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Abstract 

In this thesis magnetic thin films with graded or tilted anisotropy are intensively 
studied for potential applications in spintronic devices.  

A continuum of stable remanent resistance states is realized in Co/Pd multilayers 
based on a perpendicularly magnetized pseudo spin valve (PSV).  The Co/Pd multilayers have 
been deposited using magnetron sputtering. By varying the Co thickness in each repeating 
unit, a graded anisotropy through the multilayer is achieved. We then incorporate this graded 
Co/Pd multilayer into a PSV as the free layer. The remanent resistance states are 
systematically adjustable depending on the reversal field. The gradual reversal of the free 
layer with applied field and the field-independent fixed layer leads to a range of stable and 
reproducible remanent resistance values, as determined by the giant magnetoresistance of the 
device. An analysis of first-order reversal curves (FORCs) combined with magnetic force 
microscopy (MFM) shows that the origin of the effect is the field-dependent population of up 
and down domains in the free layer. Thus, these structures have great potential for 
applications such as field-tunable resistance trimming devices, memristive devices, or 
magnetic analog memories with a continuous number of states per memory cell, thereby 
allowing much higher information storage. 

  We have also successfully realized FePtCu thin films with graded anisotropy. During 
deposition a compositional gradient is achieved by continuously varying the Cu content from 
the top to bottom. After annealing at a proper temperature, the top Cu-poor regions remain in 
the as-deposited soft A1 phase, while the bottom Cu-rich regions transform into hard L10 
phase. Hence the gradient anisotropy is established through the film thickness. The critical 
role of the annealing temperatures (TA) on the resultant anisotropy gradient is investigated. 
Magnetic measurements support the creation of an anisotropy gradient in properly annealed 
films which exhibit both a reduced coercivity and moderate thermal stability. The reversal 
mechanism of graded anisotropy has been investigated by alternating gradient magnetometer 
(AGM) and magneto optical Kerr effect (MOKE) measurements in combination with the 
FORC technique. The AGM-FORC analysis clearly shows the soft and hard phases. MOKE-
FORC measurement, which preferentially probes the surface of the film, reveals that the soft 
components are indeed located toward the top surface. We provide a detailed study of the how 
the anisotropy gradient in a compositional graded FePtCu film gradually develops as a 
function of the TA. By utilizing the in-situ annealing and magnetic characterization capability 
of a physical property measurement system (PPMS), the evolution of the induced anisotropy 
gradient is elucidated. These results are important and useful for the solving the magnetic 
‘‘trilemma’’ of magnetic recording technology. 

The Co/Pd-NiFe exchange spring system is investigated. Due to the competition 
between the strong perpendicular anisotropy of the Co/Pd multilayer and the in-plane shape 
anisotropy of the NiFe, the magnetization in the NiFe tilts out of the film plane. Experimental 
data from conventional magnetometry, MFM, and ferromagnetic resonance (FMR), along 
with one-dimensional simulations, show that the titling angle in the NiFe layer is highly 
tunable from 0 to 60° by simply changing the thickness of NiFe. We employed the Co/Pd-
NiFe exchange spring system with appropriate NiFe thickness as the polarizer in nano-contact 
spin torque oscillators (STOs) which show vortex oscillations at low fields.  
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Chapter 1 Introduction 

1.1 Background 

1.1.1 Spintronics 

 

Electrons have a charge and a spin, but most conventional electronic devices only 

exploit the electron charge in the conduction mechanics while ignoring the spin degree of 

freedom. Spintronics (often synonymous with magneto-electronics) is a technique which 

studies and utilizes the both the electronic charge and spin of the electrons. Taking advantage 

of the spin degree of freedom opens the door for numerous interesting phenomena, novel 

functionalities, and new devices. 

The discovery of giant magnetoresistance (GMR) is considered the milestone in the 

development of spintronics, which consequently resulted in intensive research on magnetic 

materials and magnetic thin films. The first generation spintronic devices were the read heads 

of hard disk drives (HDDs).  In 2007, Peter Grünberg and Albert Fert  were awarded the 

Nobel Prize for their discovery of GMR in Fe/Cr/Fe trilayers1 and (Fe/Cr) multilayers2, 

respectively.  

Ferromagnetic metals, e.g. Fe, Co, and Ni, unlike normal metals, have a splitting of 

spin-up and spin down states at the Fermi level in the band structure, as shown in Fig.1.1(a),  

thereby allowing different conduction properties of each spin channel. The electrons in 

conduction band sometimes can be polarized: there are more spins tending to point in one 

direction than the other one. Therefore such magnetic materials can act as spin-polarizers. If a 

current is passed through two magnetic layers placed next to each other, the incoming 

unpolarized electrons go through the first magnetic layer and are preferentially polarized in 
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the direction of the magnetization of that layer upon transmission. The resistance through a 

stack of magnetic layers depends on the relative density of states of the majority spin-carriers 

at the Fermi level between the magnetic layers. In the other words, the stack encounters a 

low-resistance if the magnetizations of the two ferromagnetic layers are parallel and a high-

resistance if the magnetizations of the two layers are anti-parallel. The difference between the 

low-resistance and high-resistance states can be a few tens of percent 3 for spin-valves (two 

ferromagnetic layers separated by a conductive non-magnetic spacer, e.g. Cu) or several 

hundreds of percent4,5 for magnetic tunnel junctions (magnetic layers separated by an 

insulating barrier such as MgO or Al2O3).  

Spin-dependent scattering is the basis of the GMR effect. Sir Nevil Mott proposed a 

two-current model to schematically explain the GMR effect, as shown in Fig.1.1 (b). The 

equivalent circuits for the two cases are shown at the bottom of Fig.1.1 (b). When the 

electrons pass through the first magnetic layer, majority of the electrons are polarized as the 

magnetization of the first layer. Then the electrons go through the non-magnetic layer, 

maintaining their polarization if the thickness of the non-magnetic layer is smaller than the 

spin diffusion length. The total resistance of the system depends on the relative direction 

between the polarization of the electrons and the magnetization of the second layer. If the two 

magnetization layers are parallel, majority of the electrons can easily pass through the second 

magnetic layer, while the minority electrons are strongly scattered, schematically represented 

by a resistor. As the two resistors are in parallel, this results in a relatively low resistance as 

the majority electrons are shunted through that spin channel. Similarly, when the two 

magnetic layers are anti-parallel, the equivalent circuit results in a high resistance. Both the 

spin-dependent scattering inside the magnetic layers and at the interfaces contributes to the 

GMR effect. Therefore the roughness at the interface is very important.6 In this thesis we 
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utilized both atomic force microscopy (AFM) and X-ray reflectivity (XRR) to directly and 

indirectly determine the roughness. 

 

Figure 1.1 (a) Schematic band structure of a ferromagnetic metal showing the energy band 
spin splitting. (b) Explanation of the GMR effect: spin-dependent electron scattering and 

redistribution of scattering events upon antialignment of magnetizations. Black arrows are 
the magnetizations of the ferromagnetic layers. 

 

The second generation of spintronics research has been focused on the spin-transfer 

torque (STT) effect, which was predicted by John Slonczewski9 and Luc Berger.10 When an 

electron current passes through one magnetic layer, the electrons become preferentially spin 

polarized, and when these polarized electrons transport to another magnetic layer, due to 

conservation of the angular momentum, the polarized electrons can transfer angular 

momentum, thereby exerting a torque on the magnetization of another magnetic layer. Under 

the correct conditions STT can either change the orientation of or promote stable oscillations, 

typically in the microwave frequency range, of the magnetization. This effect has rapidly 

gained tremendous interests from scientists and researchers not only from the fundamental 

point of view, but also the immediate applications to second generation spintronics devices.  

Two main applications are STT-magnetic random access memory (STT-MRAM) and spin 

torque oscillators (STOs).  
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Fig.1.2 schematically shows the basic STT mechanism. In macroscopic theory, the 

ferromagnet is treated as one magnetization vector  ⃗⃗ . The equation of motion of a magnetic 

moment under the applied magnetic field is summarized as Landau–Lifshitz–Gilbert (LLG) 

equation 

  ⃗⃗  

   
  | | ⃗⃗   ⃗⃗       ⃗⃗  

  ⃗⃗  

   
                   

Where  ⃗⃗  is the magnetization vector,    is the gyromagnetic ratio,   =     
 

 , and     is the 

Gilbert damping constant which represents all the dissipative relaxation mechanisms. The 

effective field is the negative gradient of the free energy density with respect to the 

magnetization 

 ⃗⃗        ⃗⃗     ⃗⃗   (                   )                     

The Zeeman energy term          ⃗⃗   ⃗⃗    , and the demagnetization energy terms 

are magnetostatic in origin, the anisotropy energy from the crystalline or interfacial energies, 

and the well-known exchange energy due to spin-dependent quantum mechanical interactions.  

In this case, we assume that the exchange energy is strong enough to ensure that the entire 

spins move together as one “macrospin”. As illustrated in Fig.1.2, when an external magnetic 

field is applied,  ⃗⃗      generates a torque in the form of  ⃗⃗   ⃗⃗     which causes the magnetic 

moment to precess around the effective field. However the magnetic moment is not able to 

freely precess forever and the damping term, proportional to  ⃗⃗    ⃗⃗  

   
 , pushes the magnetic 

moment to eventually relax along Heff.  

Slonczweski proposed that an extra term should be added to the LLG equation to form 

the LLG-S equation: 
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  ⃗⃗   

   
  | | ⃗⃗    ⃗⃗       ⃗⃗   

  ⃗⃗   

   
  

| |

    
    ⃗⃗     ⃗⃗     ⃗⃗    ,  

the last term is the Slonczweski spin torque term with the magnitude of  

        
  

   
 

 ⃗⃗   is the magnetization of the free layer,  ⃗⃗   is the magnetization of the fixed layer,   

is the angle between  ⃗⃗   and  ⃗⃗  ,   is the current density, d is the free layer thickness, and 

      
  

         
  

  

         
 , where             are all material dependent parameters.11  

Depending on the current density, there are two behaviors that the free layer can 

realize. If the current density is large enough the Slonczweski spin torque term can 

compensate the dissipative Gilbert damping term and the free layer will undergo a steady 

precession. If the current density goes even higher, the spin torque term can be large enough 

to completely switch the magnetization direction of the free layer.  

 

Figure 1.2. Illustrantion of the magnetization precession. 
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1.1.2 Magnetic anisotropy  

 

Ferromagnetic materials show directional dependence of magnetic properties, e. g. the 

energy required to magnetize a ferromagnetic crystal depends on the direction of the applied 

magnetic field with respect to the crystal axes. The physical basis that underlies a preferred 

magnetic moment orientation in ultrathin magnetic films and multilayers can be quite 

different from the factors that account for the easy-axis alignment along a symmetry direction 

of a bulk material, and the strength can also be markedly different.12 This magnetic anisotropy 

plays key roles in this thesis. Furthermore, from both the fundamental and applied points of 

view, magnetic anisotropy is one of the most important properties of magnetic materials.  

