are con-
nected by the process of creating quasiparticle-hole-pairs, doing some-
thing non-trivial with them, and finally annihilate them [175,176]. If the
quasiparticle was an anyon then the final wave function has picked up a
phase factor, hence there are non-commuting symmetry operators giving
a degeneracy.

The third defining property of a topologically ordered phase is that
it is gapped. This is a very useful property if we would like to use the
non-Abelian anyons for topological quantum computation [174]. Due to
the energy gap, at sufficiently low temperatures the only way to take
the system between the degenerate ground states is to take quasiparti-
cles around each other, ”braiding” them. The degenerate ground states
are then encoding the quantum information, i.e. forming the ”qubits”,
and the braidings are the unitary operations that make up the quantum
computation.

A number of lattice models have been constructed to study topolog-
ical order and topological quantum phase transitions (see Ref. [39] for a
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review). It was in the context of such a lattice model, the ”toric code”,
that Kitaev [176] launched the idea of topological quantum computation.
While topologically ordered fractional quantum Hall states seem intrin-
sically hard to manipulate for doing topological quantum computation,
there have been proposals to realize lattice Hamiltonians giving topolog-
ical order in specially engineered Josephson junction arrays [177] or cold
atoms in optical lattices [178,179].

Below we will give some simple examples of models that in a clear
way illustrate the features of topological order, the ”toric code” being the
most prominent. It is also an extension of this model that provides one
of the exactly solvable models used to study quantum phase transitions
out of topologically ordered phases.

5.1.2 Kitaev’s toric code model

Let us briefly describe the perhaps simplest model with topological order
that has been constructed, the ”toric code”. For a full account the reader
is referred to the original article by Kitaev [176]. The model is defined
on the square lattice, with a spin-1/2 particle (or, equivalently, a qubit)
on each bond of the lattice. Define the operators

As =
∏

i∈s

σ̂xi , Bp =
∏

i∈p

σ̂zi , (5.1)

where i ∈ s denotes the bonds around the vertex labelled by s, and i ∈ p
denotes the bonds around the plaquette labelled by p, see Fig. 5.2. Now,
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Figure 5.2: The spins in the toric code model reside on the bonds of the
square lattice. The operator As in Eq. (5.1) involves the spins (in red)
around the vertex s, whereas the operator Bp involves the spins (in blue)
around the plaquette p.
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the Hamiltonian of the model is given by

H = −
∑

s

As −
∑

p

Bp, (5.2)

which is easily diagonalized since all the As and Bp operators commute
with each other. Since the eigenvalues of As and Bp are ±1, the ground
state | gs 〉 is given by

As | gs 〉 = | gs 〉 , Bp | gs 〉 = | gs 〉 , ∀ s, p . (5.3)

In fact, we can write the ground state as

| gs 〉 =
∑

g∈G

g | 0 〉, (5.4)

where | 0 〉 is the fully spin-polarized state (σ̂zi | 0 〉 = | 0 〉, ∀ i), and G is
the Abelian group of all possible combinations of different As operators.
An element g ∈ G thus looks like g = As1As2As3 .... Another way of seeing
this is to say that the ground state (5.4) is a coherent sum of all possible
configurations of closed loops of flipped spins, something Wen [38] has
called a ”string net”. From this picture we can intuitively understand
why the ground state becomes degenerate when the system is put on a
torus, or some other higher-genus surface. Then the winding numbers
of the loops around the ”punctures” of the surface cannot be changed by
acting with the As operators, and therefore the ground state must be
degenerate. For example, on a torus there can be a loop winding around
the torus or along the torus, hence the ground-state degeneracy is four-
fold. In general, the ground state degeneracy is 4g-fold, where g is the
genus, or number of punctures, of the surface.

To show this more explicitly and at the same time demonstrating the
other defining characteristic of topological order, we now consider the
excitations. This will also demonstrate the connection between the topo-
logical ground-state degeneracy and the anyonic nature of the excitations.
First note that an elementary excitation is created by violating one (and
only one) of the constraints in Eq. (5.3). But because of the constraints∏

sAs = 1 and
∏

pBp = 1, these ”elementary” excitations can only be
created in pairs. In fact, such a double excitation can be written as a
string operator acting on the ground state, where the end-points of the
string corresponds to the elementary excitations. The string operators
are defined as

Sz(t) =
∏

i∈t

σ̂zi , (5.5)
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Figure 5.3: Left: A pair of x-type excitations connected by the string
Sx(t′) given by Eq. (5.6), in red, and a pair of excitations of z-type
connected by the string Sz(t) given by Eq. (5.5), in blue. Right: Taking
an x-type excitation around a z-type excitation along the path c (in
green).

where t is a non-closed path between vertices, and

Sx(t′) =
∏

i∈t′
σ̂xi , (5.6)

where t′ is a non-closed path between plaquettes, see Fig. 5.3. The two
types of double excitations can then be written as |Ψz(t) 〉 = Sz(t)| gs 〉
and |Ψx(t′) 〉 = Sx(t′)| gs 〉, respectively. Now we will see that when
moving one excitation around another excitation of a different type, the
wave function acquires a minus sign. When moving an excitation of, say,
x-type around an excitation of z-type, the x-string (5.6) will have to cross
the z-string (5.5) of the other excitation at some point. Since σ̂xi and σ̂zi
anticommute, the wave function has picked up a minus sign. This can
be written as

|Ψinitial 〉 = Sz(t)|Ψx(t′) 〉 , (5.7)

and

|Ψfinal 〉 = Sx(c)Sz(t)|Ψx(t′) 〉
= −Sz(t)Sx(c)|Ψx(t′) 〉 = −|Ψinitial 〉 , (5.8)

see Fig. 5.3. Thus the excitations are neither fermions nor bosons, and
therefore anyons. Let us now consider the system put on a torus. We then
see that the process of creating a pair of elementary excitations, taking
one of them around the torus and finally annihilate them corresponds
to creating a closed string that is winded around the torus. Hence we
take the system from one ground state to another that is characterized
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by a different winding number. Another way to see this is to consider
the process of taking one x-string around the torus in one direction and
a z-string around the torus in the other direction, and then taking them
back along the same paths. Defining the string operators

Z ≡
∏

i∈c

σ̂zi , X ≡
∏

i∈c′
σ̂xi , (5.9)

where c is a closed loop that winds around the torus in one direction and
c′ is a closed loop that winds around the torus in the other direction, we
see that the process can be expressed as the operator W = X†Z†XZ.
Now the process is actually equivalent to taking the excitation of x-
type around that of z-type, as can be seen by continuously deforming
the paths [175]. As shown above, this implies W = −1, and hence the
anticommutation XZ = −ZX. With two operators that both commute
with the Hamiltonian but not with each other, the ground state must be
degenerate.

Since it costs a non-zero amount of energy to create the excitations,
the system is gapped. Any process that takes the system from one of
the degenerate ground states to another would correspond to moving an
excitation all the way around the torus, hence such a process is exponen-
tially suppressed as the system size is increased. The toric code model
therefore displays the defining features of topological order.

5.1.3 Topological quantum phase transitions

As we have seen, there is no symmetry breaking associated with a topo-
logical order. Hence there is no local order parameter that identifies a
quantum phase transition (QPT) out of a topologically ordered phase.
Studies of such topological quantum phase transitions (TQPTs) have in-
stead borrowed concepts from quantum information theory, such as en-
tanglement [145] and fidelity [180]. They both measure properties of the
ground state as the system undergoes the phase transition. The reason
one might expect them to encode information about TQPTs is that they
in some sense measure global properties of the ground state, and topo-
logical order is a property of the ground state wave function manifested
in certain subleading terms in the entanglement entropy [135,136].

The Castelnovo-Chamon model

A simple lattice model exhibiting a topological quantum phase transition
based on the toric code has been constructed by Castelnovo and Cha-
mon [181]. Its Hamiltonian describes localized spin-1/2 particles attached
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s′′
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i
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j

s′′

Figure 5.4: Mapping between the Castelnovo-Chamon model and the
two-dimensional classical Ising model. The spins of the former reside on
the lattice bonds (filled black circles), and the spins of the latter on the
vertices. Left: σzi = θsθs′ , where i is the bond between the neighboring
vertices 〈s, s′〉. Middle and right: For i and j nearest (next-nearest)
neighbors, the mapping gives 〈σ̂zi σ̂zj 〉 = 〈θsθs′θs′′θs〉 = 〈θs′θs′′〉, where
〈s′, s′′〉 are next-nearest (third-nearest) neighbors.

to the bonds of a square lattice and is given by

H = −λ0

∑

p

Bp − λ1

∑

s

As + λ1

∑

s

e−β
∑
i∈s σ̂

z
i , (5.10)

where As =
∏

i∈s σ̂
x
i and Bp =

∏
i∈p σ̂

z
i are the star and plaquette opera-

tors of the Kitaev toric code model [176], Eq. (5.2). The star operator As
acts on the spins around the vertex s, and the plaquette operator Bp acts
on the spins on the boundary of the plaquette p. Note that here β is not
an inverse temperature, but a free parameter in the Hamiltonian. The
ground state is, by construction, known exactly. For λ0,1 > 0 the ground
state in the topological sector containing the fully magnetized state |0〉
is given by [181]

|GS(β)〉 =
∑

g∈G

eβ
∑
i σ
z
i (g)/2

√
Z(β)

g|0〉, (5.11)

with

Z(β) =
∑

g∈G

eβ
∑
i σ
z
i (g), (5.12)
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where G is the Abelian group generated by the star operators As, and
σzi (g) is the z component of the spin at site i in the state g|0〉. When β = 0
the state in (5.11) reduces to the topologically ordered ground state of the
toric code model (5.2). When β → ∞ the ground state (5.11) becomes
the magnetically ordered state |0〉. Hence β is the driving parameter in
this model.

There is a one-to-two mapping between the configurations {g} = G
and the configurations {θ} ≡ Θ of the classical 2D Ising model H =
−J∑<s,s′> θsθs′ with θs = −1 (+1) when the corresponding star operator
As is (is not) acting on the site s [181]. Thus σzi = θsθs′ , where i is the
bond between the neighboring vertices 〈s, s′〉, see Fig. 5.4. This gives

〈GS(β)|σ̂zi |GS(β)〉 =
1

Z(β)

∑

θ∈Θ

θsθs′e
β
∑
〈s′′s′′′〉 θs′′θs′′′ =

EIsing(β)

N
, (5.13)

where β is identified as the reduced nearest neighbor coupling J/T = β
of the classical 2D Ising model [181]. We also have that

〈GS(β)|σ̂xi |GS(β)〉 = 0 , (5.14)

〈GS(β)|σ̂yi |GS(β)〉 = 0 , (5.15)

since 〈0|gσ̂xi g′|0〉 = 0, ∀g, g′ ∈ G, and similarly for σ̂yi .
The mapping shows that there is a second-order TQPT at βc =

(1/2) ln(
√

2 + 1), which defines the second-order phase transition in the
classical two-dimensional Ising model [50]. At this quantum critical point
the topological entanglement entropy [135,136] Stopo goes from Stopo = 1
for β < βc to Stopo = 0 for β > βc [181], showing that it acts as a
discontinuous non-local order parameter for this TQPT.

