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Abstract

Cantor sets in R are common examples of sets on which Hausdorff measures can be positive and
finite. However, there exists Cantor sets on which no Hausdorff measure is supported and finite.
The purpose of this thesis is to try to resolve this problem by studying an extension of the Hausdorff
measures µh on R by allowing test functions to depend on the midpoint of the covering intervals
instead of only on the diameter. As a partial result a theorem about the Hausdorff measure of any
regular enough Cantor set, with respect to a chosen test function, is obtained.
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1 Introduction

The purpose of this thesis is to give an extension of the set of measures usually called Hausdorff
measures on R. Throughout this thesis we will investigate this new class of measures as well as the
connection between these measures and the Cantor sets on which they have support.

The connection between Cantor sets and Hausdorff measures associated to some testfunction h(δ)

have been investigated by several authors. This has been done with the purpose of categorising
the set of all Cantor sets according to which Hausdorff measures, in their classical sense, give them
nonzero and finite measure ([4] and [3]). This has also been done in order to be able to estimate
or calculate a Hausdorff measure of some specific Cantor set ([2] and [8]). In both these cases, the
tool which Hausdorff measures constitute has the drawback that for many Cantor sets there exists
no Hausdorff measure which gives it a finite and positive measure. Furthermore, for many Cantor
sets there exists no Hausdorff measure whose restriction to the Cantor set is absolutely continuous
to the Cantor measure of the set, or equivalently, is a mass distribution on the set. The extension
considered in this thesis aims to resolve these issues by considering a larger class of measures.

The contents of this thesis will be structured as follows:

In the next section the basic concepts of this thesis will be defined.

In section 3 we define sets Ch of Cantor sets and give bounds for µh(C) for all C ∈ Ch and all
nice enough test functions h. Given further restrictions on h, we prove a theorem which can
be used to calculate the Hausdorff measure of any given regular enough Cantor set. We then
use this theorem to calculate the Hausdorff measure of three Cantor sets studied in [8] and
[2].

In section 4 we consider the Hausdorff measures associated to test functions h of exponential
type and show that Ch is nonempty for such test functions. We also show that the assumptions
of the theorems in section 3 generally hold in this case.

In section 5 we show that some of the properties which are known to hold for ordinary Haus-
dorff measures also holds for the type of Hausdorff measures considered in this thesis.
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2 Definitions

2.1 Hausdorff measures

Felix Hausdorff, in his paper Dimension und äußeres Maß from 1918, as translated by Sawhill,
Edgar and Olson in the book Classics on Fractals [5], defined the following class of measures:

Definition 2.1 (theorem): Let U be a system of bounded sets U in a q-dimensional space having
the property that one can cover any set A with an at most countable number of sets U from U
having arbitrarily small diameters |U |. Let h : U → [0,∞) be a set function. Denote by

mδ
U,h(A) = inf

∑
h(Un)

where the infinum runs over all countable subsets {Un} of U such that ∪Un covers A and |Un| < δ

for all n. If U is the Borel sets then µU,h(A) = limδ→0m
δ
U,h(A) is a measure. If h(U) is continuous

or h(U) = h(Ū), then µU,h is an outer measure.

From this quite general definition, a common restriction is the class of Hausdorff measures which
one gets by considering set functions dependent only of the diameter of the set. It is also often
required that the decrease of the set function is bounded is the following sense.

Definition 2.2: An increasing function h : R+ → R+ is doubling if there exists a constant C such
that C · h(s) > h(2s) for all s > 0.

Using definition 2.2, we can formulate to more common definition of Hausdorff measures, using |E|
to denote the diameter of a set E:

Definition 2.3: Let h : R+ → R+ be a continuous, increasing and doubling function such that
h(0) = 0. Then the h-Hausdorff measure of the set E is defined by

µh(E) = lim inf
δ→0

{∑
h(|Ej |), where {Ej} is a δ-covering of E

}
The elements in the sequence; inf{

∑
h(|Ej |), where {Ej} is a δ-covering of E}, will be denoted

by µδh. The function h will be called the test function associated with the measure µh. Additionally,
any function h with these properties will be called a test function.

When the sets we want to measure lie in R, which will be our primary focus of study, we get an
equivalent definition if considering only coverings by intervals.

We will use I(w, δ) to denote the interval with midpoint w and diameter δ. Using this notation
we can formulate the definition of Hausdorff measures with which we will be concerned in this
thesis.
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Definition 2.4: Let h : R × R+ → R+ be a continuous function with limδ→0 h(w, δ) = 0 for all
w ∈ [0, 1] which is increasing and doubling in the second argument. Then the Hausdorff measure
of the set E ⊆ R with respect to the test function h is defined by

µh(E) = lim
δ→0

inf
{∑

h(wk, δk), where {I(wk, δk)} is a δ-covering of E
}

The function h will be called the test function associated with the measure µh and µh will be called
the Hausdorff measure associated with the test function h.

It can be shown ([10]) that the resulting measure does not depend on whether the sets considered
in the covering in the definition above is open or closed. In this thesis we will mainly consider
coverings by closed sets.

If the test function h is of the form h(w, δ) = δα(w) and there is no risk of confusion, we will write
µh = mα(w).

2.2 Cantor sets

A Cantor set in R is a compact, perfect and totally disconnected set of Lebesgue measure zero. A
more constructive, but equivalent, definition is stated below. To formulate this definition, we need
the following notations:

If j is a binary word of finite or infinite length, we write j|k, where k ∈ N, to denote the word
consisting of the first k digits of j . Similarly, j| − k will be used to denote the binary word which
is the binary word j with the last k digits removed. Also, 0m will be used throughout this text to
denote the binary word which consists of m zeros. 1m is defined analogously. When j1 and j2 are
two binary words, j1j2 will denote their concatenation.

We now proceed to our definition of a Cantor set.

Definition 2.5: Let {Ij}j∈{0,1}n, n=0,1,2,3,... be a sequence of closed intervals such that for all
binary words j

1. Ij is non-empty

2. Ij0 ∩ Ij1 = ∅

3. Ij0, Ij1 ⊆ Ij and

4. Ij0 and Ij have the same left endpoint and Ij1 and Ij have the same right endpoint.

Set C(n) =
n⋂
k=1

⋃
j∈{0,1}k Ij and C = lim

n→∞
C(n). This limit is called the Cantor set associated with

the sequence {Ij}.
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Ij

Ij0 Ij1

Ij00 Ij01 Ij10 Ij11

The intervals Ij appearing in the construction of a Cantor set C will be called the basic intervals
associated with C. Moreover, the intervals whose left endpoint is the left endpoint of a basic interval
and whose right endpoint is a the right endpoint of a basic interval will be called the near basic
intervals associated with C.

We will now state a couple of definitions, all equivalent to definition 2.5.

Denote for any interval I and any c ∈ (0, 1) by c ·L I the leftmost c-proportion of the set I, and
analogously by c ·R I the rightmost c-proportion of the set I. Note that this implies that 1 ·L I = I,
1 ·R I = I, 0 ·L I = ∅ and 0 ·R I = ∅.

Definition 2.6: Let {cj}j∈{0,1}n, n=1,2,3,... be a sequence of strictly positive numbers such that
0 < cj0 + cj1 < 1 for all binary words j and let I∅ be a closed interval.

For any binary word j set Ij0 = cj0 ·L Ij and Ij1 = cj1 ·R Ij .

Define C(n) =
n⋂
k=1

⋃
j∈{0,1}k Ij and C = lim

n→∞
C(n). This limit is called the Cantor set associated

with the sequence {cj} and the interval I∅. If I∅ = [0, 1], we say that C is the Cantor set associated
with the sequence {cj}.

Where the last definitions defined a Cantor set more or less directly through the intervals kept
at each step of the construction, the following definitions instead defines it through the intervals
removed at each step. The idea is that the set of all intervals which will be removed from a specific
basic interval uniquely defines the basic interval.

Definition 2.7: Let {Gj}j∈{0,1}n, n=0,1,2,3,... be a sequence of disjoint open intervals such that the
closure of ∪k∈{0,1}n, n=1,2,3,...Gjk is an interval for any binary word j.

Let Ij =
⋃
k∈{0,1}n, n=1,2,3,...Gjk, set C

(n) =
n⋂
k=1

⋃
j∈{0,1}k Ij and C = lim

n→∞
C(n). This limit is

called the Cantor set associated with the sequence {Gj}.
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Ij

Ij0 Ij1

Ij00 Ij01 Ij10 Ij11

GjGj0 Gj1

The intervals Gj in the definition above will be called the gaps associated with a Cantor set.

As in the definition above the next definition defines a Cantor set through the intervals in its
complement. However, this definition specifies only the length of these intervals as their exact
position is uniquely determined by the position of the leftmost point in the Cantor set.

Definition 2.8: Let {|Gj |}j∈{0,1}n, n=0,1,2,3,... be a sequence of positive real numbers such that∑
|Gj | is finite and let a∅ be any real number. Let < be the lexicographical ordering of binary

words. Let 

b∅ = a∅ +
∑
|Gj |

aj0 = aj

aj1 = a∅ +
∑
j′<j1 |Gj′ |

bj0 = aj1 − |Gj |

bj1 = bj

and set Ij = [aj , bj ]. Define C(n) =
n⋂
k=1

⋃
j∈{0,1}k Ij and C = lim

n→∞
C(n). This limit is called the

Cantor set associated with the sequence {|Gj |} and the interval I∅ = [a∅, b∅]. If the exact position
of the Cantor set is of no importance we say that C is the Cantor set associated with the sequence
{|Gj |}.

Remark 2.9: In general, we will let aj denote the left endpoint and bj denote the right endpoint of
a basic interval Ij associated with some Cantor set so that Ij = [aj , bj ]. Similarly, we will use wj
to denote the midpoint and δj to denote the diameter of a basic interval Ij so that Ij = I(wj , δj).

Remark 2.10: In this thesis we will almost exclusively use binary words to enumerate the elements of
the construction of a Cantor set. However, two other commonly used notations should be mentioned:

Some authors write Ikl to represent the lth interval in the kth construction step. If j is a binary
word and we let j10 be the integer we get if converting j when considered as a binary number to
base 10, we can convert between the two notations by Ij = I

|j|
j10

. Similarly cj = c
|j|
j10

and Gj = G
|j|
j10

.
We will only use this notation in example 3.8 and example 3.9.

Another common notation is to enumerate the intervals by natural numbers instead of binary
words. We can convert between notations by Ij = I2|j|+j10 . Similarly Ij = I2|j|+j10 , cj = c2|j|+j10
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and Gj = G2|j|+j10 .

We write C ∼ {cj} when C is the unique Cantor set associated with a sequence of proportions {cj}.
Similarly we write C ∼ {Ij}, C ∼ {Gj} and C ∼ {|Gj |}. We use the same symbol to indicate that
two sequences are associated with the same Cantor set; e.g. {Ij} ∼ {Gj}.

An interval Ij will be called older than another interval Ik if Ij appear in an earlier step of the
construction of C than Ik, i.e. if |j| < |k|. Analogously, we say that a gap Gj1 is older than a gap
Gj1 if |j1| < |j2|.

To each Cantor set C ∼ {Ij} there is an associated measure:

Definition 2.11: Let C ∼ {Ij} be any Cantor set. The unique probability measure νp satisfying
ν(Ij0) = p ν(Ij) and ν(Ij1) = (1 − p) ν(Ij) for all binary words j is called the p-Cantor measure
associated with the Cantor set C.

To simplify notations, we write ν instead of νp when p = 1
2 and say that ν is the Cantor measure

associated with C.

That the p-Cantor measure is a well defined measure follows by proposition 1.7 in [7].

Example 2.12: One of the most frequently mentioned Cantor sets C is the so called ternary
Cantor set; the Cantor set associated with the sequence {cj} for which cj = c = 1

3 for all binary
words j. The Cantor measure associated with this set is the restriction of the Hausdorff measure
m log 2

log 3
= m log 2

− log c
to C. Analogous results exists for all constant sequences {cj} where cj = c for

some c ∈ (0, 0.5).