A Co/Pd multilayer sustains perpendicular anisotropy due to the interface or surface 

anisotropy. The effective magnetic anisotropy energy      of the so called interface or 

surface anisotropy could be attributed to a volume contribution    and an interface 

contribution   . It approximately obeys the relation as: 

          
  

 
   , 

   is the thickness of an individual magnetic layer, this equation is commonly used in 

experiments. Here, a positive      represents that the magnetization is preferred to be along 

the film normal. The    and    are usually determined from a plot of        vs. thickness of 

Co, tCo. Fig.1.3 shows a typical example for Co/Pd multilayers.13 The negative volume 

anisotropy    (negative slope in Fig.1.3) favors in-plane magnetization. However, the 

intercept at zero tCo indicates positive interface anisotropy    , favouring perpendicular 

magnetization. Below a certain thickness  , the interface anisotropy contribution outweighs 

the volume contribution, resulting in a perpendicularly magnetized system. An interesting 

phenomena regarding a Co/Pd multilayer is that when tCo changes, the anisotropy of each 
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repeating unit also changes. By gradually varying the thickness of Co in each repeating unit, 

we can also realize a graded anisotropy. 14 

 

 

Figure 1.3.        vs. tCo of Co/Pd multilayer. 13 

 

Anisotropy can also originate from the shape of the magnetic element, and is known as 

shape anisotropy. Shape anisotropy originates from the dipolar interactions. Dipolar 

interactions are long range and depend on the shape of the sample. Therefore, shape 

anisotropy becomes important in thin films and often aligns magnetic moments in-plane. The 

dipolar energy is calculated by considering the magnetostatic interaction between the surface 

magnetization induced at the surface of a thin film. In a continuum magnetic thin film, the 

dipolar anisotropy energy density (per unit volume) is  

  
 

 
    

       

   is the saturation magnetization, and subtends an angle   with the film normal.  
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There is another type of magnetic anisotropy called magnetocrystalline anisotropy, 

which originates from the spin-orbit interaction. It takes more energy to magnetize the 

ferromagnetic materials along certain directions than others. And these directions are usually 

related to the principal axes of its crystal lattice. FePt and FePtCu are one typical magnetic 

material with high magnetocrystalline anisotropy. One manifestation of this high anisotropy is 

that fully ordered FePt has a very high coercivity. When doping Cu into FePt, the Cu 

composition affects the strength of the anisotropy. In one single film, we can systematically 

change the composition of Cu, and therefore the anisotropy can also be gradually varied. 
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1.2 Motivation 
 

1.2.1 To increase the magnetic storage capacity: a non-volatile multi-level 

spintronics memory element  

 

Magnetic recording technology is used in various storage devices such as a magnetic 

tape, floppy disk, and hard disk drives (HDDs). Much effort is focused on developing 

technology to increase the magnetic storage capacity. Conventionally digital magnetic storage 

devices depend on the realization of two stable magnetization states which represents ‘‘1 ’’ 

and ‘‘0 ’’ in each storage cell, or bit. Most approaches pursued to increase the storage 

capacity are devoted to reducing the size of each bit. In this thesis, we propose an alternative 

technique. Instead of simply storing two states in each bit, we suggest a scheme of magnetic 

storage that allows a number of states in one bit.15–17 The information is written by magnetic 

fields and then stored in the magnetic layers in the form of a near continuum of different 

resistive states. The device is inherently nonvolatile and the remanent multi-level resistances 

are read out by the GMR effect. 

In this thesis, we successfully demonstrated a room temperature, nonvolatile memory 

element with stable multilevel resistance states. This element is realized in pseudo spin valves 

(PSVs) with perpendicular anisotropy and a graded anisotropy free layer, both based on 

Co/Pd multilayers. Furthermore, we investigated the underling physics by first-order reversal 

curves (FORCs) combined with magnetic force microscopy (MFM).  

1.2.2 A possible solution to the magnetic recording trilemma: magnetic 

media with graded anisotropy 

 

As one of the traditionally mass magnetic memory options, HDDs use a continuous 

film based media to store information. The roadmap to the areal bit densities beyond 1Tbit/in2 
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encounters several bottlenecks, which are best summarized as the magnetic recording 

trilemma,18 sketched in Fig. 1.4. Each bit, represented by one color consists of many grains 

(hexagons in Fig. 1.4). The signal-to-noise ratio (SNR) is approximately given by the 

expression:  

           , 

where N is the number of grains in a bit.  Obviously the SNR would benefit from an 

increased number of grains per bit. To maintain both a sufficient SNR and high bit density, 

the volume of the individual grains must decrease. In magnetic recording, in order to keep the 

thermal stability, the energy barrier, which is simply the product of the anisotropy, Ku, and 

volume, V, of the individual grain, EB=KuV, must be larger than the thermal fluctuation energy, 

kBT.  However, the reduction of the grain volume leads to the reduction of the energy barrier 

(KuV),; therefore the anisotropy must increase in order to maintain thermal stability as the 

grain volume shrinks. L10-ordered FePt or CoPt alloys with high crystalline anisotropy 

provide an ideal solution to this problem. However, the anisotropy cannot be made arbitrarily 

large as the coercivity, or switching field, of each grain scales with the anisotropy. The 

maximum magnetic field generated by the write head limits the switching field of each grain. 

All three factors of the magnetic recording trilemma must be dealt with as the bit densities 

continue to increase. 
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Figure 1.4. The schematic highlighting the magnetic recording trilemma. 

 

Both new types of magnetic recording media, such as tilted 19,20 and exchange coupled 

composite (ECC)21, as well as new recording schemes, such as heat-assisted magnetic 

recording (HAMR)22 and microwave-assisted magnetic recording (MAMR)23, have been 

proposed as possible solutions to push areal bit density well beyond 1Tbit/in2.  

Graded anisotropy magnetic recording media, where the anisotropy is  varied through 

the thickness of the magnetic media, has been recently proposed24 to continue the quest of 

higher recording density. This system can be seen as an extension of the soft/hard ECC type 

bilayer solutions.  The general idea is that the magnetization of the soft layer (low anisotropy) 

can be easily changed by a small field.  However, a domain wall is created at the soft-hard 

interface. This domain wall functions as an additive effective field to assist the reversal of the 

hard layer (high anisotropy). Therefore the hard layer can be written by a small field. At the 

same time, the energy barrier that against the thermal fluctuation is anchored by the high 

anisotropy of the hard layer alone.  

The next generation of the bilayer system is the trilayer system which can further 

decrease the writing field. Finally, the concept of a multilayer system with continuously 
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varying anisotropy is introduced and is referred as ‘‘graded media”.24 Fabrication of the so-

called ‘‘graded media” is challenging and has until now mostly based on the Co/Pd or Co/Pt 

multilayer structure. In this thesis, we will discuss a simple approach to fabricate a 

continuously graded-anisotropy single film and the resulting magnetic properties.   

 

 1.2.3 To remove the magnetic field requirement for spin torque oscillators: 

spin polarizer with tilted anisotropy 
 

Interest in the utilization of the STT effect,25,26 by which a spin polarized current can 

switch or excite high frequency oscillations in a magnetic layer,27 is increasing due to a 

wealth of potential device applications.28 In particular, research is mostly devoted to STT-

MRAM29 and spin-torque STO applications. The STOs are generally divided into two types 

by geometry: nano-pillar30–32 and nano-contact STOs.33 In this thesis, we mainly focus on 

nanocontact STOs.  

The STO is a nano-scale spintronics device capable of microwave generation 

frequencies in the 1- 60 GHz range with quality factors ( FWHMffQ  / ) as high as 18,000.34 

The microwave frequency can be tuned both by the drive current and an applied field. 

Additional frequency tuning can also be achieved by varying the angle of the applied 

magnetic field.35 They are relatively easy to fabricate in large quantities, and compatible with 

standard silicon processing.  

However, STOs typically have two major disadvantages for commercialization, first is 

the low power output. This problem is able to be solved by increasing the GMR, or perhaps 

even going to tunneling magnetoresistance (TMR), or synchronizing several STOs. Second is 

STOs based on entirely in-plane anisotropy materials still require a large (in the order of a few 
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thousand Oersteds), static, external magnetic field for operation,36 which is one of the 

challenges for future commercialization. Removing the need of the magnetic field is therefore 

becoming an interesting topic for research.  Several approaches have been proposed, 

including the wavy-torque STOs,37 STOs with a perpendicular magnetic fixed layer,38 vortex 

oscillations, 39–43 and tilted polarizer STOs.44–50 

The exchange coupled system [Co/Pd]/NiFe is suggested as a promising choice as a 

tilted spin polarizer in STOs. The Co/Pd multilayer has strong perpendicular anisotropy while 

the NiFe has in-plane shape anisotropy. Due to the competition of two distinct anisotropies, 

unique magnetic configurations are achieved. In particular the magnetization in the NiFe layer 

is tilted out from the film normal as shown in Fig.1.5 (a). Interestingly, the tilted angle is 

easily tuned over a broad range by simply varying the NiFe thickness. Potentially, the Co/Pd-

NiFe multilayer can be used for the polarizer of the STO, where the fixed layer M is tilted out 

of the film plane, as shown in Fig. 1.5 (b). The spin polarization hence has both in-plane (IP) 

and out-of-plane (OOP) components (Mx and Mz). Mz is able to drive the free layer into 

precession without the need of external magnetic field while Mx generates a large 

magnetoresistance (MR), e.g. a radio-frequency (rf) output without the need of an additional 

read-out layer.  

In this thesis we also fabricated tilted polarizer nano-contact STOs. The fixed layer is 

the Co/Pd-NiFe exchange spring system with an appropriate tilted angle according to our 

studies on the thin films. And the free layer is NiFe which is normally used in conventional 

nano-contact STOs.51–53 We measured the oscillation frequency of tilted polarizer nano-

contact based STOs.    

 

(a) 
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Figure 1.5 The schematics of tilted STO (a) and the schematic structure of the tilted 
polarizer composed with Co/Pd-NiFe exchange spring system with the magnetization tilted 
  with respect to the film plane (b).   is adjustable by varying the thickness of top NiFe 

layer. 
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Chapter 2 Experimental methods 
 

2.1 Fabrication techniques 

2.1.1 Magnetron sputtering  

 

Sputtering is one of the most widely used physical deposition techniques and is very 

versatile with high yields. All vacuum compatible materials (with low enough vapor pressure) 

can be sputtered, including metals, semiconductors, and insulators, either magnetic or non-

magnetic. Moreover, sputtering is able to grow high quality films with low roughness, rigid 

adhesion to the substrate, and large-area thickness control. The main technique in this thesis 

used to deposit thin films is called magnetron sputtering. 

The main components of magnetron sputtering are schematically shown in Fig.2.1. 

The sputtering guns are installed in the vacuum chamber which is simultaneously pumped by 

the oil pump (which both provides a rough vacuum and “backs” the turbo pump) and turbo 

pump to achieve the lowest possible base pressure. The source material (“target”) is mounted 

in a Cu electrode which is water cooled and serves as a cathode. The target is eroded and 

material ejected in the form of neutral particles travels to the surface of the substrate, e.g. Si 

wafer. The substrate is transferred from a pre-pumped loadlock chamber and is able to rotate 

during the deposition in order to deposit thin films with good uniformity. An electrically 

isolated shield serves as the anode. The sputtering gun is attached to a power supply to 

maintain the sputtering plasma state while the plasma is losing the energy into the 

surroundings. The plasma state is a "dynamic condition" where neutral gas atoms, ions, 

electrons, and photons exist in a near balanced state simultaneously. The magnets, hence 

magnetron sputtering, in the cathode are helpful to confine the plasma near the target surface. 

Typically an inert gas like Argon is utilized as the working gas. The working gas pressure in 
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the system is one of the basic parameters to be controlled during film deposition. For reactive 

sputtering, oxygen and nitrogen gases can also be used, often simultaneously with Ar gas. 