The transverse Wen-plaquette model

We finally also mention the transverse Wen-plaquette model, which is
the Wen-plaquette model [182] for spin-1/2 particles on the vertices of a
square lattice with an added magnetic field [183]

H = g
∑

i

F̂i + h
∑

i

σ̂xi , (5.16)

where
F̂i = σ̂xi σ̂

y
i+x̂σ̂

x
i+x̂+ŷσ̂

y
i+ŷ (5.17)

and g < 0. The boundary conditions are periodic. At h = 0 the ground
state is the topologically ordered ground state of the Wen-plaquette
model [182] and in the limit h → ∞ the ground state is magnetically
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Figure 5.5: Mapping the transverse Wen-plaquette model (with spins
shown as filled black circles on the vertices of the square lattice) onto
1D transverse Ising chains along the diagonals (shown in red, with spins
at the centers of the plaquettes shown as red open circles). Left: σ̂xi 7→
τ̂x
i− 1

2

τ̂x
i+ 1

2

. Right: For two nearest neighbor spins at sites i,j, we get

〈σ̂xi σ̂xj 〉 = 〈τ̂x
i− 1

2

τ̂x
i+ 1

2

τ̂x
j− 1

2

τ̂x
j+ 1

2

〉 = (〈τ̂x
i− 1

2

τ̂x
i+ 1

2

〉)2.

ordered. The model (5.16) cannot be solved exactly as it stands, but it
can be mapped onto a system of one-dimensional quantum Ising chains
in the following way [183]: Since F̂i and σ̂xj have the same commutation
relations as τ̂ zi+x̂/2+ŷ/2 and τ̂xj−x̂/2+ŷ/2τ̂

x
j+x̂/2−ŷ/2 (where the τ̂ operators act

on spin-1/2 particles at the centers of the plaquettes), the Hamiltonian
(5.16) can be mapped onto

H = −h
∑

a

∑

i

(
gI τ̂

z
a,i+ 1

2
+ τ̂x

a,i− 1
2
τ̂x
a,i+ 1

2

)
, (5.18)

which we recognize as a number of decoupled quantum Ising chains (1.4).
Here, the index a denotes the diagonal chains over the plaquette-centered
sites, and i is the site index on each diagonal chain; cf. Fig 5.5. The
coupling constant gI = g/h. The mapping is thus written as

σ̂xi σ̂
y
i+x̂σ̂

x
i+x̂+ŷσ̂

y
i+ŷ 7→ τ̂ z

i+ 1
2
, σ̂xi 7→ τ̂x

i− 1
2
τ̂x
i+ 1

2
. (5.19)

From the mapping (5.18) to quantum Ising chains it follows that the
transverse Wen-plaquette model has a topological quantum phase tran-
sition at g/h = 1 [183], corresponding to the quantum critical point of
the quantum Ising chain in Chapter 1.
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5.2 Topological insulators

Topological insulators1 constitute a new class of time-reversal invariant
materials that are ordinary insulators in the bulk but with topologically
protected gapless edge states. They can actually be understood from
ordinary band theory [17], in contrast to systems with topological order.
That is to say, the topological properties of topological insulators do not
arise because of electron correlations but because of topological quantum
numbers arising from the single-particle Bloch wave functions. These
topological quantum numbers are very much like that appearing in the
integer quantum Hall effect [160]. Two-dimensional topological insula-
tors, also known as quantum spin Hall insulators, can in fact be seen as a
time-reversal invariant version of the integer quantum Hall effect. Hence
realizing such a system means that one has the same remarkably robust
properties of integer quantum Hall systems without applying magnetic
fields.

The studies of topological insulators originates from such ideas, with
a model based on graphene proposed by Haldane [188] to obtain the in-
teger quantum Hall effect with zero average magnetic field. This model
was later generalized by Kane and Mele [189,190], showing that graphene
with sufficiently strong spin-orbit interactions could turn into a quantum
spin Hall insulator characterized by a Z2 topological invariant. In prac-
tice however, it turns out that the spin-orbit coupling in graphene is
too weak for this novel phase to be realized. Following its theoretical
prediction by Bernevig, Hughes and Zhang [191], the first experimen-
tal observation of the quantum spin Hall state was instead done with
a HgTe quantum well by Molenkamp’s group in Würzburg [109]. Si-
multaneous developments [192, 193] led to the prediction [194], and ex-
perimental observation [195], of three-dimensional topological insulators
of bismuth compounds. This development has now lead to the real-
ization of bulk materials with topologically protected transport up to
room temperature [196], as well as the fabrication of topological insula-
tor nanowires [197].

The topological protection of the edge states of topological insulators
means that their metallic states at the boundary are immune to backscat-
tering as long as time-reversal symmetry is unbroken. They therefore
provide a possibility to realize dissipationless electronic transport, and
the spin-filtered characteristics make these systems very interesting for
spintronics applications [198]. Topological insulators in proximity of or-
dinary s-wave superconductors have also been predicted [199] to give
rise to Majorana fermions, thereby providing a possibility of performing

1For extensive reviews, see Refs. [167,184–187].
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k

↓ ↑

Figure 5.6: The characteristic dispersion of a topological insulator: for
the bulk states there is an energy gap which splits the spectrum into a
valence and a conduction band just as for an ordinary insulator. However
inside the bulk gap there are gapless edge states, with spin coupled to
momentum and protected by time-reversal invariance.

topological quantum computation in solid state systems. The experi-
mental search for such Majorana fermions is currently a topic of intense
activity [200].

5.2.1 Quantum spin Hall insulators

The quantum spin Hall (QSH) insulator is a two-dimensional time-reversal
invariant topological insulator. It is formed in a two-dimensional elec-
tron gas confined in a quantum well, where strong atomic spin-orbit
interaction has created an ”inverted” band structure [191]. The gapless
edge states appearing inside the bulk energy gap, as shown in Fig. 5.6,
form a time-reversal connected pair. In the simplest model, right-movers
have spin up and left-movers have spin down. However in real systems
spin is no longer conserved, due to spin-orbit interactions, and the edge
states should really be thought of as time-reversal connected pairs. In
practice however, the spin-conserved model turns out to be adequate for
most purposes and is the one commonly used. In any case, these gap-
less edge modes are topologically protected and provide dissipationless
edge currents. In equilibrium, the electric currents at the edge cancel,
instead there is a net spin current. Hence the name ”quantum spin Hall
effect” (although the spin Hall conductivity is only quantized in the case
of conserved spin). Comparing to Fig. 5.8 it is clear that the quantum
spin Hall insulator can be seen as two time-reversed copies of the inte-
ger quantum Hall effect. The topological protection from backscattering
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Figure 5.7: Sketch of the quantum spin Hall system, a two-dimensional
time-reversal invariant topological insulator The two-dimensional elec-
tron gas, confined in a quantum well, is an insulator in the bulk. How-
ever at the edge there is a pair of time-reversal connected pair of gapless
helical edge modes, where the spin is locked to the momentum. Hence
the quantum spin Hall system can be seen as two time-reversed copies of
the integer quantum Hall effect which is shown in Fig. 5.8.

mechanisms that might destroy the gapless edge states and cause local-
ization come from the existence of a topological invariant, much like for
the integer quantum Hall effect. The QSH insulator is however only
protected against time-reversal invariant perturbations, thereby adding
another distinction in comparison to systems with topological order as
defined previously. Time-reversal invariance therefore provides an effi-
cient way to understand the properties of the QSH state.

5.2.2 Topological band theory and Kramers pairs

Integer quantum Hall states

In order to get some feeling for the topological quantum numbers appear-
ing for time-reversal invariant topological insulators, let us recall how it
is constructed for the integer quantum Hall effect [160]. There, the quan-
tized Hall conductivity [163]

σxy = ne2/h, (5.20)

where e2/h is the conductance quantum, is given in terms of the integer
n. The reason n is restricted to integer values comes from its quantization
through the expression

n =
1

2π

∫
dkF , (5.21)
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Figure 5.8: Sketch of an integer quantum Hall system. It has a bulk gap
but gapless chiral edge modes, with spin polarized in the direction of the
time-reversal symmetry breaking magnetic field.

where the integral of the Berry flux F ≡ i∇×∑m〈um|∇k|um〉 is over the
magnetic Brillouin zone, and |um(k)〉 the Bloch wave function in the filled
band m. The number n, known as the Chern number, cannot change if
the Hamiltonian is varied smoothly. Hence n is a topological invariant.

An alternative way of understanding the topological nature of the
quantization is the existence of gapless chiral edge states [201], and the
connection between the bulk band structure and the edge states is known
as the bulk-boundary correspondence [202].

Time-reversal invariance

Since the topological invariant n in Eq. (5.20) is odd under time reversal,
it will vanish identically for a time-reversal invariant system. Instead,
for the quantum spin Hall insulator there is a Z2 topological invariant
[190] distinguishing it from the trivially insulating phase. In order to
understand this Z2 classification we need to recall the consequences of
time-reversal invariance on electronic systems.

The time-reversal operation T takes t→ −t, and therefore transforms
position, momentum and spin according to r → r, p → −p and S →
−S, respectively. Since these transformations change the sign of the
canonical commutation relations, the quantum-mechanical T operator is
antiunitary.2 By letting t→ −t in the Schrödinger equation for a spinless
particle,

i~
∂

∂t
|ψ(r, t)〉 = Ĥ|ψ(r, t)〉 → −i~ ∂

∂t
|ψ(r,−t)〉 = Ĥ|ψ(r,−t)〉,

(5.22)
and then taking the complex conjugation of this equation, it follows that

2See e.g. Ref. [203] for a textbook account.
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the wave function transforms as

ψ(r, t)→ ψ∗(r,−t). (5.23)

The time-reversal operator is therefore the complex conjugation operator
K for spinless particles. For a single particle with spin-1/2, one can
factorize T = ΘK and then determine the operator Θ from

Θ r Θ−1 = r , Θ k Θ−1 = k , Θσx/z Θ−1 = −σx/z , Θσy Θ−1 = σy,
(5.24)

since the wave number k = −i∇ and the Pauli matrix σy acquires minus
signs under complex conjugation. It then follows that for a spin-1/2
particle the time-reversal operator is given by

T = −i σyK, (5.25)

from which it follows that T 2 = −1. In general, for a system with n
different spin-1/2 particles, T 2 = (−1)n.

We can now state the important Kramers theorem [204] stating that
for a time-reversal invariant system with T 2 = −1, each eigenvalue of
the Hamiltonian is at least twofold degenerate and the degeneracy is
necessarily of even order. This is known as Kramers degeneracy, and the
degenerate eigenstates connected by T are called Kramers pairs.

