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Abstract

This thesis investigates the behaviour of the CDS-bond basis dur-
ing and after the 2008 financial crisis. It is found that the basis plunges
deep into negative territory and that the theory of a zero CDS-bond
basis is severly violated, not only during the crisis, but also in the
subsequent years. Neither does it seem to return to the positive and
less volatile levels observed before the crisis. Further it is investigated
how an investor would have fared using CDS prices as bond risk proxy
during the period, revealing an evident underestimation of risk in the
proxy. Last a new proxy is constructed using linear regression models.
The purpose of these model is to enable an investor to assess the risky-
ness of a bond that lacks reliable historical data by estimating the risk
of the proxy in terms of Value at risk-quantities.
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1 Introduction

The CDS-bond basis is defined as the difference between the CDS price and
bond spread with the same maturity written on the same financial entity.
The relative stability of this quantity have laid ground for trading opportu-
nities of arbitrageurs and, since there is often a lack of reliable bond data due
to illiquidity, have also lead to the use of CDS prices to estimate bond risk.

During the recent financial crisis 2007/2008, financial markets experienced
turmoil on a new scale. One of the most severely affected sectors was the
credit market, where prices on lending and borrowing money is determined.
Since the prices of CDSs and bonds are based on credit risk, these were natu-
rally also greatly affected during the crisis. While the basis levels before the
crisis fluctuated slighly above the zero-mark, these values would drop deep
into negative territory. This could turn what at first seemed an arbitrage
bargain into a great loss, or lead to major risk miscalculations.

This thesis will focus neither on the reasons behind this deviating basis
behaviour, nor how basis trading was affected, but rather on two things:
first it will investigate the impact of using CDS prices to measure bond risk
during the crisis and its following years using a Value at risk-quantitiy and
second; to search for a new, more reliable, way of proxying bond risk, using
both CDS prices and several market indices. This proxy can then be used
to estimate riskyness of bonds that lacks reliable pricing data by measuring
the fluctuations of the proxy.

This report is organized as follows. Chapter 2 gives a basic introduction
to the mechanics of bonds and CDSs, as well a quick review of the basis
behaviour before and after the crisis years; chapter 3 explains what data
have been used and how different quantities have been calculated; chapter 4
contains the findings of the data analysis, including Value at risk-measures
using different methods and chapter 5 is a concluding chapter discussing the
results, evaluating the methods and suggesting improvements of data set
and methodology. Chapter A contains an Appendix.

For further reading on GPD and VaR-estimates, [4], [5] and [6] will be
useful.[7], [8] and [9] sheds more light on potential factors used to model
bond spreads and CDS-bond basis. [10], [11] and [12] further explores the
dynamics of the CDS-bond basis, both post and pre-crisis. [13], [14] and
[15] investigates the dynamics, liquidity and performance of trading basis.
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2 CDS-bond relationship

2.1 Bonds

When a financial entity (corporation, government, etc) is in need of credit,
it can issue a bond. A bond is a debt security, in which the issuer is obligated
to pay the buyer or holder of the bond a principal amount, called the par
value, at a pre-determined future date, called the maturity date. It usually
also includes a periodic interest payment, called the coupon. Hence a bond
is a loan from the bond holder to the issuer from the purchase date to the
maturity date, with a recurring (for example annually or semi-annually) in-
terest rate at the amount of the coupon.

Naturally, it is in the interest of an investor to know how much he or she
would earn holding a bond until maturity, how large the yield-to-maturity
(YTM) for the bond is. Suppose an investor buys a bond at time t0, at
price P, with annual coupon payments of amount C at dates t1, t2, ..., tj−1

and tj = T , which is the maturity date, and par value Bp. We then assume
that the price is the present value of the future cash payments with each
payment reinvested at the rate By, hence

P = C(1 +By)−t1 + C(1 +By)−t2 + ...+ (C +Bp)(1 +By)−tj . (1)

Solving this for By, we have determined what the yearly yield of the bond
until its maturity is. Yield-to-maturity can be thought of as the interest
rate the investor receives if he or she re-invests all coupon payments at this
rate until the maturity date. It can be compared to investing the amount P
into a money market account for T years, and will from now on be referred
to as bond yield. Also note that as the bond price decrease, the bond yield
will increase, and vice versa.

2.2 Credit Default Swaps

A Credit Default Swap, or CDS, is a bond derivative security, in which the
seller of the CDS is obligated to compensate the buyer of the CDS in case
of a default (because of bankrupcy, other failure to pay, restructuring, etc)
of the underlying bond. In case of no default until the maturity of the CDS
contract, the seller pays nothing. For this protection, the buyer has to pay
the seller a periodic fee, usually quarterly, until either a default event or
maturity, whichever occurs first. This fee, annualized, will be referred to as
the CDS price. One can think of a CDS as an insurance on a bond.
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2.3 Basis

There are numerous approaches to pricing credit risk, upon which bond
and CDS prices depend. Most common are structural models based on the
value of the firm or intensity-based models that assumes that the time of de-
fault is determined by a hazard rate. This thesis however, will rather focus
on the theoretical no-arbitrage relation between CDS prices and bond yields.

Suppose an investor buys a bond, with yield By and maturity in T years. He
borrows money to this investment from a lender at rate r. The investor will
now enjoy a yield of Bs = By− r, called the bond spread, that is the premia
earned from being exposed to the risk of the bond over the riskless rate r.
Further, our investor proceeds to buy a T -year CDS on this bond from the
CDS market at the cost CDSp. Now, for there to be no arbitrage, the price
of this CDS should be CDSp = Bs. This makes intuitive sense, since the
investor have invested no capital (he or she borrowed the money to buy the
bond) and bears no risk of the bond defaulting, and hence should not earn a
profit. If CDSp > Bs were true, the investor could write the CDS contract,
short the bond and invest in the risk-free instrument r, and receive a risk-less
profit. On the other hand if CDSp < Bs, the investor could borrow at r, in-
vest in By and buy protection at CDSp and again receive a profit at no risk.

The difference CDSp−Bs is called the CDS-bond basis and as we have seen,
its theoretical no-arbitrage value should be 0 basis points (bp). If any devi-
ations should occur, arbitrageurs should quickly push the basis back to zero.

2.4 CDS as proxy for Bond risk

As we have seen, monitoring the CDS-bond basis can lead to profitable trad-
ing opportunities, but this relationship has other uses as well. Many bonds
often have low liquidity and sometimes even lack pricing data. This makes
estimating risks associated with the bond difficult and in itself risky. CDS
contracts, however, are synthetic instruments which usually have higher liq-
uidity than their bond counterparts. Hence they have more pricing data
available and, as suggested by Blanco [1], much faster price discovery than
corresponding bond spread (meaning that the bond spread tend to adjust
to the CDS price rather than the other way round).

