UNIVERSITY OF GOTHENBURG

Adaptable Controlled Natural Languages for Online
Query Systems

Master of Science Thesis in the Programme Computer Science

FAEGHEH HASIBI

University of Gothenburg

Chalmers University of Technology

Department of Computer Science and Engineering
Goteborg, Sweden, October 2012.

The Author grants to Chalmers University of Technology and University of Gothenburg
the non-exclusive right to publish the Work electronically and in a non-commercial
purpose make it accessible on the Internet.

The Author warrants that he/she is the author to the Work, and warrants that the Work
does not contain text, pictures or other material that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party (for example a
publisher or a company), acknowledge the third party about this agreement. If the Author
has signed a copyright agreement with a third party regarding the Work, the Author
warrants hereby that he/she has obtained any necessary permission from this third party to
let Chalmers University of Technology and University of Gothenburg store the Work
electronically and make it accessible on the Internet.

Adaptable Controlled Natural Languages for Online Query Systems

FAEGHEH HASIBI

© FAEGHEH HASIBI, October 2012.

Examiner: AARNE RANTA

University of Gothenburg

Chalmers University of Technology

Department of Computer Science and Engineering
SE-412 96 Goteborg

Sweden

Telephone + 46 (0)31-772 1000

Department of Computer Science and Engineering
Goteborg, Sweden October 2012

Abstract

This work introduces a technique for adapting GF-based query systems. This
technique is implemented in a travel planning query system in two ways.
Firstly, users can customize the system to their own needs and define syno-
nyms for a series of information to use in later utterances. Secondly, the sys-
tem can update GF grammar to make the system flexible when new situa-
tions occur. While implementing GF grammar adaptation in a query system,
we introduce a design pattern for multilingual travel planning systems that
allow users to find up-to-date travel plans. The resulting system can be easily
ported to a new public transport network and communicates with a
transport web service to find accurate travel plans. Adapting GF-based dia-
logue systems improves the functionality of speech recognizers by defining
synonyms for specific phrases.

Contents

Y <] 1 - T ot 1
Acknowledgmentsccciiirireiiiiiiiiinniiiii s 5
N 101 o T [T o T o S 6
1.1 Grammatical Frameworkccccceeriiiiiiiieiiieee e 8
1.2 OULHNG ettt s s s 10
2 The Baseline System.........uveiiiiiiiiiiiiiiniiiiiiinnnereeeees s 11
2.1 INTrOUCHION e s s 11
2.2 SYSTEM OVEIVIEW .uuuiiiiiiiiiiiee ettt ettt e e et ese e s e e e ae s 11
2.3 The GF Writer Applicationccceeeeieei e 13
2.3.1 GFWriter STruCture ... 13

2.4 Stop Grammar Generationcuveeviiiiiiiiiiin e 15
2.5 SYSTEM GrammMaAr oot e e e e s e e e e e e ee s 16
2.5.1 Grammar OVEIVIEWoooveummriiiiiiieeeeiiiiriree e 16
2.5.2 STOP GrammMaAr .uuceeiiiiiiiiiee et e e e e e e e e e e e aeeaaas 18
2.5.3 Date Time Grammarcccccciiiiiiieeeiiiiiiieeeeee e 20
2.5.4 QUEINY GrammMaAr.coooiiiiiiiee ettt eeeeriee s e e e e aabe s e s e eeaasanseeeeeesans 22
2.5.5 ANSWEr Grammar...cccccooiiiiiiimiiiiiiieeeein e 23
2.5.6 Travel Grammar......cioiie ettt e s ree e s 24

2.6 Example INteraction.......ooccciiiiiiiiieee e 25
2.7 CoMPONENt OVEIVIEW cciviiuieiiiiiiiiiiies e eeeetiieee e eetviie e s e s eeaaie s e s e eenaana s 26

3 GF Grammar Adaptationcccceeviirreeiiiinninnnnisiininnenens 28

3.1 INTrOdUCTION et 28
3.2 Grammar OVEIVIEW.....cooiviiiiiiiiiiiieeiie et 28
3.3 Adding NeW FUNCLIONSuuviiiiiiiieeec ettt e eevnrrr e e e e e 29
3.4 Updating Current FUNCLIONS.....ccocuiiiiiieiiiie e 30

4 Example: An Adaptive Online Query System..........cccceeeeiiiiiniicnnn. 31
R oY o To [V o1 4 o] o OO OP PP 31
4.2 Grammar OVEIVIEW......cciiiiiiiiiiiiiiiiiiiieeeee et 32
/0 T U 11 o 1Yo =T o - 1 (o o WS UUUU R 33
4.3.1 Definition Grammar........cceeeieeeiiieeniee et 33
4.3.2 Stop CUStOMIZAtiON cuuuuiiiiiiiiiiiee e e 35
4.3.3 Day Customizationccoeiiiiiiiiiiniiccceicee e 38
4.3.4 Day and Stop Customization........cccceeeeeeeeieiiicciiiiiieieeeee e, 39
4.3.5 Time, day and Stop Customizationcccceecvviivieeeeeeeeeeccnns 43

4.4 System Adaptation......cceeei i 45
4.4.1 Vehicle Label Customizationccoceeeriieeiiieeniieeeiee e, 45

5 EValuationccceeeiieeiiemmiicsnncnininnn e 48
6 CoONCIUSION ...iiiiiiiieeeieeti e 50
6.1 CONLIIDULIONS ..eeiiiiiiiiiee et 50
6.2 Application SOUrce Code......coimmmmiiiiiiiiiiiiiiiiiiieee e 51

7 FUtUre WOork......ccoeeeeeeeemiiieiiiiciiiiiinininnnnreecseseseseee s 52
7.1 Adaptation TEChNIQUEc.cuuviiiiiiieeeee e 52
7.2 Transport QUErY SYSTEM ...ttt e ee s 52
7.3 GF Writer Applicationcccuviiiiiiiieec e 53

(0= =] (=] (ol =T 54

A Methods of GF WIIterccooeiiiiiiiiiiiiiiiiiiiinieeeeeees 57
Al INTrOdUCTION . .ot 57
A2 ADSEIaCt Class ..ueeeiieieiiiie ettt 57

A2 1 CONSTIUCTONS covviiiiiiiiiiiieccecccce e 57
A3 CONCIEte Class ..eeeieeeerieie ittt ettt s s e 58
A3 1 CONSTIUCTONS covviiiiiiiiiiiieccceccc e 58
A4 CUSLOMIZEN ClaSS coueieeiiie e 59
A4l Compiling GF Srammarsccceeeeeeeecciiiiiiiieeee e e e e e eeeecirrreeeeeeea e e 59
A4.2 Adding 2rammar rUlESueeeeeeeeie i 60
A.4.3 Updating a GF Rule by Inheritance.......cccccceeeeeeiiccciiiiiiieeeeeeen, 61

Acknowledgments

It is a pleasure to thank those who made this thesis possible. My special
thanks go to my supervisor, Professor Aarne Ranta for his continual support
and encouragements. His valuable comments and positive energy despite of
his busy schedule was always the greatest assistance for me.

| would like to kindly appreciate Ramona Enache, who first introduced me to
the language technology group. | want to specially thank Grégoire Détrez,
Krasimir Angelov and John Camilleri for their kind behavior and undeniable
help during my thesis. | am also grateful to Peter Ljunglof for interesting dis-
cussions and for his ideas on dialog systems.

Last but not least, | want to thank my beloved family and specially my won-
derful parents for all their continuous and vital supports. Even though | am
far from them, their positive energy and encouragements are always with
me.

Chapter 1

Introduction

A Controlled Natural Language (CNL) is a subset of a natural language which
is designed to reduce the complexity and ambiguity of a full natural language
and to include certain grammar rules and vocabulary terms [1] [2]. Con-
trolled languages are designed to be used on specific domain, such as clinical
practice [3], topography [4], touristic phrases [5] and public transportation
gueries [6]. The Gothenburg Tram Information System (GOTTIS) [6] is a multi-
lingual multimodal dialogue system designed for public transport queries.
This CNL application is based on Grammatical Framework (GF) [7], which is a
grammar formalism used for multilingual grammars of controlled languages.

GOTTIS is an experimental application which uses GF grammars for interpret-
ing user’s input in different modalities (such as speech or map click). It uses a
weighted directed graph for finding the shortest path through a subset of the
Gothenburg public transportation network [8] [9]. Since this system does not
support the complete transport network and departure times, it cannot be
used for real travel planning. Moreover, the system is not flexible enough to
support changes of a public transit system, such as routes, schedule and new
vehicles. In order to have an adaptable dialogue system that presents up-to-
date travel information, the GF grammars need to be updated automatically
and during system execution.

The notion of adaptation is an important issue not only in transport dialogue
systems but also in other dialogue systems, which must be updated. Moreo-
ver, most users need to adapt the dialogue system to their needs and com-
municate with the system by specific utterances. The idea of extending dia-
logue systems by allowing users to reconfigure the system to their interest is
represented by voice programming [10]. This kind of adaptation is simply
done when users define their own commands in speech dialogues. All in all,
adaptation is highly demanded for controlled natural languages and must be
managed in GF-based systems by adapting GF grammars. Accordingly, we
introduce a technique for adapting GF-based Question Answering (QA) sys-
tem, which is implemented in a QA transportation system.

6

The demonstrative system handles user adaptation with respect to the voice
programming to support shorter and easier dialogues. In other words, it al-
lows users to define a synonym for a series of information that may be used
frequently in the dialogues. The synonyms will be saved by the system and
can be used in later dialogues. The following conversations show a normal
interaction with the system before applying user adaptation.