It is now possible to understand the Z2 classification of T invariant
band insulators as a consequence of Kramers theorem. For an odd num-
ber of edge fermions, T 2 = −1, and it is not possible to make the gapless
edge states gapped without closing the bulk band gap, see Fig. 5.9. How-
ever for an even number of gapless edge fermions it is possible to do this.
The phase with T 2 = 1 is therefore topologically equivalent to an or-
dinary band insulator, since the edge states can be smoothly deformed
away. The Z2 topological quantum number can therefore be understood
as encoding whether T 2 = ±1. In particular, in order to go between
the ordinary band insulator phase and the quantum spin Hall phase the
system must pass through a quantum phase transition.3

5.2.3 The helical edge liquid

The gapless edge state of the quantum spin Hall insulator consists of a
single spinful fermion, and therefore T 2 = −1. As we have seen, this
makes it protected from T -invariant perturbations. Also, the spinful

3This type of analysis can be extended, using the generic symmetry classes of the
Hamiltonian [205], to provide a classification of topological phases of matter also in
higher dimensions [206,207].
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Figure 5.9: Sketch of different edge state dispersions, shown in grey. For
a time-reversal invariant system E(k) = E(−k), and from Kramers the-
orem it follows that when T 2 = −1 there must be at least a twofold
degeneracy. Hence there must be an even number of degenerate eigen-
states at time-reversal invariant momenta such as k = 0. For an odd
number of fermions it is therefore not possible to open up a gap without
breaking Kramers theorem. In particular, smooth changes of the Hamil-
tonian can not change the disperion from (a) to (b) without closing the
bulk gap. However with an even number of fermions this is possible. In
particular, smooth changes of the Hamiltonian can take the dispersion
from (c) to (d) without closing the bulk gap.

edge fermion is helical, with the spin-up component moving to the right
and the spin-down component moving to the left. With this, the low-
energy theory of the edge can now be analyzed with the techniques from
Chapter 2. Linearizing the spectrum around the Fermi points, one now
obtains the helical version of the Dirac Hamiltonian (2.14),

H0 = −ivF
∫

dx
[
ψ†R↑∂xψR↑ − ψ†L↓∂xψL↓

]
. (5.26)

It is now possible to understand the topological protection of the edge
states in a simple way. Under time-reversal, the components of the
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fermion field transform as

T ψR↑T −1 = ψL↓, T ψL↓T −1 = −ψR↑. (5.27)

Hence, in the QSH phase, weak disorder can not lead to localization since
single-particle backscattering operators

O(1)
bs = ψ†R↑ψL↓ + ψ†L↓ψR↑ and O(2)

bs = iψ†R↑ψL↓ − iψ†L↓ψR↑ (5.28)

are odd under time-reversal, i.e. T O(1,2)
bs T −1 = −O(1,2)

bs , and therefore
can not be generated as long as the bulk gap remains.

So far the electron-electron interactions have been neglected. The
topological effects have all been discussed from a non-interacting band
structure picture, and one may wonder whether electron correlations
would give rise to equally exotic new phases as when going from the
integer to the fractional quantum Hall effect [37, 66, 208]. The study of
correlation effects in topological insulators is a very active field4. How-
ever, once the system is in the QSH phase, correlation effects in the
insulating bulk are not expected to affect the behavior of the system.
However, electron-electron interactions on the gapless edge can have a
dramatic influence and it is therefore important to understand the corre-
lation effects on the edge. For the one-dimensional edge of the quantum
spin Hall insulator, we can use the bosonization techniques in Chapter 2
to incorporate interactions. The electron-electron interactions allowed by
time-reversal symmetry are Umklapp scattering

Hum = gum

∫
dx e−i4kF xψ†R↑(x)ψ†R↑(x+ a)

×ψL↓(x)ψL↓(x+ a) +H.c. (5.29)

and dispersive and forward scattering

Hd = gd

∫
dx ψ†R↑(x)ψR↑(x)ψ†L↓(x)ψL↓(x), (5.30)

Hf =
gf
2

∑

s

∫
dx ψ†s(x)ψs(x)ψ†s(x+ a)ψs(x+ a), (5.31)

which are the helical versions of Eqs. (2.20)-(2.22). Here a point splitting
with the lattice constant a has been performed, and s is summed over R ↑
, L ↓. Assuming a band away from half-filling, kF 6= π/2, the Umklapp
scattering can be ignored. From Chapter 2 we know that dispersive and

4For a recent review, see Ref. [209].
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forward scattering do not cause a gap to open, instead the interacting
electrons form the gapless helical Luttinger liquid

HHLL =
v

2

∫
dx
[
(∂xϕ)2 + (∂xϑ)2

]
, (5.32)

where the bosonization formula (2.48) for spinless fermions was used

ψR↑,L↓ =
1√
2πa

e−i
√
π(ϑ±ϕ) (5.33)

since the helical electrons have the spin locked to the momentum. Hence
one arrives at the important conclusion that the gapless edge state is
robust against electron-electron interactions [110,210].

However, impurities can cause local Umklapp interactions, also known
as correlated two-particle backscattering, in the presence of electron-electron
interactions. This interaction is time-reversal invariant and must there-
fore be considered. The correlated two-particle backscattering interaction
at x = 0,

H2pb = gum e−i4kF xψ†R↑(0)ψ†R↑(a)ψL↓(0)ψL↓(a) +H.c. (5.34)

results after bosonization in the boundary sine-Gordon term

H2pb =
gbs

2(πa)2
cos[
√

16πKϕ(0)] (5.35)

which is well-studied in quantum tunneling problems [211]. With scal-
ing dimension 4K it follows that for electron-electron interactions strong
enough to make K < 1/4, the correlated two-particle backscattering be-
comes relevant and charge transport along the edge is blocked at zero
temperature [110].



6
Bethe Ansatz and quantum

integrability

In this chapter we will discuss the Bethe Ansatz, a powerful method to
obtain exact solutions for some one-dimensional quantum models not re-
ducible to free theories. These include the antiferromagnetic Heisenberg
model [44], the Bose gas with delta-function interactions [212, 213], the
Hubbard model [214] and massive Thirring model [215, 216] (equivalent
to the sine-Gordon model), as well as the Kondo [80, 81] and Ander-
son [217] models. Bethe Ansatz solvable models have the special feature
that their many-particle dynamics can be reduced to two-particle dy-
namics. This means that the many-particle scattering matrix can be
factorized into two-particle scattering matrices, and the self-consistency
relation for these is the famous Yang-Baxter equation [218,219]. It lies at
the heart of the algebraic Bethe Ansatz, or quantum inverse scattering
method, which allows correlation functions to be calulated [220]. However
this is a very complicated problem that will not be treated here. Instead
we will consider the coordinate Bethe Ansatz, which is the original Ansatz
for the coordinate wave function first made by Bethe in 1931 [44] for the
Hesenberg antiferromagnet, and which allows us to obtain the exact en-
ergy spectrum and indirect expressions for the corresponding eigenstates.
Together with what is known as the thermodynamic Bethe Ansatz [221],
this gives the full spectrum at any temperature and hence the thermo-
dynamic properties of the system. Asymptotic correlation functions can
be obtained from the finite-size spectrum using conformal field theory.

After introducing the coordinate Bethe Ansatz solutions of the one-
dimensional Bose gas and Hubbard model, the concept of integrability
and its consequences will be discussed. The reduction to two-particle

91
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elastic scattering is intimately connected to the existence of a full set of
local conservation laws for quantum integrable models. In the presence
of such a large number of conserved quantities, the system is highly
constrained and not expected to thermalize. The question what types
of equilibrium ensembles such systems will realize is a subject of much
present research [222], and has implications for many still unsettled issues
regarding the foundations of quantum statistical mechanics.

6.1 The coordinate Bethe Ansatz

The Ansatz made by Bethe, and which now bears his name, consists
of writing the wavefunction ψ of the system as a combination of plane
waves [44]

ψ(x1, ...xN) =
∑

P

AP e
i
∑N
k=1 p0(λPk)xk , (6.1)

where x1 < x2 < ... < xN , and P are the permutations of the numbers
1, 2, ..., N . The effect of plane-wave scattering is encoded in the two-
particle reducible phase shift

AP ∝ ei
1
2

∑
a<b θ(λPa−λPb). (6.2)

Here p0(λk) is the momentum and λk the ”spectral parameters” or ”ra-
pidities” of the plane waves. Let us now see how this Ansatz works for a
model which has this crucial property of two-particle reducible scattering.

6.1.1 Solution of the one-dimensional Bose gas

The one-dimensional Bose gas with delta-function interaction is also
known as the Lieb-Liniger model, the quantum nonlinear Schrödinger
model or, in the infinite-repulsion limit, the Tonks-Girardeau gas. Its
spectrum was found by Lieb and Liniger in 1963 [212,213], and the ther-
modynamic properties by Yang and Yang [221]. The model is described
by the Hamiltonian

Ĥ =

∫
dx
[
∂xΨ

†(x)∂xΨ(x) + cΨ†(x)Ψ†(x)Ψ(x)Ψ(x)
]
, (6.3)

with repulsive coupling constant c > 0. The Bose fields Ψ have equal-
time commutation relations

[
Ψ(x),Ψ†(y)

]
= δ(x− y) (6.4)

[Ψ(x),Ψ(y)] =
[
Ψ†(x),Ψ†(y)

]
= 0. (6.5)
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Since we will only be interested in equal-time properties the time argu-
ment will generally be omitted. We are thus looking for eigenstates

|ψ〉 =
1√
N !

∫
dNxψ(x1, ..., xN)Ψ†(x1)...Ψ†(xN)|0〉, (6.6)

to the Hamiltonian with N particles, with Ψ(x)|0〉 = 0 defining the
vacuum |0〉 and the wavefunction ψ obeying the Schrödinger equation
Hψ = Eψ. Since the wavefunction is symmetric in the coordinates xj,
it is sufficient to consider the subspace where x1 ≤ x2 ≤ ... ≤ xN , and in
this subspace one has

H = −
N∑

j=1

∂2

∂x2
j

(6.7)

Hψ = Eψ (6.8)(
∂

∂xj+1

− ∂

∂xj

)
ψ
∣∣
xj+1=xj

= c ψ
∣∣
xj+1=xj

, (6.9)

where the last line is the appropriate boundary condition with the delta-
function potential.

Now make the Bethe Ansatz

ψ(x1, ...xN) =
∑

P

AP e
i
∑N
k=1 λPkxk , (6.10)

within this subspace, hence choosing p0(λ) = λ. This forms a complete
and othogonal set of wavefunctions [223]. It can then be checked that for
this Ansatz to satisfy Eqs. (6.7)-(6.9), it should be given by

ψ(x1, ...xN) ∝
∏

1≤k<j≤N

(
∂

∂xj
− ∂

∂xk
+ c

)∑

P

(−1)[P] ei
∑N
n=1 λPnxn ,

(6.11)
where [P ] denotes the parity of the permutation [224]. This leads to a
normalized wavefunction

ψ(x1, ...xN) =

{
N !
∏

k<j

[
(λj − λk)2 + c2

]
}−1/2

(6.12)

×
∑

P

∏

k<j

[λPj − λPk − ic] (−1)[P] ei
∑
n λPnxn ,

which, when lifting the restriction to the subspace x1 ≤ x2 ≤ ... ≤ xN ,
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can be written as

ψ(x1, ...xN) =
(−i)N(N−1)/2

√
N !

{∏

j>k

ε(xj − xk)
}

×
∑

P

{
(−1)[P] exp

[
i
1

2

∑

j>k

ε(xj − xk)θ(λPj − λPk)
]

× exp

[
i
∑

n

λPnxn

]}
, (6.13)

where the phase shift function θ is given by

θ(λ− µ) = i ln

(
ic+ λ− µ
ic− λ+ µ

)
. (6.14)

Putting the N particles in a box of length L and imposing periodic
boundary conditions will allow us to determine the possible values of the
spectral parameters λ. Thus requiring that ψ(x1, ..., xj + L, ..., xN) =
ψ(x1, ..., xj, ..., xN), which means that the the phase eiλjL should equal
the phase acquired from scattering with all other particles, leads to the
Bethe equations

eiλjL = −
N∏

k=1

λj − λk + ic

λj − λk − ic
, j = 1, ..., N. (6.15)

By taking the logarithm, these equations can equivalently be written as

Lλj +
N∑

k=1

θ(λj − λk) = 2πnj, j = 1, ..., N, (6.16)

with nj integer when N is odd and half-integer when N is even. The
Bethe equations determine the allowed values of the parameters λ. Note
that they must all be different, otherwise the wavefunction (6.13) van-
ishes. In order to find the ground state we must now determine the
allowed values of λ that minimize the energy of the system.