The following three steps highlighted by the dashed boxes in Fig.2.1 will give a more 

comprehensive understanding of the sputtering process. Step 1: the ever present ‘‘free 

electrons’’ are accelerated by an electric field, created between the negatively charged 

electrode and the grounded gun shield anode. These accelerated electrons will bombard with 

Ar atoms in their path, and will drive the outer shell electrons of the neutral gas atoms off, 

resulting in an ionized Ar+ plasma. This step is hence called ionization (e-+Ar→ Ar++ 2e-).   

Step 2: after ionization, the positively charged Ar ions (Ar+) are accelerated toward the 

negatively charged electrode and strike the surface of the target. By simple energy transfer, 

the Ar+ blasts loose a neutral particle from the target as well as more free electrons, which are 

called secondary electrons. These additional electrons are useful for the ionization step and 

preservation of the gaseous plasma. Step 3: the target atom reaches the substrate. The free 

electrons, then find their way back into the outer shell of the Ar ion, thereby changing the ion 

back into an electrically balanced Ar atom. Meanwhile, due to the conservation of energy, the 

resultant gas atoms gain energy from the free electron and then release the energy in the form 

of photons. Moreover, the secondary electrons may excite the Ar atoms into higher energy 

levels which rapidly decay, emitting photons, and therefore the plasma appears to be glowing.  

By using the magnets in the negatively charged electrode, the plasma is confined near the 

surface of the target. This dramatically enhances the probability of ionizing a neutral gas and 

the rate that the Ar ions bombard the target, allowing for a lower Ar working gas pressure. 

However, it has the disadvantage of a more inhomogeneous target erosion than a simple 

planar geometry. DC-magnetron sputtering (with a DC power supply attached to the target) is 

usually limited to conducting materials like metals and doped semiconductors because the Ar+ 
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ions would quickly charge up the surface of the insulating or semiconductor target, resulting 

in the electric field between the cathode and the anode to die off.  This problem can be 

circumvented by applying a radio frequency (RF ~13.6 MHz) AC-voltage to the target when 

depositing the insulating and semiconductor materials. This technique is known as RF-

magnetron sputtering which typically has much lower sputtering rate than DC sputtering.  

In magnetron sputtering the electrons are forced to spiral orbits near the target surface 

due to the magnets below the target. This technique has many benefits. Firstly, the mean free 

path of the electron is increased, raising its ionization probability. Secondly, electrons trapped 

by space-charge effects and magnetic fields are less likely to escape and bombard the 

substrate. Thirdly, localizing the plasma confines the Ar+ ions to a volume near the target 

surface and keeps their impact energy high - maximizing the sputtering (and, hence, 

deposition) rate. The resulting films are denser, with a greater adhesion to the substrate. 

 

Figure 2.1. Schematic of the magnetron sputtering. 
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2.1.2 Fabrication of nano-contact STOs  

 

As mentioned in the introduction chapter, in this thesis, we only focus on the nano-

contact STOs. We fabricate our nano-contact STOs on 4” wafers. The schematic of each 

nano-contact STOs is shown in Fig. 2.2. At first, the basic magnetic properties, e.g. the 

magnetic major loops and the CIP-GMR etc. are tested on the blanket film. Conventionally, 

all the easy magnetic axis of the constituent magnetic layers in the material stack 

preferentially lie in-plane due to shape anisotropy. However, for special purposes, the 

materials stack can vary, e.g. we use fixed layer with tilted magnetization in this thesis. 

Second, the material stack is patterned to an 8×16 µm2 mesa by optical lithography. Then a 

SiO2 interlayer is deposited by chemical vapor deposition, covering the entire mesa. The 

nano-contact is defined by electron-beam lithography. Subsequently, reactive ion etching 

etches through SiO2 layer and reaches the metallic capping layer. The final stage is to coat the 

sample with lithographic resist, and another optical lithographic step defines the profiles of 

coplanar waveguides above and outside the mesas. The actual waveguides are defined by a 

final lift-off step.  

 

Figure 2.2 Schematics of the structure for nano-contact STOs. 
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2.2 Structural characterization techniques   

2.2.1 X-Ray Diffractometer 

 

The high resolution Philips X’pert Material Research Diffractometer (MRD) is 

utilized for structural characterization, e.g. crystalline structures and the interface roughnesses 

of thin films in this thesis. The detailed discussions will be given later. The basic components 

of this diffractometer are schematically shown in Fig. 2.3. 

 

Figure 2.3 Schematics of the basic components for X-ray diffractormeter. 

 

The high-speed electrons generated by a hot tungsten filament (cathode) are 

accelerated by a high voltage toward the anode, which is a water-cooled block of Cu. A 

variety of different materials (e.g. Cu, Al, Mo and Mg) can be used for the anode and each 

generates X-rays with different characteristic wavelength. In our system, the Cu is used as the 

desired target metal. The incident electrons release the orbital electrons of Cu from the K shell 

(n=1). The electrons from the higher levels L (n=2) and M (n=3) may then drop down to fill 

the void of the K shell, hence emitting the X-ray with specific wavelength. The characteristic 
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X-rays include Kα1 (λ= 1.54059 Å), K α2 (λ= 1.54059 Å) which correspond to the L→K shell 

transition and the Kβ1 (λ= 1.30225 Å) which is from the M→K shell transition. In addition to 

these very discrete atomic transitions, inelastic processes lead to a continuous background 

radiation with relatively low intensity known as Bremsstrahlung. The normal X-ray tube will 

generate a so-called ‘‘raw’’ X-ray beam containing highly divergent characteristic X-rays 

(Kα1, Kα2, Kβ1) and a continuous background. However, the Kα2, Kβ1 will cause extra peaks in 

XRD patterns. This can be eliminated by adding filters.  

Firstly, x-rays generated from the x-ray tube pass through a set of mirrors which 

consists of a parabolically shaped substrate deposited with Co/Cu multilayer. By tuning the 

thicknesses of the Co/Cu multilayer, the Kβ1 and Bremsstrahlung background are highly 

suppressed during reflection; meanwhile the Kα1 and Kα2 lines are preferentially reflected. The 

further filtering occurs by using a monochromator which are made of 4 high quality Ge (220)-

oriented crystals. Generally, those Ge (220) crystals are used to dramatically eliminate the Kα2 

line and decrease the divergence of the incident x-ray beam to less than 12 arcsecond (~ 0.003

º). The angle of incident x-rays is tuned to the (220) Bragg diffraction of the Ge crystal. The 

X-ray beam undergoes bounces on each side of the crystal before exiting. The exiting beam is 

still parallel and has a much smaller divergence. Unfortunately, the intensity of the ‘‘raw’’ x-

ray beam is further reduced in this step.  

Overall, after the two steps of filtering, the incident x-ray beam becomes highly 

monochromatic with small divergence, which is suitable for x-ray diffraction and reflectivity 

measurements. The sample holder can be rotated about the x, y, and z axis shown in the 

Fig.2.3, allowing the relative angles between sample and detector to be varied. Finally the 

diffracted or reflected x-rays can be collected by a detector.  
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2.2.2 X-Ray Diffraction (XRD) 

 

Utilization of XRD provided the first direct evidence for the periodic atomic structure 

of crystals. It has been developed as a non-destructive and versatile technique for the 

structural characterizations of solids, as well as liquids. In this thesis, XRD is used to 

determine the phase transition, the degree of the chemical ordering, and the lattice parameters 

for FePt and FePtCu thin films.  

Bragg’s law 

In total, about 95% of all solids can be described as crystalline. As discussed above, 

the x-rays used herehave awavelength in the order of 1Å, which is comparable with the 

distance between atoms in a crystal. This is necessary to provide diffraction of an incident x-

ray beam. The atomic planes of a crystal then cause the incident beam of x-rays to interfere 

with one another as they leave the sample, and this phenomenon obeys the Bragg’s law. As 

schematically shown in Fig.2.4, in the real space, constructive interference occurs only when

nBCAB  , which directly leads to the Bragg’s law. Where n is integer, λ is the 

wavelength of incident x-ray, d is the distance between the atom layers in a crystal. The x-ray 

is incident at an angle   with respect to the sample surface. As the sample (θ) and detector 

(2θ ) axis are scanned through all available angles, peaks in the diffracted intensity will appear 

when Bragg’s law is satisfied and can be used to determine the lattice spacing, d, and 

therefore the crystal structure of the sample. This type of scan is usually referred to as θ-2θ 

scan and mostly used in this thesis. The x-ray patterns with diffracted Bragg peaks can then 

provide a useful “fingerprint” of specific materials. Dopants, defects, or stresses and strains 

within the lattice could shift the Bragg peaks to either higher or lower positions.    
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Figure 2.4. Bragg’s law (left) and the scattering geometry (right). 

 

In the reciprocal space, the condition for occurring constructive interference is: the 

magnitude of the scattering vector, which is the vector between two reciprocal lattice points, l



Q l must equal n
d

2 , Bragg’s law can also be derived in the same manner as in the real space, 

as shown in Fig.2.4 : 

 


 QKK if
,  l



Q l = 


 sin4 ,  nd  sin2  

During the θ-2θ scan, the scattering vector is always perpendicular to the sample surface and 

only a 1-dimensional line, along Qz, of reciprocal space is probed. 

2.2.3 X-Ray Reflectivity (XRR) 

 

Using the same X-ray diffractometer, but when the incident angle is small (θ< 10°), is 

typically called x-ray reflectivity (XRR)54. Such small angle gives rise to the total reflection 

of the x-ray. XRR is a very useful tool for estimation of density, thickness, and roughness of 

thin film structures, either single-layer or multilayered. Fig.2.5 shows the XRR of a 20 nm Ta 

deposited on the Si wafer. At very low angels, a plateau that is nearly equal to the full beam 
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intensity is due to the total external reflection of the x-rays. The abrupt drop of the intensity 

then defines the critical angle. The position of the angle is proportional to the electron density 

of the film, which is then directly proportional to the mass density of the film and therefore 

the specific material. As the angle increases, a series of oscillations are observed. The period 

of the oscillations is inversely proportional to the film thickness. Therefore the XRR 

technique can be used to check the thickness of single layered thin films. Finally, the position 

of where these oscillations vanish gives a measure of the roughness. Generally, a thin film has 

smaller roughness when the oscillations persist to higher angles. 

 

Figure 2.5. XRR measurement of a 20 nm thick Ta deposited on Si wafer. 

 

For multilayered stacks, the XRR signature becomes difficult to interpret because the 

observed reflections are the supposition from all the layers.  In practice, the pure single 

layered thin films rarely exist due to the oxidization at the topmost of the film. The calculated 
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XRR data is then used to compare with the measured XRR data. The thickness, mass density, 

and roughness of each layer are used as the fitting parameters until the calculated data and the 

measured data almost overlap. The degree of overlapping gives a measure of the accuracy for 

the parameters.   

2.2.4 Atomic Force Microscopy (AFM) 

 

An atomic force microscope is a type of scanning probe microscope used to 

investigate the surface topology and mechanical properties using a sharp tip as the probe. 

Unlike XRR which can probe the interface roughness of the multilayered stacks, AFM can 

only detect the upmost layer, or surface, of a stack. 