— U: | want to go from Chalmers to Valand today at 11:30
— S: Take tram number 7 from Chalmers track A to Valand track A at 11:31

However, these examples show how a user can record some commands and
use them in later queries to have a laconic conversation. Meanwhile, the
Swedish utterances depict multilingual aspect of the designed system.

— U: work means Chalmers on Monday at 7:30
— U: home means Valand

— U: Jag vill aka fran hem till jobbet
(I want to go from home to work)

— S: Ta sparvagn nummer 10 fran Valand lage B till Chalmers kl 07:33
(Take tram number 10 from Valand track B to Chalmers at 07:33)

According to voice programming definitions, a macro is “a way for the user
to automate a complex task that he/she performs repeatedly or on a regular
basis.” [10]. A list of supported macros by our travel planning system is stat-
ed below:

* Work means Chalmers.
- (VALUE means STOP—NAME)

* Work means Chalmers on Monday.
— (VALUE means STOP-NAME DAY)

* Work means Chalmers on Monday at 11:30.
— (VALUE means STOP-NAME DAY TIME)

* Birthday means Saturday
— (VALUE means DAY)

Our adaptation technique supports both user and system adaptation. Re-
garding system adaptation, the system can update GF grammars to adapt the
system while facing unpredictable situations. For instance, new vehicle labels
might be added to the transport network, which are not supported by the GF
grammar. Encountering this situation, the system will adapt itself by adding
the new vehicle label to the grammar.

In addition to adaptation, the resulting query system offers a design pattern
for transport dialogue systems. This system communicates with transport
web services to provide users an accurate travel plan. It is also completely
portable to a new transport network by automatic generation of correspond-
ing GF modules for presenting bus/tram stops. To perform this grammar
generation, a list of bus/tram stops is quested from transport web service
and then a GF writer application will write the information in a set of GF
modules. Automatic generation of stop grammar eliminates the work of writ-
ing huge grammars by GF programmers when porting the system to a new
transport network.

1.1 Grammatical Framework

This work is highly dependent on Grammatical Framework [7] for component
generation. This section gives a short description of GF and its features.

Grammatical Framework (GF) is a type-theoretic grammar formalism based
on Martin-Lof’s theory [11]. GF can describe both formal and natural lan-
guages and is well suited for writing grammars of natural languages. Howev-
er, the main strength of GF is multi-linguality that provides translation be-
tween several languages at the same time. It can also generate other neces-
sary grammars like context-free grammars. GF grammars can be used for
both parsing and generation of a language.

GF is a functional programming language similar to restricted version of ML
[12] and Haskell [13]. It also gets some features of Java and C++. From pro-
gramming language point of view, GF grammars can be used efficiently both
in development and at run-time. Due to the incremental parsing algorithm
[14] of grammars, language processing is polynomial in GF.

The key feature of GF is the distinction between two components of gram-
mars: abstract syntax and concrete syntax. Every GF grammar has an ab-

8

stract syntax with one or more concrete syntaxes. The abstract syntax repre-
sents the semantic structure of the language, while the concrete syntax de-
scribes the specific features of a language.

One of the biggest achievements of GF is the resource grammar library [15],
which provides the main grammar rules for a wide variety of natural lan-
guages. Currently, the library covers the morphology and syntax of 25 lan-
guages. The purpose of this library is to enable writing grammars without
knowing the linguistic aspect of a particular language.

The GF software system can generate several file formats, such as .gfo and
.pgf. The first one is GF object files, which are generated by importing
source files, suffixed . gf. These object files are faster to load in comparison
to source files. Additionally, GF grammars can be compiled to the Portable
Grammar Format (PGF) [16] which is a low-level binary format, suffixed

.pgf.

The GF package consists of three components: the compiler, the command
interpreter and the run-time system. The compiler translates GF source files
to object files, run time grammars (. pgf) and other formats. The command
interpreter, namely the GF shell, provides a set of commands for parsing,
linearization, visualization of parse tree, word alignments, etc. On the other
hand, the run-time system performs parsing, translation and other functions
with PGF grammars [7].

A PGF file is generated by compiling a set of concrete grammars that have
the same abstract syntax. Consequently, it can be loaded and applied faster
than bunch of GF grammar modules. In order to work with PGF files in other
platforms, like mobile phones, a PGF interpreter is needed. A PGF interpreter
can perform a subset of GF system functionality, such as parsing, lineariza-
tion, random generation and type checking. PGF interpreters exist in Haskell,
C, Java and JavaScript. Since Java is the host language for our system, we use
JPGF library® to work with PGF embedded grammars.

' https://github.com/GrammaticalFramework/JPGF

9

1.2 Outline

The report is written in 7 chapters with the following descriptions:

Chapter 1: This chapter provides an introduction to the thesis. It also de-
scribes the nature of Grammatical Framework.

Chapter 2: In this chapter, we introduce a multi-lingual question answering
system for planning journeys. It provides a profound description of a design
pattern for travel planning dialogue systems as well as introducing a baseline
system for applying adaptation in chapter 4. Moreover, it gives an introduc-
tion to the GF writer application, while the detailed information of this appli-
cation is shown in appendix A.

Chapter 3: The idea of GF grammar adaptation is introduced in this chapter.
Additionally, the patterns for adding or updating grammar rules are men-
tioned. However, the detail implementations are shown with some examples
in chapter 4.

Chapter 4: Moving on chapter 2 and 3, we show a real example of GF gram-
mar adaption in the online query system described in chapter 2. To illustrate
the importance of grammar adaption, two usage of adaption are demon-
strated: user adaptation and system adaptation.

Chapter 5, 6 and 7: The evaluation, conclusion and some suggestions future
works of this thesis are illustrated in these chapters, respectively.

10

Chapter 2

The Baseline System

2.1 Introduction

We developed a multi-lingual Question Answering (QA) system which pre-
sents up-to-date travel plan. This system integrates GF grammars, a public
transport service, speech synthesizer and an embeddable GF writer applica-
tion. The GF writer is a part of this system that generates and modifies GF
modules.

The purpose of developing this system is to support our adaptation tech-
niques by experimenting on a GF based online query system. In addition, the
system offers a design pattern for travel planning dialogue systems that can
be easily adapted to new transport networks and natural languages.

The transport question answering system and the GF Writer application are
described in this chapter. More information about GF writer methods is pro-
vided in appendix A.

2.2 System Overview

The main task in a question answering system is to extract required infor-
mation from user’s queries and construct an answer by querying a database.
In our system, a natural language query must be converted to an acceptable
format for a transport web service. Since each bus stop is identified by a
unique number, stop names must be presented by their identifiers in the
HTTP request. As a consequence, a mapping between bus stop names and
identifiers is required. We perform both information extraction and bus stop
mapping by translating a natural language query to a HTTP request using GF
grammars.

The demonstration system introduces a pattern for connecting to a web ser-
vice in a multilingual dialogue system. As it is shown in figure 1, the embed-
ded PGF interpreter translates a user input to a HTTP request, which can be
sent to the transport web service. Then travel information is retrieved from

11

the web service response. Putting all this information together, a parse tree
is generated that can be linearized to a natural language answer and finally
the output is fed to a speech synthesizer.

The PGF interpreter, shown below, is an embedded lightweight interpreter
which supports parsing, linearization and translation.

! Web wervice

|

1

| I
Natural language |
|

I
http request |

[
|
: |
|
: |
query | |
~y |
I I I :
I | ! |
I | I
User | | | }
e e s s s s s s s | o e i _]. _____
I -------------------- hl
! PGF interpreter }
: i
BParselree : | g
XML file f——>| : > Nau;a”s?vr;gruage
I
|
|

Fig. 1. Architecture overview of multilingual travel planning dialogue system

As a multi-lingual system, the system responses should be presented in dif-
ferent languages. Accordingly, system answers are constructed by linearizing
parse trees to target languages. So, to port the system to a new language, all
that is needed is defining a new concrete syntax. Since the HTTP language
and natural languages have the same abstract syntax, both parsing and line-
arization can be done for phrases for a new language.

The described system uses the Gothenburg transport web service (vasttraf-
ik.se) and supports queries in both English and Swedish. We use eSpeak Zas
a speech synthesizer to represent system response to the user.

In order to use this system for a new transport network, the bus/tram stops
must be changed to new ones. To address this issue, the GF modules that

2

http://espeak.sourceforge.net/

12

hold bus/tram stops are generated automatically by the GF writer applica-
tion. The following chapter introduces the GF writer, with a focus on its ar-
chitecture.

2.3 The GF Writer Application

The embeddable GF Writer is designed to dynamically construct and edit GF
modules in a Java program. In other words, it can produce or update GF
grammars during execution of a program. In order to generate a new mod-
ule, essential parts of the grammar such as module header and body, flags,
categories and function declarations should be defined. Similarly, for updat-
ing a GF grammar, module name and new function definition are needed.
After generating or modifying GF grammar, a newly generated PGF file will
be replaced with previous one.

The GF Writer can be used effectively in programs that use GF grammars. For
instance, it can be used to apply changes to the GF grammar of spoken lan-
guage translators, dialogue systems and localization purpose applications.

2.3.1 GF Writer Structure

The GF Writer offers three main classes for creation and modification of GF
modules: Abstract, Concrete and Customizer class. Abstract and Concrete
classes are designed for creation of abstract and concrete modules. In con-
trast, the Customizer class is aimed to update both abstract and concrete
modules. Using methods of the Customizer class, grammars will be updated
according to the user’s requests.

