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If the researcher tests each model in a battery at the α % significance level, the probability that at 

least one test rejects is generally larger than α %.  For five unit-root models, this paper uses 

Monte Carlo simulation and the inclusion-exclusion principle to show for α %=5% for each test, 

the probability that at least one test rejects is 16.2% rather than the upper-bound of 25% from the 

Bonferroni inequality. It also gives estimated probabilities that any combination two, three, four 

or five models all reject.

Keywords: Real Exchange Rates; Unit root; Monte Carlo; Break models 

JEL Classification: C15, C22, C32, C33, E31, F31. 

1

mailto:florin.maican@economics.gu.se
mailto:sweeneyr@georgetown.edu


I. Introduction

The researcher can test the unit-root null against a variety of alternative models, including 

the Augmented Dickey Fuller test equation and several related "break models" of the type 

explored by Perron (1989) and Zivot and Andrews (1992) and many others thereafter. Table 1 

shows examples of alternatives, the standard ADF model and four break models, B1 – B4. An 

author's research design may require estimating the entire five-equation battery. If the researcher 

rejects any model at the significance level α, she knows that the probability that at least one 

model rejects is generally larger than α. From the Bonferroni inequality, the researcher knows 

that the upper-bound probability that at least one model rejects is 5 x α, for α=5%, the upper-

bound probability is 25%. This paper uses the inclusion-exclusion principle with Monte Carlo 

simulations to find the estimated probability, 16.2%, that at least one model rejects at the 5% 

level. It further provides estimates of the probability that each of the possible pairs of models 

rejects, that each of the possible triplets of models rejects, that each of the possible foursome of 

models rejects and that all five models reject.                       

The researcher’s judgment of the cost of increasing the test’s size by running multiple 

models depends in part on her objective. If her purpose is to discriminate between the null of a 

unit root and a particular alternative model in Table 1, perhaps as implied by theory, the 

researcher may test only the particular alternative. If the researcher is interested in whether the 

data contain a unit root but equally in which model corresponds to the DGP, then he will almost 

surely run multiple models, perhaps the entire battery. One way that the use of a battery of tests 

arises is from exploring the robustness of ADF results. Montañés et al. (2005, p. 43) argue that, 

"it is now a very extended habit to complement the results of the [Augmented] Dickey–Fuller 

tests with [break model] tests." In contrast, they also note that, "a number of decisions should be 

taken prior to their [break model] use…. [I]t is necessary to determine the most appropriate 

specification of the type of break for the variable being considered." There is little systematic 

advice, however, on how to choose appropriate break models to test beyond the ADF. Indeed, 

there seems to be no discussion in the literature of whether it is better, and in what sense, to try to 

choose "the" model rather than running the four break models. Perron (1994) suggests that the 

researcher start with the most general specification [B4 in Table 1] and explore the robustness of 

unit-root test results by comparison with results under the possible alternatives—here the other 

three break models. Lumsdaine and Papell (1997) explore a larger set of break models than in 
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Table 1; they consider as many as two mean and two trend shifts. They state (p.217) that "there is 

no clearly accepted way to distinguish [choose] between the [alternative] models." They raise, 

without explicitly endorsing, the criterion of choosing the break model that is least favorable to 

the unit-root null (rejects the null at the highest significance level), a criterion that makes most 

sense if the researcher puts great weight on avoiding Type II errors. Maican and Sweeney (2012) 

argue that in general the researcher might want to present results for a battery of tests to help the 

reader interpret results.    

A major issue in running a battery of models is that, under the null, the chance that one 

model may reject is large though unknown. In principle, the probability that at least one model 

rejects may be as large as the number of models tested times the significance level for rejection, 

for example, five models at the 5% significance level may give a probability as high as 25%. 

This is the case where the intersection of the rejection regions for any model and any other 

model is the null set. Taking this into account, with five models the researcher may use a 

Bonferroni approach and adopt the rule that the model must reject the null at the 1% level for the 

researcher to consider that the data reject the null at the 5% level, found by dividing the nominal 

size for each test by the total number of specifications tested. For the five models examined here, 

however, use of the inclusion-exclusion principle gives an estimate of the probability that at least 

one model rejects of approximately 16.2%, substantially lower than the upper-bound of 25%. 