As in most scanning probe microscopes, an AFM consists of three primary parts:  (i) 

probe and scanning head, (ii) detection system (detector and electronics), and (iii) a control 

unit with the feedback loop (Fig. 2. 6.). For the first part, the probe component is constructed 

with a ~µm long and < 100 Å diameter sharp tip situated at the end of a cantilever, which is 

generally more than several hundred µm long and coated with reflective material. The whole 

piece is fabricated by the state-of-the-art technique and mounted on a piezo driven scanning 

head which can provide both vertical and horizontal motion. Driven by this system, the tip can 

be brought to within a very close distance to the substrate, where the atomic forces become 

dominant. Consequently, the cantilever can be bent or deflected under the tip-substrate 

interaction. By moving the tip relative to the substrate under the approached condition, the 

cantilever can bend, following the surface topology. This small bending signal can be 

measured by the detection system, which is usually a laser optical leverage unit including a 

laser source and a split photodiode detector. By projecting the laser beam to the free end of 

cantilever, the cantilever bending will be amplified by the beam reflection and the light signal 
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can be collected on the split photo-detector. Further conversion from optical signal to 

electronic signal enables the control unit to interpret signal change referring to the set point 

and translate either this signal change or feedback response into an image showing the 

substrate geometric or mechanical characteristics. 

 

Figure 2.6. Schematic of AFM components. 

 

The tip-substrate interaction is a result of combined intermolecular interactions, with 

the most common one being the van der Waal force. The distance dependence of tip-substrate 

interaction is plotted in the Fig.2.7. Two working regimes, e.g. contact and non-contact, have 

been marked in the repulsion and attraction interaction region, respectively. By approaching 

tip in the appropriate regime, the AFM can work in the contact or non-contact mode. 

Furthermore, AFM can image the substrate with a vibrating tip “tapping” the surface by 

combining both virtue of contact mode and non-contact mode. In the following, we will give 

more detailed description on each mode. 
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Figure 2.7. The distance dependence of tip-substrate interaction. 

 

In the contact mode, the tip approaches the surface of the sample so that the repulsive 

interaction bends the cantilever upwards compared to its equilibrium position. Under an 

ambient environment, additional capillary forces, e.g. due to water on the sample, may 

increase the adhesion between the cantilever and substrate. Thus, at the ideal equilibrium 

condition, the sum of capillary force and spring force due to the cantilever deflection should 

be equal to the repulsive force between tip and sample. Given the fact that the capillary force 

can be regarded as constant after the contact, one only needs to record the deflection of 

cantilever at each measuring point to plot the surface geometry during scanning the tip over 

the sample surface, which can be done in the split photodiode detector. As shown in Fig.2.8, 

the difference between photodiode A and B (A-B) over the total light intensity (A+B) should 

be compared with the set point of the system at each measuring point. Subsequently, two 

methods can be used to extract the information depending on the status of feedback loop (Fig. 

2.9). If the feedback loop is on, the control unit will give command to the scanning head to 
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move vertically to compensate the deflection of the cantilever such that the deflection of the 

cantilever is equal to the set point and the signal sent out by feedback loop can be plotted into 

the topographic image. This mode is also called constant-force mode since the feedback loop 

works to guarantee the interaction is equal to the set point. If the feedback loop is off, the 

scanning head will not move to adjust the difference from the set point and the deflection of 

cantilever can be directly plotted into the image, this is called constant-height mode.  

 

Figure 2.8. Schematic of photodiode work principle. 

 

In the non-contact mode, AFM uses a vibrating cantilever to probe the surface where 

the dominant force is the long distance van der Waals attraction. The avoidance of the direct 

contact to the sample makes this mode nondestructive for both sample and tip and is 

especially suitable for soft materials. Apart from this, the vibration cannot generate a constant 

force between the tip and sample. Hence, instead of the static force as the set point in the 

contact mode, the vibration frequency or amplitude are chosen as the set point parameters. 

Generally, the vibration frequency is selected automatically as a value around the natural 

resonant frequency when the tip is far away from the surface. By keeping the vibration 
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frequency or amplitude through feedback loop control, the average tip-substrate distance is 

constant. The geometric information can be produced into image by moving the scan head, 

similar as the constant force method of the contact mode. However, in a humid environment, 

the real substrate information can be limited by an inevitable water layer. 

 

Figure 2.9. Schematic of constant heigh mode and constant force mode. 

 

In order to avoid the damage to the tip due to the strong friction like contact mode 

AFM and meanwhile more effectively image the real substrate surface information with 

complicated surface topology compared to non-contact mode, the tapping mode is introduced. 

The working principle of the tapping mode is similar as the non-contact mode by using the 

cantilever vibration technique. But the tip will invade into the repulsion regime so as to “tap” 

the substrate rather than barely sense the surface from a long distance. The driving frequency 

is the same as the non-contact mode, existing around the natural resonant frequency. The 
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average tip-substrate distance is dependent on the amplitude variation and can be used as the 

signal for the feedback control. By keeping the amplitude constant, the feedback response can 

be plotted into the image as the contact mode (constant-force method). In this work, all the 

measurements were done in this tapping mode given its advantages.  

2.3 Magnetic properties characterization techniques 

2.3.1 Magnetic Force Microscopy (MFM)  

 

MFM is the main technique used in this thesis to investigate the magnetic domain structures of 

thin films. MFM is sensitive to the magnetic stray field at the surface of the magnetic thin films. As 

discussed in the AFM section, there are contact and non-contact modes in AFM. MFM imaging 

utilizes the non-contact mode and magnetic tips. Prior to every measurement, the magnetic tip is 

magnetized along the perpendicular direction by a small permanent magnet. During the measurement, 

the tip is first scanned over the sample surface to obtain topographic information just as during an 

AFM scan. Then the tip is raised just above the sample surface recorded by the first scan. The stray 

fields influence the behavior of the tip. The lift height is an important parameter due to that the long-

range stay fields highly depend on the distance apart from the sample surface. When there is no 

magnetic force, the cantilever has a resonance frequency f0, which is shifted by Δf proportional to 

vertical gradients in the magnetic forces on the tip. The frequency shifts can be detected three ways: 

phase detection, which measures the cantilever’s phase of oscillation relative to the piezo drive; 

frequency modulation, which monitors the shifts of f0 ; and amplitude detection, which detects the 

amplitude variance of the resonance frequency. Generally, phase detection and the frequency detection 

give better results than amplitude detection. Phase detection is the main technique used in this thesis. 

2.3.2 Vibrating Sample Magnetometer (VSM)  

 

The basic measurement of the magnetic moment by VSM is accomplished by 

oscillating the sample up and down near the pickup coil and simultaneously detecting the 
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induced voltage. As shown in the schematic of a VSM (Fig.  2.10.), the applied field by the 

electromagnet is along the x-axis, and the pickup coils are sensitive to the x-component of the 

magnetization. The total flux through the pickup coil is then: 

,2),sin(21 ftmcHc    

where 1c and 2c are constants, H is the external applied field, m is the magnetic moment of the 

sample. According to Farady’s law, the time-dependent induced voltage is then given by: 

)cos(2 tmc
dt

d
Vcoil 


  

which is only proportional to the changing magnetic flux contributed by the magnetic sample. 

This small induced voltage in the pickup coils is usually amplified by a lock-in technique.  

The VSM is easy to use and has the potential for various measurements. For example, 

it can be adapted for measurements under wide range of temperatures (4.2 - 1000 K), given 

only the sample and the vibrating rod must be heated or cooled. Secondly, adding another 

pairs of pickup coils along the y-axis direction would make the detection of the moment along 

the y-axis possible, plus that the sample rod could be rotated though any angle, both of which 

make the angular dependent measurement possible. However, since the utilization of a water-

cooled conventional electromagnet is commonly used, there is a limitation for samples which 

need very high magnetic fields (>~2.5 T) to attain saturation. In the next section, we will 

discuss the solution for this problem by utilizing a superconducting solenoid magnet.  
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Figure 2.10. A schematic of the conventional VSM with electromagnet. 

 

2.3.3 Physical Property Measurement System (PPMS)-VSM 

 

The physical property measurement system (PPMS) is multi-functional piece of 

equipment often used for various kinds of characterizations, such as heat capacity and electro-

transport measurement.  

The PPMS-vibrating sample magnetometer is sketched in Fig.2.11. Similar with the 

conventional VSMs discussed previously, the PPMS-VSM is equipped with a linear motor to 

oscillate the sample. The frequency is ~ 40 Hz and amplitude is normally ~ 2 mm (could be 

ranged from 0.5 to 5 mm). The normal VSM detection (pick up) coils are inserted into the 

PPMS sample chamber. A superconducting solenoid is used to generate the applied magnetic 

field. Our PPMS is capable of producing the magnetic fields up to 7 T, which is much higher 

than the conventional electromagnet.  
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However, the superconducting magnet consumes a lot of liquid Helium (LHe). 

Additionally, to perform the low temperature measurement, a vacuum pump draws LHe into 

the annular region where heaters warm the gas to the correct temperature and a thermometer 

is attached to monitor the temperature. These factors make the PPMS-VSM very expensive.  

In this thesis, the PPMS-VSM-oven option is utilized to in-situ anneal and 

magnetically characterize the sample. To perform the post annealing of the sample, a different 

probe is designed. There are lines of Pt resistors on the front side of the sample holder to heat 

up the sample. A thermocouple is attached at the backside of the PPMS-VSM-oven option 

probe at the sample site to accurately monitor the temperature. The sample chamber is 

evacuated to a pressure of 5×10-5 Torr in order to avoid the oxidization during the heating.  

 

Figure 2.11. A schematic of PPMS sample chamber. 
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2.3.4 Alternating Gradient Magnetometer (AGM)  

 

The measurement of the magnetic moment by AGM55 can be achieved by mounting 

the sample at the end of a sample holder including a piezoelectric element, and subjecting it to 

a fixed DC field plus an alternating field gradient. This alternating field gradient, along the x-

axis on the order of ~ 1 Oe/mm, is produced by an appropriate gradient coil pair, as indicated 

in Fig.2.12. This field gradient then produces an alternating force on the sample: 

dx

dH
mFHmF x 



)(  

where m is the magnetic moment of a sample, it is straightforward to note that the force is 

proportional to the magnetic moment. And due to this alternating force, the sample vibrates 

with amplitude of ~ 10-6 to 10-9 m. If the frequency of vibration is tuned to a resonant 

frequency of the system, the vibration amplitude increases by a factor equal to the quality 

factor Q of the vibrating system, which can be of the order of 100. The sample flexes the 

sample holder then the piezoelectric element on the sample holder is used to generate a 

voltage proportional to the vibration amplitude, which in turn is proportional to the sample’s 

magnetic moment. This voltage is then further amplified by lock-in technique, which leads to 

better signal-to-noise (SNR) ratio. Therefore the limiting sensitivity of the commercial 

version can reach about 10-6 emu or 10-9 Am2, better than the conventional VSM.  

However, like all the other instruments, the AGM also has its own limitations. It is 

more limited than the VSM in the maximum mass of the sample that can be measured, and 

tuning the vibration frequency to resonance complicates the measurement. The necessary 

presence of a field gradient means the sample is never in a completely uniform field, which is 

sometimes a limitation for soft magnetic materials. Because the resonance frequencies, f, are 

~102 - 103 Hz, acoustic vibrations typically found in laboratory environments can result in 
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significant noise in the measured data. In this thesis, the AGM is the primary tool for 

measurement at room temperature, such as hysteresis loops and first order reversal curves.  

 

Figure 2.12. A Schematic of an alternating gradient magnetometer. 

 

2.3.5 Magneto-Optical Kerr Effect (MOKE) 

 

As one of the variety interactions between the electromagnetic waves and 

magnetically active material, the magneto-optical Kerr effect happens at the photon energies 

near the visible part of the spectrum where interband transitions between conduction and 

valence states take place.  