These properties, together with the theoretical CDS-bond basis value zero,
enables an investor to estimate the risk of a bond using its CDS counterpart.
This should make intuitive sense; if the CDS price and the bond spread are
identical or closely follows, the CDS price and bond spread risk should be
approximately equal. So assuming zero or small enough basis, an investor
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could use the time series of the CDS price to model the risk (with for example
a Value at risk-measure) of corresponding bond spread. Note that in this
case an actual investment in the CDS contract is not made, it is just used
to estimate the risk of the bond.

2.5 Basis before and after 2007

In Blanco [1], the CDS-bond basis of 33 European and US firms during the
period January 2, 2001 to June 20, 2002, is investigated. On a whole, the
CDS-bond basis seems to revolve relatively close around zero, with an av-
erage of 14.6 basis points. Overall, the basis tend to be slightly positive,
and Blanco suggests that CDS prices on average are an upper bound for
bond spreads. This partly because exploiting a positive basis involves the
difficulty of short selling a corporate bond.

The same relationship is investigated in Fontana [2], for 37 US firms in the
period January 3, 2005 to April 1, 2009 (more than half a year after the
”Lehman crash” on September 15, 2008). This period of 4 years and 4
months is divided in to three time spans. The average basis for the firms in
these time spans are: 2.2 bp in the first, -17.2 bp in the second and -147.5
bp (-308.4 bp for the financial firms) in the third. Finger [3] extends this
investigation on six financial bonds to September 2011, and finds that al-
though the basis reverts from the levels seen during the financial crisis, they
are still persistently negative and much more volatile than before 2007.

Clearly the zero basis theory that seemed to hold reasonably well before
2007 have been violated and the basis levels does not seem to return to low
and stable levels either. Fontana [2] suggests a number of explanations to
the basis behaviour during the crisis, among them a rising counterparty risk
in the CDS contract, which during stable times is almost insignificant.

This thesis, however, aims not to explain the origin and persistance of the
negative basis, but rather to investigate two other things. First, what the
risks involved with using CDS prices to model bond risk post-2007 were.
That is, to explore the model basis, and what additional risk it involved.
Second, to search for a proxy for the basis itself, with the aim of constructing
a more accurate post-2007 proxy for bond risk. The instruments investigated
for this new proxy will, in addition to CDS prices, be EURIBOR, EUNIA,
EURGovt, and the VIX. The purpose of this proxy is to be able to estimate
the risk of bonds that lack reliable pricing data.
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3 Data description

For the purpose of investigating the basis and model risk, a portfolio of 20
equally weighted bonds from European and US issuers is constructed. The
portfolio have been selected to roughly represent the size of each sector on
the bond market. The bonds are quoted in clean prices, that is, the mar-
ket prices have been subtracted by the accrued interest C ∗ t/(tn+1 − tn)
(where t is the settlement date, tn is the last coupon date and tn+1 is the
next coupon date), to avoid the ”mountain chain” that appear on the price
graph from prices falling after coupon payments. Most bonds are from the
banking sector, otherwise a cross section of bonds from different sectors have
been made. The time period investigated is January 2, 2008 to March 23,
2012, and it consists of 1120 price observations. All bonds are quoted in
euro and of fixed coupon type with annual coupon payments and par value
100 euro. Their complete description can be found in Table 1. Figure 1 and
2 contains box-plots of each bond spread and corresponding CDS price. It
is easy to recognise that the data contains both high variation and a great
deal of outliers. For most coporations the bond spread has a wider range of
values than the CDS price. From each bond price, a daily yield to maturity
By have been calculated1using equation 1.

As a interest rate benchmark, the Euro swap rate, as suggested by Blanco
[1], of 9 different time lengths (1 month, 3 months, 6 months, 9 months,
1 year, 2 years, 5 years, 10 years and 30 years) have been used. Since the
interest rate time length should match the lifetime of the bond, i.e. an in-
vestor must be able to borrow money to buy the bond, then hold both the
bond and the loan until maturity, a synthetic rate have been made by inter-
polating rates of longer and shorter maturity than the bond. For example,
a bond having 7.5 years to maturity have been matched by a rate r7.5 con-
structed as r7.5 = 1

2r10 + 1
2r5, where r10 and r5 is the 10- and 5-year rate,

respectively. For each bond, a daily bond spread Bs has been calculated as
Bs = By − r for the approriate rate r.

For each bond, 10 daily CDS prices with different lifetimes have been used:
6 months, 1 year, 2 years, 3 years, 5 years, 7 years, 10 years, 15 years, 20
years and 30 years. The CDS prices have been interpolated in the same way
as the interest rates, in order to match their corresponding bonds’ time to
maturity. These constructed CDS prices can now be matched against their
bonds’ spreads Bs in order to determine the CDS-bond basis for the firm.

For 17 dates, bond data was present, but CDS and interest rate data absent.

1The YTM value have been calculated by computing the price of a wide range of YTM
values, then interpolating these prices to match the given price. These values match the
yield calculator on the Frankfurt Stock Exchange web site [16] with at least four digits.
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Figure 1: Bond spread and CDS box plot. Box-plot of corporation bond
and CDS. The filled boxes are bond spreads and the empty boxes are CDS
prices. On each box, the central mark is the median, the edges of the box are
the 25th and 75th percentiles, the whiskers extend to the most extreme data
points not considered outliers, and outliers are plotted individually. From
left to right Deutsche Bank AG (DB), Rabobank Nederland (RDBK), Credit
Suisse/London (CSGAG), Bank of America (BCORP), Goldaman Sachs
Group (GS), ING Groep Nv (INTNED), BNP Paribas (BNP), Citigroup
Inc (C), Merril Lynch & Co (MER) and Morgan Stanley (MWD).
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Figure 2: Bond spread and CDS box plot. Box-plot of corporation
bond and CDS. The filled boxes are bond spreads and the empty boxes are
CDS prices. On each box, the central mark is the median, the edges of
the box are the 25th and 75th percentiles, the whiskers extend to the most
extreme data points not considered outliers, and outliers are plotted individ-
ually. From left to right E.O.N International Finance (EON), Enel-Societa
Per Azioni (ENEL), Veolia Enviroment (VEOLIA), France telecom (FR-
TEL), Carrefour (CARR), Procter & Gamble Co (PG), Telefonica Emi-
siones (TELF), ENI SpA (ENI), GlaxoSmithKline Capital (GSK) and 3M
Co (MMM).
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Table 1: Bond description. Names of bond issuer, industrial sector, bond coupon rate in
percentage and time to maturity in years, from January 2, 2008.

