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SE–412 96 Göteborg, Sweden
Phone: +46 (0)70-4304444

Email: lwwm192@gmail.com
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Abstract
In this thesis, I will present effective methods to study quantum dynamics using trajec-

tories. Our methods are based on a method named the Classical Wigner model which starts
with a quantum initial condition and generates trajectories which are propagated in time using a
classical force. However, the Classical Wigner model can not describe the dynamical quantum
effects, such as interference and dynamical tunneling, which are prominent in both gas-phase
reactions and condensed matter systems. Another method under the name of ’Entangled tra-
jectory molecular dynamics’ (ETMD) describes the trajectories as dynamically entangled with
each other and thus captures the essential quantum effects. However, the trajectories are no
longer independent of each other and the expression of the force may encounter numerical
problems for general applications. Thus it is challenging how one can improve the ETMD and
CW to achieve independent trajectories with dynamical quantum effects, especially the tunnel-
ing effects. In this thesis, I am going to unveil two such approaches.

First, we find a new parameter which can be used to symbolize the dynamical quantum
effects in the CW model. An effective force is constructed from this parameter to substitute for
the classical force. The new method is named Classical Wigner model with an effective quan-
tum force (CWEQF) and tunneling effects are captured. Then we also construct an effective
force to present the entanglements in the ETMD method. The tunneling effects are explained
for a quasi-bound potential. Then we implement the CWEQF on the collinear H + H2 reac-
tion to obtain the rate constant which achieves consistently improved results as compared to
the ordinary CW model. We also carried out two-dimensional reaction probability applications
compared with ETMD. Although there is still room left for us to improve these methods, our
methods are able to contain quantum effects in molecular dynamics and to be applied to higher
dimensional applications.
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Chapter 1
Introduction

1.1 Classical or Quantum?
If one is planning to simulate the dynamics of a system containing thousands of dynamical-
ly coupled degrees of freedom, classical dynamics will be the only option at present. Certain
momenta and positions will be assigned to different atoms and trajectories from them will be
governed by Newtonian forces. The advantage of classical dynamics is binary: first, classical
dynamics is intuitive and straight-forward to visualize and think about, then it is also not de-
manding in terms of the numerical cost since the trajectories can be run independently of each
other under the classical force. Due to the simplicity and numerical efficiency, classical molec-
ular dynamics (MD) simulations play a leading role in complex molecular systems [1–3].

However, the limitations of classical MD can not be ignored. Neglecting quantum me-
chanical effects such as zero-point energy (ZPE) and tunneling effects, etc, may render a worse
performance. For example, tunneling through the reaction barrier could enhance the rate of
reaction at room temperature by several orders of magnitude (paper I). In such cases, quantum
effects should definitely be treated. Quantum dynamics describes the evolution of the physical
system in a way that is not only qualitatively but also quantitatively accurate [4, 5]. However,
exact solutions of the time-dependent Schrödinger equation are in practice limited to only a few
degrees of freedom [6, 7]. As Dirac pointed out: The underlying physical laws necessary for the
mathematical theory of a large part of physics and the whole of chemistry are thus completely
known, and the difficulty is only that the application of these laws leads to equations much too
complicated to be soluble [8].

1.2 Semi-classical!
In view of the limitations and difficulties of classical and quantum mechanics respectively,

the developments of methods that are based on classical trajectories but incorporate quantum
effects is an important subject. Semiclassical methods is of particular interest in this respect
[9, 10]. According to Thoss and Wang [11] : ’ ...semiclassical theories in the time domain is to
find an approximate description of the quantum propagator eiHt/h̄ in terms of classical trajec-
tories, which is valid in the asymptotic limit h̄ → 0’. There are different semi-classical methods
such as semi-classical initial value representation (SC-IVR) [12, 13]; forward-backward initial
value representations (FB-IVR) [14]; centroid molecular dynamics (CMD) [15], ring polymer
molecular dynamics (RPMD), [16], etc (we refer the readers to the references corresponding
to these methods). All of these semi-classical methods are able to simulate multi-dimensional
quantum systems. RPMD and CMD are easy to apply to large systems and have been applied

1
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to realistic models of low temperature quantum liquids, while the SC-IVR has to date only been
applied to multi-dimensional model systems. They all include some kind of quantum correction
to the dynamics of the system. Maybe the most rigorous of them is the SC-IVR method which is
the only one being able to account for interference effects (quantum mechanical superposition).

Sometimes, ’semi-classical’ methods reduce to ’quasi-classical’ methods where classi-
cal trajectories are run using quantum initial conditions. An example is the linearized semi-
classical initial value representation (LSC-IVR) [17] which is also named the Classical Wigner
(CW) model [18, 19]. The CW method, which we shall improve in this thesis, starts with quan-
tum initial conditions given by a so-called Wigner function (section 2.3) and run trajectories
independent of each other under a classical force (section 2.6). It therefore corresponds to a
quasi-classical method. Applications of the CW to condensed phase problems are quite suc-
cessful [18, 20–23]. However, the CW model utilizes independent trajectories and thus is not
able to describe the dynamical tunneling effects[22].

Our methods presented here are both related to the improvements of the Classical Wigner
model by a quantum correction to the classical force (a quantum force). Compared with the
CW model, the quantum force is h̄-dependent (including higher order contributions). Also the
classical and quantum forces become identical in the classical limit (h̄ → 0). Therefore, we
refer to our methods as semi-classical.

In chapter 3, the quantum force is applied to the Wigner function of the thermal flux op-
erator (section 2.2) to study its dynamics in a canonical system (NVT). Then (in chapter 4) the
quantum force is constructed from the Wigner function of the density operator (section 2.2) in
a micro-canonical system (NVE). For each of the systems (NVT and NVE), the quantum forces
are generalized to higher dimensional applications. The tunneling effects are well described
via the quantum force. Also the numerical cost is equivalent to the CW model in the canonical
system. For the density operator in the micro-canonical system, the quantum force is updated
in time to describe the long time tunneling effects.

2

Chapter 2
Theoretical Background

In this chapter, I will go through some important background knowledge to pave the way for
our methods. I will start with the position (momentum) representation and the quantum oper-
ators that are involved in our calculations. Then I will introduce the Wigner function and the
Feynman Path Integrals. At last, I will present the rate constant and how to use the Classical
Wigner model to obtain it.

2.1 Position and Momentum Eigenstates
In quantum mechanics, the position and momentum of a particle are represented by the her-
mitian operators, x̂, p̂ respectively. A state vector |Ψ > is the quantum representation of the
particle, the wave function in different representations is the combination of the state vector
with either the eigenstate of position |x > or with the eigenstate of momentum |p >. The eigen-
states (one dimensional motion is used for simplicity) of position and momentum are defined
as:

x̂|x >= x|x >

p̂|p >= p|p > (2.1)

Since the operators are hermitian, the eigenvalues of x and p are real. Two position eigenstates
obey the orthogonality property

< x′|x >= δ(x′ − x) (2.2)

However, they are not normalized, the same property holds for the momentum eigenstates. The
position and momentum states representations are not welcomed in Hilbert space since they are
not square integrable functions. However, we can still use these states to form a complete set of
states to expand an arbitrary quantum state |Ψ > into position (or momentum) eigenstates. By
using the completeness relation:

∫ ∞

−∞
dx|x >< x| = 1 (2.3)

we obtain the representation of a state vector |Ψ > in the position representation:

|Ψ >=
∫ ∞

−∞
dx|x >< x|Ψ >=

∫ ∞

−∞
dxΨ(x)|x > (2.4)

3
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where we have used the definition of the wave function Ψ(x) =< x|Ψ >. We can also repeat
the same procedure on the momentum representation to obtain:

|Ψ >=
∫ ∞

−∞
dpΨ(p)|p > (2.5)

where Ψ(p) =< p|Ψ >. The transformation between the position and momentum wave func-
tions is important for the following chapters. So I will briefly show the mechanism here: From
eq. (2.5), we multiply with < x| on both sides of it, then

Ψ(x) =< x|Ψ >=
∫ ∞

−∞
dpΨ(p) < x|p > (2.6)

The scalar product of < x|p > is the quantity I will consider. We have that

< x|p̂|p >= −ih̄
d

dx
p(x)

(2.7)

and

< x|p̂|p >= p < x|p >= p · p(x).
(2.8)

Now we equalize the rhs of eq. (2.7) and eq. (2.8),

p < x|p >= p · p(x) = −ih̄
d

dx
p(x) (2.9)

From eq. (2.9), we have

dp(x)

dx
=

i

h̄
p · p(x) (2.10)

So the solution to p(x) will be p(x) =< x|p >= Neipx/h̄. The normalization factor N can be
derived from eq. (2.2) by inserting the completeness relation of the momentum states:

δ(x− x′) =
∫ ∞

−∞
dp < x|p >< p|x′ >=

∫ ∞

−∞
dpp(x)p(x′)

= |N |2
∫ ∞

−∞
dpe−i(x−x′)p/h̄. (2.11)

The definition of a delta function via the Fourier transform is

δ(x− x′) =
1

2πh̄

∫ ∞

−∞
dpei(x−x′)p/h̄ (2.12)

So N =
√

1
2πh̄ . Then we have

< x|p >=

√
1

2πh̄
exp (

i

h̄
xp). (2.13)

and the relation

Ψ(x) =

√
1

2πh̄

∫ ∞

−∞
dpΨ(p) exp (

i

h̄
xp). (2.14)

In this section, we briefly introduced the position and momentum representations, which are
basic for Wigner function (section 2.3) and Feynman Path Integral (section 2.4).

4

2.2 Density operator and thermal flux operator
In the previous section, I have briefly introduced the state vector |Ψ > which contains all the
information about a quantum system. However, generally speaking it is not possible to describe
the system by single state vectors because we may not know every detail of the system (the
number of degrees of freedom may be too large) especially when the quantum system is coupled
to a reservoir so that the motion of the constituents may be hard to follow. Thus another way
to describe the quantum system is needed. From Born [24], the probability W (x)dx to find
the particle between x and x + dx can be interpreted via the wave function Ψ(x). As a start,
we can express the state vector as a superposition of different eigenstates (|m >) of different
eigenenergies (m specifies the different states):

|Ψ >=
∞∑

m=0

λm|m > (2.15)

λm is a complex valued expansion coefficient. We then look for the probability of finding a
particle at position x.

Ψ(x) =< x|Ψ >=
∞∑

m=0

λm < x|m >=
∞∑

m=0

λmum(x) (2.16)

By using the Born interpretation, the probability of finding a particle at position x is:

W (x) = |Ψ(x)|2 =
∞∑

m,n=0

λ∗
mλnu

∗
mun

=
∞∑

m

|λm|2|um(x)|2 +
∞∑

m #=n

λ∗
mλnu

∗
m(x)un(x)

=
∞∑

m

Pm|um(x)|2 +
∞∑

m #=n

λ∗
mλnu

∗
m(x)un(x) (2.17)

So the probability is not simply the sum of probabilities of each state but also the sum of the
cross terms between different energy states. Thus it may be handy to write the probability as

W (x) = |Ψ(x)|2 = | < x|Ψ > |2 =< x|Ψ >< Ψ|x >=< x|ρ̂|x >, (2.18)

where we define the density operator ρ = |Ψ >< Ψ|. The density operator thus contains all the
information of the quantum system. I will use this operator and its related Wigner function in
the micro-canonical application.

The density operator presents the probability of the quantum system. In chemical reactions,
the density of the particle is utilized to present the reaction probability. However, one may use
another operator to present how fast does the reaction happen, thus the flux operator is adopted
under such consideration. For canonical systems, the operator we use in this thesis is the thermal
flux operator

F̂ (β) = exp (−β

2
Ĥ)F̂ exp (−β

2
Ĥ), (2.19)

where

F̂ =
i

h̄
[Ĥ, ĥ] (2.20)

5
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Ψ(x) =< x|Ψ >=
∫ ∞

−∞
dpΨ(p) < x|p > (2.6)

The scalar product of < x|p > is the quantity I will consider. We have that

< x|p̂|p >= −ih̄
d

dx
p(x)

(2.7)

and

< x|p̂|p >= p < x|p >= p · p(x).
(2.8)

Now we equalize the rhs of eq. (2.7) and eq. (2.8),

p < x|p >= p · p(x) = −ih̄
d

dx
p(x) (2.9)

From eq. (2.9), we have

dp(x)

dx
=

i

h̄
p · p(x) (2.10)

So the solution to p(x) will be p(x) =< x|p >= Neipx/h̄. The normalization factor N can be
derived from eq. (2.2) by inserting the completeness relation of the momentum states:

δ(x− x′) =
∫ ∞

−∞
dp < x|p >< p|x′ >=

∫ ∞

−∞
dpp(x)p(x′)

= |N |2
∫ ∞

−∞
dpe−i(x−x′)p/h̄. (2.11)

The definition of a delta function via the Fourier transform is

δ(x− x′) =
1

2πh̄

∫ ∞

−∞
dpei(x−x′)p/h̄ (2.12)

So N =
√

1
2πh̄ . Then we have

< x|p >=

√
1

2πh̄
exp (

i

h̄
xp). (2.13)

and the relation

Ψ(x) =

√
1

2πh̄

∫ ∞

−∞
dpΨ(p) exp (

i

h̄
xp). (2.14)

In this section, we briefly introduced the position and momentum representations, which are
basic for Wigner function (section 2.3) and Feynman Path Integral (section 2.4).