Microscopically, the magneto-optic effects arise from the anti-symmetric, off-diagonal 

elements in the dielectric tensor. These effects result in the polarization of the incident 

radiation being rotated after transmission through (Faraday Effect) or reflection from (Kerr 
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Effect) a ferromagnetic material. In this thesis, the MOKE technique is employed to 

investigate the depth dependent of the anisotropy for graded anisotropy material.  The MOKE 

will be discussed in great detail in the following section.  

A microscopic description of MOKE relies on considering the different responses of 

left and right circularly polarized light upon reflection. For a nonmagnetic material the 

reflection coefficients for right and left circularly polarized light, rlcp and rrcp, are essentially 

the same, while the magnetized sample has an effective magnetic field which gives provides 

additional Lorentz force. Linearly polarized light generally becomes elliptically polarized 

upon reflection, as shown in Fig.1.13. The major axis of the reflected light can be rotated of 

an angle θK, known as the Kerr rotation, respect to the direction of the polarization of the 

incident light, presenting an Kerr ellipticity K , )/arctan( baK  , a and b are the lengths of 

minor axis and major axis of the ellipse, respectively. The Kerr effect is then can be described 

as the result of the polarization-specific reflectivity coefficients rlcp and rrcp. 

 

Figure 2.13. Schematic of the magneto-optic Kerr effect. 
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The MOKE56 measurements can be performed using three different geometric 

configurations defined by the relative orientations of the sample magnetization 


M , the 

sample surface, and the plane of incidence of the light (Fig.2.14). When 


M is perpendicular to 

the sample surface, this geometry is known as polar MOKE. Longitudinal MOKE is the case 

when 


M is parallel to the sample surface and the plane of incidence.  Finally the transverse 

MOKE is the case when 


M is parallel to the sample plane and perpendicular to the plane of 

incidence.  

 

Figure 2.14. The typical three configurations for MOKE measurement. 

 

A schematic for the MOKE setup used in this thesis is shown in Fig.2.15. The light 

source is a HeNe laser (λ=633 nm) polarized perpendicular to the plane of incidence (s-

polarization). The laser beam is then focused onto the sample surface by a focusing lens. The 

focal spot size is proportional to the focal length of the focusing lens. The reflected beam 

becomes divergent, and passes through another focusing lens. A 
4
1 λ-plate transforms the 

reflected elliptically polarized light into linearly polarized light, which is finally analyzed 

using a linear polarizer. In this case the Kerr ellipticity K  and not the Kerr rotation θK is being 

measured. The light finally reaches the photodiodes, which simply produce a voltage 

proportional to the light intensity. Conventional lock-in techniques are then used to amplify 

the voltage and improve SNR. The electromagnet is used to produce magnetic field along the 
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x-axis and the intensity of field is measured by Hall probe. MOKE is surface sensitive 

because the finite penetratration depth of the light. For most of the metals, the depth is about 

~30nm.  

 

Figure 2.15. Schematic of the MOKE magneometor. 

 

2.3.6 First-Order Reversal Curve (FORC) technique  

 

The magnetic reversal mechanism analysis in this thesis strongly depends on the 

FORC technique. The roots of this technique can be traced back to ~75 years ago, when 

Ferenc Preisach initially developed the Preisach model to describe any type of hysteretic 

process, especially for ferromagnetic materials. After that, Mayergoyz57 first described this 

method as a possible way to experimentally determine a Preisach distribution. The FORC 

technique has recently evolved to be a very versatile tool for studying various properties (e.g. 
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magnetic, resistive, and ferroelectric). Most importantly, this technique is able to accurately 

capture sufficient information of various ferromagnetic systems including bulk,58 thin 

film,59,60 and patterned nanodisks,61,62 either at room temperatures or low temperatures 

depending on the facilities.   

The magnetometry techniques such as AGM, VSM, and MOKE which are discussed 

before are used to measure a large number of FORCs in the following manner (Fig.2.16). 

After positively saturating the sample, the applied field is then decreased to a given reversal 

field, HR. The magnetization M is then measured from the reversal field back up to the 

positive saturation, tracing out a FORC. A family of FORCs (~102 curves) is measured from 

different HR, with equal field space, thereby filling the interior of the major hysteresis loop. 

As described above, the measurement of FORCs is obviously time-consuming.  

 

Figure 2.16. Family of FORCs for FePt(20nm)/CoFe(7nm) thin filmed measured by AGM 
with the magnetic field applied along the film plane. 
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FORC distributions  

Just from simple analysis of the major loop (the boundary of family of FORCs) and 

each FORC, a wealth of information about the magnetic reversal mechanism can be gained. 

Whereas, the measured FORCs can yield larger amount of information by calculating the 

FORC distribution, which is a mixed second order derivative of the normalized magnetization: 

 

Where the factor 
2
1

 is included in the normalization of the magnetization and the negative 

sign suggests that the FORCs are measured along the descending branch of the major loop. To 

calculate ),( RHH , the consecutive data points of M (H, HR), a 2-dimentinal data array, are 

locally fitted with a polynomial surface of the form :63  

2
5

2
43210 RRR HaHaHHaHaHaa   , then 32

1
a  is taken as the value of ),( RHH at 

the center of the data array. The number of data points in each array is (2*SF+1)
2
, where SF 

is refer to as ‘‘smoothing factor’’. The degree of smoothing increases with the value of the SF, 

therefore normally we choose small value of SF for a well-behaved sample while a large 

value is needed for a noisy sample. However, this numerical effect inevitably smoothes out 

some of the potential features of the FORC distributions. In practice, it is not always trivial to 

find the smallest value of SF as possible while keep the noisy at the acceptable level. The 

FORC distributions are of little use if we are not able to correctly interpret them. When a 

FORC distribution is plotted against {H, HR}, it is convenient to change the coordinates from 

{H, HR} to {HB= (H+HR)/2, HC = (H-HR)/2}. The FORC distributions in different coordinates 

systems have different interpretations. Fig.2.17 show FORC distributions of the 

FePt(20nm)/CoFe(7nm) thin film plotted against (a) {H, HR} and (b) {HB, HC} coordinates. 
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Generally, in {H, HR} coordinate, the FORC distributions eliminate all the reversible 

switching therefore capturing the irreversible switching. While the FORC distributions in {HB, 

HC} coordinate is mainly used for comparing with the Preisach distribution.   

 

Figure 2.17. FORC distributions of the FePt(20nm)/CoFe(7nm) thin film plotted in (a) {H, 
HR} coordinate and (b) {HB, HC} coordinate. 

 

 

2.4 Transport measurements  
 

2.4.1 DC characterization (Four probe measurement) 
 

Current-in-plane (CIP)-GMR is measured by a home-made four probe measurement 

setup with an applied magnetic field, as shown in Fig. 2.18. The four probes made of pogo 

pins, the two outer probes provide the current and the two inner probes measure the voltage. 

By rotating the motor, the magnetic field can be applied at any angle with respect to the film 

plane. In contrast with current perpendicular-to-plane (CPP)-GMR which normally requires 

lithography for nano-pillar fabrication, CIP-GMR can be measured directly on the deposited 

blanket thin film. The electrical resistance of spinvalve stack depends on the relative direction 
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of the free and fixed layer. When the free layer and fixed layer are antiparallel, the resistance 

RAP is relatively high. The resistance RP is relatively low when the free and fixed layers are 

parallel. The GMR ratio is then defined as (RAP-RP)/RP. A high GMR ratio is normally 

required for magnetic memories, sensors, and to maximize the spin-transfer toque effect.  

 

Figure 2.18 Schematics of the four probe measurement. 

 

2.4.2 High frequency measurement setup 
 

The microwave signal generated from the STOs is detected by a homemade high 

frequency set-up as indicated in Fig.2.19. The current from a high precision current source is 

fed into the device through the nano-contact. A custom-designed non-magnetic ground-signal-

ground (SGS) microwave probe is used in order to avoid probe movement due to the the 

magnetic field during the measurement. A broadband microwave amplifier is utilized to 

amplify the generated high frequency signal and a spectrum analyzer finally detects the 

amplified microwave signal. The electromagnets can provide a magnetic field up to 2.2 T, and 

the probe stage is capable to precisely rotate in order to apply the magnetic fields at any 

direction with respect to the sample plane.  
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Figure 2.19. Schematics of the setup for detecting the microwave signal generated by the 
STOs. 
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Chapter 3 Results and discussions 
 

3.1 Non-volatile spintronics element with continuous different 

resistance levels (Paper I)  
 

As discussed in the introduction, increasing the magnetic storage capacity is 

perpetually in demand. The conventional digital magnetic storage devices depend on the 

realization of two stable magnetic states in each bit to encode information.64 Intensive 

research has been devoted to the approaches aiming for reducing the individual memory cell 

size to increase the memory density. An alternative scheme is to increase the number of states 

allowed in each memory cell.  

We have fabricated our thin film samples by magnetron sputtering. Our device has a 

typical PSV structure as schematically shown in Fig.3.1. Both the free layer and the fixed 

layer are Co/Pd multilayers with perpendicular anisotropy that is with the easy axis 

perpendicular to the film plane. The fixed layer is [Co (0.25)/Pd(0.6)]10 Co(0.25) multilayer 

with the Co thickness fixed (thicknesses are in nm). The Co thickness in free layer is 

incremented by 0.1 nm for successive repeats of the Co/Pd unit, therefore leading to the 

gradually varying perpendicular anisotropy14 in each unit through the whole free layer.  

 

Figure 3.1. Schematic of the pseudo spinvalve showing the graded anisotropy free layer on 
top separated from the fixed layer on bottom by a Cu spacer (all the thickness is nm). 
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The major hysteresis loop is measured by AGM at room temperature, shown in Fig.3.2. 

The major loop is composed of the graded switching of the free layer and one sharp switching 

of the fixed layer. The two magnetic layers exhibit two well separated switching fields. The 

reversal mechanism of the graded free layer takes place via the nucleation, expansion, and 

annihilation of magnetic domains, which proceeds more gradually with field due to the 

perpendicular anisotropy gradient.14  

 

Figure 3.2. Major hysteresis loop of the structure. 

 

We observed that after saturation, the free layer may be partially reversed by applying 

a reversal field HR which ranges from -1.05 kOe to -0.39 kOe as shown in Fig.3.3 (a). 

Naturally,  the resistance of the PSV at zero magnetic field depends on the choice of HR. After 

reducing the applied field to zero, we also calculated that the relative change in resistance (R 

(HR) – R (0))/ R ( HR ) is approximately 0.025%, Fig.3.3 (b), indicating the resistance state if 

very stable after removal of the external field. The remanet state resistance is also quite stable 

in time, as seen in Fig.3.3 (c). The observed fluctuations are on the order of 0.5 mΩ, and are 
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likely due to temperature fluctuations. Finally, the different resistance states are erased by 

saturating the PSV in a large magnetic field. 

 

Figure 3.3. (a)The remanent resistance state can be tuned by partially reversing the free 
layer. The crosses and open circles show the resistance measured at and remanence, 

respectively.( b) The relative resistance change upon removal of the field is on the order of 
0.025%.( c) The resistance states are essentially independent of time once written by 

applying HR after saturation.17 

 

FORC measurements are employed here to thoroughly investigate the origin of these 

observations. From the family of FORC curves, Fig.3.4 (a), we see that the remanent 

magnetization, MR, of the free layer has a one-to-one correspondence with HR. FORC 

distributions, shown in Fig.3.4 (b), provide information about the reversal mechanism in 

depth. There are two primary features associated with irreversible switching events (labeled as 

A and B) in Fig.3.4 (b) corresponding to the gradual switching of the free layer and the abrupt 
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switching of the fixed layer, respectively. The horizontal ridge noted by Line 1 in Fig.3.4 (b) 

corresponds to the precipitous and irreversible drop in magnetization of graded free layer 

when reverse domains are nucleated. The vertical negative/positive pair of peaks noted by 

Line 2 in Fig.3.4 (b) indicates irreversible domain annihilation as negative saturation is 

approached. The region between Lines 1 and 2 has no peaks but has non-zero FORC 

distributions,implying a gradual and irreversible magnetization reversal process. The FORC 

distribution is featureless between areas A and B, consistent with the well-defined antiparallel 

state seen in both the major magnetic hysteresis loop and MR data.  