For a test function h, a Cantor set C is said to be h-regular if µh is finite and supported on C.
A measure which, given a set E, is finite and supported on E is called a mass distribution on E.
A Cantor set C is said to be singledimensional if there exists a test function h(δ) such that C is
h-regular.

2.3 Definitions of dimensions

Definition 2.13: For any setE there exists a unique positive number α such thatmβ(E) = 0 for all
β > α, and mβ(E) =∞ for all β < α. This unique number will be called the Hausdorff dimension
of the set E, and will be denoted by dimH(E).

Note that a set E having Hausdorff dimension α does not guarantee neither that mα is a mass
distribution on E nor that there exists any test function h(ξ, δ) such that µh is a mass distribution
on E, even though this is true for certain sets. An example a set for which this is true is the Cantor
set C ∼ {cj}, where cj = c for all binary words j, which has Hausdorff dimension α = − log 2

log c and
mα(Cα) = 1.
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The Hausdorff dimension of a set could be described as a measure of how dense the set is. Such
densities could, however, be non-constant on the set. A simple example of such a set is the set
{0}∪[1, 2]. The set {0} has Hausdorff dimension zero whereas the set [1, 2] has Hausdorff dimension
one. The Hausdorff dimension of their union would, however, be one; i.e. the largest Hausdorff
measure obtained on any of its subsets. To better be able to describe the dimension of a set, we
would thus need a more local definition of the dimension of a set. To be able to state one such
common definition we first need to make the following observation:

Observation 2.14: Let C be a Cantor set and ξ ∈ C. Then there exists a unique binary sequence j
such that ξ ∈ Ij|k for all k ∈ N. If ξ ∈ Ij|k for all k ∈ N we write ξ = ξj .

Definition 2.15: Let C be a Cantor set and let ξ = ξj be a point in C. The local Hausdorff
dimension of C at ξ is the unique number α such that

lim
k→∞

n∏
k=0

(
cβ(j|k)0 + cβ(j|k)1

)
=

∞ if β < α

0 if β > α

The local Hausdorff dimension at ξ ∈ C will be denoted by dim[C](ξ).

To be able to assign a dimension to each measure, which tells something about the dimension of
the sets they measure, we will use the following definition:

Definition 2.16: Let ν be a mass distribution on a set E and let w ∈ E. Then the local dimension
of ν at w in is defined by

d[ν](w) = lim sup
δ→0

log ν (I(w, δ))

log δ

Note that neither the local dimension of a measure, nor the local Hausdorff dimension of a set, is
a fixed number but rather a function in w ∈ C.
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3 Multidimensional Cantor sets in the support of Hausdorff
measures

In this section we will define a set Ch of Cantor sets for any test function h. We will then show
that given some restrictions of h, µh is a mass distribution on all C ∈ Ch. We will also show that
given some additional assumptions on the test function, the restriction of µh to any set C in Ch is
equivalent to the Cantor measure on C.

3.1 Cantor sets associated with a test function

In this section we will define the sets Ch and then continue by giving our first upper limit of the
Hausdorff measure µh of any C ∈ Ch. In general, due to the infinum in the definition of Hausdorff
measures, it is much easier to find an upper limit of the Hausdorff measure of a set C than a lower
limit, and we will later see that the upper limit given below is sharp in most cases, which our first
lower limit will not be.

Definition 3.1: Let C ∼ {Ij} be any Cantor set and let h be a test function. If

h(Ij) = ν(Ij) = 2−|j|

for all long enough binary words j we say C is associated with h and write C ∈ Ch. If the test
function is of the form h(w, δ) = δα(w), and there is no risk of misunderstanding, we write Cα(w)

instead of Ch.

Note that the test function is not uniquely determined by a Cantor set C, since the set neither
determines the value of h for intervals which are not basic intervals associated with C nor for any
large δ.

In general, it is not obvious that there exist any Cantor set C ∈ Ch. When the test function h

depends on δ concavity alone is enough to guarantee the existence of Cantor sets C ∈ Ch. The
corresponding condition, given a general test function h(w, δ), is that

h(w − t0, 2t0) + h(w + t1, 2t1) ≥ h(w, 2t0 + 2t1)

for all w, t0 and t1. This is equivalent of saying that the test function h, when considered as an
interval function, is subadditive. However, as in the singledimensional case, this is a very much
stronger condition than needed. The question of whether or not C is nonempty will be dealt with
in detail in the special case of test functions on the form h(w, δ) = δα(w) in the next section.

Lemma 3.2: Let C ∼ {Ij} be any Cantor set and let h be any test function defined on the basic
intervals associated with C such that h(Ij) = ν(Ij) for any basic interval Ij. Then µh(E∩C) ≤ ν(E)
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for any interval E.

Proof. For each δ > 0 we can find n ∈ N such that |Ij | < δ for all binary words j of length |j| ≥ n.
Then {Ij}|j|=n is a disjoint δ-covering of C, and thus

µδh(E ∩ C) ≤
∑

j∈{0,1}n and E∩Ij 6=∅

h(Ij) =
∑

j∈{0,1}n and E∩Ij 6=∅

ν(Ij) =

ν(
⋃

j∈{0,1}n and E∩Ij 6=∅

Ij) ≤ ν(E) +
∑

j∈{0,1}n and ∂E∩Ij 6=∅

ν(Ij)

As at most two basic intervals from any step can contain the endpoints of E and ν(Ij) = 2−|j| for
any basic interval, the last sum can be bounded from above by 2 · 2−|j| = 2 · 2−n. We thus get

µδh(E ∩ C) ≤ ν(E) +
∑

j∈{0,1}n and ∂E∩Ij 6=∅

ν(Ij) ≤ ν(E) + 2 · 2−n

By letting δ → 0 we get µh(E ∩ C) ≤ ν(E).

3.2 The mass distribution principle

Several proofs in this and the succeeding sections will use what is called the mass distribution
principle:

The mass distribution principle: Let ν be a mass distribution on a set E, h(ξ, δ) a test
function and D, δ0 > 0 positive numbers such that

h (I) ≥ D · ν (I)

for all intervals I with diameter less that δ0 contained in (1 + δ0)E. Then

µh (E ∩ C) ≥ D · ν (E)

Proof of the mass distribution principle. Fix δ < δ0 and let {Ik}k∈K be an arbitrarily chosen δ-
covering of E. Then ∑

k∈K

h (Ik) ≥
∑
k∈K

D · ν (Ik) ≥ D · ν (E)

since E ⊂
⋃
k∈K Ik. By letting δ → 0, we get µh (E ∩ C) ≥ D · ν (E).

3.3 Hausdorff measures as mass distributions on Cantor sets

Given that Ch is non-empty and h is sufficiently nice, the following theorem shows that µh is a
mass distribution on any C ∈ Ch with cj ≤ 0.5 for all binary words j.
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Theorem 3.3: Let h be any test function which is increasing as an interval function for all small
enough intervals and let D be the doubling constant associated with h. Let C ∼ {cj} ∈ Ch and
assume cj ≤ 0.5 . Then µh is a mass distribution on C. Further, for any interval J ⊆ [0, 1],

1
2D2 · ν(J) ≤ µh(J ∩ C) ≤ ν(J), where ν is the Cantor measure associated with C.

Proof. Note first that the upper limit of µh(J ∩ C) follows directly from lemma 3.2. The claim of
the lower limit will be proved using the mass distribution principle. We thus need to show that
h(I) ≥ 1

2D2 ν(I) for all small enough intervals I.

Let ∆ > 0 be small enough for h to be increasing for all intervals with diameter less than 2∆ and
to have h(Ij) = ν(Ij) for all basic intervals associated with C with diameter less than 2∆. Pick
any open interval I ⊂ [0, 1] with diameter smaller that ∆. We may assume that I ∩ C 6= ∅, since
otherwise h(I) > 0 = ν(I) in which case we are finished. Since h is increasing, we can also assume
that I is a near basic interval.

Since I ⊆ [0, 1] = I∅, there exists at least one basic interval in which I is contained. Since any two
basic intervals are either disjoint or one is a subset of the other, and two disjoint intervals cannot
both be supersets of I, the basic intervals containing I are totally ordered by inclusion, i.e. form
a sequence [0, 1] ⊃ Ij1 ,⊃ Ij2 ⊃ Ijk ⊃ · · ·. Since I have strictly positive length, and the length of
the basic intervals tend to zero as k →∞, this sequence must eventually stop. Thus there exists a
unique shortest basic interval Ij containing I. Note that since I ⊆ Ij we get that

I ∩ C = Ij ∩ (I ∩ C) = (Ij0 ∪ Ij1) ∩ (I ∩ C)

Now let J1 be the shortest basic interval such that Ij0 ∩ (I ∩ C) = J1 ∩ (I ∩ C) and J2 be the
shortest basic interval such that Ij1 ∩ (I ∩ C) = J2 ∩ (I ∩ C).

That these intervals exist and are unique follows by analogous reasoning as above and are thus
omitted here.

We then have
I ∩ C ⊆ Ij ∩ C = (Ij0 ∪ Ij1) ∩ C = (J1 ∪ J2) ∩ C

We will now argue that J1 ∪ J2 ⊆ 4I.

Ij

I

J1

J2

Suppose that J1 6⊆ I and note that J1 is the leftmost of J1 and J2. Since cj < 0.5 for all binary
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words j and J1 is the shortest interval whose union with J2 contain I ∩ C, the midpoint and the
right endpoint of J1 lies in I. This implies that J1 ⊆ 4I. Since analogous arguments hold for J2,
we also get J2 ⊆ 4I.

Since h is increasing for all small intervals, we have h(4I) ≥ h(J1) and h(4I) ≥ h(J1) which directly
implies

2 · h(4I) ≥ h(J1) + h(J2)

Since D · h(I) ≥ h(2I), we get
2D2 · h(I) ≥ h(J1) + h(J2)

Let ν be the Cantor measure associated with C. As h(Ij) = ν(Ij) for all basic intervals contained
in 2I; h(J1) = ν(J1) and h(J2) = ν(J2). Thus

2D2 · h(I) ≥ h(J1) + h(J2) = ν(J1) + ν(J2) = ν(J1 ∪ J2) ≥ ν(I ∩ C) = ν(I)

since I ∩ C ⊆ J1 ∪ J2. This proves the theorem.

3.4 A result concerning the measure of Cantor sets

We will now prove the main theorem om this section, which is concerned with finding the exact
measure of a Cantor set.

Theorem 3.4: Let J ⊆ [0, 1] be any closed interval and let ε > 0 be a small positive number.

Let h be a test function. For any fixed w and δ, set f(t0, t1) = h(w − t0 + t1, δ + 2t0 + 2t1) and
assume ∂f

∂t0
≥ 0, ∂f

∂t1
≥ 0, ∂2f

∂t0∂t1
≤ 0 and ∂2f

∂t21
≤ 0 for all small enough δ, t0 and t1 with I(w − t0 +

t1, δ + 2t0 + 2t1) ⊆ (1 + ε) · J

Let C ∼ {Ij} be a Cantor set and assume that there exists two positive numbers q and r such that

q · ν(Ij) ≤ h(Ij) ≤ r · ν(Ij)

for all small enough basic intervals Ij contained in (1 + ε) · J for some ε > 0. Further assume

ρ · ν(Ij1) ≥ ν(ρ ·L (Gj ∪ Ij1)) (1)

for all long enough binary words j with Ij ⊆ (1 + ε) · J and all ρ ∈ [0, 1]. Then(
q − (r − q)

)
· ν(J) ≤ µh(J ∩ C) ≤ r · ν(J) (2)

Proof. For the upper bound on µh(J ∩C), consider the covering of J ∩C with the basic intervals
Ij from some fixed step k of the construction which intersects J , i.e. all basic intervals Ij for which
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Ij ∩ J 6= ∅ and |j| = k. Then

µh(J ∩ C) ≤ lim
k→∞

∑
|j|=k
Ij∩J 6=∅

h(Ij) ≤ lim
k→∞

∑
|j|=k
Ij∩J 6=∅

r · ν(Ij) =

lim
k→∞

r · ν

 ⋃
|j|=k
Ij∩J 6=∅

Ij

 ≤ lim
k→∞

r · ν (J) + r · ν

 ⋃
|j|=k

Ij∩∂J 6=∅

Ij


As at most two basic intervals from any fixed step k of the construction can intersect ∂J , and
ν(Ij) = 2−|j| for any basic interval, we get

µh(J ∩ C) ≤ lim
k→∞

r · ν (J) + r · ν
( ⋃
|j|=k

Ij∩∂J 6=∅

Ij

)
≤ lim
k→∞

r · ν (J) + r · 2 · 2−k = r · ν (J)

We will now show that the lower limit in equation (2) holds. To show that µh(J ∩ C) ≥
(
q − (r −

q)
)
·ν(J) we will use the mass distribution principle, i.e. we will show that h(I) ≥

(
q−(r−q)

)
·ν(I)

for all interval I ⊆ J(1 + ε) with |I| < ∆ for some small ∆ > 0.