4

2.2 Density operator and thermal flux operator
In the previous section, I have briefly introduced the state vector |Ψ > which contains all the
information about a quantum system. However, generally speaking it is not possible to describe
the system by single state vectors because we may not know every detail of the system (the
number of degrees of freedom may be too large) especially when the quantum system is coupled
to a reservoir so that the motion of the constituents may be hard to follow. Thus another way
to describe the quantum system is needed. From Born [24], the probability W (x)dx to find
the particle between x and x + dx can be interpreted via the wave function Ψ(x). As a start,
we can express the state vector as a superposition of different eigenstates (|m >) of different
eigenenergies (m specifies the different states):

|Ψ >=
∞∑

m=0

λm|m > (2.15)

λm is a complex valued expansion coefficient. We then look for the probability of finding a
particle at position x.

Ψ(x) =< x|Ψ >=
∞∑

m=0

λm < x|m >=
∞∑

m=0

λmum(x) (2.16)

By using the Born interpretation, the probability of finding a particle at position x is:

W (x) = |Ψ(x)|2 =
∞∑

m,n=0

λ∗
mλnu

∗
mun

=
∞∑

m

|λm|2|um(x)|2 +
∞∑

m #=n

λ∗
mλnu

∗
m(x)un(x)

=
∞∑

m

Pm|um(x)|2 +
∞∑

m #=n

λ∗
mλnu

∗
m(x)un(x) (2.17)

So the probability is not simply the sum of probabilities of each state but also the sum of the
cross terms between different energy states. Thus it may be handy to write the probability as

W (x) = |Ψ(x)|2 = | < x|Ψ > |2 =< x|Ψ >< Ψ|x >=< x|ρ̂|x >, (2.18)

where we define the density operator ρ = |Ψ >< Ψ|. The density operator thus contains all the
information of the quantum system. I will use this operator and its related Wigner function in
the micro-canonical application.

The density operator presents the probability of the quantum system. In chemical reactions,
the density of the particle is utilized to present the reaction probability. However, one may use
another operator to present how fast does the reaction happen, thus the flux operator is adopted
under such consideration. For canonical systems, the operator we use in this thesis is the thermal
flux operator

F̂ (β) = exp (−β

2
Ĥ)F̂ exp (−β

2
Ĥ), (2.19)

where

F̂ =
i

h̄
[Ĥ, ĥ] (2.20)
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and ĥ is the heaviside operator and Ĥ presents the Hamiltonian of the system. In position
representation, the flux operator can be written as

F̂ (s) = − ih̄

2m

[

δ(x− s)
d

dx
+

d

dx
δ(x− s)

]

. (2.21)

Here s denotes the position where the flux is specified. For an arbitrary wave function Ψ(x, t),
the flux through position s is

j(s, t) =< Ψ|F̂ (s)|Ψ > (2.22)

thus

j(s, t) = − ih̄

2m

[

Ψ(s, t)∗
∂Ψ(s, t)

∂s
− ∂Ψ(s, t)∗

∂s
Ψ(s, t)

]

. (2.23)

2.3 The Wigner function
In classical mechanics, the state of a particle is described by its position and momentum.

However, in quantum mechanics, the particle state is substituted by wave functions, thus can
not be interpreted locally [24]. Generally speaking, there is no local representation to describe
a particle in quantum mechanics, the wave function has a spread in both the position and mo-
mentum coordinates.

The Wigner function [25] serves as a bridge between quantum (wave-functions) and clas-
sical (local in position and momentum) mechanics. It relates operators to a distribution function
in phase space (position and momentum space). For an arbitrary operator Â, the Wigner func-
tion is expressed as

AW (x, p) =
∫ ∞

−∞
< x− η/2|Â|x+ η/2 > eipη/h̄dη. (2.24)

Take the density operator for example, Â = ρ̂ = |Ψ >< Ψ|, the Wigner function of ρ̂ can
be treated as a quasi-probability function. It is not an ordinary probability because the Wigner
function can be negative. The negative value of the Wigner function reflects the non-classical
property of the system.

The Wigner function W (x, p) = ρW (x, p) of the density operator has certain properties:
(1) It is real in phase space. This follows since the density operator is Hermitian.
(2) The x and p probability distributions are given by

P (x) =
1

2πh̄

∫
dpW (x, p),

P (p) =
1

2πh̄

∫
dxW (x, p). (2.25)

(3) For an operator Ω̂, the average value can be calculated as:

Ω =
1

2πh̄

∫ ∫
dxdpW (x, p)ΩW (x, p). (2.26)

Take the free translation of the ground state wave function of the harmonic oscillator (with
frequency ω and mass m) for example [26],

Ψ(x) = (
mω

πh̄
)
1
4 exp(ip0x) exp(−

mω

2h̄
(x− x0)

2) (2.27)
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where the x0 and p0 correspond to the initial center of position and momentum. The initial
Wigner function is thus

ρW (x, p, 0) =
1

πh̄
exp

(

−(x− x0)2

2σ2
x

− (p− p0)2

2σ2
p

)

, (2.28)

where σx =
√
h̄/(2mω) and σp =

√
h̄mω/2 specify the widths of the distribution along x and

p. The widths of a Gaussian obey the minimum uncertainty principle: σxσp = 0.5h̄ [24]. The
matrix elements of the density operator are also derived from eq. (2.27)

< x|ρ̂|x′ >=< x|Ψ >< Ψ|x′ >= Ψ∗(x)Ψ(x′)

= (
mω

πh̄
)
1
2 exp(ip0(x

′ − x)) exp[−mω

2h̄
((x− q0)

2 + (x′ − q0)
2)]. (2.29)

By transforming to the mean and difference coordinates, q = 0.5(x+x′), η = x′−x, eq. (2.29)
becomes

< x|ρ̂|x′ >== (
mω

πh̄
)
1
2 exp(ip0η) exp[

(q − q0)2

2 h̄
2mω

+
η2

2 2h̄
mω

]

= (
mω

πh̄
)
1
2 exp(ip0η) exp[

(q − q0)2

2σ2
q

+
η2

2σ2
η

]. (2.30)

The width of the Gaussian along the η coordinate (off-diagonal coordinate of the density matrix)
is denoted as ση =

√
2h̄
mω . The relation between ση, σq and the width σx from the Wigner

function of the Gaussian wave function is then: ση = 2σq = 2σx. We will refer to this relation
in chapter 4.

2.4 Feynman Path Integral
Quantum dynamics carries the task to obtain the wave function (distribution function) for

different times. In physics, such kind of problems will be solved via tools such as the Green
Function. Propagators are such kind of Green Function which relates the wave function be-
tween different positions and times. Feynman replaces the classical notion of a single, unique
trajectory with a sum of all possible trajectories to compute the quantum propagator [27]. The
Feynman Path Integral (FPI) is parallel to Schrödinger and Heisenberg’s representations [24]
and it brings the ’path’ and ’action’ from the classical picture to the quantum mechanics.

To illustrate how FPI works, I start with the the Schrödinger equation for a time indepen-
dent Hamiltonian Ĥ

ih̄
∂

∂t
|Ψ(t) >= Ĥ|Ψ(t) > . (2.31)

One gets the quantum state at time t′ as

|Ψ(t′) >= exp
[
−iĤ(t′ − t)/h̄

]
|Ψ(t) > . (2.32)

Utilizing the coordinate representation plus the identity I =
∫
dx|x >< x|, one has

< x′|Ψ(t′) >=< x′| exp
[
−iĤ(t′ − t)/h̄

]
|Ψ(t) >

=
∫

dx < x′| exp
[
−iĤ(t′ − t)/h̄

]
|x >< x|Ψ(t) > . (2.33)
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and ĥ is the heaviside operator and Ĥ presents the Hamiltonian of the system. In position
representation, the flux operator can be written as

F̂ (s) = − ih̄

2m

[

δ(x− s)
d

dx
+

d

dx
δ(x− s)

]

. (2.21)

Here s denotes the position where the flux is specified. For an arbitrary wave function Ψ(x, t),
the flux through position s is

j(s, t) =< Ψ|F̂ (s)|Ψ > (2.22)

thus

j(s, t) = − ih̄

2m

[

Ψ(s, t)∗
∂Ψ(s, t)

∂s
− ∂Ψ(s, t)∗

∂s
Ψ(s, t)

]

. (2.23)

2.3 The Wigner function
In classical mechanics, the state of a particle is described by its position and momentum.

However, in quantum mechanics, the particle state is substituted by wave functions, thus can
not be interpreted locally [24]. Generally speaking, there is no local representation to describe
a particle in quantum mechanics, the wave function has a spread in both the position and mo-
mentum coordinates.

The Wigner function [25] serves as a bridge between quantum (wave-functions) and clas-
sical (local in position and momentum) mechanics. It relates operators to a distribution function
in phase space (position and momentum space). For an arbitrary operator Â, the Wigner func-
tion is expressed as

AW (x, p) =
∫ ∞

−∞
< x− η/2|Â|x+ η/2 > eipη/h̄dη. (2.24)

Take the density operator for example, Â = ρ̂ = |Ψ >< Ψ|, the Wigner function of ρ̂ can
be treated as a quasi-probability function. It is not an ordinary probability because the Wigner
function can be negative. The negative value of the Wigner function reflects the non-classical
property of the system.

The Wigner function W (x, p) = ρW (x, p) of the density operator has certain properties:
(1) It is real in phase space. This follows since the density operator is Hermitian.
(2) The x and p probability distributions are given by

P (x) =
1

2πh̄

∫
dpW (x, p),

P (p) =
1

2πh̄

∫
dxW (x, p). (2.25)

(3) For an operator Ω̂, the average value can be calculated as:

Ω =
1

2πh̄

∫ ∫
dxdpW (x, p)ΩW (x, p). (2.26)

Take the free translation of the ground state wave function of the harmonic oscillator (with
frequency ω and mass m) for example [26],

Ψ(x) = (
mω

πh̄
)
1
4 exp(ip0x) exp(−

mω

2h̄
(x− x0)

2) (2.27)
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where the x0 and p0 correspond to the initial center of position and momentum. The initial
Wigner function is thus

ρW (x, p, 0) =
1

πh̄
exp

(

−(x− x0)2

2σ2
x

− (p− p0)2

2σ2
p

)

, (2.28)

where σx =
√
h̄/(2mω) and σp =

√
h̄mω/2 specify the widths of the distribution along x and

p. The widths of a Gaussian obey the minimum uncertainty principle: σxσp = 0.5h̄ [24]. The
matrix elements of the density operator are also derived from eq. (2.27)

< x|ρ̂|x′ >=< x|Ψ >< Ψ|x′ >= Ψ∗(x)Ψ(x′)

= (
mω

πh̄
)
1
2 exp(ip0(x

′ − x)) exp[−mω

2h̄
((x− q0)

2 + (x′ − q0)
2)]. (2.29)

By transforming to the mean and difference coordinates, q = 0.5(x+x′), η = x′−x, eq. (2.29)
becomes

< x|ρ̂|x′ >== (
mω

πh̄
)
1
2 exp(ip0η) exp[

(q − q0)2

2 h̄
2mω

+
η2

2 2h̄
mω

]

= (
mω

πh̄
)
1
2 exp(ip0η) exp[

(q − q0)2

2σ2
q

+
η2

2σ2
η

]. (2.30)

The width of the Gaussian along the η coordinate (off-diagonal coordinate of the density matrix)
is denoted as ση =

√
2h̄
mω . The relation between ση, σq and the width σx from the Wigner

function of the Gaussian wave function is then: ση = 2σq = 2σx. We will refer to this relation
in chapter 4.

2.4 Feynman Path Integral
Quantum dynamics carries the task to obtain the wave function (distribution function) for

different times. In physics, such kind of problems will be solved via tools such as the Green
Function. Propagators are such kind of Green Function which relates the wave function be-
tween different positions and times. Feynman replaces the classical notion of a single, unique
trajectory with a sum of all possible trajectories to compute the quantum propagator [27]. The
Feynman Path Integral (FPI) is parallel to Schrödinger and Heisenberg’s representations [24]
and it brings the ’path’ and ’action’ from the classical picture to the quantum mechanics.

To illustrate how FPI works, I start with the the Schrödinger equation for a time indepen-
dent Hamiltonian Ĥ

ih̄
∂

∂t
|Ψ(t) >= Ĥ|Ψ(t) > . (2.31)

One gets the quantum state at time t′ as

|Ψ(t′) >= exp
[
−iĤ(t′ − t)/h̄

]
|Ψ(t) > . (2.32)

Utilizing the coordinate representation plus the identity I =
∫
dx|x >< x|, one has

< x′|Ψ(t′) >=< x′| exp
[
−iĤ(t′ − t)/h̄

]
|Ψ(t) >

=
∫

dx < x′| exp
[
−iĤ(t′ − t)/h̄

]
|x >< x|Ψ(t) > . (2.33)
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Eq. (2.33) can be rewritten as

Ψ(x′, t′) =
∫

dxK(x′, t′, x, t)Ψ(x, t), (2.34)

where we used [27]

K(x′, t′, x, t) =< x′| exp
[
−iĤ(t′ − t)/h̄

]
|x > . (2.35)

K is named a propagator, which relates the wave function between different times and positions.
The FPI divides the propagation time (t′ − t) into a series of slices ∆t = t′−t

N , N → ∞. For a
short time interval ∆t → 0, from [28] the one-dimensional propagator is expressed as

K(x2, t+∆t, x1, t) =< x2| exp(−
i∆t

2mh̄
p̂2) exp[− i∆t

h̄
V (x)]|x1 >

≈ (
m

2πh̄i∆t
)1/2 exp

[
im(x2 − x1)2

2h̄∆t
− i∆t

2h̄
(V (x2) + V (x1))

]

. (2.36)

For j = 1, N − 1, the identity I is

I =
∫ ∞

−∞
dxj|xj >< xj|. (2.37)

We insert this identity expression into eq. (2.35) and use the short-time propagator from eq.
(2.36),

K(x′, t′, x, t) =
N−1∏

j=1

∫ ∞

−∞
dxj < x′ = xN | exp

[
−iĤ∆t/h̄

]
|xN−1 >

< xN−1| exp
[
−iĤ(∆t)/h̄

]
|xN−2 > ...