 

Figure 3.4 (a) Family of FORCs for the PSV, with the first point of the individual reversal 
curves shown by a black dot. (b) The FORC distribution reveals features related to the 

reversal of the free layer (area A) and fixed layer (area B).17 

 

MFM directly reveals the tunability of the domain configurations in the free layer as a 

function of the reversal field. We measured the MFM images at zero field after applying HR , 

as shown in Fig.3.5. As the magnitude of HR increases, the total area of the down (bright) 
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domains increases while the area of the up (dark) domains decreases. Therefore, the field 

magnitude is essentially recorded as the relative populations of the up and down domains in 

the free layer. Since these domains are vertically correlated through the free layer14, and the 

fixed layer domain state remains uniform for the relevant HR, the information can be read out 

as the remanent resistance by the GMR effect. 

 

Figure 3.5. 20 µm × µ20  m MFM images for various HR show the magnetic domain 
evolution in the graded free layer. Dark (bright) domains correspond to the up (down) 

domains.   
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3.2 Solution for magnetic recording trilemma: graded anisotropy 

FePtCu 
 

3.2.1 Continuously graded anisotropy in single FePtCu thin films (Paper II) 

 

As discussed in Chapter 1, ‘‘graded media’’ has been proposed as a possible solution 

to the magnetic trilemma. However, fabrication of the ‘‘graded media’’ is challenging and 

most approaches are based on multilayered film structures.   

In this paper, we report on a simple approach to fabricate continuously graded 

anisotropy by DC magnetron sputtering. During the co-sputtering of the high purity Fe, Pt, 

and Cu targets, compositionally graded films are realized, as schematically shown in the left 

panel of Fig.3.6. This compositional gradient is achieved by gradually decreasing the 

sputtering power of the Cu gun from 35 W to 0 W, which results in the varying Cu 

concentration from Cu-rich (Fe53Pt47)70Cu30 at the bottom to Cu-free Fe53Pt47 at the top. Those 

compositional graded samples (20 nm and 50 nm) are referred to as graded FePtCu hereafter. 

A compositional uniform sample with the same total Cu content is deposited as a reference. 

The anisotropy gradient is then realized after proper post annealing. The Cu-rich regions 

transform from the as-deposited low anisotropy A1 phase into the high anisotropy L10 phase 

at a lower annealing temperature than the Cu-poor regions, therefore establishing an 

anisotropy gradient through the thickness of the film.   

The critical role of the annealing temperature (TA=300, 400, 500 °C) on the resultant 

anisotropy gradient is investigated. The structural properties of the uniform and graded 

FePtCu samples are measured by XRD and shown in Fig.3.6 (a)–(c). We clearly observe a 

strong (111) texturing for all annealing temperatures (Figs.3.6 (a) and (b)). For both the 

uniform and graded samples, as the annealing temperature is increased, the intensity of the 

(111) diffraction peak also increases, indicating an improvement in the (111)-textured 
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crystallization. Importantly, for both uniform and graded samples the (111) peak shifts to 

higher angles, Fig.3.6 (c), with increasing annealing temperature. This implies an 

enhancement of the chemical ordering degree of the L10 phase for higher annealing 

temperatures.65 It is interesting to note that the (111) peak is shifted to angles higher than that 

of fully ordered FePt (41.08°) due to the Cu dopant which has been shown to decrease the c 

lattice parameter.66 While an increase in L10 order is found with increasing annealing 

temperature, how the structural A1-L10 ordering gradient and thus the magnetic Ku gradient is 

manifested through the thickness of the film is not readily accessible from the XRD 

measurements. 

 

 

Figure 3.6. Left panel: schematic of the Cu content depth profile in a graded FePtCu film. 
Right panel: XRD patterns of (a) uniform and (b) graded FePtCu (20 nm) films annealed 

at 300, 400, 500 °C. (c) (111) peak position and (d) in-plane coercivity of the uniform (blue 
circles) and graded (red squares) samples as a function of annealing temperature TA.67 

 
 

Magnetic measurements, on the other hand, not only show enhanced L10 chemical 

ordering with TA but also provide evidence of the graded nature of the properly annealed films. 

First, the major loop coercivity (HC), Fig.3.2 (d), is found to increase with TA, consistent with 

the XRD data and the improved high Ku L10 order. Additional insight into the graded nature 



50 

 

of the samples is found by analysis of the major hysteresis loops. Major loops measured using 

an AGM, Figs.3.7 (a), 3.7(c), and 3.7(e), along with the derivatives of the descending 

branches of the major loops, Figs. 3.7(b), 3.7(d), and 3.7(f), highlight the important role of 

proper TA in establishing the Ku gradient. 

At a low TA of 300 °C, as shown in Figs.3.7 (a) and 3.7 (b), both the uniform and 

graded samples remain relatively soft, consistent with the as-deposited, low Ku A1 phase. The 

graded sample shows a small increase in HC compared to the uniform sample annealed at the 

same temperature indicating the onset of L10 ordering of the Cu-rich fractions of the film. The 

loop derivative is also significantly broader for the graded sample, which is also in agreement 

with the existence of a high Ku phase and the incipient Ku gradient in this film. 

 

 

Figure 3.7. In-plane AGM hysteresis loops (top row) and their derivatives (middle row) for 
uniform (blue circles) and graded (red squares) FePtCu (20 nm) films annealed at 300 °C 

(a) and (b), 400 °C (c) and (d ), and 500 °C (e) and ( f ). The derivatives are of the 
descending branch only and smoothed. The vertical arrow in (c) and (d) indicates the initial 
linear decrease in the magnetization switching. (g) Dynamic coercivity, HC,dyn, as a function 
of decay time for the uniform (blue circles) and graded (red squares) samples annealed at 
400 °C. The thermal stability factor, β, and intrinsic coercivity, Ho, are extracted from a fit 

to Sharrock’s equation.67 
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At an intermediate TA of 400 °C, Figs.3.7 (c) and 2 (d), the HC of both the graded and 

uniform films dramatically increases as a larger fraction of the films transforms into the high 

Ku L10 phase. Interestingly, after annealing at 400 °C, the graded film exhibits a 

fundamentally different reversal path compared to the uniform film. As we can clearly see 

from the derivatives, Fig.3.7 (d), the graded sample exhibits an asymmetric peak with an 

extended switching shoulder. This shoulder corresponds to the softer portions of the film 

beginning to reverse first. In fact, the overall shape of the loop is reminiscent of simulated 

hysteresis curves of films with a graded Ku that show an initial linear decrease in the 

magnetization (see arrow in Fig.3.7 (c)).68 The initial linear decay of the magnetization can be 

associated with the formation of a partial domain wall through the film thickness that 

precedes switching. Actually the plateau in the major loop derivative (see arrow in Fig.3.2 (d)) 

directly indicates this initial linear decrease in the magnetization. Most importantly, the 

coercivity of the compositionally graded film, HC=5.67 kOe, is smaller than the uniform film, 

HC=7.21 kOe, which is also consistent with the existence of a Ku gradient. Additionally, the 

remanence (Mr/Ms where Mr and Ms are the remnant and saturation magnetizations, 

respectively), of the graded sample, Mr/Ms =0.91, is larger than the uniform sample, Mr/Ms 

=0.79. This implies that the graded sample has a substantial fraction of soft phase. 

To assess the thermal stability of our graded samples we have carried out dynamic HC 

measurements. The dynamic HC, HC,dyn, is the field required to bring the magnetization to zero 

after a characteristic time, to, and functionally obeys Sharrock’s equation.69 In our calculations, 

an attempt frequency fo=5×109 Hz is used and we can presume n=1.68 From this analysis, the 

thermal stability factor (E0/kBT) and time independent intrinsic HC, Ho, can then be extracted. 

Here Eo is the energy barrier and kBT is the thermal activation energy. The HC,dyn 

measurements for the uniform and graded films annealed at 400 °C are shown in Fig.3.7(g) 
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where we find Ho=7.99±0.03 kOe, β=190.2±4.6 and Ho=6.17±0.01 kOe, β =163.6±1.8, for the 

uniform and graded samples, respectively. Although the graded sample shows a small, 14%, 

decrease in thermal stability, it also shows a significantly larger, 23%, decrease in Ho. 

The AGM, which measures the total magnetic moment, is not able to directly 

determine how the Ku varies through the thickness of the film. To probe the graded Ku we 

have measured surface magnetic properties of a 50 nm thick graded FePtCu film using the 

MOKE where the finite penetration depth of light (~30 nm in FePt) can be exploited. The 

MOKE and AGM in-plane loops are shown in Fig.3.8 (a) for a sample annealed at 300 °C. 

Clearly the MOKE loop has a smaller coercivity, HC, MOKE=1.31 kOe, than the AGM loop, HC, 

AGM=1.92 kOe and exhibits a different reversal path. As expected, the MOKE loop, which 

only probes the upper portions of the film, is significantly softer because the Cu-poor regions 

near the top of the film have not fully transformed into the high Ku L10 phase at this particular 

TA. These depth sensitive results, along with the observed in-plane easy axis (induced by the 

thin film shape anisotropy), confirm that the anisotropy varies through the film thickness 

instead of forming, e.g., random L10 clusters embedded in an A1 matrix. However, after 

annealing at 400 °C both the AGM and MOKE loops, Fig.3.8 (b), have the same HC, HC, 

AGM=HC,MOKE=7.03 kOe, and nearly identical loop shape. This indicates that after annealing at 

400 °C the 50 nm graded FePtCu film has achieved a uniform Ku distribution, similar to the 

20 nm thick samples annealed at 500 °C. As reported for uniform FePtCu films, the L10 

chemical ordering process also depends on film thickness and is actually promoted in thicker 

films. 70 
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Figure 3.8. MOKE (red squares) and AGM (blue circles) hysteresis loops for a graded 
FePtCu (50 nm) film annealed at (a) 300 °C and (b) 400 °C, respectively.67  

 

Additionally, both L10 (111) FePt and FePtCu thin films have been shown to have a 

tilted anisotropy. More details will be discussed in the next section. This fact, combined with 

the advantages of the graded anisotropy system, may result in a very versatile magnetic 

structure.  

 

3.2.2 First-order reversal curve analysis of graded anisotropy FePtCu films 

(Paper III) 

 

After successfully realization of the graded anisotropy FePtCu films, the subsequent 

analysis of graded materials is not trivial. For example, the inherent depth sensitivity of 

polarized neutron reflectivity measurements has recently been used to directly probe the 

anisotropy gradient of multilayered Co/Pd samples.14,71 In this letter, we report on a relatively 

simple measurement and analysis technique that combines first-order reversal curve (FORC) 

measurements with the inherent surface sensitivity of the magneto-optical Kerr effect (MOKE) 

to analyze FePtCu films with a continuously graded anisotropy. 

