
THESIS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

Frontiers of Multilingual Grammar
Development

Ramona Enache

Department of Computer Science and Engineering
Chalmers University of Technology and Göteborg University

SE-412 96 Göteborg
Sweden

Göteborg, 2013

Frontiers of Multilingual Grammar Development
Ramona Enache
ISBN 978-91-628-8787-2

c© Ramona Enache, 2013

Technical Report no. 99D
Department of Computer Science and Engineering
Language Technology Research Group

Department of Computer Science and Engineering
Chalmers University of Technology and Göteborg University
SE-412 96 Göteborg, Sweden

Printed at Chalmers, Göteborg, 2013

Abstract
The thesis explores a number of ways for developing multilingual grammars written
in GF (Grammatical Framework). The goal is to enhance both the coverage of the
grammars, in terms of content and number of languages, and to reduce the development
effort by automating a larger part of the process.

The first direction in grammar development targets the creation of general language
resources. These are the starting point for building domain-specific grammars for the
language. Developing resource grammars gives a good overview of the effort required
and provides a solid base for subsequent experiments in automation. Our work resulted
in building computational grammars for Romanian and Swedish.

A further development step is multilingual domain-specific grammar creation. The
technique we employed is converting structured models into grammars, which pre-
serves the original structure of the model as a backbone of the grammar and uses the
general GF resources for a smooth multilingual verbalization of the model. The use
cases considered are an upper-domain ontology, a business model and an ontology de-
scribing cultural heritage artefacts, each posing a different challenge and illustrating
another aspect of the GF grammars-ontology interoperability and its advantages.

An orthogonal approach to multilingual grammar development aims at increasing
the number of languages from a domain grammar. Our solution is an example-based
prototype which partially replaces grammar programming with feedback from native
informants and SMT tools (such as Google Translate).

Last but not least, as an attempt to not only enhance GF grammars, but also use
them in a novel way, we present the grammar-based hybrid system architecture com-
bining GF grammars and SMT systems. This marks some of the first steps in using
grammars for translating free text. As a side-effect of the work, we propose a tech-
nique for building bilingual GF lexicon resources from SMT phrase tables.

Keywords: multilingual grammar development, ontology verbalization, resource
grammar development, hybrid machine translation, functional programming, domain
specific languages.

3

Acknowledgements
The thesis is dedicated first and foremost to my dearest grandmother Gica, who raised
me since I was 2 weeks old, taught me everything about life that’s worth knowing and
has been my best friend even before I knew what a best friend was. Unfortunately, she
won’t read these lines, as she left this world in March 2010, one week after I started
PhD studies and went to a better place. Even so, there’s no day that passes by, without
me thinking about her and about all her unconditional love and support.

On my path to PhD studies, for every crossroad I found, there was also someone
who steered me in the right direction and I am very grateful for that! It all started with
my Mathematics teacher from high-school, Mr. Constantin Ursu, who believed that
even I can do Math, and eventually convinced me of that, too! It’s due to him I chose
to study Mathematics and Computer Science at the University, which I still regard as
one of my wisest choices to date.

Later on, during my BSc studies at the University of Bucharest, I got exposed
to research for the first time by joining the GLAU research group (Group for Logic
and Universal Algebra), thanks to Prof. George Georgescu, the supervisor of my BSc
thesis. It’s due to him that I discovered how amazing research is and that I want to
continue my studies and become a researcher myself.

With this thought in mind and also longing for a change of scenery and new chal-
lenges, I came to Sweden for MSc studies in 2008. There I was lucky to meet Krasimir
Angelov, from whom I heard about Language Technology for the first time. It was our
stimulating discussions and the amazing PhD defence of Björn Bringert, which con-
vinced me that there’s nothing else I would rather do than Language Technology! I
would like to also thank Krasimir for introducing me to the GF formalism, with which
I worked in the next 5 years, for being a great supervisor for the MSc thesis and a good
colleague and collaborator ever since.

Regarding the time of my PhD studies, in the first place, I would like to thank my
supervisor, Aarne Ranta, for being such an inspiring researcher. I greatly appreciate
working with him, his patience and vast knowledge. Also, I’m grateful that he provided
collaboration opportunities for me with academic and industrial partners during the
MOLTO project and gave me freedom to find my own research path.

I would also like to thank my co-supervisor Koen Claessen, with whom it’s always
so inspiring to discuss research and not only. Our meeting were always too short!
Luckily, we will get to work together more in the future project, where I will continue
as a post-doc.

Many thanks also go to my examiner, Patrik Jansson, who gave valuable feedback
at each follow-up meeting and on the thesis manuscript. Also, I would like to thank
Wolfgang Ahrendt, not only for his role in the follow-up committee, but also for our
collaboration in the Software Engineering using Formal Method and illuminating dis-
cussions about football and life.

I would like to express my gratitude to the partners from the MOLTO project, with
whom it was so inspiring to collaborate during the last 3 years. In particular, Cristina
España-Bonet, Lluís Màrquez and Meritxell Gonzàlez, who hosted me at Universitat
Politècnica de Catalunya, from Barcelona, during the summer of 2012. Moreover, I
would like to thank Dana Dannélls for our collaboration, our refreshing walks down-
town and the most inspiring discussions about everything. I would also like to thank
Jeroen van Grondelle, from Be Informed, Laurette Pretorius from UNISA and Brian
Davis from DERI for all the inspiration they provided during our short, but fruitful
collaboration. Special thanks also go to Malin Ahlberg, whom I had the pleasure to

4

supervise for the BSc and MSc thesis and who is a most brilliant young researcher.
I would also like to acknowledge the past and present members of the Language

Technology group, which is such a great environment for research: Thomas Hallgren,
Bengt Nordström, John J. Camilleri, Grégoire Détrez, Peter Ljunglöf, Håkan Burden,
Olga Caprotti, Shafqat Virk, K.V.S. Prasad and Inari Listenmaa.

The Computer Science and Engineering Department from Chalmers was not only a
fabulous and inspiring working environment, but also the place with the highest density
of amazing people that I’ve ever encountered. I would like to thank from the bottom of
my heart all the people from CSE who were like another family to me during these 3.5
years!

Special thanks also go to Christina Lidbeck, who helped me starting a life in
Gothenburg, especially in the beginning, when times were rough. She also gave me
the best advice about Swedish society and helped me integrate here. Knowing her and
her family made all the difference to me!

To my dearest friends from Gothenburg – Nui, Camilo, Maryana, Gaël – and else-
where – Oana and Andrei – for their overall awesomeness that words can’t describe
and for making my life wonderful, I would like to say: Kob kun ka / Gracias / Spasiba
/ Merci / Mulţumesc!

Last, but not least, the thesis is dedicated to the world’s most wonderful mom, Lidia,
to my amazing little brother, Bogdan and to my miniature muse, François-Frederic. Vă
iubesc mult!

Since arriving to Sweden 5 years ago, my life has changed in so many ways. How-
ever hard I tried, I just couldn’t fully describe the whole series of fortunate events that
made me grow so much as a person, without risking to turn the thesis into my own
Bildungsroman. Everyone that had a part in it, knows it already and they know how
lucky I am that our paths crossed. As a conclusion, to all of you who made my life
better, who provided inspiration, friendship and support, I would like to say (again):
Thank you so much!

This work has been funded by the European Community’s Seventh Framework
Programme (FP7/2007-2013) under grant agreement number 247914 (MOLTO project,
FP7-ICT-2009-4-247914) and by the Swedish Research Council (Vetenskapsrådet) (RE-
MU project 2013-2017).

5

6

Contents

1 Introduction 9
1 Contributions . 13

1.1 Creating Language Resources 13
1.2 Grammars Describing Structured Models 15
1.3 Bootstrapping Grammars from External Sources 19
1.4 Grammar-Based Hybrid Systems for Machine Translation . . 21

2 Further Frontiers of Multilingual Grammar Development 25

2 Creating Language Resources 33
1 An Open-Source Computational Grammar for Romanian 35
2 A Type-Theoretical Wide-Coverage Computational Grammar for Swedish 49

3 Grammars Describing Structured Models 59
1 Typeful Ontologies with Direct Multilingual Verbalization 61
2 Multilingual Verbalization of Modular Ontologies using GF and lemon 81
3 Multilingual Grammar for Museum Object Descriptions 99

4 Bootstrapping Grammars from External Sources 109
1 Controlled Language for Everyday Use:

the MOLTO Phrasebook . 111

5 Grammar-Based Hybrid Systems for Machine Translation 133
1 Patent Translation within the MOLTO Project 135
2 A Hybrid System for Patent Translation 145
3 Hybrid Translation for European Biomedical Patents 159

7

8

Chapter 1

Introduction

The thesis explores several ways of automating the development of multilingual gram-
mars for the purpose of semantics-preserving machine translation within a limited or
semi-limited domain. The grammars are written in the type-theoretical grammar for-
malism GF (Grammatical Framework) [12]. In addition to enhancing grammar de-
velopment, we also present a novel way of using GF grammars - for translating free
text.

The key feature of GF is the representation of a grammar as a pair consisting of
an abstract syntax acting as a semantic interlingua along with a number of concrete
syntaxes corresponding to target languages. Because of this division, translation is
possible between any pair of languages for which a concrete syntax is defined.

In addition to this, GF is a functional programming language equipped with a run-
time system featuring parsing and verbalization capabilities. Looking at GF grammars
from a machine translation point of view, one can note that a grammar defines a rule-
based translation system between any two concrete languages. The translation results
as a composition of parsing text from the source language and linearizing the abstract
syntax tree thus obtained in the target language.

The separation between the concrete syntaxes and the abstract syntax and the capa-
bility to translate between any two languages differentiates GF from existing rule-based
translation systems like Apertium [2], where translation is defined only for certain pairs
of closely related languages, and is defined by specific transfer rules and bilingual lex-
ica.

The largest and most general GF grammar is the resource library [13], where the
interlingua describes basic syntactic constructs such as predication or complementation
that describe the grammar of a natural language. In addition to this, there are 27 con-
crete grammars corresponding to languages for which these features are implemented1.
The resource library is further used for developing concrete domain grammars for lan-
guages represented in the library.