Pick ∆ small enough for the assumptions of the theorem to hold when δ + 2t0 + 2t1 < ∆.

Since h(I) is increasing, it is enough to consider the case when I is a near basic interval. Let I be
any near basic interval associated with C with |I| < ∆.

Let Gj be the oldest gap which is a subset of I. Since Gj is the oldest gap in I and I is a near
basic interval, I ⊆ Ij . Set J1 = I ∩ Ij0 and J2 = I ∩ Ij1 and note that I ∩ C ⊆ J1 ∪ J2.

I

Ij0 Ij1

J1 J2

2t∗ Gj

Figure 1: The image above shows some of the elements of the proof. The black parts inside the light
grey intervals are some of the basic intervals of the Cantor set. Note that the endpoints
of I coincide with the endpoints of basic intervals and also that I must be contained in Ij
since if it was not, Gj would not be the oldest gap in I. Note also that the right endpoint
of Ij0 and J1 coincide.

Let w be the midpoint of J1 and δ = |J1| and consider the function

f(t0, t1) = h(w − t0 + t1, δ + 2t0 + 2t1)
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Since J1 = I ∩ Ij0 and Ij0 have their right end point in common and J1 ⊆ Ij0 there exists a unique
number t∗ ∈ R+ such that I(w − t∗, δ + 2t∗) = Ij0.

Set f(t) = f(0, t2 ) and f∗(t) = f(t∗,
t
2 ). Then

f∗(t) = f(t∗,
t

2
) = h(w − t∗ +

t

2
, δ + 2t∗ + t) = h(wj0 +

t

2
, |Ij0|+ t)

which implies f∗(0) = h(Ij0) = h(Ij1) and f∗(|Gj |+ |Ij1|) = h(Ij). Similarly, f(0) = h(J1).

Since ∂
∂t1
f(t0, t1) decreases as t0 increases for all t1 by assumption, we have f ′∗(t) ≤ f ′(t) for all t

which in turn implies f(t)− f(0) ≥ f∗(t)− f∗(0) for all t.

Set T = |Gj |+ |Jj1|. Then

f∗(T )− f∗(0) = h(Ij)− h(Ij0) ≥

q · ν(Ij)− r · ν(Ij0) = q ·
(
ν(Ij)− ν(Ij0)

)
− (r − q) · ν(Ij0) =

q · ν(Ij1)− (r − q) · ν(Ij1) =
(
q − (r − q)

)
· ν(Ij1)

(3)

Since ∂2f
∂t21
≤ 0 and ∂f

∂t1
≥ by assumption, f ′∗(t) is positive and decreasing. Using this we get

f(ρT )− f(0) =

∫ ρT

0

f ′(t) dt ≥
∫ ρT

0

f ′∗(t) dt
f ′∗decreasing

≥

ρ ·
(
f∗(T )− f∗(0)

) (3)

≥
(
q − (r − q)

)
· ρ · ν(Ij1)

(4)

for any ρ ∈ [0, 1]. Now fix ρ ∈ [0, 1] as the unique number such that ρT = |Gj | + |J2|. Then
ρ ·L (Gj ∪ Ij1) = Gj ∪ J2. Using equation (1) we then get

h(I) = f(ρ)
(4)

≥ f(0) +
(
q − (r − q)

)
· ρ · ν(Ij1) = h(J1) +

(
q − (r − q)

)
· ρ · ν(Ij1)

(1)

≥

h(J1) +
(
q − (r − q)

)
· ν(ρ ·L (Gj ∪ Ij1)) = h(J1) +

(
q − (r − q)

)
· ν(Gj ∪ J2) =

h(J1) +
(
q − (r − q)

)
· ν(J2)

Since we can repeat this procedure with J1 instead of I arbitrary many times and h(I) → 0 as
|I| → 0 we can conclude that

h(I) ≥
(
q − (r − q)

)
· ν(I)

This proves the theorem.

Remark 3.5: The symmetric theorem also holds, i.e. we can assume ∂2f
∂w2 ≤ 0 and ρ · ν(Ij0) ≥

ν(ρ ·R (Gj ∪ Ij0)) instead of assuming ∂2f
∂t2 ≤ 0 and ρ · ν(Ij1) ≥ ν(ρ ·L (Gj ∪ Ij1)).

Remark 3.6: When h(w, δ) = h(δ), the conditions of theorem 3.4 is equivalent to h being increasing
and concave.
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The only assumption of theorem 3.4 which is not straightforward to verify given a Cantor set C is
equation (1), which states that we must have

ρ · ν(Ij1) ≥ ν(ρ ·L (Gj ∪ Ij1))

for all long enough binary words j and all ρ ∈ [0, 1]. Geometrically this mean that a translated
copy of a part of the cumulative distribution function of ν must lie below a certain straight line.
The following proposition simplifies the verification of this property.

Proposition 3.7: Let C ∼ {Ij} ∼ {Gj} be a Cantor set. Then the following claims are equivalent:

(i) For all long enough binary words j and all ρ ∈ [0, 1]

ν
(
ρ ·L (Gj ∪ Ij1)

)
≤ ρ · ν(Ij1) (5)

(ii) For all long enough binary words j and all m ∈ N

1

2m
≤ |Gj |+ |Ij10

m |
|Gj |+ |Ij1|

Proof. We first show that (i) implies (ii).

Let j be any binary word which is long enough for (i) to hold and let m ∈ N. Set ρ =
|Gj |+|Ij10m |
|Gj |+|Ij1|

such that
ρ ·L (Gj ∪ Ij1) =

|Gj |+ |Ij10m |
|Gj |+ |Ij1|

·L (Gj ∪ Ij1) = Gj ∪ Ij10m

Then
ν
(
ρ ·L (Gj ∪ Ij1)

)
= ν (Gj ∪ Ij10m) = ν (Ij10m) =

1

2m
ν (Ij1) (6)

by the definition of the Cantor measure. Using (i) we get

1

2m
ν (Ij1)

(6)
= ν

(
ρ ·L (Gj ∪ Ij1)

) (i)

≤ ρ · ν(Ij1) =
|Gj |+ |Ij10m |
|Gj |+ |Ij1|

· ν(Ij1)

Dividing by ν(Ij1) gives us (ii).

We will now show that the reverse implication holds, i.e. that (ii) implies (i).

To show that (i) holds, we need to show that, given (ii), the graph in figure 2 corresponding to
ν
(
ρ ·L (Gj ∪ Ij1)

)
lies below the line ρ · ν(Ij1) for any large enough j.
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ρ · ν(Ij1)

ν(ρ ·L (Gj ∪ Ij1))

ρ
1

ν(Ij1)

ν(Ij1)
2

Figure 2: The setting for the last part of the proof of proposition 3.7.

To do this, fix any binary word j which is long enough for (ii) to hold and pick any ρ0 ∈ [0, 1].
Then there is a unique point w ∈ Gj ∪ Ij1 such that w is the right endpoint of ρ0 ·L (Gj ∪ Ij1).

If ρ = 0, then both sides of equation (5) are equal to zero. If ρ = 1, then both sides of equation (5)
equal ν(Ij1). If w ∈ Gj , then the left hand side of equation (5) is zero and the right hand side is
positive. Thus in all these three cases, equation (5) holds, and we can thus assume w ∈ I◦j1.

We will consider three different cases which together cover all remaining possibilities:

1. w = bj1l for some binary word l

2. w ∈ Gj1l for some binary word l

3. w = limk→∞ bj1(l|k) for some binary sequence l

We will begin by dealing with the last two cases by showing that (ii) implies (i) in these cases given
that (ii) implies (i) in the first case, and then end by showing that (ii) implies (i) in the first case:

Case 2: In this case we have w ∈ Gj1l for some binary word l. Then bj1l0 is the point in C lying
closest to w to the left. Let ρj1l0 be the unique point in [0, ρ0] such that the right endpoint of
ρj1l0 ·L (Gj ∪ Ij1) is bj1l0. By the first case;

ν
(
ρj1l0 ·L (Gj ∪ Ij1)

)
≤ ρj1l0 · ν(Ij1)

Since the right hand side of equation (5) is constant for ρ between ρj1l0 and ρ0 and the left hand
side of equation (5) is increasing in ρ, we get

ν
(
ρ0 ·L (Gj ∪ Ij1)

)
= ν

(
ρj1l0 ·L (Gj ∪ Ij1)

)
≤ ρj1l0 · ν (Ij1) ≤ ρ0 · ν(Ij1)
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Thus the second case follows from the first case.

Case 3: Let {bj1(l|k)}k=1,2,3,... be any sequence with bj1(l|k) → w as k → ∞. Let ρj1(l|k) be the
unique point in [0, 1] such that bj1(l|k) is the right endpoint of ρj1(l|k) ·L (Gj ∪ Ij1). Then by the
first case, for all k ∈ N\{0}, we have

ν
(
ρj1(l|k) ·L (Gj ∪ Ij1)

)
≤ ρj1(l|k) · ν(Ij1) (7)

As ρj1(l|k) → ρ0 as k →∞ and both sides of equation (7) are continuous in ρ, we get

ν
(
ρ0 ·L (Gj ∪ Ij1)

)
≤ ρ0 · ν(Ij1)

We now only need to show that (i) follows from (ii) in the first case.

During the rest of the proof we will use ρ(j2)j1
to denote the unique number in [0, 1] for which bj1 is

the right endpoint of ρ(j2)j1
·L (Gj2 ∪ Ij21) for any binary words j1 and j2 where j2 = j1|k for some

k ∈ N.

Case 1: Now again let j be a fixed binary word. Let l̂ be any binary word and consider ρ = ρ
(j)

j1l̂
.

If l̂ is the empty word then ρ = 1 and we get equality in equation (7), so we can assume l̂ 6= ∅.

Since bj1l̂ = bj1l̂1k for any k ∈ N and any binary word l̂ we can assume that l̂ ends with at least
one zero and write l̂ = l0k for some binary word l which ends with a one and some k ∈ N. We will
now use induction on the length of l to show that equation (5) holds for ρ(j)

j1l0k
for any binary word

l which is either empty or ends with a one and any k ∈ N\{0}.

To finish the proof in this case, and thus to finish the theorem, we need to show that

ν
(
ρ
(j)

j1l0k
·L (Gj ∪ Ij1)

)
≤ ρ(j)

j1l0k
· ν(Ij1) (8)

for any long enough binary word j, any binary word k ending with a one and any k ∈ N.

Suppose first that l = ∅ so that |l| = 0. Then by equation (8) we have

1

2k
≤
|Gj |+ |Ij10k |
|Gj |+ |Ij1|

= ρ
(j)

j10k

and thus

ν
(
ρ
(j)

j10k
· (Gj ∪ Ij1)

)
= ν (Gj ∪ Ij10k) = ν (Ij10k) =

1

2k
· ν (Ij1)

(ii)

≤ ρ
(j)

j10k
· ν (Ij1)

i.e. equation (7) holds.

20



ρ · ν(Ij1)

ν(ρ ·L (Gj ∪ Ij1))

ρ
1

ν(Ij1)

ν(Ij1)
2

Figure 3: The black points
(
ρ, ν(ρ ·L (Gj ∪ Ij1))

)
, where ρ = ρjl0k for some k ∈ N\{0} and |l| = 0,

are the points first considered in the first part of the proof of the first case. Here k
increases when we move from one black point to any point to the left of it.