Sector Coupon rate Time to maturity

Deutsche Bank AG Banking 5.13 9.67
Rabobank Nederland Banking 4.25 9.05
Credit Suisse/London Banking 5.125 9.72

Bank of America Banking 5.125 6.74
Goldman Sachs Group Banking 5.125 6.79

ING Groep Nv Insurance 4.75 9.42
BNP Paribas Banking 5.431 9.69
Citigroup Inc Banking 4.375 9.08

Merrill Lynch & Co Banking 4.875 6.41
Morgan Stanley Banking 5.5 9.76

E.ON International Finance Utility 5.5 9.76
Enel-Societa Per Azioni Utility 5.25 9.47

Veolia Environnement Utility 5.125 14.4
France Telecom Telecommunications 4.75 9.15

Carrefour Consumer cyclical 5.125 6.78
Procter & Gamble Co Consumer non-cyclical 4.5 6.36

Telefonica Emisiones Telecommunications 4.674 6.10
ENI SpA Energy 4.75 9.87

GlaxoSmithKline Capital Consumer non-cyclical 5.625 9.95
3M Co Capital goods 5 6.53

These data have been filled in using interpolationg between the previous and
next trading date.

The indices to be used for the regression are EUNIA (3 month), EURIBOR
(3 month), EURGovt (3 month) and VIX. For EUONIA and EURIBOR,
40 of the bond data dates were missing, for the EURGovt 17 and VIX 16,
respectively. These dates have been filled in as the CDS and interest rate
data, by interpolating values between the previous and next trading date.
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4 Empirical analysis

This chapter will first investigate and make a statistical description of the
relatiohship between the CDS prices CDSp and bond spreads Bs, second
what the discrepancies in risk measurement an investor would face using
CDS prices as a proxy for bond risk and third how a new proxy for bond
risk can be constructed by using regression models. The goal is to proxy the
behaviour of bond yields such that an investor can use this proxy to estimate
the risk of a bond that lacks reliable historical price data, a problem that
is not uncommon among corporate bonds. For the analysis, the following
definitions will be needed.

Definition 1. Let Byi,n and Bsi,n be the closing time bond yield and bond
spread (calculated from equation 1), respectively, of bond i at trading day n,
k the number of bonds in the portfolio, CDSpi,n be the closing time CDS
price corresponding to bond i at trading day n and ri,n be the appropriate
interpolated swap rate matching the maturity of bond i at trading day n.
Then for every variable in this presentation, let

∆variablen = variablen+1 − variablen
L1variablen = variablen−1

V variablen =
1

k

k∑
i=1

variablei,n.

and

V basisn = V CDSpn − V Bsn,

So, for example, ∆Byi,n is the change in bond yield from day n to n+1 and
V Bsn, V CDSpn and V basisn are the average bond spread, CDS price and
basis across the portfolio. The subscripts i and n will sometimes be dropped
from these variables for simplicity.

4.1 Statistical description

Figure 3 displays the average bond yield and swap rate of the bond in the
portfolio. In Figure 4 graphs of the portfolio bond spread V Bsn, portfolio
CDS price V CDSpn and portfolio basis V basisn can be seen. Notice two
”ravines” in the basis graph, one during the height of the financial crisis
(mid 2008 to mid 2009), and one in a more recent period of distress (mid
2011 to march 2012). Also take note of how much smaller and less volatile
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Figure 3: Portfolio yield and rate. The average portfolio bond yield
V Byn and corresponding swap rate V rn for the 20 bonds in the portfolio.

the average CDS price is, compared with the average bond spread.

Table 2 lists the average basis, basis volatility (namely the standard devia-
tion of the daily changes in bp), CDSp volatility, Bs volatility and corre-
lation between CDSp and Bs for each firm as well as the equally weighted
portfolio. First, it is noticable that the zero basis theory is violated for all
firms as well as the portfolio average. Neither does it agree with Blancos ob-
servations that basis on average is slightly positive. The values does however
coincide with the findings of Fontana for the post 2007-period, namely that
basis is largely negative. According to Figure 4 the basis is also persistently
negative and does not return to positive levels during the period, also as
concluded by both Fontana and Finger.

Furthermore, the difference in volatility of the portfolios CDSp and Bs
is rather large. The correlation does however suggest that for most firms
as well as for the portfolio, the CDS price and bond spread moves in the
same direction, but that is quite far away from 1, which would be the ideal
value for a risk proxy. Still, the CDS prices does a poor job in capturing
the volatile movements of the bond spread, which decidedly suggest against
using CDS prices alone as a proxy to estimating bond risk.
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Table 2: Statistics on the firms basis, bonds and CDS prices. Each firms average
basis, basis volatility σbasis (standard deviation of the daily difference in bp), CDS price
volatity σCDSp, bond spread volatility σBs and correlation of CDS price and bond spread as
well as statistics on the equally weighted portfolio.

Avg. basis σbasis σCDSp Corr(CDSp, Bs) σBs
Deutsche Bank AG -77.9 4.96 1.03 0.36 5.01

Rabobank Nederland -46.22 4.36 0.54 0.85 4.28
Credit Suisse/London -111.16 5.48 0.85 0.63 5.4

Bank of America -174.89 10.77 3.36 0.84 11.21
Goldman Sachs Group -190.2 16.18 3.88 0.59 17.19

ING Groep Nv -140.25 8 1.55 0.56 7.83
BNP Paribas -115.75 8.52 1.84 0.89 8.71
Citigroup Inc -206.72 11.09 2.16 0.75 11.48

Merrill Lynch & Co -247.96 13.66 4.26 0.61 14.41
Morgan Stanley -279.78 23.87 3.91 0.73 25.05

E.ON International Finance -69.39 4.65 0.38 -0.15 4.61
Enel-Societa Per Azioni -107.69 5.92 1.51 0.9 6.01

Veolia Environnement -146.08 5.67 0.46 0.2 5.69
France Telecom -75.55 5.41 0.47 -0.01 5.43

Carrefour -59.64 5.56 1.25 0.66 5.49
Procter & Gamble Co -27.45 4 0.42 0.54 4

Telefonica Emisiones -110.83 8.11 3.23 0.81 8.2
ENI SpA -76.24 4.72 0.6 0.76 4.71

GlaxoSmithKline Capital -71.51 4.95 0.23 0 4.94
3M Co -41.53 5.85 0.38 0.51 5.83

Portfolio -118.84 4.11 1.16 0.62 4.35
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Figure 4: Portfolio spread graphs. The average portfolio bond spread
V Bsn, CDS price V CDSpn and basis V basisn for the 20 bonds in the port-
folio.
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4.2 Value at risk

To estimate the risk associated with the bond, a Value at Risk -measure
(VaR) is used. It is a commonly used risk measurement that tells what
value is at risk of losing at a certain probability for a certain time span t,
e.g. a single trading day. This is done by first observing the changes of a
value V over each time period t in a time series, then fit these changes (which
most commonly are return values of an asset, in percentage) to a distribu-
tion. From this fitted distribution, it is then possible to see what changes
in V one can at least expect over any time span t, for any given probability,
by examening the quantiles of corresponding percentage. For example, if an
investor have fitted the daily returns of a stock to a distribution, the investor
can then see what loss the stock is at least expected to experience in a single
day over a 100 day period by looking at the 1%-quantile of said distribution.