The GF formalism is comparable to theoretical grammar models like HPSG [4] and
LFG [5], but it differs from them because of the specific representation of a grammar
which distinguishes between the abstract and concrete parts. The GF interpretation of
multilinguality is different from the HPSG and LFG one, because despite the fact that
these formalisms are used to build grammars for a number of languages, GF allows
translation among any pair. The reason is that the languages are strongly connected by

1http://www.grammaticalframework.org/lib/doc/synopsis.html

9

the abstract syntax. The multilingual grammar project based on HPSG is called Lingo
Matrix [6] and features a grammar library for 71 languages2. The coverage of the
languages is variable, because despite of the code sharing, the grammars are ultimately
stand-alone. There is a similar multilingual grammar system for LFG, named Pargram
[7], which contains 6 grammars, but have some mechanisms for parallel analysis of the
languages, as there is a stronger focus on this aspect compared to Lingo.

Another category of GF grammars are domain grammars. They have a clear ab-
stract syntax, that could abstract very much over the specific implementation details.
For this reason, when writing the concrete grammars, one benefits greatly from using
and combining together the basic constructs from the resource library, and not encode
again the language-specific features. In this way, the domain grammar writer need not
have linguistic training, but only knowledge of the domain and the languages for which
she develops concrete grammars.

For this reason, the creation of a resource grammar facilitates the future develop-
ment of several application grammars for the given languages. Moreover, a resource
grammar is a valuable resource by itself, due to the fact that the GF runtime system
provides a parser and linearizer. In this way it can be used for other natural language
processing applications. One important point to mention is the fact that the GF project
is entirely open-source and the grammars are freely available to be used and modified.
This makes a difference for languages where the computational linguistic resources are
scarce and mostly proprietary.

Below is a first example of a GF domain grammar for representing Latin proverbs.
For a better readability, the abstract syntax uses the English translations, though. For
the moment, we assume that the basic components are noun phrases and verb phrases.
The basic grammatical category for representing a proverb is the sentence, obtained by
combining the noun phrase, acting as a subject and verb phrase, acting as a predicate:

abstract Gram1 = {

cat NP, VP, S ;

fun
Time : NP ;
Fly : VP ;
MkS : NP -> VP -> S ;
}

The abstract syntax from above describes the 3 categories - NP, VP, S. In addition
to this, we have the functions, which can be nullary (lexical items like Time and Fly)
or require a number of arguments (like MkS).

Further more, we will give two concrete grammars corresponding to English and
Latin:

concrete Gram1Eng of Gram1 = {

lincat NP, VP, S = {s : Str} ;

lin
Time = {s = "time"} ;
Fly = {s = "flies"} ;
MkS np vp = {s = np.s ++ vp.s} ;

2http://depts.washington.edu/uwcl/twiki/bin/view.cgi/Main/LanguagesList

10

}

concrete Gram1Lat of Gram1 = {

lincat NP, VP, S = {s : Str} ;

lin
Time = {s = "tempus"} ;
Fly = {s = "fugit"} ;
MkS np vp = {s = np.s ++ vp.s} ;
}

In this simple example we only use one form for each word, which is adequate for
the purpose of the grammar - translating the latin proverb Tempus fugit into a number
of languages. Below is a tentative sketch of the same grammar, ported to 8 more
languages:

Figure 1.1: Time flies in English, French, Spanish, Swedish, Farsi, Latin, Romanian,
German, Bulgarian and Italian

It could appear that GF grammars rely on replacing words with their translations,
but adding more languages show that this sort of approach does not scale up well. First,
one can see that the Latin correspondent for Fly, literally means run. Also, for other
languages the translation is a phrase that has a different grammatical structure than the
English counterpart. For example in French, the translation is Le temps passe vite (The
time passes quickly), which would map Time to le temps and Fly to passe vite. One
can see that the mapping is dictated by the context, and is not the most likely translation
of each word.

If one would like to scale up the grammar to include more proverbs, then the string
representation could prove to be insufficient, because one needs to take into account
declension forms of the nouns and verbs from the grammar. If one wants to introduce
complementation, the situation becomes even more complicated because of word order
and clitics.

Hence, a more robust representation of the same grammar would be:

11

abstract Gram2 = Cat **{

fun
Time : NP ;
Fly : VP ;
MkS : NP -> VP -> S ;
}

For this reason, domain grammars like the one described above are normally never
built in this manner and then scaled up, but are developed on top of the resource gram-
mar library, from where they use the syntactic categories and operations.

The English concrete syntax in this case would be:

concrete Gram2Eng of Gram2 = CatEng **
open SyntaxEng,

ParadigmsEng,
IrregEng in {

lin
Time = mkNP (mkN "time") ;
Fly = mkVP fly_V ;
MkS np vp = mkS (mkCl np vp) ;

}

Here we import the modules ParadigmsEng, SyntaxEng and IrregEng
from the English resource grammar in order to write the linearizations of the functions
in a more scalable way. For Time, we use the function mkN from ParadigmsEng,
for getting the declension forms of the noun time. On top of that, we use the func-
tion mkNP from SyntaxEng for creating the noun phrase without a determiner which
corresponds to the noun. For Fly, as it is an irregular verb in English, we get the
correct conjugation forms from IrregEng and create a verb phrase on top of it with
mkVP from SyntaxEng. The function that creates a sentence, MkS is obtained as a
composition of the functions mkS and mkCl from SyntaxEng. The reason is that the
resource grammar needs to build the intermediate category Cl (clause), before creating
a sentence. The clause implements all combinations of times, polarities and topical-
izations of the sentence in cause. The function mkS that we used selects the default
parameters – present tense, positive polarity and direct topicalization.

Although the development effort might seem greater for the second grammar, work
on larger examples showed the importance of developing the concrete syntaxes in a
structured and robust manner, as illustrated by the grammars described in the Contri-
bution subsection. This way of writing GF grammars is also featured as a best practice
in the reference literature for GF programming [12], [8].

It might not be directly noticeable from the example above, but the coverage of a
GF grammar is strictly limited to the language that it defines. One can identify two
important aspects that limit GF grammar coverage: lexicon resources and syntactic
constructions. However, GF grammars compensate by providing an in-depth analysis
of the accepted input in the form of the abstract syntax tree, which can be exploited for
a more sophisticated processing of the input.

For this reason, GF grammars are better at describing controlled natural languages
than real-life text, although substantial work in this direction is in progress [24]. For

12

this reason, despite their potential usage for machine translation, they have a differ-
ent focus than mainstream phrase-based statistics-based translating tools [10] such as
Google translate [11]. This is because the statistic approach to machine translation
favours coverage and provides a translation for any input, although there are no guar-
antees on the correctness of the result. The results are better when translating from
another language into English, because of the simple English morphology and word
order and also because large corpora are available [12]. However, it is not the case that
any pair of languages has a large bilingual corpus, and in this case the results will not
be of the same quality. With the GF approach, the coverage (as defined by the abstract
syntax) is the same for any language in the resource library. Regarding the quality of
the translation, GF offers the advantage that the source of errors is easier to spot and fix
because of the fact that grammars are viewed as programs and more control over their
content is possible.

GF has been the main technology in the European project MOLTO (Multilingual
Online Translation)3 that aimed at making multilingual grammars scale up in more
directions, namely to fit larger domains and real-world text, to make grammar develop-
ment accessible to a larger category of people, without prior linguistic or programming
training and to reduce the effort for developing grammars in general. The thesis was
carried out as a part of the MOLTO project, embraces its goals and tries to contribute
to their fulfilment.

Overall, the thesis gives a comprehensive overview of both traditional and novel
ways of developing multilingual GF grammars. From creating language resources as
part of the GF resource library to combining external resources for semi-automated
grammar development and using GF grammars for developing hybrid translation sys-
tems, the work investigates the process of multilingual grammar development and us-
age from a number of angles. The emerging results show the potential that automating
grammar development has in terms of making grammar programming easier, faster and
more scalable. Moreover, we analyse the usage of GF grammars both in a controlled
context and for handling legacy text.

1 Contributions
The thesis addresses three main directions of grammar development – the creation of
language resources, grammars verbalizing structured models, bootstrapping grammars
from external resources and an emerging direction for grammar utilization – the devel-
opment of grammar-based hybrid translation systems.

More concretely, the work deals with the matter of reducing the effort needed to
develop multilingual grammars by using language skills from SMT systems and native
informants in order to build a concrete domain grammar. Moreover, we investigate the
grammar-ontology interoperability, by projecting structured models into GF grammars,
which we further use for verbalizing the models. Last but not least, the effects of
integrating GF in a hybrid system for translating patent claims from the biomedical
domain are discussed.

1.1 Creating Language Resources
Creating high-quality general language resources has always been one of the most im-
portant direction in computational linguistics. They represent perennial assets that aid

3http://www.molto-project.eu/

13

the further development of computational resources for the language. In GF, having
a general resource for a language opens the way for developing domain grammars for
the language and integrating them in multilingual applications. Creating and enhancing
resource grammars is a constant priority for the GF community because the experience
for developing one resource grammar can be easily transferred to benefit resources for
similar languages, thus leading to an even faster growth of the GF resource library
which currently contains 27 languages, as of August 2013.

An Open-Source Computational Grammar for Romanian

The first major contribution in chronological order that the thesis makes, is "An Open-
Source Computational Grammar for Romanian", which describes the resource gram-
mar for Romanian. To our knowledge, it is the only open-source computational gram-
mar for Romanian, and also the first computational grammar that deals with the Ro-
manian clitics - an interesting and complex linguistic phenomenon. Moreover the Ro-
manian clitic system is different than the clitic system from the other languages in the
Romance family. The work on the Romanian resource grammar made it possible to
develop other GF domain grammars such as the Phrasebook and SUMO-GF for Ro-
manian. From the author’s perspective, the work on the Romanian resource grammar
is meaningful as it gives an overview of the effort that a GF grammar needs and the
knowledge gained after completing this work inspired some directions in which the
grammar writing workflow can be aided.

An example that illustrates the Romanian clitics system is the English sentence I
heard my friend which would be translated to Romanian as Eu l-am auzit pe prietenul
meu where the following annotated version indicates the details of the analysis:

Eu [I, nominative] l-[he, accusative] am auzit [hear, past tense] pe [accusative prepo-
sition for animate direct objects] prietenul [friend, accusative] meu [my, masculin,
singular].