A related consideration is the probability that multiple models in a battery reject. Monte 

Carlo simulations discussed below provide estimates under the null that say two models reject, 

each at the 5% significance level or better. For the five models, the number of possible 

combinations of two models taken two at a time is 10. The probability that two models both 

reject depends of the two models considered. The smallest probability under the null for two 

particular models is 0.646 % (ADF, B4), the largest 2.473 % (B3, B4) and the average across 

pairs of models 1.373 %. As a rule of thumb, the researcher might use the probability of 1.373% 

as the significance level if the data reject at the 5% level for any two models. For three models 

each rejecting, the average probability across the nine possible combinations is 0.728%, and for 

four models each rejecting, the average across the five possible combinations is 0.366%. The 

probability that the data reject the null for all five models is only 0.275%.      
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II. Probabilities of Rejections under the Unit-Root Null 

The size of a battery of tests depends on the number of tests in the battery, the 

significance level required for rejection in each test, and the probability of rejecting one model 

conditional on rejection of another model. For a five-test battery, using a 5% significance level in 

every test, the logically possible range is 5.0% to 25.0%, depending on whether the unions and 

intersections of all five models are the same or none has an intersection with any other. For the 

battery of five test equations in Table 1, however, the estimated probability from Monte Carlo 

simulations that one of the five models rejects at the 5.0% level is a bit over 16.2% The estimate 

of 16.2% is found from the inclusion-exclusion principle in combinatorics, for the case where the 

unit-root null hypothesis is true. Let Ei be the cardinality (omitting '| |' notation) of the event that 

the data reject the null at the γ % level in favor of the alternative i, for i=1,5 (i.e., ADF,  …, B4). 

Then, using "⋃" for union and "⋂" for intersection,  

(1) ⋃5
i=1 Eγ i = [Σ5

i=1 Eγ i] - [Σi,j:1≤ i< j ≤ 5  (Eγ i ⋂ Eγ j)] + [Σi,j,k:1≤i<j<k≤5  (Eγ i ⋂ Eγ j ⋂ Eγ k)] 

- [Σi,j,k,h:1≤i<j<k< h≤5  (Eγ i ⋂ Eγ j ⋂ Eγ k ⋂ Eγ h)] + (Eγ 1 ⋂ Eγ 2 ⋂ Eγ 3 ⋂ Eγ 4 ⋂ Eγ 5).  

Taking probability,  

P (⋃5
i=1 Eγ i) = Σ5

i=1 P (Ei) - Σi,j:1≤i<j≤5  P (Eγ i ⋂ Eγ j) + Σi,j,k:1≤i<j<k≤5  P (Eγ i ⋂ Eγ j ⋂ Eγ k)

- Σi,j,k,h:1≤i<j<k< h≤5  P (Eγ i ⋂ Eγ j ⋂ Eγ k ⋂ Eγ h) + P (Eγ 1 ⋂ Eγ 2 ⋂ Eγ 3 ⋂ Eγ 4 ⋂ Eγ 5). 

Let Πγ denote the probability that none of the five has a test statistic significant at the γ  percent 

level with each model tested one at a time. Then, 

(2) Πγ = 1 - ⋃5
i=1 Eγ i. 1  

In estimating the probabilities, the Monte Carlo simulations contain 100,000 replications. 

In each replication, the data are generated as 170 random variables ut ∼ iid N(0, 1), with the 

increment in the variable rt generated as ∆rt = ut. The program uses the first 20 ut to "warm up" 

the series. On the remaining 150 observations of the replication, the program estimates all five 

models and for each model notes the t-value of the slope. The program repeats for 100,000 

replications. For each model, the program orders the t-values from smallest to largest in algebraic 