ρ · ν(Ij1)

ν(ρ ·L (Gj ∪ Ij1))

ρ
1

ν(Ij1)

ν(Ij1)
2

Figure 4: The figure above, together with figure 5, shows the basic idea of the rest of the proof; the
same arguments which show that the black points in figure 3 lie below the straigh line
shows that the black points in this figure lies below the bold line. As both endpoints of
this line lies below the thinner line by the previous step (induction in general, and the
case |l| = 0 in this particular case), all the black points lie below the thin black line.
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ρ · ν(Ij1)

ν(ρ ·L (Gj ∪ Ij1))

ρ
1

ν(Ij1)

ν(Ij1)
2

Figure 5: This figure shows how the induction progresses through all points considered in the first
case; by showing that a certian subset of the points lies below line segments between
points which by the induction assumption lies below the topmost line. The dashed line
above the bold line shows the previous step in the induction (in this case; |l| = 1), the
bold line the current step (|l| = 0) and the dashed line below the bold line the next step
(|l| = 2).

Now instead suppose that |l| = m and that the equation (7) is true for all k ∈ N\{0} when |l| < m.
Set j′ = j1(l|m− 1) so that j1l0k = j′10k. Then by the case |l| = 0 we get

ν
(
ρ
(j′)

j′10k
·L (Gj′ ∪ Ij′1)

)
≤ ρ(j

′)

j′10k
· ν(Ij′1) (9)

By adding ν([aj1, bj1l0]) to both sides of equation (9) we get

ν
(
[aj1, bj′0]

)
+ ν (ρ

(j′)

j′10k
·L (Gj′ ∪ Ij′1)) ≤ ν ([aj1, bj′0]) + ρ

(j′)

j′10k
· ν (Ij′1) (10)

The left hand side of equation (10) can be rewritten as

ν
(
[aj1, bj′0]

)
+ ν

(
ρ
(j′)

j′10k
·L (Gj′ ∪ Ij′1)

)
= ν

(
[aj1, bj′0]

)
+ ν

(
[bj′0, bj′10k ]

)
=

ν
(
[aj1, bj1l0k ]

)
= ν

(
[bj0, bj1l0k ]

)
= ν

(
ρ
(j)

j1l0k
·L (Gj ∪ Ij1)

) (11)

The right hand side of equation (10) is a point on the line segment between the two points(
ρ
(j)
j1(l|−1)0, ν

(
ρ
(j)
j1(l|−1)0 ·L (Gj ∪ Ij1)

))
and (

ρ
(j)
j1l, ν

(
ρ
(j)
j1l ·L (Gj ∪ Ij1)

))
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Since the binary word l ends with a 1, the last of these points can also be written as(
ρ
(j)
j1(l|−1), ν

(
ρ
(j)
j1(l|−1) ·L (Gj ∪ Ij1)

))
Both end points of the line segment are thus points on the graph of ν (ρ ·L (Gj ∪ Ij1)), which lie
below the line ρ · ν (Ij1) by induction since |(l| − 1)| = |l| − 1 < m. Thus all points on this line
must also lie below the line ρ · ν(Ij1), which implies

ν([aj1, bj′0]) + ρ
(j′)

j′10k
· ν(Ij′1) ≤ ρ(j)

j1l0k
· ν(Ij1) (12)

Combining equation (10), equation (11) and equation (12) gives

ν(ρ
(j)

j1l0k
·L (Gj ∪ Ij1))

(11)
= ν([aj1, bj′0]) + ν(ρ

(j′)

j′10k
·L (Gj′ ∪ Ij′1))

(10)

≤

ν([aj1, bj′0]) + ρ
(j′)

j′10k
· ν(Ij′1)

(12)

≤ ρ
(j)

j1l0k
· ν(Ij1)

As this finishes the proof in the first case, we have proved the theorem.

3.5 Examples

We will end this section with a few examples which shows the usefulness of theorem 3.4 by calcu-
lating the exact measure of some Cantor sets studied in [8] and [2] and for which the measure (to
the authors knowledge) was previously unknown.

Example 3.8: Consider the Cantor set C(p) associated with the sequence of gap lengths

|Gkl | =
1

(2k + l)p

where p is any real number which is strictly larger than one.

In [2] (theorem 1.1), Cabrielli, Molter, Paulauskas and Shonkwiler showed that

1

8

(
2p

2p − 2

)1/p

≤ m1/p(C(p)) ≤
(

1

p− 1

)1/p

We will show that we by using theorem 3.4 can compute the exact value of m1/p(C(p)) for any
p > 1. To do this we will need the following result from [2].

2p

2p − 2
·
(

1

2k + l + 1

)p
≤ |Ikl | ≤

2p

2p − 2
·
(

1

2k + l

)p
(13)

Let Ikl and Ik
′

l′ be any two basic intervals associated with C(p) with Ik
′

l′ ⊆ Ikl . Then l
′ ≥ l · 2k′−k
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and thus
l′

2k′
≥ l

2k
(14)

Let h(w, δ) = δ1/p. Then

h(Ik
′

l′ ) = |Ik
′

l′ |1/p
(13)

≤ 2

(2p − 2)1/p
· 1

2k′ + l′
=

2

(2p − 2)1/p
· 1

1 + l′

2k′
· 1

2k′
=

2

(2p − 2)1/p
· 1

1 + l′

2k′
· ν(Ik

′

l′ )
(14)

≤ 2

(2p − 2)1/p
· 1

1 + l
2k

· ν
(
Ik
′

l′

)
Completely analogously, we get the lower limit

2

(2p − 2)1/p
· 1

1 + l+1
2k

· ν(Ik
′

l′ ) ≤ h(Ik
′

l′ )

We thus have

2

(2p − 2)1/p
· 1

1 + l+1
2k

· ν(Ik
′

l′ ) ≤ h(Ik
′

l′ ) ≤ 2

(2p − 2)1/p
· 1

1 + l
2k

· ν(Ik
′

l′ ) (15)

We will now calculate a lower bound for |Gj |+|Ij10m ||Gj |+|Ij1| for all long enough binary words j and all
m ∈ N\{0}. To do this, fix any long enough binary word j. Then there exists l, k ∈ N such that
Ij = Ikl . Using this, we get

|Gj |+ |Ij10m |
|Gj |+ |Ij1|

=
|Gkl |+ |I

k+m+1
2m(2l+1)|

|Gkl |+ |I
k+1
2l+1|

(15)

≥

1

(2k + l)p
+

2p

(2p − 2)
· 1

(2k+m+1 + 2m(2l + 1) + 1)p

1

(2k + l)p
+

2p

(2p − 2)
· 1

(2k+1 + (2l + 1))p

=

(2p − 2) + 2p · (2k + l)p

(2k + l + 2m+1
2m+1 )p

·
(

1

2m+1

)p
(2p − 2) + 2p · (2k + l)p

(2k + l + 1
2 )p
·
(

1

2

)p =

(2p − 2) +
(2k + l)p

(2k + l + 2m+1
2m+1 )p

·
(

1

2m

)p
(2p − 2) +

(2k + l)p

(2k + l + 1
2 )p

>

(2p − 2) + (1− ε) ·
(

1

2m

)p
(2p − 2) + (1− ε)

=
(2p − 2) + (1− ε) · 1

2pm

(2p − 2) + (1− ε)
= 1− (1− ε) ·

1− 1
2pm

(2p − 2) + (1− ε)

As p→ 1, this expressions tends to 1
2m . To show that |Gj |+|Ij10m ||Gj |+|Ij1| ≥ 2−m for all p > 1, it would be

enough to show that the last expression in example 3.8 is increasing in p.

To simplify notations somewhat, set x = 2p and define

g(x) = 1− (1− ε) · 1− x−m

x− 1− ε
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Then

g′(x) = −(1− ε) ·
(
mx−(m+1)

x− 1− ε
− 1− x−m

(x− 1− ε)2

)
=

− (1− ε)
(x− 1− ε)2

·
(
mx−(m+1)(x− 1− ε)− 1 + x−m

)
=

(1− ε)
(x− 1− ε)2xm+1

·
(
xm+1 − (m+ 1)x+m(1 + ε)

)
which is positive since x > 2. We can thus conclude that |Gj |+|Ij10m ||Gj |+|Ij1| ≥ 2−m for all p > 1.

Now set f(w, t) = h(w − t0 + t1, δ + 2t0 + 2t1) = (δ + 2t0 + 2t1)1/p. Then clearly ∂f
∂t1
≥ 0, ∂f

∂t0
≥ 0,

∂2f
∂t21
≤ 0 and ∂2f

∂t0∂t1
≤ 0 for all t0 and t1.

Using the properties now shown to hold for C(p) we are now, according to by proposition 3.7, set
up to use theorem 3.4. Using theorem 3.4 we get

m1/p(C(p)) =
2k−1∑
l=0

m1/p(C(p) ∩ Ikl )
(15)

≤

2k−1∑
l=0

2

(2p − 2)1/p
· 1

1 + l
2k

· ν(Ikl ) =
2

(2p − 2)1/p
·
2k−1∑
l=0

1

1 + l
2k

· 1

2k

Since this is true for all k, and

lim
k→∞

2k−1∑
l=0

1

1 + l
2k

· 1

2k
=

∫ 1

0

dx

1 + x
= [log(1 + x)]

1
0 = log 2

we get

m1/p(C(p)) ≤
2 log 2

(2p − 2)1/p
(16)

Similarly for the lower limit;

m1/p(C(p)) =

2k−1∑
l=0

m1/p

(
C(p) ∩ Ikl

) (15)

≥

2k−1∑
l=0

2

(2p − 2)1/p
·

(
1

1 + l+1
2k

−

(
1

1 + l
2k

− 1

1 + l+1
2k

))
· ν(Ikl ) ≥

2

(2p − 2)1/p
·
2k−1∑
l=0

(
1

1 + l+1
2k

− 1

2k

)
· 1

2k
=

2

(2p − 2)1/p
·

2k−1∑
l=0

1

1 + l+1
2k

· 1

2k
− 1

2k



(17)
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which tends to
2

(2p − 2)1/p
·
∫ 1

0

1

1 + x
dx =

2 log 2

(2p − 2)1/p
as k →∞. This gives the lower limit

m1/p(C(p)) ≥
2 log 2

(2p − 2)1/p
(18)

By combining equation (16) and equation (18) we can conclude that

m1/p(C(p)) =
2 log 2

(2p − 2)1/p

Example 3.9: As a small variation of the Cantor sets C(p) where p > 1, we can consider the Cantor
set C(p,x), where p > 1 and x > 2, associated with the sequence of gap lengths |Gkl | = 1

([xk]+l)p
.

This set was also studied in [2] where Cabrielli, Molter, Mendevil, Paulauskas and Shonkwiler gave
the bounds

c ·
(

xp

xp − 2

)1/p

≤ m1/p(C(p,x)) ≤
(

4p

2p − 2

) log 2
p log x

where c is some constant depending on p and x. We will calculate the measure of C(p,x) using
theorem 3.4.

|Ikl | =
∞∑
h=0

2h−1∑
j=0

∣∣∣Gk+h2hl+j

∣∣∣ ≤ ∞∑
0

2h

(bxk+hc+ l · 2h)p
≤ 1

xkp
·
∞∑
h=0

2h(
xh − 1

xk

)p ≤
1

xkp
· (1 + ε

(1)
k ) ·

∞∑
h=0

2h

xph
=

1

xkp
·
(

1 + ε
(1)
k

)
· 1

1− 2
xp

where ε(1)k is a small positive number which tends to zero as k →∞.

