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Abstract

This work describes a new formalism for Fermionic thermal Greens functions
that are discretized in imaginary time. The discretization makes the thermal
Greens function periodic in imaginary (Matsubara) frequency space and requires
a generalisation of the Dyson equation and Luttinger-Ward-Baym-Kadanoff
functional. A Padé method is used to perform an analytic continuation of
the periodized Matsubara Greens function to real frequencies which conserves
the spectral weight and thus the discontinuity of the corresponding real time
Greens function at t = 0. Due to the Matsubara Greens function periodicity, the
discrete imaginary frequency space is relatively small which allows calculations
at the extremely high precision which is necessary to perform a reliable Padé
fit. We use the method to compute the single particle spectral function and
energy loss function for doped bilayer graphene in the two-band limit, described
by parabolic dispersion and Coulomb interaction. Calculations are performed
in both the random phase approximation (RPA) and the fully self-consistent
GW approximation. The formalism is also applied to dynamical mean field the-
ory calculations using iterated perturbation theory (IPT) for the paramagnetic
Hubbard model.



iv



List of Papers

The thesis consists of an introductory text and the following three papers:

Paper I:
Dynamical mean field theory phase-space extension and critical properties of the
finite temperature Mott transition, Hugo U. R. Strand, Andro Sabashvili, Mats
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Chapter 1

Introduction

1.1 Paramagnetic Hubbard Model
The physics of strongly correlated Fermion systems plays a major role in the
studies of various types of materials such as heavy Fermion compounds and high
- temperature superconductors. Systems in which Fermion-Fermion interactions
are comparable to or larger than the kinetic energy effectively are called strongly
correlated Fermion systems.

These systems are connected to many unsolved issues because of the nonper-
turbative nature of the problem and the presence of interplay between quantum
and spatial fluctuations and various competing long-range order. We can treat
these types of systems exactly only in special cases such as certain one dimen-
sional systems.

One of the problems which require a nonperturbative approach is the correlation-
induced Mott metal-insulator transition that can occur when the potential and
kinetic energies are of the same order. According to Mott, an electron-electron
interaction can make a periodic crystal insulating even if the number of electrons
is such that its energy bands are half-filled [1]. His proposition is now believed to
explain the insulating behavior of many materials, in particular transition-metal
oxides like NiO, MnO, and CoO. In those systems the effect of the Coulomb in-
teraction is more pronounced than in conventional metals because electrons are
more confined at the lattice sites and spatial fluctuations are suppressed.

The electrons in such a Mott insulator are localized at the atoms in the
lattice. The excitations create or annihilate a local charge and require a certain
minimum energy to overcome the Coulomb interaction. The typical spectrum
of the Mott insulator thus consists of broad peaks well separated from the Fermi
energy, which are called the Hubbard bands.

Usually we study model Hamiltonians that provide a very simplified de-
scription in terms of as few as possible relevant degrees of freedom and effective
interactions. The minimal model that takes electron-electron interactions into
account in crystals is the Hubbard model [2] which takes only one orbital per
atom into account. All other orbitals can be imagined to be inaccessibly high in
energy or otherwise are completely filled and have no influence on the physics
of the valence band apart from screening the long range Coulomb interaction
to an effective short range interaction. The model is fully specified only by the
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CHAPTER 1. INTRODUCTION

number of electrons per lattice site, the Hubbard interaction and the hopping
amplitudes that determine the overlap between the atomic orbitals and thus the
band structure in the noninteracting case.

In spite of all these simplifications, the Hubbard model can not, in general,
be solved analytically and numerical result require large computational effort
even for very small systems. Some insights into the model can be obtained
from the limits of either large or small effective Coulomb interaction for the
square lattice in 2D. In both limits the ground state is antiferromagnetically
ordered and insulating, but other properties, in particular the properties of the
paramagnetic phase, are quite different.

Many approximation schemes and numerical methods have been developed
to overcome the difficulties related to the strongly correlated systems. One of
them is dynamical mean field theory (DMFT) [3], which has been developed in
the ’90s and made an important contribution to the investigation of strongly
correlated electron systems. The idea is to map a lattice model onto a single-site
quantum impurity surrounded by a ”bath” ( effective medium ). This results
in a single impurity Anderson model (SIAM) with parameters that have to be
determined self-consistently. SIAM has been studied intensively and several
technical tools are available to treat this problem.

This approximation is in a sense a generalization of mean-field theory, where
not all fluctuations are eliminated. Only spatial fluctuations are frozen out,
while the local quantum fluctuations ( i.e. fluctuations between all possible
quantum states on the lattice site ) are fully taken into account and treated in a
nonperturbative manner, which is an advantage for this method compare to the
other approximations where all types of fluctuations are disregarded. Hence,
the main difference compare to ordinary mean-field is that the on-site quantum
problem is still a many-body problem. For this reason, the term ”Dynamical
mean-field theory” is used to describe this approach.

For the Hubbard model DMFT in fact predicts a first order transition from
paramagnetic metal to paramagnetic insulator which ends in a second order fi-
nite temperature critical end point above which there is only a smooth crossover
between metal and insulator. DMFT is also exact in the limit of large lattice
coordination d = ∞ [4]. However, the method can be applied to more realistic
models, taking into account the lattice structure and density of states. The limit
of large coordination number allows us to test numerical methods and then use
them for finite dimensional cases as an approximation. The dynamical mean
field approach assumes that one should solve, so called, dynamical mean field
equations self-consistently. The DMFT equations are conveniently written in
terms of Greens functions defined in the imaginary Matsubara frequency space,
which are Fourier forms of the imaginary time (thermal) Greens functions. A
finite temperature Greens function is the key object in many-body physics and
characterizes a wide range of experimentally accessible observables. Many nu-
merical techniques have been used to solve DMFT equations: quantum Monte
Carlo, exact diagonalization, iterative perturbation scheme (IPT), etc.

Self-consistent calculations (e.g. solving the DMFT equations) using imag-
inary time Greens functions are very difficult because a large number of dis-
cretization points is required to capture the characteristics of the thermal Greens
function. Also, the convergence of the Greens function and self-energy becomes
slow as the number of discretization points increases.

Solving the DMFT equations yields the Greens function and self-energy as
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1.1. PARAMAGNETIC HUBBARD MODEL

functions of the imaginary Matsubara frequencies, but physical observables are
calculated using the real time (real frequency) Greens functions. Thus, an-
other numerical problem emerges: performing an analytic continuation of the
imaginary time (imaginary frequency) Greens function from the imaginary time
(imaginary frequency) axis to the real time (real frequency) axis. Since we only
know the Greens function values at the finite set of the Matsubara frequencies
it is not obvious to do the analytic continuation numerically.

A widely used technique to handle this problem is a Padé approximant
method [5], [6]1 in which ratios of polynomials or terminating continued frac-
tions are used as the fitting functions. There are several Padé schemes which
can be divided into two broad classes: (1) Those that return the value of the
continued function point by point in the complex plane and (2) Those that
yield the function itself by returning the polynomial (or continued fraction)
coefficients. In this thesis a Padé scheme from the second class is used. The
advantage of this scheme is that the problem is formulated as a matrix equation
allowing us to use efficient routine for matrix inversion. The commonly used
Padé method, which belongs to the first class, is a recursive algorithm called
Thiele’s Reciprocal Difference Method [5]. It is effective because it can be used
to directly calculate the value of the approximant at a given point without com-
puting the polynomial coefficients. Although the disadvantage of the latter is
that a naively implemented recursion algorithm can lead to a propagation of
an error since repeated operations are performed on the terms of very differ-
ent orders of magnitude. Both Padé method are ill posed in a sense that it is
extremely dependent on the accuracy of the original data. If the input data is
not accurate enough it can lead to the non physical results.Therefore the Padé
procedure can be carried out with high precision data. The required precision
depends on the temperature and order of the polynomials.

This thesis describes a new approach to the Fermionic thermal Greens func-
tions which can treat the numerical problems related to the discontinuity and
analytic continuation of the Fermionic thermal Greens functions. By discretiz-
ing the imaginary time τ ∈ [0, β] into N evenly spaced points and performing a
discrete Fourier transform to the Matsubara frequency space a periodic and N
dimensional imaginary frequency Greens functions is obtained. The formalism
describes how to appropriately work with such a periodized Greens function.
The basic demands fulfilled by the method presented in the thesis are: the limit
N →∞ gives standard formalism of the thermal Greens functions, for all values
of N the Greens function obeys proper Luttinger-Ward variational principle, the
free energy is exact in the non interacting limit and the analytic continuation
provides the discontinuity in the real time space which is related to conserva-
tion of spectral weight. Using DMFT-IPT (see Chapter 8) approach written in
terms of the periodized Greens functions we explore the Mott metal-insulator
transition and calculate second order critical end-point for infinite dimensional
paramagnetic Hubbard model at half-filling. The analytic continuation of the
periodized Matsubara frequency Greens function is performed by means of the
Padé method and spectral functions for both metallic and insulating phases are
obtained. The results are presented in Chapter 8 and Papers I and II. The
formalism itself is presented in Paper II.

1There are some other methods e. g. maximum-entropy method [7].
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CHAPTER 1. INTRODUCTION

1.2 Single and Bi-layer Graphene
Since its fabrication, graphene [8, 9, 10, 11, 12] (a single layer of graphite) has
been of interest for both theoreticians and experimentalists. Due to its unique
property of high mobility even in highly doped cases it opens new perspec-
tives for engineering and is a candidate material for future nanoelectronic and
spintronic devices. For instance, observed mobilities turn out to be weakly de-
pendent on the temperature causing ballistic transport on a micrometer scale at
room temperature which enables a room-temperature ballistic transistors. Since
the nanoscale structures made of graphene are stable one can use graphene as
a conductive sheet and carve out conducting channels, quantum dots, nano-size
structures to make single-electron transistor. The disadvantage of most materi-
als is their instability at nanoscale [13], whereas graphite permits the creation
of stable nanoscale structures.

In the low energy limit graphene is described by Lorentz invariant relativistic
Hamiltonian for massless Fermions from quantum electro dynamics [14]. Thus
graphene is a good candidate to test the quantum field theoretical models. The
difference between graphene theory and true relativistic theory is that in the
case of graphene the massless Fermions move with speed vF ≈ 106m/s which is
300 times smaller than the speed of light. In addition, from the point od view of
external observer graphene, as a whole, is galilean invariant and non-relativistic
because vF is much smaller than the speed of light.

Figure 1.1: Monolayer graphene lattice structure. Blue and yellow dots denote
carbon atoms residing on the different triangular sublattices.

Building block of graphene is carbon atom which is a constituent of most
organic molecules therefore is responsible for life on Earth. It consists of six
protons, six electrons and depending and depending on the number of neutrons
in the nucleus there are different isotopes of carbon in nature. The stable
isotopes have six or seven neutrons in the nucleus. The isotope with six neutrons
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1.2. SINGLE AND BI-LAYER GRAPHENE

is wide spread in the nature than the one with seven neutrons. There is also
another isotope of carbon with eight neutrons which is radioactive and used for
dating.

The electron configuration for carbon atom in its ground state is 1s22s22p2.
The 1s orbital is filled with two electrons and has the smallest energy thus it
is irrelevant for chemical reactions. To get the first excited state an electron
from 2s orbital is excited to the 2p orbital which has higher energy than 2s
orbital. So it is not favorable for the system to have just one electron on 2s
orbital. In the presence of another carbon atoms the system gains in energy
by exciting an electron from 2s to 2p orbital which then forms covalent bond
with other atoms. Therefore in the excited carbon atom there are four states
|2s〉, |2px〉, |2py〉 and |2pz〉. A superposition of |2s〉 and |2pj〉 (j = x, y, z) states
is called sp hybridization. In particular, the hybridization between |2s〉 and
one |2pj〉, say j = x, is called sp1 hybridization which forms strong σ bond
after overlapping by another sp1 orbital from neighboring atom. The rest of
the unhybridized |2p〉 orbitals are free and form much weaker π orbitals. In
the case of sp2 hybridization, which takes place in graphene and other graphitic
allotropes, |2s〉 state is in the superposition with two |2pj〉 states forming σ
bonds and the remaining 2p orbital, say |2pz〉, overlaps with other orbital from
neighboring carbon atom leading to the formation of π bands. Due to the strong
σ bonds the lattice structure in all graphitic allotropes are robust. The σ bands
are completely filled thus create a deep valence band. Since |2pz〉 has jus one
electron instead of two π band is half-filled.

One of the allotropes is the graphite, stack of graphene layers coupled by
van der Waals force which is much weaker than the in-plane bonding. Due to
this interlayer weak coupling we are able to draw a line by pressing a pencil
against paper sheet. The first theoretical model for graphite was introduced by
McClure [11], Slonczewski and Weiss [15] wich describes electronic properties of
the material.

Other graphitic allotropes are Fullerenes [16] and nanotubes [17]. Fullerene
was discovered in 1985. It consists of graphene sheet with some of the hexagons
being replaced by pentagons which causes the crumbling of the sheet and thus
fullerenes have spherical form. So, it can be viewed as wrapped up graphene
sheet. Carbon nanotubes can be considered as rolled up graphene sheet along a
given direction. It has only hexagons and can be thought of as a one-dimensional
physical system.

In sp3 hybridization 2s orbital is mixed with all three 2p orbitals. This hy-
bridization is realized in diamonds. Despite the fact that both graphite and
diamond consist of carbon atoms their physical properties are extremely differ-
ent. Graphite, as I already mentioned, is soft material while diamond is one of
the hardest materials in nature because all bonds in the crystal are strong σ
bonds. Since all four electrons in the outer shell of the sp3 hybridization partic-
ipate in formation of the σ bands diamond is insulator whereas electrons in π
bands of graphite are delocalized and thus provide good conductance properties.

Single sheet of graphene is a two-dimensional crystal and consists of carbon
atoms arranged in a hexagonal lattice, Fig. 1.1. In general, a honeycomb lattice
is not a Bravais lattice in a sense that the views from white and black dots,
representing each sublattice, are not identical. The view from, say white dots,
is the view from black dots rotated by 60 degrees. Hence there are two sets of
Bravais lattice generators and each forms triangular lattice, A sublattice - blue
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dots, B sublattice - yellow dots. The Bravais lattice vectors for B sublattice is
shown on Fig. 1.1 with black arrows. There are two carbon atoms in the unit
cell (see rhombus Fig. 1.1).

Bilayer graphene consists of two graphene monolayers weekly coupled by
interlayer hopping.It is an intermediate material between single layer graphene
and graphite. There are different ways of stacking two graphene layers, but this
work considers so called Bernal stacking which means that the layers are rotated
by 60 degrees relative to each other. In the case of the Bernal stacking, one of
the sublattices (say, sublattice A) in the upper plane sits on top of the another
sublattice (sublattice B) in the lower plane. The lattice of the bilayer graphene
in real space is presented in Fig. 1.2.

Figure 1.2: Bilayer graphene lattice structure. White (sublattice A) and black
(sublattice B) dots belong to the upper plane whereas blue (sublattice B) and
red (sublattice A) ones belong to the lower plane.

Bilayer graphene shares some features with both graphene and the ordinary
two-dimensional electronic gas (2DEG). Its dispersion is quadratic, similar to a
2DEG but the effective Hamiltonian is chiral with zero band gap as in the case
of graphene [18, 19]. In both single layer and bilayer graphene the charge carrier
density can be controlled by application of a gate voltage, a fundamental effect
for potential technological applications [20, 8]. In addition, for bilayer graphene
even the band gap is tunable with great potential for device applications [20, 21].
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Apart from the dispersion relation, the property which makes bilayer graphene
different from that of a single layer is its coupling parameter being a function of
the carrier density rs ∼ n−1/2 [22, 9]. In other words the strength of Coulomb
interaction is tunable, while the coupling parameter for the single layer graphene
is constant rs ∼ n0 and lies in the interval 0 ≤ rs . 2.2. By comparing the
values of rs for single- and bilayer graphene (rs ≈ 68.5×/

√
n/1010cm−2, where

n is the number of carriers per cm−2 with n ≈ 109 − 5× 1012 cm−2) in vacuum
it is clear that the strength of the Coulomb interaction can be much larger in
bilayer graphene [9].

The periodized Greens function method was implemented to study the elec-
tronic structure of doped bilayer graphene in the low energy two-band limit
in the fully self-consistent GW and random phase approximation (RPA) (see
Chapter 7 and Paper III).

1.3 Outline
The structure of the thesis is presented below: In Chapter 2 the single-particle
Fermionic real and imaginary time Greens functions are introduced. First, their
definitions and properties are presented. Then using the definition an analytic
expression for the non-interacting thermal Greens function is obtained in the
imaginary time space. The expression for the Greens function in the imaginary
(Matsubara) frequency space is derived after defining Fourier transformation
from imaginary time to the frequency space and vice versa.

Chapter 3 covers analytic properties of the finite temperature (thermal)
Greens functions. Since the physical quantities can be calculated by means
of the real time Greens functions one has to do an analytic continuation from
the imaginary time axis to the real time axis. In order to describe the real and
imaginary time Greens functions, a Greens function with the complex argument
is introduced. The real frequency Greens function is derived as the Fourier
transformation of the real time Greens function and retarded and advanced
Greens functions are defined. After that the Greens functions is written in the
spectral representation using a spectral weight function. The relations between
the retarded Greens function, advanced Greens function and spectral weight
are also shown. The conservation of the total spectral weight and its relation
to the Greens function discontinuity at the boundary in imaginary time space
is presented.

Chapter 4 describes how the discretized thermal Greens function results
in a periodized Greens function in the Matsubara frequency space. First, the
calculations are done for the non-interacting limit and then the expression for
the full periodized Greens function is derived. It is also shown that in the limit
of infinitely large number of frequencies the standard expressions are recovered.

In Chapter 5 a Luttinger-Ward functional and variational principle is in-
troduced followed by more general version written in terms of the periodized
Greens functions which reduces to the former as the number of frequencies tends
to infinity. It is shown for both the standard Luttinger-Ward functional and the
one written in terms of the periodized Greens functions that the variational
principle yields the proper Dyson equation and the free energy corresponds to
the stationary point of the corresponding Luttinger-Ward functional. In the end
of the chapter, particle number and the expectation value of the Hamiltonian
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are derived using periodized and non periodized Luttinger-Ward functionals.
Chapter 6 describes an analytic continuation of the periodized Greens func-

tions in analogy with the standard formalism covered in Chapter 2. The spectral
weight expression and spectral representation of the Greens function is intro-
duced. Then retarded and advanced Greens functions are defined in analogy
with the standard formalism and all relations presented in Chapter 2 are red-
erived in the case of the periodized Greens functions, which yield standard
expressions in the case of infinitely large number of frequencies. Then the spec-
tral function is modeled by the sum of the ”periodized Lorentzians” and the
analytic expression for the Greens function is derived. Next, the transforma-
tion of the basis is done in order to rewrite the Greens function as the sum of
the simple poles followed by a Padé fit description which is necessary to find
unknown parameters contained in the analytic Greens function.

The introduction to mono and bilayer graphene, GW approximation, random
phase approximation and the results for the bilayer graphene are covered in
Chapter 7.

The results, obtained by applying our periodized Greens function formalism
to the DMFT-IPT method to the half-filled paramagnetic Hubbard model are
presented in Chapter 8.

The last chapter is the summary of the thesis.
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Chapter 2

Greens Functions

Since we will be generalising many properties of the Greens functions it is in-
structive to start with reviewing of the basic finite temperature Greens function
theory. Let us define cα(t) and c†α(t) to be Fermion annihilation and creation
operators in the Heisenberg representation. Then the single-particle, Fermionic,
real time Greens function is defined by [23]

Gα,β(t− t′) = −i〈Tcα(t)c†β(t′)〉 = −i 1
Z
Tr(e−βHTeiHtcαe−iHteiHt

′
c†βe
−iHt′)

(2.1)
T is time ordering, Tr - the sum over a complete set of states, β - inverse
temperature, Z is the partition function Z = Tr(e−βH). The brackets denote a
thermal average. We can set t′ to be zero because the Greens function depends
only on the difference of t and t′. Since the real and imaginary times appear
simultaneously in Eq. 2.1, it is useful to define the imaginary time or thermal
Greens function because it can be written in terms of the well known imaginary
time path integral and perturbation theory can be applied to evaluate thermal
averages. Using this we are able to compute physical observables by doing
an analytic continuation to the real time Greens function. Let ”k” denote a
complete set of quantum numbers that label the single particle state |k〉. The
Fermionic, single particle, imaginary time Greens function is defined in the
following way:

Gk,k′(τ) = −〈Tck(τ)c†k′(0)〉 = − 1
Z
Tr(e−βHeHτ cke−Hτ c†k′) (2.2)

where ck(τ) is in the imaginary time Heisenberg representation

ck(τ) = eHτ cke
−Hτ

c†k(τ) = eHτ c†ke
−Hτ

Using the definition of the time ordering T one obtains:

9



CHAPTER 2. GREENS FUNCTIONS

Gk,k′(τ) =

 G>k (τ) ≡ −〈ck(τ)c†k(0)〉 τ > 0

G<k (τ) ≡ 〈c†k(0)ck(τ)〉 τ < 0

We note that ( k index is dropped in the following expressions )

G>(τ) = − 1
Z
Tr(e−βHeHτ ce−Hτ c†)

= − 1
Z
Tr(e(τ−β)Hce(β−τ)He−βHc†)

= − 1
Z
Tr(e−βHc†e(τ−β)Hce(β−τ)H)

= −〈c†(0)c(τ − β)〉

= −G<(τ − β)

As we see from the last equality, the Fermionic Greens function is anti-periodic
with the period of β inside the domain −β < τ < β, but it is periodic with the
period of 2β.

Since the Greens function is anti-periodic one can define a Fourier transfor-
mation from the imaginary time to the frequency space and vice versa:

G(iωn) =
∫ β

0
dτ G(τ)eiωnτ (2.3)

G(τ) = 1
β

n=∞∑
n=−∞

G(iωn)e−iωnτ (2.4)

where ωn is, the so called, Matsubara frequency defined as ωn = π(2n + 1)/β,
n is an integer. Such definition of the Matsubara frequencies is caused by the
anti-periodicity of the Greens function , G(−τ) = −G(β − τ).