The sample for this study consists of a 50 nm thick (Fe53Pt47)100−xCux (x=0–30) film 

where the Cu concentration is continuously varied from Cu-rich (Fe53Pt47)70Cu30 at the bottom 
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to Cu-free Fe53Pt47 at the top. The Cu-rich regions transform from the as-deposited low 

anisotropy cubic A1 phase into the high anisotropy tetragonal L10 phase at a lower annealing 

temperature than the Cu-poor regions, thus establishing a continuous anisotropy gradient 

through the thickness of the film. Separate pieces of the as-deposited film were then annealed 

at 300 and 400 °C for 35 min in vacuum. The detailed information about sample fabrication 

and structural analysis can be found in paper II, similar with the 20 nm thick films.  

Magnetic properties have been measured using an AGM and MOKE in the 

longitudinal configuration using a diode laser (λ=633 nm) polarized perpendicular to the 

plane of incidence (s-polarization). The AGM measures the magnetic response of the entire 

film and gives an overall view of the magnetization reversal, whereas the MOKE 

measurements preferentially sample the surface of the film. We have estimated the 

penetration depth of light (~30 nm), employing the optical properties of bulk FePt.72 All the 

measurements are performed at room temperature with the field applied parallel to the film 

plane and along the same in-plane direction, given any potential in-plane anisotropy. In 

chapter 2, we have discussed the FORC technique and the FORC distribution which is defined 

as: 

 

Often it is better to have a one-dimensional visualization of the irreversibility (see 

chapter 2) by projecting the FORC distribution onto the HR-axis in {H, HR} coordinates. This 

is equivalent to an integration over the applied field H: 
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This is termed a FORC-switching field distribution (FORC-SFD), which can then be 

easily compared with the standard technique of taking the derivative of the dc-

,/),(
2
1),(

2

R

SR
R

HH

MHHM
HH








55 

 

demagnetization curve to determine the dc-demagnetization switching field distribution 

(DCD-SFD): 
R

Rr

H

HM



 )( , where )( Rr HM  is the zero-field magnetization, or remanence, after 

the application of a given reversal field HR. 

The family of FORCs and corresponding FORC distributions measured by AGM and 

MOKE are shown in Figs.3.9 (a) and 3.9 (c) and Figs. 3.9 (b) and 3.9(d), respectively. For the 

graded FePtCu film annealed at 300 °C, the AGM major loop, seen as the outer boundary of 

the FORCs, shows a rather gradual reversal process and a coercivity of 1.98 kOe Fig. 3.9 (a). 

A close inspection reveals that the major loop appears slightly pinched, which suggests the 

presence of both soft and hard phases. The AGM-DCD-SFD shows a large peak located at 

HR=−3.5 kOe (Fig. 3.9(a)) (solid squares), which indicates that the majority of the switching 

processes occur for this reversal field. However, upon closer inspection a second and much 

smaller peak located at HR=−1.7 kOe (indicated with an arrow) indicates the presence of soft 

phase switching. Interestingly, the soft phase only becomes fully evident in the full FORC 

analysis. The AGM-FORC distribution (Fig. 3.9 (b)) shows two primary features. The first 

feature, highlighted with a dashed circle, is a sharp and localized peak located near the H=HR 

boundary and can be associated with a soft phase as it occurs for small HR values. The second 

feature, highlighted with a solid oval, is a negative-positive pair of features that extend 

downward parallel to the HR-axis and can be associated with the hard phase. From a 

fingerprinting standpoint, this FORC distribution is reminiscent of those previously observed 

in soft/hard bilayer exchange springs.60 In order to better compare with the AGM-DCD-SFD, 

the AGM-FORC-SFD is calculated (Fig.3.9 (a) (solid circles)) and shows two distinct peaks. 

Unlike the AGM-DCD-SFD, the soft phase peak, located at HR=−1.7 kOe, is not only 

enhanced but also slightly larger than the hard phase peak located at HR=−3.5 kOe. The 

significant overlap between the soft and hard peaks indicates that these phases are indeed 
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highly coupled. An inspection of the minor loop bounded by the descending branch of the 

major loop and the highlighted FORC in Fig.3.9 (a) HR=−1.7 kOe reveals a clear shift toward 

negative fields due to a significant exchange coupling to the hard phase. In fact, the striking 

differences between the AGM-DCD-SFD and AGM-FORC-SFD is in stark contrast to what 

has been previously observed in standard bilayer exchange spring systems where only minor 

differences were evident.60 The difference between the AGM-DCD-SFD and the AGM-

FORC-SFD arises because the AGM-DCD-SFD is only sensitive to switching events as they 

are manifested at the remanent state, whereas the AGM-FORC-SFD accounts for 

irreversibility along the entire reversal curve. During the soft phase reversal, the remanent 

state changes very little because the soft phase minor loop is significantly exchange shifted 

toward the left, which renders it virtually invisible in the AGM-DCD-SFD. However, the 

FORC analysis, which is sensitive to the total irreversibility present, is able to clearly resolve 

the soft and hard layers alike. It must be noted that while the AGM-FORC analysis is able to 

reveal the soft/hard components, it is not able to directly probe how they are distributed 

through the film thickness. 
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Figure 3.9. Families of FORCs for the graded FePtCu film annealed at 300 °C measured 
using the (a) AGM and (c) MOKE, where the first point of each FORC is shown by a dot. 
The corresponding FORC distributions are shown in (b) and (d), respectively. The bold 
FORC in (a) indicates the initial soft phase portion of the reversal and the dashed circle 

and solid oval highlight the soft and hard portions of the reversal, respectively.73 

 
In order to selectively probe the surface of the film, MOKE measurements are 

performed. The family of FORC curves measured using the MOKE is shown in Fig.3.9 (c). 

Clearly, the major loop exhibits a different reversal behavior as that observed using the AGM. 

The reversal begins with a sharp decrease in magnetization followed by a more gradual 

approach toward saturation. Most notably, the MOKE major loop shows a reduced coercivity 

of 1.28 kOe as compared to the AGM measurements, which indicates that the softer portions 

of the sample are indeed near the surface, as designed. The MOKE-DCD-SFD is shown in Fig. 

3.10 (b) (open squares). While both the AGM and MOKE-DCD-SFDs reveal two peaks, two 

distinct differences are observed. First, the high anisotropy peak is shifted toward less 

negative reversal fields(HR=−2.7 kOe). Second, the high and low anisotropy peaks now have 

comparable amplitudes. Both of these differences are consistent with the fact that the MOKE 

measurements preferentially probe the lower anisotropy layers near the surface. A comparison 
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of the AGM and MOKE-FORC distributions, Figs.3.10 (b) and 3.10 (d), respectively, reveals 

qualitatively similar features that correspond to the soft and hard phases. However, the key 

difference between the AGM and MOKE-FORC distributions lies in the relative intensities of 

the peaks and valleys. This difference, which is not immediately observable from the contour 

plots, becomes clear in the projected data and the MOKE-FORC-SFD (Fig. 3.10 (b) (open 

circles). The relative intensities of the negative and positive portions of the high anisotropy 

tail (Fig.3.10 (d) are nearly identical in magnitude, leading to the virtual cancellation in the 

projected data. Clearly, the MOKE-FORC-SFD predominately shows the low anisotropy peak 

located at HR= −1.7 kOe.  

 

Figure 3.10. SFDs of the FePtCu film annealed at (a, b) 300 and (c, d) 400 °C 
calculated from (a, c) AGM and (b, d) MOKE measurements. The DCD-SFDs (solid and 
open squares) are calculated by taking the derivative of the DCD curve. The FORC-SFDs 
(solid and open circles) are the projection of the corresponding FORC distributions onto 

the HR-axis. The arrow in (a) indicates the small peak discussed in the text. All 
distributions are normalized by their maximum values.73 
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3.2.3 An in-situ anneal study of graded anisotropy FePtCu films (Paper IV) 

 

 As discussed in paper II and III, we found that the post-annealing temperature (TA) 

plays an important role on the induced anisotropy gradient. In this paper, we carry out a 

detailed study of how the anisotropy gradient gradually develops in a 20 nm thick 

compositionally graded FePtCu thin film as a function of the TA. A detailed stepwise analysis 

is achieved by exploiting the in situ anneal and magnetic characterization capabilities of a 

physical property measurement system (PPMS) equipped with a vibrating sample 

magnetometer (VSM) that allows us to follow the development of the coercivity, the reversal 

mechanisms, the saturation magnetization, and the overall hysteresis loop shape with 

unprecedented accuracy and control. By only mounting the sample once, the approach is 

entirely immune to external sources of measurement error from remounting and recalibration, 

and hence, all magnetic characterization can be directly compared. The sample we use in this 

paper is the 20 thick graded FePtCu films. The details of this sample fabrication have been 

discussed in paper II. 

A representative selection of hysteresis loops (left) and the corresponding derivatives 

of their descending branches (right) for a number of anneal temperatures are shown in Fig. 

3.11. At the lowest TA (300 °C), the major loop exhibits a single sharp switching event and a 

relatively low HC. Additionally, the derivative of the major loop is far narrower than those 

observed for higher TA. Both observations suggest that the film primarily consists of a single 

uniform low-Ku A1 phase. At intermediate TA (320 – 475 °C), on the other hand, the 

hysteresis loops and the corresponding derivatives become significantly more complex, 

indicating an evolving anisotropy gradient. As an example, for TA = 320 °C [see Fig.3.11 (a)-

(ii)], two key changes are observed. First, HC is dramatically increased to 1.4 kOe. Second, 

instead of a single sharp switching, the loop shows a rapid soft phase reversal followed by a 
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gradual switching of hard phase components. This is also reflected in the derivative of the 

descending branch, where the sharp switching peak (red arrow) clearly shows a significant 

shoulder (black arrow), indicating the soft and hard phases, respectively. At this TA, the Cu-

rich portions at the bottom of the film, which have a significantly lower ordering temperature, 

begin to transform into the high-Ku tetragonal L10 phase, while the top portion of the film 

remains in the low-Ku cubic A1 phase. As TA is increased to 330 °C [see Fig. 3.11 (a)-(iii)], 

the hard and soft phase peaks have almost equal intensity, indicating that larger portions of 

the film have transformed into the high-Ku L10 phase. This is also accompanied by an increase 

in HC. As TA further increases to 370 °C [see Fig. 3.11 (a)-(v)], the hard phase peak begins to 

dominate the derivative and HC continues to increase as significant portions of the film 

transform into the L10 phase. However, a closer inspection of the derivative still reveals a 

notable shoulder, highlighted by a red oval in Fig. 3.11 (a)-(v), indicating that a small portion 

of soft A1 phase remains. At yet higher TA, this shoulder disappears, which indicates that the 

entire sample has transformed into the high-Ku L10 phase.  
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Figure 3.11. (a) Selected in-plane PPMS-VSM hysteresis loops (left panel) measured at 
room temperature and their derivatives (right panel) for the 20 nm thick graded FePtCu 

film annealed at (i) 300 °C, (ii) 320 °C, (iii) 330 °C, (iv) 340 °C, (v) 370 °C, (vi) 475 °C, and 

(vii) 525 °C. The derivatives are for the descending branches only and smoothed. The 
FWHM of the hard peak is shown for (v)–(vii). (b) Curve fitting (blue line) of the derivative 

at TA = 330 °C using two Gaussian functions. The fitted curve is the combination of hard 
phase (black line) and soft phase (red line) peaks.74 

 
The qualitative arguments earlier can be further quantified. In Fig. 3.11 (b), we 

demonstrate the curve fitting (blue line) procedure for the TA = 330 °C dataset. Clearly, a 

combination of two Gaussian functions, one corresponding to a soft peak (red line) and the 

other to a hard peak (black line), is able to describe the total derivative quite accurately. We 

fit the derivative of all hysteresis loops by using this procedure and plot both peak positions 
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and HC as a function of TA in Fig. 3.12. It is interesting to note that while the saturation 

magnetization (MS) (inset of Fig. 3.12) monotonically decreases with increasing TA, the 

behavior of the hard/soft peak positions and HC shows a much more complicated and 

nonmonotonic behavior. The decrease in MS indicates an overall increasing volume fraction of 

the high-Ku L10 phase with TA.10 However, the peak positions in the derivatives, associated 

with the reversal of soft and hard phase portions of the film, can be used to interpret how the 

A1/L10 phases are actually distributed through the film thickness. 