In Table 3 the different VaR-estimates for the portfolios bond spread and
CDS price values can be seen. It refers to first daily changes, ∆V Bsn and
∆V CDSpn over the time period, then changes over three trading days, in
bp. This is to capture the events when bond spreads increase substantially,
i.e. the value of the bonds drop, and further how much the CDS price in-
creases, at the same probability. In the upper table the changes have been
fitted to a normal distribution, which is the most common approach when
modelling return values (this is however, not a return value, as will be ex-
plained further down). In the lower table the changes have been fitted to
a General Pareto distribution (GPD)2. This distribution models the tails of
series, and hence is much more accurate in catching extreme events, such as
large losses. This makes the GPD-approach highly suitable when estimat-
ing VaR. Statistics about the fit of the distributions can be found in section
A. As one can expect, the GPD does a better job in modelling the more
extreme increases of the bond spread and the CDS price. The statistics and
QQ-plots of these distributions can be found in Table 9 and 10 Figure 8 to
11 and Figure 24 to 27 in section A.

One conclusion that can be drawn from Table 3 is for example that accord-
ing to the GPD-model, there is a 1 in a 1000 risk that the bond spread will
increase with at least 36.24 bp over a single trading day. Likewise it shows
that at the same probability the CDS price will increase with at least 7.56
bp over a single day. Since bond spreads determine the bonds value over
the corresponding rate ri,n, it is comparable to making an investment at
this rate, for example in a money market account. Hence fluctuations in Bs
tells us how the risk premia for investing in the bond changes, but does not
provide complete information about the price. Because of this, one can not
solely look at Bs while estimating risks, since a change in the rate also can

2For further reading on General Pareto distribution, see [4], [5] and [6].
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Table 3: Value at Risk-estimates of bond spreads and CDS prices.
VaR-estimates for the 95%-, 99%- and 99.9% quantile for the 1-day and 3-
days increases (in bp) in portfolio bond spread and CDS price, respectively.
In the upper table the VaR have been estimated with a normal assumption
and in the lower with a General Pareto approach, where u is the threshold.

Normal distribution
95% 99% 99.9%

∆V Bsn 7.11 10.08 13.40
∆V CDSpn 1.88 2.67 3.56

V Bsn+3 − V Bsn 15.62 22.18 29.53
V CDSpn+3 − V CDSpn 4.55 6.49 8.66

General Pareto distribution
u 95% 99% 99.9%

∆V Bsn 7 5.97 14.48 36.24
∆V CDSpn 2 1.63 3.52 7.56

V Bsn+3 − V Bsn 6 16.26 35.65 73.44
V CDSpn+3 − V CDSpn 2 4.66 9.30 17.38

result in a bond price change, Bs staying at the same level. To capture the
full movement of a bond price, one has to look at the bond yield By, which
is done further down in this presentation, as well as coupon rates, payment
intensity and time to maturity (see equation 1). The estimates in Table 3
is rather to give a intuitive sense of how the bond spreads and CDS prices
fluctuate and differ.

To make an actual estimation of how the portfolio value changes from day n
to day n+ 1, one has to insert the changes of the bond spreads, CDS prices
and rates from day n to day n + 1 into the actual bond pricing formula,
equation 1, for each bond in the portfolio. Naturally, since the observed
bond yields generate the observed bond prices, these values are already
known. Define the following variables

Definition 2. Let PByi,n be the closing price of bond i at trading day n.
Then

retByi,n =
PByi,n+1−PByi,n

PByi,n

vByn = 1
k

k∑
i=1

retByi,n. (2)

Hence retByi,n is the percentage value change, or return, from day n to day
n + 1 for bond i, and vByn is the return of the equally weighted portfolio
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of all the k bonds from day n to day n + 1. Since the bond yields will
generate the market prices, equation 2 produces the actual return of the
bond portfolio. To estimate a bond price using CDS prices, calculate the
bond price for day n+ 1 that would have been realised if ∆Bsi,n had been
identical to the corresponding change in the CDS price, ∆CDSpi,n. From
this the portfolio returns of the CDS estimation can be calculated.

Definition 3. Let

PCDSpi,n+1 =

j−1∑
m=1

C(1 +Byi,n + ∆CDSpi,n + ∆rn,i)
−tm +

+(C +Bp)(1 +Byi,n + ∆CDSpi,n + ∆rn,i)
−tj .

retCDSpi,n =
PCDSpi,n+1 − PBsi,n

PBsi,n

vCDSpn =
1

k

k∑
i=1

retCDSpi,n.

Thus PCDSpi,n+1 is the price of bond i if ∆Bsi,n would move precisely as
∆CDSpi,n, i.e. the bond spread changes exactly like the CDS price does.
Since the change in the rate ∆rn,i also affects the bond price, this has to
be included as well. Remember that ∆Byi,n = ∆Bsi,n + ∆ri,n, which de-
termines how the price of the bond will change to trading day n+ 1. In the
above equation ∆Bsi,n has simply been replaced by ∆CDSi,n. One can now
compare vByn, the actual return of the portfolio, to vCDSpn, the return of
the portfolio as predicted by the CDS price changes. Note that this thesis
focuses on 1-day portfolio returns.

The graphs of the actual return, vByn, and the return as estimated by
∆CDSpi,n, vCDSpn, can be seen in Figure 5. They hint that the CDS
estimated returns are less volatile then the actual. QQ-plots of ∆V Byn
against ∆V (CDSpn + rn) and vBy against vCDSp can be found in Figure
12 and 13 in Appendix A. The VaR-estimates of the returns and volatilities
can be seen in Table 4. Both estimates are fitted to a GPD, since these
proved significantly more accurate then their normal counterparts. The
CDS-proxy method underestimates the true risk of the portfolio decreasing
for each percentile, and e.g. predicts a -1.31% loss in 1 day out of 1000,
while the model fitted on actual data expects loss of -1.64%. This makes
sense in connection to Table 3; it is easy to see that if the tails of the bond
spread and the CDS price is largely differently distributed, so will the tail
distribution of the portfolio retuns be. One might expect an even larger
difference in return distributions here, but remember that the change in
rates, which is present in both estimates, also affects the bond price, and
determines a large part of the price changes. The GPD fit diagnostics of the
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Figure 5: Portfolio return graphs. The actual returns in the left graph
and the CDS estimated returns in the right graph. The CDS estimated return
are less volatile.

Table 4: Value at Risk-estimates of portfolio returns 1. VaR-
estimates for the 95%-, 99%- and 99.9% quantile for the 1-day decreases
(in %) of the portfolios actual and CDS-estimated returns together with the
respective volatility (standard dev. of the daily returns). The data have been
fitted to a GPD.