In general, thermal Greens function does not have a simple form. Let us
derive an explicit form of the simplest, non interacting Greens function,

G>0 (τ) = −〈c(τ)c†〉

= −〈eH0τ c e−H0τ c†〉

= −〈e−ετ c c†〉

= −e−ετ (1− nf )

= e−ετ (nf − 1),
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where H0 = εc†c is the free-particle Hamiltonian, nf represents Fermi-Dirac
distribution, nf = 1/(eβε + 1) and the following expression for c(τ) was used:

c(τ) = eH0τ c e−H0τ

dc

dτ
= H0e

H0τ c e−H0τ − eH0τ c H0 e
−H0τ

dc

dτ
= eH0τ [H0, c]e−H0τ

dc

dτ
= −εc(τ)

c(τ) = e−ετ c,

In the same manner G<0 (τ) gives:

G<0 (τ) = 〈c†(0)c(τ)〉

= 〈c†eH0τ c e−H0τ 〉

= 〈c†e−ετ c〉

= e−ετnf

By combining the last two results one gets

G0(τ) = e−ετ [(nf − 1)θ(τ − 0+) + nfθ(−τ + 0+)] (2.5)

Eq. 2.5 shows that the Greens function has a discontinuity at τ = 0 and the
limits τ → 0−and τ → 0+ are not equal to each other. The Greens function is
usually defined to be equal to the particle number nf exactly at τ = 0 [23]. To
capture that feature infinitesimal quantity 0+ is incorporated in the expression
of G0(τ).

The Fourier representation of the non interacting Greens function can be
computed as:

G0(iωn) =
∫ β

0
dτG0(τ)eiωnτ

=
∫ β

0
dτeiωnτe−ετ [(nf − 1)θ(τ) + nfθ(−τ)]

11



CHAPTER 2. GREENS FUNCTIONS

= eβ(iωn−ε) − 1
iωn − ε

(nf − 1)

= −e
−βε − 1
iωn − ε

−eβε

eβε + 1

= 1
iωn − ε

Since the measure of the τ = 0 point is zero the definition of the discontinuity
at τ = 0 does not affect the integral.

Let us now carry out the Fourier transformation from frequency to imaginary
time:

G0(τ − 0+) = 1
β

∞∑
n=−∞

e−iωn(τ−0+)

iωn − ε
(2.6)

Using standard contour integral technique Eq. 2.6 can be represented by:

I =
∮
C

dz

2πf(z)h(z)

f(z) = 1
i

e−z(τ−0+)

eβz + 1

h(z) = 1
z − ε

Function f(z) has an infinite set of poles exactly at the Matsubara frequen-
cies: eβz + 1 = 0 ⇒ z = iπ(2n + 1)/β ≡ iωn. Function h(z) has the pole at
z = ε. By assuming that τ is negative or zero (remember that τ ranges form
−β to β) and choosing contour C to encircle all poles of the function f(z) in
the negative ( clockwise ) direction one can show that the integral I yields Eq.
2.6:

I = −2πi 1
2π

∞∑
n=−∞

res(f(z)h(z))

= −
∞∑

n=−∞
lim

z→iωn

z − iωn
eβz + 1

e−z(τ−0+)

z − ε

= −
∞∑

n=−∞
(− 1
β

)e
−iωn(τ−0+)

iωn − ε

= 1
β

∞∑
n=−∞

e−iωn(τ−0+)

iωn − ε

12
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Figure 2.1: Blue crosses (Matsubara frequencies z = iωn) represent poles for
f(z). A red one (z = ε) is the pole for h(z)

On the other hand, since zf(z)h(z) → 0 as |z|→ ∞ one can replace the
contour C by the contour C ′ which encircles the pole of h(z) in the positive (
counterclockwise ) direction (see Fig. 2.1). As one can see the factor ez0+ in
f(z) ensures that this condition is fulfilled at τ = 0. Replacing the contour C
by C ′ yields:

I =
∮
C′

dz

2πf(z)h(z)

= 2πi 1
2π

∞∑
n=−∞

res(f(z)h(z))

= lim
z→ε

z − ε
z − ε

e−z(τ−0+)

eβz + 1

= e−ε(τ−0+)

eβε + 1

= e−ε(τ−0+)nf

To carry out the same procedure for positive τ -values we define f(z) to be
e−zτ/(ie−βz + i) and the contours C and C ′ should be positively and negatively

13



CHAPTER 2. GREENS FUNCTIONS

oriented, respectively.

I =
∮
C′

dz

2πf(z)h(z)

= −2πi 1
2π

∞∑
n=−∞

res(f(z)h(z))

= − lim
z→ε

z − ε
z − ε

e−zτ

e−βz + 1

= − e−ετ

e−βε + 1

= e−ετ (nf − 1)

By combining the results for τ > 0 and τ < 0 one obtains the expression for the
non interacting Greens function:

G0(τ) = e−ετ [(nf − 1)θ(τ − 0+) + nfθ(−τ + 0+)] (2.7)
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Chapter 3

Analytic Properties of the
Greens Functions

In this chapter, we will review the standard analytic properties of the thermal
Greens function since these formulas will be adapted later to the Greens function
defined on the finite number of Matsubara frequencies.

In Chapter 2 we discussed real and imaginary time Greens functions as sep-
arate objects. In order to treat those Greens functions as one, we extend the
argument of the real time Greens function t into the complex plane. Therefore
a single function with complex time argument describes the real time Greens
function along the real axis and the imaginary time ( thermal ) Greens func-
tion along the imaginary axis. Physical observables are calculated using the
real time Greens functions 1, which can be obtained by performing an analytic
continuation of the imaginary time Greens function to the real time axis. The
thermal Greens functions can be computed by perturbation theory. To see the
analytic continuation domain we replace t with t− iτ :

G(t− iτ) = θ(t)G>(t− iτ) + θ(−t)G<(t− iτ) (3.1)

G>(t− iτ) = −i 1
Z
Tr[eitHe(τ−β)Hce−(τ+it)Hc†] (3.2)

G<(t− iτ) = i
1
Z
Tr[e−itHe−(τ+β)Hc†e(τ+it)Hc] (3.3)

One can conclude from the expressions of G< and G> that the exponentials
in the trace should have negative real parts, provided that the spectrum of
the Hamiltonian is positive definite, in order to converge. Hence, G> can be
continued into the domain where τ−β < 0 and τ > 0 ( 0 < τ < β ). Analogously,
G< can be continued into the domain where τ + β > 0 and τ < 0 ( −β < τ < 0
).

Fig. 3.1 shows that G<(t) is defined on the negative part of the real time
axis and analytically continued to the positive part of the imaginary time axis

1The real time Greens functions can be computed using Keldysh formalism.
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ImHtL º Τ

ReHtL

Β

0

- Β

G<HtL

G>HtL

Figure 3.1: Analytic continuation domain for the real time Greens function

and G>(t) is defined on the positive part of the real time axis and analytically
continued to the negative part of the imaginary time axis.

We have shown in Chapter 1 that the thermal Greens functions are antiperi-
odic with the period of β. The same holds for the complex time Greens function
when its argument is shifted by iβ. Using Eq. 3.3 and the cyclic property of
the trace we find:

G<(t+ iτ) = i

Z
Tr{e−βHc†eτH(eitHce−itH)e−τH}

= i

Z
Tr{e−βHeβHeτHc(t)e−(τ+β)Hc†}

= i

Z
Tr{e−βHe(τ+β)Hc(t)e−(τ+β)Hc†}

= −G>(t− i(τ + β))

The complex time Greens function having the same properties as the imaginary
time Greens function means that the thermal and finite temperature real time
Greens function can be unified in one object.

In order to explore the analytic behaviour in frequency space we insert a
complete set of eigenstates ( {|Ψn〉}, H|Ψn〉 = (En−µNn)|Ψn〉 ) in the definition

16



of the real time Greens function to extract the time dependence explicitly and
then do the Fourier transformation:

G(t) = − i

Z
[θ(t)

∑
m,n

〈Ψm|e−βHeitHce−itH |Ψn〉〈Ψn|c†|Ψm〉 −

θ(−t)
∑
m,n

〈Ψn|e−βHc†|Ψm〉〈Ψm|eitHce−itH |Ψn〉]

= − i

Z
[θ(t)

∑
m,n

〈Ψm|c|Ψn〉〈Ψn|c†|Ψm〉e(−β+it)(Em−µNm)e−it(En−µNn) −

−θ(−t)
∑
m,n

〈Ψn|c†|Ψm〉〈Ψm|c|Ψn〉eit(Em−µNm)e(−β−it)(En−µNn)]

Expectation value of the creation operator 〈Ψn|c†|Ψm〉 is nonzero ifNn = Nm+1
(Nn - number of particles in state |Ψn〉). So, one can see that

G(t) = − i

Z

∑
m,n

|〈Ψn|c†|Ψm〉|2[θ(t)e−β(Em−µNm)e−it(En−Em−µ) −

−θ(−t)e−β(En−µNn)e−it(En−Em−µ)]

Before we carry out the Fourier transformation let us solve following integrals.
An infinitesimal quantity iη is introduced to guarantee the convergence of the
integrand:

I1 = −i
∫ ∞
−∞

dteiωtθ(t)e−it(En−Em−µ)

= −i
∫ ∞

0
dteit(ω−(En−Em−µ))

= −i
∫ ∞

0
dteit(ω−(En−Em−µ)+iη)

= −i −1
i(ω − (En − Em − µ) + iη)

= 1
ω − (En − Em − µ) + iη

17
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I2 = i

∫ ∞
−∞

dteiωtθ(−t)e−it(En−Em−µ)

= i

∫ 0

−∞
dteit(ω−(En−Em−µ))

= i

∫ 0

−∞
dteit(ω−(En−Em−µ)−iη)

= i
1

i(ω − (En − Em − µ)− iη)

= 1
ω − (En − Em − µ)− iη

Given I1 and I2 one can easily perform Fourier transformation for G(t):

G(ω) = 1
Z

∑
m,n

|〈Ψn|c†|Ψm〉|2
(

e−β(Em−µNm)

ω − (En − Em − µ) + iη
+

+ e−β(En−µNn)

ω − (En − Em − µ)− iη

)
It is useful to define, so called, retarded and advanced Greens functions in the
real time space [23]:

GR(t) = θ(t)(G>(t)−G<(t))

GA(t) = θ(−t)(G<(t)−G>(t))

and correspondingly in the frequency space

GR(ω) = 1
Z

∑
m,n

|〈Ψn|c†|Ψm〉|2
(

e−β(Em−µNm)

ω − (En − Em − µ) + iη
+

+ e−β(En−µNn)

ω − (En − Em − µ) + iη

)

GA(ω) = 1
Z

∑
m,n

|〈Ψn|c†|Ψm〉|2
(

e−β(Em−µNm)

ω − (En − Em − µ)− iη+

+ e−β(En−µNn)

ω − (En − Em − µ)− iη

)
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Since the retarded Greens function includes only θ(t) and the advanced
Greens function only θ(−t) their poles are in lower and upper half of the complex
frequency plane, respectively. Therefore, one has to do the analytic continuation
of the discrete Matsubara frequency Greens function in the upper half plane to
determine the retarded Greens function and in the lower half plane to determine
the advanced Greens function.

We also introduce another useful quantity: a finite temperature spectral
function

A(ω) = 1
Z

∑
m,n

|〈Ψn|c†|Ψm〉|2e−β(Em−µNm)(1 + e−βω)2πδ(En − Em − µ− ω)

= 1
Z

∑
m,n

|〈Ψn|c†|Ψm〉|2(e−β(Em−µNm)+

+ e−β(ω+Em−µNm))2πδ(En − Em − µ− ω)
(3.4)

Index k ( quantum numbers ) is suppressed in the definition of the spectral
function as in the rest of the expressions. Note that due to the Dirac delta
function we have: ω = En−Em−µ. Thus, the spectral function can be written
in the following form:

A(ω) = 1
Z

∑
m,n

|〈Ψn|c†|Ψm〉|2(e−β(Em−µNm)+e−β(En−µNn))2πδ(En−Em−µ−ω)

The spectral function allows us to rewrite the retarded and advanced Greens
functions in a compact form:

GR(ω) =
∫ ∞
−∞

dω′

2π
A(ω′)

ω − ω′ + iη
(3.5)

GA(ω) =
∫ ∞
−∞

dω′

2π
A(ω′)

ω − ω′ − iη
(3.6)

Using the relation 1
ω±iη = P 1

ω ∓ iπδ(ω) one can identify real and imaginary
parts of G(ω), GR(ω), GA(ω) :

Re


G(ω)

GR(ω)

GA(ω)

 = P

∫ ∞
−∞

dω′

2π
A(ω′)
ω − ω′

(3.7)

Im

{
GR(ω)

GA(ω)

}
=
{
− 1

2A(ω)
1
2A(ω)

}
(3.8)

We extract the imaginary part of G(ω) in more detail:
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Im[G(ω)] = −π
Z

∑
m,n

〈Ψn|c†|Ψm〉|2[δ(En − Em − µ− ω)e−β(Em−µNm) −

−δ(En − Em − µ− ω)e−β(En−µNn)]

= −π
Z

∑
m,n

〈Ψn|c†|Ψm〉|2δ(En − Em − µ− ω)(e−β(Em−µNm) −

−e−β(En−µNn))

= −π
Z

∑
m,n

〈Ψn|c†|Ψm〉|2δ(En − Em − µ− ω)(e−β(Em−µNm) −

−e−β(Em−µNm+ω))

= −π
Z

∑
m,n

〈Ψn|c†|Ψm〉|2δ(En − Em − µ− ω)e−β(Em−µNm) ×

×(1− e−βω)

= −π
Z

∑
m,n

〈Ψn|c†|Ψm〉|2δ(En − Em − µ− ω)e−β(Em−µNm) ×

×(1 + e−βω)1− e−βω

1 + e−βω

= −1
2 tanh(βω2 )A(ω) (3.9)

Using Eq. 3.7, 3.8, 3.9 and the identity 1/(1 + eβω) − 1/(1 + e−βω) =
− tanh(βω2 ) one can express G(ω) by GR(ω) and GA(ω) and obtain Kramers-
Kronig relation:

G(ω) = GR(ω)
1 + e−βω

+ GA(ω)
1 + eβω

(3.10)

= (1− nf )GR(ω) + nfG
A(ω) (3.11)

Re[GR(ω)] = − 1
π
P

∫ ∞
−∞

dω′

ω − ω′
Im[GR(ω)] (3.12)

Note that using Eq. 3.4 one can show the following:
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1 = 1
Z
Tr{e−βH{c, c†}} = 1

Z

∑
m,n

[〈Ψm|e−βHc|Ψn〉〈Ψn|c†|Ψm〉+

+ 〈Ψn|e−βHc†|Ψm〉〈Ψm|c|Ψn〉]

= 1
Z

∑
m,n

[e−β(Em−µNm)|〈Ψn|c†|Ψm〉|2+

+ e−β(En−µNn)|〈Ψn|c†|Ψm〉|2]

= 1
Z

∑
m,n

|〈Ψn|c†|Ψm〉|2[e−β(Em−µNm) + e−β(En−µNn)]

=
∫ ∞
−∞

dω

2πA(ω)

The last equality represents the conservation ( sum rule ) of the spectral func-
tion. According to Eq. 3.4 the spectral function is positively defined quantity
and therefore, can be interpreted as a probability distribution. The sum rule
for the spectral function can also be obtained using G(t = 0−) and G(t = 0+):

G(t = 0−) =
∫
dω

2π e
−iω0−{(1− nf )GR(ω) + nfG

A(ω)}

=
∮

dz

2π e
−iz0−(1− nf )GR(z) +

∫
dω

2π e
−iω0−nfG

A(ω)

=
∫
dω

2π nf (GA(ω)−GR(ω))

=
∫
dω

2π i nfA(ω) (3.13)

were the integration curve is a semi-circle extended to +∞ and we used Eq.
3.10, 3.8 and the following equality:

∮
dz

2π (1− nf )GR(z) = −
∮

dz

2πnfG
R(z) (3.14)

The latter is true because 1−nf and nf have exactly same poles with opposite-
sign residues. Analogously, for G(t = 0+) :
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G(t = 0+) =
∫
dω

2π e
−iω0+

{(1− nf )GR(ω) + nfG
A(ω)}

=
∮

dz

2π e
−iz0+

nfG
A(z) +

∫
dω

2π e
−iω0+

(1− nf )GR(ω)

=
∫
dω

2π (1− nf )(GR(ω)−GA(ω))

=
∫
dω

2π i (nf − 1)A(ω) (3.15)

On the other hand, according to the definition of G(t) we have:

G(t = 0−) = −i〈Tc(0−)c†(0)〉 = i〈c†(0)c(0−)〉 = i n (3.16)

G(t = 0+) = −i〈Tc(0+)c†(0)〉 = −i〈c(0+)c†(0)〉 = i (n− 1) (3.17)

where n is the particle number. By combining Eq. 3.15, 3.13, 3.16 , 3.17 one
can show that:

i = G(t = 0−)−G(t = 0+) =
∫
dω

2π iA(ω)(nf − nf + 1) =
∫
dω

2π iA(ω)

Thus, the Greens function discontinuity provides the sum rule for the spectral
function: ∫

dω

2πA(ω) = 1

The sum rule tells us that for large frequencies we have

lim
ω→∞


G(ω)

GR(ω)

GA(ω)

 =
∫ ∞
−∞

dω′

2π
A(ω′)
ω

= 1
ω

Now, let us relate the thermal Greens function to the real time Greens
function. We start with extracting the time dependent part from the ther-
mal Greens function to perform the Fourier transformation to the Matsubara
frequency space:

G(τ > 0) = −〈c(τ) c†〉

= − 1
Z

∑
m,n

〈Ψm|e−βHeτHce−τH |Ψn〉〈Ψn|c†|Ψm〉

= − 1
Z

∑
m,n

|〈Ψn|c†|Ψm〉|2e−β(Em−µNm)e−τ(En−Em−µ) (3.18)
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G(iωn) =
∫ β

0
dτeiωnτG(τ) =

= − 1
Z

∑
m,n

|〈Ψn|c†|Ψm〉|2e−β(Em−µNm)
∫ β

0
dτeiωnτe−τ(En−Em−µ)

= − 1
Z

∑
m,n

|〈Ψn|c†|Ψm〉|2e−β(Em−µNm) e
iβωne−β(En−Em−µ) − 1
iωn − (En − Em − µ)

= 1
Z

∑
m,n

|〈Ψn|c†|Ψm〉|2
e−β(En−µNn) + e−β(Em−µNm)

iωn − (En − Em − µ)

=
∫
dω′

2π
A(ω′)
iωn − ω′

(3.19)

During the derivation we used the identity: eiβωn = eiπ(2n+1) = −1.
Taking into account the domains of the analyticity for GR(ω) (analytic in

the upper half plane) and GA(ω) (analytic in the lower half plane), we see that,
G(iωn) should be continued in the upper half plane to determine retarded Greens
function and in the lower half plane to determine advanced Greens function.
After determining GR(ω) and GA(ω) one can calculate G(ω) using Eq. 3.10 .

G(iωn) (Eq. 3.19) is analogous to the retarded (advanced) Greens function,
but it has iωn in the denominator instead of ω+ iη (ω− iη). So, If the analytic
form of the thermal Greens function is given then the procedure of the analytic
continuation is equivalent to the replacing of iωn by ω ± i0+.

The analytic properties of the standard thermal Greens functions described
in this chapter will be adapted to the Greens function defined on the finite
number of Matsubara frequencies as shown in the following chapters.

Although the thermal Greens function is defined on the discrete set of points
the analytic continuation is unique, because it has the following behaviour at
infinity: G(z) ∼ 1/z. One can prove the latter statement using Carlson’s theo-
rem [23]: if a function φ(z) is regular and zero on a discrete set of points and at
the accumulation point of that set then φ(z) is identically zero. For example, a
function f(z) = 1/(z−(ε−µ)) coincides with the non interacting thermal Greens
function G0(iωn) at Matsubara frequencies z = iωn, where ωn = (2n + 1)π/β
and n is an integer. Now, assume that φ(z) vanishes at the Matsubara fre-
quencies and consider f(z) = 1/(z − (ε− µ)) + φ(z), which also coincides with
G0(iωn) at z = iωn. Since G0(iωn) vanishes at infinitely large iωn the func-
tion φ(iωn) should also do so in the same limit in order f(iωn) to be equal to
G0(iωn). According to the Carlson’s theorem φ(z) is identically zero, because
it is zero at the discrete set of points and infinity, which is the accumulation
point of the set of the Matsubara frequencies. To conclude, there is no way
to modify the analytically continued Greens function and recover the original
thermal Greens function values by evaluating it at the Matsubara frequencies
without destroying the Greens function behaviour at infinity. The same was
proved By G. Baym and N. D. Mermin [24] but in a different way.
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3.1 Calculation of the Spectral Weight Function

To compute the spectral weight function using 3.4 one has to know a complete
set of states for a given system which, in most cases, is impossible. Common
way of obtaining the spectral function is through the real frequency Greens
function. Obviously, computation of the real frequency Greens function requires
an analytic continuation of the thermal Greens function commonly achieved
by introducing an ansatz for the spectral function which depends on a set of
unknown parameters. These parameters are determined by putting demands on
the ansatz which has to be fulfilled by the physical spectral weight function.