Acting with the Hamiltonian on the wavefunction (6.13), Ĥψ = Eψ,
gives the expression for the energy eigenvalues

E =
N∑

j=1

λ2
j . (6.17)

Since all nj must be different, it is now clear that the energy E is mini-
mized by choosing the following numbers nj in Eq. (6.16),

nj = −
(
N − 1

2

)
+ j − 1, j = 1, ..., N. (6.18)
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This will fill the states up to a certain value of |λ|. Thinking about those
λj that are occupied as particles, and those that are not as holes, we see
that the ground state is formed by filling all states up to the Fermi level
with particles. Hence we have particles with a ”Pauli principle” and a
Fermi surface. We have therefore mapped the original repulsive bosonic
problem to a fermionic problem. For infinite delta-function repulsion
between the bosons, the mapping gives free fermions. For finite positive
repulsion of the bosons the fermion system is interacting, and the single-
fermion particles are not the stable excitations. One therefore refers to
them as the ”bare” particles with bare dispersion E(λ) = λ2, with energy
and momentum becoming ”dressed” by the interactions.

Similarly, acting with the momentum operator

P̂ = −i
N∑

j=1

∂

∂xj
(6.19)

on the wavefunction gives P̂ψ = Pψ, with the momentum

P =
N∑

j=1

λj. (6.20)

Thus, the particles with bare energy λ2
j also have a bare momentum

λj, which can be summarized as saying that the bare particles have a
quadratic dispersion relation.

Higher conservation laws

With the particle number operator N̂ =
∫

dxΨ†(x)Ψ(x) having eigen-

value N =
∑N

j=1 λ
0
j , the momentum operator −i1

2

∫
dxΨ†(x)∂xΨ(x) +

H.c. having eigenvalue P =
∑N

j=1 λ
1
j and the Hamiltonian (6.3) having

eigenvalue E =
∑N

j=1 λ
2
j , one may wonder whether this logic also holds

for all the other conserved quantities that appear in this integrable model,
i.e. for all those operators Q̂k that commute with the Hamiltonian. The
answer is yes, it has indeed been shown that the higher conservation laws
for the Lieb-Liniger model all have the form [220,225]

Qk =
N∑

j=1

λkj (6.21)

for their eigenvalues. As an example, the third conserved quantity is
given by the operator [225]

Q̂3 =

∫
dx
[
Ψ†(x)∂3

xΨ(x)− (3c/2)Ψ†(x)Ψ†(x)∂xΨ(x)2
]
. (6.22)
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Dressed energy

Now taking the thermodynamic limit, i.e. letting N → ∞ and L → ∞
while keeping the density N/L = D fixed, the continuum version of the
Bethe equations (6.16), after differentiation, becomes the linear integral
equation

ρt(λ)− 1

2π

∫ q

−q
dµK(λ, µ)ρt(µ) =

1

2π
(6.23)

at zero temperature, where ρt(λ) is the particle density of states in mo-
mentum space and the kernel

K(λ, µ) = θ′(λ− µ) =
2c

c2 + (λ− µ)2
, (6.24)

with the integration at zero temperature constrained to within the Fermi
sphere q ≤ λ ≤ q. Hence

∫ q

−q
dλ ρt(λ) =

N

L
= D. (6.25)

Returning to the expression (6.17) for the energy, we now include also
a chemical potential h and write it as

E =
N∑

j=1

ε0(λj) (6.26)

where ε0(λj) = λ2
j − h is the bare energy of the particle. As an integral

this becomes

E =

∫ q

−q
dλ ρt(λ)ε0(λ) (6.27)

which can be rewritten as

E =

∫ q

−q
dλ ε(λ), (6.28)

where the dressed energy ε(λ) is given by the linear integral equation

ε(λ)− 1

2π

∫ q

−q
dµK(λ, µ)ε(µ) = ε0(λ). (6.29)

The Fermi points λ = ±q are determined by the condition

ε(±q) = 0. (6.30)

The dressed energy (6.29) is the observable energy of the excitations.
Removing one particle with momentum −q < λh < q from the ground
state distribution and adding one with momentum |λp| > q will change
the energy by

∆E = ε(λp)− ε(λh). (6.31)
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Finite-size corrections and the dressed charge

Let us now investigate the finite-size corrections from low-energy excited
states at zero temperature. Expanding the energy E(q) = E0 + δE as
function of the deviation from the value of q that minimizes the energy
Eq. (6.27), we obtain

δE =
∂E

∂q
δq +

1

2

∂2E

∂q2
(δq)2, (6.32)

using the parity symmetry in λ. Now, one can show that

∂E

∂q
= Lρ(q)ε(q). (6.33)

This gives Eq. (6.30), since the ground state minimizes E. Then

δE =
L

2

∂

∂q
(ρ(q)ε(q)) (δq)2 (6.34)

which due to Eq. (6.30) equals

δE =
L

2
ρ(q)ε′(q) (δq)2 =

L

2
vF2π [ρ(q)]2 (δq)2 (6.35)

where the Fermi velocity is defined by

vF =
1

2πρt(q)

∂ε

∂λ

∣∣∣∣∣
λ=q

. (6.36)

Now we want to express δq in terms of the quantum numbers describing
the different kinds of particle excitations. Let ∆N denote the change
in the number of particles N , let d denote the number of particles that
jump over the Fermi sea from λ = −q to λ = q, and N± the number of
particle-hole excitations at the Fermi points λ = ±q. Then the change
in the Fermi surface can be expressed as

δq =
∂q

∂D
δD +

∂q

∂d
d (6.37)

where δD = ∆N/2L. The derivatives are found to be

∂q

∂D
=

1

ρ(q)Z(q)
(6.38)

and
∂q

∂d
=

Z(q)

Lρ(q)
, (6.39)
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where the dressed charge Z is defined by

Z(λ)− 1

2π

∫ q

−q
dµK(λ, µ)Z(µ) = 1. (6.40)

Comparing Eqs. (6.40) and (6.23) we see that Z(λ) = 2πρt(λ) for the
present model, while for other models there is no such simple relation.
Inserting the above equations into Eq. (6.35) now gives

δE =
π

L
vF

[
2N+ + 2N− +

(
∆N

2Z(q)
+ Z(q)d

)2
]

(6.41)

when also including the particle-hole excitations N±.
The corrections to the momentum are much easier to calculate. Since

P =
N∑

j=1

λj =
N∑

j=1

[
2π

L
nj −

N∑

k=1

θ(λj − λk)
]

=
2π

L

N∑

j=1

nj (6.42)

due to the antisymmetry of θ(λ), δP is simply given by

δP = 2kFd+
2π

L

[
N+ −N− + d∆N

]
, (6.43)

where kF is the Fermi momentum kF = πN/L.
The finite-size corrections give us the scaling dimensions in the con-

formal field theory describing the low-energy physics, and hence allow us
to obtain the asymptotic behavior of correlation functions. As it turns
out, the low-energy limit of the Lieb-Liniger model is given by the c = 1
free boson conformal field theory, which should come as no surprise due
to the analogies with the Luttinger liquid in Chapter 2.

Yang-Yang thermodynamics

Let us also mention the extension to finite temperatures, known as Yang-
Yang thermodynamics or thermodynamic Bethe Ansatz.

In the thermodynamic limit, the entropy is given by [221,226]

S = L

∫ ∞

−∞
dλ [ρt(λ) ln ρt(λ)− ρp(λ) ln ρp(λ)− ρh(λ) ln ρh(λ)] , (6.44)

where Lρt(λ)dλ is the number of states in the interval [λ, λ + dλ], and
Lρp(λ)dλ and Lρh(λ)dλ are the numbers of particles and holes in this
interval, with ρp(λ) + ρh(λ) = ρt(λ). The entropy of Eq. (6.44) follows



6.2 Integrability and the generalized Gibbs ensemble 99

as the logarithm of the number of ways to put Lρp(λ)dλ particles into
Lρt(λ)dλ states. The partition function then follows as

Z =

∫
D
[
ρt(λ)

ρp(λ)

]
eS−E/T , (6.45)

which, by varying the exponent under the constraint of fixed number of
particles and applying the saddle-point approximation, gives the equation

ln
ρh(λ)

ρp(λ)
=
ε0(λ)

T
− 1

2π

∫ ∞

−∞
dµK(λ, µ) ln

[
1 +

ρp(λ)

ρh(λ)

]
. (6.46)

Now write ρh(λ)/ρp(λ) as

ρh(λ)

ρp(λ)
= eε(λ)/T , (6.47)

which turns Eq. (6.46) into

ε(λ) +
T

2π

∫ ∞

−∞
dµK(λ, µ) ln(1 + e−ε(µ)/T ) = ε0(λ). (6.48)

This is the Yang-Yang equation. At zero temperature it reproduces
Eq. (6.29), and it gives the observable energy of the finite-temperature ex-
citations. The function ε(λ) in Eqs. (6.47)-(6.48) is therefore the dressed
energy at finite temperatures.

From Eq. (6.47) we obtain the distribution function ϑ(λ) = ρp(λ) =
ρt(λ) for the particles, which is the Fermi function

ϑ(λ) =
1

1 + eε(λ)/T
. (6.49)

The integral equations for zero-temperature quantities are now straight-
forwardly generalized to finite temperatures by the substitution∫ q

−q
dλ [...]→

∫ ∞

−∞
dλϑ(λ) [...]. (6.50)

It is interesting to note that the validity of the Yang-Yang thermody-
namics recently has been experimentally verified [227].

6.2 Integrability and the generalized Gibbs en-
semble

Let us now discuss in a more general sense the concept of integrability
and its effects on quantum statistical mechanics. Classically, exact inte-
grability is defined through the presence of as many independent integrals
of motion as there are degrees of freedom. Thus the equations of mo-
tion can be explicitly integrated, preventing the system from ergodically
exploring phase-space and no thermalization will occur.
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6.2.1 Quantum integrability

The notion of quantum integrability is much more subtle than the clas-
sical version. In fact, the precise definition is still a disputed issue
[228–231]. The prevailing working definition nevertheless is that quantum
integrability means the presence of a full set of local conserved charges,
i.e. there are as many local independent commuting symmetry operators
Q̂i,

[Q̂i , Ĥ] = 0, [Q̂i , Q̂j] = 0, i, j = 1, 2, ..., dim(H), (6.51)

as the size dim(H) of the Hilbert space. The requirement of locality
is important, as otherwise any quantum system would fall under the
definition since one can always construct a full set out of the projection
operators Q̂a = |Ψa〉〈Ψa| onto the eigenstates |Ψa〉 of the Hamiltonian.