General Pareto distribution
u 95% 99% 99.9% σ

vByn -0.5% -0.48% -0.87% -1.64% 0.32%
vCDSpn -0.47% -0.36% -0.67% -1.31% 0.26%

series can be found in Figure 28 and 29 in Appendix A. In these figures it
is notable that the models fail to capture some of the most extreme values
in both fits.
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4.3 Estimation with regression

The previous sections shows that the theoretical relationshipBsi,n = CDSpi,n
is not true for the given data set, either in nominal terms, fluctuation or in
what risk estimates they produce. This section will attempt to re-model this
relationship with the addition of several market indices. One model will aim
to replicate the actual bond spread curve in the data, and two others will
attempt to model the daily changes of each bond yield, in order to produce
a portfolio risk estimate that lies closer to the estimate fitted to the actual
data.

4.3.1 Fitting the bond spread curve

The first model will try to explain the movement of the average portfolio
bond spread, V Bsn. This is not an attempt to try and predict the next
trading days price in terms of historic market data, but rather an investi-
gation in possible explanations of the recent bond spread behaviour. Since
it will also model a benchmark bond portfolio, it looks for general trends
in for the whole bond market and does not take consideration for specific
sectors. One approach is to keep the expression Bsi,n = CDSpi,n and then
add market indices to fit the discrepnacy between the variables with a linear
regression. However, doing that will lock the 1-to-1 relationship between the
bond spread and CDS price. Rejecting the aforementioned relationship, it
is quite possible that the variables could be modeled as Bsi,n = αCDSpi,n,

Bsi,n = αCDSpβi,n or similar. This thesis will stick to the linear case, and
with market factors described further down, together with the L1-values of
each variable the regression model will be set up as

V Bsn = a0 +
h∑
l=1

al ∗ Il,n +
h∑
l=1

bl ∗ L1Il,n + ah+1 ∗ V CDSpn

+bh+1 ∗ L1V CDSpn + εn (3)

where I1,n, ..., Ih,n is the h different indices at day n, a0 is a constant,
a1, ..., ah+1 are the h + 1 different regression coefficients for the nominal
values, b1, ..., bh+1 the coefficients for the L1-values and εn is the error term
at day n.

The indices that will, together with V CDSpn, be used as regressors are:
EUONIA (3 month), EURIBOR (3 month), EURGovt (3 month) and VIX.

EURIBOR-EUONIA: This is the Euro equivalence to LIBOR-OIS, which
Fontana describes as an indicator of counterparty and funding liquidity risk,
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Table 5: Regression statistics 1. Regression statistics for estimation of
equation 3.

Coeffiicent Std. Err. t p > |t| [95% Conf. int.]

V IX 2.153435 .1082442 19.89 0.000 [1.941049, 2.365821]
EURIBOR 256.8879 56.46038 4.55 0.000 [146.1069, 367.6689]
V CDSp -3.031075 .5827179 -5.20 0.000 [-4.174427, -1.887723]
L1V CDSp 5.1574 .5916893 8.72 0.000 [3.996445, 6.318355]
L1EUONIA -168.3564 7.113707 -23.67 0.000 [-182.3143, -154.3986]
L1EURIBOR -181.6981 54.47376 -3.34 0.001 [-288.5811, -74.81501]
L1EURGovt 84.13324 5.034519 16.71 0.000 [74.255, 94.01147]
Constant 16.48483 2.579258 6.39 0.000 [11.42406, 21.54559]

Statistic

Dependent var V Bs
Observations 1119
F (7, 1111) 1106.85
p > F 0.000
R2 0.875
Adj. R2 0.874
Root MSE 22.00
Correl. with d.v. 0.935

which pre-2007 was almost insignificant. Before the 2008 crisis this index
fluctuated close around 10 bp, but jumped to over 206.9 bp during the crisis.
The EURIBOR is short for Euro Interbank Offered Rate. It is based on the
average rates at which about 50 european banks borrow from each other,
at different maturities. EUONIA stands for The Euro Overnight Index Av-
erage, and is an interest rate swap index calculated on a panel of prime
European banks. In the following regression, these indices will be used as
separate regressors for maximum flexibility.

EURGovt : A fund of numerous different European government bonds and is
somewhat an equivalence to the US T-bill. Fontana mentions the OIS-T-bill
index as capturing ”flight to quality”, i.e. how investors tend to move their
capital to less risky assets in stressful times.

VIX : Volatility Index, a marker of how stressed the market is, and is ac-
cording to Fontana supposed to capture risk premium as well as funding
costs due to deterioration of bond value in a negative basis trade.

The statistics of regression-equation 3 of the above regressors can be found
in Table 5. A regression fit has been run several times, first with all the vari-
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ables in equation 3. Then the variable with highest p > |t| above 0.05 has
been removed, and the regression has been re-run. This is repeated until all
coefficients in the model have a t-statistic that is significant for the α-level
0.05. This thesis will not elaborate on the influences of each variable, but it is
interesting to for example note that the portfolio bond spread V Bsn is pos-
itively influenced by yesterdays CDS price L1V CDSpn, or V CDSpn−1, but
negatively and less substitially influenced by todays CDS price V CDSpn.
This somewhat supports the idea of faster price discovery for CDS prices,
as suggested by Blanco. Overall, most of the significant variables are lagged
values, hinting that bond spreads adjust somewhat slow to market factors.

Further, recall that the correlation between the portfolio bond spread and
CDS price was 0.62, compared to the bond spread-regression correlation of
0.935. The portfolio bond spread, the regression of equation 3 and its εn-
term can be seen in Figure 6. The regression graph manages fairly well to
follow the bond spread graph, and somewhat capture most of the significant
trends. From the curve of εn it is however clear that the financial crisis
present in the first third of the series is rough terrain to model using these
factors. A regression fitted to V Bsn from to the period 2010-01-01 to 2012-
03-23 was made, with a R2 measure of 0.9491, emphasizing that during the
crisis there were explanatory factors unknown to this model that greatly
affected the spread, but that had much less impact on the spread after the
worst crisis period. The correlation of the residuals of day n and day n+ 1
was concluded to be 0.93, which strongly suggest that the error in the model
is systematic and not random noise. This suggestion further indicates that
there are additional, unknown, factors that impact the behaviour of bond
spreads. QQ-plot of the error term εn against its fitted normal distribution
and plot over time can be found in Figures 18 and 19 in Appendix A.

4.3.2 Fit and prediction of ∆By

This section will try to model the daily changes of the bond yields in the
portfolio. This model will then be used to make an risk-estimate of the bond
portfolio much like the one made from CDS prices in section 4.2. However,
the dependent variable will now be ∆Byi,n and the regressors will be the
market indices used in section 4.3.1 together with CDSpi,n. Hence this
model will consider each bond individually, not in the aggregated portfolio
sence as in last subsection. The regression equation will be
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Figure 6: Regression graph. Portfolio bond spread V Bsn, regression
V Regn and error term εn of equation 3. The regression curve follows the
bond spread curve fairly close.