1Another way of looking at Πγ is in terms of bi-model conditional probabilities.  Call π j|i the probability 
that model j rejects conditional on model i rejecting, π j|i = P(j=R | i=R) and the unconditional probability 
that j rejects is P(j = R). At one extreme, (a) the unconditional probability of rejection in model j at say 
the 5% level is the same as the conditional probability for any other model i for j ≠ i, or P(j = R | i = R) = 
P(j = R) = 0.05. The size of the test of the null that no model in the battery is significant at the 5.0% level 
is 16.2%. At the other extreme, (b), rejecting in a particular model i implies rejecting in all other models, 
or P(j = R| i = R) = π j|i = 1.0, and Π = 1 - γ: Testing the battery of models has the same size γ  as testing 
any single model.
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value; for that model, the 5% critical value is the t-value such that including that replication and 

all those with smaller algebraic t-values is five percent of the 100,000 replications. Using critical 

values found in this way for the five models, the program then examines each replication to see if 

the t-value for any model rejects.2 

The program goes through the five t-values for each replication and counts those where 

both the ADF and B1 models reject. It goes through again and counts each replication in which 

the ADF and B2 models reject. It does this for each of the ten distinct pairs of models out of the 

five-model battery. Table 2 shows the percentage of the 100,000 replications in which pair jointly 

rejects. 

The program goes through the five t-values for each replication and counts those where 

the ADF, B1 and B2 models all reject. It goes through again and counts each replication in which 

the ADF, B1 and B3 models reject. It does this for each of the nine distinct triplets of models out 

of the five-model battery. The model also goes through for each of the five distinct sets of four 

models out of the five-model battery. Finally, the program goes through the replications and 

counts those in which all five models reject. Table 2 shows all such results. The program then 

uses (1) and (2) to estimate the probability that at least one of the five models reject the null at 

the 5% significance level.

Table 3 provides an equivalent way of looking at the results in Table 2, by showing the 

probability that a particular model rejects conditional that a particular subset of models all reject. 

In a general framework,  Harvey, Leybourne and Taylor (2009) and Smeekes and Taylor 

(2012) discuss  implications of  unit-root testing based on “union of rejection decision rule.” 

They argue that testing based on “union”  might be difficult to be recommended  for general use 

because it implies a trade-off.  First, the appropriate critical values are much lower than the 

critical values resulting from a single test. This implies a reduction in the  the power of the test. 

Second, the power of the optimal test will dominate the power of the union test if T is large. 

Therefore, the union test tends to have more power than the general test, i.e., B4. Unfortunately, 

the power function of the union test does not uniformly dominate the power function of any 

single test for all possible specifications.  We might expect that using a battery of five tests,  the 

gain in power is reduced by the loss of power using substantially lower critical values. 

2 In the simulations, the breaks are found using Zivot and Andrews' (1992) procedures, i.e. the break is the 

location that gives the minimum of t-stat of α. 
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This paper does not suggest the use of union strategy.3  Our aim is to discuss the 

implications for unit-root rejections using  break model, e.g.,  choosing the correct model has 

direct implications on  the speed of convergence. Using a particular specification (models with 

endoenous breaks), our work complements their theoretical findings.  

III.  Empirical Example: Real Exchange Rates in the Central and Eastern European 

transition countries 

This section presents a summary of the empirical results  using a battery of five unit-root tests for 

real  exchange  rates  in  Central  and  Eastern  European  transition  countries  (CEE).  The  real-

exchange-rate  are  constructed  from  monthly  nominal  exchange  rates  against  the  Euro  and 

consumer price indices (CPI).  CPI  data are from International Financial Statistics (CD-ROM, 

August 2006).  Euro exchange rates are from the Reuters database and  national central bank 

statistics.  The countries included are: Bulgaria, The Czech Republic, Estonia, Hungary, Latvia, 

Lithuania,  Poland, Romania,  Slovakia and Slovenia.   Maican and Sweeney (2013) provide a 

detailed analysis of unit-root testing in CEE countries.  

Table 4 shows that for some CEE countries the data reject the unit-root null for a number 

of alternative specifications, i.e., multiple models reject the null for eight of the ten countries (no 

models rejects for Poland and only the ADF for Latvia).  These results indicate that the estimated 

speed  of  adjustment  can  vary  greatly  across  specifications.  Therefore,  using  an  incorrect 

specification can  underestimate the speed of adjustment.  

From simulations, the estimated probability of rejecting both the B3 and the B4 models is  

2.47%. This is the largest for two-model pairs; the minimum is 0.646 of 1% for the ADF-B4 pair.  