We split up grammar rules into right and left hand side parts, which are
named RHS and LHS in the Element class. Figure 2 illustrates more detailed
information about part of the GF writer classes and their relations.

13

GFGrammar

~Name : String

~GfFile : File

~Open : List<String>
~Extend : List<ResInherit>
~Flags : List<Element>

~write() : void
>
Concrete Abstract
-Abs : String -Cat : List<String>
-LinCat : List<Element> -Fun : List<Element>
-Lin : List<Element> +write() : void
+write() : void
Flags
-LinCat -Fun
Element
-LHS : String
-RHS : String
Customizer

-Make : String = "gf -make "

+makePGF(baseGram : List<String>, pgfPath : String) : void

+addLin(filePath : String. elem) : void
+addFun(filePath : String, elem) : void

+updatelin(filePath : String. module : String []. elem) : void

Fig. 2. A part of class diagram for GF Writer

14

The GFGrammar class has some properties to hold general information
about a GF module, regardless of its type (abstract or concrete); that are
module name and address, extension and opening modules and list of flags.
These properties will be initialized when an Abstract or Concrete instance is

As it is shown in figure 2, a list of ResInherit objects is used to present an ex-
tension module. The Resinherit class is designed to support restricted inher-

itance; that is, allowing a module to inherit a selection of function names.
The GF system supports two types of restricted inheritance: include and ex-
clude. In order to make a distinction between these types of inheritance,
InheritType enumeration is designed. Figure 3 represents the structure of
mentioned class and enumeration.

ReslInherit
-Name : String
-Funs : List<String>
-Type : InheritType

>K

-Type

<<enumeration>>
InheritType
Include
Exclude
Simple

Fig. 3. Class diagram for Inheritance in GF Writer

More detailed information about GF Writer methods with some examples
are documented in Appendix A.

2.4 Stop Grammar Generation

The embeddable GF writer application generates a set of abstract and con-
crete GF modules. For our transport dialogue system this application is used
for creating a set of modules for describing the transport network. To reach
this goal, the following steps are performed:

1. Sending a query to transport web service to get a list of all bus/tram stops
available in the journey planner

2. Parsing XML file and retrieving bus/tram stops information

3. Generating transport network modules for both natural languages and
HTTP request

Three classes are implemented to perform mentioned computations. These
classes are placed in StopGenerator package and are visualized in the class

15

diagram shown in figure 4. The static fields and methods are marked by un-
derlines in this representation of classes.

StopWriter

-WebService : String
-Method : String
-ldent : String

-Path : String

+StopWriter(webService : String, method : String, ident : String, path : String)
+genVTStops() : List<GFGrammar>

XmiStop Stop
~StopLocation : String = "StopLocation" -Stopld : String
~Stopld : String = "id" -StopName : String
~StopName : String = "name" -Region : String
~Track : String = "track"” -Track : String
+parseXml(configFile : String) : List<Stop> +getStation() : String

Fig. 4. Stop Generator class diagram

2.5 System Grammar

The transport system contains a set of modules for both query and answer
grammars. The list of stops is described in a separate module that can be
reproduced by GF writer application when porting system to a new transport
web service. Due to the large number of stops, Stop modules are automati-
cally generated by an embedded GF Writer. In the following subsections, the
grammar used for this online query system is demonstrated.

2.5.1 Grammar overview

The query and answer grammars are divided into several modules to provide
extendibility for developing more sophisticated systems. Figure 5 depicts an
overview of grammar modules which has been produced with module de-
pendency visualization feature in GF. Both Query and Answer grammars use
the same modules for travel time and stop names. On top of these gram-

16

mars, theTravel grammar extends both Query and Answer grammars to put
all grammar rules together.

Travel
Answer Query

S

Stop DayTime

Fig. 5. Grammar design pattern for transport query system

The following figures show the details of grammar modules for Query and
Answer grammars. In these figures, abstract and concrete syntaxes are
marked by rectangles and ellipses, respectively. The dashed ellipses repre-

sent resource grammar modules, which package operation definitions as a
reusable resource.

QueryHttp QueryEng

// \\

I (StopHttp Query DayTimeHttp DayTimeEng StopEng :

|

|\ // \\\ \ II

\

O 5 ‘ wolb)
(" ResStopHttp Stop DayTime| 7 StringOper) ! ResStop

Fig. 6. Query Grammar modules for English and HTTP format

17

AnswerEng

/ StopEng Answer DayTimeEng
II P
I . I
’__!_g’\ A/ A S A
\’\ ResStop :; Stop DayTime (/ StringOper :)

Fig. 7. Answer grammar modules for English language

Since system responses are generated from linearization of a parse tree, a
seperate module for HTTP language (AnswerHttp) is not needed, which is
shown in figure 7. However, the QueryHttp module is required for translating
natural language queries to HTTP format.

In order to support Swedish dialogues, the Swedish concrete syntax is con-
sidered for the abstract syntax. Due to similarity of English and Swedish syn-
taxes, Swedish modules are not shown.

The details of grammar module are demonstrated in the following sections.

2.5.2 Stop Grammar

Each public transport system has a list of stops that must be presented in GF
grammar. We represent the transport network in a separate set of modules
to make the system portable to other transport systems. In contrast with
previous works, the automatically generated abstract syntax offers a unique
numerical function name for each stop. These numerical function names
prevent ambiguity of stops with the same name which are different in other
details. The Stop module holds the declarations of all bus/tram stops.

abstract Stop = {

cat
Stop;
fun
St 0 : Stop;
St_1 : Stop;
}

18

The English concrete module linearizes Stop terms in records with some ob-
jects. These objects present name, region and track of each stop. Using this
structure, the query functions are free to use stop details (region and track
number) or not. Stops with empty track name are used to parse utterances
regardless of track name.

concrete StopEng of Stop = open ResStop in {

flags

coding = utf8;
lincat

Stop = ResStop.TStop;
lin

St 0 = mkStop "Chalmers" "Goteborg" "B";
St 1 = mkStop "Vettnet" "Stromstad" "track A";
St 2 = mkStop "Vettnet" "Stromstad" "";

}

resource ResStop = {
oper
TStop = { s ¢ Str; r : Str; t : Str; alt : Str};
mkStop : Str -> Str -> Str -> TStop =
\stop, region, track ->
{s = stop; r = region; t = track};

}

The StopHttp concrete syntax contains stop identifiers. Due to the same ab-
stract syntax for English and HTTP concrete syntaxes, each stop is simply
mapped to its identifier.

concrete StopHttp of Stop = open ResStopHttp in {

flags

coding = utf8;
lincat

Stop = ResStopHttp.TStop;
lin

St 0 = mkStop "9022014004420003"
St 1 = mkStop "9021014004420000"

.
14
.
14

resource ResStopHttp = {
oper

19

TStop = { s : Str} ;
mkStop : Str -> { s : Str} = \st -> { s = st };
}

The abstract and concrete modules of the stops grammar are generated au-
tomatically in the dialogue manager using GF Writer.

2.5.3 Date Time Grammar

To get a precise travel plan, the user should mention both the day and the
time of the travel. Commonly, the user mentions week days or some adverbs
such as today and tomorrow to refer to the date of the travel in a dialogue
system. Regarding this fact, we encode each day to a number in the Day-
TimeHttp module and replace it in the HTTP request after calculating the
corresponding date in our java program. This is the grammar that relates to
the day and time of travel.

abstract DayTime = {
cat
Day ;
Time ;
Number ;
Digit ;
fun
HourMin : Number -> Number -> Time; -- hour : min
Hour : Number -> Time ; -- 7 o'clock
Today, Tomorrow : Day ;
Saturday, Sunday, . . . , Friday : Day ;

Num : Digit -> Number ;

Nums : Digit -> Number -> Number;

NO, N1, N2, . . . , N9 : Digit;
}

The DayTimeHttp module addresses how terms in the Day category are line-
arized to special numbers.

concrete DayTimeHttp of DayTime = open StringOper
in {
lincat

20

Digit, Number = { s : Str} ;
Day = TDay ;
Time = TTime ;
oper
Thay = { s : Str};
TTime = { s : Str};

lin

HourMin hour min = {s = hour.s ++ ":" ++ min.s }
Hour hour = { s= hour.s ++ "- 0 0" } ;

Today = ss "8" ;

Tomorrow = ss "9" ;

Saturday = ss "7" ;

Sunday = ss "1" ;

Friday = ss "6" ;

Num d = d ;
Nums d n = {s = d.s ++ n.s};
NO = ss "0";

N9 = ss "9";
}

14

The English concrete module is also shown here. Since speech synthesizer
can produce speech from numeral text, digits are similar to HTTP module
digits and all are linearized to numbers. Due to this similarity, the functions

are not shown in these lines of the code.

concrete DayTimeEng of DayTime ({
lincat
Digit, Number= { s : Str };
Time = TTime;
Day = TDay;
oper
Thay = { s : Str; prep : Str};
TTime = { s : Str };
lin
HourMin hour min = {s = hour.s ++ ":" ++ min.s}
Hour hour = {s = hour.s ++ "o'clock"};

nn

Today = mkDay "today" ;

21

~e

Tomorrow = mkDay "tomorrow" "" ;
Saturday = mkDay "Saturday" "on" ;
oper

mkDay : Str -> Str -> {s : Str; prep : Str} =
\d,p -> {s = d; prep = p};