An alternative definition of quantum integrability is that all scatter-
ing is non-diffractive, meaning that the set of outgoing momenta is the
same as the set of incoming momenta. It connects to the presence of
the conserved charges since they can be constructed from the conserved
momenta, and to the solvability through the Bethe Ansatz. To see this
connection more clearly, and also understand why Bethe Ansatz is ap-
plicable only for one-dimensional quantum systems, let us consider the
following simple argument from Refs. [232,233]:

Consider a one-dimensional system of particles scattering off each
other. If the system has a full set of conserved charges, then these con-
served charges can be used to form generators of momentum-dependent
translations of the wave packets. Hence the world lines of different par-
ticles can be translated independently, separating many-particle colli-
sions into several two-particle collisions, cf. Figs. 6.1 and 6.2. There-
fore the many-particle S matrix (scattering matrix) is factorizable into

t

x

p1

p2

p3

Figure 6.1: The world lines for a three-particle scattering event.
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t

x

p1

p2

p3

t

x

p1

p2

p3

Figure 6.2: Two different three-particle scattering events that can be seen
as a sequence of two-particle scattering events. Note that if translating
only the particle with e.g. momentum p2 is a symmetry operation, then
both these events should have the same S matrix as the event in Fig. 6.1.
Thus the S matrix is factorizable into two-particle scattering matrices
S2, obeying the Yang-Baxter equation (6.52).

two-particle S matrices S2. Evidently this must however lead to self-
consistency relations for the S2 matrices, considering the different ways
the same many-particle S matrix can be factorized. This leads to the
celebrated Yang-Baxter equation [218,219,234],

S2(p2, p3)S2(p3, p1)S2(p1, p2) = S2(p1, p2)S2(p1, p3)S2(p2, p3), (6.52)

which in its different forms lies at the heart of Bethe Ansatz integrability1

and the search for, and classification of, its solutions is a central theme
o the research field [236]. We now also see why Bethe Ansatz is such a
powerful method only for integrable one-dimensional quantum models:
In higher dimensions one could simply avoid any scattering altogether
by translating the world lines. Hence the S matrices are trivial, i.e.
the model is reducible to a free (non-interacting) theory. Only in one
dimension can there be non-trivial theories with a full set of conserved
charges.

6.2.2 The generalized Gibbs ensemble

Just as the notion of quantum integrability is more subtle than its clas-
sical counterpart, so is the process of quantum thermalization [237–240].
For an isolated quantum system the linear equations of motion and the

1Note also the interesting connections between the Yang-Baxter equation and uni-
versal topological quantum computation [174,235].
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discrete spectrum prevents dynamical chaos, hence the mechanisms un-
derlying the relaxation process to some equilibrium distribution are far
less understood. In fact, the quantum version [237, 241] of the ergodic
theorem is weaker than its classical counterpart that lays the founda-
tion of classical statistical physics [242]. The quantum version results
in the assumption known as ”normal typicality”, which loosely can be
stated as: ”for a ’typical’ finite family of commuting macroscopic ob-
servables, every initial wave function ψ0 from a micro-canonical energy
shell so evolves that for most times t in the long run, the joint probabil-
ity distribution of these observables obtained from ψ(t) is close to their
micro-canonical distribution” [241]. Given the micro-canonical distribu-
tion for the isolated system, stating that all microscopic states with the
same energy are equally probable, one can write down the entropy from
which the statistical ensemble of the system follows by maximizing this
entropy under the relevant constraints. As is well-known, the density ma-
trix describing a stationary state will be a function of all the conserved
charges [242–244]. In particular, suppose {Q̂n} is a set of local conserved
charges, i.e. [Q̂i , Ĥ] = [Q̂i , Q̂j] = 0, ∀i, j. Then following the prescrip-
tion of maximizing the von Neumann entropy S = −kBTr ρ̂ log ρ̂ under
the constraints of the conservation laws imposed by Lagrange multipliers
λi, gives

δ[Tr (
∑

i

λiQ̂i − kBρ̂ log ρ̂)] = Tr ([
∑

i

λiQ̂i − kB log ρ̂]δρ̂) = 0

(6.53)

Hence
∑

i λiQ̂i − kB log ρ̂ = 0 and one arrives at the density matrix

ρ̂GGE =
1

ZGGE
e−

∑
i βiQ̂i , (6.54)

known as the generalized Gibbs ensemble. When the only constraints are
conserved particle number Q̂1 = N̂ and energy Q̂2 = Ĥ the prescription
above gives the usual Gibbs ensemble

ρ̂Gibbs =
1

ZGibbs
e−β(Ĥ−µN̂), (6.55)

also known as the grand canonical ensemble with β defining the inverse
temperature and µ the chemical potential. In the above the constraint
of unity trace of the density matrix, Tr ρ̂ = 1 results in the normalizing
prefactor Z−1, where Z = Tr exp[−∑i βiQ̂i] is the partition function.

For a generic non-integrable many-particle system, being it classical
or quantum, the only conserved quantities are just particle number and
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total energy (neglecting total momentum and angular momentum). In an
isolated system, i.e. with neither particle nor energy exchange with the
environment, ”normal typicality” asserts the stationary density matrix
to be that for the micro-canonical ensemble. When the system is in
contact with an environment allowing energy transfer, it is no longer
isolated (but still closed if there is no particle exchange). The canonical

ensemble ρ̂c = Z−1
c e−βĤ then describes the mean values of observables

Ô as 〈Ô〉 = Tr ρ̂cÔ around which they fluctuate. In the thermodynamic
limit one expects these fluctuations to be negligible. The same holds
for the grand canonical ensemble (6.55) for an open system where both
particles and energy are exchanged with the environment.

Turning to an isolated integrable quantum many-particle systems, it
is clear that the system is in a pure state at all times. However, it might
still be possible to treat open subsystems with the prescription above,
given that it is small enough for the rest of the system to be consid-
ered an effective bath. The whole set of local conservation laws should
then presumably enter into the generalized Gibbs ensemble describing the
subsystem. A protocol for testing such a scenario is a quantum quench,
where the initial state of the system is not an eigenstate of the Hamil-
tonian [245–248]. Such non-equilibrium dynamics of quantum systems is
now a very active area of both theoretical and experimental investigation.

With the recent advancements in the field of cold atoms and quan-
tum optics [249], it is now possible to experimentally realize sufficiently
isolated and well-controlled system so that unitary time-evolution can be
observed for times long enough to examine fundamental questions about
ergodicity and thermalization [250]. With the many integrable quantum
models now being realized in the labs2, it has become a subject of in-
tense study to investigate exactly what sets of conserved quantities that
do constrain relaxation and which of them that should enter into an ef-
fective generalized Gibbs ensemble (6.54) describing local observables in
possible stationary states3.

2See references in Ref. [251].
3For a review, see Ref. [222]. Discussions of recent developments can e.g. be found

in Refs. [252] and [253].
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7
Introduction to the papers

7.1 Paper I: Scaling of reduced fidelity in TQPTs

In Paper I we study the scaling of reduced fidelity in the topological
quantum phase transitions appearing in the models introduced in Sec-
tion 5.1.3. Before discussing the results, let us introduce the concepts of
fidelity and reduced fidelity.

7.1.1 Fidelity and fidelity susceptibility

Fidelity is a measure from quantum information theory that quantifies
the similarity between two quantum states. It can be used to capture
a quantum phase transition (QPT) by considering the change in the
ground state as the system is driven through the transition. Let us write
the Hamiltonian as

H = H0 + λHI , (7.1)

where λ is a tunable parameter that takes the system through the QPT.
For two states given by the density matrices ρ(λ) and ρ(λ′), the fidelity
F (ρ(λ), ρ(λ′)) is defined as [254]

F (ρ(λ), ρ(λ′)) = Tr

√√
ρ(λ)ρ(λ′)

√
ρ(λ). (7.2)

When the two states are pure, i.e. ρ(λ) = |Ψ(λ)〉〈Ψ(λ)|, we see that the
fidelity is simply given by the state overlap, F (λ, λ′) = |〈Ψ(λ′)|Ψ(λ)〉|.
Since the ground state changes rapidly at a quantum phase transition,
the fidelity F (λ, λ+ δλ) between two ground states that differ by a small
change δλ in the driving parameter should exhibit a sharp drop. This
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has been confirmed in a number of case studies of different systems un-
dergoing QPTs [180].

In order to remove the arbitrariness in the choice of δλ, one should
instead consider the fidelity susceptibility χF , defined as [255]

χF = lim
δλ→0

−2 lnF

δλ2
. (7.3)

For pure states, F (λ, λ′) ≈ 1 − χF δλ
2/2 when δλ is small, hence the

fidelity susceptibility describes the leading response of the fidelity to
changes in the driving parameter. The fidelity susceptibility is there-
fore a good quantitative measure of how much the ground state changes
as the systems goes through the QPT. In fact, the fidelity susceptibility
shows scaling behavior near QPTs in a number of systems, enabling the
extraction of critical exponents [180].

When the density matrices at λ and λ′ commute, Eq. (7.2) becomes

F (λ, λ′) = Tr
√
ρ(λ)ρ(λ′) =

∑

i

√
αiα′i, (7.4)

where {αi} and {α′i} are the eigenvalues of ρ(λ) and ρ(λ′), respectively.
This gives the fidelity susceptibility in terms of the density matrix eigen-
values as [256]

χF =
∑

i

(∂λαi)
2

4αi
. (7.5)

Reduced fidelity

The fidelity between the mixed states of a subsystem is called reduced
fidelity [254,257]. Recall that when the Hilbert space of the full system is
partitioned into a direct productH = HA⊗HB, where A is the particular
subsystem and B is the rest, the reduced density matrix ρA of subsystem
A is obtained by tracing out all the degrees of freedoms pertaining to B
in the full density matrix ρ of the entire system,

ρA = TrB ρ . (7.6)

Then the reduced fidelity is simply the fidelity (7.2) between the re-
duced density matrices ρA at different values of the driving parameter λ
in the Hamiltonian (7.1). Reduced fidelity has provided an alternative
in situations where the global fidelity is not a suitable quantity [180],
e.g. one might envisage situations where the global ground state is un-
known. Moreover, as the reduced fidelity is a local quantity it might
have a stronger experimental relevance, being easier to connect to a local
observable.
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Figure 7.1: Single-site fidelity (a), single-site fidelity susceptibility
(b), two-site fidelity (c) and two-site fidelity susceptibility (d) of the
Castelnovo-Chamon model plotted using the analytical results in the
thermodynamic limit with δβ = 0.001. The reduced fidelity suscepti-
bilities will diverge according to Eq. (7.7) when δβ → 0. In (c) and (d)
we plot for both nearest (NN) and next-nearest (NNN) neighbors. From
Paper I.

Now, with this local nature of the reduced fidelity one may think
that it would be less sensitive to a topological quantum phase transition
(TQPT), at which the system undergoes a global rearrangement of quan-
tum correlations that cannot be captured by any local order parameter.
However, we showed in Paper I that this intuition turns out to be wrong.
Instead, our results for some exactly solvable 2d lattice models suggest
that the reduced fidelity serves as an accurate marker of a topological
quantum phase transition.

7.1.2 Results and discussion

In Paper I we have analytically studied the single-site and two-site re-
duced fidelities in the Castelnovo-Chamon (5.10) and transverse Wen-
plaquette (5.16) models, as functions of the driving parameters β and h
respectively.
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Figure 7.2: Single-site fidelity (a), single-site fidelity susceptibility (b),
two-site fidelity (c) and (nearest neighbor) two-site fidelity susceptibility
(d) of the transverse Wen-plaquette model in the thermodynamic limit
plotted using the analytical results with a parameter difference δ(h/g) =
10−5. It is clear that the TQPT at h/g = 1 is marked by drops in
the reduced fidelities. The reduced fidelity susceptibilities will diverge
according to Eq. (7.9) when δ(h/g)→ 0. From Paper I.