∆Byi,n = a0 +
h∑
l=1

al ∗ Il,n +
h∑
l=1

bl ∗∆Il,n +
h∑
l=1

cl ∗ L1Il,n

+ah+1 ∗ CDSpi,n + bh+1 ∗∆CDSpi,n

+ch+1 ∗ L1CDSpi,n + ah+2 ∗ ri,n + bh+2 ∗∆ri,n

+ch+2 ∗ L1ri,n + εi,n, (4)

with the same notation as in equation 3 except that the ∆-value of each
variable have been added, that each bonds CDS price is used to model each
corresponding difference in bond yield, instead of only using portfolio values
as dependent variable and regressors and that each relevant rate is included.
The purpose of this is of course to capture each bond yields movement in
respect to its CDS price and swap rate.

The statistics of the regression can be seen in Table 6. The variables have
been eliminated in the same manner as in last subsection, eliminating the
least significant variable then re-estimating the model until all regressors
are significant at the α-level of 0.05. Not surprisingly, the variables for CDS
price and rate are the most significant (in terms of |t|), most prominently
∆CDSi,n and ∆ri,n, which makes intuitive sense. The R2-statistic is only
.226, telling that the fit is not very accurate. Neither is the error term
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εi,n normally distributed, again indicating that there are factors outside the
model affecting the bond yield movement. QQ-plot of εi,n against its fitted
normal distribution and plot over time and bond can be found in Figure 20
and 21 in AppendixA.

In order to use this model to make a risk-estimation of the bond portfolio,
the following definition is needed.

Definition 4. Define

∆Regi,n = ∆Byi,n − εi,n

PRegn+1 =

j−1∑
m=1

C(1 +By + ∆Regi,n)−tm +

+(C +Bp)(1 +By + ∆Regi,n)−tj

retRegi,n =
PRegn+1 − PBsi,n

PBsi,n

vRegn =
1

k

k∑
i=1

retRegn. (5)

Hence ∆Regi,n is the regressions fitted value to the bond yield value of bond
i at trading day n, PRegn+1 is the price of the bond at day n+1 if the bond
yield moves identically to the regression value and vRegn is the portfolio
return based on those daily price changes.

The actual return, vByn, the CDS-estimated return, vCDSpn and the re-
turn estimated by equation 4, vRegn, can be seen in Figure 7. The volatility
and VaR-estimates of the time series can be seen in Table 8. In terms of
volatility, the distance between vByn and vRegn is only half that of vByn
and vCDSpn, and vRegn lies closer to vByn in all of the tail percentiles
of the distribution, so the regression is able to improve the VaR-estimation
somewhat. There is however some discrepancy, stemming from the difficulty
in modelling the bond yield behaviour which, as mentioned before, clearly is
influnced by additional factors not present in the model. Furthermore, all of
the GPD-models contain outliers, which makes the most extreme tail fitting
somewhat unreliable. QQ-plots of ∆V Byn against ∆Regn and vBy against
vReg can be found in Figures 14 and 15 together with fit diagnostics of the
GPDs in Figures 28 and 30 in section A.

Finally, this thesis will investigate the regressors predictive power on ∆By.
Namely looking into how much of the bond yield change between trading
day n and n+ 1 that can be explained by the data available at day n. This
regression will use the same variables as in previous model, except that the
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Table 6: Regression statistics 2. Regression statistics for estimation of
equation 4.

Coeffiicent Std. Err. t p > |t| [95% Conf. int.]

EUONIA .2228673 .0266471 8.36 0.000 [.1706372, .2750975]
EURIBOR -.0833007 .0223299 -3.73 0.000 [-.1270688, -.0395326]
EURGovt -.1070137 .0149442 -7.16 0.000 [-.1363055, -.077722]
CDSi,n .6244625 .0281657 22.17 0.000 [.5692558, .6796692]
ri,n .050169 .0122362 4.10 0.000 [.0261852, .0741527]
∆EUONIA .1679764 .0275874 6.09 0.000 [.1139032, .2220496]
∆V IX -.0020766 .0002814 -7.38 0.000 [-.0026282, -.0015249]
∆EURIBOR .327449 .0525091 6.24 0.000 [.2245276, .4303705]
∆EURGovt -.0328348 .0147889 -2.22 0.026 [-.0618221, -.0038476]
∆CDSi,n 1.17591 .0308974 38.06 0.000 [1.115349, 1.236471]
∆ri,n .8014416 .0130102 61.60 0.000 [.7759406, .8269426]
L1EUONIA -.1873719 .0257531 -7.28 0.000 [-.2378497, -.136894]
L1V IX .0009884 .0001009 9.80 0.000 [.0007907, .0011861]
L1EURIBOR .0681029 .0221608 3.07 0.002 [.0246662, .1115396]
L1EURGovt .0909453 .0148487 6.12 0.000 [.0618409, .1200498]
L1CDSi,n -.6214556 .0281807 -22.05 0.000 [-.6766917, -.5662194]
L1ri,n -.0514401 .0122461 -4.20 0.000 [-.0754433, -.027437]
Constant -.0222604 .0038603 -5.77 0.000 [-.0298268, -.0146939]

Statistic

Dependent var ∆Byi,n
Observations 22360
F (17, 22342) 384.41
p > F 0.000
R2 0.226
Adj. R2 0.226
Root MSE .09211
Correl. with d.v. 0.734
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Table 7: Regression statistics 3. Regression statistics for estimation of
equation 6.

Coeffiicent Std. Err. t p > |t| [95% Conf. int.]

EUONIA .037991 .0044279 8.58 0.000 [.029312 .04667]
EURIBOR -.0293789 .0038602 -7.61 0.000 [-.0369452 -.0218126]
V IX .0012334 .0001106 11.15 0.000 [.0010166 .0014501]
ri,n -.0077441 .0011976 -6.47 0.000 [-.0100914 -.0053968]
L1∆EUONIA .3009719 .0294937 10.20 0.000 [.2431623 .3587815]
L1∆EURIBOR .1882576 .0549686 3.42 0.001 [.0805153 .2959999]
L1∆EURGovt -.1641736 .0159716 -10.28 0.000 [-.195479 -.1328681]
L1∆CDSi,n .8982653 .033507 26.81 0.000 [.8325892 .9639413]
L1∆ri,n .0447796 .0139649 3.21 0.001 [.0174073 .0721518]
Constant -.0064847 .0031281 -2.07 0.038 [-.012616 -.0003534]

Statistic

Dependent var ∆Byi,n+1

Observations 22360
F (9, 22350) 384.41
p > F 0.000
R2 0.047
Adj. R2 0.047
Root MSE .1022
Correl. with d.v. 0.217

∆-variables will be replaced by L1∆-variables since data for day n+1 is not
available at day n. As a consequence the L1-variables will be dropped, since
they have perfect colinearity with the variables and their L1∆-versions. The
regression equation will then be