 

Figure 3.12. TA dependence of the film coercivity (blue triangles) and peak positions of the 
reversal of the soft (red circles) and hard (black squares) phases. The inset shows the 

saturation magnetization (MS) vs TA.74 
 

The depth-dependent anisotropy variation is schematically shown in Fig.3.13 (a)–(f) 

for each of the significant TA regions in Fig. 3.13. The lengths of the arrows represent the 

strength of the L10-Ku in different parts of the sample. For low TA (300 °C – 310 °C) [see Fig. 

3.13 (a)], only the single soft peak appears, corresponding to the dominant, as-deposited, A1 

phase. However, already at TA = 320 °C, the single soft peak develops into both hard and soft 

peaks, and HC  lies at a position in between the field values for these two peaks. TA = 320 °C 
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hence marks the lower boundary of the region where a soft-to-hard graded anisotropy can be 

established. As TA increases further, the hard phase peak becomes more dominant and both 

hard/soft phase peaks move toward more negative field values. It is noteworthy that HC also 

moves gradually closer to the position of the hard peak, however, without coinciding with it 

even after the soft peak has disappeared. This highlights the continued dynamic gradient 

formation process for intermediate TA (320 °C–410 °C), as illustrated in Fig.3.13 (b) and (c). 

Ex situ surface-sensitive MOKE measurements which we have discussed in paper I confirm 

the upper portions of the films to relatively soft for TA = 400 °C. We argue that TA = 410 °C 

marks the upper boundary of the region where a soft-to-hard graded anisotropy can be 

established since above this anneal temperature; HC essentially coincides with the location of 

the hard peak, indicating the loss of any significant soft fraction in the sample.  

As TA is further increased to 475 °C [see Fig.3.13 (d)], the single hard peak location 

reaches a maximum, which suggests a fully developed albeit L10-only gradient. While no 

longer particularly relevant for actual use as recording media, we still find it quite instructive 

to study the continued development and final disappearance of the anisotropy gradient at these 

elevated anneal temperatures, as it sheds additional light on the processes governing the 

magnetic properties in this material system. It is at first somewhat surprising that the single 

hard phase peak position and HC move to less negative values for TA > 475 °C, resulting in a 

pronounced local minimum at 525 °C. We argue that this decrease in HC marks the onset of 

significant Cu interdiffusion and the local HC minimum at 525 °C is the result of an effective 

reduction of Ku in what was previously a zero Cu region (hence the strongest Ku ) at the top of 

the film, but after interdiffusion has effectively transformed into an average (Fe53Pt47)85Cu15 

composition, with a significantly lower Ku. We note that this is consistent with the 

observation in that an anneal temperature of TA = 500 °C removes any significant magnetic 

difference between a uniform and a compositionally graded film. This is further corroborated 
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by a 17% reduction in the full-width at half-maximum (FWHM) of the switching distribution 

that drops from ∆H = 1.41 kOe at 475 °C to ∆H = 1.17 kOe at 525 °C, consistent with a more 

uniform switching process. The subsequent increase in HC, as TA reaches 600 °C [see Fig. 3.13 

(f)], is finally due to a better overall L10 ordering and the realization of the maximum 

attainable Ku of the now compositionally uniform FePtCu film. 

 

 

Figure 3.13. Schematics of the evolution of the graded anisotropy and its transformation 
into a uniform anisotropy at TA = 525 °C. The lengths of the arrows represent the local 

strength of the L10 anisotropy.74 

 
 
 
 

3.3 Solution for the STO applied field problem: tilted polarizer 

(Paper V) 
 

[Co (0.5 nm) /Pd(1 nm)]5 –NiFe(tNiFe) exchange spring films as shown in Fig. 3.14 

were deposited on Si(100) substrates using dc magnetron sputtering. The competition between 

the IP shape anisotropy of the NiFe and strong PMA of the [Co/Pd]5 multilayer, results in a 
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significant perpendicular component to the magnetization in the NiFe. We find that the tilt 

angle can be easily varied by simply varying the NiFe thickness. 

 

 
Figure 3.14. Schematics of the exchange spring of Co/Pd-NiFe with thickness of NiFe 

variable. 

 

The standard perpendicular magnetic hysteresis loops in Fig. 3.15 for samples with 

tNiFe= 0, 3, 5, 7, 10 nm are measured using AGM by applying the magnetic field OOP. As 

designed, the Co/Pd multilayer shows strong perpendicular anisotropy with the remanence 

(M/MS) ~1. When tNiFe= 3nm, the large remanence indicates that a significant PMA is still 

maintained in the Co/Pd-NiFe thin film. Thin NiFe is rigidly coupled to the Co/Pd during 

switching. The OOP remanence shows a clearly decrease when tNiFe is above 5 nm. The IP 

shape anisotropy begins to be comparable to the PMA of the Co/Pd multilayers as tNiFe 

increases.  
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Figure 3.15. Major hysteresis loops measured under OOP magnetic field for selective 
samples. The remanence (M/Ms) is shown in the inset. 

 

The remanent state MFM images in Fig.3.16, show visible changes at different tNiFe. 

tNiFe =0, 3and 5 nm, the MFM images are almost featureless due to large single magnetic 

domain at remanence. This is consistent with the high remanence in the major OOP hysteresis 

loops, indicating that the magnetization in the NiFe has a significant amount of perpendicular 

component. However, at tNiFe= 8 nm, clear contrast start to form in the MFM images. This is 

consistent with the reduced OOP remanence, suggesting some tilting of the magnetization 

away from the film normal. For tNiFe= 10 nm, the magnetic domains breaks into perpendicular 

stripe domains due to a more complex reversal mechanism.   
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Figure 3.16. MFM images measured at zero field after OOP saturation. 

 
 

The tilted angle in the top NiFe layer is also calculated by minimize Gibbs free 

energy:75  

 

 

This is of particular interest for us. Fig.3.17 shows the calculated )(z  through the entire 

Co/Pd–NiFe film at remanence for tNiFe=5, 6, 7, 8 nm. For device applications as a tilted spin 

polarizing fixed layer, the angle of top most NiFe layers is most important. Our calculations 

suggest that by varying the thicknesses of the top NiFe, the top tilted angle is varied from 0 to 

about 60 ° from at the Co/Pd multilayer interface, toward the film plane through the thickness 

as tNiFe is increased. We find that the tilt angle is highly tunable by simply changing tNiFe 

between 4.8 – 8 nm. 
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Figure 3.17. The calculated tilt angle, )(z through the entire film thickness (data points) 

and of the upper most NiFe layer,  Top (Blue line). 

 
The nano-contact STOs with tilted polarizer are fabricated with various sizes of nano-

contact ranged from 70 nm to 150 nm. The material stack is Ta5/Cu20/Ta5/Pd3/[Pd1/Co0.5] 

5/NiFe5.3/Cu7/NiFe4.5/Cu3/Pd8. The high frequency measurements are done at zero field 

after OOP saturation. As shown in Fig. 3.18, we observed vortex oscillations in the tilted 

polarizer STOs with 100nm nano-contact. The main low frequency signal (< 1GHz). 

Interestingly, the low frequency signal has clear harmonics as high as 9th order. And the 

frequency shows a blue shift as the function of the current magnitude.   
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Figure 3.18. Spectra of the tilted polarizer STO measured at zero field after OOP saturation. 
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Chapter 4 Conclusions and future works 
 

First, the research work presented in this thesis attempted to use an alternative 

approach to increase the magnetic storage capacity. We tried to realize a multi-state storage 

bit, instead of simply reducing the size of each memory unit. We have demonstrated that 

PSVs whose free and fixed layers have perpendicular magnetic anisotropy have a virtually 

continuous range of resistance states that are written by the application of a magnetic field 

that partially reverses the free layer magnetization. This information is stored in the remanent 

domain state of the free layer. The state is read simply as the resistance of the spin valve. 

Thus, these structures have great potential for applications such as field-tunable resistance 

trimming devices, memristive devices, or magnetic analog memories with a continuous 

number of states per memory cell. In addition to serving as a multi-state memory element, the 

PSVs we report here have potential to act as a memristor. Spintronics-based memristors have 

been demonstrated with domain wall motion in a free layer induced by spin transfer 

torques.76,77 Our PSV devices can be fabricated near a current carrying wire whose Oersted 

field acts as the means to tune the domain configuration in the free layer. This wire can be 

connected to a patterned PSV to form a two-terminal device whose resistance depends on the 

applied current. Additionally, current driven domain wall motion itself could be used to tune 

the ratio of up/down domains and therefore the remanent resistance. 

The second aim of the thesis is to solve the so-called magnetic recording ‘‘trilemma’’. 

We were able to propose and demonstrate a simple procedure to establish a continuous 

anisotropy gradient through the thickness of FePtCu films by annealing the films at proper 

post annealing temperatures.  Important magnetic properties of theses thin films have also 

been extensively studied. The analyses of magnetic measurements done by AGM reveal that 

the FePtCu film with a well-established anisotropy gradient has a reduced coercivity and 
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moderate thermal stability, which balances the writability and the thermal stability of the 

magnetic recording ‘‘trilemma’’. This is potentially very useful for hard disk drives industry. 

We also attempt to gain deeper insight of the magnetic properties for the graded anisotropy 

FePtCu thin film. The reversal mechanisms of graded anisotropy FePtCu films have been 

investigated by AGM, MOKE, in-situ PPMS-VSM measurements combined with FORC 

techniques. From a fundamental point of view, we have studied how the induced gradient 

anisotropy evolves as the function of the post annealing temperatures. This study gives 

contributions to magnetic recording ‘‘trilemma’’ as well. We found that TA plays a critical 

role in the realization and evolution of the induced anisotropy gradient. We also suggest that 

optimization of the soft-to-hard ratio, yielding the best balance between thermal stability and 

writability will have to be found in the TA =320 ~ 410 °C region.  Future studies should be 

focused on trying to realize perpendicular magnetic anisotropy in these types of samples as 

well as trying to establish a well-defined grain structure. Then a true prototype magnetic 

recording media will be realized.  

The third aim of the thesis is to realize zero-field operation for STOs. We found that 

Co/Pd-NiFe exchange spring system is an ideal candidate. Due to the competition between the 

strong perpendicular anisotropy and the IP shape anisotropy, the magnetization in the top 

NiFe is tilted away from the film normal. The angle is highly tunable over a broad range by 

simply change the thickness of top NiFe. After systematically studying the tilted polarizer 

Co/Pd-NiFe, we then successfully fabricated a series of nano-contact STOs based on Co/Pd-

NiFe fixed layers with appropriate tilted angle. Our high frequency measurements show that 

the tilted polarizer STOs exhibit good vortex oscillations under zero field, which needs further 

studies in the future.  
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