The sentence illustrates the phenomenon of clitic doubling of animate nouns in Ro-
manian - unique in the Romance language family. It applies to animate direct objects,
which can be proper nouns denoting people, pronouns (in certain cases for stylistic
purposes) and common noun phrases in definite form. In this example, the noun phrase
prietenul meu (my friend) is preceded by l-, the clitic corresponding to the accusative
form of the third person singular pronoun.

Moreover, clitics can be combined, as it happens with two-place verbs, and there is
a systematic, yet complex set of rules that specify the process and which is described
in the paper.

The paper was published in In A. Geldbuch (Ed.), Intelligent Text Processing and
Computational Linguistics Conference (CICLing -2010), Iasi, Romania, March 2010,
LNCS 6008. My contribution to the work is the development of the main part of the
Romanian resource grammar, reflected in the paper by parts 2-6.

A Type-Theoretical Wide-Coverage Computational Grammar for Swedish

A second direction in developing language resources is the work on an enhanced ver-
sion of the Swedish resource grammar. The resource was used for parsing Talbanken
[8], an open-source manually-built treebank containing around 6,000 sentences from
newspaper text.

14

Previous work of the same authors [14] presents the development of resources - the
extraction of a large-scale GF lexicon from the SALDO resource [15] and an interactive
lexicon acquisition tool for unknown words from Talbanken, as well as a mapping
strategy from treebank trees to GF trees.

The current paper focuses on extending the Swedish resource grammars with com-
mon Swedish-specific constructions from the treebank, such as the s-passive. More-
over, the current grammar extends the type system with dependent types for encoding
reflexive-possessive pronouns:

Han har tappat sina vantar. (He lost his (own) gloves)

Hans vantar är borta. (His (someone’s) gloves are gone)
The rule is that one uses the reflexive-possessive forms sin/sitt/sina only when

they refer to an object in the sentence. Otherwise the personal pronoun form is used
hans/hennes/deras. One can also use the personal pronoun form for objects, but then it
means that the pronouns refer to another person. For example:

Han väntar på sin kompis. (He waits for his (own) friend)

Han väntar på hans kompis. (He waits for his (someone else’s) friend)
We solve this problem by extending the data type for noun phrases with an ar-

gument that is either Object or Subject. When expressing the other syntactic
constructs, we either require a certain argument – for predication and direct comple-
mentation, or pass the argument along:

PredVP : NP Subject -> VP -> Cl ; -- predication
ComplSlash : VPSlash -> NP Object -> VP ; -- complementation
PrepNP : (a : NPType) -> Prep -> NP a -> Adv a ;

-- building an adverbial phrase

In addition to the extra grammar constructs, the paper describes further work on
creating a GF treebank from Talbanken, chunk parsing of free text and treebank-based
disambiguation of parse trees.

The paper is based on the results of the MSc thesis of Malin Ahlberg [16], super-
vised by the author and was published in the Proceedings of the International Confer-
ence on Text, Data and Speech (TSD) September 2012, LNCS 7499. My contribution
to the work is mainly in the GF part and the high-level parts of the algorithms. The
authors contributed to the paper in equal amounts.

1.2 Grammars Describing Structured Models
The work on representing structured models in GF investigates a number of solutions
to the grammar-ontology interoperability problem and the advantages of using GF as a
host language for structured models, both in terms of type system and possibilities for
multilingual verbalization.

The work on encoding the SUMO ontology in GF focuses more on the type sys-
tem that models the structure of the ontology, whereas the work on verbalizing the
BeInformed business model features a simpler type system, but puts more emphasis on
verbalization mechanisms. In addition to this, work on ontology representation in GF
featured a multilingual grammar for the CIDOC-CRM ontology describing paintings
and related concepts which was extended with 15,000 instances from the Gothenburg
City Museum [17], [18], [19], [20] and [21]. The grammar encoding the ontology also

15

features a simple type system and puts more focus on verbalization, as it generates
multi-sentence descriptions of the painting and aims at high-quality and fluency of the
resulting texts.

Typeful Ontologies with Direct Multilingual Verbalization

The paper describes a type-theoretical grammar that can model the concepts and re-
lations from an ontology, along with the benefits of this encoding for ontology ver-
balization. As a proof of concept, a large part of SUMO (Suggested Upper-Merged
Ontology) [5], the largest open-source ontology, was represented in GF. The results
show that in term of ontology reasoning capabilities, SUMO-GF has a coverage which
is comparable to the original SUMO, whereas regarding natural language generation
capabilities, the results obtained from SUMO-GF, by providing concrete grammars for
English, Romanian and French, even though obtained with straightforward techniques,
proved to be superior from syntactical correctness point of view and readability to the
ones obtained for SUMO with external verbalization tools, especially for Romanian
and French. The results obtained with the SUMO-GF ontology are promising and
show that GF is a good environment for representing ontologies, which could be in-
corporated as part of other grammars in order to provide a semantically robust abstract
syntax, that is easier to fit the concrete syntaxes.

An example of a SUMO axiomatic construction that can be formed in the original
ontology is:

equal (ComplementFn (IntersectionFn ?X ?Y)) NullSet

which expresses the fact that the complement of the intersection of two sets, ?X and
?Y is null. The same axiom expressed in SUMO-GF is:

forall SetOrClass (\X→
forall SetOrClass (\Y→

equal (el (ComplementFn (el (IntersectionFn (var X) (var y))))) (el NullSet)))

Since axioms are closed expressions, the lack of quantification entails that the vari-
ables are quantified universally by default. Also, since GF is strictly typed and there is
no type information about ?X and ?Y, we need to perform type inference on the vari-
ables. Since they are used by the function IntersectionFn that takes 2 arguments of
type SetOrClass, we infer that they should be of a type coercible to SetOrClass, and
because we lack further information to make other inferences, we just assign the type
SetOrClass to the variables.

The wrapper functions el for function results and var for variables, are coercion
functions which require proof objects that a certain type coercion is possible in order
to asses that no type error occurs in the axiom. For example the el that takes Comple-
mentFn as argument, would need a coercion between SetOrClass, the return type of
ComplementFn and Entity, the type that equal expects as argument.

Regarding the verbalization capabilities, the axiom would generate the following
sentences:

for every set or class X and every set or class Y, we have that the complement of the
intersection of X and Y is equal to the null set (English)

pour chaque ensemble ou classe X et chaque ensemble ou classe Y, le complément de
l’intersection de X et Y est égal à l’ensemble nul (French)

16

pentru fiecare mulţime sau clasă X şi fiecare mulţime sau clasă X, complementara in-
tersecţiei lui X şi Y este egală cu mulţimea vidă (Romanian)

The paper was published in the LNCS Post-Proceedings of the Controlled Natural
Languages Workshop (CNL 2010), Marettimo, Italy, November 2011. My contribution
is the representation of the SUMO ontology in GF, the multilingual natural language
generation part and the investigation on the automated reasoning capabilities of the
new ontology, reflected in the paper by parts 1-6, 8, 9.

Multilingual Verbalization of Modular Ontologies using GF and lemon

The work on verbalizing the BeInformed4 business model represents one step forward
in representing and verbalizing ontologies in GF. The focus here shifts from building
a type-theoretical framework for encoding the ontology structure to having an efficient
and practical solution that could fit an industrial project. As the use of GF is mainly for
the verbalization part, the type system has been kept simple, by translating concepts to
GF categories and ontological relations to simple GF functions. For example:

cat
Activity;
Fragment; -- GF category for predicate verbalization

fun
requires_completed : Activity -> Activity -> Fragment ;

One important change in the current grammar representation is the division into

• T-box - encoding the basic structure of the ontology (concepts and relations)

• A-box - encoding instances from the ontology

The difference is that the type system and the primitives for the concrete grammar
that are defined in the T-box can be later used to extend the A-box with more instances,
while preserving the same basic structure of the ontology encoding. The goal is to build
the A-box automatically from external sources (lemon) or developers of the ontology
without GF training, after the T-box has been built for a fragment of the ontology.

This is one more approach to automate grammar development, by importing the
abstract syntax of the grammar directly from the ontology (A-box and T-box), devel-
oping the T-box concrete grammars by GF experts and building the A-box concrete
grammars in an automated way.

Going back to the T-box concrete grammars, it is important to mention that the
grammar verbalizing the ontology features more complex linguistic representations of
the concepts. For example, for Activity, which is normally verbalized as a noun
phrase, we offer the possibility to verbalize it as a sentence, for particular shapes of
instance labels. It is the case of verb phrases with a complement used in gerund
form such as PublishingOfResult, which can either be verbalized in the noun
phrase form publishing the result or in a sentence form the result is published (when
the activity is completed). This becomes more obvious when looking at the verbaliza-
tion of the predicate requires_completed applied to the activities Intake and
PublishingOfResult, which would render:

4http://www.beinformed.com/

17

Intake is completed if the results are published

The paper was published in the LNCS Post-Proceedings of the Controlled Natural
Languages Workshop (CNL 2012), Zurich, Switzerland, September 2012. My contri-
bution is the architecture of the grammar verbalizing the business model (A-box and
T-box representations), reflected in the paper by parts 4.1 (GF introduction), 4.2, 4.3,
4.4.

Multilingual Grammar for Museum Object Descriptions

The final contribution on the topic of ontology representation as GF grammars is
the work on describing cultural artefacts from the Gothenburg City Museum (GCM).
Along the way, a number of solutions were proposed for this problem, since the focus is
both to describe the cultural heritage artefacts in a semantically consistent manner and
to generate high-quality descriptions, given the information existing in the database.

The first solution, described in [17] verbalizes the concepts from the CIDOC-CRM
ontology and its instances from the GCM database in a manner identical to the repre-
sentation of the SUMO ontology. The reason is that the CIDOC-CRM ontology, builds
on SUMO, which provided a good starting point for the work. The downside is that
the SUMO grammar was not tailored for verbalization, so the output that the first GF
grammar for cultural heritage could provide is of the shape:

Big Garden is a painting.

Big Garden is painted on canvas.

Big Garden is painted by Carl Larsson.

Big Garden was created in 1937.