Let us model the spectral weight function by a Lorentzian

A(ω) = 2γ
(ω − ε0)2 + γ2 (3.20)

ε0 is the location and γ - the width of the Lorentzian. By using the Lorentzian
in Eq. 3.19 one gets

G(iωn) =
∫
dω′

2π
2γ

(ω′ − ε0)2 + γ2
1

iωn − ω′

=
∫
dω′

2πi

(
1

ω′ − ε0 − iγ
− 1
ω′ − ε0 + iγ

)
1

iωn − ω′

Since the integrand decays as 1/z2 it can be continued to the entire complex
plane and the integration can be performed along the semicircle with an infinite
radius. It is clear that the integrand has three poles. Depending on the sign
of ωn two poles are in the upper half plane and one is in the lower half plane
or vice versa. If ωn is positive than it is convenient to do integration along C2
curve, because it encircles only one pole ( see Fig. 3.2 ):

G(iωn) =
∮
C2

dz

2πi

(
1

z − ε0 − iγ
− 1
z − ε0 + iγ

)
1

iωn − z

= −2πi 1
2πi lim

z→ε0−iγ

z − (ε0 − iγ)
iωn − z

(
1

z − ε0 − iγ
− 1
z − ε0 + iγ

)

= 1
iωn − (ε0 − iγ) (3.21)

It is obvious that when ωn is negative it is more convenient to do integration
along C1:
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G(iωn) =
∮
C1

dz

2πi

(
1

z − ε0 − iγ
− 1
z − ε0 + iγ

)
1

iωn − z

= 2πi 1
2πi lim

z→ε0+iγ

z − (ε0 + iγ)
iωn − z

(
1

z − ε0 − iγ
− 1
z − ε0 + iγ

)

= 1
iωn − (ε0 + iγ) (3.22)

One can generalize Eq. 3.20 and assume that the spectral weight function
is a sum of the Lorentzian resonances

Im

Re

C1

C2

iΩn�

Ε0+iΓ�

Ε0-iΓ�

Figure 3.2: C1 and C2 are the integration contours for G(iωn). Crosses are the
poles of the integrand when ωn > 0

A(ω) = 2
∑
ν

γναν + βν(ω − εν)
(ω − εν)2 + γ2

ν

= 1
i

∑
ν

(
aν

ω − bν
− a∗ν
ω − b∗ν

)
(3.23)

where αν , βν , εν , γν are real parameters, aν = αν + iβν and bν = εν + iγν . The
parameter εν characterizes the location of the resonance and γν - the width.
After inserting Eq 3.23 in Eq. 3.19 and performing contour integrals separately
for each term of the sum ( Eq. 3.23 ) in the same manner as we did in Eq. 3.21
and 3.22 ( in this case poles ε0 + iγ and ε0− iγ are replaced by bν and b∗ν ), one
obtains:

G(iωn) =


∑
ν

a∗ν
iωn−b∗ν

ωn > 0∑
ν

aν
iωn−bν ωn < 0
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The sum rule for the spectral weight function puts constraints on the parameters
aν . Namely, they obey the following relation:

∑
ν aν =

∑
ν a
∗
ν = 1. This can be

shown by evaluating the contour integral along the curves C1 and C2 over the
spectral weight function:

1 =
∑
ν

∫
dω

2πi

(
aν

ω − bν
− a∗ν
ω − b∗ν

)

=
∑
ν

∮
C1

dz

2πi

(
aν

z − bν
− a∗ν
z − b∗ν

)

=
∑
ν

lim
z→bν

(z − bν)
(

aν
z − bν

− a∗ν
z − b∗ν

)

=
∑
ν

aν

Analogously, performing integration along C2 yields:
∑
ν a
∗
ν = 1.
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Chapter 4

Discretized Thermal Greens
Functions

In this chapter I present a new numerical method for the Fermionic thermal
Greens functions. The formalism describes how periodized Greens functions
should be treated appropriately and the procedure of analytic continuation
which gives the discontinuity of the Greens function. As we will see below
the discontinuity is related to the conservation of the spectral function.

We start with discretizing the argument of the imaginary time Greens func-
tions. As we see, the thermal Greens function G(τ) is well behaved apart form
a discontinuous boundary. So we discretize imaginary time iτ into N evenly
spaced points on the interval [0, iβ]. Recalling, that the imaginary time Greens
function domain is τ ∈ [−β, β] we see it must remain antiperiodic on this do-
main with a period of β.

The discrete Fourier transformation can be applied to the imaginary time
Greens function data points. The Fourier transform of a discrete periodic func-
tion is itself periodic and thus yields a periodic, discrete set of the Greens func-
tion values in the frequency space. However, if we look at the simplest, nonin-
teracting Greens function G(iωn) = 1/(iωn− ε) it is clear that it is not periodic
and in addition has a long frequency tail, necessary to obtain the discontinuous
boundary in τ -space. This means that the periodization in the frequency space
causes problems with the discontinuity in the imaginary time space.

In this chapter we will show how to periodize the noninteracting Greens func-
tion when the argument of the imaginary time Greens function is discretized
into N evenly spaced points and preserve the discontinuity in τ -space.

We discretize the interval τ ∈ [0, β] in the obvious way: τj = βj/N, 0 <
j < N−1, which represents set of N evenly spaced points on the imaginary time
axis. We note that τ = β doesn’t belong to this set. The discrete imaginary
time Greens function is antiperiodic in the same way as its continuous version,
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CHAPTER 4. DISCRETIZED THERMAL GREENS FUNCTIONS

which means that it is representable as a discrete Fourier transformation:

G(τj) = 1
β

N−1∑
n=0

e−iωnτjG(iωn) (4.1)

G(iωn) = β

N

N−1∑
j=0

eiωnτjG(τj) (4.2)

where ωn = (2n+ 1)π/β are Matsubara frequencies and the pre-factor β/N in
Eq. 4.2 is due to the discretization of the integral in Eq. 2.3.

Since the imaginary time Greens function has the discontinuity at τ = 0 (
limits τ → 0− and τ → 0+ differ from each other ) we must uniquely assign the
value to G(τj = 0). We define G(τj = 0) by the average of the two limits:

G(τj = 0) = (G(τj = 0−) +G(τj = 0+))/2 = (n+ n− 1)/2 = n− 1/2 (4.3)

where n is an occupation number.
Let us calculate explicitly the discrete Fourier transform of the discretized,

noninteracting imaginary time Greens function G0(τj > 0) = e−τjε(nf − 1)
taking into account our definition of G(τj = 0):

G0(iωn) = β

N

N−1∑
j=0

eiτjωnG0(τj)

= β

N
[G0(0) +

N−1∑
j=1

eiτjωnG0(τj)]

= β

N
[nf −

1
2 +

N−1∑
j=1

eτj(iωn−ε)(nf − 1)]

= β

N
[nf −

1
2 +

N−1∑
j=1

e
β
N (iωn−ε)j(nf − 1)]

Now we use the formula for the sum of the geometric progression:
∑N
n=0 ar

n =
a(1− rN+1)/(1− r):

G0(iωn) = β

N

(
nf −

1
2 + (nf − 1)e

β
N (iωn−ε) − eβ(iωn−ε)

1− e βN (iωn−ε)

)

= β

N

(
nf −

1
2 + (nf − 1)e

β
N (iωn−ε) + e−βε

1− e βN (iωn−ε)

)

(4.4)
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= β

N

(nf − 1/2)(1− e
β
N (iωn−ε)) + (nf − 1)(e

β
N (iωn−ε) + e−βε)

1− e βN (iωn−ε)

= β

N

− 1
2e

β
N (iωn−ε) + nf − 1

2 + (nf − 1)e−βε

1− e βN (iωn−ε)

= β

N

− 1
2 (e

β
N (iωn−ε) + 1) + 1

eβε+1 −
e−βε

1+e−βε

1− e βN (iωn−ε)

= β

2N
e
β
N (iωn−ε) + 1
e
β
N (iωn−ε) − 1

= β

2N coth β

2N (iωn − ε)

= η coth η(iωn − ε) (4.5)

where η ≡ β
2N . It is obvious that Eq. 4.4 is periodic under iωn → iωn +

iΩN , ΩN ≡ π
η . In the limit N → ∞ ( η → 0 ) we recover the continuum

expression for the noninteracting Greens function:

lim
η→0

η coth η(iωn − ε) = 1
iωn − ε

The next step would be to carry out the analogous periodization procedure
for the interacting thermal Greens functions. It is well known that the full
Greens function can be written in terms of the self-energy and noninteracting
Greens function, which is called Dyson equation [23]:

G(iωn) = G0 +G0ΣG = G0 +G0ΣG0 +G0ΣG0ΣG0 + ... (4.6)

The Dyson equation is usually obtained from the definition of the self-energy,
Σ = G−1

0 (iωn) − G−1(iωn), by multiplying it with G0(iωn) and G(iωn). But
there is an alternative way to derive Eq. 4.6. Let us define g(x) = 1/x. A
Taylor expansion of G(iωn)

G(iωn) = 1
G−1

0 (iωn)− Σ(iωn)
= 1
g−1(iωn − ε)− Σ(iωn) = 1

iωn − ε− Σ(iωn)

≡ g(iωn − ε− Σ) (4.7)

around G0(iωn) in the self-energy Σ(iωn) yields the Dyson equation:

G =
∞∑
n=0

Σn

n!
dng

dΣn

∣∣∣∣
Σ=0

= G0 +G0ΣG0 +G0ΣG0ΣG0 + ...
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CHAPTER 4. DISCRETIZED THERMAL GREENS FUNCTIONS

G0(iωn) and Σ(iωn) are placed in such order (as shown in the latter expression)
to identify the series with the diagrammatic expansion. By analogy, we can
derive the ”Dyson equation” for the periodized Greens functions. In this case
g(x) would be g(x) = η coth(ηx) and for the full Greens function we get:

G(iωn) ≡ g(iωn − ε− Σ) = η coth η(iωn − ε− Σ) (4.8)

Due to the nontrivial hyperbolic function in Eq. 4.8 one can not define the
self-energy using simply G−1

0 and G−1 as before. In this case the self-energy is
defined by the amputated skeleton diagrams ([23], see Sec. 5.1) and through
Eq. 4.8. It is clear that Eq. 4.8 is more general and reduces to Eq. 4.7 in the
limit η → 0.

After Taylor expanding Eq. 4.8 in Σ around the free Greens function we
find a series that plays the same role the ordinary Dyson series:

G(iωn) = G0(iωn) +G+
0 (iωn)Σ(iωn)G−0 (iωn)+

+G+
0 (iωn)Σ(iωn)G0Σ(iωn)G−0 (iωn)+

+G+
0 (iωn)Σ(iωn)

[
G0(iωn) + β

2N
√

3

]
Σ(iωn) [G0(iωn)−

− β

2N
√

3

]
Σ(iωn)G−0 (iωn) + ...

where G±0 is G0±η. As one can see the third and higher order terms involve
legs G0(iωn) + a β

2N , with −1 ≤ a ≤ 1 . The latter expression is consistent
with the ordinary Dyson equation and with the self-energy being the one parti-
cle irreducible amputated diagrams but with specific choice of the free Greens
functions. This definition of the self-energy is different from the standard defini-
tion in terms of the inverse Greens functions but is analogous to the alternative
definition in terms of a Taylor series. In continuum case these two definitions
are equivalent but in the discretized case they are not.

Performing the Fourier transformation on G±0 (iωn) yields:

1
β

N−1∑
n=0

G+
0 (iωn) = 1

β

N−1∑
n=0

(G0(iωn) + η) = nf −
1
2 + 1

2 = nf = G0(τ = 0−)

1
β

N−1∑
n=0

G−0 (iωn) = 1
β

N−1∑
n=0

(G0(iωn)− η) = nf −
1
2 −

1
2 = nf − 1 = G0(τ = 0+)

which shows the correspondence between G±(iωn) and G(τ = 0∓).
The next chapter shows how to consistently replace the Dyson series through

the Luttinger-Ward functional theorem rather through a direct sum of an infinite
number of diagrams.
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Chapter 5

Luttinger-Ward Functional
Theory

5.1 Standard Luttinger-Ward Functional The-
ory

We start by reviewing ordinary Luttinger-Ward functional theory and adapt it
in the next section to the periodized Greens functions.

It is known from the linked cluster theorem that the free energy can be
written as a sum of all connected (linked) diagrams [23]:

➤ ➤

➤

➤

➤
➤

➤

➤

➤

➤

Ω− Ω0 = − 1

β

�
all connected diagrams =

= − 1

β
+ + + + ...( )

The solid lines in the diagrams represent bare (non interacting) Greens func-
tions, G0. In order to rewrite the free energy in terms of the interacting Greens
functions it is convenient to introduce the definition for the self-energy in terms
of diagrams: the self-energy is the sum of all amputated one-particle irreducible
diagrams [23]:

➤

➤

➤

➤

➤ ➤

➤+ + +Σ = + ...

We introduce another class of the diagrams which is called skeleton diagrams
which does not have any self-energy insertions, that is there is no part in the
diagram which can be absorbed by the legs (Greens function lines) of the dia-
gram. Self-energy can therefore be obtained by drawing all skeleton diagrams
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CHAPTER 5. LUTTINGER-WARD FUNCTIONAL THEORY

and replacing the free Greens functions with the interacting ones [25]:

Σ =
∑

all possible amputated skeleton diagrams with G0 replaced by G

(5.1)
For example, the diagram (a) on Fig. 5.1 is one-particle irreducible amputated,
but not skeleton diagram because it has the self-energy insertion. The diagram
(b) is a skeleton diagram, it doesn’t have a self-energy insertion like diagram (a),
written in terms of the interacting Greens functions (double lines), which, after
expanding G using the Dyson series, reproduces infinite series of the one-particle
irreducible amputated diagrams and one of them is diagram (a).

➤

➤

➤ ➤ ➤

➤

➤∈

a) b)

Figure 5.1: a) One-particle irreducible amputated (non skeleton) diagram con-
tributing to the self-energy. b) A skeleton diagram

One might think that the linked cluster theorem is equivalent to writing the
free energy as the sum of all closed linked skeleton diagrams and replace G0
by G. This is not true, because after expanding interacting Greens function G
the same diagram appear several times, whereas according to the linked cluster
theorem each closed linked diagram must appear once in the sum. For instance,
the diagram (a) on Fig. 5.2 is closed linked skeleton diagram, which reproduces
the diagram (b) multiple times.

➤ ➤ ➤

➤

➤

➤

b)a)

Figure 5.2: a) First order closed linked skeleton diagram with full Greens func-
tion G. b) Second order closed linked diagram contributing to the free energy
Ω.

To write the free energy in terms of the interacting Greens function and
self-energy Luttinger and Ward introduce the ”total self-energy” Σ′(iωn) [25],
sum of all amputated one-particle irreducible and reducible diagrams:
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5.1. STANDARD LUTTINGER-WARD FUNCTIONAL THEORY

Σ′(iωn) = Σ(iωn) + Σ(iωn)G0(iωn)Σ(iωn)+
+ Σ(iωn)G0(iωn)Σ(iωn)G0(iωn)Σ(iωn) + ...

= G−1
0 (iωn)Σ(iωn)G(iωn)

and then they write the mth order free energy in the following form

Ωm = 1
2m

1
β
Tr G0(iωn)Σ′m(iωn) (5.2)

where Tr is the sum over all quantum numbers and Matsubara frequencies
(remember that each Greens function and self-energy has k index which is not
written out explicitly). If we close all mth order diagrams of Σ′ the same closed
linked diagram will be generated 2m times. For example, four second order
diagrams, namely, the diagram (a) with the same diagram where the direction
of the straight line is flipped and the diagram (b) with the one where the lower
loop is disconnected gives the diagram (c) four times (see Fig. 5.3). The pre-
factor 1/2m in Eq. 5.2 ensures that we do not over-count the diagrams. It is
not straightforward to understand why one should use Σ′ and not Σ itself in Eq.
5.2. To make it clear look at the Fig. 5.3: the diagram (a) is the one-particle
reducible diagram which is involved in Σ′, but not in the proper self-energy.
After multiplying by the free Greens function G0 we get the diagram (c) which
contributes to the free energy according to the linked cluster theorem.

➤

➤

➤

a)

➤

➤

➤

b)

➤

➤

➤

➤

➤

c)

Figure 5.3: a) Second order reducible diagram contributing to Σ′ not Σ. b)
Second order irreducible diagram contributing to Σ. c) Second order closed
linked diagram contributing to the free energy Ω.

Eq. 5.2 leads us to the following expression for the free energy:

Ω =
∑
m

Ωm = 1
β

∑
m

1
2mTr G0(iωn)Σ′m(iωn) (5.3)
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CHAPTER 5. LUTTINGER-WARD FUNCTIONAL THEORY

The presence of the pre-factor 1/2m makes it difficult to perform the summation
over m. To avoid the summation one can do the following: let us say λ is the
strength of the interaction, then it is clear that Σ′m is proportional to λm and
λdΣ′
dλ = mΣ′. Now take the derivative of the free energy with respect of λ:

λ
dΩ
dλ

= 1
2β Tr G0(iωn)Σ′(iωn) = 1

2β Tr G0(iωn)G−1
0 (iωn)Σ(iωn)G(iωn)

= 1
2β Tr Σ(iωn)G(iωn) (5.4)

According to Luttinger and Ward, we define the following functional [25]

Γ = Φ[G] + Tr eiωn0+
[−Σ(iωn)G(iωn) + log(−G(iωn)/β)] (5.5)

The functional Φ[G] is sum of all closed linked skeleton diagrams with G0 re-
placed by G.

Let us take the derivative of Γ with respect to the self-energy Σ(iωn):

∂Γ
∂Σ(iωn) = ∂Φ

∂Σ(iωn) −G(iωn)− Σ(iωn)∂G(iωn)
∂Σ(iωn) + 1

G(iωn)
∂G(iωn)
∂Σ(iωn)

= ∂Φ
∂Σ(iωn) − Σ(iωn)G2(iωn) (5.6)

Here we used the following relation: ∂G(iωn)/∂Σ(iωn) = G2(iωn). In analogy
with Eq. 5.2 one can write down the similar expression for the functional Φ[G]

Φ[G] =
∑
m,n

1
2mTr G(iωn)Σ′′m(iωn) (5.7)

where Σ′′m(iωn) is the mth order contribution to the self-energy according to Eq.
5.1 where the order is given by the order of the skeleton diagram ( not counting
the vertices in the full Greens function). Taking the derivative of Eq. 5.7 with
respect to Σ(iωn) and G(iωn) yields:

∂Φ
∂G(iωn) =

∑
m

1
2m

[
Σ′′m(iωn) +

∑
l

G(iωl)
∂Σ′′m(iωl)
∂G(iωn)

]

=
∑
m

1
2m [Σ′′m(iωn) + (2m− 1)Σ′′m(iωn)] = Σ(iωn) (5.8)

∂Φ
∂Σ(iωn) = ∂Φ

∂G(iωn)
∂G(iωn)
∂Σ(iωn) = G2(iωn)Σ(iωn) (5.9)

After inserting ∂Φ/∂Σ(iωn) back into Eq. 5.6 we find that if the self-energy in
Γ obeys the Dyson equation it is the stationary point for the Γ functional:

∂Γ
∂Σ(iωn) = 0. (5.10)
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5.1. STANDARD LUTTINGER-WARD FUNCTIONAL THEORY

One can also say that the stationarity condition for Γ gives Eq. 5.1, which
means that we have a variational principle for computing the self-energy.

Now let us take the derivative of Γ with respect to λ (interaction strength),
taking into account Eq. 5.10, 5.7 , Σ′′m(iωn) ∝ λm and the fact that only Φ[G]
has explicit λ-dependence:

λ
d

dλ
Γ(Σ(λ),Φ(Σ(λ), λ)) = λ

(
∂Γ
∂Σ

dΣ
dλ

+ ∂Γ
∂λ

)
= λ

∂Φ
∂λ

= 1
2Tr G(iωn)Σ(iωn)

(5.11)
It is clear from the Eq. 5.4 and 5.11 that

λ
d(βΩ)
dλ

= λ
dΓ
dλ

(5.12)

Since the last expression is a differential equation the functional Γ is equal to
βΩ if Γ is equal to Ω0 in the non interacting limit:

Γ(λ = 0) = Tr [eiωn0+
log(−G0(iωn)/β)]

= Tr [eiωn0+
log(−G0(iωn))]− log(β)Tr eiωn0+

= −Tr [eiωn0+
log(εk − iωn)]

= − β

2πi
∑
k

∮
C

dz ez0
+ log(εk − z)

eβz + 1

= − β

2πi
∑
k

1
β

∮
C′
dz ez0

+ log(1 + e−βz)
z − εk

= −
∑
k

limz→εk(z − εk) log(1 + e−βz)
z − εk

= −
∑
k

log(1 + e−βεk)

= βΩ0

Here we used the same contour integral technique as for deriving Eq. 2.7, the
method of integration by parts and the following relation:

∑
n e

iωnτ = βδ(τ)
(see Appendix B).

Finally, we see that

Γ = βΩ. (5.13)

The functional Γ provides us with a variational principle. In particular, one
can obtain the Dyson equation by demanding ∂Γ/∂G(iωn) = 0 and ∂Φ/∂G(iωn) =
Σ(iωn):
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∂Φ
∂G(iωn) − Σ(iωn)− ∂Σ(iωn)

∂G(iωn)G(iωn) + 1
G(iωn) = ∂Γ

∂G(iωn) = 0

1
G(iωn) −

∂Σ(iωn)
∂G(iωn)G(iωn) = 0

∂Σ(iωn)
∂G(iωn) = G−2(iωn)

Σ(iωn) = 1
G0(iωn) −

1
G(iωn)

G(iωn) = G0(iωn) +G0(iωn)Σ(iωn)G(iωn).

Using the Luttinger-Ward functional the total particle number Nµ, which
is a thermodynamic quantity can be expressed in terms of the thermal Greens
function:

Nµ ≡ −
dΩ
dµ

= − 1
β
Tr

(
∂Φ

∂G(iωn)
dG(iωn)
dµ

− dG(iωn)
dµ

Σ(iωn)−

−dΣ(iωn)
dµ

G(iωn) + 1
G(iωn)

dG(iωn)
dµ

)

= − 1
β
Tr

(
−d(G−1

0 −G−1)
dµ

G(iωn) + 1
G(iωn)

dG(iωn)
dµ

)

= 1
β
Tr

(
dG−1

0
dµ

G(iωn)
)

= 1
β
Tr

(
d(iωn − ε+ µ)

dµ
G(iωn)

)

= 1
β
TrG(iωn) (5.14)

On the other hand 1
βTrG(iωn) is ”microscopic” definition of the particle number

Nmic. Thus, the Luttinger-Ward functional yields the consistency between the
thermodynamic and ”microscopic” particle numbers.