For  any country where  two or  more  models  reject  at  the  5% level,  the  battery rejects  at  a 

minimum  at  the  2.47% significance  level  and  often  at  a  much  more  stringent  level.   The 

estimated  probability  of  rejection  by  all  five  models  is  0.275%,  e.g.,  Bulgaria.   Using  the 

inclusion-exclusion principle, we find that the probability under the null that at least one of the 

models in the battery rejects is 16.2%. Table 4 shows the significance level for the battery of tests 

for  the  seven  CEE countries  for  which  multiple  models  reject  the  null.   It  also  shows  the 

significance level (16.2%) for the two countries (Hungary and Latvia) where only one model 

3To compare the union strategy with this popular pre-test approach is not the aim of this paper.
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rejects.4 Even if  the size  of  the battery of  tests  is  larger  than the  size for  any one  test,  the 

probability of the battery rejecting for nine out of ten countries is extremely small. Therefore, 

we can “afford” to use the battery of tests with multiple series.

IV. Conclusions

The probabilities of rejections when using a battery of tests of the unit-root null have 

mostly gone unexplored. If the researcher tests each model one at a time at the α % significance 

level, the probability that at least one model rejects is generally larger than α %. The probability 

that at least one model in the battery of the five models in Table 1 rejects is 16.2%, and the 

probability at least one model in a battery of just the four break models rejects is approximately 

13%.   

As Tables 2 and 3 show, in interpreting test results it is valuable to know whether 

multiple models reject the null on the given data set. For example, under the null, the probability 

of two models rejecting at the 5% significance level ranges from 0.646% to 2.473%, depending 

on the combination, with an average of 1.373%. Put another way, under the null, if one model 

rejects by chance, the probability that another model rejecting ranges from 10.30% to 52.20%, 

with an average of 22.75% across the ten combinations of two models. Tables 2 and 3 also show 

results for the probabilities of each of three or four models rejecting. 

To avoid testing more than one alternative, the researcher may examine the data carefully 

before choosing an alternative, including using various forms of statistical analysis, and may 

read in detail discussions of the period's history in hopes of finding clues to which alternative to 

choose. Of course, these data explorations use up degrees of freedom, just as does running 

preliminary regressions to find break points, etc. Moreover, experimentation on actual data and 

on simulated data shows that the researcher may still easily choose a misspecification.

These considerations suggest that it is useful to run a battery of unit-root tests. Indeed, for 

any series where there is a serious likelihood that a break model best fits the data, the researcher 

might as a matter of course run the battery and report results, much as common descriptive 

statistics are reported. This relieves the reader from wondering if failure to reject arises from 

using an inappropriate test equation. It also relieves the reader from wondering if the reported 

rejection is simply the best of the lot. 

4 For significance levels different from 5%, interpolation gives estimated probabilities.
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Table 1. List of alternatives considered

Augmented Dickey-Fuller (ADF) equation: 

∆rt = µ + α rt-1 + ∑k
j=1 γj ∆rt-j + ut,  

Break Model 1 (B1): Shift in mean, no time trend 

∆rt = [µ + Dµ θ] + α rt-1 + ∑k
j=1 γj ∆rt-j + ut,  

Break Model 2 (B2): Shift in mean, time trend included

∆rt = [µ + Dµ θ] + β t + α rt-1 + ∑k
j=1 γj ∆rt-j + ut,  

Break Model 3 (B3): Shift in coefficient on time trend

∆rt = µ + [β t + Dβ φ (t - Tβ)] + α rt-1 + ∑k
j=1 γj ∆rt-j + ut,  

General Break Model, B4, shift in mean, shift in coefficient on time trend:

∆rt = [µ + Dµ θ] + [β t + Dβ φ (t - Tβ)] + α rt-1 + ∑k
j=1 γj ∆rt-j + ut   

Notes: rt is the variable to be tested under the unit-root null hypothesis, µ the mean, β  the coefficient on 
the time trend t, α  the coefficient on the lagged level, the γj the coefficients on the lagged changes, Dµ a 
shift-in-mean dummy, equal to zero for t < Tµ, and equal to unity for t ≥ Tµ, Dβ a shift-in-trend dummy, 
equal to zero for  t < Tβ, and equal to unity for  t  ≥ Tβ,  θ and  φ are coefficients on the parameter-shift 
dummies Dµ and Dβ, and Tb = Tµ = Tβ if the model includes both parameter shifts. In the standard ADF 
used in finance applications, β = φ = θ = 0. In Break Model 1, β = φ = 0 (possible shift in mean, but no 
time trend or break in trend); in Break Model 2, φ = 0 (possible shift in mean and possible time trend, but 
not shift in the time trend); in Break Model 3, θ = 0 (possible time trend and shift in trend, but no shift in 
mean); and in Break Model 4, φ, β, θ are freely fit (possible trend, and possible shifts in mean and trend). 
In  fitting  the  Break  Models,  the  times  of  the  structural  breaks,  Tµ and  Tβ,  are  typically  taken  as 
endogenous and are found using methods pioneered in Zivot and Andrews (1992) and advanced in Perron 
(1997).  
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Table 2. Joint Probabilities of Rejection 

Prob[ ADF B1 B2 B3 B4 ] = 0.00275 0.275 % 

Prob[ ADF B1 B2 B3 ] = 0.00355  0.355 %
Prob[ ADF B2 B3 B4 ] = 0.00355 0.355 %
Prob[ ADF B1 B3 B4 ] = 0.00285 0.285 %  
Prob[ ADF B2 B3 B4 ] = 0.00335 0.335 %  
Prob[ B1 B2 B3 B4 ] = 0.005 0.500 %   
Σ5 1.830 %       

Prob[ ADF B1 B2 ] = 0.00535  0.535 %
Prob[ ADF B1 B3 ] = 0.0045 0.450 %
Prob[ ADF B1 B4 ] = 0.00375 0.375 %  
Prob[ ADF B2 B3 ] = 0.0047 0.470 %
Prob[ ADF B2 B4 ] = 0.00465 0.465 %
Prob[ ADF B3 B4 ] = 0.00415 0.415 %
Prob[ B1 B2 B3 ] = 0.0066 0.660 %
Prob[ B1 B2 B4 ] = 0.00875 0.875 %
Prob[ B2 B3 B4 ] = 0.01305 1.305 %  
Σ9 6.550 %

Prob[ ADF B1 ] = 0.0112 1.120 %    
Prob[ ADF B2 ] = 0.00830831 0.831 %
Prob[ ADF B3 ] = 0.007207205 0.721 %
Prob[ ADF B4 ] = 0.006456455 0.646 %    
Prob[ B1 B2 ] = 0.01756757 1.757 %   
Prob[ B1 B3 ] = 0.00930931 0.931 %
Prob[ B1 B4 ] = 0.01041041 1.041 %    
Prob[ B2 B3 ] = 0.01771772  1.772 %    
Prob[ B2 B4 ] = 0.024724725  2.473 %     
Prob[ B3 B4 ] = 0.024374375  2.437 %   
Σ10 13.729 %

Notes: The Monte Carlo simulations consisted of 100,000 replications. Each of the five models was run on each replication. 
For each replication, note was made for each model of whether it rejected at the 5% level or failed to reject. [The critical values 
for each model were estimated in previous Monte Carlo simulations.] With these records, the number of cases in which the 
pseudo-data reject both for model i and model j can be found, the number of cases in which the pseudo-data reject for models i,  

j and k can be found, etc. Note that in some cases where models i and j, one or more other models reject. Arrows "   " point 
out maxima and minima.  Union of Rejection Regions (5% significance level), from Inclusion-Exclusion Principle:  25% - 
13.729 % + 6.550 % - 1.830 % + 0.275 % = 16.236%.  General Break Model, B4, shift in mean, shift in coefficient on time 
trend:

∆rt = [µ + Dµ θ] + [β t + Dβ φ (t - Tβ)] + α rt-1 + ∑k
j=1 γj ∆rt-j + ut.                               
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Table 3. Conditional probabilities of rejections under the null, from Monte-Carlo simula-
tions 