2.5.4 Query Grammar

The QueryHttp module is a part of our approach that generates HTTP request
in collaboration with other concrete modules. The developed dialogue sys-
tem uses Goteborg transport service as a travel finder. Since this web service
supports HTTP GET method, the linearization rules in QueryHttp are targeted
toward producing a GET request with the user’s parameters. In this set of
grammar, a function (GoFromTo) for producing a query and its linearization
are shown.

abstract Query = DayTime, Stop ** {
flags
startcat = Query;
cat
Query ;
fun
GoFromTo : Stop -> Stop -> Day -> Time -> Query ;

}

In the following concrete module, it is shown how a GET request is generat-
ed. The pattern for this request is defined according to the transport web
service. However, for adding more supported queries of the web service to
the system, all that needs to be done is to add corresponding functions to
the English concrete module.

concrete QueryHttp of Query = DayTimeHttp, StopHttp
** open (R=ResStopHttp) in {
lincat
Query = { s : Str} ;
lin
GoFromTo = mkHttp Dep ;

22

oper

mkHttp : SearchTyp -> R.TStop -> R.TStop
-> TDay -> TTime -> { s : Str} =
\ searchTyp, from, to, day, time ->

{s = "date=" ++ day.s ++
"§time=" ++ time.s ++
"&originId=" ++ from.s ++

"&destId=" ++ to.s };
}

The GoFromTo function is linearized as bellow in the QueryEng module.

GoFromTo from to day time =
{s = "I want to go from" ++ from.s ++ from.r ++
"to" ++ to.s ++ to.r ++
day.prep ++ day.s ++
"at" ++ time.s };

2.5.5 Answer Grammar

System response utterances are implemented in Answer grammar. A simple
grammar should specify time, vehicle and departure stop. In addition, in
should be able to represent line changes to the users. Since system respons-
es are generated by linearizing a parse tree, the HTTP concrete does not
need.

abstract Answer = DayTime, Stop ** {
flags
startcat = Answer;
cat
Answer;
Vehicle;
VhcTyp;
Label;
Tag;
fun
Routing : Vehicle -> Stop -> Stop -> Time -> An-
swer;
Change : Answer -> Answer -> Answer ;
Vhc : VhcTyp -> Label -> Vehicle ;
Lbl : Number -> Label ;

23

Buss, Tram : VhcTyp ;
}

In this module vehicle labels are numbers. However, they can be specific
names (e.g. Express, Red) that can be managed by grammar adaptation,
which is described in chapter 5.

concrete AnswerEng of Answer = DayTimeEng, StopEng
** open (R=ResStop) in {
flags
coding = utf8 ;
lincat
Ans, Vehicle, VhcTyp, Label, Tag = { s: Str};
lin
Routing = mkRoute;
Change rl r2 = { s = rl.s ++ "then" ++ r2.s} ;
Vhe vhe 1bl = { s = vhc.s ++ 1lbl.s} ;

Ibl n = { s = "number" ++ n.s};
Buss { s = "bus"} ;
Tram = { s = "tram"} ;

oper

mkRoute : { s: Str} -> R.TStop -> R.TStop -> TTime
-> { s: Str} =
\vhc, from, to, time ->
{s = "Take" ++ vhc.s ++
"from" ++ from.s ++ from.t ++
"to" ++ to.s ++ to.t ++
"at" ++ time.s};

2.5.6 Travel Grammar

The travel module extends both Query and Answer modules. The main fea-
ture of this module is putting the Answer and Query categories in one cate-
gory, which is the start category for parsing and dialogue generation. Fur-
thermore, putting all grammars in one module allows the GF grammar to be
adapted. As described in chapter 3, the extension grammar should extend
one module that holds all grammar features.

abstract Travel = Query, Answer ** {

24

flags
startcat = Stmt;
cat
Stmt ;
fun
Ask : Query -> Stmt;
Reply : Answer -> Stmt;
}

The linearization rules of the Travel module are demonstrated below.

concrete TravelEng of Travel = QueryEng, AnswerEng,

**{
lincat

Stmt = {s : Str} ;
lin

Ask q = q;

Reply p = p;
Customize d = d;

2.6 Example Interaction

The system allows dialogues such as the example below. In the following
dialogues, all phases of this dialogue are demonstrated in more details. This
is a possible user query when English is selected as a language of conversa-
tion:

— U: | want to go from Chalmers to Valand today at 11:30
Given above query to the parser, this parse tree is produced:
(Ask
((((GoFromTo St_1597)
St_1667)
Today)
((HourMin ((Nums N1) (Num N1)))

((Nums N3) (Num NO)))))

25

From this, the linearizer generates the following HTTP GET request:

date= 8 &time= 11 : 3 0
&originId= 9022014001960001
&destId= 9022014007220001

As it is shown above date value is not in a standard format. Hence, some
refinements are done on this translation to change the request to an ac-
ceptable format for the transport web service. After that, the base URL, ser-
vice name and authentication key are attached to the translation.

http://api.vasttrafik.se/bin/rest.exe/v1/trip?
authKey=734816b0- . . .-950b7a33337a
&date=2012-5-19
&time=11:30
&originId=9022014001960001
&destId=9022014007220001

Calling the web service by this GET request, An XML file is delivered. Then
the dialogue manager extracts possible journeys and chooses the best jour-
ney to represent to the user. Subsequently, the corresponding parse tree is
generated.

(Reply
((((Routing ((VhcLbl Tram) (Lbl (Num N7))))
St_1605)
St_1634)

((HourMin ((Nums N1) (Num N1)))
((Nums N3) (Num N1)))))
Finally, this parse tree is linearized to speech output:

— S: Take tram number 7 from Chalmers track A to Valand track A at 11:31

2.7 Component Overview

The dialogue system is integrated with a number of components which fol-
low:

26

GF software system. To compile multi-lingual grammars and generate PGF
file.

Java PGF interpreter. The JPGF library to work with PGF files and provide
parser and linearizer.

GF Writer. The application to generate or edit GF modules.

Transport web service. The public transport web service to find real travel
plan.

Speech Synthesizer. The eSpeak speech synthesizer that converts text to
speech.

27

Chapter 3

GF Grammar Adaptation

3.1 Introduction

GF can be used as a component in controlled natural language systems like
dialogue systems, spoken translators and user interfaces. In most of these
systems users require to adapt the system with their own needs. Conse-
guently, GF grammars need to be updated when it is required. To reach this
goal, GF grammars should be modified efficiently during execution of a sys-
tem.

GF grammar adaptation allows users to adapt their system in different lan-
guages. Our solution is targeted toward adding new rules and also updating
the definition of existing functions. In this chapter, the approach for adapting
GF grammars is described.

3.2 Grammar Overview

As far as time is concerned, GF grammar adaptation can be costly while per-
forming these two tasks: Modifying GF modules and reproducing the PGF
file. Firstly, the GF system can only parse utterances that match grammar
rules. Therefore adaptation needs changes in GF modules. Module modifica-
tion needs a sequence of time consuming tasks, such as opening GF file,
searching through rules and writing new rules. Moreover, user adaptations
may cause changes not only in one module, but also in different modules.
Accordingly, the modification process can be inefficient when changes need
to be applied for several modules. Similarly, file size impacts on the speed of
opening and updating. All in all, number and size of modules impacts on the
cost of GF module modification.

Secondly, compiling GF grammars and producing new PGF file during execu-
tion takes some time and can be annoying for users. Since a PGF file is the

28

linkage of GF object files (.gfo files), more modified files causes more new GF
object files and consequently creation of new PGF file would be more costly.

Regarding these problems, our approach is targeted toward applying chang-
es to an extension grammar rather than changing the main grammar itself.
The extension grammar extends all other modules and thus it contains all
categories and functions of the main grammar. In addition to an abstract
module, a concrete module is created for each language in extension gram-
mar. Figure 8 describes the relation of the extension and main grammar.
Using this approach, users can adapt grammars by both adding new gram-
mar rules and updating existing rules.

Extension

'

Main Grammar

Fig. 8. GF grammar adaptation pattern design

Adapting GF grammars is possible by using GF Writer, which is described in
chapter 1. Some usage and examples of GF grammar adaptation is shown in
chapter 5, which are in a real dialogue system and with complicated gram-
mar structure.

3.3 Adding New Functions

In order to add a new function definition or linearization to a predefined GF
grammar, desired rules should be written in the extension abstract and con-
crete modules. Given a list of stop names, a new stop name will be added to
the extension module like the example below. According to this example,
Stop_ new function is declared in the Ext abstract module and linearized in
the ExtEng concrete module.

abstract Ext = Stop ** {
fun

29

Stop_new: Stop;
}

concrete ExtEng of Ext = StopEng ** {
flags coding = utf8 ;
lin

Stop new = { s = "new stop" };

}

3.4 Updating Current Functions

A user can update an existing rule in GF grammar by either changing or add-
ing alternatives to a function linearization. For both cases, exclusive inher-
itance must be used to avoid ambiguity. The following example illustrates
how our ExtEng module has changed by adding an alternative to a prede-
fined function.

concrete ExtEng of Ext = StopEng — [Chalmers]** {
flags coding = utf8 ;

lin
Chalmers = StopEng.Chalmers | "university"
Stop_new = "new stop";

}

As it is shown above, updating a function linearization causes changes just in
the concrete module. Additionally, projection (StopEng.Chalmers) is
used to keep the previous linearization of the function. A user should also
notice that new terms (e.g. university) in the variant list must be of the
same type.