Another quantity we calculate using the functional Γ is the thermodynamic
average of the energy:
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〈H − µNµ〉 = 1
Z
Tr[(H − µNµ)e−β(H−µNµ)] = −d(logZ)

dβ
= d(βΩ)

dβ
=

= d

dβ
(Φ[G]− Tr(eiωn0+

[G(iωn)Σ(iωn) + log(−G(iωn)/β)])

= ∂Φ
∂G

dG

dβ
− Tr

(
eiωn0+

[
dG

dβ
Σ− dΣ

dβ
G+ d

dβ
log(−G/β)

])

Since the Greens function and self-energy obey the variational principle they
fulfil the variational conditions and Dyson equation. Hence, the first two terms
in the last expression cancel each other

〈H − µNµ〉 = Tr

(
eiωn0+

[
G
d

dβ
(G−1 −G−1

0 ) + d

dβ
log
(
−G
β

)])

= −Tr
(
eiωn0+

[
G−1 dG

dβ
+ 1
G

(
dG

dβ
− G

β

)
−GdG

−1
0

dβ

])

= −Tr
(
eiωn0+

[
1
β
−G d

dβ
(iωn − ε+ µ)

])

= 1
β

∑
n

eiωn0+
(iωnG(iωn)− 1)

This expression can be rewritten in terms of the self-energy if we replace iωn
and 1 by G−1

0 (iωn) + ε and G(iωn)/G(iωn), respectively:

〈H − µNµ〉 = 1
β

∑
n

eiωn0+
G(iωn)

(
G0(iωn)−1 −G(iωn)−1 + ε

)

= 1
β

∑
n

eiωn0+
G(iωn)(Σ(iωn) + ε− µ) (5.15)

In order to obtain standard thermodynamic expression for the free energy we
compute the entropy:

S = −dΩ
dT

= −dΩ
dβ

dβ

dT
= dΩ
dβ

β2

and write the expectation value of the energy in the following form:

E = 〈H〉 = d(βΩ)
dβ

+ µ〈Nµ〉 = Ω + β
dΩ
dβ

+ µ〈Nµ〉

Using the last two expressions we find
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E − TS − µ〈Nµ〉 = Ω + β
dΩ
dβ

+ µ〈Nµ〉 −
1
β

dΩ
dβ

β2 − µ〈Nµ〉 = Ω

An important observation regarding the Luttinger-Ward functional made by
Baym and Kadanoff is that all correlations computed as variational derivatives
of the Γ-functional obey conservation laws of charge, momentum and energy
even if Γ includes only a finite number of diagrams [26], [27], [28].

5.2 Generalisation of the Luttinger-Ward Func-
tional Theory

Let us generalize the variational principle and rewrite it in terms of the peri-
odized Greens functions. In order to do this we first put the following demands
on the Γ-functional:

• The Γ-functional written in terms of the periodized Greens functions must
give ordinary Γ-functional written in terms of the continuous Greens func-
tions, Eq. 5.5, in the limit N →∞

• The periodized Greens functions must be consistent with the variational
principle

• The free energy written in terms of the periodized Greens functions must
be exact in the noninteracting limit (Σ→ 0 ).

If one just replaces the ordinary Greens functions by periodized ones in
Eq. 5.5 the third condition is not fulfilled and therefore the last term in the
Γ-functional has to be altered (the first two terms are zero in the non interact-
ing limit). To satisfy the third condition the last term in the Luttinger-Ward
functional is modified in the following form:

Tr log(−G−(iωn)/(2η)), η ≡ β/(2N)

By definition G±(iωn) is equal to G(iωn) ± η. It is remarkable that this ex-
pression in the non interacting limit yields exact free energy for all values of
N :

N−1∑
n=0

log(−G−0 (iωn)/(2η)) =
N−1∑
n=0

log
(
N

β
(−η coth η(iωn − ε) + η)

)

=
N−1∑
n=0

log
(

1
2(coth η(ε− iωn) + 1)

)

=
N−1∑
n=0

log 1
2

(
eεβ/(2N)e−iβωn/(2N) + e−βε/(2N)eiβωn/(2N)

eεβ/(2N)e−iβωn/(2N) − e−βε/(2N)eiβωn/(2N) + 1
)
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=
N−1∑
n=0

log eεβ/(2N)e−iβωn/(2N)

eεβ/(2N)e−iβωn/(2N) − e−βε/(2N)eiβωn/(2N)

= −
N−1∑
n=0

log(1− e−βε/Neiβωn/N )

= −
N−1∑
n=0

log(1− e−βε/Nei(2n+1)π/N )

= −
N−1∑
n=0

log(1− e(−βε+iπ)/N (e2iπ/N )n)

= − log
∏
n

(1− e(−βε+iπ)/N (e2iπ/N )n)

In order to proceed consider the roots of the polynomial xN − aN , which are
a(e2iπ/N )n. Using the roots one can represent the polynomial in an alternative
form: xN−aN ≡

∏
n(x−a(e2iπ/N )n). If we let x and a to be 1 and e(−βε+iπ)/N ,

respectively we see that the last expression is equal to

∑
k,n

log(−G−0,k(iωn)/(2η)) = −
∑
k

log(1− e−βεk+iπ)

= −
∑
k

log(1 + e−βεk)

= βΩ0

As the proof shows that
∑
k,n log(−G0(iωn)−/(2η)) is identically equal to the

non interacting free energy for any number of discretization points N .
The functional Φ[G] is interpreted as the same set of diagrams i.e. the sum

of all possible closed linked skeleton diagrams, but the lines of the diagrams
correspond to the periodized Greens functions G(iωn) except the ones that
begin and end at the same vertex which are given by G+(iωn) ≡ G(iωn) + η
to properly count particle number, which corresponds to the interpretation of
loops being evaluated at τ = 0−.

By taking into account the modifications to the ordinary Γ-functional we
generalize it in the following form:

Γ = Φ[G]− Tr(Σ(iωn)G+(iωn)) + Tr log(−G−(iωn)/(2η)) (5.16)

The first two terms clearly have the proper limit as N → ∞. Now, consider
the last term in the same limit ( the pre-factor eiωn0+ is for convergence in the
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N →∞ limit and also is presented in Eq. 5.5):

lim
η→0

Tr eiωn0+
log
(
−G

−(iωn)
2η

)
= lim
N→∞

Tr eiωn0+
log
(

1
2 −

N

β
G(iωn)

)

= lim
N→∞

Tr eiωn0+
log
(
−N
β
G(iωn)

)

= lim
N→∞

Tr eiωn0+
log
(
−G(iωn)

β

)
+

+ lim
N→∞

Tr eiωn0+
log N

= lim
N→∞

Tr eiωn0+
log
(
−G(iωn)

β

)
+

+
∑
k

lim
N→∞

βδ(0+) log N

here we used the relation
∑
n e

iωnτ = βδ(τ). The second term in the last expres-
sion is zero due to the Dirac delta function δ(0+) ( = 0) which is stronger than
the logarithmic infinity.

lim
η→0

Tr eiωn0+
log
(
−G

−(iωn)
2η

)
= lim
N→∞

Tr eiωn0+
log
(
−G(iωn)

β

)
The last expression is exactly the third term in Eq. 5.5.

In order to see what result the new Γ-functional yields, we demand two
conditions to be satisfied: the variation of Γ and Φ[G] with respect to G(iωn)
is zero and Σ(iωn), respectively. The variation of Eq. 5.16 gives:

∂Γ
∂G

= ∂Φ
∂G
− ∂Σ
∂G

G+ − Σ + 1
G−

= −∂Σ
∂G

G+ + 1
G−

.

Since we demand that the variation of the Γ with respect to G is zero we find
the following differential equation for the self-energy:

∂Σ
∂G

= 1
G+G−

= N

β

(
1
G−
− 1
G+

)
. (5.17)

As an initial condition for the equation above we note that Σ(iωn) = 0 when
G(iωn) = G0(iωn). So the solution to Eq. 5.17 is

Σ = N

β
log
(
G−

G−0

G+
0

G+

)
. (5.18)
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After inverting this expression we find

e2ηΣ(G0 − η)(G+ η) = (G− η)(G0 + η)

G[G0(e2ηΣ − 1)− η(e2ηΣ + 1)] = η[η(e2ηΣ − 1)−G0(e2ηΣ + 1)]

G = η
η(e2ηΣ − 1)−G0(e2ηΣ + 1)
G0(e2ηΣ − 1)− η(e2ηΣ + 1)

G(iωn) = η
G0(iωn)− η tanh(ηΣ(iωn))
η −G0(iωn) tanh(ηΣ(iωn)) . (5.19)

Performing some trigonometric manipulations on Eq. 5.19 enables us to rewrite
it in more familiar form:

G = η
G0 − η tanh(ηΣ)
η −G0 tanh(ηΣ)

= η
η coth η(iωn − ε)− η tanh(ηΣ)
η − η coth η(iωn − ε) tanh(ηΣ)

= η
coth η(iωn − ε)− tanh(ηΣ)

1− coth η(iωn − ε) tanh(ηΣ)

= η coth η(iωn − ε− Σ)

where we used the following identity:

coth(x− y) = coth(x)− tanh(y)
1− coth(x) tanh(y) .

It is important to note that the variational principle for the ”periodized” Luttinger-
Ward functional yields Eq. 5.19 which is exactly the same equation as Eq. 4.4
obtained by discretizing the imaginary time Greens function. This shows that
the periodized Greens functions are consistent with the corresponding Luttinger-
Ward variational principle.

Using the Γ-functional (Eq. 5.16) we approximate the free energy as the
value of the Γ evaluated at the self-energy and Greens function obeying ”peri-
odized Dyson equation”, Eq. 5.19.

The derivation of the particle number Nµ using periodized free energy leads
to the following expression:
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Nµ = −dΩ
dµ

= − 1
β
Tr

(
∂Φ
∂G

dG

dµ
− dG

dµ
Σ− dΣ

dµ
G+ + 1

G−
dG

dµ

)

= − 1
β
Tr

(
− d

dµ

(
N

β

(
log G

−

G+ + log G
+
0

G−0

))
G+ + 1

G−
dG

dµ

)

= 1
β
Tr

(
N

β

(
G+ 1

G−0 G
+
0

dG0

dµ

(
− β
N

)
+G+ 1

G−G+
dG

dµ

β

N

)
− 1
G−

dG

dµ

)

= − 1
β
Tr

(
G+ 1

G−0 G
+
0

dG0

dµ

)

= 1
β
Tr

(
G+ 1

η2(coth2 η(iωn − ε+ µ)− 1)
η2

sinh2 η(iωn − ε+ µ)

)

= 1
β
TrG+(iωn)

Let us check that this corresponds to the ”microscopic” definition of Nµ. Ac-
cording to our definition of the discterized imaginary time Greens function at
τj = 0 we have:

Gk(τj = 0) = nk −
1
2 = 1

β

N−1∑
n=0

Gk(iωn)

In order to get the particle number one has to add a half to the both sides of
the equation:

Nµ =
∑
k

nk =
∑
k

(
1
2 + 1

β

N−1∑
n=0

Gk(iωn)
)

=
∑
k

(
1
β

N−1∑
n=0

(
Gk(iωn) + β

2N

))

= 1
β
TrG+

k (iωn).

As one can see the thermodynamic and ”microscopic” definitions of the particle
number Nµ give same results which reduce to the standard expression Eq. 5.14
in the limit η → 0.

Now we show that we have a corresponding definition of the energy by com-
puting the expectation value of the Hamiltonian (see Appendix C for complete
derivation):
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〈H − µNµ〉 = 1
Z
Tr[(H − µNµ)e−β(H−µNµ)]

= −d(logZ)
dβ

= d(βΩ)
dβ

=

= d

dβ
(Φ[G]− TrG+(iωn)Σ(iωn) + Tr(log(−G−(iωn)/2η)))

= 1
β
Tr [G(iωn)(Σ(iωn) + ε− µ) + η(ε− µ)]

The comparison of the latter to its standard counterpart 5.15 shows that it is a
same expression except a contribution of ηε inside trace which vanishes in the
limit η → 0.

Note that during these derivations we imply that the Γ-functional is equal
to βΩ, which means that the self-energy and Greens function obey Eq. 5.19 and
∂Φ/∂G = Σ.
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Chapter 6

Single-Particle Spectral
Function

We now turn to the properties of the periodized Greens function. Suppressing
the quantum index k (Ak(ω) ≡ A(ω)) we write it in the spectral representation
by discretising imaginary time in Eq. 3.18 and then performing discrete Fourier
transform taking into account Eq. 4.3:

G(iωn) =
∫ ∞
−∞

dω

2πA(ω)η coth η(iωn − ω) (6.1)

where A(ω) is the spectral function, which is given in a standard form by

A(ω) = 1
Z

∑
m,n

|〈m|c†|n〉|2e−βEn(1 + e−βω)2πδ(Em − En − ω). (6.2)

Here we define |n〉 to be a complete set of eigenstates, H|n〉 = En|n〉. Eq.
6.1 provides the analytic continuation for the periodized Greens function by
letting iωn → z, z is the complex variable. Since coth η(z − ω) diverges at
z − ω = inπ/η and ω is real, G(z) is analytic except where Im(z) is an integer
multiple of ΩN = π/η.

Defining G(z = ω + i0+) ≡ GR(ω), G(z = ω + i0−) ≡ GA(ω) and Σ(ω ±
i0+) ≡ ΣR/A(ω) in analogy with the retarded and advanced Greens functions
in the standard formalism and using the relations:

lim
δ→0+

ηIm[coth η(ω+iδ−ω′)] = lim
δ→0+

−η sin(2ηδ)
cosh 2η(ω − ω′)− cos(2ηδ) = −πδ(ω−ω′)

and

coth(x− iy) = cos(y) cosh(x)− i sin(y) sinh(x)
cos(y) sinh(x)− i sin(y) cosh(x) (6.3)

= cosh(x) sinh(x) + i cos(y) sin(y)
cosh2(x)− cos2(y)

(6.4)
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we find that the spectral weight is given by the imaginary part of GA/R(ω):

A(ω) = ±2ImGA/R(ω) = ±2Im[η coth η(ω − ε− ΣA/R(ω))]

= ±2η cos(ηIm[ΣA/R(ω)]) sin(ηIm[ΣA/R(ω)])
cosh2 η(ω − ε−Re[ΣA/R(ω)])− cos2 η(Im[ΣA/R(ω)])

= ±2η sin(2ηIm[ΣA/R(ω)])
cosh 2η(ω − ε−Re[ΣA/R(ω)])− cos 2η(Im[ΣA/R(ω)])

In the limit η → 0 the spectral weight is

A(ω) = ±2η 2ηIm[ΣA/R(ω)]
1 + 1

2 (2η(ω − ε−Re[ΣA/R(ω)]))2 − 1 + 1
2 (2η(Im[ΣA/R(ω)]))2

= ± 2Im[ΣA/R(ω)]
(ω − ε−Re[ΣA/R(ω)])2 + Im[ΣA/R(ω)]2

It follows that −ΣR(ω) = ΣA(ω). So that Σ(z) has a branch cut on the lines
Im(z) = nΩN , n ∈ Z which coincides the real axis when n = 0.

By extracting the real part from the GR(ω) and using the identity:

sinh(x)
cosh(x)− 1 = ex − e−x

ex + e−x − 2 = (ex/2 − e−x/2)(ex/2 + e−x/2)
(ex/2 − e−x/2)2 = coth

(x
2

)
one obtains a generalized Kramers-Kronig relation:

Re[GR(ω)] =
∫
dω′

2π A(ω′) η Re[coth η(ω − ω′ + i0+)]

= η

2πP
∫
dω′A(ω′) sinh 2η(ω − ω′)

cosh 2η(ω − ω′)− cos(2η0+)

= − η
π
P

∫
dω′ImGR(ω′) sinh 2η(ω − ω′)

cosh 2η(ω − ω′)− cos(2η0+)

= − η
π
P

∫
dω′ImGR(ω′) sinh 2η(ω − ω′)

cosh 2η(ω − ω′)− 1

= − η
π
P

∫
dω′

Im[GR(ω′)]
tanh η(ω − ω′)

which reduces to the standard expression in the limit η → 0:
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lim
η→0

ReGR(ω) = − η
π
P

∫
dω′

Im[GR(ω′)]
η(ω − ω′)

= − 1
π
P

∫
dω′

Im[GR(ω′)]
ω − ω′

6.1 Spectral Function Ansatz

We model the spectral function with the following function:

Lε,γ(ω) = iη

sinh η(ω − ε+ iγ) −
iη

sinh η(ω − ε− iγ)

which reduces to the Eq. 3.20 in the limit η → 0. In order, Lε,γ(ω) to be
positively defined, the real part of the first term should be positive because
Lε,γ(ω) is a sum of two complex conjugate terms.

Re

[
iη

sinh η(ω − ε+ iγ)

]
= Re

[
iη

sinh η(ω − ε) cos(ηγ) + i cosh η(ω − ε) sin(ηγ)

]

= η cosh η(ω − ε) sin(ηγ)
sinh2 η(ω − ε) cos2(ηγ) + cosh2 η(ω − ε) sin2(ηγ)

> 0

This condition together with the fact that sin(x) is symmetric around π/2 re-
quires that 0 < γ < ΩN/2.

Now, let us insert Lε,γ(ω) in Eq. 6.1 and perform the integration for 0 <
Im[z] < ΩN using the periodicity and anti-periodicity of coth(z) and Lε,γ(z),
respectively (see Fig. 6.1):

G(z) =
∫ ∞
−∞

dω

2π Lε,γ(ω) η coth η(z − ω)

= 1
2

∮
C

dz′

2π Lε,γ(z′) η coth η(z − z′). (6.5)

As shown in Fig. 6.1, there are exactly three poles to consider, z′i (i = 1, 2, 3)
residing in the strip 0 < Im[z] < ΩN . The Greens function is analytic in the
strip 0 < Im[z] < ΩN and has poles outside the strip at ε− iγ and ε+ iγ+ iΩN
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with the period of 2iΩn (see. Fig. 8.2 a).

G(z) = iη

2

3∑
i=1

Resz′=z′
i
[coth η(z − z′)Lε,γ(z′)]

= iη

2

(
−1
η
Lε,γ(z)− i coth η(z − z2)− i coth η(z − z3)

)

= η

2 (coth η(z − ε+ iγ) + coth η(z − ε− iγ)+

+1/sinh(η(z − ε+ iγ))− 1/sinh(η(z − ε− iγ))) (6.6)

= η

2

(
coth η2 (z − ε+ iγ) + tanh η2 (z − ε− iγ)

)
.

z

ε+ iγ + iΩN

ε− iγ + iΩN

ε+ iγ

ε− iγ
Re

Im

−∞ ∞
ΩN

C

Figure 6.1: Contour for the integration of Eq. 6.5

were we used the identity

coth(x) + 1
sinh(x) = coth

(x
2

)

coth(x)− 1
sinh(x) = tanh

(x
2

)
.

In the limit η → 0 the function G(z) reduces to the usual retarded Greens
function 1/(z − ε + iγ) obtained by an ordinary Lorentzian spectral weight.
If we evaluate the contour integral for the strip −ΩN < Im[z] < 0, which
corresponds to the change of the sign of the inverse hyperbolic sine functions in
Eq. 6.6, we find:

G(z) = η

2

(
tanh η2 (z − ε+ iγ) + coth η2 (z − ε− iγ)

)
which gives the ordinary advanced Greens function 1/(z − ε − iγ) in the limit
η → 0. The Greens function G(z) has the branch cuts repeated with the period
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of iΩN . The analytic Greens function can be obtained by cutting out those
branches where G(z) has the poles and then gluing together the branches where
G(z) is analytic (see. Fig. 8.2 b). In the limit η → 0 ΩN = π/η becomes in-
finitely large and therefore G(z) has a branch cut on the real axis corresponding
to the standard formalism.

Using the same contour as in Fig. 6.1 it can be shown that Lε,γ(ω) is properly
normalised:

∫ ∞
−∞

dω

2π Lε,γ(ω) = 1
2

∮
C

dz

2πLε,γ(z)

= i

2

2∑
i=1

lim
z→zi

(z − zi)
(

iη

sinh η(ω − ε+ iγ) −
iη

sinh η(ω − ε− iγ)

)

= i

2

(
−iη 1

η
− iη 1

η

)
= 1

z1 = ε + iγ and z2 = ε − iγ + iΩN are the poles of Lε,γ(z) in the strip 0 <
Im[z] < ΩN .

Let us now model the spectral function with a sum of the functions Lεν ,γν .
In this case, for the interval 0 < Im[z] < ΩN , G(z) can be written as

G(z) = η

2
∑
ν

[
aν coth η2 (z − εν + iγν) + a∗ν tanh η2 (z − εν − iγν)

]
(6.7)

Taking the limit in the latter expression gives:

lim
z→∞

G(z) = η

2
∑
ν

[aν + a∗ν ]

On the other hand Eq. 6.1 yields:

lim
z→∞

G(z) = η

∫ ∞
−∞

dω

2πA(ω) = η

By combining the last two results we find that in order the total spectral weight
to be properly normalised aν coefficients must satisfy

∑
ν(aν + a∗ν) = 2.

Next we derive the expression for the spectral function using

tanh(x− iy) = sinh(x) cos(y)− i cosh(x) sin(y)
cosh(x) cos(y)− i sinh(x) sin(y)

= cosh(x) sinh(x)− i cos(b) sin(b)
cosh2(x) + cos2(y)− 1

and Eq. 6.7, 6.3.
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A(ω) = −2Im[GR(ω)]

= −η
∑
ν

Im

(
aν

cosh η
2 (ω − εν) sinh η

2 (ω − εν)− i cos(η2γν) sin(η2γν)
cosh2 η

2 (ω − εν)− cos2(η2γν)

+a∗ν
cosh η

2 (ω − εν) sinh η
2 (ω − εν)− i cos(η2γν) sin(η2γν)

cosh2 η
2 (ω − εν) + cos2(η2γν)− 1

)

= −η
∑
ν

(−Re[aν ]M + Im[aν ]N)

where the factors M and N are :

M ≡
cos(η2γν) sin(η2γν)

cosh2 η
2 (ω − εν)− cos2(η2γν)

+
cos(η2γν) sin(η2γν)

cosh2 η
2 (ω − εν) + cos2(η2γν)− 1

= 1
2

cosh η(ω − εν) sin(ηγν)
cosh2 η

2 (ω − εν)(cosh2 η
2 (ω − εν)− 1) + cos2(η2γν)(1− cos2(η2γν))

= 1
2

cosh η(ω − εν) sin(ηγν)
1
4 sinh2 η(ω − εν) + 1

4 sin2(ηγν)

= 2 cosh η(ω − εν) sin(ηγν)
sinh2 η(ω − εν) + sin2(ηγν)

N ≡
cosh η

2 (ω − εν) sinh η
2 (ω − εν)

cosh2 η
2 (ω − εν)− cos2(η2γν)

−
cosh η

2 (ω − εν) sinh η
2 (ω − εν)

cosh2 η
2 (ω − εν) + cos2(η2γν)− 1

= 1
2

sinh η(ω − εν) cos(ηγν)
1
4 sinh2 η(ω − εν) + 1

4 sin2(ηγν)

= 2 sinh η(ω − εν) cos(ηγν)
sinh2 η(ω − εν) + sin2(ηγν)

.