Conditional rejections, two models  

Prob[ ADF | B1 ] = 0.224   Prob[ ADF | B2 ] = 0.1661662
Prob[ ADF | B3 ] = 0.1441441 Prob[ ADF | B4 ] = 0.1291291 
Prob[ B1 | B2 ]    = 0.3513514 Prob[ B1 | B3 ]    = 0.1861862
Prob[ B1 | B4 ]    = 0.2082082 Prob[ B2 | B3 ]    = 0.3543544
Prob[ B2 | B4 ]    = 0.4944945  Prob[ B3 | B4 ]    = 0.4874875

Conditional rejections, three models 

Prob[ ADF | B1 B2 ] = 0.3048433 Prob[ B1 B2 | ADF ] = 0.1071071
Prob[ ADF | B1 B3 ] = 0.483871 Prob[ B1 B3 | ADF ] = 0.09009009
Prob[ ADF | B1 B4 ] = 0.3605769 Prob[ B1 B4 | ADF ] = 0.07507508 
Prob[ ADF | B2 B3 ] = 0.2655367 Prob[ B2 B3 | ADF ] = 0.0940941
Prob[ ADF | B2 B4 ] = 0.1882591 Prob[ B2 B4 | ADF ] = 0.0930931
Prob[ ADF | B3 B4 ] = 0.1704312   Prob[ B3 B4 | ADF ] = 0.08308308
Prob[ B1 | ADF B2 ] = 0.6445783 Prob[ ADF B2 | B1 ] = 0.107
Prob[ B1 | ADF B3 ] = 0.625 Prob[ ADF B3 | B1 ] = 0.09
Prob[ B1 | ADF B4 ] = 0.5813953 Prob[ ADF B4 | B1 ] = 0.075
Prob[ B1 | B2 B3 ]    = 0.3728814 Prob[ B2 B3 | B1 ]    = 0.132
Prob[ B1 | B2 B4 ]    = 0.354251  Prob[ B2 B4 | B1 ]    = 0.175
Prob[ B1 | B3 B4 ]    = 0.2361396 Prob[ B3 B4 | B1 ]    = 0.115
Prob[ B2 | ADF B1 ] = 0.4776786 Prob[ ADF B1 | B2 ] = 0.1071071
Prob[ B2 | ADF B3 ] = 0.6527778 Prob[ ADF B3 | B2 ] = 0.0940941
Prob[ B2 | ADF B4 ] = 0.7209302 Prob[ ADF B4 | B2 ] = 0.0930931
Prob[ B2 | B1 B3 ]    = 0.7096774 Prob[ B1 B3 | B2 ]    = 0.1321321
Prob[ B2 | B1 B4 ]    = 0.8413462   Prob[ B1 B4 | B2 ]    = 0.1751752
Prob[ B2 | B3 B4 ]    = 0.5359343 Prob[ B3 B4 | B2 ]    = 0.2612613 
Prob[ B3 | ADF B1 ] = 0.4017857 Prob[ ADF B1 | B3 ] = 0.09009009
Prob[ B3 | ADF B2 ] = 0.5662651   Prob[ ADF B2 | B3 ] = 0.0940941
Prob[ B3 | ADF B4 ] = 0.6434109 Prob[ ADF B4 | B3 ] = 0.08308308
Prob[ B3 | B1 B2 ]    = 0.3760684 Prob[ B1 B2 | B3 ]    = 0.1321321
Prob[ B3 | B1 B4 ]    = 0.5528846 Prob[ B1 B4 | B3 ]    = 0.1151151
Prob[ B3 | B2 B4 ]    = 0.5283401 Prob[ B2 B4 | B3 ]    = 0.2612613 
Prob[ B4 | ADF B1 ] = 0.3348214 Prob[ ADF B1 | B4 ] = 0.07507508 
Prob[ B4 | ADF B2 ] = 0.560241 Prob[ ADF B2 | B4 ] = 0.0930931
Prob[ B4 | ADF B3 ] = 0.5763889 Prob[ ADF B3 | B4 ] = 0.08308308
Prob[ B4 | B1 B2 ]    = 0.4985755 Prob[ B1 B2 | B4 ]    = 0.1751752
Prob[ B4 | B1 B3 ]    = 0.6182796 Prob[ B1 B3 | B4 ]    = 0.1151151
Prob[ B4 | B2 B3 ]    = 0.7372881 Prob[ B2 B3 | B4 ]    = 0.2612613 
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Conditional rejections, four models  