30

Chapter 4

Example: An Adaptive Online
Query System

4.1 Introduction

We have explained that a user in our multilingual dialogue system can find
his travel plan by defining travel features, such as stop names, day and time.
But most users want to have their own configuration and use shorter dia-
logues to demonstrate their means. For instance, a user may want to refer to
a stop as “home” in his query. In order to address this issue, we propose a
solution to support these user adaptations to the dialogue system explained
in chapter 2. This solution is an example of GF grammar adaptation described
in chapter 3.

Applying adaptation to the system allows users to add new definitions that
can be used in future utterances. The functionality of this system is shown in
the following example. First the user explicitly defines what he means by a
special phrase and then he can act in his own interest by using customization
in his queries.

— U: work means Chalmers on Monday at 7:30

— U: home means Valand

— U: | want to go from home to work

— S: Take tram number 10 from Valand track B to Chalmers track B at 07:33

Our approach for adapting the dialogue system provides users the ability to
adapt their system in different languages. It is also targeted toward custom-
izing each category and a number of categories in GF grammar. Furthermore,
it provides users the ability to adapt their system for all supported languages
while he configures the system for one language.

In addition to user adaptation, the dialogue manager sometimes needs to
update GF grammar. One such situation is when a system requires new rules
31

to parse or linearize a phrase. For instance, in a travel planning system any
changes may happen and the dialogue manager should be flexible enough to
support all these changes. For instance, in our transport dialogue system
new vehicle labels may be used in the system response. In this situation, the
dialogue manger must support GF adaptation to add new definitions to the
grammar.

In this chapter, we explain how an ordinary dialogue system can be changed
to an adaptable one which supports both user and system adaptation. Here
we use the transport dialogue system described in chapter 4.

4.2 Grammar Overview

In order to extend the transport grammar to an adaptive one, two modules
are added. As we mentioned in chapter 2, a separate GF module is designed
to hold all grammar adaptation. In addition, a separate module is designed
that contains grammar rules for user definitions. In other words, to parse the
user’s definitions, corresponding grammar rules should be added to the sys-
tem. These two modules are shown as Ext and Def in figure 9. The Ext mod-
ule is initially empty and grammar rules will be added gradually for every
new definition. The Def module is intended as a lexicon which offers new
words that can be added as new concepts to the system.

Ext
Travel
/ A \
Def Answer Query

Ny

Stop DayTime

Fig. 9. Grammar design pattern for an adaptive transport dialogue system

32

According to figure 9, the Ext module inherits the content of all other mod-
ules. At first, abstract and concrete extension modules have no rules and
new rules will be added gradually after user customizations.

abstract Ext = Travel ** {

}

concrete ExtEng of Ext = TravelEng ** {
flags coding = utf8 ;
}

In order to change our dialogue system to an adaptable one, GF grammars
must be changed in some aspects. These changes are divided into two
groups: dialogue manager and GF programmer changes. Dialogue manager
changes means modifying the Ext abstract syntax and its concrete modules.
These modifications are done dynamically in the dialogue manager and when
a user defines new meanings. On the other hand, there are some changes
that the GF programmer must consider in GF modules when writing the GF
grammars. Adding type definitions, functions and operations are some of the
examples. We explain these changes in the following sections in more de-
tails.

4.3 User Adaptation

In this section, it is explained how user adaptation is managed in the
transport dialogue system. This user adaptation is based on the idea of voice
programming where users can explicitly adapt some aspects of a dialogue
system to their own needs [10]. Regarding voice programming, we describe
user adaptation for four aspects of our transport system.

4.3.1 Definition Grammar

The Def grammar module specifies how a user can communicate to the dia-
logue system for the purpose of customization. We propose to adapt four
aspects of the dialogue system. Accordingly, corresponding grammar rules
are considered: DefPlace, DefDay, DefPlaceDay, DefPlace-
DayTime. Moreover the user needs to define an alternative for a phrase
definition. In the following abstract syntax, the type of these alternatives is
similar, namely, New. For the purpose of brevity a simple syntax for this

33

grammar module is shown below. However, it should be large enough to
support a wide variety of user utterances.

abstract Def = Stop, DayTime **{
flags startcat = Def ;
cat
New;
Def;
fun
DefPlace : New -> Stop -> Def;
DefDay : New -> Day -> Def;
DefPlaceDay : New -> Stop -> Day -> Def;
DefPlaceDayTime : New -> Stop -> Day -> Time ->
Def;

Home, Work, Birthday, Weekend : New;

}

The English concrete syntax of the abstract syntax is demonstrated below.
Since the user adaptation must be available for all supported languages, the
Swedish grammar is also designed. It is not shown though.

concrete DefEng of Def = StopEng, DayTimeEng **{
flags

coding = utf8;
lincat
New, Def = {s : Str};
lin

DefPlace new stop =
{s = new.s ++ "means" ++ stop.s};
DefDay new day =
{s = new.s ++ "means" ++ day.s};
DefPlaceDay new stop day =
{s = new.s ++ "means" ++ stop.s ++ day.alt};
DefPlaceDayTime new stop day time =

{s = new.s ++ "means" ++ stop.s ++ day.alt ++
time.s};

Home = {s = "home"};

Work = {s = "work"};
Birthday = {s = "birthday"};
Weekend = {s = "weekend"};

34

}

As we mentioned before, the Travel grammar extends the Query and Answer
grammars of this dialogue system. Similarly, it extends the Def module to
cover all aspects of the dialogue system grammar. Therefore the following
rules are added to the Travel grammar.

fun
Customize : Def -> Stmt ;

lin
Customize d = d;

4.3.2 Stop Customization

In this subsection we describe an example in our system for customizing the
name of a stop. Firstly, the user defines a new command such as below:

— U: home means Valand

Then the parser produces corresponding parse tree.
(Customize
((DefPlace Home) St_1639))

Having this parse tree, the required information is extracted; that are Home
and St_1639. After that, a new rule will be added to the concrete modules of
Ext. Parallel to the English concrete syntax of Ext, the corresponding rule is
added to the Swedish concrete syntax.

concrete ExtEng of Ext = TravelEng-[St 1639] ** {
lin
St_1639 = toStop TravelEng.Home
TravelEng.St 1639;

}

In order to apply the following adaptation to the Swedish language, all that
needs to be done is to replace Eng term of above linearization rule to Swe in
the ExtSwe module.

After adding a new linearization rule to the extension concrete module, the
PGF file should be reproduced to support recent changes. Both module

35

modification and PGF file production are done using GF Writer methods. As it
is shown below, the dialogue manager just needs two function names (Home
and ST 1639) for toStop operation to generate a new linearization rule.
Moreover, using toStop fanctor makes dialogue manager independet of GF
grammar rules and type definitions.

//**%%% Modifying ExtEng module *#***%*
String[] modules = { "TravelEng"};
String new = "Home";
String fun = "St 1639";
Element elem = new Element("St_1639",
"toStop TravelEng." + new + " TravelEng." + fun);

Customizer.updateLin("./res/ExtEng.gf",

modules, elem);

n

//**%%% Creating PGF file #**%%*%

List<String> travelBase = new LinkedList<String>();
travelBase.add("./res/ExtEng.gf");
travelBase.add("./res/ExtSwe.gf");
travelBase.add("./res/ExtHttp.gf");
Customizer.makePGF (travelBase, "./res/Ext.pgf");

After executing this java code, a new PGF file is produced. Since this PGF file
holds new definitions, the user can ask queries containing these definitions
in both English and Swedish:

— |l want to go from Chalmers to home on Monday at 10:20
— Jag vill aka fran Chalmers till hem pa séndag kl 10:20

Travel Grammar Changes

There are some differences between the Travel grammar, illustrated in chap-
ter 4, and the grammar we used for adaptation. These changes must be ap-
plied to the grammar by the GF programmer before releasing the dialogue
system. Here we explain these changes in detail.

According to the ExtEng module shown above, we used restricted inher-

itance that excludes St 1639 from TravelEng. This design causes non-

ambiguity and simultaneously keeps the previous type definition of this func-

tion by using the toStop operation. The purpose of this operation is to

change the type of user’s alternative to the desired category, ex. String
36

(home) to Stop (Valand). The toStop operation is a part of the TravelEng
module which is written before by the GF programmer.

concrete TravelEng of Travel = QueryEng, AnswerEng,
DefEng ** open (R=ResStop) in{

oper
toStop : {s : Str} -> Stop -> Stop =
\new, stop -> {s = stop.s;
r = stop.r ;
t stop.t;
alt = stop.alt | new.s};

}

As it is shown in the toStop operation, the type of Stop has changed in
comparison to chapter 4, by adding alt object. This object contains a linear-
ization of the stop name and its alternatives in the form of variants. The fol-
lowing lines of code show new type definition of Stop in our transport dia-
logue system. Notice the initial value of the alt object.

mkStop : Str -> Str -> Str -> TStop =
\stop, region, track ->
{s = stop; r = region; t = track;
alt = stop ++ track};

Adding the alt object in the type definition allows GF programmers to use
these alternatives whenever they need. For instance, we use the alt object
for linearizing user queries but not the system response. The reason for this
is that when the user listens to a travel plan, he prefers to know stop names
rather than alternatives, such as home, work, etc.