Since the target is a paragraph-like text and not single sentences, and the ontology
does not need consistency checks, a new structure of the grammars was needed. The
new approach, briefly described in [20] is based on studies [23], [24] on the most
common linguistic patterns for describing cultural heritage objects. The patterns were
translated into GF functions and some examples of these have the following signature:

DP0 : Painting -> Painter -> Year -> Text ;

DP1 : Painting -> Museum -> Painter -> Size -> Text ;

DP2 : Painting -> Painter -> Material -> Year -> Text ;

The representation of cultural Heritage objects is a done via a dependent type en-
coding all known features that can be found in the database. Since not all artefacts
have all features that a description pattern would require, the missing features are also
encoded, in order to allow a single dependent type (PaintingDescription) to
encode all objects. The solution that differentiates between known and unknown fea-
tures is inspired from the Maybe type from Haskell, and would use a special object to
denote that a certain feature is missing. For example, NoSize indicates that the size
of a painting is unknown.

18

The semantic definitions of the pattern functions match on missing features and
will generate no text in case that a relevant one is missing. For example, assuming that
the example above is encoded in our new system as

fun Obj : PaintingDescription BigGarden CarlLarsson
Y1937 NoMuseum NoColour NoSize Wood ;

We could not apply DP1 to it, because we have no information on the size and
museum. On the other hand, by applying DP0, we would get Big Garden was painted
by Carl Larsson in 1937.

The advantage of the method is that the implementation of each pattern yields a
coherent paragraph. Also, due to the multilingual context, it is more advantageous to
aim for a higher-level structure, such as the paragraph, since the syntactic structure at
sentence level can be different across languages – for example the use of the passive
voice. The disadvantage is that each pattern needs to be implemented separately, which
entails code duplication. Also one needs to impose a certain order on the patterns and
to select the most informative pattern that could describe a given artefact by methods
external to the grammar.

The final solution, which is currently in use and is described in the MOLTO Deliv-
erable 8.2 builds on the previous one, replacing the patterns described above with only
one pattern that finds the most comprehensive description of the artefact, by pattern
matching on its features. In this way, we retain the unique representation of artefacts
with the dependent type PaintingDescription, which ensures the semantic con-
sistency of the descriptions, and we use a single verbalization function, which combines
the information described in the previous patterns, allowing for potential paraphrasing.

Further work on the Cultural Heritage use case, not included in the thesis, targets
the integration of the CIDOC-CRM ontology with the database entries from GCM
[25], the lexicalization and multilingual translation of database entities and work on a
multilingual query grammar for cultural heritage artefacts [26].

The manuscript corresponds to the Deliverable 8.2, where the authors contributed
in equal amounts. Regarding the writing part, the author is responsible for 3.1, 3.2, 3.3
and partly 4.

1.3 Bootstrapping Grammars from External Sources
As a natural direction for scaling up GF grammars, one can try to reduce the effort for
grammar development by automatically importing parts of the grammar from external
sources. Whereas representing ontologies in GF already showed how one can import
an abstract syntax into GF, the largest bottleneck of automating grammar development
is still building the concrete syntax. Here, the two main challenges, in order of their
difficulty, are building lexical resources and verbalizing complex functions.

Steps in automating the acquisition of a multilingual lexicon from an aligned corpus
with the help of SMT lexical tables are also described in [2] and [28]. In addition to
this, there has been considerable work on porting monolingual morphological resources
to GF in order to aid further grammar development.

In terms of automating the verbalization of functions, we employed the example-
based grammar writing technique, for which a prototype has been implemented and
tested for building concrete grammars for a Tourist Phrasebook. However, the process
is not fully automatic yet, because for complex concepts like the ones described in the

19

T-box verbalizing the BeInformed business model, one still needs manual intervention.
However, the encouraging results showed by the work on the Phrasebook, show that
bootstrapping is an effective tool for grammar development.

Controlled Language for Everyday Use: the MOLTO Phrasebook

The paper "Controlled Language for Everyday Use: the MOLTO Phrasebook", de-
scribes the development of a tourist phrasebook grammar available in 14 languages,
where a considerable part was developed as a part of an experiment to automate the
development of concrete syntaxes and to investigate the relation between language
skills, GF programming skills and the effort needed to develop a concrete syntax for a
medium scale grammar. The results of the experiment show that in principle, one need
not have language skills in order to develop a concrete syntax, provided that one can
use the resource grammar for the given language and use the language skills of native
informants or statistical tools. In this way, both syntactic constructions and unknown
lexicon entries can be added, with the condition that the newly acquired words need
to be POS-tagged and lemmatised. Not surprisingly, the effort was proportional to
the morphological and syntactical complexity of the language, but the example-based
method proved to be quite effective in alleviating the burden of writing linearizations
manually for syntactically complex constructions and for combining the work of the
GF developer and the human informant or SMT system. In the future, the method will
be available as a GF development tool, aimed at reducing the grammar-writing effort
by reducing the need of manual GF programming for concrete grammar development.

An example for developing the Phrasebook with the example-based method is the
case of the question What is your name? for German. A native speaker would be
asked to translate the question and the answer, Wie heißt du? would be parsed with the
German resource grammar parser, assuming that all words are available in the lexicon.
From the resulting expression, we generalize over you since the initial function should
allow any pronoun to appear as argument.

The end result looks like:

QWhatName p = mkQS (mkQCl how_IAdv (mkCl p.name heißen_V)) ;

which would be literally translated to How you ’are_called’?, where the verb heißen
is translated by are_called, with the difference that the verb is not a passive voice, but
a direct equivalent active verb doesn’t exist in English. One can see that the German
phrase differs substantially from the English one:

QWhatName p = mkQS (mkQCl whatSg_IP (mkVP (nameOf p))) ;

The native informant can be given another example of the QWhatName function, used
with a different argument this time, for testing.

The advantage of using the example-based method is that the parser helps abstract-
ing over the difficulties of expressing a more complex syntactic construction, like the
one above, making it possible to combine resources more efficiently and speed up
grammar development.

The paper was published in the LNCS Post-Proceedings of the Controlled Natural
Languages Workshop (CNL 2010), Marettimo, Italy, November 2011. My contribu-
tions are developing the concrete Phrasebook grammars for 4 languages within the
example-based grammar writing experiment, contributing to the development of the

20

GF runtime system in Java for the Phrasebook application on the Android platform and
to the abstract syntax of the Phrasebook at a later stage. The main contribution is the
example-based system prototype and the algorithm to write grammars by examples,
reflected in part 5 of the paper.

1.4 Grammar-Based Hybrid Systems for Machine Translation
In addition to the ways of automating grammar development presented before, work
has also been done on using grammars in combination with SMT for building hybrid
machine translation systems. Since the pros and cons of the two systems are comple-
mentary, the goal of the hybrid system is to get the best of both worlds - wide coverage
from the SMT and syntactic knowledge from the grammar.

There have been a number of approaches for building a GF-based hybrid translation
system in the MOLTO project. Chronologically, the first one is a bilingual grammar
(French and English) extended with a lexicon extracted from the phrase tables of a
state-of-the-art MOSES system. The grammar was used for translating patent claims
from the biomedical domain from English to French, in the first experiment of using
GF on free text [2].

In addition to this, there has been work done on developing a robust GF parser
written in C [24] and using it along with a bilingual dictionary extracted from WordNet
[29] for translating free text from English into Finnish, Urdu, German and Bulgarian
[28].

Patent Translation within the MOLTO Project

The first paper on combining GF with SMT tools, named "Patent Translation within the
MOLTO Project" marks the first experiences in using GF for legacy text, by building a
grammar for translating English patent claims from the biomedical domain to French.
As mentioned before, GF grammars are limited first by the lexicon and secondly by the
syntactic structures that they describe. A solution to the first problem was to build the
lexicon corresponding to the source English text by POS-tagging them with a tagger
trained on the biomedical domain [14], lemmatise the results and build a lexicon gram-
mar from them. The French lexicon is obtained with SMT methods. In addition to this,
the syntactic structure of patent claims has been studied, and significant constructions
which were not covered by the resource library were added to a patent claims gram-
mar. Although in terms of lexicon coverage, the method appears to achieve the desired
result, in terms of syntax coverage, the grammar only covered around 15% of the full
patent claims. However, initial experiments showed that the coverage is considerably
better for syntactic chunks, which could be recombined at a later stage, which is an in-
teresting direction for future work. On the other hand, the SMT baseline system trained
on patent claims achieves better results than other general SMT systems like Google
Translate and Systran for translating patent claims (as of 2011). The main problems
with the translation are syntactical errors that could affect understanding, such as prob-
lems with the agreement for long-distance dependencies and translation of chemical
formulas.

The patent claim come from the MAREC corpus belonging to the European Patents
Office5, used in a patent retrieval task during the CLEF 2010 Conference6.

An example of such a claim is
5http://www.epo.org/
6http://clef2010.org/

21

The pharmaceutical composition of claim 1 , wherein the aqueous solution of arginine
and ibuprofen has been lyophilized.

which the SMT system trained on patent claims would translate to:

Composition pharmaceutique selon la revendication 1 , dans lequel la solution aque-
use de l’ arginine et l’ ibuprofène a été lyophilisée.

whereas, the standard translation is:

Composition pharmaceutique selon la revendication 1 , dans laquelle la solution aque-
use d’ arginine et d’ ibuprofène est lyophilisée.

By looking at the changes between the two French claims, as highlighted in the stan-
dard translation, one can notice that although they don’t affect the understanding for
this claim, they are grammatically incorrect and could make the text harder to read and
understand.

Regarding the GF translation of the same claim, several parse trees corresponding
to the English claim have been found. The closest to the reference translation is:

Composition pharmaceutique selon la revendication 1 , dans laquelle la solution aque-
use d’ arginine et d’ ibuprofène a été lyophilisée.

The only difference between the GF and the standard translation is the use of past tense
(passé composé) for the innermost subordinate clause in the GF translation, whereas the
reference one uses present. Since the original English claim uses present perfect, and
in French no tense would have the same functionality, the choice between present/past
tense is still debatable. Still there are sources7 claiming that the past tense in French
(passé composé) is the most grammatically similar to the present perfect tense from
English. The two agreement errors that the SMT translation displayed, did not occur
in the grammar-based translation.

We noted that for the claims that the GF patents grammar could parse, the translated
results are better than the SMT system, but since the coverage of the grammar is still
very low and the claims that it can parse are rather simple, there is a great need to
make the two technologies interact on a deeper level in order to have a robust hybrid
translation system.