∆Byi,n+1 = a0 +
h∑
l=1

al ∗ Il,n +
h∑
l=1

bl ∗∆Il,n +
h∑
l=1

cl ∗ L1∆Il,n

+ah+1 ∗ CDSpi,n + bh+1 ∗∆CDSpi,n

+ch+1 ∗ L1∆CDSpi,n + ah+2 ∗ ri,n + bh+2 ∗∆ri,n

+ch+2 ∗ L1∆ri,n + εi,n. (6)

The results of estimating the coefficients in equation 6 can be seen in table
7. Now make the following definition.
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Definition 5. Define

∆Predi,n+1 = ∆Byi,n+1 − εi,n

PPredn+1 =

j−1∑
m=1

C(1 +By + ∆Predi,n+1)
−tm +

+(C +Bp)(1 +By + ∆Predi,n+1)
−tj

retPredi,n =
PPredn+1 − PBsi,n

PBsi,n

vPredn =
1

k

k∑
i=1

retPredn. (7)

Hence vPredn is the portfolio return for day n calculated as if each ∆Byi,n+1

had moved identically to the value ∆Predi,n+1, which is to be interpreted
as an prediction of ∆Byi,n+1 conditioned on the known data at day n. A
key difference between this regression and the previous two is that this one
is making a claim about future values, while the others only tried to explain
the present values. They are however all estimed using the full data set.

The plotted graph of vPredn can be seen in Figure 7, and it’s GPD esti-
mated VaR in Table 8. A QQ-plot and plot over time and bond for error
term of the estimation of equation 6 and GPD fit diagnostics can be seen
in Figure 22, 23 and 31 in Appendix A. Interestingly the predicted port-
folio returns come out much more volatile than the original and previously
estimated ones. Also notice that the GPD model fails to capture the most
extreme outliers.

The idea now is that an investor could use an estimation of equation 6 and
together with the present price (and yield) of some bond make an estimation
of the probability distribution of tomorrows price, without any knowledge of
how the price have behaved previously. Only inserting the value ∆Predi,n+1

into Byn will however not be enough, since there is also an error term to
be considered. Hence, to receive a probability distribution of tomorrows
bond price, the investor would have to fit the error term in equation 6 to a
distribution and let a variable, say ξ, have this distribution, and then inject
a realization of this variable into the pricing formula along with ∆Predi,n+1.
This distribution must be identical and independent, and for the purpose of
the regressions significance, also normal. Repeating this simulation a large
number of times with different realizations of ξ, the probability distribution
of tomorrows bond price, and hence the one day VaR, could be estimated.
The equation to be simulated is defined as
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SIMpi,n+1 =

j−1∑
m=1

C(1 +Byi,n + ∆Predi,n+1 + ξ)−tm +

+(C +Bp)(1 +Byi,n + ∆Predi,n+1 + ξ)−tj . (8)

However, the error term of this regression, as well as the previous two re-
gressions, suffer from heteroscedasticity and autocorrelation problems, as
well as non-normality. This violates the basic Gauss-Markov assumptions of
linear regressions and undermines the significance tests of the coefficients,
greatly weakening the usefulness of these estimations. As mentioned before,
these violations likely stem from other factors, not included in the model,
influencing the spread or yield behaviour. It could also hint of endogeneity,
correlation between variables and the error term, or that the linear approach
simply is not feasible for the data.

Figure 7: Portfolio return graphs 2. From top left to bottom right:
the acctual portfolio return vByn, CDS estimated portfolio return vCDSpn,
return from vRegn, and return caulculated by vPredn. vByn and vRegn are
most similar in volatility.
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Table 8: Value at Risk-estimates of portfolio returns 2. VaR-
estimates for the 95%-, 99%- and 99.9% quantile for the 1-day decreases
(in %) of the portfolios actual return, CDS-estimated returns and returns
assessed with the two regressions together with the respective volatility. The
data have been fitted to a GPD with threshold u.

General Pareto distribution
u 95% 99% 99.9% σ

vByn -.5% -.48% -.87% -1.64% .32%
vCDSpn -.47% -.36% -.67% -1.31% .26%
vRegn -.49% -.37% -.70% -1.38% .29%
vPredn -.7% -.62% -.92% -2.25% .4%
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5 Concluding discussion

The purposes of this thesis was to investigate: how the CDS-bond basis
behaved during and after the financial crisis 2008; how an investor lacking
cruicial bond data would have fared during this period using CDS prices
to proxy bond risk; and if this proxy was unsuitable, to look for a better
way to construct such a risk proxy. The purpose of this developed proxy
is to enable an investor to estimate the riskyness of a bond even if it lacks
reliable historical data. By measuring the fluctuations of the proxy, the in-
vestor would able to assess the bonds risk. The idea was also to make it
general in such a way that it would be applied to any bond or portfolio of
bonds.

The data set consisted of a portfolio constructed as a benchmark of US
and European bonds, weighted in such a way that it would represent the
bond market as a whole. To each of these bonds corresponding CDS prices
and swap rates was matched with the bonds diminishing maturity. For the
regression several market indices associated with bond mechanics was added.

First off, it was obvious from figure 4 together with the findings in Fontana
and Finger that the zero difference basis was severly violated, both during
and post crisis. It was largely negative during the crisis years, and however
becoming less negative during the following years, did not return to the pre-
crisis slighly positive basis level.

Second, this thesis aimed not to explicitly explain why this discrepancy oc-
cured, but rather to investigate what impact an investor would face using
CDS prices to proxy bond risk with the data from this period. Figure 5 as
well as Table 3 and 4 reveals that CDS prices during this period do not ex-
perience the same volatility as corresponding bond spreads, and using CDS
prices alone underestimates the risks of holding a bond portfolio.

At this point it is obvious that the previously stable relationship CDSp −
Bs = 0 had to be reinvestigated. This is done with a set of three regressions.

The first one aims simply to reconstruct the portfolio average bond spread
curve of the time period using the portfolio average CDS price and a set of
market indices. This is mainly an exercise to investigate the complexity of
the bond markets mechanics. As it turns out, the estimated model reveals
no simple and satisfying solution. Table 5 shows that a fit with R2 of 0.875
was achieved, with the regression curve having a correlation of 0.935 with
the dependent variable V Bs. However, as revealed in Figure 18 and 19 in
Appendix A, the estimation suffers from non-normality as well as severe
autocorrelation and heteroscedasticity, greatly undermining the significance
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of the model.