Inserting M and N in the expression for the spectral weight gives:
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A(ω) = 2η
∑
ν

Re[aν ] cosh η(ω − εν) sin(ηγν)− Im[aν ] sinh η(ω − εν) cos(ηγν)
1
2 cosh 2η(ω − εν)− 1

2 + 1
2 −

1
2 cos(2ηγν)

= 4η
∑
ν

Re[aν ] cosh η(ω − εν) sin(ηγν)− Im[aν ] sinh η(ω − εν) cos(ηγν)
cosh 2η(ω − εν)− cos(2ηγν)

(6.8)

A(ω) η→0−−−→ 4η
∑
ν

Re[aν ] ηγν − Im[aν ] η(ω − εν)
1 + 1

2 (2η(ω − εν))2 − 1 + 1
2 (2ηγν)2

= 2
∑
ν

Re[aν ] γν − Im[aν ] (ω − εν)
(ω − εν)2 + γ2

ν

(6.9)

6.2 Padé Method

To compute G(ω) one has to know coefficients aν , εν , γν which are unknown
so far. Below we describe a procedure which enables us to compute those co-
efficients: we start with the fitting of given Greens function values at some
Matsubara frequencies Gn ≡ G(iωn) to Eq. 6.7. Since the Greens function
is represented as a sum of the hyperbolic functions with periodically repeated
poles we rewrite it as a sum of simple poles by means of the transformation

z′ = coth
(η

2z − i
π

4

)

We perform transformation term by term using the identity coth(x + y) =
(1 + coth(x) coth(y))/(coth(x) + coth(y)):

aν coth η2

(
z − iπ

2η − εν + iγν + iπ

2η

)
= aν

1 + coth(η2z −
iπ
4 ) coth(η2 (−εν + iγν) + iπ

4 )
coth(η2z −

iπ
4 ) + coth(η2 (−εν + iγν) + iπ

4 )

= aν
1− pνz′

z′ − pν
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a∗ν tanh η2

(
z − iπ

2η − εν − iγν + iπ

2η

)
= a∗ν

coth(η2z −
iπ
4 ) + coth( iπ4 −

η
2 (εν + iγν))

1 + coth(η2z −
iπ
4 ) coth( iπ4 −

η
2 (εν + iγν))

= a∗ν
z′ − coth(η2 (εν + iγν) + iπ

4 − 2 iπ4 )
1− z′ coth(η2 (εν + iγν) + iπ

4 − 2 iπ4 )

= a∗ν
z′ − 1

coth( η2 (εν+iγν)+iπ4 )

1− z′

coth( η2 (εν+iγν)+iπ4 )

= a∗ν
1− p∗νz′

z′ − p∗ν

where pν = coth
(
η
2 (εν − iγν)− iπ4

)
is the pole in the z′ basis. By combining

the last two results we find

G(z′) = η

2

n∑
ν=1

(
aν

1− pνz′

z′ − pν
+ a∗ν

1− p∗νz′

z′ − p∗ν

)
(6.10)

After fitting given Greens function values Gn to Eq. 6.10 and computing the
poles pν and residues aν(1−p2

ν) one can identify all unknown coefficients in Eq.
6.7. The transformation maps the domains containing the singularities of G(z)
to the unit circle in the z′ basis, whereas the domains with no singularities (
0 < Im[z] < ΩN , 2ΩN < Im[z] < 3ΩN , 4ΩN < Im[z] < 5ΩN , ...) are mapped
outside the unit circle (see Fig. 6.2). Note that z = ±∞ and z = iω(N−1)/2
map to z′ = ±1 and z′ =∞, respectively.

z′ = coth
(
η

2 i
π

β
((N − 1) + 1)− iπ4

)
= coth

(
β

4N i
π

β
N − iπ4

)
= coth(0) =∞

Since G(z′ = ∞) is equal to −η2 (aνpν + a∗νp
∗
ν) Eq. 6.10 is equivalent to the

following:

G(z′) = const+ P (z′)
Q(z′) = const+ a0 + a1z

′ + ...+ aM (z′)M

1 + b1z′ + b2(z′)2 + ...+ bM+1(z′)M+1

(6.11)

where const = −η2 (aνpν + a∗νp
∗
ν) and P (z′) is an Mth order polynomial and

Q(z′) is an M + 1th order polynomial. Eq. 6.11 therefore fulfills the boundary
condition at infinity:

G(z′ =∞) = const = G(N−1)/2.

Since z′ = ∞ corresponds to iω(N−1)/2 in z basis it is important to pick N to
be odd. We also demand

G(z′ = 1) = −G(z′ = −1) = η

2
∑
ν

(aν + a∗ν) = η (6.12)
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Figure 6.2: Greens function in the z′ basis. White dots represent Matsubara
frequencies while red circles - poles of the Greens function.

which ensures the proper normalisation of the total spectral weight. This re-
quirement is analytically fulfilled by Eq. 4.8 independent of the self-energy
Σ(iωn) so that the total spectral weight is conserved within the periodized
Dyson equation.

It turns out that one can also put a constraint on the first derivative of G(z′)
by considering z as a function of z′

z = 2
η

(
tanh−1(z′) + i

π

4

)
.

Taking the derivative of Eq. 6.1 with respect to z′ we find

dG

dz′
=
∫ ∞
−∞

dω

2πA(ω)η 2
sinh2

(
log
(

1+z′
1−z′

)
+ iπ2 − ηω

)
((z′)2 − 1)

which vanishes in the limit z′ → ±1
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dG

dz′

∣∣∣∣
z′=±1

= 0. (6.13)

Now, let us insert Eq. 6.11 in the latter equation and find what are the conse-
quent requirements on the polynomials P (z′) and Q(z′):

1
Q(z′)

(
dP

dz′
− P (z′)
Q(z′)

dQ

dz′

)∣∣∣∣
z′=±1

= 0

dP

dz′

∣∣∣∣
z′=±1

= P (z′)
Q(z′)

dQ

dz′

∣∣∣∣
z′=±1

dP

dz′

∣∣∣∣
z′=±1

= (±η −G(N−1)/2)dQ
dz′

∣∣∣∣
z′=±1

.

Next step is to fit G(z′)−G(N−1)/2 to P (z′)/Q(z′) which implies to solve a
set of equations for the coefficients of P (z′) and Q(z′) polynomials. The total
number of equations and data points is N+3: originally we have N data points,
then we drop G(N−1)/2, because it is already taken into account in Eq. 6.11, and
add η, −η (Eq. 6.12) and two zeros (Eq. 6.13). After solving those equations
we get an equal number of coefficients for both P (z′) and Q(z′) polynomials.
So, the order of the denominator is M + 1 = (N + 3)/2. Since we also have
the symmetry G(iωN−1−n) = G∗(iωn) the roots of Q(z′) ( the poles of G(z′) )
come in complex conjugate pairs. Thus, there are (M + 1)/2 independent poles
and residues and ν, in Eq. 6.10, runs from 1 through (N + 3)/4. Defining the
roots of Q(z′) by pν and the corresponding residues of P (z′)/Q(z′) by aν(1−p2

ν)
we can extract aν , γν and εν , which enables us to evaluate the spectral weight
function (Eq. 6.8 and 6.9 ).

Since this procedure conserves the total spectral weight we will show that it
also preserves the discontinuity at τ = 0:

G(τ = 0−) = 1
β

∑
n

e−iωn0−G(iωn)

= 1
2πi

(∮
C1

dz
e−z0

−

eβz + 1G
R(z) +

∮
C2

dz
e−z0

−

eβz + 1G
A(z)

)

= 1
2πi

∫ ∞
−∞

dω
1

eβω + 1(−GR(ω) +GA(ω))

= 1
2πi

∫ ∞
−∞

dω nf iA(ω)

=
∫ ∞
−∞

dω

2π nfA(ω) (6.14)
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here we used the function 1/(eβz+1) which has the poles exactly at the Matsub-
ara frequencies with residues −1/β. It makes sure that the integrand converges
at infinity and enables us to deform the contours C1 and C2 shown on Fig. 6.3
(a) into the ones shown on Fig. 6.3 (b). By analogy we compute G(τ = 0+).
The only difference is that in this case we use 1/(e−βz+1) instead of 1/(eβz+1)
to make the integrand converge at z = −∞:

G(τ = 0+) = 1
β

∑
n

e−iωn0+
G(iωn) = 1

2πi

∮
C

dz
e−z0

+

e−βz + 1G(z)

= 1
2πi

∫ ∞
−∞

dω
1

e−βω + 1 iA(ω)

=
∫ ∞
−∞

dω

2π (nf − 1)A(ω) (6.15)

GR

GA

C1

C2

HaL

z-plane

GR

GA

C1

C2

HbL

z-plane

Figure 6.3: The indicated points are the Matsubara frequencies ωn

After subtracting G(τ = 0+) from G(τ = 0−) one finds

G(τ = 0−)−G(τ = 0+) =
∫ ∞
−∞

dω

2πA(ω) = 1

which is the demonstration of the imaginary time Greens function discontinuity
at τ = 0.
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Chapter 7

Interaction Effects in
Bilayer Graphene

We use the periodized Greens function formalism to study the Coulomb interac-
tion effects in bilayer graphene in RPA and fully self-consistent approximation
but first let us present the tight-binding description of the mono and bi-layer
graphene.

7.1 Tight-Binding Approximation

Figure 7.1: Monolayer graphene lattice structure. White and black dots denote
carbon atoms residing on the different triangular sublattices.

Simplest way to describe graphene is to start with the corresponding tight-
binding model. In order to write Hamiltonian in the tight-binding approxima-
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tion creation and annihilation operators are introduced: a†σ,Ri
(b†σ,Ri

) creates an
electron at site Ri on sublattice A-white dots (B-black dots) on Fig. 7.1 with
spin σ, while aσ,Ri (bσ,Ri) annihilates it. The non-interacting Hamiltonian has
the following form,

H0 = −t
∑
σ,i

3∑
j=1

(a†σ,Ri
bσ,Ri+aj +H.C.), (7.1)

where t ≈ 2.8 eV is the hopping energy between nearest neighbour carbon atoms
and aj are nearest neighbour vectors (red arrows on Fig. 7.1),

a1 = a(0, 1)

a2 = a

2 (
√

3,−1)

a3 = a

2 (−
√

3,−1)

with a ≈ 0.14nm is the distance between nearest neighbour lattice sites. After
applying Fourier transformation to the creation and annihilation operators

aσ,Ri= 1√
N

∑
k

eiRi·kaσ,k (7.2)

one can rewrite the Hamiltonian in the momentum space

H0 = −t
∑

k

(φka
†
σ,kbσ,k +H.C.)

=
∑
σ,k

Ψ†σ,k
(

0 −tφk
−tφ∗k 0

)
Ψσ,k, (7.3)

where Ψσ,k = (aσ,k, bσ,k) and

φk =
3∑
i=1

eiai·k. (7.4)

Diagonalizing the Hamiltonian H0 yields the spectrum for graphene [10]

E(k) = ±t|φk|. (7.5)

The plus and minus correspond to conductance (π∗) and valence (π) bands,
respectively.

The Brillouin zone of graphene is presented in Fig. 7.2 showing high symme-
try points Γ,M,K and K ′. In the graphene the valence and conductance bands
touch each other at, so called, Dirac points K = (4π/(3

√
3a), 0) and K ′ = −K

resulting in the gapless spectrum. This situation is in contrast with the standard
case in the condensed matter physics when a system is characterized by Fermi
surface instead of Fermi points. At Dirac points the density of states vanishes
linearly [12] and

E(K) = ±t|φK|= eiKya + 2e−iaKy/2 cos
(√

3
2 aKx

)
= 0. (7.6)
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KK ' G

M

kx

ky

Figure 7.2: Hexagonal Brillouin zone of graphene. Red arrows show reciprocal
lattice vectors. K and K ′ points represent two set of nonequivalent points which
cannot be connected by the reciprocal lattice vectors.

Expanding φk around K point yields

φk = 1 + iaky + 2(1− iapy2 )(−1
2 −

3
4kxa)

= −3
2a(kx − iky) (7.7)

which results in the linearized energy spectrum

E(k) = ±v|k| (7.8)

where v = (3/2)at ≈ 106m/s is the Fermi velocity. The form of Eq. 7.8 mimics
the spectrum for massless Dirac Fermions [14].

The tight-binding Hamiltonian for the bilayer graphene which accounts for
the interlayer nearest neighbour hopping and interlayer hopping between the
atoms sitting on top of each other has the following form

H0 =
∑
σ,k

Ψ†σ,k


0 −tφk −t⊥ 0
−tφ∗k 0 0 0
−t⊥ 0 0 −tφ∗k

0 0 −tφk 0

Ψσ,k, (7.9)

where t⊥ ≈ 0.39 eV is the interlayer hopping parameter, φk is given by Eq. 7.4
and Ψσ,k = (aσ,k, bσ,k, bσ,k, aσ,k) (overbar refers to, let’s say, upper layer). H0
gives four non-degenerate bands

E(k) = ±1
2

(
t⊥ ±

√
t2⊥ + 4t2|φk|2

)
. (7.10)
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Figure 7.3: Bilayer graphene lattice structure. White (sublattice A) and black
(sublattice B) dots belong to the upper plane whereas blue (sublattice B) and
red (sublattice A) ones belong to the lower plane.

In order to study the low energy properties of the bilayer graphene we make, as
in the case of monolayer graphene, an expansion around K point and using Eq.
7.7 one can obtain

E(k) = ± t⊥2

1±

√
1 + 4

(
v|k|
t⊥

)2
 . (7.11)

These bands are sketched in Fig. 7.4. This shows that a similar situation holds
in this case as in the single layer graphene, the fermi surface is represented
by two Fermi points at K and K ′, however spectrum being parabolic at these
locations.

Next approximation one can make is to assume that v|k|� t⊥. Since two
outer bands in Fig. 7.4 do not affect the low energy physics and are therefore ir-
relevant this approximations is called two-band limit. To write the Hamiltonian
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E

k
� t

¦

Figure 7.4: Four bands of the bilayer graphene expanded around the Brillouin
zone corner.

Eq. 7.9 in this limit we decompose it as H0 = H
(1)
0 +H

(2)
0 , where

H
(1)
0 =


0 0 −t⊥ 0
0 0 0 0
−t⊥ 0 0 0

0 0 0 0

 (7.12)

and

H
(2)
0 =


0 −tφk 0 0
−tφ∗k 0 0 0

0 0 0 −tφ∗k
0 0 −tφk 0

 (7.13)

with φk = −(3/2)(kx − iky)a, and then use the perturbation theory for de-
generate case [29] up to second order. The result is the effective Hamiltonian
Heff = −P0H

(2)
0 P1(1/H(1)

0 )P1H
(2)
0 P0 where

P0 =


0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 1

 (7.14)

and

P1 = 1− P0 (7.15)

=


1 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0

 (7.16)

are projection operators onto the degenerate and non degenerate subspaces,
respectively. It is crucial to mention that the matrix elements of Heff must be
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computed in the non degenerate subspace resulting in

Heff = v2

t⊥


0 0 0 0
0 0 0 (kx − iky)2

0 0 0 0
0 (kx + iky)2 0 0

 . (7.17)

After multiplying Heff by Ψσ,k from the left and right it becomes clear that
Heff actually is a 2× 2 matrix in the Ψσ,k = (bσ,k, aσ,k) basis,

Heff = 1
2m

(
0 (kx − iky)2

(kx + iky)2 0

)
. (7.18)

with m = t⊥/(2v2) ≈ 0.0054me being the effective mass of the electron. Using
the values of t⊥ and v one can show that m ≈ (0.03− 0.05)me [9]. At very low
densities, which are not considered in this thesis, the term linear in k (associated
with trigonal warping) should be added to Heff [30]. Heff gives parabolic
spectrum

E(k) = ± k2

2m (7.19)

whereas in the opposite limit v|k|� t⊥ it would give a linear energy spectrum
as it is for the monolayer graphene. The crossover between these two regimes of
the energy spectrum is controlled by the carrier density (chemical potential) and
if it is smaller than 5× 1012cm−2 (experimentally realized densities range from
approximately 1011cm−2 to 1013cm−2) parabolic dispersion is valid otherwise
the spectrum is linear [9].

The hopping between two Dirac points, K and K ′, is very weak and it can be
ignored which means that it is sufficient to consider only one of the valleys and
the second one can be taken into account by introducing a degeneracy factor
of 2. There exists another degeneracy due to the spin and thus the overall
degeneracy factor g would be 4.

Heff describes system with chiral particles (as in the monolayer graphene)
which is due to the presence of two equivalent but independent A and B sub-
lattices [31].

So far, I have discussed only kinetic energy of the bilayer graphene Hamil-
tonian. The term in the full Hamiltonian which accounts for the interactions is,
in its most general form, given by

HI =1
2

∫
d2rd2r′[V (r− r′)(ρ1(r)ρ1(r′) + ρ2(r)ρ2(r′))+

+ V (r− r′)(ρ1(r)ρ2(r′) + ρ2(r)ρ1(r′))] (7.20)

where ρi(r) is a density operator in sublattice i, V (r−r′) is a intralayer Coulomb
interaction between electrons residing on the same sublattice and V (r − r′)
describes interlayer interaction between electrons on the different sublattices.
Fourier transformation of HI yields

HI = 1
2
∑
q 6=0

[Vq(ρ1(q)ρ1(−q)+ρ2(q)ρ2(−q))+V q(ρ1(q)ρ2(−q)+ρ2(q)ρ1(−q))]

(7.21)
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where
ρ(q) =

∫
d2re−irqc†rcr =

∑
k

c†k+qck, (7.22)

Vq = 2πe2/κq and V q = Vqe
−qd, d ≈ 2.4a ≈ 0.335nm being the interlayer

distance. There is no q = 0 term in the latter equation because its contribution
in case of long-range Coulomb interaction is cancelled by positive background
charge [32]. HI can be rewritten in terms of the symmetric and antisymmetric
combinations of density operators:

HI =1
2
∑
q 6=0

(
Vq + V q

2 (ρ1(q) + ρ2(q))(ρ1(−q) + ρ2(−q))+

+Vq − V q

2 (ρ1(q)− ρ2(q))(ρ1(−q)− ρ2(−q))
)
. (7.23)

It is customary to approximate V q to be Vq because the exponent e−qd in V q is
close to unity. Finally, the interacting part of the Hamiltonian has the following
form

HI = 1
2
∑
q 6=0

Vq(ρ1(q) + ρ2(q))(ρ1(−q) + ρ2(−q)). (7.24)

Since our calculation is done in the units of kF and εF we will write the
Coulomb potential Vq in those units. We note that because of the Fourier
transform the dimension of Vq is [ε]/[k2]. To factor out the dimensionless part
from Vq it is multiplied and divided by εF /k2

F :

Vq = 2πe2

κq

k2
F

εF

εF
k2
F

. (7.25)

The interaction in the units of εF and kF is then given by

Vq = 2πe2

κq

k2
F

εF

= 2πe2

κqkF
2m (7.26)

= 4π
gq

ge2m

κkF

= 4π
gq
rs

where rs is a dimensionless coupling parameter and g is the degeneracy factor.
In 7.26, q is replaced with q × kF which means that q is dimensionless in the
final expression.

The dimensionless coupling rs is defined as the ratio of the average Coulomb
potential 〈V 〉 = e2/κr0 and Fermi energy where r0 is an average inter particle
distance defined through

1
n

= πr2
0 (7.27)
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with n being a carrier density. The Fermi energy εF at T = 0 can expressed as
a function of n using the relation

n = g

∫ kF

0

dkdθk

(2π)2 = gmεF
2π . (7.28)

Since we have the expressions for εF and r0 we derive the expression for rs:

rs = √g 〈V 〉
εF

= g3/2me2

2κ
1√
πn

= e2mg

κkF
. (7.29)

7.2 GW and RPA
In order to describe the properties of this system we have to employ appropriate
approximation. One of the earliest approximations based on the Greens func-
tion method is Hartree-Fock approximation which implies that self-energy of
a given system is computed using only first order (direct and exchange) Feyn-
man diagrams. The direct diagram (Fig. 7.5 a)) is local i.e. does not describe
the propagation of the electron while the exchange diagram (Fig. 7.5 b)) is
nonlocal and reflects the Pauli exclusion principle. The Hartree-Fock approxi-
mations completely ignores the correlations between electrons and thus is not a
reasonable approximation when these correlations are important.

The Coulomb potential repels electrons from each other which gives rise
to the formation of holes around each electron whose effective positive charge
screens reduces the interaction magnitude. This screening is not taken into
account in the Hartree-Fock approximation.

aL bL

Figure 7.5: a) Hartree (direct) diagram, b) Fock (exchange) diagram. Solid lines
represent Greens function and wavy one - interaction.

Density functional theory (DFT) together with local density approximation
(LDA) is a standard method to describe the ground state properties of a given
system which takes into account correlations [33, 34, 35]. DFT+LDA together
with methods beyond LDA were successfully applied to various models but in
some cases they reveal discrepancies (wrong estimates for bandwidth, bandgaps,
quasiparticle energies, etc.).