< x2| exp
[
−iĤ(∆t)/h̄

]
|x1 >< x1| exp

[
−iĤ(∆t)/h̄

]
|x0 = x >

=
N−1∏

j=1

∫ ∞

−∞
dxj < x′ = xN | exp(−

i∆t

2mh̄
p̂2) exp[− i∆t

h̄
V̂ ]|xN−1 >

< xN−1| exp(−
i∆t

2mh̄
p̂2) exp[− i∆t

h̄
V̂ ]|xN−2 > ...

< x2| exp(−
i∆t

2mh̄
p̂2) exp[− i∆t

h̄
V̂ ]|x1 >

< x1| exp(−
i∆t

2mh̄
p̂2) exp[− i∆t

h̄
V̂ ]|x0 = x > . (2.38)

Each short time propagator can be expressed by eq. (2.36). We have:

K(x′, t′, x, t) = (
m

2πh̄i∆t
)1/2[

N−1∏

j=1

(
m

2πh̄i∆t
)1/2

∫ ∞

−∞
dxj]

exp[
N∑

j=1

im(xj − xj−1)2

2h̄∆t
− i∆t

h̄
V (xj)]. (2.39)

Since ∆t ≈ 0, xj−xj−1

∆t ≈ ẋj , the Lagrangian L(xj, ẋj) is defined as L(xj, ẋj) =
m(xj−xj−1)2

2(∆t)2 −
V (xj) one can rewrite eq. (2.39) as

K(x′, t′, x, t) =
∫

D[x(t)] exp[
i

h̄

∫ t′

t
dtL(x, ẋ)], (2.40)
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where
∫
D[x(t)] = lim

N→∞
(

m

2πh̄i∆t
)1/2[

N−1∏

j=1

(
m

2πh̄i∆t
)1/2

∫ ∞

−∞
dxj]. (2.41)

K(x′, t′, x, t) is the Green function that connects position x at time t to position x′ at time t′. The
propagator is the sum of the contributions of all possible paths. Each path carries its own phase
along with it. The FPI can also be done in phase space (position-momentum space). Inserting
the identity of I =

∫
dpj|pj >< pj|, j = 1, N , where N → ∞, one gets

K(x′, t′, x, t) =
∫

D[p(t)]D[x(t)] exp[
i

h̄

∫ t′

t
dt[L(x, ẋ)− pẋ]], (2.42)

and
∫
D[p(t)]D[x(t)] = lim

N→∞
(

1

2πh̄
)N

∫ ∞

−∞
....

∫ ∞

−∞

N∏

j=1

N−1∏

k=1

dpjdxk. (2.43)

FPI will be used to solve the time propagators that reside in the correlation functions in the next
sections.

2.5 The rate constant
In the previous section, I introduced the Feynman Path Integral to handle the time evolution

operator, which will be contained in the expression of the thermal rate expression that is used
in the following sections. The thermal rate constant in this thesis is expressed as [29]

k(T ) =
1

Qr

∫ ∞

0
dtCff (t), (2.44)

where Qr is the reactant partition function, Cff is the auto-correlation function

Cff (t) = Tr
[
F̂ (β/2) exp (iĤt/h̄)F̂ (β/2) exp (−iĤt/h̄)

]
, (2.45)

with β = 1/kBT . Compared to eq. (2.19), the half-Boltzmannized flux operator is

F̂ (β/2) = exp (−β

4
Ĥ)F̂ exp (−β

4
Ĥ). (2.46)

where the flux operator F̂ is given by eq. (2.20)- eq. (2.21).

2.6 The Classical Wigner model
The rate constant was introduced in the previous section and I am going to calculate it in a

semi-classical way.
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I =
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We insert this identity expression into eq. (2.35) and use the short-time propagator from eq.
(2.36),
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K(x′, t′, x, t) =
∫

D[x(t)] exp[
i

h̄

∫ t′

t
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along with it. The FPI can also be done in phase space (position-momentum space). Inserting
the identity of I =

∫
dpj|pj >< pj|, j = 1, N , where N → ∞, one gets

K(x′, t′, x, t) =
∫

D[p(t)]D[x(t)] exp[
i

h̄

∫ t′

t
dt[L(x, ẋ)− pẋ]], (2.42)

and
∫
D[p(t)]D[x(t)] = lim

N→∞
(

1

2πh̄
)N

∫ ∞

−∞
....

∫ ∞

−∞

N∏

j=1

N−1∏

k=1

dpjdxk. (2.43)

FPI will be used to solve the time propagators that reside in the correlation functions in the next
sections.

2.5 The rate constant
In the previous section, I introduced the Feynman Path Integral to handle the time evolution

operator, which will be contained in the expression of the thermal rate expression that is used
in the following sections. The thermal rate constant in this thesis is expressed as [29]

k(T ) =
1

Qr

∫ ∞

0
dtCff (t), (2.44)

where Qr is the reactant partition function, Cff is the auto-correlation function

Cff (t) = Tr
[
F̂ (β/2) exp (iĤt/h̄)F̂ (β/2) exp (−iĤt/h̄)

]
, (2.45)

with β = 1/kBT . Compared to eq. (2.19), the half-Boltzmannized flux operator is

F̂ (β/2) = exp (−β

4
Ĥ)F̂ exp (−β

4
Ĥ). (2.46)

where the flux operator F̂ is given by eq. (2.20)- eq. (2.21).

2.6 The Classical Wigner model
The rate constant was introduced in the previous section and I am going to calculate it in a

semi-classical way.

9



For arbitrary operators Â and B̂,

Tr{Â exp (iHt/h̄)B̂ exp (−iHt/h̄)} =
∫
dxidx

′
i

∫
dxfdx

′
f < xi|Â|x′

i >

< x′
i|eitĤ/h̄|x′

f >< x′
f |B̂|xf >< xf |e−itĤ/h̄|xi > . (2.47)

The trace in eq. (2.47) involves two time evolution operators thus two Feynman paths are
generated (see fig. 2.1).

Figure 2.1: Two Feynman paths generated from eq. (2.47). The blue arrows specify the Feynman paths. The red
arrow is the mean path and the orange double arrows stand for the distances between two Feynman paths.

The propagation along the Feynman paths can be divided into N intermediate steps, for example

< xf |e−itĤ/h̄|xi >≈
N∏

m=1

∫ ∫ dxmdpm
2πh̄

∫ dpN+1

2πh̄
eiS

N/h̄. (2.48)

The action is expressed as

SN =
N+1∑

n=1

[pn(xn − xn−1)− εH(xn, pn)] ,

H = p2n/2M + V (xn) (2.49)

where x0 = xi, qt = xN+1 = xf , p0 = pi, pt = pf = pN+1, N → ∞. ε = t/(N +1) → 0 is the
time step for the propagator. Now we transform the coordinates as

xi = (xi + x′
i)/2,

ηi = ∆xi = xi − x′
i,

pi = (pi + p′i)/2,

∆pi = pi − p′i. (2.50)

Eq. (2.47) is then rewritten as

Tr{ÂB̂(t)} =
∫
dx0d∆x0

N+1∏

m=1

∫ dxmdpm
2πh̄

N+1∏

n=1

∫ d∆xnd∆pn
2πh̄

10

exp(−i
ε

h̄
[V (xn +∆xn/2)− V (xn −∆xn/2)])

exp(i
pn
M

∆pn + i∆pn
(xn − xn−1)

h̄
+ ipn

(∆xn −∆xn−1)

h̄
)

〈
x0 +

∆x0

2

∣∣∣Â
∣∣∣x0 −

∆x0

2

〉〈
xN+1 +

∆xN+1

2

∣∣∣B̂
∣∣∣ xN+1 −

∆xN+1

2

〉
.

(2.51)

Assuming that the ∆xs are relatively small, one can linearize the potential difference as :

V (xi)− V (x′
i) = V (xi +∆xi/2)− V (xi −∆xi/2)

≈ V ′(xi) ∗∆xi. (2.52)

This linearization works when ∆xi ≈ 0, so eq. (2.51) becomes

Tr{ÂB̂(t)} =
∫

dx0d∆x0

N+1∏

m=1

∫ dxmdpm
2πh̄

N+1∏

n=1

∫ d∆xnd∆pn
2πh̄

exp
(
−i

ε

h̄
V ′(xn)∆xn + i

pn
M

∆pn + i∆pn(xn − xn−1)/h̄+ ipn(∆xn −∆xn−1)/h̄
)

〈
x0 +

∆x0

2

∣∣∣Â
∣∣∣x0 −

∆x0

2

〉〈
xN+1 +

∆xN+1

2

∣∣∣B̂
∣∣∣xN+1 −

∆xN+1

2

〉
. (2.53)

We take a further step

N+1∑

i=1

pi(∆xi −∆xi−1) = pN+1∆xN+1 − p1∆x0 +
N∑

i=1

∆xi(pi − pi+1). (2.54)

Eq. (2.53) can be written now as

Tr{ÂB̂(t)} ≈ 1

2πh̄

∫
dx0d∆x0d∆xN+1 exp

(
−i

ε

h̄
V ′(xN+1)∆xN+1

)

N+1∏

m=1

∫
dxmdpm

〈
x0 +

∆x0

2

∣∣∣Â
∣∣∣x0 −

∆x0

2

〉〈
xN+1 +

∆xN+1

2

∣∣∣B̂
∣∣∣xN+1 −

∆xN+1

2

〉

exp(i(pN+1∆xN+1 − p1∆x0)/h̄)
N∏

n=1

∫ d∆xn

2πh̄
exp

(
−i

ε

h̄
∆xn(V

′(xn) +
pn+1 − pn

ε
)
)

N+1∏

n=1

∫ d∆pn
2πh̄

exp
(
−i

ε

h̄
∆pn(

pn
M

− xn − xn−1

ε
)
)
. (2.55)

The integration of ∆pn and ∆xn will introduce a series of delta functions. Eq. (2.55) becomes

Tr{ÂB̂(t)} ≈ 1

2πh̄

∫
dx0d∆x0d∆xN+1 exp

(
−i

ε

h̄
V ′(xN+1)∆xN+1

)

N+1∏

m=1

∫
dxmdpm

〈
x0 +

∆x0

2

∣∣∣Â
∣∣∣x0 −

∆x0

2

〉〈
xN+1 +

∆xN+1

2

∣∣∣B̂
∣∣∣ xN+1 −

∆xN+1

2

〉

exp(i(pN+1∆xN+1 − p1∆x0)/h̄)
N∏

n=1

δ(εV ′(xn) + pn+1 − pn)
N+1∏

n=1

δ(ε
pn
M

− xn + xn−1).

(2.56)
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dxmdpm
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∫ d∆xn
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(
−i
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h̄
∆xn(V

′(xn) +
pn+1 − pn

ε
)
)

N+1∏

n=1

∫ d∆pn
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(
−i

ε

h̄
∆pn(

pn
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− xn − xn−1

ε
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The integration of ∆pn and ∆xn will introduce a series of delta functions. Eq. (2.55) becomes
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∫
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(
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ε

h̄
V ′(xN+1)∆xN+1

)

N+1∏

m=1

∫
dxmdpm

〈
x0 +

∆x0
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∣∣∣Â
∣∣∣x0 −

∆x0
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xN+1 +

∆xN+1
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〉

exp(i(pN+1∆xN+1 − p1∆x0)/h̄)
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N+1∏
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δ(ε
pn
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− xn + xn−1).

(2.56)
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The delta functions generate trajectories that propagate from initial phase space point (x0, p0)
to final phase space point (xt, pt). The equations of motion for any (xn, pn) are:

εV ′(xn) = pn − pn+1

lε
pn
M

= xn − xn−1. (2.57)

which are just the ordinary classical equations of motion. So

Tr{Â exp (iHt/h̄)B̂ exp (−iHt/h̄)} ≈ 1

2πh̄

∫
dp

∫
dxAW (x, p)BW (xt, pt). (2.58)

The Wigner transformation for arbitrary operator Â is defined in eq. (2.24). In eq. (2.58), the
trajectory from an initial point (x, p) to the final point (xt, pt) is run under a classical force.
Using the rate constant expression from eq. (2.44)- eq. (2.45) together with eq. (2.57) and eq.
(2.58), one arrives at

k(T ) ≈ 1

2πh̄Qr(T )

∫ ∞

0
dt

∫
dp

∫
dx

×FW ((β/2); x(t), p(t))FW ((β/2); x(0), p(0)), (2.59)

where FW ((β/2; x, p) is the Wigner function of the half-Bolzmannized flux operator F̂ (β/2).
Classical trajectories are run to generate the auto-correlation function of FW (β̂/2; x, p).

The classical force originates from the linearizing of the potential difference in eq. (2.52)
and is only valid when δxi → 0 (δxi is the distance between the pair of Feynman Paths in fig.
2.1 and is also noted as η). The CW model is accurate at high temperature, heavy mass or
harmonic potential.