GoFromTo from to day time =
{s = "I want to go from" ++ from.alt ++
"to" ++ to.alt ++
day.alt ++
"at" ++ time.s };

Routing vehicle from to time =
{s = "Take" ++ vehicle.s ++
"from" ++ from.s ++ from.t ++
"to" ++ to.s ++ to.t ++

37

"at" ++ time.s};

Multiple Definitions for a Stop

The user may define several meanings for a special place. For instance, he
defines Valand as both home and gym.

— U: gym means Valand

Since the ExtEng module has already a linearization for this stop, this alterna-
tive will be added as a variant to the linearization rule.
concrete ExtEng of Ext = TravelEng-[St 1639] ** {
lin
St_1639 = toStop TravelEng.Home
TravelEng.St 1639

| toStop TravelEng.Gym
TravelEng.St_1639;

4.3.3 Day Customization

The approach for customizing day of a travel is similar to stop customization.
Assuming this user command

— U: weekend means Sunday
The following parse tree is generated.
(Customize

((DefDay Weekend) Sunday))

Then, the dialogue manager executes the corresponding java codes to add
this rule to the extension concrete modules.

concrete ExtEng of Ext = TravelEng-[Sunday, . . .]
* * {
lin
Sunday = toWeekDay TravelEng.Weekend
TravelEng.Sunday;

38

}

The toWeekDay operation is an operation of the TravelEng module that
adds an alternative to a given day.

toWeekDay : {s : Str} -> TDay -> TDay =
\new, day ->
{s = day.s;
prep = day.prep;
alt = day.alt | new.s };

Similar to the Stop category, a new object is considered in the Day type defi-
nition. Adding alt object to the type definition of an adaptable grammar is
an initiative that separates original values from alternatives. The following
shows the a1t object of the Day category and its initial value.

oper
Thay = {s : Str; prep : Str; alt : Str };

mkDay : Str -> Str -> TDay =
\d,p -> {s = d;
prep = p;
alt = p ++ d};

4.3.4 Day and Stop Customization

In the previous subsections we mentioned how an existing function in the GF
grammar can be modified to hold user adaptations. In addition to this type of
adaptation, the user may need to define an alternative for complicated
phrases. In our transport dialogue system, this definition can be any combi-
nations of stops, day, and time. To handle these definitions we need to in-
troduce new types and consequently some operations. We describe our so-
lution for this type of adaptation in the following example, where a user de-
fines a word to mean a special day and place. A user utterance and its parse
tree are like this:

— U: work means Chalmers on Monday

(Customize

(((DefPlaceDay Work) St_1597) Monday))

39

After extracting the required information from the parse tree, corresponding
rules are added to the extension abstract and concrete modules. In other
words, the dialogue manager adds a function definition to the Ext module
and its linearization to the ExtEng, ExtSwe and ExtHttp modules.

abstract Ext = Travel ** {
fun
WorkStopDay : StopDayTime;

}

concrete ExtEng of Ext = TravelEng-[. . .] **{
lin
WorkStopDay = toStopDay TravelEng.Work
TravelEng.St_1597
TravelEng.Monday;

}

The linearization rule for the Swedish syntax is similar to the English one,
except for the TravelEng term that must be changed to TravelSwe. However,
the linearization of WorkStopDay in ExtHttp module is different from ExtEng
and that is due to omission of the alt abject from the Stopday type.

concrete ExtHttp of Ext = TravelHttp **{
lin
WorkStopDay = toStopDay TravelHttp.St 1597
TravelHttp.Monday;

}

In order to change the abstract and concrete modules, the dialogue manager
needs to call two functions of GF Writer; that are addFun and addlin:

String new = "Work";
String stop = "St 1597";
String day = "Monday”;

//***%% Modifying abstract module *#***%*

Element elemAbs = new Element(new + "StopDay",
"StopDhay");

Customizer.addFun("./res/Ext.gf", elemAbs);

40

//**%*%x% Modifying English Concrete module ***%x*
Element elemEng = new Element(new + "StopDay",
"toStopDay TravelHttp." + stop +
" TravelHttp." + day);
Customizer.addLin("./res/ExtEng.gf", elemEng);

After changing the GF modules, a new PGF file is created and the new cus-
tomization is recorded in the dialogue system.

Travel Grammar Changes

In order to allow users to define a new meaning for a series of information
that are not belonged to a category, a new category must be defined in the
grammar. For instance, the StopDay category is declared in the Travel
module to support user adaptation for this aspect of the dialogue system.
Since Stop and Day are already declared in the grammar categories, the
StopDay category is introduced to hold a stop and day together with a
string as an alternative.

concrete TravelEng of Travel = QueryEng, AnswerEng,
DefEng ** open (R=ResStop) in{
lincat
StopDay = {stop : R.TStop;
day : TDay;
alt : sStr};

}

Similar to the previous subsections, we need an operation to create a
StopDay type from a given string, stop and day:

concrete TravelEng of Travel = QueryEng, AnswerEng,
DefEng ** open (R=ResStop) in{
oper
toStopDay :
{s : Str} -> R.TStop -> TDhay ->
{stop : R.TStop; day : TDay; alt:Str} =
\ new, st, d ->
{stop =st; day = d; alt = new.s};

41

In addition to the English grammar, the HTTP grammar should also have the
toStopDay operation and type definition for the DayTime category.
Since user definitions are not used in HTTP queries, the alt abject is omit-
ted.

concrete TravelHttp of Travel = QueryHttp, An-
swerHttp ** open (R=ResStopHttp) in {
lincat
StopDay = { stop : R.TStop; day : TDay};
oper
toStopDay :
R.TStop -> TDhay ->
{stop : R.TStop; day : TDay}
\st, d -> { stop = st; day

}

According to the Ext module, the WorkStopDay rule means having a cer-
tain stop name, day and phrase, so a new instance of StopDay type is pro-
duced. But it does not mean that the user can ask a query such as below.

d};

— U: | want to go from Valand to work at 9:30

To address this issue, a new kind of GoFromTo function is introduced that
accepts an instance of the StopDay category rather than separate Stop
and Day instances.

fun
GoFromToStopDay = mkQueryStopDay;

oper
mkQueryStopDay
TStop ->
{stop : TStop; day : TDhay; alt : Str} ->
TTime -> { s : Str} =
\ from, stopDay, time ->
{s = "I want to go from" ++ from.alt ++
"to" ++ stopDay.alt ++
time.s };

42

The corresponding function in TravelHttp module is shown below. Since
HTTP requests need exact information for the users’ query, all fields of
WorkStopDayTime is used in linearization.

fun
GoFromToStopDay from stopDay time =
{s = "date=" ++ stopDay.day.s ++
"stime=" ++ time.s ++
"&originId=" ++ from.s ++
"&destId=" ++ stopDay.stop.s};

Multiple Definition for Stop and Day

As it is shown in the Ext module, a new function will be declared for each
customization of stop and day. Due to the GF grammar syntax, each function
name must be unique in the abstract syntax. Accordingly, we formulate the
function name generation by combining the alternative (e.g. Home) and
StopDay. As a consequence, when a user defines a new definition for an ex-
isting function, the linearization will be changed to the new one. For in-
stance, the WorkStopDay function will be the following when the user
defines a new meaning for work.

— U: work means Chalmers Tvadrgata on Monday
lin
WorkStopDay = toStopDay TravelEng.Work

TravelEng.St_1590
TravelEng.Monday;

4.3.5 Time, day and Stop Customization

In this Section, we describe our approach for customizing a series of infor-
mation containing literals. For example, time is a literal that is used in user
queries in our dialogue system. When a user utterance is targeted toward
defining an alternative for a specific stop, day and time, the related parse
tree will be generated:

— U: work means Chalmers on Monday at 7:30

(Customize
((((DefPlaceDayTime Work)

43

St_1592)
Monday)
((HourMin (Num N7)) ((Nums N3) (Num NO0)))))

Afterwards, the WorkStopDayTime function and its linearization are add-
ed to the Ext abstract and concrete modules.

fun
WorkStopDayTime : StopDayTime;

lin
WorkStopDayTime = toStopDayTime TravelEng.Work
TravelEng.St_1592
TravelEng.Monday
"7 : 3 0";

The type definition of StopDayTime, holds stop, day, time and an alternative
for combination of these elements. As it is shown below, type of time in the
StopDayTime record is String and not TTime. This is due to the fact that
time is similar in all languages and is not translated between languages.
Moreover, the parse tree of a specified time is more than one function and
consequently a complicated parse tree cannot be placed in the StopDayTime
record.

StopDayTime = {stop : TStop;
day : TDay;
time : Str;
alt : Str};

The ToStopDayTime operation and the GoFromToStopDayTime function
are placed in the Travel concrete modules.

concrete TravelEng of Travel = QueryEng, AnswerEng,
DefEng ** open (R=ResStop) in{
lin
GoFromToStopDayTime = mkQueryStopDayTime;
oper
mkQueryStopDayTime
R.TStop ->

44

{ stop : R.TStop; day : TDay;
time : Str; alt : Str} ->

{ s : str} =
\ from, stopDayTime ->
{s = "I want to go from" ++ from.alt ++

"to" ++ stopDayTime.alt };

toStopDayTime : {s : Str} ->
R.TStop -> Thay -> Str ->
{stop : R.TStop; day : TDay;
time : Str; alt : Str} =
\ new, st, d, t ->
{ stop = st; day = d; time = t; alt = new.s};

}

Similar to the previous section, the alt object is not needed for the
StopDayTime category in the HTTP grammar. Accordingly, the toS-
topDayTime operation and the GoFromToStopDayTime function are
without the a1t object.