Quasiparticle energies, single-particle spectral functions and total energies
are properly computed within the thermal Greens function technique, where all
correlations are, in principle, included in a self-energy Σ. However, it is very
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difficult to compute Σ and usually it is calculated in different approximations.
The approximation to compute self-energy which is used in this thesis is called
the GW approximation [36, 37, 38]. It is the method beyond the Hartree-
Fock approximation that takes screening into account. The GW approximation
was derived perturbatively by Hedin from the so called Hedin’s equations (see
Appendix E). Hedin showed how the self-energy should be expanded in a fully
screened potential W where the first terms represents the GW approximation.

The GW approximation can be implemented in a fully and partially self-
consistent way. In the former case Greens function G and screened interaction
W are both updated after each iteration while in the latter case only G (W ) is
updated whereas W (G) is fixed. There is a specific and simplest case of the GW
approximation when we do only one iteration, no self-consistency, which in the
literature is known as random phase approximation (RPA). Therefore in RPA
polarization, building block of the diagrams involved in GW approximation, is
approximated by the product of two bare Greens functions which is the zeroth
order term in the expansion of Π~q(iωn) in the bare interaction. Consequently,
the RPA self-energy and dressed interaction consists of exactly same diagrams
as those in GW approximation (see Fig. E.6 and E.4 in Appendix E) but the
dressed Greens functions are replaced by the non-interacting ones.

Although the GW approximation has been successfully applied to wide range
of models it has been observed, in contrast to the non self-consistent GW,
that the fully self-consistent GW approximation is not able to capture a num-
ber of satellite features because of the lack of the vertex corrections in GW
self-energy [39, 40, 41]. There are methods (quasi-particle self-consistent GW,
GW+DMFT) based on the standard GW and it has been shown that includ-
ing the vertex corrections even within those methods is crucial to get reason-
able results [41]. It also has been shown that performing GW calculation self-
consistently yields improved values for the total energy than RPA [40]. We think
that our results obtained in the fully self-consistent GW approximation can be
used as a benchmark for those obtained using more sophisticated methods. In
addition, calculations showed the feasibility of the periodized Greens function
method by implementing it in the heavy numerical calculation such as the fully
self-consistent GW approximation.

7.3 Plasma, Plasmons and Plasmarons
A plasma is a matter constituting of equal concentration of negatively and
positively charged particles and at least the particles belonging to one of those
categories are mobile. Usually, the negative charge of the conductance electrons
is compensated by positively charged ions.

Suppose there is a plasma in a thin metallic slab or film and the entire
electron gas, as a whole, is displaced with respect to the background positive
charge of ions resulting in the formation of a surface charge on the upper and
lower surfaces of the slab. This produces an electric field inside the slab which
acts as a restoring force on the electron gas, trying to bring it back to equi-
librium state and thus leads to the plasma oscillation. This is a simple model
explaining charge density waves in plasma. Plasma oscillation is considered as
a collective excitation of the electron gas. The quantum of this excitation is
called plasmon. Experimentally, plasmons can be excited by impacting a beam
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of electrons on the thin metallic film. The reflected or transmitted electrons
show energy loss due to inelastic collisions equal to multiples of the plasmon
energy. This experiment is called electron energy loss spectroscopy (EELS).

In order to see how plasmons emerge as the charge density oscillations let us
introduce the density-density correlation function at zero temperature [23, 42]

χ(x, t;x′, t′) = −i〈Tc†(x, t)c(x, t)c†(x′, t′)c(x′, t′)〉. (7.30)

The equation for χ(x, t;x′, t′) is analogous to Eq. E.3 with Π and Γ∗ replaced
by χ(x, t;x′, t′) and full vertex Γ. In RPA particle-hole vertex Γph is equal to
Vq thus Γ = Wq, Eq. E.7, and consequently density-density response function
is given by

χ(q, ω) =
∑
k1,ω1

G0(k1 + q, ω1 + ω)G0(k1, ω) (1+

+ Vq
1− VqΠq(ω)

∑
k2,ω2

G0(k2 + q, ω2 + ω)G0(k2, ω)

 . (7.31)

The poles of the density-density response function give excitations in the sys-
tem which represents collective charge density oscillations in the electron gas
(plasmon). Plasmon has its own dispersion relation defined by the pole of the
Greens function:

1 = VqΠq(ω) (7.32)
As these excitations occur for small momenta [42, 43, 44] to simplify derivation
of the plasmon dispersion relation let us take the limit q → 0 in the polarization
Πq(ω). For simplicity let us consider the polarization for a two dimensional
single-band electron system with parabolic dispersion relation which in the RPA
has the following form

Πq(ω) = g

∫
d2k

(2π)2
nF (εk)− nF (εk+q)
ω + εk − εk+q

(7.33)

where nF (εk) = (eβεk + 1)−1 is a Fermi-Dirac distribution and εk = k2/2m.
Changing the integration variable in the second integral to k′ = k + q enables
us to rewrite Πq(ω) in the following form

Πq(ω) = g

∫
d2k

(2π)2nF (εk)
(

1
ω + εk − εk+q

− 1
ω − εk + εk−q

)
. (7.34)

Taking the limit q → 0 yields

Π(q → 0, ω) = g

∫
d2k

(2π)2nF (εk)
[(

1
ω

+ kq cos(θ)
mω2 + q2

2mω2 + (kq cos(θ))2

m2ω3

)
−

−
(

1
ω

+ kq cos(θ)
mω2 − q2

2mω2 + (kq cos(θ))2

m2ω3

)]

= g

∫
d2k

(2π)2nF (εk) q2

mω2

= n

m

q2

ω2 . (7.35)
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Inserting Π(q → 0, ω) in Eq. 7.32 gives the plasmon dispersion relation

ωp =
√

2πe2n

κm
q1/2. (7.36)

Lundqvist investigated the effects of plasmon pole on the self-energy in the
case of three-dimensional electron gas [45]. Analogous study was carried out by
Paul von Allmen for two-dimensional electron gas [46]. In both cases imaginary
part of the self-energy is characterized by the strong resonances below (above)
the Fermi energy when momentum k smaller (greater) than a critical value k0.
Due to the Kramers-Kronig relation the resonances in the imaginary part of the
self-energy is reflected by the strong oscillations in the real part of the self-energy
which means that apart from the main quasiparticle peak spectral function has
additional peak. To find the location of that peak the solution to

ω − εk −Re[Σk(ω)] = 0 (7.37)

should be found. Intersections of ω − εk and Re[Σk(ω)] represent the solutions
to Eq. 7.37 and they can be identified with the corresponding peaks in the
spectral function. Using this method it was shown that the oscillations in the
real part of the self-energy results in the additional peak in the spectral weight
which at small k values sharpens with decreasing momentum and becomes a
delta function if the corresponding damping is zero (Im[Σ] = 0). This peak and
correspondingly a new quasiparticle was identified by Lundqvist. He called it
a plasmaron which can be interpreted as a composite quasiparticle consisting
of hole (electron if ε > 0) and plasmon or as a hole (electron) altered by the
cloud of hole-plasmon pairs. With increasing momentum the plasmaron peak
broadens, becomes invisible around k = kf but at k & kF it appears again. The
difference between 3D and 2D plasmarons is that 3d plasmaron vanishes around
k = kF while 2D plasmaron merges with the main quasiparticle peak.

In the following section we will see how plasmaron is revealed in graphene
through the single particle spectral function.

7.4 Electronic Structure of Bilayer Graphene
The electronic structure of bilayer graphene [47, 19] is characterised by the
single particle spectral function A~k(ω), which can be measured experimentally
by angle resolved photo-emission spectroscopy (ARPES)[48, 49]. Sensarma et al.
[22] studied how Coulomb interaction affects the single particle spectral function
of bilayer graphene away from half-filling. The authors used RPA to calculate
that doped bilayer graphene is a Fermi liquid in the low energy limit, with a
sharp quasiparticle peak. They also found additional weaker peak structures
that they interpreted as plasmarons.

Studying the physics of interaction between electrons and plasmons in graphene
is particularly interesting because of recently proposed ”plasmonic” devices that
could merge photonics and electronics [49].

Experimentally plasmarons in the single layer graphene were observed by A.
Bostwick et al [49] using angle-resolved photoemission spectroscopy. Apart from
the two single particle crossing bands, two additional bands were observed and
interpreted as a spectrum of plasmarons. The experimentally measured spectral
function compares qualitatively with that obtained within RPA.
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We compute numerically the single-particle spectral functionA~k(ω) for doped
bilayer graphene in the low energy two-band approximation in both RPA and
the fully self-consistent GW approximation [36, 37, 38] using the periodized
thermal Greens function formalism described in Chapter 4 and [50].

Before presenting the results I will generalize the GW equations and peri-
odized Greens function formalism to the two-band case.

The non-interacting Greens function corresponding to Eq. 7.18 is

Ĝ0
~k
(iωn) = (iωn −Heff + µ)−1 = 1

2
∑
s=±

1 + sσ̂~k
iωn − s|εk|+µ

, (7.38)

s indexes the conductance and valence bands, µ is the chemical potential, σ~k is
given by

σ̂~k =
∑
j=±

k2
j

k2 σ̂j =
∑
j=±

ej2iθ~k σ̂j =
(

0 e2iθ~k

e−2iθ~k 0

)
, (7.39)

where k± = kx ± iky, σ̂± = (σ̂1 ± iσ̂2)/2, σ̂1 and σ̂2 are Pauli matrices, θ~k is
the angle of the vector ~k with respect to the x-axis and εk represents parabolic
dispersion relation, Eq. 7.19.

To generalize Eq. E.16 for two-band model one should take into account
that the Greens function Ĝ~k(iωn) and vertex has additional sublattice index.
Thus the bubble diagram (second diagram on the second line in Fig. E.4) yields

− g

β
V 2
q

∞∑
m=−∞

∑
s′′,s′′′

∫
d2k

(2π)2G
s′′s′′′

~k+~q Gs
′′′s′′

~k
=

− g

β
V 2
q

∞∑
m=−∞

∫
d2k

(2π)2Tr(Ĝ~k(iωm)Ĝ~k+~q(iωn + iωm)) ≡ V 2
q Π~q(iωn). (7.40)

Here we used the fact that due to the approximation Vq = V q the vertex does
not depend on the sublattice index. Based on the rotational symmetry of bands
in the low energy limit once can conclude that polarization Π~q(iωn) is an angle
independent function. This can also be shown by assuming that the Greens
functions in Eq. 7.40 are the non-interacting ones then rotating the integration
variable ~k with an angle θ~q yielding

e2iθ~k = e2iθ~k′ e2iθ~q

e2iθ~k+~q = e2iθ~k′+~q′ e2iθ~q

where ~k′ and ~q′ are ~k and ~q in the new basis and finally performing trace. As
a result the screened interaction is an angle independent and, in addition, it
remain a scalar function as it is in the single-band case due to the trace in Eq.
7.40.

The GW self-energy for the two-band case is generalized to

Σ̂GW~k (iωn) = 1
β

∑
~q

∞∑
m=−∞

Wq(iωm)Ĝ~k−~q(iωn − iωm). (7.41)

Since we are dealing with the self-consistent calculation it is important to in-
vestigate the matrix structure of Σ̂GW~k (iωn). To do that let us first replace
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Ĝ~k−~q(iωn − iωm) by its noninteracting version then shift and rotate the inte-
gration variable in Eq. 7.41 in the following manner

~q1 = ~k − ~q (7.42)
~q2 = R(π + θ~k)~q1, (7.43)

where R(π + θ~k) denotes the rotation matrix with the angle π + θ~k. Therefore
the self-energy can be rewritten as

Σ̂GW~k (iωn) = 1
2

(
Σ0 Σ+e

i2θ~k

Σ−e−i2θ~k Σ0

)
, (7.44)

with

Σ0 =
∫

d2q

(2π)2 a
+
q2
W (|~k − ~q2|), (7.45)

Σ± =
∫

d2q

(2π)2 a
−
q2
W (|~k − ~q2|)e±i2θ~q2 (7.46)

and
a±k ≡ (iωn − |εk|+µ)−1 ± (iωn + |εk|+µ)−1. (7.47)

It is obvious that Σ+ = Σ− after changing θ~q2 with −θ~q2 in Σ+ or Σ−. Hence
the self-energy Σ̂GW~k (iωn) and consequently the dressed Greens function Ĝ~k(iωn)
have and keep the same structure as that of the free Greens function

Ĝ0
~k
(iωn) = 1

2

(
a+
k a−k e

i2θ~k

a−k e
−i2θ~k a+

k

)
(7.48)

throughout the self-consistent procedure which makes it sufficient to set up the
calculation only at θ~k = 0.

7.4.1 Periodized Greens Function Formalism for Two-Band
models

Since bilayer graphene is described by two-band Hamiltonian I will generalize
the periodized Greens function method presented in Chapter 4 to use it for
performing the self-consistent GW calculation.

Based on Eq. 7.38 one can easily write the bare periodized Greens function

Ĝ0
~k
(iωn) = 1

2
∑
s=±

η coth η(iωn − s|εk|+µ)(1 + sσ̂~k) (7.49)

whereas by analogy the periodized Dyson equation is generalized to

Ĝ~k(iωn) = η coth η((Ĝ0
~k
(iωn))−1 − Σ̂~k(iωn)), (7.50)

where

(Ĝ0
~k
(iωn))−1 =

(
iωn + µ −|εk| ei2θ~k
−|εk| e−i2θ~k iωn + µ

)
= (iωn + µ)1− |εk|σ̂~k.
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The periodized Greens function is consistent with the corresponding Luttinger-
Ward variational principle [25, 26]:

0 = ∂Γ
∂G

= Φ
G
− ∂Σ
∂G

Ĝ− − Σ̂ + (Ĝ−)−1

= −∂Σ
∂G

Ĝ− + (Ĝ−)−1

∂Σ
∂G

= (Ĝ+Ĝ−)−1

= (Ĝ+Ĝ−)−1(Ĝ+ − Ĝ−)(Ĝ+ − Ĝ−)−1

= 2η((Ĝ−)−1 − (Ĝ+)−1).

Γ-functional is given by Eq. 5.16. Solving the differential equation with the
initial condition Σ̂ = 0 at Ĝ = Ĝ0 yields

Σ̂ = 2η log
(

(Ĝ+)−1Ĝ−(Ĝ−0 )−1Ĝ+
0

)
Ĝ = η(Ĝ0 − η tanh(ηΣ̂))(η − Ĝ0 tanh(ηΣ̂))−1.

By writing tanh(ηΣ̂) in the form of matrix using the diagonalisation of Σ̂, ap-
plying hyperbolic tangent and then transforming back to the old basis we obtain
the matrix elements of Ĝ:

G11 = G22 = η

2 (coth η(iωn + |εk|+µ− 2Σ2) + coth η(iωn − |εk|+µ− 2Σ1))

G12 = η

2e
2iθ~k(coth η(iωn − |εk|+µ− 2Σ1)− coth η(iωn + |εk|+µ− 2Σ2))

G21 = η

2e
−2iθ~k(coth η(iωn − |εk|+µ− 2Σ1)− coth η(iωn + |εk|+µ− 2Σ2))

where

Σ1 =
∫

d2q

(2π)2
a+
q2

+ a−q2

2 W (|~k − ~q2|),

Σ2 =
∫

d2q

(2π)2
a+
q2
− a−q2

2 W (|~k − ~q2|).

Then the inverse procedure of finding the matrix structure of tanh(ηΣ̂) is per-
formed which allows to write Ĝ in the form of Eq. 7.50. Using the same
manipulations described above it can be shown that Eq. 7.49 reduces to Eq.
7.50 in the non-interacting limit.

We start the self-consistent calculation by discretising momenta and angles.
Since our interest is focused on the low energy properties the absolute value of
~k ranging from 0 to 4 is discretised into 40 points logarithmically giving denser
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number of points around kF . The rest of the integration variables (|~q|, θ~k and
θ~q) are discretized linearly. |~q| is discretized into 80 points and lies in the interval
[1/80, 4] while the number of the discretization points for θ~k and θ~q is 10. First,
the free Greens’s function is evaluated at θ~k = 0 and then it is rotated by an
angle θ~k in order to obtain the polarization (Eq. 7.40). Then the screened
interaction is computed using Eq. E.17 which enables us to evaluate the GW
self-energy (Eq. 7.41). After calculating Σ̂GW~k (iωn) at θ~k = 0 we update the
Greens function through Eq. 7.50. This is done repeatedly: if the procedure
converges to a fixed point, a solution has been found. The calculations are done
at T/εF = 1/10 with N = 121 number of Matsubara frequencies.

7.4.2 Spectral Function
The spectral function is given by

A~k(ω) = − 1
π
Im[TrĜ~k(ω + i0+)]. (7.51)

where we perform analytic continuation after applying trace to Ĝ~k(iωn). Since
we are interested in the low energy properties and the Fermi energy lies in
the conduction band it is convenient to focus only on the conduction band
which is achieved by diagonalizing the Greens function Ĝ~k(iωn), picking up
the eigenvalue corresponding to the conduction band and performing analytic
continuation to the real frequency axis yielding the spectral function projected
on the conduction band

A~k(s = +, ω) = − 1
π
Im[G~k(s = +, ω + i0+)], (7.52)

where

G~k(s = +, ω) = (U†Ĝ~k(iωn)U)22 (7.53)

represents the eigenvalue of Ĝ~k(iωn) corresponding to the upper band.
In order to derive the sum rules for both spectral functions let us first eval-

uate Ĝi,j~k (τ = 0−)− Ĝij~k (τ = 0+) which is equal to

〈c†i cj〉+ 〈cjc†i 〉,

where i and j represent matrix indicies. If i = j the last expression is equal to
one whereas if i 6= j it is zero. So, we have

Ĝ~k(τ = 0−)− Ĝ~k(τ = 0+) =
(

1 0
0 1

)
. (7.54)

Now, by carrying out the same derivation as in Eq. 6.14 and 6.15 for the
diagonal entries of Ĝ~k(τ = 0±) and taking into account Eq. 7.51 one can show
that

TrĜ~k(τ = 0−)− TrĜ~k(τ = 0+) =
∫
dω A~k(ω). (7.55)

On the other hand

TrĜ~k(τ = 0−)− TrĜ~k(τ = 0+) = 2 (7.56)
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due to the Eq. 7.54. Thus, the sum rule for the two-band spectral function has
the following form, ∫

dω A~k(ω) = 2. (7.57)

Again, in analogy with Eq. 6.14 and 6.15 and using Eq. 7.52 we get

G~k(s = +, τ = 0−)−G~k(s = +, τ = 0+) =
∫
dω A~k(s = +, ω). (7.58)

Eq. 7.53 and 7.54 yield

G~k(s = +, τ = 0−)−G~k(s = +, τ = 0+) = 1, (7.59)

which means that the sum rule for the projected spectral function is∫
dω A~k(s = +, ω) = 1. (7.60)
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Figure 7.6: (Color online) Single particle spectral function for bilayer graphene
in the low energy limit at rs = 3. (a) - RPA, (b) - GW. The bare bands ε~k = ±k2

(in units kF = 1, εF = 1) are rotationally symmetric (the patchy appearance is
due to the finite k-space resolution). (c) and (d) are the cuts (dash-dotted lines)
in (a) and (b), respectively. Dashed lines are guides to the eye for plasmaron
dispersions.

The results, presented in Fig. 7.6, 7.7, 7.8, show the spectral function with
long lived Landau quasiparticles and satellite plasmaron peaks in RPA away
from kF (Fig. 7.6 (a) and left column of Fig. 7.7 and 7.8) and confirm the
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results of analytic calculations [22, 51, 19]. The Fermi momentum is slightly
shifted because of the interaction and the spectral functions in Fig. 7.7b and
7.8b are plotted at k∗F 6= kF = 1 (kF - Fermi momentum in the non-interacting
case) . The presence of the plasmaron excitation also give jumps in the real
and imaginary parts of the corresponding self-energies. The RPA plasmaron
excitation has lower weight at rs = 7 than the one at rs = 3, although the
spectral functions have qualitatively same behaviour which is also noticeable in
the case of the GW approximation where most of the structure obtained in the
RPA is not present, the plasmaron peaks are replaced by broad shoulders (Fig.
7.6 (b) and left column of Fig. 7.7 and 7.8).
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Figure 7.7: (Color online) rs = 3. Left column: spectral weight in RPA (dashed
line) and GW approximation (solid line) at k ≈ 0.76kF (a), k = k∗F (b), k ≈
1.20kF (c). Right column: the real (blue solid line) and imaginary (red dashed
line) part of the self-energy at k ≈ 0.76kF (d), k = k∗F (e), k ≈ 1.20kF (f) in
RPA (thin line) and GW approximation (thick line).

In Fig. 7.9 (a) the electron energy loss spectrum Im[−ε−1
q (ω)] (εq(ω) =

1 + VqΠ~q(ω) - dielectric function) in RPA is plotted showing the plasmaron
dispersion relation (black color) which is in a quite good agreement for small
q-values with its analytic version (solid line) expanded up to second order in q
[9, 51],

ωq ' e
√
gεF q

κ

(
1− rsq

8kF

)
.

Im[−ε−1
q (ω)] was also calculated in the GW approximation (Fig. 7.9 (b)) where

the plasmon mode is less coherent than that in RPA which is in agreement with
the fact that the plasmaron features in the GW spectral function are weaker
than in RPA.
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Figure 7.8: (Color online) rs = 7. Left column: spectral weight in RPA (dashed
line) and GW approximation (solid line) at k ≈ 0.76kF (a), k = k∗F (b), k ≈
1.20kF (c). Right column: the real (blue solid line) and imaginary (red dashed
line) part of the self-energy at k ≈ 0.76kF (d), k = k∗F (e), k ≈ 1.20kF (f) in
RPA (thin line) and GW approximation (thick line).

Figure 7.9: (Color online) Im[−ε−1
q (ω)] in RPA (a) and GW approximation (b)

at rs = 7 (same color intensity scale on both plots). Green solid line in (a)
represents the plasmon dispersion expanded up to the second order in q. The
unexpected discontinuities are artificial and due to difficulties with the analytic
continuation of a two-particle function.