However, the value of η determines the importance of dynamical quantum effects. Take
the double-slit experiment for example (see fig. 2.2): A particle is propagated through two slits
and hits a plate. One can measure the probability that the particle hits the plate at position x.
The corresponding operator is D̂x = |x >< x|. Its time-dependent value is given as

Dx(t) = Tr{ρ̂ exp (iHt/h̄)D̂x exp (−iHt/h̄)} =
∫
dxidx

′
i

∫
dxfdx

′
f < xi|ρ̂|x′

i >

< x′
i|eitĤ/h̄|x′

f >< x′
f |D̂x|xf >< xf |e−itĤ/h̄|xi > . (2.60)

If the two paths stay close to each other and penetrate through the same slit, the detector D(x)
will observe a classical result (no interference). In this case, the CW model will work well. On
the other hand, if the two paths are separated from each other and go through different slits,
the detector will observe a quantum result (interference). So we can deduce that the value of η
relates to the quantum effects in the dynamics. Assuming it to be zero in the CW model will
result in the quenching of dynamical quantum effects.

2.7 Effective potential
The CW model described in the previous section captures the quantum effects in the initial

condition (e.g. as a Wigner transform of the thermal flux operator) however not in the dynamics.
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Figure 2.2: Two pairs of paths are generated to propagate through double slits. The green paths are close to
each other and go through the same slit, thus the detecting function D(x) obtains no quantum dynamical result (no
interference will be detected). The red paths are separated from each other and penetrate through different slits.
The detecting function D(x) will capture the interference and a quantum dynamical result will be presented.

The classical force is local and can not describe tunneling and interference. It may be challeng-
ing to add quantum effects to the classical trajectories.

Considering the quantum influence to the dynamics, effective potentials may assist peo-
ple to understand the quantum system. One of the most famous ’effective potential’ is from
Bohmian Mechanics [30, 31]. From the Schrödinger equation (SE)

ih̄
∂

∂t
Ψ(r, t) = − h̄2

2m
∇2Ψ(r, t) + V (r)Ψ(r, t) (2.61)

with the wave function Ψ(r, t) for mass m at position r = (x1, x2, ..., xn) and ∇2 is the
Laplacian with ∇ = ( ∂

∂x1
, ∂
∂x2

, ..., ∂
∂xn

), Bohm [32] defined a general solution to the SE as
Ψ(r, t) = R(r, t) exp (iS(r, t)t/h̄). The amplitude R and action S are both treated as real. He
then put this trial solution back into the SE and equalized the real and imaginary parts individ-
ually, which results in the following:

∂R

∂t
= − 1

2m
(R∇2S + 2∇R ·∇S)

∂S

∂t
= −[

1

2m
(∇S)2 + V − h̄2

2m

∇2R

R
] (2.62)

The first equation defines the dynamics of the wave amplitude and may be rewritten as the
continuity equation. The second equation can be viewed as an analogy to the classical Hamilton-
Jacobi equation but with an extra term of ’quantum potential’ h̄2

2m
∇2R
R . The quantum potential

relies on the information of the wave-function. In the classical limit, if we set h̄ = 0, the
quantum potential is quenched.

Limitation exists for applying this quantum potential to general systems: there is one
inverse of the amplitude(1/R) in the quantum potential. To date, the Bohmian methodology has
not found adequate solutions to handle the numerical problem [33].

An effective potential is also adopted by Centroid Molecular Dynamics [15] and is applied
to the centroid path. Liu and Miller also proposed a version of an effective potential in the phase
space [34] that goes beyond the Classical Wigner model. From ETMD [35], the trajectories are
coupled with each other via an effective force, the effective force is similar to the quantum
potential of Bohm. In the following chapters, I will first discuss an effective quantum force
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based on the Classical Wigner model. And then I will also introduce a quantum force derived
from the quantum Liouville equation. The effective forces (potentials) proposed by us aim at a
reasonable accuracy, low numerical cost and also a clear physical insight.
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Chapter 3
Classical Wigner model with an effective

quantum force

In section 2.6 of the previous chapter, I briefly introduced the Classical Wigner model.
The Classical Wigner model is based on one approximation, viz. that the distance between
the pair of Feynman paths in fig. 2.1 is close to zero. Such approximation will be valid for
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get fig. 3.1 to present the flux-flux correlation function. Since the CW model is based on eq.
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i > in fig. (3.1). An example is
given in fig. 3.2 to illustrate the way to define the η0.
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Hence, from eq. (2.45) we substitute the Â and B̂ in eq. (2.47) to be F̂ (β/2). From fig. 2.1, we
get fig. 3.1 to present the flux-flux correlation function. Since the CW model is based on eq.
(2.52) which assumes the characteristic distance between pair of paths to be zero, no dynamical
quantum effects will be captured [17]. Instead, we approximate ∆xs to be a characteristic
value (η0), which is the characteristic distance between pair of Feynman paths in fig. 3.1.
The dynamical quantum effects are reflected by η0. Since η0 presents also the delocalization
perspective of the mean path (classical path), I refer to it as a delocalization parameter in the
following part of this thesis.

Now the question will be how to obtain the η0? We suggest the η0 as the value that
contributes most to the initial matrix element < xi|F̂ (β/2)|x′

i > in fig. (3.1). An example is
given in fig. 3.2 to illustrate the way to define the η0.

Following eq. (2.52), one can use an effective force (named f eff ) to approximate the

15



Figure 3.1: Two Feynman Paths generated from eq. (2.45) and eq. (2.47). The blue arrows specify the Feynman
paths. The red arrow is the mean path (classical path) and the orange double arrows stand for the distances between
two Feynman paths.
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Figure 3.2: Two extrema (2.55,−2.55), (−2.55, 2.55) are seen from this picture of the matrix elemen-
t < x|F̂ (β/2)|y > with β = 12 for a symmetric Eckart barrier (V (x) = b/cosh2(c ∗ x), cosh(cx) =
0.5(exp(cx) + exp(−cx)), m = h̄ = ω! = 1, b = 6/π, c =

√
π/12). x and y specifies different positions

in the one-dimensional position coordinates. The η0 value can be calculated as: η0 = 2.55− (−2.55) = 5.1

potential difference as V (xi)− V (x′
i) = −f eff (xi+x′

i
2 )(xi − x′

i). We transform xi and x′
i to the

mean-difference coordinates of q = xi+x′
i

2 , η = xi − x′
i. Then we substitute a characteristic

value η0 for all ηs to obtain the effective force for position q:

f eff (q) =
V (q − η0/2)− V (q + η0/2)

η0
. (3.1)

The two points to linearize the potential difference are separated by η0. One can plot
the true potential difference V (q + η/2) − V (q − η/2) and the linearized potential difference
−f eff (q) × η for a fixed position q for different η values. They should match at η = η0 where
the matrix element is at its extremum. This is seen in fig. 3.3 for a symmetric Eckart barrier
(the same potential as defined in fig. 3.2). The linearized potential difference agrees with the
true potential difference at η0.

The characteristic distance is position-independent (q-independent) in this section. A po-
sition dependent method will be addressed in the next section.

The effective potentials and the classical potential for a symmetric Eckart barrier (the
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Figure 3.3: For β = 12 and q = 0.5, the linearized potential difference using both classical and quantum forces,
the true potential difference and the matrix elements g(0.5, η) =< 0.5 + η/2|F̂ (β/2)|0.5− η/2 > for different η
values. The matching value of η is η = η0 = 5.1.

same potential as defined in fig. 3.2) at different temperatures are plotted in fig. 3.4. The barrier
height of the effective potential is reduced as the temperature decreases.
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Figure 3.4: Effective and the classical potentials for a symmetric Eckart barrier at different β = 1/kBT .

Some results from application

The flux-flux correlation functions from different methods at temperature β = 1/kBT =
12 for a symmetric Eckart barrier (same potential as in fig. 3.2) is plotted in fig. 3.5.

The results of the transmission coefficient (κ) from CWEQF and the CW model are pre-
sented in Table. 3.1. Accurate κ values are taken from [36].

Table 3.1. Transmission coefficients for a symmetric Eckart barrier (the same potential as
in fig. 3.2).
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Figure 3.5: Flux-flux correlation functions from CW, CWEQF and exact reaults for a symmetric Eckart potential
at β = 1/kBT = 12.

β = 1/kBT 2 4 6 8 10 12
κ(CW) 1.14 1.7 3.2 9.4 46 360
κ(CWEQF) 1.16 1.8 4.6 19.8 152 1900
κ(Accurate) 1.22 2.07 5.2 21.8 162 1970
η0 1.1 1.7 2.5 3.3 4.2 5.1

From fig. 3.5 and Table. 3.1, it is seen that the CWEQF improves the CW model in a wide
temperature range. Also the numerical cost of CWEQF equals to the CW model except for a
search of the extrema at the initial time step. However, this is trivial compared to the cost of
constructing the matrix elements. So we can conclude that the CPU demand of the CWEQF
compared to the CW model increases only slightly.

3.2 The CWEQF using position dependent characteristic de-
localization parameters

An effective quantum force is derived in the previous section with a position-independent
delocalization parameter. The quantum force improves the original CW model.

However, a single delocalization parameter in the whole space does not entirely fit into
our physical concept. From Martens et al, [37–39], the quantum correction (compared with
the classical force) should be connected with the local Wigner function. Such worries reflec-
t in the numerical application, too. For an asymmetric barrier application (V (q) = a/(1 +
exp (−2q/c)) + b/cosh2(q/c), a = −18/π, b = 13.5/π, c = 8/

√
3π, m = h̄ = ω! = 1) with

temperature below β = 6 , there will be two pairs of extrema in the matrix elements. It chal-
lenges the mechanism of using single value of η0. Furthermore, even in the symmetric Eckart
barrier applications, if one chooses a position q some distance away from the dividing surface
(for example q = qds+1.8) and makes the corresponding plot as in fig. 3.3, then one will arrive
at fig. 3.6. The true potential difference and the linearized one does not meet at η0 which is
obtained from the matrix elements.
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Figure 3.6: The diagram shows for β = 12 and q = 1.8, the linearized potential difference with the quan-
tum force (with position-independent η0), the true potential difference and the matrix element g(1.8, η) =<
q + η/2|F̂ (β/2)|q − η/2 > for different η values. The point of the matching from the position independent
determination of η is η = 5.1. The matrix element is at its peak when η=3.6.

 0.00012
  0.0001
   8e-05
   6e-05

   4e-05
   2e-05

-2.03e-20
  -2e-05

  -4e-05
  -6e-05
  -8e-05
 -0.0001

-0.00012

-10 -5  0  5  10
x

-10

-5

 0

 5

 10

y

Figure 3.7: Two pairs of extrema for the matrix elements < x|F̂ (β/2)|y > of an asymmetric Eckart barrier at
β = 12.

Under such circumstances, the CWEQF with a position independent η0 is not the opti-
mized choice. In paper I, for an asymmetric barrier at low temperature, the matrix elements
(see fig. 3.7) contain two pairs of extrema instead of only one pair. Each pair specifies a value
of η0. Then we split the Wigner function into two different parts, each with a different η0 value.

If a trajectory moves between the two different parts in the Wigner space, we define the η0
value to be the average of the η0 values that belong to the different parts.

The results from this two-component model are satisfying and are presented in Table. 3.2.

Table 3.2. Transmission coefficients based on two-component model for an asymmetric Eckart
barrier.

β = 1/kBT 8 10 12
κ(CW) 21 375 29000
κ(CWEQF(with two characteristic η0)) 24 250 6800
κ(Accurate) 26 250 4100
η0 2.02,4.85 1.96,6.44 2.06,7.64

However, the two-component method is not ready to be applied to general potentials be-
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cause sometimes the boundary of two regions will be blurred thus it is arbitrary to divide the
phase space. The next task will be to overcome such problem and prepare the CWEQF for
general potentials. The effective force is thus

f eff (q) =
V (q − η0(q)

2 )− V (q + η0(q)
2 )

η0(q)
. (3.2)
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Figure 3.8: η0(q) for a symmetric Eckart barrier
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Figure 3.9: η0(q) for an asymmetric Eckart barrier

The value of η0(q) reflects the delocalization effects for different positions. The η0(q) for a
symmetric and an asymmetric Eckart barrier for different temperatures is shown in fig. 3.8 and
fig. 3.9 respectively.

Now we use the quantum force in eq. (3.2) to get the linearized potential difference. In
fig. 3.10, we compare the linearized potential difference with the true potential difference for
q = 1.8. It is seen that the position where the true potential difference meets the linearized
potential difference agrees with the extrema of the matrix element. The advantage of using po-
sition dependent η0 is obvious: it can be applied to potentials which contain more than one pair
of extrema.

Some results from applications

Table 3.3. Transmission coefficients for a symmetric Eckart barrier potential (same poten-

20

tial as in Table 3.1) obtained using position-dependent η0 values.
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Figure 3.10: The figure shows (for β = 12 and q = 1.8): the linearized potential difference using the
quantum force (with position dependent η0), the true potential difference and the matrix element g(1.8.η) =<
1.8 + η/2|F̂ (β/2)|1.8 − η/2 > for different η values. The matching between the true and linearized potential
difference occurs for η = 3.6. Such η value also corresponds to the extrema of the matrix element.

β 2 4 6 8 10 12
κ (CWEQF (η0(q))) 1.16 1.82 4.38 19 149 1846
κ (CWEQF (η0)) 1.16 1.8 4.6 20 150 1890
κ (Exact) 1.19 2.03 5.1 21.4 158 1935
κ (CW) 1.15 1.7 3.3 9.9 49 398

Table 3.4. Transmission Coefficients for an asymmetric Eckart barrier potential (same potential
as in Table 3.2) obtained using position-dependent η0 values.

β 2 4 6 8 10 12
κ (CWEQF (η0(q))) 1.17 1.92 5.05 23.5 172 3646
κ (CWEQF (η0)) 1.17 1.9 5.4 24 250 6800
κ (Exact) 1.2 2.0 5.3 26 250 4100
κ (CW) 1.16 1.8 4.1 21 374 29300

We can conclude that the CWEQF with position-dependent η0 works consistently better than the
CW model. Since one does not have to divide the phase space into different parts, the CWEQF
with position dependent delocalization parameter can be applied to general potentials.