4.4 System Adaptation

In addition to user adaptation, the dialogue manager can update GF gram-
mars. This allows the dialogue manager to adapt the system to new situa-
tions and keep the system always updated. We show the usage of system
adaptation by an example in our transport dialogue system.

4.4.1 Vehicle Label Customization

Vehicle labels in our dialogue system are represented by the type of the ve-
hicle (e.g. bus, tram) and a number, like bus number 10.

fun
Vhc : VhcTyp -> Label -> Vehicle ;
Lbl : Number -> Label ;
Buss, Tram : VhcTyp ;

Having this grammar, we assume the following query:

— U: | want to go from Delsjomotet to Berzeliigatan todayat11:30
45

For this request, the web service offers Gron express bus. Since this type of
vehicle label is not supported in the system grammar, the dialogue manager
will fail to produce parse tree and the linearizer cannot generate system re-
sponse.

To solve this problem, the grammar should cover all these exceptions for the
vehicle label. Since there is no source to list these special vehicles, the sys-
tem may encounter an exception anytime. The only feasible solution for this
problem is to use GF grammar adaptation and add the desired vehicle label
to the extension grammar.

When travel planner offers a vehicle with specific name, the dialogue man-
ger checks whether this label is already added to the grammar or not. This is
done by parsing the vehicle label. If the parser succeeds to parse the vehi-
cle’s name, the function name will be used in the answer parse tree. Other-
wise, a new function will be added to the extension abstract and concrete
modules.

abstract Ext = Travel ** {
fun
ILbl 20120504 0047 : Label;

}

concrete ExtEng of Ext = TravelEng-[. . .]** {
flags coding = utf8 ;
lin

Lbl 20120504 0047 = toLabel "GRON EXPRESS";

}
According to above grammar, a combination of system day and time is used

for generating unique function names.

After adding new labels to the grammar, the PGF file is updated. Afterwards,
the parse tree and its linearization will be generated:

(Reply
((((Routing ((Vhc Buss) Lbl_20120504_0047))
St 2266)
St 1734)

((HourMin ((Nums N1) (Num N1)))
46

((Nums N4) (Num N1)))))

— S: Take bus Gron express from Delsjomotet to Berzeliigatanat11:4 1

47

Chapter 5

Evaluation

Since user adaptation results more accurate and shorter input queries,
speech recognition is more robust and with fewer errors. In order to evalu-
ate this assessment, we tested 120 random generated input queries of our
transport query system. These utterances were equally divided into two
groups of adapted and non-adapted queries and were fed to the speech rec-
ognizer, which was Google speech recognizer®. After collecting the outputs of
the Google speech recognizer we noticed that all of the non-adapted queries
failed, whereas most of the adapted queries were passed.

The behavior of the speech recognizer while encountering foreign words is
shown in this typical example:

— Input: | want to go from Aketorpsgatan to Billdal on Monday at 11:31
— Output: | want to go from pocket doors car tom to build on that on Mon-
dayat 11:31

According to this example, the speech recognizer’s trend is to find known
words instead of analyzing foreign words. In other words, it extracts a se-
guence of common words rather than guessing the given place name; so it
cannot translate even a plain name such as Billdal. However, having look to
the failed adapted queries demonstrates that the recognized text is very sim-
ilar to the speech and the error rates are low. For instance, in the following
qguery the word “pub” is translated to “park”, which is due to the difficulty of
discriminating between special alphabets.

— Input: | want to go from the pub to park on Friday at 15:35
— Output: | want to go from the park to park on Friday at 15:35

In contrary, the following examples show some adapted passed queries:

® http://www.google.com/insidesearch/features/voicesearch/index-chrome.html

48

— |l want to go from hospital to restaurant
— |l want to go from bank to cinema at 6:17
— | want to go from university to university on Monday at 4:20

In order to evaluate and compare the word error rate of speech recognizer
for both adapted and non-adapted queries, the similarity of each query to
the recognized one was numerated word by word and in a sequential order.
We chose this type of similarity according to the GF parser, which parses a
given sentence token by token and using a top-down algorithm [11]. The
following table shows the rates of sentence error and word error for both
adapted and non-adapted queries:

Word error rate Sentence error rate
Non-adapted 58 100
queries
Adapted queries 26 53

Table 1. Error rate of speech recognizer for adapted and non-adapted queries

To sum up, user adaptation affects the speech recognition process and re-
sults to more reliable system. This is due to the elimination of foreign words
and using shorter dialogues. By user adaptation, stop names are replaced
with user defined synonyms and consequently they can be recognized with
higher probability.

49

Chapter 6

Conclusion

6.1 Contributions

In this work, we introduced an adaptation technique for dialogue systems
that are based on Grammatical Framework (GF). The baseline system for
demonstrating the adaptation technique is a GF-base query system for plan-
ning journeys. This multi-lingual travel planning system can present up-to-
date travel plans by communication with a transport web service. In order to
use this system for a new transport network, the GF modules that holds stop
names, are generated automatically by the GF Writer application.

The embeddable GF writer application can produce or update GF grammars
during the execution of a program. This application can also compile the
modified GF modules and generate a new PGF files by running GF software
commands. Moreover, it makes a major contribution in the implementation
of the adaptation technique.

The adaptation technique is based on placing grammar changes in an exten-
sion grammar rather than changing the main grammar itself. This extension
grammar extends the main grammar and thus it contains all grammar rules
of the main grammar. Since only the extension grammars needs to compile
after each adaptation, the execution time for generating a new PGF file is
short.

We applied this adaptation technique to our base line system to have an
adaptable transport query system. This adaptable system shows some ex-
amples of this technique for both user adaption and system adaptation. By
user adaptation, the users can adapt some aspects of the transport query
system to their own needs, such as defining alternatives for stop names, day
and time of a travel. By system adaptation, the system can automatically add
the name of a newly added bus line to the system grammar.

50

This adaptable transport system shows how users can customize the system
for their own purposes. Since user adaptation results more accurate and
shorter input queries, speech recognition will be more robust and with fewer
errors. This assessment was evaluated by 120 random queries and it turns
out that speech recognition is more reliable in adaptable systems due to
elimination of foreign words and using shorter queries.

6.2 Application Source Code

The source code of the application which is written as a part of this work is
available from https://github.com/hasibi/DynamicTravel. The
code consists of the embedded GF writer application and the travel planning
query system.

51

Chapter 7

Future Work

7.1 Adaptation Technique

This adaptation technique can be applied to various domains of information-
seeking dialogue systems in which the dialogue system integrates a huge
database, a lexicon and a set of dialogue plans.

For instance, the SAMMIE [17] is an in-car dialogue system for a music player
application that allows users to control the currently playing song, construct
an edit playlists [17] [18]. In this system, the users interact with the system
using lots of foreign words to look for songs, artists, albums and etc. Applying
user adaptation to this dialogue system, allows the users to define alterna-
tives for a set of foreign words or to shorten the length of utterances. Con-
sequently, these laconic conversions will increase the driver’s attention to
the primary driving task.

Another example is price comparison services such as PriceRunner?, where
users define features of a specific product to compare between different
retailers. A dialogue system in this domain needs to record the features of a
product as a special name which can be used in later utterances. For in-
stance, when the user wants to check the price of a particular camera regu-
larly, he can define a synonym (e.g. my camera) for a special camera rather
than repeating the camera model every time.

7.2 Transport Query System

This text-based query system can be extended to a multimodal dialogue sys-
tem [8] to support speech, text and map clicks. In such system, the users can
use text or map clicks to define alternatives for stop names which cannot be

* http://www.pricerunner.co.uk/

52

recognized by speech recognizer. After that, the user can refer to that place
by using that alternative in later dialogues. Moreover, the user adaptations
can be saved in a log file, which will be retrieved when the stop grammar
changes.

Since all stop names are saved as a part of grammar, the system can support
predictive parsing [19] to offer stop names to the users. Moreover, alterna-
tives that are used in user adaptation are preferred to come from a bigger a
lexicon. Resource Grammar Library (RGL) [15] can be used for this purpose to
scale up user’s dialogues. Additionally, the system grammar can be extended
to support more dialogues and generate complex answers.

Due to the large amount of information that is presented to users in this
travel planning system, the user may lose some information of the system’s
response. In order to improve the efficiency of information presentation
phase, some approaches like UMSR (User Model Based Summarize and Re-
fine) can be applied to this system [20]. In addition the user’s customization
can be used in the system response to make the dialogue shorter. For in-
stance, instead of a special stop name, the system can use the user’s defini-
tion for that stop.

7.3 GF Writer Application

Presently, the GF writer application can generate and modify most parts of
an abstract or concrete module, like opening a resource, module extension
and etc. The following is some extensions that make the GF Writer more
general and applicable.

* Supporting operation definition in a concrete module.
* Generation and modification of resource module type.

* Adding more functionality for grammar modification, e.g. editing GF cate-
gories, deleting a specified rule and so forth.

* Using more efficient algorithm for both searching a function’s name and
applying appropriate action.

53

References

Angelov, K.., Bringert, B., and Ranta, A.:. Pgf: A portable runtime format for
type-theoretical grammars. Journal of Logic, Language and Information,
19:201- 228, 2010. (n.d.).

Angelov, K.: Incremental Parsing with Parallel Multiple Context-Free
Grammars. In: European Chapter of the Association for Computational
Linguistics (2009). (n.d.).