The paper was accepted for publishing in the Proceedings of the 4th Workshop on
Patent Translation, MT Summit XIII, Xiamen, China, September 2011. My contribu-
tion was the part about the GF grammar for patent claims, reflected in parts 2, 3.1 and
4.1.

A Hybrid System for Patent Translation

The paper “A Hybrid System for Patent Translation’" presents a second experiment in
building a GF-based hybrid system for parsing patent claims, after [2]. The system was
used for translating the same corpus as before, from English to French.

The grammars are used in combination with a state of the art SMT system for
translating English patent claims from the biomedical domain from English to French
and German.

7http://en.wikipedia.org/wiki/Present_perfect#French

22

The key idea is to split claims into chunks first, so that the grammar has a better
chance of parsing them, since the previous experiment showed the limited coverage of
GF grammars, mainly due to their strictness when it comes to syntactic constructs.

Further on, the chunks that can be translated (parsed and linearized) are included,
along with their translation in the Moses phrase tables and used by the SMT system in
translation. A concrete example showing how the GF-based system would translate an
English claim can be found in the paper.

An important part of the process is building a good bilingual lexicon, which is
done with the help of the same tool used for chunking - Genia. From the English
words lemmatized by Genia, we find the French correspondents with SMT methods.
The GF representations of the words are found with the help of the large monolingual
dictionaries for English and French and the mechanisms provided by the GF resource
grammars for inferring the additional forms of a lexical entry based on the lemma.

Since for the pair English-French, the results obtained by the SMT system were
very good already, the main improvement that GF aims to bring is to increase syntactic
correctness of the translations, as one of the largest problems that the SMT translations
have are agreement errors which could affect understanding. For example, the transla-
tion of the the pharmaceutical composition of claim 1, wherein ... is translated by the
SMT system as composition pharmaceutique selon la revendication 1, dans lequel...,
where dans lequel is the French translation for wherein. The only problem is that the
agreement is not correct, since the relative pronoun should agree with the noun that it
determines (composition), which in French is feminine. The hybrid system renders the
correct translation composition pharmaceutique selon la revendication 1, dans laque-
lle.

The results of the automated evaluation show a slight improvement of the hybrid
system compared to the SMT and GF components, but the differences are small. How-
ever, human evaluation favoured the hybrid system in a more definite manner.

The paper was published in the Proceedings of the 16th Annual Conference of the
European Association for Machine Translation, Trento, Italy, May 2012. My contribu-
tion was the part about the GF grammar for patent claims, reflected in parts 2, 3.1 and
4.1.

Hybrid Translation for European Biomedical Patents

The final contribution related to a grammar-based hybrid translation system, named
"Hybrid Translation for European Biomedical Patents" is a manuscript based on the
Deliverable 5.3 of the MOLTO project [28]. It is a direct continuation of the work
described by the previous paper "A Hybrid System for Patent Translation" [31].

The main differences compared to previous work are the refinements in lexicon
acquisition and the addition of German as a target language in the system.

There are 3 directions for lexicon acquisition that the work proposes, which are
meant to replace the previous method, which required manual intervention in the end.
Also the integration with the SMT tools is automatic, so that the whole pipelined sys-
tem can be available as a demo. The approaches are:

static – builds large bilingual lexical resources for translation and does not require
additional lexical resources which are built at runtime. For French, a bilingual one-to-
many dictionary of almost 4,000 words is built from the SMT translation tables.

23

For German, in addition to the almost 40,000 words resource extracted from Wik-
tionary, we add a dictionary for translating German compounds to English of almost
8,000 words.

runtime safe – starts from a core lexicon of almost 200 words which are the most
frequent in the corpus and complets it with nouns, adverbs, adjectives and verbs, tagged
by the POS-tagger and translated from the lexical tables. The important constraint that
the pairs of words need to fullfil is that they must both be found in the monolingual
resources that exist already for English, French and German. In this way, we avoid
introducing wrong declension forms in the grammar.

runtime unsafe – starts from the same core lexicon and adds pairs of words as de-
scribed in the runtime safe method, with a weaker constraint on the words – nouns,
adjectives and adverbs need not be present in the monolingual dictionaries, and their
GF representation table will be inferred with the help of the smart paradigms [32].

Since the chunks translated with GF will be used by the Moses system, which needs
probabilities in order to choose the best translations, we also assign probabilities to the
translations obtained by our grammar, using all 3 lexicon acquisition techniques. More
details can be found in [28].

We will reflect more on the German compound dictionary, as it is the most novel
feature of the work. One can note the difficulty to translate multiword compounds, such
as Blutersatz (blood substitute) with a word-to-word dictionary, which would either
map the German word to blood or to substitute, but not to both, since Blutersatz is a N
and blood substitute is a CN in GF.

Our method relies on building a grammar for German compounds, that reflects the
rules for compounding in German. In this manner, we can express the compounds as
a function of their basic constituents, in order to get the correct declension forms and
gender.

Further on, we use the SMT phrase tables in order to identify German compounds
along with their English translation. For the moment, we focus on noun phrase com-
pounds, so we only retain pairs where the English side can be parsed as such by the
English resource grammar. We proceed by splitting the German compounds in a greedy
manner, until we find the smallest number of substrings such that they can be found in
the German monolingual dictionary and they can be composed according to the rules
of the above-mentioned compound grammar in order to retrieve the original word. The
German compound and its English translation, thus obtained are added to the resource
dictionary.

Despite the refinements in the lexical acquisition and compound integration, the
performance of the hybrid system does not improve on the previous system for French
and obtains lower results than the SMT system for German. The reasons might be that
the SMT translation already obtained high scores which are not easy to improve, and
also that for German, the chunks obtained from Genia [14] were not large enough to
allow the grammar to render the correct word reordering, thus improving over SMT.
However, the lexicon acquisition techniques are general and effective ways for im-
proving the coverage of GF grammars, and could be used in future applications that
automate grammar development.

The paper is available as a manuscript. My contribution was the part about the GF
grammar and lexicon acquisition, reflected in parts 2.3, 3.1, 3.2 and 3.3.

24

2 Further Frontiers of Multilingual Grammar Devel-
opment

The thesis enumerates a number of directions for automating multilingual grammar de-
velopment, as well as using grammars for building hybrid systems for machine trans-
lation. Each of these directions could lead to multiple further developments.

The first of them would be the extension of the prototype for example-based gram-
mar writing to a stand-alone application. A possibility would be to integrate the algo-
rithm within the GF web editor8, where the method could be combined with traditional
GF programming. Moreover, having an example-based grammar writing system would
increase the community of GF developers, since it would alleviate the difficulties of
developing concrete syntax grammars. Not only the grammar writing effort would
be reduced in this way, but also the effort for correcting and maintaining application
grammars, which could make GF solutions more sustainable in the long run.

An important component of the example-based grammar writing technique is ob-
taining the most specific generalization, when abstracting over arguments in order to
get the linearization of a function. The same technique can be used for grammar induc-
tion - which would allow building application grammars (abstract + concrete syntaxes)
from an aligned bilingual corpus. The technique assumes that the aligned sentences
from the corpus are parsed with the resource grammar for each language and then
one applies the abstraction algorithm, which should find where the trees don’t align
and these subtrees are candidates for idiomatic phrases or unmatched word correspon-
dences, which should be added to the grammar.

Another direction that the Phrasebook grammar inspired is a framework for gram-
mar testing. This is an important step, especially for grammars generated from external
sources or with a larger degree of automation. There is work in progress for generating
the smallest number of abstract syntax trees that cover all constructions from the gram-
mar, where the trees have roughly the same number of nodes. This is an NP-complete
problem and for solving it without brute-force techniques that would not be possible to
implement for large scale grammars, we are investigating the use of automated theorem
proving methods.

Moreover we are investigating a novel method to test grammars, named grammar-
based grammar testing, which generates a new grammar from the internal representa-
tion of a concrete grammar. This gives a more detailed taxonomy of the categories and
functions of the grammar, since it divides categories into equivalence classes, according
to their inherent parameters. For example, assuming that nouns have the representa-
tion N = {s : Str; g : Gender} and Gender can be either Masculine
or Feminine, the category N from the generated grammar would have two subcate-
gories N_Masculine and N_Feminine.

Similarly, the generated forms of GF functions would feature all the different forms/
behaviour patterns that the function could have. For example, the function applying the
definite article to a noun would have a different behaviour for masculine and feminine
nouns, if the forms of the definite article are different.

Generating such a grammar, makes it easier to profile the original grammar, and
to trace the exact rules that lead to a natural language construction that the original
grammar generates. The transition is between the two grammars is smooth since the
concrete syntax of the generated grammar is the abstract syntax of the original gram-
mar, so one could parse a natural language example twice and get a systematic profiling

8http://www.grammaticalframework.org/demos/gfse/

25

of all the rules that the concrete grammar used.
One more direction for grammar testing, especially considering the context of the

work — medium-to-large scale grammars for more than 5 languages, resulting from
a collaborative effort of several developers is ambiguity detection. This is not only a
theoretically interesting problem, as it has not yet been investigated for PMCFG gram-
mars, but it could also lead to practical improvements of using multilingual GF gram-
mars for translation. For instance in English, the pronoun "you" denotes the familiar
and the formal forms of the 2nd person singular and plural. In most other languages,
the four pronouns would not linearize into the same form, so when translating from
English, a number of distinct alternatives will be displayed. A tentative solution to
this problem would be to let the user choose the right one by making the context ex-
plicit (which pronoun would be used by each alternative, in our example). A grammar
with this sort of additional information is called disambiguation grammar and was first
devised for the English Phrasebook. These grammars are however hand-written and
assume that all ambiguities are known before. Moreover, one needs a disambiguation
grammar for each pair of languages, which makes the development effort for writing
disambiguation grammars exceed the effort for developing the original concrete gram-
mars and it also requires knowledge about all ambiguities from all languages. Having
a method for automatically detecting ambiguities would make it possible to generate
disambiguation grammars automatically, by analysing both grammars for ambiguities
and filtering out the ones that do not make a difference in translation.