Similarly, but by somewhat more tedious calculations, we get

|Ikl | =
∞∑
h=0

2h−1∑
j=0

∣∣∣Gk+h2hl+j

∣∣∣ ≥ ∞∑
h=0

2h

(bxk+hc+ l · 2h + 2h − 1)
p ≥

∞∑
h=0

2h

(xk+h + (l + 1) · 2h)p
≥

1

xkp
·
∞∑
h=0

2h

xhp ·
(

1 + l+1
xk
· 2h
xh

)p ≥ 1

xkp
·
∞∑
h=0

2h

xhp ·
(

1 + 2k

xk
· 2h
xh

)p ≥
1

xkp
·
∞∑
h=0

2h

xhp
· 1(

1 + 2k

xk

)p ≥ 1

xkp
· 1

1− 2
xp

· 1(
1 + 2k

xk

)p =
1

xkp
· 1

1− 2
xp

·
(

1− ε(2)k
)

where ε(2)k is a small positive number which tends to zero as k →∞.

To verify that
|Gj |+ |Ij10m |
|Gj |+ |Ij1|

=
|Gkl |+ |I

k+m+1
2m(2l+1)|

|Gkl |+ |I
k+1
2l+1|

≥ 1

2m
for all large enough |j| and all m ∈ N\{0}

(or equivalently for all large enough k) requires a calculation very similar to the analogous calcula-
tion of the previous example and is therefore omitted here.
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Set h(w, δ) = δ
log 2
p log x . Then

((
1− ε(2)k

)
· 1

1− 2
xp

) log 2
p log x

· ν(Ikl ) ≤ h(Ikl ) ≤
((

1 + ε
(1)
k

)
· 1

1− 2
xp

) log 2
p log x

· ν(Ikl )

Using theorem 3.4 we thus get

((
1− ε(2)k

) log 2
p log x −

((
1 + ε

(1)
k

) log 2
p log x −

(
1− ε(2)k

) log 2
p log x

))
·
(

1

1− 2
xp

) log 2
p log x

≤ m log 2
p log x

(C(p,x))

and

m log 2
p log x

(C(p,x)) ≤
(

1 + ε
(1)
k

) log 2
p log x ·

(
1

1− 2
xp

) log 2
p log x

By letting k tend to infinity in these both equations, we get

m log 2
p log x

(C(p,x)) =

(
1

1− 2
xp

) log 2
p log x

The method for calculating the Hausdorff measure of a given Cantor set used above can with small
modifications be used also to calculate the measure of the third and last Cantor set mentioned in
[2], namely the Cantor set C(n)

(p) ∼ {G
k
l }, where |Gkl | = 1

(2k+l)p
but where (n− 1) open intervals are

removed from each remaining interval in each step of the construction of the Cantor set instead of
one. Small adjustments to theorem 3.4 and its proof and similar calculations as the calculations in
example 3.8 and example 3.9, although omitted here, gives

m1/p(C
(n)
(p) ) =

n log n

(np − n)1/p
· 1

n− 1
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4 Cantor sets associated with test functions of exponential
type

In this section we will consider Hausdorff measures associated with test functions of the form
h(w, δ) = δα(w). This case is interesting since in provides a direct analogy to the well studied case
h(δ) = δα where α is the Hausdorff dimension of any set E for which mα(E) is finite and non-zero.
The function α(w) in the exponent of the test function h(w, δ) = δα(w) will due to this analogy be
called the dimension function of the Hausdorff measure mα(w).

We will start this section by giving conditions on α(w) which guarantees that Ch = Cα(w), as defined
by definition 3.1, is non-empty. We will then show that when h fulfils some continuity conditions
we have that µh is a mass distribution on all C ∈ Cα(w) and the restriction of mα(w) to C is the
Cantor measure on C for any C ∈ Cα(w).

4.1 An existence result

To be able to state our existence result we first need to show that the test function, when seen as
an interval function, is increasing.

Lemma 4.1: Let α(w) : [0, 1]→ (0, 1) be a continuously differentiable function. Then the interval
function h(I) = h(w, δ) = δα(w) is increasing for all small enough δ.

Proof. Let I = I(w∗, δ) ⊆ [0, 1] be any interval of length δ with midpoint w∗.

Define f0(t0) = h(w∗ − t0, δ + 2t0) and f1(t1) = h(w + t1, δ + 2t1). To show that the h(I) = δα(w)

is increasing it is enough to show that the two functions f0(t) and f1(t) are increasing in t for all
fixed w∗ and δ when t and δ is small enough.

2t0 2t1δ

w∗

I

w∗ − t0

w∗ − t1

Figure 6: The setting for the proof of lemma 4.1
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To show that f1(t) is increasing we will show that f ′1(t) ≥ 0.

f ′1(t) = f(t)

(
α′(w∗ + t) log(δ + 2t) +

2α(w∗)

δ + 2t

)
=

f(t)

δ + 2t
· (α′(w∗ + t) · (δ + 2t) log(δ + 2t) + 2α(w∗ + t))

(19)

Since α′(w) is continuous on a compact interval, α′(w) is bounded. Similarly since α(w) is strictly
positive and continuously differentiable on a compact interval, it is uniformly bounded away from
zero.

As (δ+ 2t) log(δ+ 2t)→ 0 as δ+ 2t→ 0 and α′(w) is bounded, the first term in equation (19) can
be made arbitrarily small by chosing δ and t small enough. Since α(w) is uniformly bounded away
from zero, we can choose δ and t small enough to have f ′1(t) ≥ 0 for all w∗ and δ. Thus f1(t) is
increasing for small δ and t.

The proof that f2(t) is increasing with t for small t and δ is completely analogous and is therefore
omitted here.

We can now proceed to the theorem which shows that Cα(w) is nonempty if h is sufficiently nice.

Theorem 4.2: Let α(w) : [0, 1] → (0, 1) be continuously differentiable and set h(w, δ) = δα(w).
Then Cα(w) is non-empty, i.e. there exists at least one Cantor set C ∼ {Ij} such that h(Ij) = ν(Ij)

for all large enough |j|.

Proof. Since α(w) is continuously differentiable and [0, 1] is compact, α(w) is Lipschitz continu-
ous on [0, 1], i.e. there exists a constant λ > 0 such that |α(w1) − α(w2)| ≤ λ|w1 − w2| for all
w1, w2 ∈ [0, 1]. Pick ∆ small enough to have

(2x)λx > 2maxα(w)−1 for all x ≤ ∆ (20)

Since the expression of the left hand side tends to one as ∆→ 0 and the right hand side is strictly
smaller than one and does not depend on x, such ∆ exists. We can assume that ∆ is small enough
to imply that h(δ) is increasing for all δ < ∆.

Let n ∈ N be such that |j| ≥ n implies 4|Ij | < ∆. Since

2n · h(w,
1

2n
) =

2n

2α(w)n
> 1 for all w ∈ [0, 1] and n ∈ N

we can pick the basic intervals {Ij}|j|=n at level n as any 2n disjunct intervals in [0, 1] satisfying
h(Ij) = 2−n.

For any k ∈ N with k < n, we define the basic intervals Ij with |j| = k by setting Ij = [aj0, bj1],
where aj0 is the left endpoint of Ij0 and bj1 is the right endpoint of Ij1. In this way, all basic
intervals Ij with |j| ≤ n are defined.
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We will now show that for any binary word j with |j| ≥ n we can pick two smaller disjoint
intervals Ij0 and Ij1 contained in Ij such that the left endpoint of Ij and Ij0 coincide and the right
endpoint of Ij and the right endpoint of Ij1 coincide and 2h(Ij0) = 2h(Ij1) = h(Ij). Given this
last condition it follows by induction that h(Ij0) = 1

2 · h(Ij) = 2−(|j|+1) = 2−|j0| and analogously
that h(Ij1) = 1

2 · h(Ij) = 2−(|j|+1) = 2−|j1|, and therefore that h(Ij) = 2−|j| for any |j| > n. This
implies the existence of at least one set C ∈ Cα(w). By the definition of the Cantor measure, we get
ν(Ij) = 2−|j| = h(Ij) for the Cantor measure ν associated with C.

Thus let Ij = I(wj , δj) be any basic interval already chosen with |j| ≥ n. By the choice of n we
then have |Ij | < ∆, or equivalently, that δj < ∆.

Let Ĩj0 be the left half of Ij , i.e. set

Ĩj0 =
1

2
·L Ij = I(wj −

δj
4
,
δj
2

) = I(w0, 2δ)

for w0 = wj − δj
4 .

Since δj < ∆ we also have δj
2 < ∆ and thus equation (20) implies

(
δj
2

)α(w0)−α(wj)

≥
(
δj
2

)λ δj2
> 2maxα(w)−1 > 2α(wj)−1 (21)

Using this, we get

2h(Ĩj0) = 2 · h(w0,
δj
2

) = 2 ·
(
δj
2

)α(w0)

= 2 ·
(
δj
2

)α(w0)−α(wj)

·
(
δj
2

)α(wj) 21
≥

2 · 2α(wj)−1 ·
(
δj
2

)α(wj)
= (δj)

α(wj) = h(Ij)

Since h is continuous and increasing, there exists an interval Ij0 ⊆ Ĩj0 with left endpoint in common
with Ĩj0 (and thus also in common with Ij) such that 2 · h(Ij0) = h(Ij). By completely analogous
arguments we can find an interval Ij1 ⊂ Ij with right endpoint in common with Ij such that
2 · h(Ij1) = h(Ij). Since 2|Ij0| < |Ij | and 2|Ij1| < |Ij | we have Ij0 ∩ Ij1 = ∅.

Since this construction works for all binary words j with |j| ≥ n, thus inductively defines a Cantor
set C ∼ {Ij} for which h(Ij) = ν(Ij) for all |j| ≥ n. This completes the proof.
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4.2 Mass distribution and Cantor measure

We will now state and prove a couple of theorems which provide conditions given which mα(w) is
a mass distribution on C ∈ Cα(w). We will also give conditions given which mα(w)|C ≡ νC . All
theorems in this subsection are consequences of the corresponding theorems in the previous section,
and the majority of the content of this section are therefore arguments showing that the needed
assumptions hold when h(w, δ) = δα(w) for some sufficiently nice dimension function α(w).

Theorem 4.3: Let α(w) : [0, 1] → (0, 1) be a continuously differentiable function. Then Cα(w)

is non-empty and mα(w) is a mass distribution on all sets C ∈ Cα(w). Further, for any interval
I ⊆ [0, 1]

0.25 · ν(I) ≤ mα(w)(C ∩ I) ≤ ν(I)

Proof. By theorem 4.2, Cα(w) is non-empty. Moreover, as

h(w, 2δ) = (2δ)α(w) = 2α(w) · δα(w) = 2α(w) · h(w, δ) ≤ 2 · h(w, δ)

the doubling constant of h is smaller than or equal to 2. The theorem thus follows by theorem 3.3.

Theorem 4.4: Let α(w) ∈ C2([0, 1], (0, 1)) be increasing. Then Cα(w) is non-empty and the as-
sumptions of theorem 3.4 is fulfilled for the test function h(w, δ) = δα(w) and any C ∈ Cα(w).
Further mα(w)(C) = 1 for all C ∈ Cα(w) and the restriction of mα(w) to C is the Cantor measure
on C.

Corollary 4.5: Let α(w) ∈ C2([0, 1], (0, 1)) be decreasing. Then Cα(w) is non-empty and the as-
sumptions of theorem 3.4 is fulfilled for the test function h(w, δ) = δα(w) and any C ∈ calCα(w).
Further mα(w)(C) = 1 for all C ∈ Cα(w) and the restriction of mα(w) to C is the Cantor measure
on C.

Proof of corollary 4.5. This corollary follows directly from theorem 4.4 by symmetry

Corollary 4.6: Let α(w) ∈ C2([0, 1], (0, 1)). Then Cα(w) is non-empty and mα(w)(C) = 1 for all
C ∈ Cα(w). Further, for any C ∈ Cα(w), the restriction of mα(w) to C is the Cantor measure on C.

Proof of corollary 4.6. Let J be any open interval. Since α(w) ∈ C2([0, 1], (0, 1)), α′(w) can change
sign at most countably many times in J , say in the points of the set S. Since S is at most countable,
[0, 1]\S is the union of a sequence of disjoint open intervals {Jk}k=1,2,3,.... By theorem 4.4 and
corollary 4.5, the assumptions of theorem 3.4 and its reverse (see remark 3.5) is satisfied for any
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closed set Ĵk contained in Jk for any k = 1, 2, 3, .... Thus for any such closed set we have ν(Ĵk) =

mα(w)(Ĵk). Since both ν and mα(w) are positive measures, this implies

ν(Jk) = mα(w)(Jk ∩ C)

Now

ν(J ∩ C) = ν

(S ∩ C) ∪
⋃

k=1,2,3,...