Prob[ ADF | B1 B2 B3 ] = 0.5378788 Prob[ B1 B2 B3 | ADF ] = 0.07107107
Prob[ ADF | B1 B2 B4 ] = 0.4057143 Prob[ B1 B2 B4 | ADF ] = 0.07107107
Prob[ ADF | B1 B3 B4 ] = 0.4956522 Prob[ B1 B3 B4 | ADF ] = 0.05705706 
Prob[ ADF | B2 B3 B4 ] = 0.256705  Prob[ B2 B3 B4 | ADF ] = 0.06706707
Prob[ B1 | ADF B2 B3 ] = 0.7553191 Prob[ ADF B2 B3 | B1 ] = 0.071
Prob[ B1 | ADF B2 B4 ] = 0.7634409 Prob[ ADF B2 B4 | B1 ] = 0.071
Prob[ B1 | ADF B3 B4 ] = 0.686747 Prob[ ADF B3 B4 | B1 ] = 0.057 
Prob[ B1 | B2 B3 B4 ]    = 0.3831418 Prob[ B2 B3 B4 | B1 ]    = 0.1
Prob[ B2 | ADF B1 B3 ] = 0.7888889 Prob[ ADF B1 B3 | B2 ] = 0.07107107
Prob[ B2 | ADF B1 B4 ] = 0.9466667  Prob[ ADF B1 B4 | B2 ] = 0.07107107
Prob[ B2 | ADF B3 B4 ] = 0.8072289 Prob[ ADF B3 B4 | B2 ] = 0.06706707
Prob[ B2 | B1 B3 B4 ]    = 0.8695652 Prob[ B1 B3 B4 | B2 ]    = 0.1001001 
Prob[ B3 | ADF B1 B2 ] = 0.6635514 Prob[ ADF B1 B2 | B3 ] = 0.07107107
Prob[ B3 | ADF B1 B4 ] = 0.76 Prob[ ADF B1 B4 | B3 ] = 0.05705706 
Prob[ B3 | ADF B2 B4 ] = 0.7204301 Prob[ ADF B2 B4 | B3 ] = 0.06706707
Prob[ B3 | B1 B2 B4 ]    = 0.5714286 Prob[ B1 B2 B4 | B3 ]    = 0.1001001 
Prob[ B4 | ADF B1 B2 ] = 0.6635514 Prob[ ADF B1 B2 | B4 ] = 0.07107107
Prob[ B4 | ADF B1 B3 ] = 0.6333333 Prob[ ADF B1 B3 | B4 ] = 0.05705706 
Prob[ B4 | ADF B2 B3 ] = 0.712766 Prob[ ADF B2 B3 | B4 ] = 0.06706707
Prob[ B4 | B1 B2 B3 ]    = 0.7575758 Prob[ B1 B2 B3 | B4 ]    = 0.1001001 

Conditional rejections, five models  

Prob[ ADF || B1 B2 4 B4 ]    = 0.55 Prob[ B1 B2 B3 B4 || ADF ] = 0.05505506 
Prob[ B1 || ADF B2 B3 B4 ] = 0.8208955 Prob[ ADF B2 B3 B4 || B1 ] = 0.055
Prob[ B2 || ADF B1 B3 B4 ] = 0.9649123 Prob[ ADF B1 B3 B4 || B2 ] = 0.05505506
Prob[ B3 || ADF B1 B2 B4 ] = 0.7746479 Prob[ ADF B1 B2 B4 || B3 ] = 0.05505506
Prob[ B4 || ADF B1 B2 B3 ] = 0.7746479 Prob[ ADF B1 B2 B3 || B4 ] = 0.05505506