Last, but not least, a direction emerging from the work on hybrid machine transla-
tion systems is the construction of multiword lexicons from SMT phrase tables. After
the experiment about generating a lexicon that covers German compound nouns and
their English translation, similar experiments can be performed for other languages
where compounds are frequent (such as Finnish or the Scandinavian languages). More-
over, if a bilingual lexicon for single words with multiple variants is available, one
can perform a similar experiment to find multiword-to-multiword correspondences, by
parsing the phrases in the phrase tables and keeping the ones that differ in the syntac-
tic structure or where at least one of the words does not have a correspondent in the
other phrase. Having a multiword lexicon would not only be a reusable GF resource,
but would also give GF-based translation systems an advantage over SMT, since one
of the biggest disadvantages of GF (when it can parse and translate an entry) is that
the translations are literal, and do not handle idiomatic expressions in the way an SMT
would do.

26

Additional Publications
The following articles were accepted for publication in peer-reviewed conferences and
workshops during the author’s PhD studies, but are not included in the thesis:

2013

1. Damova, Mariana; Dannélls, Dana; Enache, Ramona; Mateva, Maria; Ranta,
Aarne: Natural Language Interaction with Semantic Web Knowledge Bases
and LOD. Chapter in "Towards the Multilingual Semantic Web", Springer, to
appear in autumn 2013.

2. Damova, Mariana; Dannélls, Dana; Enache, Ramona; Mateva, Maria; Ranta,
Aarne: Multilingual Access to Cultural Heritage Content on the Semantic
Web. 7th Workshop on Language Technology for Cultural Heritage, Social Sci-
ences and Humanities, ACL 2013, Sofia, Bulgaria.

3. Gonzàlez, Meritxell; Enache, Ramona; Mateva, Maria; España-Bonet, Cristina:
MT Techniques in a Retrieval System of Semantically Enriched Patents.
14th MT Summit, System Demonstrations, September 2013, Nice, France.

2012

1. Ahlberg, Malin; Enache, Ramona: Combining Language Resources into a
Grammar-Driven Swedish Parser. 8th International Conference on Language
Resources and Evaluation (LREC’12), May 2012, Instanbul, Turkey.

2. Dannélls, Dana; Enache, Ramona; Damova, Mariana; Chechev, Milen: Multi-
lingual Online Generation from Semantic Web Ontologies. World Wide Web
Conference (WWW’12), April 2012, Lyon, France.

2011

1. Dannélls, Dana; Damova, Mariana; Enache, Ramona; Chechev, Milen: A Frame-
work for Improved Access to Museum Databases. Language Technologies
for Digital Humanities and Cultural Heritage (RANLP ’11), September 2011,
Hissar, Bulgaria.

2010

1. Caprotti, Olga; Angelov, Krasimir; Enache, Ramona; Hallgren, Thomas; Ranta,
Aarne: The MOLTO Phrasebook. Swedish Language Technology Conference
(SLTC’10), October 2010, Linköping, Sweden.

2. Détrez, Grégoire; Enache, Ramona: A Framework for Multilingual Applica-
tions on the Android Platform. Swedish Language Technology Conference
(SLTC’10), October 2010, Linköping, Sweden.

27

28

Bibliography

[1] Ranta, A.: Grammatical Framework: Programming with Multilingual Grammars.
CSLI Publications, Stanford (2011) ISBN-10: 1-57586-626-9 (Paper), 1-57586-
627-7 (Cloth).

[2] Forcada, M., Ginestí-Rosell, M., Nordfalk, J., O’Regan, J., Ortiz-Rojas, S., Pérez-
Ortiz, J., Sánchez-Martínez, F., Ramírez-Sánchez, G., Tyers, F.: Apertium: a
free/open-source platform for rule-based machine translation. Machine Transla-
tion 25 (2011) 127–144 10.1007/s10590-011-9090-0.

[3] Ranta, A.: The GF resource grammar library. Linguistic Issues in Language
Technology 2(1) (2009)

[4] Pollard, C., Sag, I.: Head-Driven Phrase Structure Grammar. University of
Chicago Press (1994)

[5] Bresnan, J.: The Mental Representation of Grammatical Relations. MIT Press
(1982)

[6] Bender, E.M., Flickinger, D., Oepen, S.: The grammar matrix: an open-source
starter-kit for the rapid development of cross-linguistically consistent broad-
coverage precision grammars. In: COLING-02 on Grammar engineering and
evaluation, Morristown, NJ, USA, Association for Computational Linguistics
(2002) 1–7

[7] Butt, M., Dyvik, H., King, T.H., Masuichi, H., Rohrer, C.: The parallel grammar
project. In: COLING-02 on Grammar engineering and evaluation, Morristown,
NJ, USA, Association for Computational Linguistics (2002) 1–7

[8] Ranta, A., Camilleri, J., Détrez, G., Enache, R., Hallgren, T.: Grammar tool
manual and best practices (June 2012)

[9] Angelov, K.: The Mechanics of the Grammatical Framework. PhD thesis,
Chalmers University of Technology, Gothenburg, Sweden (2011)

[10] Koehn, P., Och, F.J., Marcu, D.: Statistical phrase-based translation. In: Pro-
ceedings of the Human Language Technology and North American Association
for Computational Linguistics Conference (HLT/NAACL), Edomonton, Canada
(May 27-June 1 2003)

[11] Och, F.: Statistical machine translation live (April 2006)

29

[12] Och, F.J., Tillmann, C., Ney, H.: Improved alignment models for statistical ma-
chine translation. In: Proc. of the Conference on Empirical Methods in Natural
Language Processing and Very Large Corpora, University of Maryland, College
Park, MD (June 1999) 20–28

[13] Nivre, J., Nilsson, J., Hall, J.: Talbanken05: A Swedish treebank with phrase
structure and dependency annotation. In: In Proceedings of the fifth international
conference on Language Resources and Evaluation (LREC2006). (2006) 24–26

[14] Ahlberg, M., Enache, R.: Combining language resources into a grammar-driven
swedish parser. In Chair), N.C.C., Choukri, K., Declerck, T., Doğan, M.U., Mae-
gaard, B., Mariani, J., Odijk, J., Piperidis, S., eds.: Proceedings of the Eight
International Conference on Language Resources and Evaluation (LREC’12), Is-
tanbul, Turkey, European Language Resources Association (ELRA) (May 2012)

[15] Borin, L., Forsberg, M., Lönngren, L.: Saldo 1.0 (svenskt associationslexikon
version 2). (2008)

[16] Ahlberg, M.: Towards a wide-coverage grammar for swedish using GF (2012)

[17] Dannélls, D., Ranta, A., Enache, R.: Multilingual grammar for museum object
descriptions (March 2011)

[18] Dannélls, D., Damova, M., Enache, R., Chechev, M.: A framework for improved
access to museum databases in the semantic web. In: RECENT ADVANCES
IN NATURAL LANGUAGE PROCESSING. Language Technologies for Digital
Humanities and Cultural Heritage, Hissar, Bulgaria (September 2011)

[19] Dannélls, D., Enache, R., Damova, M., Chechev, M.: Multilingual online gen-
eration from semantic web ontologies. In: www2012. EU projects track, Lyon,
France (April 2012)

[20] Dannélls, D., Ranta, A., Enache, R., Damova, M., Mateva, M.: Multilingual
access to cultural heritage content on the semantic web. In: Language Technol-
ogy for Cultural Heritage, Social Sciences, and Humanities Workshop (LaTeCH).
(2013)

[21] Damova, M., Dannélls, D., Mateva, M., Enache, R., Ranta, A.: Natural language
interaction with semantic web knowledge bases and lod. In: Towards multilingual
Semantic Web. Springer, Berlin (2013)

[22] Niles, I., Pease, A.: Towards a standard upper ontology. In: FOIS ’01: Proceed-
ings of the international conference on Formal Ontology in Information Systems,
New York, NY, USA, ACM (2001) 2–9

[23] Dannélls, D.: Ontology and corpus study of the cultural heritage domain
(September 2011)

[24] Dannélls, D.: Multilingual text generation from structured formal representa-
tions. PhD thesis, University of Gothenburg, Sweden (2013)

[25] Dannélls, D., Damova, M.: Reason-able view of linked data for cultural heritage.
In: Advances in Intelligent and Soft Computing / The Third International Confer-
ence on Software, Services Semantic Technologies (S3T). Volume 101. (2011)
17–24

30

[26] Dannélls, D., Ranta, A., Enache, R., Damova, M., Mateva, M.: Translation and
retrieval system for museum object descriptions (March 2013)

[27] España-Bonet, C., Enache, R., Slaski, A., Ranta, A., Màrquez, L., Gonzàlez,
M.: Patent translation within the MOLTO project. In: Proceedings of the 4th
Workshop on Patent Translation, MT Summit XIII, Xiamen, China (September
2011) 70–78

[28] España-Bonet, C., Enache, R., Angelov, K., Virk, S., Galgóczy, E., Gonzàlez,
M., Ranta, A., Màrquez, L.: Wp5 final report: Statistical and robust machine
translation (April 2013)

[29] Virk, S.M., Prasad, K.V.S.: Developing an interlingual translation lexicon using
wordnets and grammatical framework. In: NoDaLiDa 2013. (2013)

[30] Tsuruoka, Y., Tateishi, Y., Kim, J., Ohta, T., McNaught, J., Ananiadou, S., Tsujii,
J.: Developing a robust part-of-speech tagger for biomedical text. In Bozanis, P.,
Houstis, E.N., e., eds.: Advances in Informatics. Volume 3746. Springer Berlin
Heidelberg (2005) 382–392

[31] Enache, R., España-Bonet, C., Ranta, A., Màrquez, L.: A hybrid system for
patent translation. In: Proceedings of the 16th Annual Conference of the Euro-
pean Association for Machine Translation (EAMT12), Trento, Italy (May 2012)
269–276

[32] Détrez, G., Ranta, A.: Smart paradigms and the predictability and complexity of
inflectional morphology. In: Proceedings of the 13th Conference of the European
Chapter of the Association for Computational Linguistics. EACL ’12, Strouds-
burg, PA, USA, Association for Computational Linguistics (2012) 645–653

[33] Melamed, I.D., Green, R., Turian, J.P.: Precision and Recall of Machine Trans-
lation. In: Proceedings of the Joint Conference on Human Language Technology
and the North American Chapter of the Association for Computational Linguis-
tics (HLT-NAACL). (2003)

31

32

Chapter 2

Creating Language Resources

33

34

1 An Open-Source Computational Grammar for Ro-
manian

Ramona Enache Aarne Ranta Krasimir Angelov

Abstract: We describe the implementation of a computational grammar for Ro-
manian as a resource grammar in the GF project (Grammatical Framework). Resource
grammars are the basic constituents of the GF library. They consist of morphological
and syntactical modules which implement a common abstract syntax, also describing
the basic features of a language. The present paper explores the main features of the
Romanian grammar, along with the way they fit into the framework that GF provides.
We also compare the implementation for Romanian with related resource grammars
that exist already in the library. The current resource grammar allows generation and
parsing of natural language and can be used in multilingual translations and other GF-
related applications. Covering a wide range of specific morphological and syntactical
features of the Romanian language, this GF resource grammar is the most comprehen-
sive open-source grammar existing so far for Romanian.