Jk ∩ C

 = mα(w)(S ∩ C) +
∑

k=1,2,3,...

mα(w)(Jk ∩ C)

where the last equality follows since the unions are disjoint. Now since S is countable, we have
mα(w∩C)(S) = 0 = ν(S ∩ C) and we thus get

mα(w)(J ∩ C) = mα(w)(S ∩ C) +
∑

k=1,2,3,...

mα(w)(Jk ∩ C) =

ν(S ∩ C) +
∑

k=1,2,3,...

mα(w)(Jk ∩ C) = ν(S ∩ C) +
∑

k=1,2,3,...

ν(Jk ∩ C) = ν(J ∩ C) = ν(J)

Since this holds for any open set J , the corollary follows.

We will now begin to prove theorem 4.4. That Cα(w) is non-empty follows directly from theorem 4.2.
To prove the rest of the claims of the theorem we will show that the conditions of theorem 3.4 holds,
which is the purpose of the remaining lemmas of this section.

Recall that we, for any binary word j and integer k, use j|k to denote the binary word consisting of
the k first digits of j. When Ij|k is a basic interval, wj|k denotes the midpoint of the basic interval
Ij|k.

Lemma 4.7: Let α : [0, 1]→ (0, 1) be continuously differentiable and let j be any binary sequence.
Let wj ∈ C ∈ Cα(w) be the unique point in C such that w ∈ Ij|k for all k ∈ Z+. Then

lim
k→∞

cj|k = cj = 2−1/α(wj)

uniformly in j.

Proof. Since C ∈ Cα(w) we have |Ij|k|α(wj|k) = ν(Ij|k) = 2−k for all large enough k ∈ N. This

implies |Ij|k| = 2
− k
α(wj|k) for all large enough k ∈ N. This implies

cj|k+1 =
|Ij|k+1|
|Ij|k|

=

1

2
k+1

α(wj|k+1)

/ 1

2
k

α(wj|k)

= 2
k

α(wj|k)
− k+1
α(wj|k+1) = 2

− 1
α(wj|k+1) · 2

k·
(

1
α(wj|k)

− 1
α(wj|k+1)

)
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Since α(w) is continuous on [0, 1], which is compact, α(w) is uniformly continuous on [0, 1], which

implies 2
− 1
α(wj|k+1) → 2−1/α(w) uniformly in j when k →∞. To prove the claims of the theorem it

is therefore enough to show that k ·
(

1
α(wj|k)

− 1
α(wj|k+1)

)
→ 0 uniformly in j when k →∞.

As α(w) is continuously differentiable, α(w) is Lipschitz continuous on [0, 1]. Let λ be the Lipschitz
constant. Then∣∣∣k · ( 1

α(wj|k)
− 1

α(wj|k+1)

)∣∣∣ =
1

α(wj|k) · α(wj|k+1)
· k ·

∣∣α(wj|k+1)− α(wj|k)
∣∣ ≤

1

α(wj|k) · α(wj|k+1)
· k · λ ·

∣∣wj|k+1 − wj|k
∣∣ (22)

As Ij|k+1 ⊆ Ij|k both wj|k ∈ Ij|k and wj|k+1 ∈ Ij|k, and therefore∣∣wj|k+1 − wj|k
∣∣ ≤ |Ij|k| (23)

Using this we get∣∣∣k · ( 1

α(wj|k)
− 1

α(wj|k+1)

)∣∣∣ 22≤ 1

α(wj|k) · α(wj|k+1)
· k · λ ·

∣∣wj|k+1 − wj|k
∣∣ 23≤

1

α(wj|k) · α(wj|k+1)
· k · λ · |Ij|k| =

1

α(wj|k) · α(wj|k+1)
· k · λ · 2

−k
α(wj|k) ≤

( min
w∈[0,1]

α(w))−2 · k · λ · 2
−k

maxw∈[0,1] α(w) → 0

when k →∞, uniformly in j.
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Lemma 4.8: Let α : [0, 1] → (0, 1) be continuously differentiable and let C ∈ Cα(w). Let j be any
binary word not containing only zeros. Define Iρ = ρ ·L (Gj ∪ Ij1). Then for all ρ ∈ [0, 1] and all
|j| large enough we have

ρ · ν(Ij1) ≥ ν(Iρ) (24)

Proof. Pick ε > 0 with ε < δ
2 . Then by lemma 4.7 , there exists N ∈ N such that |cj0 − cjk| < ε

for all binary words j of length at least N and all binary words k.

Fix any such long enough binary word j and let m ∈ N\{0}. Then

|Gj |+ |Ij10m |
|Gj |+ |Ij1|

=
(|Ij | − |Ij0| − |Ij1|) + |Ij10m |
(|Ij | − |Ij0| − |Ij1|) + |Ij1|

=
|Ij | − |Ij0| − |Ij1|+ |Ij10m |

|Ij | − |Ij0|
=

|Ij | − cj0|Ij | − cj1|Ij |+ cj1(cj10 · cj100 · · · cj10m)|Ij |
|Ij | − cj0|Ij |

If we divide by |Ij | in the numerator and the denominator we get

|Gj |+ |Ij10m |
|Gj |+ |Ij1|

=
1− cj0 − cj1 + cj1(cj10 · cj100 · · · cj10m)

1− cj0
= 1− cj1 ·

(1− cj10 · cj100 · cj10m)

1− cj0

As cj1 ≤ 1
2 and cj10k < (cj0 − ε) for k = 1, 2, 3, ...,m;

|Gj |+ |Ij10m |
|Gj |+ |Ij1|

> 1− 1

2
· (1− (cj0 − ε)m)

1− cj0
= 1− 1

2

m−1∑
l=0

(cj0 − ε)l ·
1− (cj0 − ε)

1− cj0

Since cj0 − ε ≤ cj0 ≤ 1
2 we get

|Gj |+ |Ij10m |
|Gj |+ |Ij1|

> 1− 1

2

m−1∑
l=0

(
1

2
)l · 1− (cj0 − ε)

1− cj0
= 1−

m∑
l=1

1

2l
· 1− (cj0 − ε)

1− cj0

As we can pick ε arbitrarily small, we get

|Gj |+ |Ij10m |
|Gj |+ |Ij1|

≥ 1

2m

By proposition 3.7 this is equivalent to the claims of the lemma.
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Lemma 4.9: Let α(w) ∈ C2([0, 1], (0, 1)) be increasing and define h(w, δ) = δα(w). Set, for fixed δ
and w;

f(t0, t1) = h(w + t1 − t0, δ + 2t0 + 2t1)

where t0 and t1 is such that w + t0 − t1 ∈ [0, 1] and δ + 2t0 + 2t1 ∈ [0, 1]. Then ∂
∂t0
f(t0, t1) ≥ 0,

∂
∂t1
f(t0, t1) ≥ 0, ∂2

∂t21
f(t0, t1) ≤ 0 and ∂

∂t0
∂
∂t1
f(t0, t1) ≤ 0 for all small enough δ, t0 and t1.

Proof. We first calculate ∂
∂t1
f(t0, t1):

∂

∂t1
f (t0, t1) = (δ + 2t0 + 2t1)

α(w−t0+t1) ·(
∂

∂t1
α (w − t0 + t1) · log (δ + 2t0 + 2t1) + 2α (w − t0 + t1) · 1

δ + 2t0 + 2t1

)
=

(δ + 2t0 + 2t1)
α(w−t0+t1)−1 ·

(α′ (w − t0 + t1) (δ + 2t0 + 2t1) log (δ + 2t0 + 2t1) + 2α (w − t0 + t1))

Since α(w) is continuously differentiable and [0, 1] is a compact set, α(w) is uniformly bounded
away from zero. As (δ + 2t0 + 2t1) log(δ + 2t0 + 2t1) → 0 when (δ + 2t0 + 2t1) → 0 and α(w) is
uniformly bounded away from zero for all w − t0 + t1 ∈ [0, 1], we get ∂

∂t1
f(t0, t1) > 0 for all small

enough t0, t1 and δ. Similarly, we get

∂

∂t0
f (t0, t1) =

(δ + 2t0 + 2t1)
α(w−t0+t1) ·(

∂

∂t1
α (w − t0 + t1) · log (δ + 2t0 + 2t1) + 2α (w − t0 + t1) · 1

δ + 2t0 + 2t1

)
=

(δ + 2t0 + 2t1)
α(w−t0+t1)−1 ·

(−α′ (w − t0 + t1) (δ + 2t0 + 2t1) log (δ + 2t0 + 2t1) + 2α (w − t0 + t1)) > 0

since (δ + 2t0 + 2t1) log(δ + 2t0 + 2t1)→ 0 when (δ + 2t0 + 2t1)→ 0, α′(w) is uniformly bounded
and α(w) is uniformly bounded away from zero for all w ∈ [0, 1].
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We now consider the second derivative with respect to t1:

∂2

∂t21
f (t0, t1) =

(δ + 2t0 + 2t1)
α(w−t0+t1)−1 ·( ∂2

∂t21
α (w − t0 + t1) · (δ + 2t0 + 2t1) log (δ + 2t0 + 2t1) +

α′ (w − t0 + t1) · 2 log (δ + 2t0 + 2t1) +

α′ (w − t0 + t1) (δ + 2t0 + 2t1)
2

δ + 2t0 + 2t1
+ 2

∂

∂t1
α (w − t0 + t1)

)
+

(δ + 2t0 + 2t1)
α(w−t0+t1)−2 ·(

∂

∂t1
α(w − t0 + t1) · (δ + 2t0 + 2t1) log(δ + 2t0 + 2t1) + (α (w − t0 + t1)− 2)

)
·

(α′ (w − t0 + t1) (δ + 2t0 + 2t1) log (δ + 2t0 + 2t1) + 2α (w − t0 + t1))

This expression can be rewritten as

(δ + 2t0 + 2t1)
α(w−t0+t1)−1 ·(

α′′ (w − t0 + t1) · (δ + 2t0 + 2t1) log (δ + 2t0 + 2t1) +

2α′ (w − t0 + t1) (2 + log (δ + 2t0 + 2t1)) +

(δ + 2t0 + 2t1) ·

(α′ (w − t0 + t1) · (δ + 2t0 + 2t1) · log (δ + 2t0 + 2t1) + (α (w − t0 + t1)− 2)) ·

(α′ (w − t0 + t1) · (δ + 2t0 + 2t1) · log (δ + 2t0 + 2t1) + 2α (w − t0 + t1))
)

(25)

Since α′′(w) is continuous on the compact interval [0, 1], it is bounded on [0, 1]. Also, we know that
(δ + 2t0 + 2t1) log (δ + 2t0 + 2t1) → 0 as (δ + 2t0 + 2t1) → 0. Thus the summand on the second
row tends to zero as δ + 2t0 + 2t1 → 0.

Since both α′(w) and α(w) are bounded and (δ + 2t0 + 2t1) log (δ + 2t0 + 2t1)→ 0 as (δ + 2t0 + 2t1)→
0, the product of the last two rows is also bounded, which implies that the complete product of
the last three rows can be made arbitrarily small by choosing δ, t0 and t1 small enough.

The only summand in the paranthesis over the last five rows not yet accounted for is the term
2α′ (w − t0 + t1) (2 + log (δ + 2t0 + 2t1)) which cannot be chosen arbitrarily small. On the contrary,
if α′(w − t0 + t1) > 0, it tends to negative infinity as δ + 2t0 + 2t1 → 0 which causes the complete
expression, and thus also ∂2

∂t21
f(t0, t1) to be negative.

If α′(w − t0 + t1) = 0 then equation (25) reduces to

(δ + 2t0 + 2t1)
α(w−t0+t1)−1 · (δ + 2t0 + 2t1) · (α (w − t0 + t1)− 2) · (2α (w − t0 + t1))
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which is negative since α(w − t0 + t1) < 1 implies (α (w − t0 + t1)− 2) < 0.