For the Castelnovo-Chamon model, it is found that the single-site
reduced fidelity susceptibility χF diverges as

χF ∼ ln2 |β − βc|, (7.7)

at β → βc, cf. Fig. 7.1. This should be contrasted to the global ground-
state fidelity susceptibility which diverges as [258]

χ
(gs)
F ∼ ln |β − βc|. (7.8)

Hence we have shown that the divergence of the reduced fidelity
susceptibility at criticality is even stronger than that of the global fi-
delity [258] in this model, which comes as a surprise since the reduced
fidelity initially was conceived of as a measure with ”reduced orthogonal-
ity” [180].
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For the transverse Wen-plaquette model it is found that the single-site
and two-site reduced fidelities both diverge as

χF ∼ ln2 |g/h− 1| (7.9)

as h→ g, cf. Fig. 7.2.
Our analytical results for these important lattice models rely on exact

mappings of the TQPTs onto ordinary symmetry-breaking phase tran-
sitions. Other lattice models exhibiting TQPTs have also been shown
to be dual to models with classical order (see Refs. [259, 260]), suggest-
ing that our line of approach may be applicable also in these cases, and
that the property that a reduced fidelity can detect a TQPT may per-
haps be rather generic. It is somewhat counterintuitive, considering that
the reduced fidelity is a local probe of the topologically ordered phase
and there exists no local order parameter that describes the transition.
However, related results have previously been published. Specifically, in
Refs. [181] and [261], it was found that the local magnetization in the
Castelnovo-Chamon model and the Kitaev toric code model in a mag-
netic field, while being continuous and non-vanishing across the transition
out of topological order, has a singularity in its first derivative. In fact,
since the singularity in the reduced fidelity susceptibility depends on a
non-analyticity in the local expectation values appearing in the reduced
density matrices, the findings have the same origin. However, reduced
fidelity as a measure does not rely on identifying any particular local ex-
pectation value with non-analytic behavior, and is especially well suited
in situations where only the local reduced density matrix has been found.
Furthermore, the fact that a local quantity such as the reduced fidelity
can detect TQPTs is conceptually satisfying, as physical observables are
local in nature.

7.2 Papers II-III: Impurity entanglement en-
tropy from CFT

In Paper II we derive general expressions for the scaling corrections of the
entanglement entropy when perturbing a boundary conformal field theory
with (primary) irrelevant boundary operators. In Paper III these results
are applied to the study of quantum impurity systems, in particular we
discuss the relation to the Kondo screening cloud. By obtaining the finite-
temperature corrections to the von Neumann entropy, we show that the
zero-temperature corrections δSimp(r) to the entanglement entropy have
the same power-law decay as the finite-temperature corrections δSThimp(β)
to the thermodynamic entropy when r � β. This extends the well-known
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connection between these two quantities in the scaling limit to include
also the leading scaling corrections. In particular, it might provide a
direct connection between the exponents governing measurable quantities
like the specific heat to the exponent governing the decay of the Kondo
screening cloud.

The results, which are derived in Appendix A, can be summarized on
the following form:

SA =
c

6
log

2r

�
+ log g + c�

SA = −Tr ρA log ρA

r/β → 0

r/β → ∞

+





A1r
2−2xb

A2r
−1 log r

A3r
−1

+ ...

+





B1 β
2−2xb

B2 β
−1 log β

B3 β
−1

+ ...

� �� �
∼δST h

A

SA =
2πc

6β
r + log g

� �� �
ST h

A

+
c

6
log
� β

2π�

�
+ c�

The von Neumann entropy SA(r) for a region A of size r next to the
boundary (i.e. the impurity) has the well-known scaling form of Eq. (4.12)
as r/β →∞. In paper II we show that the scaling corrections that arise
due to an irrelevant boundary operator with scaling dimension xb to lead-
ing order are given by

δSA ∼





A1 r
2−2xb when 1 < xb < 3/2

A2 r
−1 log r when xb = 3/2

A3 r
−1 when xb > 3/2 ,

(7.10)

and as δSA ∼ (ln r)−3 when perturbing with a marginally irrelevant
boundary operator. Here A1, A2, A3 are non-universal constants. In Pa-
per III we show that the corresponding expression for the corrections to
the von Neumann entropy when r � β are given by

δSA ∼





B1 β
2−2xb when 1 < xb < 3/2

B2 β
−1 log β when xb = 3/2

B3 β
−1 when xb > 3/2 ,

(7.11)

to O(β−1) in β and O(e−2πr/β) in r/β. Comparing to Eq. (3.39) for the
thermodynamic impurity entropy SThA in a quantum impurity system in
the same limit, we see that δSA ∼ SThA for a quantum impurity system
in the double limit r � β and β → ∞. The thermodynamic impurity
entropy in turn has the same power-law scaling as the impurity specific
heat (3.38). This establishes a connection between entanglement and
thermodynamics [126,262] on the level of scaling corrections.

The decay (7.10) of the boundary contribution to the entanglement
entropy δSB = δSA of the other part B of the system, as its distance r



7.3 Papers IV-V: Kondo effect in helical Luttinger liquids 111

from to the boundary increases, tells how the screening cloud decays [157].
We therefore arrive at the conclusion that the asymptotic decay of the
screening cloud with distance follows the same power-law as the impurity
specific heat with inverse temperature.

7.3 Papers IV-V: Kondo effect in helical Lut-
tinger liquids

In Paper IV we study the effect of Rashba spin-orbit coupling on the
Kondo physics in a helical Luttinger liquid at the edge of a two-dimensional
topological insulator, obtaining the Kondo temperature and the linear
conductance. In Paper V these results are generalized to include also
Dresselhaus spin-orbit interaction.

7.3.1 Background

The helical electrons, with spin locked to the direction of propagation,
are schematically shown in Fig. 7.3. Previous studies, not including spin-
orbit effects, of the Kondo effect in this system have resulted in the
following picture for the effect from Kondo scattering on the conduc-
tance of the system [111]: At low temperatures T � TK , the Kondo
effect has set in and the impurity spin is essentially removed from the
system. The conductance is then governed by two-particle correlated
backscattering generated at the impurity site, with scaling dimension
4K. Hence, for K > 1/4, i.e. weak electron-electron interactions, the
unitary edge conductance G = e2/h is restored as T → 0 with an un-
usual power law δG ∼ T 2(4K−1), distinctive of a helical edge liquid. For
K < 1/4, i.e. strong interactions, the edge liquid freezes into an insulator
at T = 0, whith a power-law G ∼ T 2(1/4K−1) from tunneling of fraction-
alized charge. At high temperatures and low frequencies ω � T , there is

ΨL↓ΨR↑
�S

Figure 7.3: Illustration of the spin-1/2 Kondo impurity in a helical
edge liquid. The right-moving electrons have spin-up and the left-moving
electrons have spin-down. Kondo scattering simultaneously flip the spins
of the impurity and electron.
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T

G/G0

1

TK T2PB

K > 1/4

K < 1/4

∼ T 2(4K−1)

∼ T 2(1/4K−1)

∼ ln T

Figure 7.4: Summary of the picture for the temperature dependence
of the conductance of a helical edge liquid with a Kondo impurity, as
it appears in Ref. [111]. Note however that the logarithmic correction
from Kondo scattering vanishes in the dc limit [112]. The effects from
Rashba and Dresselhaus spin-orbit interaction will be to modify both the
Kondo temperature and the high-temperature conductance correction, as
indicated by the arrows.

a logarithmic temperature dependence of the conductance, obtained by
RG improving the linear-response result δG ∼ T 2(K−1). This is summa-
rized in Fig. 7.4. However, in the dc limit, ω → 0, it was found [112] that
this perturbative analysis yields incorrect results. Instead a rate-equation
approach for the Kondo scattering process results in the conclusion that
the conductance correction vanishes in the dc limit. This can be under-
stood from the following heuristic argument: in the zero-frequency limit
the fact that the impurity spin is flipped at every scattering event means
that for the helical liquid every second electron must come from the right
and every second from the left, hence giving zero net effect.

7.3.2 Results and discussion

It is however important to also study the effects of spin-orbit interactions,
which are expected to play an important role in the semiconductor het-
erostructures where quantum spin Hall experiments are usually carried
out [263]. In addition, a Rashba interaction is controllable by exter-
nal gate voltages, and therefore presents a means to electrically control
transport properties which is important for technological applications in
electronics and spintronics.
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Figure 7.5: The Kondo temperature TK in a helical Luttinger liquid with
a magnetic impurity with Kondo couplings satisfying Jx = Jy < Jz.
The Kondo temperature is plotted in a logarithmic scale as a function
of the Rashba angle θ for four values of the Dresselhaus angle φ, the
angles parameterizing the strengths of the spin-orbit interactions, and
as a function of the ordinary Luttinger parameter K0, parameterizing
the strength of the electron-electron interaction. Note that the vanishing
Kondo temperature at θ, φ = π/2 simply reflect the diverging spin-orbit
coupling strength in these limits, and that the model is not expected to
be valid in these limits. In the black (white) shaded area, Jyz (Jxz) dom-
inates the perturbative RG flow, hence preventing the low-temperature
formation of a Kondo singlet. From Paper V.
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Figure 7.6: The backscattered current δI due to a Kondo impurity in
a helical Luttinger liquid, for different values of the Rashba and Dres-
selhaus angles θ and φ (parameterizing the strengths of the spin-orbit
interactions), and the Luttinger parameter K0. Upper: Current-voltage
characteristics for δI at fixed temperature T . Lower: δI at fixed voltage
and temperature, plotted as a function of the Rashba angle θ. From
Paper V.
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The effect of a Rashba interaction on the helical electrons can be
studied exactly by a spinor rotation [264]. In the new rotated basis, the
theory with Dirac fermions with Rashba interaction becomes a theory
with new Dirac fermions which do not have a Rashba interaction. The
effect is therefore only to rotate the spin quantization axis. However, in
the presence of a Kondo impurity with anisotropic exchange interaction
the price to pay for this simplification is that the Kondo interaction in
the new basis becomes more complicated. Now there will not only be
the Sxσx, Syσy and Szσz interactions (where S refers to the impurity
and σ to the electron spins), but in the rotated basis also Szσy etc.
will appear. Similarly, the Dresselhaus interaction can be treated with a
spinor rotation around another axis.

The Kondo temperature is now obtained by perturbative RG, where
it is defined as the temperature at which the Kondo couplings start domi-
nating the theory. The RG equations for the generalized Kondo couplings
appearing due to the Rashba interaction were obtained in Paper IV1, and
in Paper V these equations were straight-forwardly generalized to the full
set of flow equations generated by the simultaneous presence of Rashba
and Dresselhaus interaction. The results for Kondo couplings satisfy-
ing Jx = Jy > Jz show a Kondo temperature which for fixed strength of
the electron-electron interaction decreases with increasing Rashba and/or
Dresselhaus interaction strength. The results for Jx = Jy < Jz show a
similar behavior, but here there is a very interesting effect appearing.
For some values of the Luttinger parameter K0 and Rashba and Dres-
selhaus strengths, it is not one of the usual Kondo couplings Jx, Jy.Jz
that diverges the fastest. Instead, in the shaded regions in Fig. 7.5 the
interactions that diverge fastest are non-collinear couplings. Hence the
resulting state the system appears to be flowing towards is not a singlet,
which means that the Kondo singlet formation is obstructed. Within the
limits of the perturbative treatment, it therefore appears as if the Kondo
effect is hampered by a conspiracy of electron-electron and spin-orbit
interactions in some parameter regimes.