Angelov, K.: The Mechanics of the Grammatical Framework. PhD thesis,
Chalmers University of Thechnology and University of Gothenburg, 2011.
(n.d.).

Becker, T., Poller, P., Schehl, J., Blaylock, N.,Gerstenberger, C., Kruijff-
Korbayova, I.: "The SAMMIE system: Multimodal in-car dialogue". In
Proceedings of the COLING/ACL 2006 Interactive Presentation Sessions, pages
57-60, Sydney, Australia.

Bringert, B., Cooper, R., Ljunglof, P., Ranta, A.,: Multimodal Dialouge System
Grammars. In: Proceedings of DIALOR’05, Ninth workshop on the semantics
and pragmatics of dialo-gue, Nancy, France, pages 53-60, June 2005. (n.d.).

Bringert, B.: Embedded grammars. MSc Thesis, Department of Computing
Science, Chalmers University of Technology, 2004. (n.d.).

Bringert, B.: Speech recognition Grammar Compilation in Grammatical
Framework. (n.d.). In: Proceedings of the ACL 2007 workshop on Grammar-
Based Approaches to Spoken Language Processing, Prague, Czech Republic,
June 29, 2007, pages 1-8, by the Association for Computational Linguistics.

54

Demberg, V., Winterboer, A., Moore, J. D.: A Strategy for Information
Presentation in Spoken Dialog Systems, Computational Linguistics 37(3): 455-
488, 2011.

Georgila, K., Lemon, O.: Programming by Voice: enhancing adaptivity and
robustness of spoken dialogue systems, In BRANDIAL'06, Proceedings of the
10th Workshop on the Se-mantics and Pragmatics of Dialogue, pages 199—
200. (n.d.).

Hart, G., Johnson, M., Dolbear, C.: Rabbit: Developing a control natural
language for au-thoring ontologies. In: ESWC. (2008) 348-360. (n.d.).

Martin-LRI6f, P.: Intuitionistic type theory. Naples:. Bibliopolis, 1984. (n.d.).

Milner, R., Tofte, M., and Macqueen, D. The Definition of Standard ML. MIT
Press, Cambridge, MA, USA,(1997). (n.d.).

Perera, N.,Ranta, A.: “Dialogue System Localization with the GF Resource
Grammar Library”. In SPEECHGRAM 2007: ACL Workshop on Grammar-Based
Approaches to Spoken Language Processing, June 29, 2007, Prague, 2007.

Ranta, A., Enache, R., Détrez, G.: Controlled Language for Everyday Use: the
MOLTO Phrasebook, Controlled Natural Languages Workshop (CNL 2010).
(n.d.).

Ranta, A.: Grammatical Framework: Programming with Multilingual
Grammars. CSLI Publications, Stanford (2011) ISBN-10: 1-57586-626-9
(Paper), 1-57586-627-7 (Cloth). (n.d.).

Ranta,A.: The GF Resource Grammar Library.In: Linguistic Issues in Language
Technology, LiLT 2:2, December 2009. (n.d.).

Schwitter,R.: Controlled Natural Languages for Knowledge Representation.
In: Proceedings of 23rd International Conference on Computational
Linguistics, Beijing, China, pp. 1113-1121 (2010). (n.d.).

Shiffman, R.N., Michel, G., Krauthammer, M., Fuchs, N.E., Kaljurand, K., Kuhn,
T.: Writing clinical practice guidelines in controlled natural language. In:
Proceedings of the 2009 conference on Controlled natural language. (n.d.).
CNL’09, Berlin, Heidelberg, Springer-Verlag (2010) 265—-280.

55

Thompson, S.: Haskell: The Craft of Functional Programming. Addison-
Wesley, 2nd edition, (1999). (n.d.).

Wyner, A., Angelov, K., Barzdins, G., Damljanovic, D., Davis, B., Fuchs, N.,
Hoefler, S., Jones, K., Kaljurand, k., Kuhn, T., Luts, M., Pool, J., Rosner, M.,
Schwitter, R., Sowa, J.: On controlled natural languages: Properties and
prospects. (n.d.). In Norbert E. Fuchs, editor, Proceedings of the Workshop on
Controlled Natural Language (CNL 2009), volume 5972 of Lecture Notes in
Computer Science, pages 281-289. Springer, Berlin / Heidelberg, 2010.

56

Appendix A

Methods of GF Writer

A.1 Introduction

The GF Writer is an embedded Java API that writes or updates GF grammars
in a defined module.

This document represents the functionality of this document in detail.

A.2 Abstract Class

To generate a GF abstract module, required information should be passed to
two functions: the constructor and the write method. The descriptions of
class constructors are in accordance with the signatures which follow.

A.2.1 Constructors

Abstract (GFFilePath, Extend, Open, Flags, Cat, Fun)
Abstract (GFFilePath, Cat, Fun)

Parameters

GFFilePath. The module address. The address should contain the module
name with .gf extension.

Extend. A list of extension modules. Each module of this list should be an
instance of ResInherit class.

Open. A list of resource module names. These modules will be opened by
created module.

Flags. A list of flag names and their values.
Cat. A list of categories in abstract syntax.

Fun. A list of function declarations.

57

Example Abstract Syntax

The example below shows a simple abstract syntax and related Java code of
the GF Writer.

abstract Stop = {
cat
Stop;
fun
St 0 : Stop;
}

Java Code

List<String> cat = new LinkedList<String>();
cat.add(Stop);

List<Element> fun = new LinkedList<Element>();
fun.add(new Element("St 0", "Stop")):;

Abstract abs = new Abstract("./Stop.gf", cat, fun);
abs.write();

A.3 Concrete Class

A.3.1 Constructors

Concrete(GFFilePath, Abs, Extend, Open, Flags, Lin-
Cat, Lin)

Concrete(GFFilePath, Abs, LinCat, Lin)

Parameters

GFFilePath. The module address. The address should contain the module
name with .gf extension.

Abs. The name of abstract syntax that is used for this concrete syntax.

Extend. A list of extension module. Each module of this list should be an in-
stance of Reslnherit class.

Open. A list of resource module names. These modules will be opened by
created module.

58

Flags. A list of flag names and their values.

LinCat. A list of type definitions.

Lin. A list of function linearizations.

Example Concrete Syntax

concrete StopEng of Stop = open ResStop in {

flags
coding = utf8;

lincat
Stop = {s : Str; r : Str};
lin
St 0 = mkStop "Chalmers" "Goteborg" ;
}
Java Code
String rhs = "mkStop \"Chalmers\" \"Goteborg\"";

List<Element> lin = new LinkedList<Element>();
lin.add(new Element("St 0", rhs));

List<Element> lincat = new LinkedList<Element>();
lincat.add(new Element(Stop, "{s : Str; r : Str}"));

List<Element> open = new LinkedList<String>();
open.add("ResStop");

List<Element> flags = new LinkedList<Element>();
flags.add(new Element("coding", "utf8"));

Concrete con = new Concrete("./StopEng.gf", "Stop",
null, open, flags, lincat, lin);
con.write();

A.4 Customizer class

A.4.1 Compiling GF grammars

59

The following function produces a PGF file for a given concrete modules with
the same abstract syntax. It uses GF as a batch compiler and runs the “make”
command: gf -make SOURCE.gf

static void makePGF (BaseGrammars, PGFFilePath)

Parameters

BaseGrammar. A list of GF concrete modules (with path) for compiling.
PGFFilePath. A path for generated PGF file.

Example

List<String> stops = new LinkedList<String>();
travelBase.add("./res/StopEng.gf");
travelBase.add("./res/StopSwe.gf");
Customizer.makePGF(stops, "./res/Stop.pgf");

A.4.2 Adding grammar rules

static void addLin(GFFilePath, Elem)
static void addFun(GFFilePath, Elem)

Parameters
GFFilePath. The path of a GF module.

Elem. A rule of GF grammar, either function declaration or linearization; that
is an instance of the Element class.

Example

concrete StopEng of Stop = open ResStop in {
flags
coding = utf8;
lincat
Stop = {s : Str; r : Str};
Lin
St new = mkStop "newStop" "GOteborg" ;
St 0 = mkStop "Chalmers" "Goteborg" ;

}

60

In order to add st _new rule to the existing StopnEng module, the following
java code is needed.

Java Code

String rhs = "mkStop \"newStop\" \"Goteborg\"";
Element elemAbs = new Element("St new", rhs);
Customizer.addFun("./res/StopEng.gf", elemAbs);

A.4.3 Updating a GF Rule by Inheritance

The following method changes the linearization of a function from another
module. This module must use exclude inheritance and define a new lineari-
zation for the desired function. The main usage of this function is in GF
grammar adaptation.

static void updatelLin(GFFilePath, Module, Elem)
Parameters

GFFilePath. The path of a GF module that holds changes.

Module. The name of the GF module that contains desired function
Elem. A function linearization; that is an instance of Element class.
Example

concrete ExtEng of Ext = StopEngEng-[St 0]** {
flags coding = utf8 ;

lin

St 0 = mkStop "NewChalmers" "Goteborg" ;
}

In order to update the linearization of St_ 0 from ExtEng module, the follow-
ing java code is needed. The updateLin method, will add exclusive inher-
itance header to the ExtEng module, if it is not already present. Moreover, if
the St_ 0 is already exists, it will replace the linearization with the new one.

Java Code

String rhs = "mkStop \"NewChalmers\" \"Goteborg\"";
Element elem = new Element("St 0", rhs);

61

Customizer.updateLin("./res/ExtEng.gf", "StopEng",
elem);

62