7.4.3 Quasiparticle weight and effective mass
Two important quantities that characterize interaction effects in a Fermi liquid
are quasiparticle weight and effective mass. To derive the formulas for those
quantities let us assume that Im[Σ]→ 0 (this approximation replaces Lorentzian
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peaks by sharp delta peaks so we do not expect drastic changes in physics
although it violates the Kramers-Kronig relation) in

Ak(ω) = −2Im[Gk(ω)] = −2Im[Σk(ω)]
(ω − εk −Re[Σk(ω)])2 + (Im[Σk(ω)])2 (7.61)

yielding
Ak(ω) = 2πδ(ω − εk −Re[Σk(ω)]). (7.62)

Let Ek be the solution to the equation

ω − εk −Re[Σk(ω)] = 0 (7.63)

which represents a new quasiparticle dispersion relation. Using the well known
property of the Dirac delta function

δ[g(x)] = δ(x− x0)
|g′(x0)| (7.64)

where x0 is zero of g(x), the spectral function can be written as

Ak(ω) = 2πZkδ(ω − Ek) (7.65)

Zk = 1
|1− ∂

∂ωRe[Σk(ω = Ek)]|
. (7.66)

Eq. 7.65 has the same form as the non-interacting spectral function except
the pre-factor Zk called the renormalization factor. It represents the magni-
tude of Dirac delta function and thus gives an estimate of how much weight is
contributed by a quasiparticle to the total spectral weight. Since the spectral
function of a system obeys the sum rule quasiparticle weight Zk corresponding
to specific quasiparticle is smaller or equal to unity.

Eq. 7.63 can be used to define the effective mass. Since we are interested
in low energy properties let us expand the dispersion relations for free and
interacting particles around Fermi energy.

εk = k2

2m ≈
kF
m

(k − kF ) (7.67)

Ek ≈
kF
m∗

(k − kF ) (7.68)

The last equation serves as a definition of the efective mass reflecting the fact
that Ek is a quasiparticle dispersion and not that of free particles. Next let us
apply the derivative with respect to k to Eq. 7.63

dEk
dk

= dεk
dk

+ ∂

∂k
Re[Σk(ω = Ek)] + ∂

∂ω
Re[Σk(ω = Ek)]dEk

dk

kF
m∗

=
kF
m + ∂

∂kRe[Σk(ω = Ek)]
1− ∂

∂ωRe[Σk(ω = Ek)]

m∗

m
=

Z−1
k

1 + m
kF

∂
∂kRe[Σk(ω = Ek)]

(7.69)
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The quasiparticle weight Z and renormalized mas m∗, given in Table I,
are computed for both the GW and RPA approximations at the Fermi energy
and momentum using Eq. 7.66 and Eq. 7.69. As expected, the quasiparticle
weight decreases with increasing interaction strength because the interaction
shifts the weight from the coherent quasiparticle peak through incoherent scat-
tering. Since the GW approximation does not yield the plasmaron peaks and the
interaction gets more screened, most of the weight is concentrated in the Lan-
dau quasiparticle which results in a bigger quasiparticle weight than that in the
case of RPA. The mass renormalization is less than 7% in both approximations
meaning that we are dealing with a weakly interacting system.

Z m∗/m
RPA 0.798 0.978
GW 0.851 0.946

Z m∗/m
RPA 0.685 0.986
GW 0.806 0.929

Table 7.1: Quasiparticle weight Z and effective mass relative to the one of the
free electron m∗/m at rs = 3 (left) and rs = 7 (right).

By comparing our RPA results with the ones obtained analytically, Z ≈
0.722,m∗/m ≈ 0.958 at rs = 3 and Z ≈ 0.625,m∗/m ≈ 0.966 at rs = 7 [22],
one can see that the agreement is quite good indicating that the periodized
Greens function formalism works well.
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Chapter 8

Paramagnetic Hubbard
Model

Another application of the periodized Greens function method explored in this
thesis is to Dynamical Mean Field Theory [3] fot the half-filled paramagnetic
Hubbard model. As already mentioned in the introduction, DMFT method im-
plies a set of equations which have to be solved self-consistently. As a solver
of the DMFT equations we used IPT (Iterative Perturbation Theory) [3], [52],
[53]. IPT is based on the diagrammatic expansion of a self-energy up to the
second order with respect to the Hubbard interaction U , yielding the following
set of diagrams,

!

!

!

!

! !

!+ + +Σ =

The Hubbard interaction Un↑n↓ requires same spin label for the Greens func-
tions on each side of the interaction vertex. So, the first and second order
exchange diagrams give zero contribution and thus we are left with the direct
diagrams,

Σ =
!

!

!

!+

The contribution coming from these diagrams are

Σ(1)(iωn) = Un

Σ(2)(iωn) = −U2FT [G2(τ)G(−τ)],

where n is an occupation number and FT stands for Fourier transform. The first
order contribution is constant so it can be absorbed in the chemical potential.
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Since IPT is based on the perturbation theory it is expected to work only
in the weak coupling regime but as it turns out this method is relevant for
strongly correlated cases, as well. The reason is that the IPT self-energy has
correct atomic limit at half-filling. So, the application of IPT is limited to
half-filling.

We observed that the convergence of the recursion for finding the fixed point
for the DMFT equations using the periodized Greens functions was improved
significantly by computing the self-energy as

Σ(2)(iωn) = 1
η

arctanh
(
−ηU2FT [G2(τ)G(−τ)]

)
One can see that the expansion of tanh(ηΣ(iωn)) is equivalent to the standard
perturbative expansion up to second order in U and the function arctanh ensures
that the imaginary part of the self-energy lies between 0 and π.

Fig. 8.1 shows the spectral function A(εk, ω) for bare energies εk = −1, 0, 1,
at β = 25 (T = W/50), in the metallic U = 2 (N = 25) (a) and insulating U = 4
(N = 45) (b) phases which was computed using standard semicircular bare
density of states. To solve the set of equations involved in the Padé procedure
one has to do a matrix inversion. Since for the given parameters the entries of
the matrix range from 10−33 to 1033 the calculation was done to the precision of
40 significant digits which allows us to do well defined numerical inversion and
thus to solve the set of equations accurately. The locations of the poles on Fig.
8.1 c and 8.1 d are for εk = 0. Since the self-energy is momentum independent
in the DMFT formalism we do only one Padé fit for εk = 0, then we express the
self-energy through the periodized Dyson equation (Eq. 4.8) and reinsert it in
the same equation where εk is not zero anymore. Thus, we can do the analytic
continuation of the Greens function for any value of εk by performing just one
Padé fit. The computation of the spectral function at low temperatures such
as β = 500 also was performed and is presented on Fig 8.1 by dashed curve.
It should be mentioned that the calculation at low temperatures requires more
computational time because the number of frequencies needed to converge the
IPT recursion algorithm is roughly N & β and a number of significant digits is
order of N .

We also computed critical points for the metal-insulator phase transition
which takes place in the above mentioned model. This phase transition has
been studied by many authors [54], [55], [56] and it was shown that it is a
first order phase transition, caused by the variation of the Hubbard coupling
U , terminated at a critical point. The low temperature first order transition
line Uc(T ) is inside the hysteresis region which contains both a metallic and
an insulating states. At the critical temperature Tc the lines Uc(T ), Uc1(T )
and Uc2(T ) merge at the critical point (Uc(Tc), Tc) (see, Fig. 8.4). Uc1(T ) and
Uc2(T ) are the borders of the hysteresis region.

The DMFT equations are solved self-consistently, which is equivalent to
finding a fixed point Σ∗(iωn) for those equations:

FU,β(Σ∗) = Σ∗

FU,β is a formal representation of the DMFT equations and Σ is is an N-
dimensional vector (Σ(iω0),Σ(iω1), ...,Σ(iωN−1)). In order to carry out the
fixed point analysis we calculate the Jacobian for the function FU,β :
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FIG. 2: (Color online) Spectral functions A(�k, ω) at β = 25 for metal U = 2 (a) and insulator

U = 4 (b) for bare energies �k = −1, 0, 1. (Dashed curves are β = 500 and β = 200 respectively.)

The corresponding Im(G�k=0(z
�)) is shown in (c) and (d) including circles marking the location of

poles. The poles are located inside the unit circle in accordance with Eq. 11. Empty dots represent

a subset of the Matsubara values (z�(iωn)). The color scale is light for large positive and negative

values with dark colors near zero.

accuracy. This motivates using our method to compute a Green’s function to extremely high

precision in a relatively small dimensional space and to use the combination of conformal

transformation and Padé fit to infer the analytic continuation to the real axis.

8

Figure 8.1: Spectral weight functions A(εk, ω) for metal U = 2 (a) and insulator
U = 4 (b) with bare energy in the full bandwidth εk = −1, 0, 1. The locations
of the poles are indicated by crosses and correspond to Padé fit in the case of
εk = 0. White dots represent the Matsubara frequencies.

JF (Σ) ≈ FU,β(Σ + hẑn)− FU,β(Σ− hẑn)
2h

where ẑn is an unit vector in the periodized self-energy space and h is a finite
discretization. The convergence of the recursion for finding the fixed point to the
DMFT equations is determined by the largest eigenvalue, ε, of the Jacobian JF .
The common algorithm for searching the fixed point to the DMFT equations is
the forward recursion, which provides the convergence only if |ε|< 1. The more
powerful algorithm is Newton’s method [57] with better stability properties than
forward recursion. Since the Newton’s method is a root solver the fixed problem
is reformulated in the following way:

RU,β(Σ) ≡ FU,β(Σ)− Σ
The fixed point of the function FU,β is the root of the function RU,β . The
Jacobian for RU,β can be calculated using JF

JR(Σ) = JF − 1
It can be shown that the convergence can be achieved if the largest eigenvalue
of JF differs from one, ε 6= 1. ε is equal to 1 exactly at the hysteresis boundaries
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Figure 8.2: Analytic structure of the Greens function Gεk=0(z) in the metallic
phase U = 2 (Im[z] in units of ΩN ). In (a) the branch Im[z] > 0 is the
domain for GR which is analytic in 0 < Im[z] < ΩN . Crosses indicate the
locations of the poles ( repeated with period of i2ΩN ) and dot - the location of
the Matsubara frequencies. In (b) the full Greens function with branch cuts at
integer multiples of iΩN

of the metall-insulator phase transition and it becomes larger than one inside
the hysteresis region. To make the recursion converge for all values of the given
parameter, ε, we define a new function:

fβ,Σ(iω0)(U,Σ(iω1), ...,Σ(iωN−1)) = FU,β(Σ(iω0),Σ(iω1), ...,Σ(iωN−1))−

− (Σ(iω0),Σ(iω1), ...,Σ(iωN−1))

It is clear that the root for the function fβ,Σ(iω0) is the fixed point for FU,β . As
one can see the free parameter is the first entry of the vector Σ instead of the
Hubbard coupling U . We vary Σ(iω0) and obtain the vector (U,Σ(iω1), ...,Σ(iωN−1))
as an output of the function fβ,Σ(iω0). fβ,Σ(iω0) is free of numerical instabili-
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Figure 8.3: Analytic structure of the Greens function Gεk=0(z) in the insulating
phase U = 3 (Im[z] in units of ΩN ). In (a) the branch Im[z] > 0 is the
domain for GR which is analytic in 0 < Im[z] < ΩN . Crosses indicate the
locations of the poles ( repeated with period of i2ΩN ) and dot - the location of
the Matsubara frequencies. In (b) the full Greens function with branch cuts at
integer multiples of iΩN

ties because it is a single-valued function ( for each value of the parameter
Σ(iω0) there is an unique solution (U,Σ(iω1), ...,Σ(iωN−1)) ), whereas RU,β(Σ)
is a multivalued function inside the hysteresis region, Uc1 < U < Uc2 and
the solution to fβ,Σ(iω0)(U,Σ(iω1), ...,Σ(iωN−1)) = 0 is easily obtained using
Newton’s method . Thus, the new algorithm doesn’t have trouble getting all
the unstable and stable fixed points. As a demonstration of the existence of
the unstable solution in the hysteresis region we compute a double occupancy
D =

∑
i ni,↑ni,↓ (see Fig. 8.5) through the expectation value of the Hubbard

interaction, 〈V 〉 = 1
2
∑
α,β,γ,δ Vα,β,γ,δ〈c†αc

†
βcδcγ〉. First we write 〈V 〉 in terms of

the self-energy and thermal Greens function:
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〈V 〉 = 1
Z
Tr

e−βH 1
2
∑

α,β,γ,δ

Vα,β,γ,δ c
†
αc
†
βcδcγ



= 1
Z
Tr

e−βH 1
4

∑
α,β,γ,δ,σ

Vα,β,γ,δ c
†
σ

(
δσ,αc

†
βcδcγ − δσ,βc

†
αcδcγ

) (8.1)

Now, let us consider the derivative of cσ(τ) with respect to τ :

∂cσ(τ)
∂τ

= ∂

∂τ

(
eτHcσ e

−τH)
= H cσ(τ)− cσ(τ)H

= eτH [H, cσ]e−τH

= −εσcσ(τ) + eτH
1
2
∑

α,β,γ,δ

Vα,β,γ,δ

(
−δσ,αc†βcδcγ + δσ,βc

†
αcδcγ

)
e−τH

(8.2)

where H =
∑
σ εσc

†
σcσ + 1

2
∑
α,β,γ,δ Vα,β,γ,δc

†
αc
†
βcδcγ (chemical potential is in-

cluded in εσ) and we used following commutators:

[c†σcσ, cσ] = −cσ

[c†αc
†
βcδcγ , cσ] = −δσ,αc†βcδcγ + δσ,βc

†
αcδcγ

Using Eq. 8.2 it is possible to rewrite Eq. 8.1 in the following way:

〈V 〉 = − 1
Z
Tr

(
e−βH

1
2
∑
σ

c†σe
−τH(∂τ + εσ)cσ(τ)eτH

)

= − lim
τ ′→τ+

1
Z
Tr

(
e−βH

1
2
∑
σ

c†σ(τ ′)(∂τ + εσ)cσ(τ)
)

(8.3)
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= −1
2
∑
σ

lim
τ ′→τ+

(∂τ + εσ)Gσ(τ − τ ′)

= −1
2
∑
σ

lim
τ ′→τ+

∫
dτ ′′δ(τ ′′ − τ)(∂τ ′′ + εσ)Gσ(τ ′′ − τ ′)

= 1
2
∑
σ

lim
τ ′→τ+

∫
dτ ′′G−1

0,σ(τ − τ ′′)Gσ(τ ′′ − τ ′)

= 1
2
∑
σ

lim
τ ′→τ+

∫
dτ ′′(G−1

σ (τ − τ ′′) + Σσ(τ − τ ′′))Gσ(τ ′′ − τ ′)

= 1
2
∑
σ

lim
τ ′→τ+

(
δ(τ − τ ′) +

∫
dτ ′′Σσ(τ − τ ′′)Gσ(τ ′′ − τ ′)

)

= 1
2
∑
σ

∫
dτ ′′Σσ(τ − τ ′′)Gσ(τ ′′ − τ)

= 1
2
∑
σ

∫
dτ Σσ(τ)Gσ(−τ) (8.4)

here we used time translation invariance of the self-energy and Greens function
and the following relation

δ(τ − τ ′)(∂τ + εσ) = −G−1
0 (τ ′ − τ) (8.5)

which follows from Eq. 8.6 (solving the differential equation in the Matsubara
frequency space and then transforming back to imaginary time space with the
help of the contour integral technique yields the expression for the free Greens
function, Eq. 2.5. By plugging Eq. 2.5 in Eq. 8.6 one can see, without solving
the differential equation, that the free Greens function obeys that relation)

(∂τ + εσ)G0(τ − τ ′) = −δ(τ − τ ′) (8.6)

∫
dτ ′′δ(τ ′′ − τ)(∂τ ′′ + εσ)G0(τ ′′ − τ ′) = −

∫
dτ ′′G−1

0 (τ − τ ′′)G0(τ ′′ − τ ′)

δ(τ ′′ − τ)(∂τ ′′ + εσ) = −G−1
0 (τ − τ ′′)

Eq. 8.4 enables us to compute the double occupancy through the following
relation

〈D〉 =
∑
i

〈ni,↑ni,↓〉 = 〈V 〉
U
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Table 8.1: Comparison of (Uc, Tc) for the second order critical end-point.

Uc (eV) Tc (meV)
ED[53] 2.3398 ± 0.0030 25.5625 ± 0.0125
HF-QMC[59] 2.3325 ± 0.015 27.5 ± 0.2
HF-QMC[60] 2.38 ± 0.02 25.0 ± 3.0
ED[58] 2.34 25
NRG[54] - 40
This work, IPT 2.46083 ± 0.00050 46.8940 ± 0.0544
IPT[61] 2.46315 46.895
IPT[62] 2.51 44.0

Since the first order diagram of the self-energy gives a constant contribution in
this framework and acts like a chemical potential Σ(τ) actually represents only
the second order diagram in U . Thus, the contribution of n2

f , coming from the
corresponding first order diagram for 〈V 〉, is added to 〈D〉 in order to make 〈V 〉
complete and restore the contribution coming from the first oder diagram of the
self-energy, which is absorbed in the chemical potential.

Using new algorithm for finding the fixed points to the DMFT equations we
find that the fixed point solutions form a continuous surface in (U, T,D) phase
space, which previously was reported by Tong et. al. [58].

We also compute the maximum eigenvalue of Jf , the Jacobian for fβ,Σ(iω0),
as a function of U around the critical temperature Tc, which, together with
the double occupancy isotherms, helps us to understand the behaviour of the
algorithm used to solve the DMFT equations. One can see from Fig. 8.5 that
when T > Tc the maximum eigenvalue ε is smaller than one and both the
forward recursion and Newton’s method converge. As T approaches to Tc ε
tends to one causing a slowing down of the forward iteration and right at the
critical point (Uc, Tc) when ε = 1 Newton’s method also becomes unstable for
the first time. Below the critical temperature T < Tc and for U < Uc1 the
metallic solution is found, which is annihilated by the unstable one through a
saddle-node bifurcation at the second hysteresis boundary Uc2 . This coincides
with ε → 1− which explains the slowing down of the forward recursion close
to the hysteresis boundary. Since ε ≥ 1 in the hysteresis region the forward
recursion is not able to find the unstable solution and the Newton’s method is
unstable at the hysteresis boundaries (ε = 1). The much better alternative is
the algorithm described above, which can find all solutions because it converges
for any value of ε. The behaviour of the insulating solution at the first hysteresis
boundary is analogous to that of the metallic solution.

Since the largest eigenvalue of the Jacobian Jf is equal to one ε = 1 exactly at
the critical point it is possible to compute Tc and Uc(Tc). Let us define Uε(T )
which maximizes ε for a given temperature, see Fig. 8.5. It is obvious that
Uε(Tc) = Uc(Tc), which is not true away from the critical temperature Tc. We
calculate Uε(T ) and ε for the different values of temperature, than using this data
and the interpolation method two functions T (ε) and Uε(ε) are obtained, which
enable us to determine the critical point (Tc ≡ T (ε = 1), Uc(Tc) ≡ Uε(ε = 1)).
Our result is presented and compared to others in Tab. 8.1.
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phase transition line Uc and the hysteresis boundaries UC1 , UC2
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Figure 8.5: DMFT-IPT results for the double occupancy (upper panel) and
maximum eigenvalue ε of Jf (lower panel) plotted against U above, close to and
below the critical point (circles, triangles and squares respectively)
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Chapter 9

Summary

This thesis describes a new approach to treat thermal Greens functions in nu-
merical calculations. Self-consistent calculations involving thermal Greens func-
tions are very demanding because large number of frequencies are required to
capture the characteristics of the Greens function properly. The difficulties
also arise when performing analytic continuation from the imaginary to real
frequency axis.

The formalism described in this thesis differs from the standard methods in
a sense that we can obtain a proper Greens functions and other related physical
quantities within this formalism with a relatively small number of Matsubara
frequencies (27 frequencies was used in the example presented in Chapter 6).

We start with the discretization of the non-interacting imaginary time Greens
function G0(τ) into N evenly spaced points. After performing the discrete
Fourier transform we find that the Greens function in the imaginary frequency
space is described by hyperbolic cotangent (Eq. 4.4) which is periodic along the
imaginary axis and periodized Greens function reduces to the standard expres-
sion in the limit of infinitely large number of frequencies. Since limτ→0− G(τ)
and limτ→0+ G(τ) are not equal to each other ( discontinuity at τ = 0) we
define the value of the Greens function at τj = 0 in the following way G(0) =
(G(0−) +G(0+))/2 = nf − 1/2.

The Dyson equation Σ = G−1
0 − G−1, which effectively represents G by

an infinite series involving the free Greens function and self-energy, ordinarily
enables us to compute the full Greens function. An alternative way to think of
the Dyson series is the Taylor expansion of G = 1/(G−1

0 − Σ) ≡ g(iωn − ε− Σ)
in Σ around the free Greens function, where g denotes the inverse function. By
defining g to be hyperbolic cotangent we write the periodized Dyson equation as
Eq. 4.8, which yields standard Dyson equation in the limit N →∞. This form
of the periodized Dyson equation preserves the property that the momentum
and frequency independent self-energy acts as a chemical potential.

Next, we establish the variational principle in terms of the periodized Greens
functions (Eq. 5.16) analogously to the Luttinger-Ward variational principle
(Eq. 5.5). The Free energy corresponds to the stationary point of the Γ-
functional . Demanding ∂Γ/∂G = 0 and ∂Φ/∂G = Σ yields the periodized
Dyson equation, Eq. 4.8. It is remarkable that in the non-interacting limit the
Γ-functional gives exact free energy for all values of N . In the limit N → ∞
Eq. 5.16 gives standard Luttinger-Ward functional.
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We also describe how to perform analytic continuation within the formal-
ism. In analogy with the standard formalism the analytic continuation of the
imaginary frequency Greens function is defined using Eq. 6.1, where iωn is re-
placed by complex variable z. We then model the spectral weight with properly
normalised Lε,γ(ω) and after integration the analytic expression for G(z) is ob-
tained, which involves the coefficients that have to be determined. An example
of the function G(z) is plotted on Fig. 8.2. One can see that G(z) is periodic
G(z) = G(z + 2iΩN ) and has branch cuts repeated with the period of iΩN . It
is analytic inside the strip 0 ≤ Im[z] ≤ iΩN and has the poles outside that
strip repeated with period of 2iΩN . In the limit N →∞ the periodized Greens
function reproduces standard Greens function structure. To find those unknown
coefficients G(z) we transform Eq. 6.7 to Eq. 6.10 and do the Padé fit of the
given Greens function values at N number of the Matsubara frequencies to Eq.
6.10. Working with a high precision is necessary to accurately solve the set of
equations involved in the Padé fit and thus obtain a reliable analytic contin-
uation from the imaginary to real frequency axis. Due to the periodicity the
working space is relatively small which enables us to perform extremely high
precision calculations efficiently. The fitting procedure preserves the normali-
sation of the total spectral weight, therefore the Greens function discontinuity
in the imaginary time space and allows us to find the above mentioned coeffi-
cients which fully determines the function G(z) and correspondingly the spectral
function.