3.3 CWEQF for two dimensional calculations
The previous sections set up the CWEQF model in one-dimension which works consis-

tently better than the CW model. The next task is to generalize our CWEQF to larger dimen-
sional applications. We will apply the CWEQF method to the two dimensional benchmark
HA + HBHC = HAHB + HC collinear reaction in this section. Both the CW method (by
using the flux-side correlation function [40]) and the quantum-transition-state-theory (QTST)
[41] applied to this problem over-estimated the rate constant by more than three times at 200K.
We use the symmetrized flux-flux correlation function based on eq. (2.44) and eq. (2.45) in this
section to study the collinear hydrogen exchange reaction in two dimensions.
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However, the two-component method is not ready to be applied to general potentials be-
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cause sometimes the boundary of two regions will be blurred thus it is arbitrary to divide the
phase space. The next task will be to overcome such problem and prepare the CWEQF for
general potentials. The effective force is thus

f eff (q) =
V (q − η0(q)

2 )− V (q + η0(q)
2 )

η0(q)
. (3.2)
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Figure 3.8: η0(q) for a symmetric Eckart barrier
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Figure 3.9: η0(q) for an asymmetric Eckart barrier

The value of η0(q) reflects the delocalization effects for different positions. The η0(q) for a
symmetric and an asymmetric Eckart barrier for different temperatures is shown in fig. 3.8 and
fig. 3.9 respectively.

Now we use the quantum force in eq. (3.2) to get the linearized potential difference. In
fig. 3.10, we compare the linearized potential difference with the true potential difference for
q = 1.8. It is seen that the position where the true potential difference meets the linearized
potential difference agrees with the extrema of the matrix element. The advantage of using po-
sition dependent η0 is obvious: it can be applied to potentials which contain more than one pair
of extrema.

Some results from applications

Table 3.3. Transmission coefficients for a symmetric Eckart barrier potential (same poten-
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tial as in Table 3.1) obtained using position-dependent η0 values.
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Figure 3.10: The figure shows (for β = 12 and q = 1.8): the linearized potential difference using the
quantum force (with position dependent η0), the true potential difference and the matrix element g(1.8.η) =<
1.8 + η/2|F̂ (β/2)|1.8 − η/2 > for different η values. The matching between the true and linearized potential
difference occurs for η = 3.6. Such η value also corresponds to the extrema of the matrix element.

β 2 4 6 8 10 12
κ (CWEQF (η0(q))) 1.16 1.82 4.38 19 149 1846
κ (CWEQF (η0)) 1.16 1.8 4.6 20 150 1890
κ (Exact) 1.19 2.03 5.1 21.4 158 1935
κ (CW) 1.15 1.7 3.3 9.9 49 398

Table 3.4. Transmission Coefficients for an asymmetric Eckart barrier potential (same potential
as in Table 3.2) obtained using position-dependent η0 values.

β 2 4 6 8 10 12
κ (CWEQF (η0(q))) 1.17 1.92 5.05 23.5 172 3646
κ (CWEQF (η0)) 1.17 1.9 5.4 24 250 6800
κ (Exact) 1.2 2.0 5.3 26 250 4100
κ (CW) 1.16 1.8 4.1 21 374 29300

We can conclude that the CWEQF with position-dependent η0 works consistently better than the
CW model. Since one does not have to divide the phase space into different parts, the CWEQF
with position dependent delocalization parameter can be applied to general potentials.

3.3 CWEQF for two dimensional calculations
The previous sections set up the CWEQF model in one-dimension which works consis-

tently better than the CW model. The next task is to generalize our CWEQF to larger dimen-
sional applications. We will apply the CWEQF method to the two dimensional benchmark
HA + HBHC = HAHB + HC collinear reaction in this section. Both the CW method (by
using the flux-side correlation function [40]) and the quantum-transition-state-theory (QTST)
[41] applied to this problem over-estimated the rate constant by more than three times at 200K.
We use the symmetrized flux-flux correlation function based on eq. (2.44) and eq. (2.45) in this
section to study the collinear hydrogen exchange reaction in two dimensions.
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We specify the reaction coordinate x and the corresponding orthogonal coordinate y as [41]

x =

√
1

2
(RBC −RAB),

y =

√
1

2
(RAB −R‡

AB +RBC −R‡
BC), (3.3)

where RAB and RBC are the bond distances between different hydrogen atoms. (R‡
AB, R

‡
BC)

specifies the saddle point positions. The product side is defined as x > 0, the reactant side is
thus x<0. For collinear reaction, we have RAC = RAB +RBC .
The Hamiltonian for this system is [41]

H =
1

2mx
p2x +

1

2my
p2y + V (x, y),

mx = mH/3,

my = mH . (3.4)

Following Yamamoto [29], we get a symmetrized flux-flux correlation function for the two-
dimensional case

C2d
ff (t) =

1

(2πh̄)2

∫
dpx

∫
dx

∫
dpy

∫
dy ×

Fw((β/2, xds); x(t), y(t), px(t), py(t))Fw((β/2, xds); x(0), y(0), px(0), py(0))

. (3.5)

The rate constant for the two dimensional calculation is thus

k2d(T ) =
1

Qr(T )

∫ ∞

0
dtC2d

ff (t). (3.6)

For the two-dimensional case, the η0 values are two-dimensional vectors $η0 = (ηx0, ηy0), which
are shown in fig. 3.11. It is seen that along the Minimum Energy Path (MEP), the $η0 vectors
are aligned with it.

A difficulty arises when we construct the two dimensional effective quantum force. In
the one dimensional case, we successfully constructed an effective quantum force which was
as simple as the classical one. However, for the two-dimensional case, η0 becomes a vec-
tor. For arbitrary $r = (x, y) and $η = (ηx, ηy), the problem is how to linearize the two di-
mensional potential difference surface V ($r + $η/2) − V ($r − $η/2). Suppose we can get an
effective force as we did in the one-dimensional applications and the effective force vector is
$V ′ = (V eff

x , V eff
y ). To determine the two components, two equations are required. The first

equation is obtained by linearizing the potential difference between the two extrema of the ma-
trix elements < x− ηx/2, y− ηy/2|F̂ (β/2)|x+ ηx/2, y+ ηy/2 >, which follow the blue arrow
in fig. 3.12.

$V ′ · $η0($r) = V ($r − $η0($r)

2
)− V ($r +

$η0($r)

2
), (3.7)
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Figure 3.11: (ηx0, ηy0) for 2-dimensional potential

However, eq. (3.7) does not make the linear surface unique. It can be rotated around the
axis of !η0. We solve this problem by finding a pair of points along the orthogonal direction of !η0.
For each fixed !r, there is only one pair of extrema of the matrix elements when (ηx, ηy) is varied.
The characteristic distance in the orthogonal direction to !η0 should be infinitesimally small.
This means that we can choose a pair of points infinitesimally separated along the orthogonal
direction to linearize the potential difference, as illustrated in fig. 3.12.

Figure 3.12: For rx = 0, ry = 0.5, we plot the matrix element of < rx − ηx/2, ry − ηy/2|F̂ (β/2)|rx +
ηx/2, ry + ηy/2 > for different ηx and ηy values. The beginning and ending points of the blue arrow represent
the extrema of the matrix elements, thereby defining ηx0 and ηy0. The yellow vectors specify the infinitesimal
movement along the orthogonal direction to #η0. T = 1000K, rx = 0, and ry = 0.5.

This brings

(
V eff
x (!r)

V eff
y (!r)

) · (!η⊥0 ∗ ε+ !η0) =

V (!r + !η0/2 + !η⊥0 ∗ ε/2)− V (!r − !η0/2− !η⊥0 ∗ ε/2). (3.8)

Here we have ε → 0 and !η⊥0 = (− ηy0√
(ηx0)2+(ηy0)2

, ηx0√
(ηx0)2+(ηy0)2

) which is the unit vector in the

direction orthogonal to !η0. Combining eq. (3.7) and eq. (3.8), we get the solution:
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fx(x, y) = −(V (x+ ηx0/2, y + ηy0/2)− V (x− ηx0/2, y − ηy0/2)) ∗ ηx0
(ηx0)2 + (ηy0)2

+

0.5× (V ′
y(x− ηx0/2, y − ηy0/2) + V ′

y(x+ ηx0/2, y + ηy0/2)) ∗ ηx0 ∗ ηy0
(ηx0)2 + (ηy0)2

−0.5× (V ′
x(x− ηx0/2, y − ηy0/2) + V ′

x(x+ ηx0/2, y + ηy0/2)) ∗ (ηy0)2

(ηx0)2 + (ηy0)2

fy(x, y) = −(V (x+ ηx0/2, y + ηy0/2)− V (x− ηx0/2, y − ηy0/2)) ∗ ηy0
(ηx0)2 + (ηy0)2

−

0.5× (V ′
y(x− ηx0/2, y − ηy0/2) + V ′

y(x+ ηx0/2, y + ηy0/2)) ∗ (ηx0)2

(ηx0)2 + (ηy0)2

+
0.5× (V ′

x(x− ηx0/2, y − ηy0/2) + V ′
x(x+ ηx0/2, y + ηy0/2)) ∗ ηy0 ∗ ηx0

(ηx0)2 + (ηy0)2
. (3.9)

This choice is however not guaranteed to be optimal. There may be more accurate ways to
choose the second equation, rather than approximating the delocalization parameter along the
orthogonal direction to be the thermal de Broglie wavelength.

Some results from application

The two-dimensional results for the collinear H + H2 reaction are shown in Fig. 3.13
and Fig. 3.14.

Figure 3.13: Comparison of an accurate Cff with those for the CW and CWEQF models at 1000K. Time is in
atomic unites.

We can conclude that the CWEQF works consistently better compared with the CW model.
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Figure 3.14: Comparison of an accurate Cff with those for the CW and CWEQF models at 200 K. Time is in
atomic units.
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Chapter 4
A deeper insight into the tunneling regime

4.1 Entangled Trajectory Molecular Dynamics
The previous chapter initiated the idea about using the delocalization parameter to linearize

the potential difference as an effective quantum force. We studied a canonical system (in the
NVT ensemble) in the CWEQF method where temperature becomes important to determine
the delocalization parameter. However, we want to extend our idea of the quantum potential to
general systems, like micro-canonical systems of well-defined energy E for example. In this
chapter, I am going to present the dynamics of particles under quantum Liouville equation in a
semi-classical way. I will first introduce a method named Entangled Trajectory Molecular Dy-
namics (ETMD). The force for each trajectory is generated from the entanglements between the
trajectories. Then I will present our effective force based on ETMD to propagate the trajectories.
In the end, I will show the application of our effective force in two-dimensional applications.

Many trajectory-based methods have been invented to run classical-like trajectories dressed
with quantum effects [15, 19, 26, 30, 31, 35, 37, 38, 42–51]. The method we present here is
based on the Wigner distribution function [25] which is described in chapter 2. From eq. (2.24),
the Wigner function corresponding to the density operator ρ̂(t) is

ρW (q, p, t) =
1

2πh̄

∫
< q + y/2|ρ̂(t)|q − y/2 > eipy/h̄dy, (4.1)

with q and p being the position and momentum coordinates. y is related to the off-diagonal
elements < q + y/2|ρ̂|q − y/2 > (this y is not to be confused with the one in section 3.3). In
the following, I will briefly introduce the derivation of the ETMD’s equations of motion [26].
From [26], the time evolution of the Wigner function follows

∂ρW (q, p, t)

∂t
= − p

m

∂ρW (q, p; t)

∂q
+

∫
J(q, ξ − p)ρW (q, ξ, t)dξ, (4.2)

where
J(q, ξ) =

i

2πh̄2

∫
[V (q + z/2)− V (q − z/2)]e−izξ/h̄dz. (4.3)

Now we introduce the continuity equation as follows:

∂ρW (q, p, t)

∂t
= −%∇ ·%j, (4.4)

where %j=(jq, jp) = (q̇ρW (q, p, t), ṗρW (q, p, t)) shows the current vector in phase space, q̇ rep-
resents the velocity and ṗ denotes the force. %∇ = (∂/∂q, ∂/∂p) is the phase space gradient
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operator. Combining eq. (4.2) and eq. (4.4), one obtains:

!∇ ·!j = p

m

∂ρW (q, p, t)

∂q
−

∫
J(q, ξ − p)ρW (q, ξ, t)dξ. (4.5)

jq = ρW q̇ =
p

m
ρW (4.6)

q̇ = p
m is the velocity of the trajectory. The second component of eq. (4.5) is thus

∂

∂p
jp = −

∫
J(q, ξ − p)ρW (q, ξ, t)dξ. (4.7)

By integrating eq. (4.7) over p from both sides we get

jp = −
∫
Θk(q, ξ − p)ρW (q, ξ, t)dξ. (4.8)

where

Θ(q, p− ξ) =
1

2πh̄

∫ V (q + y/2)− V (q − y/2)

y
exp [−i

(p− ξ)y

h̄
]dy. (4.9)

So

ṗ = ma = jp/ρ
W =

1

ρW (q, p)

∫
Θ(q, p− ξ)ρW (q, ξ)dξ. (4.10)

where ṗ denotes the force. Combining eq. (4.9) and eq. (4.10) together, we get

ṗ =
1

ρW (q, p)

∫
dy

V (q + y/2)− V (q − y/2)

y

exp [−i
py

h̄
]
1

2πh̄

∫
dξ exp [i

yξ

h̄
]ρW (q, ξ, t) (4.11)

From eq. (4.11), for different momenta ξ, ρW (q, ξ, t) presents different phase space points at
the same position and the integration of y evaluates all possible positions. One can see that the
force of certain trajectory entangles with the other trajectories in phase space. The method thus
bears the name of entangled trajectory molecular dynamics (ETMD) [38]. The ETMD method
has been applied to several model potentials and is able to yield reaction probabilities in good
agreement with exact results [26, 35].