Notes: The Monte Carlo simulations consisted of 100,000 replications. Each of the five models was run on each 
replication. For each replication, note was made for each model of whether it rejected at the 5% level or failed to 
reject. [The critical values for each model were estimated in previous Monte Carlo simulations.] With these records, 
the number of cases in which the pseudo-data reject both for model i and model j can be found, the number of cases 
in which the pseudo-data reject for models i, j and k can be found, etc. Note that in some cases where models i and j, 

one or more other models reject.  Arrows "  " point out maxima and minima. General Break Model, B4, shift in 
mean, shift in coefficient on time trend:

∆rt = [µ + Dµ θ] + [β t + Dβ φ (t - Tβ)] + α rt-1 + ∑k
j=1 γj ∆rt-j + ut.                            
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Table 4: Unit-root test results using real exchange rates in CEE: Euro Base, consumer price indices

Country           ADF        B1      B2   B3  B4 Rejection prob.
for battery  

Bulgaria          -0.124*    -0.392****     -0.548****        -0.503*        -0.546**** 0.275% 
 Shift date                  1997-01        1998-01       2000-12       1997-01
 Bonferroni 50% 5% 5% 50% 5% 

Czech Rep.     -               -              -0.294***      -0.245*        -       0.931%
  Shift date                 2003-05       2002-04
  Bonferroni 12.5% 50%

Estonia       -0.022****     -0.067****     -0.093****     -             -0.081****     0.355%
  Shift Date                      1996-07        1996-08                     2003-01
  Bonferroni 5% 5% 5% 5%

Hungary          -               -              -0.264**        -             -      16.20% 
  Shift Date                             2001-04
  Bonferroni 25%

Latvia              -0.033*          -              -             -             -      32.40%
  Bonferroni 50%

Lithuania         -0.030****        -0.043***            -             -             -      1.120%      
  Shift Date                  1994-10
  Bonferroni 5% 12.5%

Poland             -                       -              -             -             -                  

Romania          -               -0.148***      -0.213****     -0.303***     -0.258****   0.500%
  Shift Date                 1997-02        1997-02       2002-01       1997-02
  Bonferroni 12.5% 5% 12.5% 5%

Slovakia          -               -              -0.292**        -             -0.411****  2.472%
  Shift Date                            1998-05                     1998-07
  Bonferroni 25% 5%

Slovenia          -               -0.086*         -0.246****     -0.339****    -0.276****  0.500%
Shift Date                 1994-02        1994-03       1994-08       1995-07
Bonferroni 50% 5% 5% 5%
Notes: The models are specializations of the B4:

                   ∆rt = [µ + Dµ θ] + [β t + Dβ φ (t - Tβ)] + α rt-1 + ∑ k
j=1 γj ∆rt-j + ut, 

where Dµ is a dummy, equal to zero for t < Tb and equal to unity for t ≥ Tb, where Tb is the time at which the intercept shifts. 

Dβ  is a dummy, equal to zero for t < Tb and equal to unity for t ≥ Tb , where Tb is the time at which the trend coefficient shifts. 
The models are as follows. ADF: θ=β=φ=0. B1: β=φ=0. B2:φ= 0. B3:θ = 0. B4–no restrictions, the mean and trend shift occur 
at the same Tb. For each country, the first row of numbers is estimated slope coefficients on the lagged log variable rt-1; this 
estimate is the negative of the speed of adjustment. The row indicates the significance of the slope of the lagged log real  
exchange rate at the 10%, 5%, 2.5% and 1% levels by *, **, ***, ****. The second line of numbers is the estimated break  
dates for the various break models (Zivot and Andrew, 1992). The third row is from the Bonferroni inequalities; it shows the  
minimum probability  of  each  rejection,  on  the  assumption  that  the  rejection  regions  for  the  five  break  models  have  no 
intersections. The symbol “-” indicates that the slope on the lagged log real exchange rate is not significant at even the 10% 
level. The sample period generally starts in January 1993 and always ends in December 2005. Data begin in January 1995 for  
Latvia and Romania, and January 1994 for Lithuania and Poland. The number of lags k is found following Perron (1989) and 
Ng and Perron (1995). Approximate probabilities for a battery under the null of the pattern of rejections are from Monte Carlo 
simulations (Table 2). For significance levels different from 5%, interpolation gives estimated probabilities.  

13