A second regression is constructed to fit the observed ∆Byi,n in the data.
Key differences from the first model is that it models the bond yield, hence
including the swap rate, and that it takes each individual bond and CDS
into account. The target is here to find a general pattern of how a bond
fluctuates in relation to rate, CDS price and the mentioned indices. Table 6
reveals a fit with R2 .226, a very weak fit. Figures 20 and 21 unveils that the
error term of this model also suffers from non-normality, heteroscedasticity
and autocorrelation. Again the significance of the model is undermined.
The resulting values of this regression is injected into the bond pricing for-
mula for relevant time and bond, producing portfolio return values that can
then be compared with the return of the actual portfolio and the returns
estimated by the CDS fluctuations. A discussion about these follows further
down.

The third and last regression tries to make a claim about how the data set
can be used to predict future bond price movements, specificly movements
to tomorrows closing price. The model is set up to predict Byi,n+1, with
only the data available at day n. In short, to forsee tomorrows bond yield
with the data available today. The idea is then that an investor can use this
model, together with information about CDS prices, rates, and indices, to
make a forecast about tomorrows price. By also simulating the behaviour of
the models error term (which have be independently, identicaly distributed
for the simulation to be relevant, and normally distributed for the model to
be significant), the investor can asses tomorrows bond price is distributed,
and hence the 1-day-VaR. The strength of this application would be that it
could be estimated without any knowledge of past bond prices, and as such
could be used in assessing risks of bonds lacking reliable pricing data, one of
the concerns this thesis aimed to address. However, as observed in Figure
22 and 23, also this error term suffer from non-normality, heteroskedasticity
and autocorrelation, undermining the significance of the model.

Nontheless the resulting values of the prediction are tried out on the bond
pricing formula as above, and the resulting daily return values of the port-
folio can be seen in together with the results from the other exercises in
Table 8. The results are quite intuitive. The tail of return values assessed
with CDS prices, vCDSpn underestimates the true tail returns, simply as
an result of CDS pricing being less erratic than bond spreads in the data.
The tail of return values assessed by the regression fitting ∆Byi,n, vRegn,
lies closer to the tail values than vCDSpn and about twice as close in terms
of volatility, which is also to be expected, since the CDS values and addi-
tional other variables are used to fit the behaviour of the bond yield. Finally
the tail of returns calculated with the prediction model, vPredn, are more
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volatile than the actual returns, and quite dramatically overestimate the tail
values. On another notice, the tails turns out to be difficult to capture in a
model, even with the GPD approach. As seen in the fit diagnostics in Figure
24 to 31, all models struggle with a few extreme values. However, removing
these outlies hardly changes the differences between return tails in Table 8.

A tiresome line of regression model error terms points to the conclusion that
bond yield and spread behaviour over the time period is quite hard to ex-
plain with the help of only CDS prices and market indices. As mentioned
earlier, a obvious culprit in this is the financial crisis itself, which naturally
makes for troublesome terrain also in modelling. Excluding this part of
the time series makes for better estimation of equation 3. It is however,
as also mentioned, in these times robust models are of most importance.
One conclusion drawn from the models non-conformist error terms could
be that there simply are additional, or other, market factors affecting the
bond price, just that they have not been incorporated in this model. One
approach to improve the modelling could very well be to include additional
factors, of macro nature for example. A very sound first step would however
be to begin with broadening the data set to such a size that bonds could
be divided by industrial sectors. This would be a highly relevant approach,
since bond basis obviously behaves very different depending on their ori-
gin. Modelling in divided sectors could very well reveal much more useful
results. Another notion to consider is the assumption of linearity as briefly
mentioned in section 4.3. The addition of exponentials in the model can
capture nuances that linearity will miss.

Furthermore, before using a model of this kind in application it first needs
extensive out-of-sample testing, which in turn requires a considerably larger
data set as well as a much more diversified portfolio to ensure robustness in
the model.
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A Distribution statistics

Table 9: Normal distribution parameters: The parameters of the
fitted normal distributions of ∆V Bsn, ∆V CDSpn, VBs,n+3 − V Bsn and
VCDSp,n+3 − V CDSpn

µ(mean) σ(standard dev.)

∆V Bsn 0.0543 4.3544
∆V CDSpn 0.0328 1.1633
VBs,n+3 − V Bsn 0.2169 9.6263
VCDSp,n+3 − V CDSpn 0.1309 2.8462

Figure 8: Normal QQ-plot of daily
changes ∆V Bsn

Figure 9: Normal QQ-plot of daily
changes ∆V CDSpn
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Figure 10: Normal QQ-plot of
V Bsn+3

Figure 11: Normal QQ-plot of
V CDSpn+3

Figure 12: QQ-plot of daily changes
∆V Byn and ∆V (CDSpn + rn)

Figure 13: QQ-plot of portfolio re-
turns vByn and vCDSpn.

Figure 14: QQ-plot of daiyl changes
∆V Byn and ∆V Regn.

Figure 15: QQ-plot of portfolio re-
turns vByn and vRegn.
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Figure 16: QQ-plot of daily changes
∆V Byn and ∆V Predn.

Figure 17: QQ-plot of portfolio re-
turns vByn and vPredn.

Figure 18: QQ-plot of the error term
εn in equation 3 against its fitted nor-
mal distribution.

Figure 19: The error term εi,n in equa-
tion 3 plotted over time.

Figure 20: QQ-plot of the error term
εi,n in equation 4 against its fitted nor-
mal distribution.

Figure 21: The error term εi,n in equa-
tion 4 plotted over time and the 20
bonds.

34



Figure 22: QQ-plot of the error term
εi,n in equation 6 against its fitted nor-
mal distribution.

Figure 23: The error term εi,n in equa-
tion 6 plotted over time and the 20
bonds.

Table 10: General Pareto distribution parameters: The parameters
of the fitted GPD of ∆V Bsn, ∆V CDSpn, V Bsn+3 − V Bsn, V CDSpn+3 −
V CDSpn, vBsn, vCDSpn, vRegn and vPredn. Theshold level u have been
chosen using a mean excess plot.

u Exceedence rate σ(scale) ξ(shape)

∆V Bsn 7 bp 3.93% 4.4198 .2945
∆V CDSpn 2 bp 3.49% 1.0679 .2030
V Bsn+3 − V Bsn 6 bp 14.29% 8.9881 .1566
V CDSpn+3 − V CDSpn 2 bp 14.29% 2.4000 .0991
vByn -.5% 4.47% .0022 .1600
vCDSpn -.47% 2.68% .0018 .1990
vRegn -.7% 2.68% .0019 .1854
vPredn -.7% 2.95% .0018 .4817
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Figure 24: GPD fit diagnostic of ∆V Bsn.

Figure 25: GPD fit diagnostic of ∆V CDSpn.
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Figure 26: GPD fit diagnostic of V Bsn+3 − V Bsn .

Figure 27: GPD fit diagnostic of V CDSpn+3 − V CDSpn.
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Figure 28: GPD fit diagnostic of vBy.

Figure 29: GPD fit diagnostic of vCDSp.
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Figure 30: GPD fit diagnostic of vReg.

Figure 31: GPD fit diagnostic of vPred.
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