The ETMD method also brings vivid explanation to the tunneling mechanism: the trajec-
tories borrow energy from each other via entanglements to pass the potential barrier. Once the
trajectories land on the other side of the dividing surface, they will release the borrowed energy.
Thus forms a vivid picture to explain the tunneling mechanism [37, 38].

However, this explanation needs to be more qualitatively especially quantitatively speci-
fied, such as the physical correspondence of ’borrowing’. Furthermore, to calculate the ETMD
force for a point in phase space there are two integrations to carry out, which might be numer-
ically expensive. From eq. (4.11), the force diverges when ρW (q, p, t) → 0 so there might
be problems in regions where the Wigner function changes sign. The latter problem might be
overcome by introducing the Husimi representation whereby no negative regions remain as a re-
sult of averaging over regions by a Gaussian function [39, 52]. However, the dynamics become
more complicated to generalize for arbitrary potentials. Also, to reduce the numerical cost, one
has to find a good approximation to substitute for the entanglements in the ETMD force.
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4.2 Substitution for the entanglement by an effective force
I briefly introduced the ETMD method in the previous section. The ETMD method is able

to capture the dynamical quantum effect through entanglements between trajectories. However,
there is still room left for making it more practical. We aim at a delocalization parameter as we
did in chapter 3 to generate an effective quantum force to substitute for the entanglements.

In eq. (4.11), the integration over ξ is the inverse Fourier transform of the Wigner function
which is defined in eq. (4.1). Thus

ṗ =
1

ρW (q, p)

∫
dy

V (q + y/2)− V (q − y/2)

y
×

exp [−i
py

h̄
] < q + y/2|ρ̂|q − y/2 > .

(4.12)

First, assume that the characteristic value of y in eq. (4.12) is close to zero. We can then Taylor
expand the potential difference to obtain V (q+y/2)−V (q−y/2) ≈ V ′(q)y. The force becomes

ṗ =
−V ′(q)

ρW (q, p)
×

∫
dy exp [−i

py

h̄
] < q + y/2|ρ̂|q − y/2 >

= −V ′(q). (4.13)

The ETMD model thus reduces to the ordinary CW model [20–22] which uses the classical
force to propagate trajectories in Wigner space. The entanglements between the trajectories are
thus removed. To go beyond the CW model, we assume here that a characteristic value y0(q)
exists (the derivation will be shown in the next sections, also I use y0 instead of η0 here to
distinguish the delocalization parameter of a NVT system and NVE system). This gives

V (q + y/2)− V (q − y/2)

y
=

V (q + y0(q)/2)− V (q − y0(q)/2)

y0(q)
. (4.14)

The force in eq. (4.12) becomes

ṗ = −V (q + y0(q)/2)− V (q − y0(q)/2)

y0(q)
, (4.15)

This force is much simpler than the ETMD force. It works in the same way as the CWE-
QF’s quantum force. The delocalization parameter becomes crucial in obtaining the dynamical
quantum effects, it can be seen as a parameter that corresponds to the entanglements between
trajectories. The next question is how to obtain such parameter.

4.3 The way to define the y0

In the previous section, I introduced the possibility to use an effective force to substitute
for the ETMD force. However, we need to define the delocalization parameter (y0) to construct
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operator. Combining eq. (4.2) and eq. (4.4), one obtains:

!∇ ·!j = p

m

∂ρW (q, p, t)

∂q
−

∫
J(q, ξ − p)ρW (q, ξ, t)dξ. (4.5)

jq = ρW q̇ =
p

m
ρW (4.6)

q̇ = p
m is the velocity of the trajectory. The second component of eq. (4.5) is thus

∂

∂p
jp = −

∫
J(q, ξ − p)ρW (q, ξ, t)dξ. (4.7)

By integrating eq. (4.7) over p from both sides we get

jp = −
∫
Θk(q, ξ − p)ρW (q, ξ, t)dξ. (4.8)

where

Θ(q, p− ξ) =
1

2πh̄

∫ V (q + y/2)− V (q − y/2)

y
exp [−i

(p− ξ)y

h̄
]dy. (4.9)

So

ṗ = ma = jp/ρ
W =

1

ρW (q, p)

∫
Θ(q, p− ξ)ρW (q, ξ)dξ. (4.10)

where ṗ denotes the force. Combining eq. (4.9) and eq. (4.10) together, we get

ṗ =
1

ρW (q, p)

∫
dy

V (q + y/2)− V (q − y/2)

y

exp [−i
py

h̄
]
1

2πh̄

∫
dξ exp [i

yξ

h̄
]ρW (q, ξ, t) (4.11)

From eq. (4.11), for different momenta ξ, ρW (q, ξ, t) presents different phase space points at
the same position and the integration of y evaluates all possible positions. One can see that the
force of certain trajectory entangles with the other trajectories in phase space. The method thus
bears the name of entangled trajectory molecular dynamics (ETMD) [38]. The ETMD method
has been applied to several model potentials and is able to yield reaction probabilities in good
agreement with exact results [26, 35].

The ETMD method also brings vivid explanation to the tunneling mechanism: the trajec-
tories borrow energy from each other via entanglements to pass the potential barrier. Once the
trajectories land on the other side of the dividing surface, they will release the borrowed energy.
Thus forms a vivid picture to explain the tunneling mechanism [37, 38].

However, this explanation needs to be more qualitatively especially quantitatively speci-
fied, such as the physical correspondence of ’borrowing’. Furthermore, to calculate the ETMD
force for a point in phase space there are two integrations to carry out, which might be numer-
ically expensive. From eq. (4.11), the force diverges when ρW (q, p, t) → 0 so there might
be problems in regions where the Wigner function changes sign. The latter problem might be
overcome by introducing the Husimi representation whereby no negative regions remain as a re-
sult of averaging over regions by a Gaussian function [39, 52]. However, the dynamics become
more complicated to generalize for arbitrary potentials. Also, to reduce the numerical cost, one
has to find a good approximation to substitute for the entanglements in the ETMD force.
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4.2 Substitution for the entanglement by an effective force
I briefly introduced the ETMD method in the previous section. The ETMD method is able

to capture the dynamical quantum effect through entanglements between trajectories. However,
there is still room left for making it more practical. We aim at a delocalization parameter as we
did in chapter 3 to generate an effective quantum force to substitute for the entanglements.
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ṗ =
1

ρW (q, p)

∫
dy

V (q + y/2)− V (q − y/2)

y
×

exp [−i
py

h̄
] < q + y/2|ρ̂|q − y/2 > .

(4.12)

First, assume that the characteristic value of y in eq. (4.12) is close to zero. We can then Taylor
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×

∫
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py

h̄
] < q + y/2|ρ̂|q − y/2 >

= −V ′(q). (4.13)

The ETMD model thus reduces to the ordinary CW model [20–22] which uses the classical
force to propagate trajectories in Wigner space. The entanglements between the trajectories are
thus removed. To go beyond the CW model, we assume here that a characteristic value y0(q)
exists (the derivation will be shown in the next sections, also I use y0 instead of η0 here to
distinguish the delocalization parameter of a NVT system and NVE system). This gives

V (q + y/2)− V (q − y/2)

y
=

V (q + y0(q)/2)− V (q − y0(q)/2)

y0(q)
. (4.14)

The force in eq. (4.12) becomes

ṗ = −V (q + y0(q)/2)− V (q − y0(q)/2)

y0(q)
, (4.15)

This force is much simpler than the ETMD force. It works in the same way as the CWE-
QF’s quantum force. The delocalization parameter becomes crucial in obtaining the dynamical
quantum effects, it can be seen as a parameter that corresponds to the entanglements between
trajectories. The next question is how to obtain such parameter.

4.3 The way to define the y0

In the previous section, I introduced the possibility to use an effective force to substitute
for the ETMD force. However, we need to define the delocalization parameter (y0) to construct
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the effective quantum force.
In previous chapter, we define the delocalization parameter corresponding to the extrema

from the matrix elements of < q+ η/2|F̂ (β/2)|q− η/2 >. The present work concerns the den-
sity operator rather than the thermal flux operator. Take the Gaussian wave packet for example
[26]: from eq. (2.30), the extrema of the density matrix elements are along the diagonal line
(η = 0), so a different way to determine the delocalization parameter is needed.

From the work of ETMD [26, 35, 37–39], the particle is always prepared as a Gaussian
wave packet to propagate (see eq. (2.27)). Thus the Wigner function initially is expressed as a
Gaussian (see eq. (2.28)). The delocalization parameter is assumed to be the width of the Gaus-
sian (y0 = σq) in position coordinate. From eq. (2.28), the width of the position and momentum
of the Gaussian satisfies the minimum uncertainty relation: σqσp = h̄/2. As time goes on, let’s
simply assume that the Wigner function still conserves such minimum uncertainty. Thus for
different position q: y0(q) = ∆q(q) = 0.5h̄/∆p(q) (where ∆q(q) and ∆p(q) specify the square
roots of the variances along position and momentum coordinates).

We are also aware that the smallest phase space area compatible with the uncertainty prin-
ciple is named a quantum blob [53]. For a Gaussian distribution function, the quantum blob
has an area of h̄/2 which is consistent with the minimum uncertainty principle. We can update
∆q(q) by calculating the variance of the momentum at an arbitrary position q. We use the above
discussion as the motivation for our calculation of y0. The square root of the variance of the
momentum (∆p) is:

∆p = (p2 − (p)2)
1
2

p =
∫

dpρW (q, p, t)p/
∫

dpρW (q, p, t)

p2 =
∫

dpρW (q, p, t)p2/
∫

dpρW (q, p, t). (4.16)

The force generated in the ETMD method describes ’non-local’ contributions via entanglement.
In the present work, the entanglements between the trajectories will be absorbed into the pa-
rameter y0(q), which is defined by the distribution of momentum.

4.4 Another way of obtaining the y0

If this section, we introduce another way to obtain the delocalization parameter. From
the CWEQF method, we obtain an effective quantum force by using the characteristic distance
between pair of Feynman paths that enters the expression of the thermal flux-flux correlation
function (Cff ).

For an arbitrary operator X̂ which is an operator only related to positions (such as ĥ(x̂)).
The corresponding measurement of it at time t will be:

X(t) = tr[ρ̂ exp (−iĤt/h̄)X̂ exp (iĤt/h̄)]

=
∫

dxdx1dx2dx
′ < x|ρ̂|x1 >< x1| exp (−iĤt/h̄)|x2 >

< x2|X̂|x′ >< x′| exp (iĤt/h̄)|x > (4.17)

From chapter 2 and chapter 3, we solve the trace via path integrals. Suppose the delocalization
parameter is yρ for the matrix element of < x|ρ̂|x1 >. The delocalization parameter for matrix
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element < x′|X̂|x > is yX . One thus gets an effective characteristic distance in eq. (4.17)
following the average: yeffective0 = 0.5 ∗ (yρ + yX). From paper I,

X(t) =
∫
dp

∫
dqρw(p, q, t = 0)X(qt) (4.18)

For the matrix element of < q+y/2|ρ̂|q−y/2 >, since the extrema are positioned at η = 0 (see
eq. (2.30)), we assume the delocalization parameter of the density operator ρ̂ to be yρ(q) and
that it equals to the width (ywidth

ρ ) of the distribution along y. We still approximate the shape of
the Wigner function to be a Gaussian distribution [43, 54].

Now we come back to eq. (4.17), for position q, we have

yeffective0 (q) = 0.5(ηwidth
ρ + yX). (4.19)

Since yX = 0, yeffective0 (q) is half value of the geometric width of the off-diagonal distribution
(ywidth

ρ ) of the matrix element < q+y/2|ρ̂|q−y/2 >. From section (2.3), we have ywidth = 2σq

for a Gaussian Wigner function thus yeffective0 (q) is the same value as the delocalization param-
eter derived in the previous section.

Some results from application

We apply our effective quantum force to study the reaction probability for a cubic po-
tential (fig. 4.1).
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Figure 4.1: The cubic potential V (q) = 1
2mω2

0q
2 − 1

3bq
3, ω0 = 0.01, b = 0.2981, m = 2000. From [26], a

cut-off value of −0.015 is adopted for q > 1.12556.

The initial wave function is centered in the potential well. One can refer to paper III for numer-
ical details. The reaction probability (escape probability) is shown in fig. 4.2.

To explain such tunneling effects, we can focus on the dominant part of y0(q) = h̄/2∆p ≈ 0.5√
p2

.

When the highest momentum trajectories pass over the barrier, the average kinetic energy (or
p2) will be reduced which will directly result in an increase of the characteristic delocalization
parameter thus smear out the potential barrier to help the trajectories that have lower kinetic
energy to cross over. The procedure will continue with time. This introduces one interesting
phenomenon, the trajectories with less kinetic energy initially will have the chance to go over
the potential barrier at later time. This forms a consistent explanation to the tunneling effect of
the cubic potential where the reaction probability grows in time as shown in fig. 4.2. Such a
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mechanism is depicted in fig. 4.3.

4.5 Effective quantum force for two dimensional applications
In previous sections, we constructed an effective force to substitute for the entanglement

between trajectories. Each trajectory is controlled by a quantum force which is updated in time.
Now the challenge will be to generalize it to multi-dimensional applications. We are aware of
that the ETMD method has been used to carry out two dimensional calculations and the results
are inspiringly accurate compared with the exact ones [35]. It will be the task in this section
to apply our quantum force to two dimensions. Since our method is close to the ETMD, I will
start with a brief derivation of generalizing the ETMD to multi-dimensional applications from
[35]. Then I will introduce our effective force based on this ETMD force.