As an application of our formalism we studied the electronic structure for
doped bilayer graphene in low energy limit. First of all low energy effective
Hamiltonian is derived from the standard tight-binding 4×4 Hamiltonian. This
derivation requires two approximations: expansion around one of the K points
of the Brillouin zone and assumption that all relevant energy scales are much
smaller than interlayer hopping parameter t⊥ ≈ 0.4 eV. The resulting effective
Hamiltonian is given by 2 × 2 matrix yielding two bands with parabolic dis-
persion. The interaction described by Coulomb potential is taken into account
through the RPA and fully self-consistent GW approximation. After performing
analytic continuation using the Padé method and taking the imaginary part of
the trace of the dressed Greens function the full spectral function is obtained.
As Fig. 7.6 shows in RPA there are satellite plasmaron peaks in the spectral
function whereas plasmaron band in the fully self-consistent GW is washed out.
Since we are interested in low energy properties it is instructive to look at the
conductance band spectral function where the Fermi energy resides. The eigen-
value of the dressed Greens function corresponding to the conductance band
gives us the spectral function projected on the conductance band. Same ten-
dency is seen by looking at the projected spectral functions (left columns of Fig.
7.7 and 7.8): in RPA prominent plasmaron peaks are present while in the GW
spectral function the plasmaron peaks are replaced by broad shoulders. Plas-
maron peak moves towards the main quasiparticle with increasing k, around
k = kF they merge and when k becomes greater than some specific value plas-
maron peak reappears again. The right columns of Fig. 7.7 and 7.8 show real
and imaginary parts of the corresponding self-energies. The strong oscillations
in the real and imaginary parts of the RPA self-energy is associated with the
plasmaron peak in the spectral function. There ar no oscillations in the GW
self-energy. In addition we computed electron energy loss function, Fig. 7.9. In
analogy with the picture we have for the spectral functions the RPA electron
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energy loss function shows coherent plasmon mode and in GW plasmon mode
is less coherent. Our RPA results obtained using periodized Greens function
method is in a good agreement with other studies based on the standard Greens
function theory and the RPA calculation.

Another application of the formalism is the computation of the DMFT-IPT
recursions in terms of the periodized Greens functions and applied to the half-
filled paramagnetic Hubbard Model with N = 27. The results are presented on
Fig. 8.1. We believe that the method presented in this thesis can be used in
the variety of problems which involve and require numerical evaluation of the
thermal Greens functions.
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Appendix A

Imaginary Time Greens
Function Symmetries

From the definition of the imaginary time Greens function definition we can
see that it is real. This gives symmetry in the periodized Matsubara frequency
Greens function. To see this we start with the discrete Fourier transformation

G(iωn) = β

N

N−1∑
j=0

eiωnτjG(τj) (A.1)

Since eiΩNτj ( ΩN = 2πN/β ) is identically one. It allows us to write
the following equality e−iτjωn = e−iτj(ωn+ΩN ). Using the definition for the
Matsubara frequencies ωn one can show that

ωn + ΩN = π/β(2n+ 1 + 2N) = ωn+N

e−iτjωn = e−iτj(ωn+N )

Using the latter relation one can see that

G(iω0) = β

N

N−1∑
j=0

eiω0τjG(τj) = β

N

N−1∑
j=0

ei
π
β τjG(τj)

is complex conjugate to

G(iωN−1) = β

N

N−1∑
j=0

eiωN−1τjG(τj) = β

N

N−1∑
j=0

e−i
π
β τjG(τj)

It is clear that if we do the same calculation for the pairs: G(iω1) and
G(iωN−2), G(iω2) and G(iωN−3) etc. we get analogous result: each pair rep-
resents complex conjugate quantities. This means that the discretized thermal
Greens function in the frequency space has the following symmetry: G(iωn) =
G∗(iωN−1−n), n = 0, .., N − 1.

The imaginary time Greens function is antiperiodic, G(−τ) = −G(β − τ).
For the discretized thermal Greens function we have:
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G(−τj) =
{
−G(β − τj) if β > τj > 0

G(τj) if τj = 0

where, G(τj = 0) = nf − 1/2 ( See Fig. A.1 ).

Β 0 Β

Figure A.1: The blue dots represent discretized non interacting Greens function
G0(τj) for N = 12. The red and green dots correspond to the G0(τ = 0−) = nf
and G0(τ = 0+) = nf − 1 limits, respectively, while the blue one on the Y axis
represents our definition of the G(τ = 0), which is nf − 1/2.

Let us show that in the case of particle-hole symmetry and for τj 6= 0 the
summation over momentum k in the Greens functions yields: G(β− τ) = G(τ).
To do this first we define the particle-hole transformation in terms of annihilation
and creation operators provided that a corresponding Hamiltonian is defined on
the lattice:

c†j → (−1)jdj

cj → (−1)jd†j

which can be transformed in momentum space using cj = 1√
N

∑
k e

ikjck:

c†k → dπ−k

ck → d†π−k

Using these transformations one can see how the Greens function transforms
under particle-hole transformation:
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Gπ−k(iωn) =
∫ β

0
dτ eiωnτGπ−k(τ)

= −
∫ β

0
dτ eiωnτ 〈cπ−k(τ)c†π−k(0)〉

= −
∫ β

0
dτ eiωnτ 〈c†k(τ)ck(0)〉

= −
∫ β

0
dτ eiωnτ 〈c†k(0)ck(−τ)〉

= −
∫ β

0
dτ eiωnτGk(−τ)

=
∫ β

0
dτ eiωnτGk(β − τ)

=
∫ β

0
dτ eiωn(β−τ)Gk(τ)

= −
∫ β

0
dτ e−iωnτGk(τ)

= −G∗k(iωn) (A.2)

here we used that the Greens function is anti-periodic, real and has time trans-
lation symmetry. After performing the summation over k in Eq. A.2 one can
see that the Greens function components in the Matsubara frequency space are
purely imaginary: G(iωn) = −G∗(iωn). By applying the Fourier transformation
to both sides of the latter equality we get:

1
β

N−1∑
0
e−iωnτG(iωn) = − 1

β

N−1∑
0
e−iωnτG∗(iωn)

G(τ) = −G∗(−τ)

G(τ) = −G(−τ)

G(τ) = G(β − τ)
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Appendix B

Derivation of the Delta
Function

In order to prove
∑
n e

iωnτ = βδ(τ) consider the integral

∫ β

0
dτ
∑
n

eiωnτf(τ) =
∫ β

0
dτ
∑
n,n′

eiωnτ
1
β
e−iω

′
nτf(iωn)

= 1
β

∫ β

0
dτ
∑
n,n′

ei
2π
β (n−n′)τf(iωn)

when n = n′ the integral yields
∑
n f(iωn) = βf(τ = 0). If n 6= n′ the integral

is just zero. So,

∫ β

0
dτ
∑
n

eiωnτf(τ) = βf(τ = 0)⇒
∑
n

eiωnτ = βδ(τ)
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Appendix C

Calculation of the
expectation value of a
Hamiltonian

〈H − µNµ〉 = 1
Z
Tr[(H − µNµ)e−β(H−µNµ)]

= −d(logZ)
dβ

= d(βΩ)
dβ

=

= d

dβ
(Φ[G]− TrG+(iωn)Σ(iωn) + Tr(log(−G−(iωn)/2η)))

= ∂Φ
∂G

dG

dβ
− Tr

[
dG+

dβ
Σ
]
− Tr

[
dΣ
dβ

G+
]

+

+ Tr

[(
− 2η
G−

)
d

dβ

(
−N
β
G−
)]

= −Tr
[

Σ
2N

]
− Tr

[
G+ d

dβ

(
N

β
log
(
G−

G+
G+

0
G−0

))]
+

+ Tr

[
1
G−

(
dG

dβ
− 1

2N −
G−

β

)]

= −Tr
[

Σ
2N

]
− Tr

[
G+

{
−Σ
β

+ N

β

(
G+

G−
d

dβ

(
G−

G+

)
+ G−0
G+

0

d

dβ

(
G+

0
G−0

))}]
+
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β
Tr[G+(ε− µ)]

= 1
β
Tr [G(iωn)(Σ(iωn) + ε− µ) + η(ε− µ)]
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Appendix D

Review of the Padé Method
Applications

In 1977 H. J. Vidberg and J. W. Serene published a paper where they apply the
Padé technique to the solutions of the imaginary frequency Eliashberg equations
[5]. The authors fit given Greens function values at N Matsubara frequencies to
the continued fraction, called N -point Padé approximant. The recursive algo-
rithm presented in the paper allows us to write the continued fraction as a ratio
of the two polynomials CN (z) = AN (z)/BN (z) and compute the value of the
Padé approximant at a given point. The method works better at low temper-
atures because the distance between the Matsubara frequencies decreases. The
polynomials AN and BN are of order (N −1)/2 and (N −1)/2 for odd N , while
AN is order of (N − 2)/2 and BN - N/2 for even N [6]. The authors conclude
that in order to get a good approximation the number of input points need to be
such that it should capture the asymptotic of the function. Appearance of the
unnecessary pole-zero pairs which cancel each other does not affect the function
behaviour on the real axis and it means that the number of input points could
be lowered. In addition, they mention that the Padé method is very sensitive
to the precision of the data used in the recursion. Due to the insufficient level
of the precision they can not describe the fine structure of the Greens function
on the real axis. Since the difference between Matsubara points increases with
increasing temperature the Padé method described in [5] is not reliable at high
temperatures.

R. Blaschke and R. Blocksdorf [63] improved the Padé method introduced by
Vidberg and Serene. In order to handle the problems related to the appearance
of the spurious poles near the real axis and in the upper half plane and the pole
of the imaginary part of the renormalization function (which is one of the terms
in the Eliashberg equations [5]) at zero energy they use small number of points
sufficient to describe the main structure of the renormalization function and ad-
ditional points at higher energies. The authors also remove the part, containing
the pole, from the renormalization function. As a result Padé approximant a
gives very good agreement with the real axis solutions, in particular at larger
energies.

C. R. Leavens and D. S. Ritchie [64] suggested another improvement over
the Padé technique presented in [5]. In order to get accurate results for the
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high temperatures these authors replace one of the original points with one
which describes exact finite temperature behaviour for small frequencies. The
recursion procedure [5] with the modified data gives divergence. To overcome
this difficulty authors modify the values of the gap function by adding some
constant (which shouldn’t differ too much from the given data) or dividing by
the Matsubara frequencies. The new data yields correct finite temperature limit
as frequency goes to zero.

F. Marsiglio and co-authors [65] introduced a different approach to the ana-
lytic continuation for self-energy defined on the imaginary frequency axis. Using
the spectral representation of the propagators and Poisson summation formula
(used to sum over Matsubara frequencies) the self-energy equation can be writ-
ten in terms of the real frequency. This equation can be solved by representing
it with principal-value integrals and residues, which is quite hard task. In order
to avoid these problems authors perform integration over complex variable z
(this integral appears in the self-energy equation after replacing imaginary fre-
quency Greens function with its spectral representation) in the real-frequency
self-energy equation thereby they obtain the self-energy written in terms of
the spectral function and retarded Greens function defined on the Matsubara
frequencies. The Greens function values at the Matsubara frequencies can be
calculated using imaginary frequency equations and therefore one can solve real-
frequency self-energy equation self-consistently on the real axis. According to
[65] in the zero temperature limit no iterations are required and at finite temper-
atures only a few iterations are sufficient for convergence. The results obtained
with this procedure at low temperatures are in a good agrement with those
computed directly with the real axis equations.

Apart from the Padé method there are other techniques available to do the
analytic continuation of the thermal Greens functions in the specific many-body
problems [66], [7]. In [7] the maximum-entropy method is used to perform the
analytic continuation from the imaginary to real frequencies.

In the paper by K. S. D. Beach, R. J. Gooding and F. Marsiglio [67] it is
shown that representing the Padé approximant as terminating continued frac-
tion is equivalent to a rational polynomial form. The authors work with the
rational polynomials due to the computational purposes. In this case one writes
a linear set of equations for the polynomial and therefore the problem is reduced
to the matrix inversion. Once the polynomial coefficients are found the equiv-
alent continued fraction coefficients can be calculated, which with theorem by
Wall and Wetzel [68] gives an information about the sign and integrability for
the spectral function and analyticity of the Greens function. As they claim one
can use the convergence of the imaginary part of the specific continued fraction
coefficient (which has to be real and positive according to the Wall and Wetzel
theorem) to zero to determine the threshold of the accuracy which gives more
or less exact Padé fit and the number of poles for the true Greens function.

In [69] and [70] authors conclude that the Padé method is reliable only at
zero temperature and small interactions and it can not give the fine structure of
the spectral weight. Namely, [69] provides us with the test which is the follow-
ing: authors consider an infinite tight-binding chain with a single site impurity,
which is an exactly solvable system and a special case of the single impurity An-
derson model without Coulomb interaction. They compute the spectral function
using the Padé method which comes out very inaccurate compare to the exact
spectral function. We did the same test using our method with 61 Matsubara
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frequencies and 60 significant digits at β = 25. The result is represented on
Fig. D.1 upper panel . As one can see the spectral function obtained with the
Padé method is very accurate. In fact, exact A(ω) and the one computed by
performing the analytic continuation sit on top of each other, they are almost
indistinguishable to eye. Both the continuous part and delta function fits the
exact curve. The lower panel of the same figure shows exactly same Padé fit
but with 17 Matsubara frequencies and smaller precision (16 significant digits).
As one can see the result extremely depends on the precision of the given data
and number of Matsubara frequencies.

In the end I should mention that the Padé method is a useful tool not only
in condensed matter physics. It is used in the various problems of physics:
quantum field theory, nuclear physics [71], etc. So, it is important to improve
the Padé technique by making it more stable and less ill-posed method which
will helps us to solve various problems.
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-4 -2 0 2 4
-1.0

-0.5

0.0

0.5

1.0

Ω

A
HΩ

L
Ε=1.5 t

Pade

Exact

-4 -2 0 2 4
-1.0

-0.5

0.0

0.5

1.0

Ω

A
HΩ

L

Ε=1.5 t

Pade

Exact

Figure D.1: Upper panel: comparison between the exact spectral function and
the one computed by the Padé method with the precision of 60 significant digits
for an infinite tight-binding chain with a single impurity at β = 25. An arrow
indicates the presence of the delta function. Lower panel: Same comparison as
in the upper panel but the Padé fit is done with the precision of 16 significant
digits
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Appendix E

Hedin’s Equations

The first Hedin’s equation is the well known Dyson equation, Eq. E.1. The
second one relates the screened interaction with polarization Π and bare inter-
action V , Eq. E.2. Π is in general two-particle Green’s function. In terms of
the Feynman diagrams it is a set of digrams with left and right sides connected
by two Green’s functions including vertex corrections Γ∗ and no external in-
teraction lines [23, 32], Eq. E.3. In addition, Π and Γ∗ represent irreducible
diagrams which implies that those diagrams can not be separated into left and
right parts by cutting one interaction line.

G(x, x′) = G0(x, x′) +
∑
x′′,x′′′

G0(x, x′′)Σ(x′′, x′′′)G(x′′′, x′) (E.1)

W (x, x′) = V (x− x′) +
∑
x′′,x′′′

V (x− x′′)Π(x′′, x′′′)W (x′′′, x′) (E.2)

Π(x, x′) =
∑
x′′

G(x, x′′)G(x′′, x′)+

+
∑

x′′,x′′′,xIV ,xV

G(x, x′′)G(x′′, x′′′)Γ∗(x′′′, xIV )G(xIV , xV )G(xV , x′)

(E.3)

where x = (r, τ). The last equation of Hedin is equation of motion for the self-
energy. It can be derived by computing the derivative of G(x, x′) with respect

!� ! Σ �

Figure E.1: Dyson equation (Eq. E.1) in terms of the Feynman diagrams.

to the imaginary time,

−∂G(x, x′)
∂τ1

= δ(x−x′)+H0G(x, x′)−V (x−x′′)〈Tc(x)c†(x′′)c(x′′)c†(x′)〉. (E.4)
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Π

Figure E.2: Effective interaction (Eq. E.2) in terms of the Feynman diagrams.

Π � �
� �

��

Γ∗

Figure E.3: Polarization (Eq. E.3) in terms of the Feynman diagrams.

The latter expresion was derived using Heisenberg equation of motion,

−∂c(x)
∂τ

= [c(x), H]. (E.5)

The last term in Eq. E.4, interaction times a two-particle Green’s function, is
defined to be the product of the self-energy and Green’s function. Using Eq.
E.3 which relates two-particle Green’s function to vertex one can obtain the
following expression for the self-energy

Σ(x, x′) = −
∑
x′′

V (x, x′′)G(x′′, x′)−

−
∑

x′′,x′′′,xiV ,xV

V (x, x′′)G(x′′, x′′′)G(x′′′, xIV )G(xIV , xV )Γ(xV , x′),

(E.6)

where Γ is full vertex i.e. includes both reducible and irreducible vertices.
In order to rewrite the latter expression in terms of the screened interac-

tion let us introduce particle-hole irreducible vertex Γph (during this derivation
space-time label x is dropped for the brevity). It is a set of diagrams which can
not be separated into two parts by cutting two Green’s function lines. Using
Γph and Γ∗ph = Γph − V we obtain the following relations

Γ = Γph + ΓphGGΓ (E.7)

Γ∗ = Γ∗ph + Γ∗phGGΓ∗. (E.8)

SInce Γ∗ is in Eq. E.3 and the polarization is supposed to be irreducible we
have to exclude the bare interaction and that is why Γ∗ph is introduced. After
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writing Γ in terms of Γ∗ by means of the last two equation we get

Γ =
(
Γ∗(1 +GGΓ∗)−1 + V

)
(1−GG

(
Γ∗(1 +GGΓ∗)−1 + V

)
)−1 (E.9)

which after inserting identities 1 = (1 + GGΓ∗)−1(1 + GGΓ∗) and 1 = V −1V
transforms to

Γ =
(
Γ∗(1 +GGΓ∗)−1 + V

)
V −1V (1−ΠV )−1(1 +GGΓ∗) (E.10)

where Eq. E.3 was used. Using the relations

W = V (1−ΠV )−1 (E.11)

V −1 = W−1 + Π = W−1 +GG+GGΓ∗GG (E.12)

in the last expression we arrive to

Γ = Γ∗ + Γ∗GGW + Γ∗GGWGGΓ∗ +WGGΓ∗ +W. (E.13)

Inserting the latter equation in Eq. E.6 and then using VΠW = W − V yields

Σ = −GW −GWΓ∗. (E.14)

In order to generate GW approximation from Hedin’s equations Γ∗(x, x′) is
set to be zero. As a result of this approximation one obtains

ΣGW~k (iωn) = 1
β

∫
d2q

(2π)2

∞∑
m=−∞

W~q(iωm)G~k−~q(iωn − iωm). (E.15)

Here the self-energy (and all expression below) is written in the momentum~k and
imaginary (Matsubara) frequency space iωn. Quantum numbers like momentum
and spin are combines in ~k and ~q labels.

Eq. E.3 reduces to

Π~q(iωn) = −g
∫

d2k

(2π)2
1
β

∞∑
m=−∞

G~k(iωm)G~k+~q(iωn + iωm) (E.16)

where g is a degeneracy factor. Since we are dealing with fermionic Green’s func-
tions they are functions of fermionic Matsubara frequencies and consequently
the polarization Π~q(iωn) together with the screened interaction W~q(iωn) are
functions of bosonic Matsubara frequencies, ωn = 2πn/β.

Equation for W~q(iωn) in the GW approximation has the same form as Eq.
E.2 but the polarization is computed through Eq. E.16,

W~q(iωn) = Vq
1 + VqΠ~q(iωn) . (E.17)

Vq is a bare interaction Fourier transformed in the momentum space. It is evi-
dent that Eq. E.17 is a sum of infinite geometric sieres which diagrammatically
has the following form

After computing ΣGW~k (iωn) (first diagram in Fig. E.5) one should, in general,
add the Hartree diagram (second diagram in Fig. E.5) to it which gives q = 0
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➤
➤

➤

➤

➤

➤

➤

➤

Figure E.4: Screened interaction in the GW approximation is given by geometric
series. Bubble diagram represents polarization Π~q(iωn). Double solid (wiggly)
line represents dressed Greens function (screened interaction) whereas single
wiggly corresponds to bare interaction.

➤
+Σ =

➤

Figure E.5: Self-energy in the GW approximation plus Hartree term.

contribution but as it was already mentioned above this contribution is cancelled
by the positive background charge [32]. As one can see the GW approximation
has the same form as the Hartree-Fock one (Fig. 7.5) but the latter uses only
bare Greens function and potential. This means that the GW approximations
takes into account infinitely many diagrams in addition to the Hartree-Fock
ones, see Fig. E.6.

Σ = ➤
+
➤

+

+ +

➤

➤

➤

➤

➤

➤

➤

➤

+

+

Figure E.6: Diagrammatic expansion of Σ obtained by replacing wiggly line
(screened interaction) in Fig. E.5 with the series of diagrams presented in Fig.
E.4.
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GW approximation in general implies self-consistent calculation: self-energy
is calculated using non-interacting Greens function through Eq. E.16, E.17, E.15
and then Greens function is updated using the Dyson equation which is used
to calculate the new self-energy. This procedure is repeated until calculation is
converged.
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