Away from these special parameter regimes, the Kondo effect will
work as usual and we can treat the Kondo interaction perturbatively to
obtain the current-voltage characteristics, shown in Fig. 7.6, as well as
linear conductance for both electrical and thermal transport and noise
characteristics. These results all show the appearance of multiple power-
laws for the different kinds of Kondo scatterings that will take place in
the rotated basis, and the dependence of the current correction on the
electric field which controls the Rashba interaction.

1The details of the perturbative renormalization-group calculations in Paper IV
for the Kondo temperature with a Rashba interaction can be found in Ref. [265].
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7.4 Paper VI: Correlations in one-dimensional
Bose gases

In Paper VI we study possible effects from higher conservation laws on
correlations in the one-dimensional Bose gas. Assuming the state of the
system is described by a generalized Gibbs ensemble (6.54), where the
full set of conserved charges appears, we obtain the finite-size corrections
in energy and momentum at zero temperature and use the conformal
relations (2.134) and (2.135) to deduce the asymptotics of correlation
functions. See Section 6.1.1 for an introduction to the original model.

At zero temperature the system is in the ground state of the general-
ized Hamiltonian

H =
∑

i

biQi (7.12)

appearing in the density matrix. Here Qi are all the local conserved
charges (6.21), entering with coefficients bi. It then follows that the bare
dispersion (6.26) of the single-particle excitations now becomes

ε0(λ) =
∞∑

n=0

bnλ
n (7.13)

i.e. some polynomial function, determined by some initial condition on
the conserved charges. The dressed energy (6.29) will then also be gen-
eralized to some more general function of the bare momenta [266]. In
particular, at zero temperature there may now be many different Fermi
points with different Fermi velocities. In terms of the excitation quantum
numbers described in Fig. 7.7, the finite-size corrections of ground-state
energy E0, and energy E and momentum P , are found to be on the form

E0 − E0(L→∞) = − π

6L

∑

j

cj|vj| (7.14)

E − E0 =
2π

L

∑

j

|vj|
[
∆+
j + ∆−j

]
(7.15)

P − P0 = −
∑

j

2qj dj +
2π

L

∑

j

[
∆+
j −∆−j

]
(7.16)

in the parity symmetric case (ε0(λ) = ε0(−λ)), where we obtain

cj = 1 (7.17)

and

∆±j = N±j +
1

2

(∑

k

(Z−1)jk
∆Nk

2
±
∑

k

Zkjdk

)2

. (7.18)
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Figure 7.7: A generalized dispersion for the dressed particle energy of the
one-dimensional Bose gas with conserved charges added to the Hamilto-
nian, in this example with parity symmetry and four Fermi points at
λ = −q1,−q2, q2, q1. The different types of excitations are shown in
the figure; ∆N1 (∆N2) particles (holes) added to the Fermi sea [−q1, q1]
([−q2.q2]), N±i particle-hole excitations at Fermi point ±qi, and d1 (d2)
particles (holes) backscattered over the Fermi seas.

Here Zij is the dressed charge matrix, which can be computed through
linear integral equations.

The low-energy physics is therefore described by a sum of conformal
field theories each with central charge cj = c = 1, where the dimensions of
the operators are given by Eq. (7.18) in terms of their quantum numbers,
see Section 2.2.4. Hence correlation functions can be obtained, e.g. the
boson field equal-time correlator

〈Ψ(x)Ψ†(0)〉 ∼ x−α, (7.19)

where α is the smallest of the numbers
(∑

j(Z
−1)jk

)2

/2, and the density-

density equal-time correlation function

〈j(x)j(0)〉 − 〈j(0)〉2 ∼ A1x
−2 + A2 cos(2qkdkx)x−θ, (7.20)

where θ the smallest of the numbers 2
(∑

j Zkj

)2

.

The findings show that the generalized one-dimensional Bose gas gives
rise to similar correlation effects as in multicomponent Bethe-Ansatz solv-
able models like spin chains with competing interactions and the one-
dimensional Hubbard model. In particular, generalized dispersions with



118 Chapter 7 Introduction to the papers

many Fermi points may give rise to several different speeds of sound
in the system when also considering the time-evolution governed by the
generalized Hamiltonian.



8
Discussion

Let us now conclude this thesis by a brief summary and discussion. We
have seen that the development in condensed matter physics during the
past decades has brought about many intriguing new phenomena in quan-
tum many-particle systems, in particular in connection to reduced di-
mensionality. These can often be treated with powerful non-perturbative
field-theory methods. In the introductory chapters we discussed the fol-
lowing topics:

• The Luttinger liquid paradigm for interacting one-dimensional sys-
tems.

• The conformal-field theory approach to one-dimensional critical
phenomena, in particular the Kondo effect and scaling of entan-
glement entropy.

• Topological order in two-dimensional systems.

• The exact Bethe Ansatz solution for the one-dimensional Bose gas.

We then wished to answer some open questions regarding these prob-
lems. The results of these studies were published in Papers I-VI. In
summary, these studies concerned

1. Reduced fidelity and topological quantum phase transitions

Question Even though there is no local order parameter for a topo-
logical quantum phase transition, is it still possible to capture it
by a local fidelity measure?

119
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Result By studying some exactly solvable 2d lattice models, we found
that it actually is possible to use local fidelity measures to capture
topological quantum phase transitions.

2. Scaling corrections in impurity entanglement entropy

Question Is it possible to obtain exact asymptotic expressions for the
scaling corrections of the entanglement entropy from the bound-
ary of a critical one-dimensional systems, and what can this tell
us about the elusive Kondo cloud?

Result We obtained exact asymptotic expressions for the scaling cor-
rections coming from perturbing boundary operators of a one-
dimensional system using boundary conformal field theory. Such
corrections give information about the shape of the Kondo screen-
ing cloud, and we found that the critical exponent for the spatial
decay of the ground-state entanglement entropy is the same as
the exponent for the impurity specific heat.

3. Effects from spin-orbit interactions on the Kondo effect in
helical Luttinger liquids

Question How do spin-orbit interactions influence the Kondo effect
in the helical Luttinger liquid appearing on the edge of a two-
dimensional topological insulator?

Result We found that Rashba and Dresselhaus spin-orbit interac-
tions indeed have an effect, although generally small, on the
transport properties of a helical edge liquid with a Kondo im-
purity. However, in some special parameter regimes the effect
appears to be quite dramatic since there the low-energy behavior
may be different from that of a Kondo singlet. Tuning the sys-
tem in and out of this region with the electric field could perhaps
offer a promising mechanism to control edge transport.

4. Correlations in generalized Gibbs ensemble of a one-dimensional
Bose gas

Question What will be the effect on correlations in a one-dimensional
Bose gas when including all conservation laws?

Result Our Bethe Ansatz results for the generalized Lieb-Liniger
model, describing the generalized Gibbs ensemble of an inter-
acting one-dimensional Bose gas, show that it is possible to ob-
tain similar types of correlation effects as for the one-dimensional
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Hubbard model and spin chains with competing interactions.
This includes the possibility of several different Fermi points.
Hence with additional conservation law in the Hamiltonian there
might be several different velocities appearing in the correlation
functions.

Outlook

Let us end with a brief discussion of current trends and future directions
associated with the topics of this thesis.

Strongly correlated quantum many-particle systems are intrinsically
hard to understand, and continue to spur much development in theoret-
ical physics. Indeed, high-temperature superconductivity still lacks an
explanation [32,267,268], 27 years after its discovery [269], and the quest
to solve the problem will certainly continue to drive much of the field.

General theories for correlated topological phases of matter with in-
teracting electrons are still missing [209,270]. New types of such systems,
like ”topological Mott insulators” [271, 272], ”fractional topological insu-
lators” [273] and ”topological Kondo insulators” [274] attract much atten-
tion, and the general relation to the entanglement structure [137,275] is
intriguing. Prospects of creating topological states in cold-atom systems
stimulates much research [276].

The Kondo cloud [95] still evades detection. An interesting issue re-
garding entanglement in quantum impurity problems is the measure of
”negativity”. This measure allows for the entanglement between two dis-
joint parts of a system to be calculated. New CFT methods [277] could
here give exact results for this measure of entanglement between an im-
purity and the surrounding electrons [278], allowing for more information
about the distribution of entanglement than that given by the entropy. A
full understanding of the entanglement generated by Kondo clouds holds
promise for future applications in quantum information science [92,93].

Quantum many-particle systems out of equilibrium continues to be
an intense area of research, with questions regarding the foundations of
quantum statistical mechanics still open [222]. Particularly interesting
cases are the extensions of Bethe Ansatz [279], Luttinger liquid [280,281]
and CFT [282] techniques to non-equilibrium situations. New approaches
to study non-equilibrium quench dynamics in integrable systems based
on the Bethe Ansatz are being developed [283, 284] and may shed new
light on quantum equilibration phenomena and the generalized Gibbs
ensemble.

Quantum impurities on edges of topological insulators present chal-
lenging issues, in particular in three dimensions [285, 286] where it also
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has relevance for graphene [287]. For quantum spin Hall insulators the
effect from spin-orbit coupling on a Kondo lattice on the edge [113] re-
mains to be investigated. The relevance of Kondo physics to current
attempts [288] to detect Majorana particles in semiconductor wires cou-
pled to a superconductor [200] is still open. Such Majorana bound states
in spin-orbit coupled quantum wires [289], which mimic the helical liq-
uid, could also present an interesting system to study Kondo physics in.
Detection of non-Abelian particles in standard solid-state systems would
present a major advancement towards the dream of performing topologi-
cal quantum computation [174], with the ultimate goal of revolutionizing
information technology [290].

Emergent phenomena in strongly correlated quantum many-particle
systems represents a rapidly evolving field of research. Potential techno-
logical applications, like room-temperature superconductivity and quan-
tum computers, and fundamental theoretical challenges give such systems
a prominent place in science. Due to the intrinsic complexity of the prob-
lem, unexpected new phenomena will most certainly continue to appear.



A
Scaling corrections in von

Neumann entropy from
irrelevant boundary operators

Let us here show how to obtain the finite-temperature scaling corrections
to the critical Rényi entropies (4.9) of a semi-infinite one-dimensional sys-
tem which are generated by irrelevant boundary operators, results that
were presented in Paper III. We follow the same procedure as Cardy and
Calabrese in Ref. [291], however when perturbing with a boundary op-
erator the surface integral of the perturbing field in the action will be
replaced by a line integral on the boundary. As we shall see, this will
prevent the appearance of unusual n-dependent corrections. In fact, this
is anticipated since n-dependent exponents only arise from the region
at the branch point, which is located away from the boundary. Never-
theless, there still are results for the boundary case that do not follow
from standard finite-size scaling. We will also extend the analysis to fi-
nite temperature. This will reveal an interesting connection to previous
results for the thermodynamic boundary entropy and specific heat.