1. Preliminaries
GF1 [1] is a grammar formalism, which uses type theory to express the semantics of
natural languages, for multilingual grammar applications. The GF resource grammars
[2] are the basic constituents of the GF library, on top of which applications are built.
Notable applications that use GF are the verification tool KeY, for the generation of
natural language from the formal language OCL, the dialogue system research project
TALK and the educational project WebALT, for generating natural language for math-
ematical exercises in different languages, and performing multilingual translations.

The two main operations that are regularly performed with resource grammars are
the generation of natural language, based on a term in the abstract syntax (lineariza-
tion) and parsing. Multilingual translation is achieved as a combination of these two
processes.

A GF resource grammar basically consists of the abstract syntax, which is a set
of rules common to all grammars, and provides the structure of the grammar, and the
concrete syntax, which implements the elements of the abstract syntax in the given lan-
guage, considering its specific features. The abstract syntax provides consistency for
the resource library, also ensuring grammatically correct multilingual translations. Re-
source grammars are general-purpose, as they capture the basic traits of the language.
Domain-specific applications use a more restricted domain ontology. In this case, there
is more emphasis on the semantical aspect, than in the case of general-purpose gram-
mars. In both cases, only syntactically correct constructions can be generated and
parsed.

So far the resource library contains 15 languages : English, French, Italian, Span-
ish, Catalan, Swedish, Norwegian, Danish, Finnish, Russian, Bulgarian, German, In-

1http://www.grammaticalframework.org

35

terlingua (an artificial language), Polish and Romanian. The last two languages were
added in 2009. Considering the Romance languages (French, Italian, Spanish and Cata-
lan) and the Scandinavian ones (Swedish, Norwegian and Danish), as the languages
from the same family shared many similarities, they were each implemented as fami-
lies in the resource library. In this way, in the Romance and Scandinavian module, all
the similar features are grouped together, along with an interface that declares the dif-
ferences among the languages. Regarding syntactical features, members of the same
family share more than 75% of the code, through the implementation of the family
module.

Although Romanian is a member of the Romance family, it was implemented in-
dependently, due to significant differences between it and the existing Romance lan-
guages in the GF resource library.

2. Main Categories
Each resource grammar features a complete set of paradigms for the inflectional mor-
phology of the main categories, namely nouns, adjectives, verbs, numerals and pro-
nouns.

In the abstract syntax, lexical entries are represented as nullary functions (con-
stants). They are given linearizations in the concrete syntax, typically of tables with all
the inflection forms. For example: fun airplane_N : N from the abstract syn-
tax is linearized in the Romanian resource grammar as lin airplane_N = mkN
"avion" where the function mkN generates all the 12 flexion forms needed for a
noun, as well as its the gender.

Special categories are the relational nouns, adjectives and verbs, where we specify
the case of the object, and the preposition that binds it with the relational category. For
example: fun forget_V2 : V2 will be linearized as forget_V2 = dirV2
(v_besch18 "uita") where v_besch18 indic- ates the group of conjugation
for the given verb, according to [3]; the name is a reference to Bescherelle, which is the
resource used for implementing verb conjugations for most languages in the Romance
family. The function dirV2 indicates that the verb is transitive, and the corresponding
object will in the Accusative cases, with no binding preposition (direct object).

2.1. Nouns

Romanian nouns (N) inflect in case, number and species (definite or indefinite form).
The definite article is enclitical, while the indefinite article is proclitical. In the other
Romance languages, both the definite and indefinite articles are proclitical. For exam-
ple:

om→ omul→ un om

man→ the man→ a man

There are 5 cases: Nominative, Accusative, Dative, Genitive and Vocative, but due to
syncretism between Nominative-Accusative and Genitive-Dative, nouns have at most 3
different forms for case inflexion. Other Romance languages have just one inflectional
case; case distinctions are expressed by prepositions. For example in French de is used
for Genitive, and a for Dative.

While the other Romance languages have two genders, Romanian has three: Mas-
culine, Feminine, and additionally Neuter. However, the Romanian Neuter has been

36

the center of some linguistic disputes, as it behaves like Masculine for Singular and as
Feminine for Plural, from the agreement point of view. This feature allows us to con-
sider only the basic two genders in the syntactic part of the grammar, when reasoning
about agreement between nouns and adjectives and noun phrases and verbs.

Another distinguishing feature of Romanian is the Animacy feature, which plays
an important role in syntax, particularly for clitic doubling. Inanimate nouns do not
have a special form for Vocative. However, compared to the gender which is inherent,
animacy can be changed according to use, most frequently from Inanimate to Animate.
The features of nouns also apply to adjectives.

In the Romanian resource grammar, the noun is represented as

N = {s: Number => Species => ACase => Str;
g: NGender; a: Animacy};

where

NGender = NMasc | NFem | Nneut;
Species = Def | Indef;
ACase = ANomAcc | AGenDat | Avoc;
Animacy = Animate | Inanimate;

The syntax of parameters in GF follows the model of declaring an algebraic datatype
in functional languages, where the elements of the disjunction are constructors of the
type. The representation of the noun is a record with three fields, where the s field
is a multidimensional table storing the 12 forms of the noun. Each of the parameters
separated by => defines a new dimension of the table. A function would, hence, need
12 strings, along with a gender and an animacy attribute for a complete representation
of a noun.

However, we provide special functions, named smart paradigms, that build the
complete representation using at most 3 parameters. These functions can infer the
animacy attribute, gender, and declension forms of a noun. The most common ones are
the functions that use the Singular and Plural Nominative Indefinite forms of a noun,
but other combinations of forms are also considered.

Since for the Vocative case there are no well-established rules, we provide a func-
tion that sets this field to a particular value, in case it cannot be inferred by the default
rules. Regarding the Animacy feature, since by default nouns are assumed to be inani-
mate, we provide a function for this case, too.

The gender can be automatically inferred from the last letter of the word with a pre-
cision of 77%, on the 186 nouns in the GF Lexicon. The great majority of nouns ending
in -ă,-e or -a for the singular form have feminine gender[4]. It is considerably harder
to distinguish between masculine and neuter nouns if we have just the singular form,
but [4], offers some patterns that characterize masculine words, which are statistically
rarer than the neuter ones.

In case the smart paradigm takes both the singular and the plural form as arguments,
it can normally differentiate masculine from neuter, as the plural form of neuter nouns
ends in -e or -uri, while masculine nouns always have plural forms ending with -i.

For the implementation of a Noun Phrase there are more specific details of the
language to take into account.

NP= {s: NCase => {comp: Str; clit: Clitics => Str};
a: Agr; indForm: Str; nForm: NForm;
isPronoun: Bool};

37

where NForm = HasClit | HasRef Bool.
Because pronouns do not have case syncretism, the 5 cases need to be represented

separately (NCase parameter). The agreement consists of number, gender (Feminine
or Masculine) and person.

The parameter NForm indicates whether the noun phrase is in referential form and
develops clitic doubling (HasClit), or, in the absence of clitic doubling, if it is in
referential form or not (HasRef True or HasRef False). We mention that clitic
doubling implies referential form, while the reverse does not hold. Nouns in referen-
tial form need to be preceded by the preposition pe when they act as Direct Objects in
Accusative. Although the use of noun phrases in referential form and clitic doubling is
very context-dependent in some cases, and subject to discussions in others, we chose
the approach suggested in [5]. So, for referential form and clitic doubling, we consid-
ered pronouns, animate proper nouns and animate nouns determined by adjectives or
possessive pronouns.

Regarding fields from the representation of NP :

• nForm indicates if the noun phrase needs to be doubled by a clitic in the situa-
tions when this phenomenon occurs.

• isPronoun is relevant for the clitic doubling situations, because the basic form
of the pronoun will be ignored, and the noun phrase will just be represented by
the clitic. Situations where clitic doubling also occurs for pronouns are possible,
but less common. They are not handled in the resource grammar, since they are
meaning dependent, and their semantical role is to emphasize the pronoun.

• indForm is used to cover another distinguishing feature in Romanian, which is
the usage of the definite/indefinite form of the noun depending on context [5].
Some Accusative prepositions(like la - to, de pe - on/from) require the indefinite
form of a noun phrase, in case it consists of a noun, which is not followed by an
adjective or a determiner. For dealing with this case indForm stores the suitable
form of the noun, to be used if preceded by such a preposition. For example:

de pe deal - on the hill (Definite form conflict because of preposition
de pe)
de pe un deal - on a hill (Indefinite form for noun)
de pe dealul mare - on the big hill (Definite form for noun + adjective)

The intermediate category between nouns (N) and noun phrases (NP), sometimes called
“N bar”, is in the GF resource grammar library called common noun, CN. It consists of
a noun, possibly with adjectives, adverbs, relative clauses, appositional attributes, and
complements for relational nouns.

Noun phrases can be further formed from common nouns followed by determiners,
which give the number of the noun phrase and also select the definite/indefinite form
of the common noun.

Proper nouns (PN) have different inflection forms and behavior towards clitic dou-
bling, depending on their animacy. The representation of proper nouns is

PN = {s: NCase => Str ; g: Gender ;
n: Number; a: Animacy};

Proper nouns thus inflect for case and have inherent gender, number, and animacy.
Smart paradigms for proper nouns can infer these properties, setting animacy to the
animate by default.