Analogously, and therefore omitted here,

∂

∂t0

∂

∂t1
f(t0, t1) ≤ 0

for all small enough δ, t0 and t1.

4.3 Examples

We will end this section with two examples. The first example is a simple application of the results
of this section and gives a rough graphical explanation of how the dimension function affects the
distribution of the points in the Cantor set.

Example 4.10: Figure 7 shows the first steps of the construction of a Cantor set C ∈ Cα(w) for
α(w) = 0.2 · sin(10πw) + 0.75. As α(w) is two times continuously differentiable, the measure of C
is exactly one by corollary 4.6. Moreover mα(w)|Cα(w)

≡ νCα(w)
.

Figure 7: The image above shows the first steps of the construction of a set C ∈ Cα(w), where
α(w) = 0.2 · sin(10πw) + 0.75, together with the graph of α(w). Note especially that the
density of points are higher where the value of the dimension function α(w) is larger.
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The second and last example of this section shows that not all Cantor sets can be measured by
exponential test functions and also that there exists dimension functions α(w) and C ∈ Cα(w) such
that mα(w) is not even a mass distribution on C. This later consequence show that we need some
more condition than continuity for µh to be a mass distribution on all C ∈ Ch.

Example 4.11: Set cj = 1
2

(
1− 1

|j|+3

)
for any binary word j and define C ∼ {cj}.

n = 0, 2, 3, ..., 10 n = 10, 11, ..., 20 n = 20, 21, ..., 30

Figure 8: The figure above displays the first construction steps of the cantor set C ∼ {cj} where
cj = 1

2

(
1 − 1

|j|+3

)
. The leftmost image shows the first ten construction steps, the image

in the middle hos the construction then progresses from one of the basic intervals Ij with
|j| = 10 and the right most image shows how the construction progresses from one of
the basic intervals Ij with |j| = 20. On a large scale (at the earliest construction steps),
the set is very thin due to the first steps removing a large proportion of the interval. On
a very small scale however (the later construction steps), the set is very dense, giving it
local dimension one everywhere.

Fix N ∈ N\{0}. Let α̂N (w) be the function defined at the midpoint wj of any basic interval Ij
with |j| ≥ N by

α̂N (wj) =
|j| log 2

(|j| − 1) log 2 + log(|j|+ 2)

Then let αN (w) be any continuous extension of this function to all w ∈ [0, 1].

Let w be any point in C. Then there exists a binary sequence j such that limk→∞ wj|k = w. Using
this we get

α(w) = lim
k→∞

α(wj|k) = lim
k→∞

k log 2

(k − 1) log 2 + log(k + 2)
= 1

for all w ∈ C.
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Figure 9: A continuous extension α1(w) of the dimension function α̂1(w) defined by its values in
the points wj for all binary words j (in the figure above marked with black points).

If we try to calculate the derivative of αN (w) at any point wj ∈ C, where wj = limk→∞ wj|k we
get

α′N (w) = lim
k→∞

αN (wj|k)− α̂N (w)

wj|k − wj
= lim
k→∞

k log 2
(k−1) log 2+log(k+2) − 1

1
2 · |Ij|k|

=

lim
k→∞

k log 2
(k−1) log 2+log(k+2) − 1

1
2 ·

1
2k−1 · 1

k+2

= lim
k→∞

(k + 2) · 2k · log 2− log(k + 2)

(k − 1) log 2 + log(k + 2)
=

lim
k→∞

2k · log 2− log(k + 2)
(k−1) log 2

k+2 + log(k+2)
k+2

= −∞

i.e no such continuous extension αN (w) of α̂N (w) can be differentiable at any point in C. Thus no
continuous extension of α̂N (w) to [0, 1] can fulfil the conditions of theorem 3.3. HoweverC ∈ CαN (w)

for any extension αN (w) since

h(Ij) = |Ij |αN (wj) =
( |j|∏
k=1

cj|k

)α(wj)
=
( 1

2|j|
· 2

|j|+ 2

)α(wj)
=

1

2|j|
= ν(Ij)

for all binary words j with |j| ≥ N .

The question is then whether or not mαN (w) can be a mass distribution on C for any extension
of αN (w) or any N even though the assumptions of theorem 3.3 do not hold. To show that this
is not the case we will construct a sequence of coverings {I(n)k }, n = 1, 2, 3, ... of C such that∑
k |I

(n)
k |α(wk) → 0 as n→∞ and C ∈

⋃
k I

(n)
k for all n.
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For each n ∈ N with n ≥ N consider the covering of C with {I(aj , 2|Ij |)}|j|=n, where {Ij} are the
basic intervals associated with C and aj is the left endpoint of Ij . Then, since all intervals from the
same construction step of C have equal length, any interval I(aj , 2|Ij |) in the covering have length

|I(aj , 2|Ij |)| = 2 ·
n∏
l=1

cj|l =
1

2n
· 2

n+ 2

and we can thus cover C with 2n intervals of length
1

2n
· 2

n+ 2
centred at points w where αN (w) = 1.

This implies

mαN (w) ≤
∑
|j|=n

|I(aj , 2|Ij |)|αN (aj) =
∑
|j|=n

|I(aj , 2|Ij |)|1 =
∑
|j|=n

1

2n
· 2

n+ 2
= 2n · 1

2n
· 2

n+ 2
=

2

n+ 2

which tends to zero as n→∞. We thus get mαN (w)(C) = 0.
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5 Properties of multidimensional Hausdorff measures

In this section we will show that the commonly used density results for Hausdorff measures as-
sociated with test functions h(δ) transfer with only small modifications to the multidimensional
case, i.e. to Hausdorff measures associated with test functions h(w, δ). The proofs from the first
three subsections of this section are all adaptations of their analogues for test functions of the type
h(δ) = δα for some fixed exponent α as presented in [9].

5.1 A covering theorem of Vitali type

In this subsection we show that the Vitali covering theorem holds for Hausdorff measures µh.

Theorem 5.1: Let h be a test function and let E be an open subset of R with 0 < µh(E) < ∞.
Further let Q be a family of closed intervals such that each point ξ ∈ E is the centre of arbitrarily
small intervals I(ξ, δ) ∈ Q. Then there exist a sequence of disjoint intervals {Ij} in Q such that
either

µh

E\⋃
j

Ij

 = 0 or
∑
j

h (Ij) =∞

Proof. Let I1 be any member of Q. We will find U2, I3, .. by using induction. Suppose therefore
that I1, ..., Im have already been chosen. Let

dm = sup{δ : ∃I(w, δ) ∈ Q with I(w, δ) ∩ (I1 ∪ ... ∪ Im) = ∅}

If dm = 0 the sequence I1, ..., Im have the desired properties and we are then finished. If dm > 0,
let Im+1 = I(wm+1, δm+1) be any interval in Q disjoint from I1 ∪ ... ∪ Im with δm+1 >

dm
2 .

Suppose that the process never stops and that
∑
h(Ij) <∞. We claim that then

E\
m⋃
j=1

Ij ⊂
∞⋃

j=m+1

4Ij

To prove this claim; let ξ ∈ E\
m⋃
j=1

Ij and let I be an interval in Q containing ξ which is disjoint

from I1, ..., Im. Since δj → 0 as j → ∞, we can find n such that |I| > 2|In|. This implies I must
have nonempty intersection with some interval Ij for m < i < n for which |I| ≤ 2|Ij |. But then
I ⊂ 4Ij , and the claim thus follows.
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Let D be the doubling constant for the test function h(w, δ). Then for any δ > 0:

mδ
h(E\

∞⋃
j=1

Ij) ≤ mδ
h(E\

m⋃
j=1

Ij) ≤ mδ
h(

∞⋃
j=m+1

4Ij) ≤

∞∑
j=m+1

h(4Ij) ≤
∞∑

j=m+1

h(4Ij) ≤ D2
∞∑

j=m+1

h(Ij)

if m is large enough to make 2δj < δ when j > m. Since this sum tends to zero as m → ∞, this
proves the theorem.

5.2 Bounds for the local density

In this section we will give upper and lower bounds for upper local densities of Hausdorff measures,
often given by the following definition.

Definition 5.2: The upper density of a measure σ with respect to a Hausdorff dimension α at a
point w ∈ R is defined by

D∗α[σ](w) = lim sup
δ→0

σ(I(w, δ))

δα

Since h(δ) = δα is the test function for the measure mα, we could extend this definition to be able
to calculate the density of a measure with respect to any test function h(w, δ):

Definition 5.3: The upper density of a measure σ with respect to a test function h(w, δ) at a
point w ∈ R is defined by

∆∗h[σ](w) = lim sup
δ→0

σ(I(w, δ))

h(w, δ)

Similarly, we can define the lower density of a measure with respect to a test function:

Definition 5.4: The lower density of a measure σ with respect to a test function h(w, δ) at a
point w ∈ R is defined by

∆h[σ](w) = lim inf
δ→0

σ(I(w, δ))

h(w, δ)

The next two theorems gives bounds for the upper density.

Theorem 5.5: Suppose E ⊆ R and let h be a test function such that µh(E) is finite. Then

∆∗h[µh|E ](ξ) ≤ 1

for µh-almost all ξ ∈ R.
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Proof. Note first that we may assume that E is a Borel set. Fix t > 1 and set

B = {ξ ∈ E : ∆∗h[µh|E ](ξ) > t}

It is then enough to show that µh(B) = 0 for any t > 1. Pick ε > 0 and δ > 0. Then we can find
an open set U containing B such that

µh|E(U) < µh|E(B) + ε

For each ξ ∈ B we can find arbitrarily small intervals I(ξ, r) such that 0 < r < δ/2, I(ξ, r) ⊂ U

and µh(I(ξ, r) ∩ E) > th(ξ, r).

By the Vitali covering lemma we can pick a sequence I1, I2, ... of such intervals for which

µh|E

B\⋃
j

Ij

 = 0

This implies

µh|E(B) + ε > µh|E(U) ≥
∑
j

µh|E(Ij) >
∑

t h(Ij) ≥ t µδh|E

B ∩⋃
j

Ij

 = t µδh|E(B)

By letting ε, δ → 0 and using t > 1, we get µh|E(B) = 0.

We will now state and prove a theorem which gives a lower bound for the upper density with respect
to a test function. Before we begin, we will need the following simple consequence of the existance
of a doubling constant.

Lemma 5.6: Let h be a test function with doubling constant D. Then∣∣∣∣h(w1, δ)

h(w2, δ)

∣∣∣∣ < D2

for all small enough δ > 0 and all w1, w2 with |w1 − w2| < δ.

Proof. Since |w1−w2| < δ we have I(w1, δ) ⊆ I(w2, 4δ). Since h is increasing as an interval function
for all small enough δ, this implies∣∣∣∣h(w1, δ)

h(w2, δ)

∣∣∣∣ ≤ ∣∣∣∣h(w2, 4δ)

h(w2, δ)

∣∣∣∣ ≤ ∣∣∣∣D2 · h(w2, δ)

h(w2, δ)

∣∣∣∣ = D2
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Theorem 5.7: Let h(ξ, δ) be a test function with doubling constant D. Further let E be a subset
of R on which µh is positive and finite. Then

1

D3
≤ ∆h[µh|E ](ξ)

µh-almost all ξ ∈ E.

Proof. The set B of all ξ ∈ E such that ∆∗h[µh|E](ξ) < c is the union of the sets

Bk = {w ∈ E : µh|E(I(w, δ)) <
ck

k + 1
· h(I(w, δ)), 0 < δ <

1

k
}, k = 1, 2, 3, ...

To prove the claims of the theorems it is enough to show that µh(Bk) = 0 for all k ∈ N\{0}.