For a multi-dimensional system consisting of particles with identical mass m under a po-
tential V (q1, ....qn), the state of particles will be expressed by position vector !q = (q1...qn) and
momentum vector !p = (p1...pn). The off-diagonal vector of matrix elements of < !q+!y/2|ρ̂|!q−
!y/2 > is then a function of !y = (y1...yn). The Wigner function of the multi-dimensional wave
function Ψ(!q, t) is

ρw(!q, !p, t) =
(

1

2πh̄

)n ∫
Ψ∗(!q + !y/2, t)Ψ(!q − !y/2, t)ei!p·!y/h̄d!y. (4.20)

The time-evolution of this multi-dimensional Wigner function is then

∂ρW (!q, !p, t)

∂t
= −

n∑

k=1

pk
m

∂ρW (!q, !p; t)

∂qk
+

∫
J(!q, !ξ − !p)ρW (!q, !ξ, t)d!ξ, (4.21)

where
J(!q, !ξ) =

i

2nπnh̄n+1

∫
[V (!q + !z/2)− V (!q − !z/2)]e−i!z·!ξ/h̄d!z. (4.22)

Now we introduce the continuity equation as follows:

∂ρW (!q, !p, t)

∂t
= −!∇ ·!j, (4.23)

where !j=(jq1...jqn, jp1...jpn) = (!̇q, !̇p)ρW (!q, !p, t) shows the current vector in phase space, !̇q
presents the velocity and !̇p denotes the force. !∇ = (∂/∂q1...∂/∂qn, ∂/∂p1...∂/∂pn) is the
phase space gradient operator. Combining eq. (4.21) and eq. (4.23), we obtain:

!∇ ·!j =
n∑

k=1

pk
m

∂ρW (!q, !p, t)

∂qk
−

∫
J(!q, !ξ − !p)ρW (!q, !ξ)d!ξ (4.24)

To obtain each component of the current vector (especially the momentum vector), we adopt an
approximation based on the work of Lifei et al [35]: the kth momentum flux is related to the
delocalization from the kth position coordinate. Thus we define the corresponding Jk as:

Jk(!q, !ξ) =
i

2nπnh̄n+1

∫
[V +

k − V −
k ]e−i!z·!ξ/h̄d!z, (4.25)
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the effective quantum force.
In previous chapter, we define the delocalization parameter corresponding to the extrema

from the matrix elements of < q+ η/2|F̂ (β/2)|q− η/2 >. The present work concerns the den-
sity operator rather than the thermal flux operator. Take the Gaussian wave packet for example
[26]: from eq. (2.30), the extrema of the density matrix elements are along the diagonal line
(η = 0), so a different way to determine the delocalization parameter is needed.

From the work of ETMD [26, 35, 37–39], the particle is always prepared as a Gaussian
wave packet to propagate (see eq. (2.27)). Thus the Wigner function initially is expressed as a
Gaussian (see eq. (2.28)). The delocalization parameter is assumed to be the width of the Gaus-
sian (y0 = σq) in position coordinate. From eq. (2.28), the width of the position and momentum
of the Gaussian satisfies the minimum uncertainty relation: σqσp = h̄/2. As time goes on, let’s
simply assume that the Wigner function still conserves such minimum uncertainty. Thus for
different position q: y0(q) = ∆q(q) = 0.5h̄/∆p(q) (where ∆q(q) and ∆p(q) specify the square
roots of the variances along position and momentum coordinates).

We are also aware that the smallest phase space area compatible with the uncertainty prin-
ciple is named a quantum blob [53]. For a Gaussian distribution function, the quantum blob
has an area of h̄/2 which is consistent with the minimum uncertainty principle. We can update
∆q(q) by calculating the variance of the momentum at an arbitrary position q. We use the above
discussion as the motivation for our calculation of y0. The square root of the variance of the
momentum (∆p) is:

∆p = (p2 − (p)2)
1
2

p =
∫

dpρW (q, p, t)p/
∫

dpρW (q, p, t)

p2 =
∫

dpρW (q, p, t)p2/
∫

dpρW (q, p, t). (4.16)

The force generated in the ETMD method describes ’non-local’ contributions via entanglement.
In the present work, the entanglements between the trajectories will be absorbed into the pa-
rameter y0(q), which is defined by the distribution of momentum.

4.4 Another way of obtaining the y0

If this section, we introduce another way to obtain the delocalization parameter. From
the CWEQF method, we obtain an effective quantum force by using the characteristic distance
between pair of Feynman paths that enters the expression of the thermal flux-flux correlation
function (Cff ).

For an arbitrary operator X̂ which is an operator only related to positions (such as ĥ(x̂)).
The corresponding measurement of it at time t will be:

X(t) = tr[ρ̂ exp (−iĤt/h̄)X̂ exp (iĤt/h̄)]

=
∫

dxdx1dx2dx
′ < x|ρ̂|x1 >< x1| exp (−iĤt/h̄)|x2 >

< x2|X̂|x′ >< x′| exp (iĤt/h̄)|x > (4.17)

From chapter 2 and chapter 3, we solve the trace via path integrals. Suppose the delocalization
parameter is yρ for the matrix element of < x|ρ̂|x1 >. The delocalization parameter for matrix
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element < x′|X̂|x > is yX . One thus gets an effective characteristic distance in eq. (4.17)
following the average: yeffective0 = 0.5 ∗ (yρ + yX). From paper I,

X(t) =
∫
dp

∫
dqρw(p, q, t = 0)X(qt) (4.18)

For the matrix element of < q+y/2|ρ̂|q−y/2 >, since the extrema are positioned at η = 0 (see
eq. (2.30)), we assume the delocalization parameter of the density operator ρ̂ to be yρ(q) and
that it equals to the width (ywidth

ρ ) of the distribution along y. We still approximate the shape of
the Wigner function to be a Gaussian distribution [43, 54].

Now we come back to eq. (4.17), for position q, we have

yeffective0 (q) = 0.5(ηwidth
ρ + yX). (4.19)

Since yX = 0, yeffective0 (q) is half value of the geometric width of the off-diagonal distribution
(ywidth

ρ ) of the matrix element < q+y/2|ρ̂|q−y/2 >. From section (2.3), we have ywidth = 2σq

for a Gaussian Wigner function thus yeffective0 (q) is the same value as the delocalization param-
eter derived in the previous section.

Some results from application

We apply our effective quantum force to study the reaction probability for a cubic po-
tential (fig. 4.1).
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Figure 4.1: The cubic potential V (q) = 1
2mω2

0q
2 − 1

3bq
3, ω0 = 0.01, b = 0.2981, m = 2000. From [26], a

cut-off value of −0.015 is adopted for q > 1.12556.

The initial wave function is centered in the potential well. One can refer to paper III for numer-
ical details. The reaction probability (escape probability) is shown in fig. 4.2.

To explain such tunneling effects, we can focus on the dominant part of y0(q) = h̄/2∆p ≈ 0.5√
p2

.

When the highest momentum trajectories pass over the barrier, the average kinetic energy (or
p2) will be reduced which will directly result in an increase of the characteristic delocalization
parameter thus smear out the potential barrier to help the trajectories that have lower kinetic
energy to cross over. The procedure will continue with time. This introduces one interesting
phenomenon, the trajectories with less kinetic energy initially will have the chance to go over
the potential barrier at later time. This forms a consistent explanation to the tunneling effect of
the cubic potential where the reaction probability grows in time as shown in fig. 4.2. Such a
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mechanism is depicted in fig. 4.3.

4.5 Effective quantum force for two dimensional applications
In previous sections, we constructed an effective force to substitute for the entanglement

between trajectories. Each trajectory is controlled by a quantum force which is updated in time.
Now the challenge will be to generalize it to multi-dimensional applications. We are aware of
that the ETMD method has been used to carry out two dimensional calculations and the results
are inspiringly accurate compared with the exact ones [35]. It will be the task in this section
to apply our quantum force to two dimensions. Since our method is close to the ETMD, I will
start with a brief derivation of generalizing the ETMD to multi-dimensional applications from
[35]. Then I will introduce our effective force based on this ETMD force.

For a multi-dimensional system consisting of particles with identical mass m under a po-
tential V (q1, ....qn), the state of particles will be expressed by position vector !q = (q1...qn) and
momentum vector !p = (p1...pn). The off-diagonal vector of matrix elements of < !q+!y/2|ρ̂|!q−
!y/2 > is then a function of !y = (y1...yn). The Wigner function of the multi-dimensional wave
function Ψ(!q, t) is

ρw(!q, !p, t) =
(

1

2πh̄

)n ∫
Ψ∗(!q + !y/2, t)Ψ(!q − !y/2, t)ei!p·!y/h̄d!y. (4.20)

The time-evolution of this multi-dimensional Wigner function is then

∂ρW (!q, !p, t)

∂t
= −

n∑

k=1

pk
m

∂ρW (!q, !p; t)

∂qk
+

∫
J(!q, !ξ − !p)ρW (!q, !ξ, t)d!ξ, (4.21)

where
J(!q, !ξ) =

i

2nπnh̄n+1

∫
[V (!q + !z/2)− V (!q − !z/2)]e−i!z·!ξ/h̄d!z. (4.22)

Now we introduce the continuity equation as follows:

∂ρW (!q, !p, t)

∂t
= −!∇ ·!j, (4.23)

where !j=(jq1...jqn, jp1...jpn) = (!̇q, !̇p)ρW (!q, !p, t) shows the current vector in phase space, !̇q
presents the velocity and !̇p denotes the force. !∇ = (∂/∂q1...∂/∂qn, ∂/∂p1...∂/∂pn) is the
phase space gradient operator. Combining eq. (4.21) and eq. (4.23), we obtain:

!∇ ·!j =
n∑

k=1

pk
m

∂ρW (!q, !p, t)

∂qk
−

∫
J(!q, !ξ − !p)ρW (!q, !ξ)d!ξ (4.24)

To obtain each component of the current vector (especially the momentum vector), we adopt an
approximation based on the work of Lifei et al [35]: the kth momentum flux is related to the
delocalization from the kth position coordinate. Thus we define the corresponding Jk as:

Jk(!q, !ξ) =
i

2nπnh̄n+1

∫
[V +

k − V −
k ]e−i!z·!ξ/h̄d!z, (4.25)
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Figure 4.2: The reaction probability versus time for the cubic potential at three different average energies. The
green curves are the exact results [26]. The red curves are the results obtained using our effective force constructed
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Figure 4.3: The explanation of the tunneling effect for the cubic potential in fig. 4.1.
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mechanism is depicted in fig. 4.3.

4.5 Effective quantum force for two dimensional applications
In previous sections, we constructed an effective force to substitute for the entanglement

between trajectories. Each trajectory is controlled by a quantum force which is updated in time.
Now the challenge will be to generalize it to multi-dimensional applications. We are aware of
that the ETMD method has been used to carry out two dimensional calculations and the results
are inspiringly accurate compared with the exact ones [35]. It will be the task in this section
to apply our quantum force to two dimensions. Since our method is close to the ETMD, I will
start with a brief derivation of generalizing the ETMD to multi-dimensional applications from
[35]. Then I will introduce our effective force based on this ETMD force.

For a multi-dimensional system consisting of particles with identical mass m under a po-
tential V (q1, ....qn), the state of particles will be expressed by position vector !q = (q1...qn) and
momentum vector !p = (p1...pn). The off-diagonal vector of matrix elements of < !q+!y/2|ρ̂|!q−
!y/2 > is then a function of !y = (y1...yn). The Wigner function of the multi-dimensional wave
function Ψ(!q, t) is

ρw(!q, !p, t) =
(

1

2πh̄

)n ∫
Ψ∗(!q + !y/2, t)Ψ(!q − !y/2, t)ei!p·!y/h̄d!y. (4.20)

The time-evolution of this multi-dimensional Wigner function is then

∂ρW (!q, !p, t)

∂t
= −

n∑

k=1

pk
m

∂ρW (!q, !p; t)

∂qk
+

∫
J(!q, !ξ − !p)ρW (!q, !ξ, t)d!ξ, (4.21)

where
J(!q, !ξ) =

i

2nπnh̄n+1

∫
[V (!q + !z/2)− V (!q − !z/2)]e−i!z·!ξ/h̄d!z. (4.22)

Now we introduce the continuity equation as follows:

∂ρW (!q, !p, t)

∂t
= −!∇ ·!j, (4.23)

where !j=(jq1...jqn, jp1...jpn) = (!̇q, !̇p)ρW (!q, !p, t) shows the current vector in phase space, !̇q
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pk
m

∂ρW (!q, !p, t)
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J(!q, !ξ − !p)ρW (!q, !ξ)d!ξ (4.24)

To obtain each component of the current vector (especially the momentum vector), we adopt an
approximation based on the work of Lifei et al [35]: the kth momentum flux is related to the
delocalization from the kth position coordinate. Thus we define the corresponding Jk as:

Jk(!q, !ξ) =
i

2nπnh̄n+1

∫
[V +

k − V −
k ]e−i!z·!ξ/h̄d!z, (4.25)

33



 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0  500  1000  1500  2000  2500  3000  3500  4000

R
ea

ct
io

n 
P

ro
ba

bi
lit

ie
s

t

E0=0.75V0

E0=1.26V0

E0=2V0

Effective force results
Quantum Mechanical results

ETMD results

Figure 4.2: The reaction probability versus time for the cubic potential at three different average energies. The
green curves are the exact results [26]. The red curves are the results obtained using our effective force constructed
from the time-dependent delocalization parameters. The blue curves are the results of the ETMD method [26].