Thus, consider a BCFT on the upper half y ≥ 0 of the complex plane
z = τ+iy. At finite inverse temperature β = 1/(kBT ) the imaginary-time
coordinate τ becomes periodic with −β/2 ≤ τ ≤ β/2, and the complex
plane is turned into a cylinder. The BCFT is therefore defined on a semi-
infinite strip in the complex plane, and on the boundary at y = 0 the
boundary coordinate is −β/2 ≤ τ ≤ β/2, see Fig. A.1. The n-sheeted
Riemann surface Rn is then obtained by sewing together n copies of this
cylinder along 0 ≤ y < r at τ = 0. To evaluate the correlation functions
on Rn for a chiral operator φ(z) with scaling dimension xb, we need to
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use the transformation property

〈φ(z1) · · ·φ(zN)〉Rn =
N∏

j=1

∣∣∣∣
∂z

∂w

∣∣∣∣
−xb

w=wj

〈φ(w1) · · ·φ(wN)〉C+ , (A.1)

where the map z 7→ w from Rn to the finite-temperature strip in the
upper half-plane C+ is given by

w = −β
π

arcsin


iπ
β

(
sin πz

β
−i sinh πr

β

sin πz
β

+i sinh πr
β

)1/n

+ 1

(
sin πz

β
−i sinh πr

β

sin πz
β

+i sinh πr
β

)1/n

− 1


 , (A.2)

see Fig. A.1. The inverse transformation is then given by

z = −β
π

arcsin


i sinh

(
πr

β

)
(

β
π

sin πw
β
−i

β
π
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β

+i

)n
+ 1

(
β
π
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β
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β
π
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+i

)n
− 1


 . (A.3)

This gives (using the Mathematica software)

∂z

∂w
= −4n

β

π
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(
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β

)
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(
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(A.4)

Naturally, the mapping (A.2) takes the boundary of Rn to the boundary
of C+. Since w is real on the boundary we see from (A.4) that |∂z/∂w|−xb
is analytic on the boundary, as the only singularity is at

β

π
sin

πw

β
= i , (A.5)

i.e. when z is at the branch point z = ir. In particular, note that the
point |z| → ∞ gives a divergence in |∂z/∂w| which only means that
|∂z/∂w|−xb → 0.
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Figure A.1: The series of conformal transformations that map the Rie-
mann surface Rn, here represented as the upper complex half-plane with
a branch cut (dashed line), to the ordinary upper complex half-plane C+

without the branch cut. The series of transformations z 7→ z′ 7→ w′ 7→ w
make up the conformal transformation z 7→ w in Eq. (A.2).

Now we can use this to study the scaling corrections of S
(n)
A ∝ (FRn−

nF ) when adding a boundary perturbation,

S = SCFT + λ

∫
dτ φb(τ) , (A.6)

where φb is an irrelevant operator with scaling dimension xb > 1 on the
boundary y = 0.

We will assume the boundary conditions to be such that 〈φb(τ)〉 =
0. This is natural if we demand conformal boundary conditions. Then
the first-order correction vanishes. An important exception is when the
perturbing boundary operator is the stress-energy tensor, a case that
was treated in Refs. [157, 158]. Since this operator has a non-vanishing
expectation value on Rn it will give rise to a first-order correction to
S

(n)
A , which was found to have the form ∼ β−1 coth(r/β). We therefore

consider the second-order corrections to FRn and F , denoted δ2FRn and
δ2F respectively. They are given by

δ2FRn = −λ
2

2

∫
dτ ′1

∫
dτ ′2 〈φb(τ ′1)φb(τ

′
2)〉Rn (A.7)
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and

δ2F = −λ
2

2

∫
dτ1

∫
dτ2 〈φb(τ1)φb(τ2)〉C+ , (A.8)

respectively, where τ ′1, τ ′2 are boundary coordinates onRn and τ1 = w(τ ′1),
τ2 = w(τ ′2) are boundary coordinates on C+. From Eq. (A.1), we get

δ2FRn = −λ
2

2
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∫
dτ ′2
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2
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sin(π
β
(τ1 − τ2)|2xb

. (A.9)

In order to compare the two integrals in δ2FRn−nδ2F it is convenient
to rewrite nδ2F on the same form as δ2FRn ,

nδ2F = −λ
2

2
n

∫ β/2

−β/2
dτ1

∫ β/2

−β/2
dτ2

1

|β
π

sin(π
β
(τ1 − τ2))|2xb

= −λ2n

∫ β/2
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∫ β

0

dτ
1

|β
π

sin(π
β
τ)|2xb

, (A.10)

where we defined τ ≡ τ1 − τ2. Now, with the change of variable u =
tan(πτ/β), which means that

τ =
β

π
arctanu , (A.11)

dτ =
β

π

1

1 + u2
du , (A.12)

sin
πτ

β
=

u√
1 + u2

, (A.13)

the integral becomes

nδ2F = −λ
2

2

(
β

π

)1−2xb

n

∫ β/2

−β/2
dτ1

∫ ∞

0

du
(1 + u2)xb−1

u2xb
. (A.14)

The integral diverges when u → 0, and we must introduce a cutoff. In
the original boundary coordinate this cutoff reads |τ1− τ2| > τ0, which in
the new variable becomes u > tan(πτ0/β). In the low-temperature limit,
which is what we are interested in, this means that u > πτ0/β. Now,
using that

n

∫ β/2

−β/2
dτ1 =

∫
dτ ′1 =

∫ β/2

−β/2
dτ1

∣∣∣∣
∂z

∂w

∣∣∣∣
w=τ1

, (A.15)
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together with the change of variable

u 7→ u

∣∣∣∣
∂z

∂w

∣∣∣∣
w=τ1

, (A.16)

we can rewrite Eq. (A.14) as

nδ2F = −λ
2
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where the cutoff is given by

u = tan(
π

β
|τ1 − τ2|) >

tan(π
β
τ0)∣∣ ∂z

∂w

∣∣
w=τ1

. (A.18)

As τ0 → 0, we have

tan(
π

β
|τ1 − τ2|)→

π

β
|τ1 − τ2| (A.19)

and the cutoff can be written as

|τ1 − τ2|
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which is the same as

|τ ′1 − τ ′2| ≥ τ0 . (A.21)

We are therefore now able to write δ2FRn − nδ2F , i.e. Eqs. (A.7) and
(A.8), as one single integral,

δ2FRn − nδ2F = −λ
2

2
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(A.22)

with the cutoff given by Eq. (A.20). Using the symmetry of the integral
under exchange of τ1 and τ2, we can put Eq. (A.22) on the symmetric
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form

δ2S
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A ∼ δ2FRn − nδ2F
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(A.23)

It follows from Eq. (A.4) that |dz/dw|1−xb is analytic everywhere ex-
cept at z = ir. In Ref. [291], where the integrals are surface integrals over
C+, this singularity at the branch point was an important ingredient in
the analysis. But when we now consider a perturbing operator on the
boundary, the only divergence in the integrand in (A.23) comes when
sin(π

β
(τ1 − τ2) = 0, i.e. when u = tan(πτ/β) = 0. Since we re interested

in the divergent behavior, we expand
∣∣ ∂z
∂w

∣∣1−xb ≡ f(w) around w = τ2,
which gives
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and expanding the integrand around the divergence at u = 0 we get

δ2S
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where a, b, c, ... are used to denote constants. From this it follows that the
leading divergence of δ2S

(n)
A goes as τ 3−2xb

0 , i.e. the integral (A.23) con-
verges when xb < 3/2. Therefore the regularization u > πτ0/(β
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)

is only needed when xb ≥ 3/2, and then
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when xb > 3/2, with the divergence instead being logarithmic when
xb = 3/2.

From Eq. (A.4) we see that we can write dz/dw as

∂z

∂w
=

β
π

sinh
(
πr
β

)
√

1 +
(
h(β, w) sinh

(
πr
β

))2
g(β, w) , (A.27)

introducing the functions g(β, w) and h(β, w) which are β-independent in
the low-temperature limit β →∞. From this we can analytically extract
the scaling of δ2S

(n)
A in the limits r/β → 0 and r/β →∞.

First, in the zero-temperature quantum mechanical limit r/β → 0,
we see from Eq. (A.27) that

∂z

∂w
∝ r +O((r/β)3), (A.28)

as β →∞. As we do not need to introduce the cutoff in Eq. (A.23) when
xb < 3/2, the only r-dependence comes from dz/dw ∝ r. Note that since
the action (A.6) is dimensionless, we can write λ ∼ τxb−1

0 . Thus when

xb < 3/2 it follows that δ2S
(n)
A ∼ (r/τ0)2−2xb up to terms O((r/β)3) and

O(β−1). On the other hand, when xb > 3/2 it follows from Eq. (A.26)
that

δ2S
(n)
A ∼ λ2τ 3−2xb

0 r2−2xbr2xb−3 ∼ (r/τ0)−1. (A.29)

Note that this is of the same form as the first-order correction from the
stress-energy tensor. When xb = 3/2, Eq. (A.26) implies that the integral
diverges logarithmically, and then

δ2S
(n)
A ∼ λ2r2−2xb log(τ0/r) ∼ (τ0/r) log(r/τ0). (A.30)

Summarizing, in the limit when r/β → 0 and β → ∞ the leading
corrections to the Rényi entropies are

δ2S
(n)
A ∼





r2−2xb when 1 < xb < 3/2
r−1 log r when xb = 3/2
r−1 when xb > 3/2 ,

(A.31)

up to terms O((r/β)3) and O(β−1).
It is also possible to extract the behavior in the other limit, when

r/β → ∞, but still at low temperature. We then see from Eq. (A.27)
that

∂z

∂w
∝ β +O(e−2πr/β), (A.32)
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up to termsO(β−1). Once again, when xb < 3/2 the only r-dependence in
Eq. (A.23) comes from dz/dw which now is proportional to β. Therefore

we now get that δ2S
(n)
A ∼ (β/τ0)2−2xb when xb < 3/2. From Eq. (A.26)

it now follows that δ2S
(n)
A ∼ (β/τ0)−1 when xb > 3/2, and δ2S

(n)
A ∼

(τ0/β) log(β/τ0). Note that we still consider the low-temperature limit
β →∞, but with r � β.

In summary, considering the limit r/β →∞ and β →∞ the leading
corrections to the Rényi entropies are

δ2S
(n)
A ∼





β2−2xb when1 < xb < 3/2
β−1 log β when xb = 3/2
β−1 when xb > 3/2 ,

(A.33)

to O(β−1) in β and O(e−2πr/β) in r/β.

The von Neumann entropy SA follows from the Rényi entropy S
(n)
A

simply by letting n→ 1.
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[106] P. Fröjdh and H. Johannesson, Kondo effect in a Luttinger liquid:
Exact results from conformal field theory, Phys. Rev. Lett. 75,
300 (1995).

[107] A. Schiller and K. Ingersent, Exact results for the Kondo effect in
a Luttinger liquid, Phys. Rev. B 51, 4676 (1995).

[108] P. Phillips and N. Sandler, Enhanced local moment formation in a
chiral Luttinger liquid, Phys. Rev. B 53, R468 (1996).

[109] M. König, S. Wiedmann, C. Brüne, A. Roth, H. Buhmann, L. W.
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Entanglement and boundary critical phenomena, Phys. Rev. A 74,
050305(R) (2006).

[133] E. Fradkin and J. E. Moore, Entanglement entropy of 2d
conformal quantum critical points: Hearing the shape of a
quantum drum, Phys. Rev. Lett. 97, 050404 (2006).

[134] K. Le Hur, P. Doucet-Beaupré and W. Hofstetter, Entanglement
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