Fix k, set t = k
k+1 and let ε > 0. We can then find a covering with intervals I1, I2, ... of Bk, such

that |Ij | < 1
k , Bk ∩ Ij 6= ∅ and ∑

j

h(Ij) ≤ µh(Bk) + ε

For each j, pick ξj ∈ Bk ∩ Ij and let δj = 2|Ij |. Then Bk ∩ Ij ⊂ E ∩ I(ξj , δj). Then

µh(Bk) ≤
∑
j

µh|E(Bk ∩ I(ξj , δj)) ≤
∑
j

µh|E(E ∩ I(ξj , δj) <∑
j

c · t · h(ξj , δj) =
∑
j

c · t · h(ξj , 2|Ij |) ≤∑
j

c · t · h(ξj , δj) =
∑
j

c · t ·D · h(ξj , |Ij |)

Denote the midpoint of Ij by wj . Then |ξj − wj | < δ. By lemma 5.6, this implies

µh(Bk) ≤
∑
j

µh|E(Bk ∩ I(ξj , δj)) ≤
∑
j

c · t ·D · h (ξj , |Ij |) =

∑
j

c · t ·D · h(wj , |Ij |)
h(ξj , |Ij |)
h(wj , |Ij |)

≤
∑
j

c · t ·D · h(wj , |Ij |) ·D2 =

c · tD3 ·
∑
j

h(wj , |Ij |) = c · tD3 ·
∑
j

h(Ij) ≤ c · tD3 · (µh(Bk) + ε)

Since this holds for any c, we can choose to set c = D−3. Then as ε→ 0 we get

µh(Bk) ≤ tµh(Bk)

As µh(Bk) ≤ µh(E) <∞ and t < 1 this implies µh(Bk) = 0.
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5.3 Frostman’s lemma

In this section we present a proof of Frostman’s lemma for multidimensional Hausdorff mea-
sures.

Lemma 5.8 (Frostman’s lemma): Let σ be a finite positive measure on R, E ⊆ R and λ ∈ (0,∞).
Then
(1) if ∆∗h[σ](ξ) ≥ λ for all ξ ∈ E, then σ(E) ≥ λ · µh(E)

Further, if α(w) is Hölder continuous:
(2) if ∆∗h[σ](ξ) ≤ λ for all ξ ∈ E then σ(E) ≤ 2λD2 · µh(E)

Proof. (1) Consider the set
B = {ξ ∈ E : ∆∗h[σ](ξ) > λ}

Pick ε > 0. Then we can find an open set U containing B such that ν(U) ≤ ν(B) + ε. By the
definition of B, for each ξ ∈ B we can find arbitrarily small intervals I(ξ, δ) such that

σ(I(ξ, δ)) ≥ λh(ξ, δ)

By the Vitali covering theorem, we can find a disjoint covering of E by such balls {Ij} for which
µh(U\ ∪ Ij) = 0. If we let ξj be the midpoint of Ij and δj = |Ij | we get

σ(B) + ε ≥ σ(E ∩ U) ≥
∑

σ(I(ξj , δj)) ≥
∑

λh(ξj , δj) ≥ λ
∑

µδh(B ∩ Ij) = λµδh(B)

Letting ε, δ → 0, this implies
σ(B) ≥ λµh(B)

(2) Set

Bk = {x ∈ E : σ (I(x, δ)) <
λk

k + 1
· h(x, δ), 0 < δ <

1

k
}, k = 1, 2, 3, ...

Then the set B = {x ∈ E such that ∆h[σ](x) < λ} is the union of the sets Bk. We will show that
σ(Bk) < 2λC · µh(Bk) for all k.

Fix k, set t = k
k+1 and let ε > 0. Let {Ij} be a covering of Bk with |Ij | < 1

k , Bk ∩ Ij 6= ∅ and∑
h(Ij) ≤ µh(Bk) + ε, where wj is the midpoint of Ij

Then for each Ij , pick ξj ∈ Bk ∩ Ij and set δj = 2|Ij |. Then Bk ∩ Ij ⊆ I(ξj , δj) and

σ(I(ξj , δj)) ≤ λt · h(ξj , δj)

since ξj ∈ Bk.
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This gives

σ(Bk) ≤
∑
j

σ(Bk ∩ Ij) ≤
∑
j

σ(I(ξj , δj)) ≤
∑
j

λt · h(ξj , δj) ≤

∑
j

2λt · h(ξj , |Ij |) =
∑
j

2λt · h(wj , |Ij |) ·
h(ξj , |Ij |)
h(wj , |Ij |)

≤ [by lemma 5.6]

∑
j

2λt · h(wj , |Ij |) ·D2 = 2λtD2
∑
j

h(wj , |Ij |) =

2λtD2
∑
j

h(Ij) ≤ 2λtD2 (µh(Bk) + ε)

Letting ε→ 0 we get
σ(Bk) ≤ 2λtD2 · µh(Bk)

Since this holds for all k, and B =
⋃
k Bk we get

σ(B) ≤ 2λD2 · µh(B)

5.4 Local dimension and multidimensional Hausdorff measures

In this section we will study the local dimension of measures and show its connection with the
dimension function of Hausdorff measures mα(w) of exponential type. We first recall the definition
of the local dimension of a measure σ.

Definition 5.9: Let σ be a finite measure on R. Then the local dimension of σ at a point
w ∈ support(σ) is defined by

d[σ](w) = lim sup
δ→0

log σ(I(w, δ))

log δ

The following proposition shows that the local dimension of a Hausdorff measure of exponential
type equals its dimension function if the local density is finite and strictly positive.

Proposition 5.10: Let α(w) be a dimension function and E a subset of support(σ) on which mα(w)

is finite. Then d[mα(w)|E ](ξ) ≥ α(ξ) for mα(w)-almost all ξ ∈ E. Further, if D[mα(w)|E ](ξ) > 0 for
all ξ ∈ E then d[mα(w)|E ](ξ) = α(ξ) mα(w)-almost all ξ ∈ E.
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Proof. Let ε > 0. Since D∗α(w)[mα(w)|E ] ≤ 1 by theorem 5.5 we can find ∆ > 0 such that

mα(w)|E(I(ξ, δ))

δα(ξ)
≤ 1 + ε

for all δ < ∆. This implies

d[mα(w)](ξ) = lim sup
δ→0

logmα(w)|E(I(ξ, δ))

log δ
≥ lim sup

δ→0

1 + ε

log δ
+ α(ξ)

Since 1 + ε is bounded, the first term on the right hand side tends to 0 as δ → 0, i.e. we get
d[mα(w)|E ](ξ) ≥ α(ξ).

If D[mα(w)](ξ) > 0 for all ξ ∈ E, we can find c > 0 such that

c <
mα(w)|E(I(ξ, δ))

δα(ξ)

for all δ < ∆. This gives

d[mα(w)|E ](ξ) ≤ lim sup
δ→0

log c

log δ
+ α(ξ) = α(ξ)

Proposition 5.10 motivates the following proposition:

Proposition 5.11: Let σ be a finite measure on R and define α(w) = d[σ](w) for all w ∈ support(σ).
Suppose α(w) can be extended to an upper L, λ-Hölder continuous function α(w) on R σ-a.e. and
that Dα(w)[σ](ξ) <∞ for σ-almost all ξ ∈ support(σ). Then σ � mα(w).

Proof. Let M be any set such that mα(w)(M) = 0. By applying Frostman’s lemma to the set
{ξ ∈M : Dα(w)[ν](ξ) < t} we get

σ({ξ ∈M : Dα(w)[ν](ξ) < t}) = 0

Since M =
⋃
k∈N{ξ ∈M : Dα(w)[σ](ξ) < k}, this implies σ(M) = 0, and thus σ � mα(ξ).

Example 5.12: Consider the measure σ = m1 +m0|{0} on [0, 1]. As σ({0}) = 1 and m1({0}) = 0;

σ = m1 +m0|{0} 6� m1−χ{0} ≡ m1

As the local dimension of σ is d[σ](ξ) = 1−χ{0} which is not upper continuous at ξ = 0, this does
not contradict proposition 5.11.

Example 5.13: We will now return to the Cantor set C ∼ {gj}, where gj = 1
|j|+3 for any binary
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word j, which we studied in example 4.11. We will show that the Cantor measure ν of this set has
local dimension one at all points in its support even though ν 6� m1. We will also show that the
Cantor measure does not fulfil the assumptions of proposition 5.11 since the density with respect
to the test function h(w, δ) = δ of this measure is infinite at all points in its support.

Recall that the length of Ij is

|Ij | = 1 · 1

2
(1− 1

0 + 3
) · 1

2
(1− 1

1 + 3
) · ... · 1

2
(1− 1

(|j| − 1) + 3
) =

1

2|j|
· 1

|j|+ 2

Since C is self similar, we can use this to calculate the local dimension of the Cantor measure ν
associated with C at any point ξ ∈ C:

d[ν](ξ) = d[ν](0) = lim
n→∞

log ν(I0n)

log |I0n |
= lim
n→∞

log ν
(

[0, 2
−n·2
n+2 ]

)
log 2−n·2

n+2

= lim
n→∞

log 2−n

log 2−n·2
n+2

=

= lim
n→∞

1

1 + log 2
log 2−n −

log(n+2)
log 2−n

= lim
n→∞

1

1− 1
n + log(n+2)

n log 2

= 1

However;

m1(C) ≤ lim
n→∞

2n ·
((

1− 1

3

)
· 1

2

)
·
((

1− 1

3

)
· 1

4

)
· · ·
((

1− 1

n+ 2

)
· 1

2

)
=

lim
n→∞

(
1− 1

3

)
·
(
1− 1

4

)
· · ·
(
1− 1

n+ 2

)
=

lim
n→∞

2

3
· 3

4
· · · n+ 1

n+ 2
=

lim
n→∞

2

n+ 2
= 0

As this contradicts the conclusions of proposition 5.11, we can conclude that D1[σ](ξ) =∞ for all
ξ ∈ C, which is confirmed by the following calculation.

D1[ν](ξ) = D1[ν](0) ≥ lim
n→∞

ν
(

[0, 2
−n·2
n+2 ]

)
2−n·2
n+2

= lim
n→∞

2−n

2−n·2
n+2

= lim
n→∞

n+ 2

2
=∞

48



References

[1] In-Soo Baek. Spectra of deranged cantor set by weak local dimensions. J. Math. Kyoto Univ.
(JMKYAZ), 44-3:493–500, 2004.

[2] Franklin Mendevil V. Paulauskas Carlos Cabrielli, Ursula M. Molter and Ronald Shonkwiler.
Hausdorff measure of p-Cantor sets. Real Analysis Exchange, 30(2):413–434, 2004.

[3] Kathryn E. Hare Carlos Cabrielli and Ursula M. Molter. Classifying Cantor sets by their
fractal dimensions. Proceedings of the American Methemetical Society, 138(11):3965–3974,
2010.

[4] Ursula M. Molter Carlos Cabrielli, Franklin Mendevil and Ronald Shonkwiler. On the Haus-
dorff h-measure of Cantor sets. Pacific Journal of Mathematics, 217(1), 2004.

[5] Gerald A. Edgar. Classics on Fractals. Addison-Weasly Publishing Company, 1993.

[6] K. J. Falconer. The geometry of fractal sets. Number 85 in Cambridge tracts in mathematics.
Cambridge University Press, 1985.

[7] K. J. Falconer. Fractal geometry - Mathematical Foundations and Applications. Wiley, 2003.

[8] Ignacio Garcia. A family of smooth Cantor sets. Annales AcademiæScientarium Fennicæ,
Mathematica, 36:21–45, 2011.

[9] Pertti Mattila. Geometry of Sets and Measures in Euclidean Spaces. Number 44 in Cambridge
studies in advanced mathematics. Cambridge University Press, 1995.

[10] C. A. Rogers. Hausdorff Measures. Cambridge University Press, 1998.

49


	Introduction
	Definitions
	Hausdorff measures
	Cantor sets
	Definitions of dimensions

	Multidimensional Cantor sets in the support of Hausdorff measures
	Cantor sets associated with a test function
	The mass distribution principle
	Hausdorff measures as mass distributions on Cantor sets
	A result concerning the measure of Cantor sets
	Examples

	Cantor sets associated with test functions of exponential type
	An existence result
	Mass distribution and Cantor measure
	Examples

	Properties of multidimensional Hausdorff measures
	A covering theorem of Vitali type
	Bounds for the local density
	Frostman's lemma
	Local dimension and multidimensional Hausdorff measures