Figure 4.3: The explanation of the tunneling effect for the cubic potential in fig. 4.1.
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mechanism is depicted in fig. 4.3.

4.5 Effective quantum force for two dimensional applications
In previous sections, we constructed an effective force to substitute for the entanglement

between trajectories. Each trajectory is controlled by a quantum force which is updated in time.
Now the challenge will be to generalize it to multi-dimensional applications. We are aware of
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(

1

2πh̄

)n ∫
Ψ∗(!q + !y/2, t)Ψ(!q − !y/2, t)ei!p·!y/h̄d!y. (4.20)
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where V ±
k = V (q1, ..qk ± yk/2, ...qn) and k=1,...n. From eq. (4.24) and eq. (4.25), the compo-

nents of the current vector are

jqk = vqkρ
W ("q, "p, t) =

pk
m
ρW ("q, "p, t), (4.26)

∂

∂pk
jpk = −

∫
Jk("q, "ξ − "p)ρW ("q, "ξ, t)d"ξ. (4.27)

Integrating eq. (4.27) over pk on both sides we can get

jpk = −
∫
Θk("q, "ξ − "p)ρW ("q, "ξ, t)d"ξ. (4.28)

where

Θk("q, "p− "ξ) =
1

2nπnh̄n

∫ V +
k − V −

k

yk
exp [−i

("p− "ξ) · "y
h̄

]d"y.

(4.29)

So we get:

ṗk = mak = jpk/ρ
W =

1

ρW ("q, "p)

∫
Θk("q, "p− "ξ)ρW ("q, "ξ)d"ξ. (4.30)

We then write the force as:

ṗk = mak =
1

ρW ("q, "p)

∫
d"y

V +
k − V −

k

yk
exp [−i

"p · "y
h̄

]×

1

2nπnh̄n

∫
d"ξ exp [i

"y · "ξ
h̄

]ρW ("q, "ξ, t).

(4.31)

In our previous work, if we manage to find a characteristic value of y0k("q), we will have

ṗk = mak =
1

ρW ("q, "p)

∫
d"y

V +
k − V −

k

yk
× exp [−i

"p · "y
h̄

]

< q1...qk + yk/2, ..qn|ρ̂|q1, ...qk − yk/2, ...qn >,

ṗk = mak = −V +
0k − V −

0k

y0k("q)

ρW

ρW

= −V +
0k − V −

0k

y0k("q)
.

(4.32)

where V ±
0k = V (q1, ..., qk ± y0k/2, ..., qn) and the y0k("q) is defined as:

y0k("q) = ∆qk = Ch̄/∆pk. (4.33)

where

∆pk =
√
p2k − (pk)2

pk =
∫
d"pρW ("q, "p, t)pk/

∫
d"pρW ("q, "p, t)

p2k =
∫
d"pρW ("q, "p, t)p2k

∫
d"pρW ("q, "p, t).

(4.34)
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The value C is chosen to be 0.5 for Gaussian wave packets.

Some results from applications

The next step is to apply the effective quantum force to two different two-dimensional

Figure 4.4: The reaction probability for different methods of calculation for model I. The Exact quantum me-
chanical results (EQ) are represented by the blue dashed lines, the red solid lines are the results from our quantum
force (EQF). The results from quantum hydrodynamics (QH) [55] and ETMD results are shown as the red dotted
lines and blue solid lines. The classical results (CT) are shown as the green lines.

Figure 4.5: The reaction probability for different methods of calculation for model II. The Exact quantum
mechanical results (EQ) are represented by the blue dashed lines, the red solid lines are the results from our
quantum force (EQF). The results from quantum hydrodynamics (QH) [55] and ETMD results are shown as the
red dotted lines and blue solid lines. The classical results (CT) are shown as the green lines.
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harmonic potential without coupling (Model I).
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35
where Va = 0.00625, Vb = 0.0106, m = 2000a.u, ω = 0.004. The mean energies are chose to
be E0 = 0.85Va and E0 = 1.12Va for the particle. The results are presented in fig. 4.4.

The second model potential is a symmetric Eckart barrier plus a harmonic potential with
coupling (Model II).

V (q1, q2) = VaSech
2(2q1) + 0.5Vb[q2 + Vc(q

2
1 − 1.0)]2

Sech2(2q1) = 4/(exp (2q1) + exp (−2q1))
2 (4.36)

where Va = 0.00625, Vb = 0.0106, m = 2000a.u, ω = 0.004. The mean energies are chosen to
be E0 = 0.88Va and E0 = 1.15Va. The results are shown in fig. 4.5.

We see good agreements between the exact results and the results from the quantum force
for both applications. The quantum force in the NVE system works well in our two-dimensional
applications.
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Chapter 5
Summary and discussions

It was shown that dynamical quantum effects enter through a separation of paths in the
Feynman Path Integral. This separation was represented by a delocalization parameter. We
argued that by including its characteristic value in an effective quantum force, quantum effects
could be included in molecular dynamics. In this chapter, I am going to briefly summarize the
four papers included in this thesis.

In Paper I, we apply the Classical Wigner method with an effective quantum force (CWE-
QF) using a position independent delocalization parameter η0 on two different one-dimensional
potentials: a symmetric Eckart barrier and an asymmetric Eckart barrier. The results from the
symmetric Eckart barrier are close to the exact ones over a wide range of temperatures. As for
the asymmetric barrier at lower temperature, we encounter one problem, viz. that the matrix el-
ements have two pairs of extrema instead of only one pair. We have to split the phase space into
two different parts assigned different η0 values. If a trajectory moves between the two different
parts, the effective η0 is chosen to be the average between the two η0 values. By this method
the results for the asymmetric Eckart barrier are inspiringly accurate. We use the initial matrix
element to generate the parameter η0 and keep it the same for all the time steps.

This works well for the applications in Paper I. The reason is that the potentials in Paper I
contain only one single barrier and no potential wells to trap the trajectories. Thus the updating
of dynamical quantum effect for a long time is not required.

Also, the effective potential from CWEQF is reduced to the classical form in the following
limits:

(1) The classical limit: when h̄ → 0, the value of the parameter η0 reduces to zero in the
same way as the thermal de Broglie wave length. This can also be deduced from the structure
of the matrix elements plots like the one in fig. 3.2. When h̄ goes to zero, the pair of extrema
will approach the diagonal line. In this way, we obtain an infinitesimally small value of η0 and
a classical force.

(2) The harmonic limit: when the potential is quadratic, the effective force that CWEQF
adopts is reduced to the classical force which is independent of the value of η0 which is seen
from the expression of the quantum force, f eff (q) = V (q−η0/2)−V (q+η0/2)

η0
.

(3) The high temperature limit: when the temperature reaches the high temperature limit,
the β value reduces to an infinitesimally small value. The Bolzmann operator in the thermal-flux
operator will become very narrowly-distributed (like a delta-function). Thus the off-diagonal
elements in the matrix expression will be squeezed to the diagonal line, which brings an in-
finitesimal small value of the η0. The classical force will also be obtained in the high tempera-
ture limit.

The comments above and the satisfying results of CWEQF make it possible to conclude
that the quantum force obtained by using the characteristic delocalization parameter will pro-
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duce a better-performed method compared with the CW method.

In Paper II, we try to improve the CWEQF via position-dependent η0 values thus to ob-
tain a consistent recipe for both symmetric and asymmetric Eckart barriers (without dividing
the phase space into parts). Thus it can be applied to general potentials. Then we apply the
CWEQF to a two-dimensional problem, which is the collinear H +H2 reaction. However, the
effective force is not as simple to construct as in the one dimensional case because we need
two equations for the linearization of the potential difference. The first condition we find is to
match the two points that are delocalized by the characteristic −→η 0 vector, the second condition
is to match the two points that are delocalized infinitesimally along the orthogonal direction to
−→η 0. The effective force we generate in this way produces consistently better results than the
ordinary CW model.

However, we observe that the results for our two-dimensional application is still a distance
away from the exact ones. The reason may be concluded to be as follows: the two dimension-
al potential can be treated as a symmetric Eckart barrier along the reaction coordinate plus a
Morse potential in the orthogonal direction together with coupling between these two coordi-
nates. Assuming that we treat the Morse potential approximately as a harmonic potential, the
dynamics along this coordinate should be classical and independent of the other trajectories. So
if we de-couple the two coordinates, the CW model and CWEQF model will both work much
better. However, coupling does exist and functions in a nontrivial manner. Thus, how to treat
the coupling between the coordinates during linearization will be challenging.

Based on the comments above, we conclude that the future improvement of the CWEQF
should be focused on:

(1) A better linearization mechanism considering the multi-dimensional coupling.
(2) A method to update the delocalization vector in real-time under relatively low numeri-

cal cost.

In Paper III, we compare our effective force with the ETMD method for a micro-canonical
system (NVE). We manage to derive our effective force by propagating the trajectories quasi-
independently. The ETMD method is able to capture the essential quantum effects in the dy-
namics, which is the entanglement between different trajectories and is used to explain the
tunneling dynamics. We try instead to use one parameter (the delocalization parameter y0) to
capture the entanglements.

To obtain the value of y0, we resort to the minimum uncertainty principle. When the y0
values are obtained, we propagate the trajectories independently under an effective force. How-
ever, it is not sound to say we propagate the trajectories independently of each other. Since all
trajectories with the same position but different momenta are investigated to get the delocaliza-
tion parameter, one can see that ’entanglements’ exist between such trajectories. However, the
delocalization parameter does not need the information from the other positions thus makes it
less numerically demanding. Also the quantum force is momentum-independent which reduces
the numerical cost even further.

There are three one-dimensional applications in Paper III: symmetric (asymmetric) Eckart
barrier and the cubic potential. For the cubic potential, as time goes on, the delocalization pa-
rameter within the potential well becomes larger after the higher-momentum trajectories crossed
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over the barrier. The barrier is hence decreased with time. We can see a quantum leak out ef-
fect for this kind of potential [26]. The results are as good as those of the ETMD method with
numerical cost much reduced.

The quantum force obtained using our delocalization parameter in the NVE system has the
following properties:

(1) The force will reduce to the classical force when we take the classical limit of h̄ → 0.
The uncertainty principle is quenched in this limit. So the delocalization parameter shrinks to
zero thus resulting in a classical force.

(2) The quantum force will reduce to a classical force for quadratic potentials as shown in
the discussion for the CWEQF above. The expression of the force is independent of the delo-
calization parameter under quadratic potentials thus classical force is always met.

(3) The delocalization parameter will reduce to zero in the high energy limit. In this limit,
the variance of momentum will develop a large value thus squeeze the delocalization parameter
to be close to zero. Then the classical force is obtained.

In Paper IV, we generalize our quasi-independent trajectory method to two dimensional
problems. The calculation of the reaction probability we obtained yields good agreement with
the results of the ETMD method. It is reasonable for us to predict good behavior in the first ap-
plication which is a symmetric Eckart barrier plus a harmonic potential without coupling, since
the dynamics along the orthogonal direction will be classical all the time. It is only along the
reaction coordinate where quantum correction is needed. However, in the second application
where we switch on the coupling between the two coordinates, the results are still accurate. The
success of the second application thus indicates that the time dependence of the delocalization
parameter will function compared with the method of CWEQF in two dimensional applications
where the delocalization parameter is kept the same for all times. So a future work may be done
for the collinear H +H2 again by using a time-dependent strategy for the determination of the
delocalization vectors.

The quantum force presents good behavior in two different ensembles (NVT and NVE
for the systems). It retains the classical trajectories in the dynamics, however gains extra quan-
tum correction to the dynamics. The future work will basically be focused on two aspects: first,
a more strict derivation of the delocalization parameter for two different operators in the corre-
lation function. Second, the real time up-dating of the delocalization parameter for the CWEQF
method.
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duce a better-performed method compared with the CW method.
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tion parameter, one can see that ’entanglements’ exist between such trajectories. However, the
delocalization parameter does not need the information from the other positions thus makes it
less numerically demanding. Also the quantum force is momentum-independent which reduces
the numerical cost even further.

There are three one-dimensional applications in Paper III: symmetric (asymmetric) Eckart
barrier and the cubic potential. For the cubic potential, as time goes on, the delocalization pa-
rameter within the potential well becomes larger after the higher-momentum trajectories crossed
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the discussion for the CWEQF above. The expression of the force is independent of the delo-
calization parameter under quadratic potentials thus classical force is always met.

(3) The delocalization parameter will reduce to zero in the high energy limit. In this limit,
the variance of momentum will develop a large value thus squeeze the delocalization parameter
to be close to zero. Then the classical force is obtained.

In Paper IV, we generalize our quasi-independent trajectory method to two dimensional
problems. The calculation of the reaction probability we obtained yields good agreement with
the results of the ETMD method. It is reasonable for us to predict good behavior in the first ap-
plication which is a symmetric Eckart barrier plus a harmonic potential without coupling, since
the dynamics along the orthogonal direction will be classical all the time. It is only along the
reaction coordinate where quantum correction is needed. However, in the second application
where we switch on the coupling between the two coordinates, the results are still accurate. The
success of the second application thus indicates that the time dependence of the delocalization
parameter will function compared with the method of CWEQF in two dimensional applications
where the delocalization parameter is kept the same for all times. So a future work may be done
for the collinear H +H2 again by using a time-dependent strategy for the determination of the
delocalization vectors.

The quantum force presents good behavior in two different ensembles (NVT and NVE
for the systems). It retains the classical trajectories in the dynamics, however gains extra quan-
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