38

2.2. Adjectives

Adjectives (A) are represented in the resource grammar as

A = {s: AForm => Str};

where AForm = AF Gender Number Species ACase | AA.
Considering the agreement of adjectives with nouns, we just consider the two gen-

ders Feminine and Masculine. For neuter nouns, we choose the Masculine or Feminine
form, depending on the number, on syntactical level. The constructor AF builds the
representation table of an adjective, consisting of 24 forms, while AA maps an adjec-
tive to its corresponding adverb, which in most cases has the same form as the adjective
for Masculine Singular. The complete representation of an adjective thus consists of
25 forms, but smart paradigms need at most 5 forms to infer them all. Adverbs (Adv)
are inflectionally invariant in Romanian, as in most languages in the resource library.

One of the main difficulties of giving complete inflection rules for adjectives was
the presence of phonetical mutations. They are not predictable from the lexical struc-
ture, being rather dependent on the etymology and age of the word. Neological words
do not usually develop phonetical mutations. Compared to nouns, adjectives need more
forms of the word, so it is important to be able to determine the effects of phonetical
mutations in a systematic way.

When building the forms for all genders and numbers of the adjective, two main
mutations can occur: o→oa (masculine singular→ feminine singular and plural) and
e→ea (masculine singular→ feminine singular). For example, for o→oa : frumos(Masc
Sg), frumoasă(Fem Sg), frumoase(Fem Pl, “beautiful”) and for e→ea : drept(Masc
Sg), dreaptă(Fem Sg, “right”). These changes affect the second or third last letter in
the stem.

The default behavior of the adjectives does not feature the phonetical mutations, for
which special functions are provided. In the given lexicon, 80% of the 54 adjectives
have default behavior. Also, for 60% of them, just the Masculine Singular Indefinite
Nominative form is needed in order to build the whole representation table, using the
provided declension rules.

The degrees of comparison are formed on syntactical level, as they do not change
the basic form of the adjective.

2.3. Verbs

The category of verbs (V) is by far the most complex one from the Romanian resource
grammar. On morphological level the table of a verb is defined as:

VForm = Inf
| Indi Temps Number Person
| Subjo Number Person
| Imper Number
| Ger
| PPast Gender Number Species ACase;

where Temps = Presn | Imperf | PSimple | PPerfect represents the
tenses for Indicative and Subjunctive that cannot be formed analytically on syntactical
level. The past participle behaves like an adjective, as in the other Romance languages.

The representation of a verb on morphological level consists of 62 forms :

• Present, Imperfect, Perfect Simple and Past Perfect: 6 forms for each

39

• Infinitive: 1 form

• Conjunctive: 1 form, corresponding to the third person singular, as the other
forms are identical to the present ones, except for the irregular verb a fi (to be)
which will be treated separately.

• Imperative: 1 form, corresponding to the 2nd person singular, as the 2nd person
plural has the same form as for present.

• Past Participle: 24 forms as for ordinary adjectives.

• Gerund: 1 form

The 6 forms required for the first four tenses are motivated by the fact that verbs have
different forms for the Cartesian Product of the 3 persons (1, 2 and 3) and 2 numbers
(singular and plural).

There are 4 conjugation groups, based on the last 1–2 letters:

1. verbs ending in -a (which do not belong to the 2nd group) are in the 1st group
(example a lucra - to work)

2. verbs ending in ea (where e and a belong to the same syllable and are not pre-
ceded by h) belong to the 2nd group (example a părea - to seem)

3. verbs ending in e belong to the 3rd group (example a zice - to say)

4. verbs ending in i or î belong to the 4th group (example a iubi - to love, a hotărî
- to decide)

Each of these groups is divided into 4–14 subgroups, which use different affixes to
form tenses and moods. Most of the verbs from the Romanian vocabulary belong to
the 1st and 4th group. Most of the irregular verbs belong to the 2nd group, while the
verbs from the 3rd group are most likely to develop phonetical mutations.

We have implemented the most complete taxonomy of Romanian verbs freely avail-
able so far [3], which consists of 140 groups of verbs, and also built a smart paradigm
that distinguishes the most frequent 10 groups.

The behavior of a verb cannot be inferred from its lexical structure, as it depends
on its etymology. For example, a ara (“to plough”) belongs to Group 1, subgroup 6,
while a nara (“to narrate”), belongs to Group 1, subgroup 1. Although they look very
similar, the first is of Latin origin, while the other is a neological word imported from
French.

An interesting feature of Romanian is the absence of auxiliary verbs for building
composite tenses. Romance languages require the verb "to have" / "to be" for building
the past form (French : j’ai dormi “I have slept”, je suis parti “I have left”). In Roma-
nian, some particles are used for this purpose. They are the same for all the verbs, and
they cannot be used independently as verbs. For example, for the past form am, ai, a,
am, aţi, au that originate in the verb “to have” am, ai, a, avem, aveţi, au, but the two
are not identical.

Before proceeding with the structure of a verb phrase (VP), a discussion on clitics
in Romanian is needed. There are 4 types of clitics that can follow a verb:

• Accusative (direct object)

• Dative (indirect object without preposition)

40

• Accusative (reflexive verbs)

• Dative (reflexive verbs)

At most two clitics in different cases out of the four can occur in a verb phrase. The
representation of clitics in the Romanian resource grammar is: Clitics = Normal
| Composite | Short | Imperative where each of the parameters repre-
sents a different instance of the clitic, as follows:

• Normal: the form that the clitic takes when following a verb in a tense/mood
that is not composed with an auxiliary beginning with a vowel (Example : Eu te
întreb “I ask you”)

• Short: the form corresponding to composed tenses and moods(Example : Eu
te-am intrebat “I asked you”)

• Composite: the form that the clitic takes when combined with another clitic,
following a verb in a tense that is not composed (Example: Ţ-l prezint “I present
him to you”)

• Imperative: the form of the clitic that is used for the Imperative form of the
verb. (Example: Intreaba-ma! “Ask me!”)

As shown in [6], the order of the clitics is always Dative–Reflexive–Accusative, and
the Reflexive clitic, when present, acts as a Dative or Accusative, according to its case.
The Imperative clitics are always placed after the verb in Imperative mood, while
in the other cases they are placed before the verb in the given order, with the only
exception of the Short clitic for 3rd Person Singular Feminine, which always occurs
after the verb.

When combining two clitics for a non-composite tense/mood, both of them are
used in their Composite form. For a composite tense, the first one is used with the
Composite form, while the other one is used with Short form. If the second clitic
is the 3rd Person Singular Feminine, then the first clitic is used with the Short form
also. In the current implementation, an extra field is used in order to count the number
of clitics in a verb phrase. However, in case that two clitics occur, we need to know
the case of the reflexive clitic, in order to use it with the right form for a composite
tense/mood.

For efficiency reasons, the clitics are stored in the structure of the noun phrases and
are transferred to verb phrases in the complementation process.

Having these preliminaries, we can proceed with the representation of the verb
phrase. It results from combining transitive verbs with complements, or from intransi-
tive verbs directly.

VP = {s: VForm => Str; isRefl: Agr => RAgr;
nrClit: VClit; pReflClit: Clitics;
isFemSg: Bool; neg: Polarity => Str;
clAcc: RAgr; clDat: RAgr;
comp : Agr => Str; ext : Polarity => Str};

where

• s stores the forms of the verb which were built on the morphological level.

• isRefl corresponds to the reflexive clitics of the verb phrase.

41

• nrClit counts the number of clitics, while pReflClit keeps track of the
proper form of the reflexive clitic, when combined with another clitic for a com-
posite tense/mood.

• clAcc and clDat store the clitics for the Accusative and Dative case.

• isFemSg keeps track of whether the verb phrase has an 3rd Person Singular
Feminine Accusative clitic.

• neg is used to express the polarity.

• comp stores the objects of the verb phrase, while the ext field stores the sec-
ondary phrases, introduced by the verb phrase.

The current implementation of clitics uses the above-mentioned structures and parame-
ters for efficiency reasons, and may look artificial, but the problem of clitics is complex
in any language, and requires solutions that are both expressive and efficient.

On syntactical level, a distinguishing feature of Romanian is the lack of infinitives,
and the use of verbs in Subjunctive Present instead. For this, case agreement is needed,
and the current implementation makes the agreement between the verb and the subject
of the phrase or the direct object, depending on the grammatical context. For example:

Eu vreau să merg “I want to go”
Eu o rog să cumpere “I ask her to buy”

In the first case, the verb agrees with the subject, while in the second case, it agrees
with the object.

2.4. Numerals

Numerals in Romanian follow the decimal system, as all the other Romance languages.
The cardinals composed with the digits 1 or 2 have different forms for Masculine and
Feminine. The ordinals inflect in gender and case, but do not normally have forms for
plural. For numerals between 11 and 19, alternative formal and informal forms exist,
and the grammar generates both of them. The formal form is however used as default.

A distinguishing feature of numerals is the taxonomy of size: Size = sg |
less20 | pl . There is a difference between numerals from 2 to 19 and numerals
which are greater than 20 on syntactical level: an extra preposition is added when
combining a numeral greater than 20 with a noun phrase. For example:

zece oameni “ten people”
treizeci de oameni “thirty people”

2.5. Sentences

Regarding the formation of clauses and sentences, Romanian is very similar to the
other Romance languages. Its structure is SVO where the predicate agrees with the
subject in number and person (gender for passive voice or predicates formed by copula
+ adjective).

The inverse topicalization VOS is used for interrogative sentences introduced by an
interrogative pronoun, and for relative clauses. For example:

42

Ion vede pe cineva “John sees somebody”
Pe cine vede Ion? “Who does John see?”
Casa pe care o vede Ion “The house that John sees”.

The interrogative pronoun cine(who), as it is animated, requires the preposition pe,
when it acts as a direct object, but it does not develop clitic doubling. On the other
hand, the noun casa (“house”), although not animated, is doubled by the corresponding
clitic (o) in the relative clause that determines it.

3. Evaluation

The Romanian resource grammar was added to the GF library in September 2009,
after almost 4 months of work. It consists of 20 modules that cover morphological and
syntactical features of Romanian, which are written in the GF language. The size of
the code is 5892 lines, which is above the average of the GF library [2].

Resource grammars can be embedded in programming languages like Haskell and
Java. This is achieved by compiling the resource grammar to PGF [9], a portable gram-
mar format, which will imported and processed by the host language. The PGF form
of a grammar is also a measure of its complexity, as it reflects the number of rules that
the grammar uses and the way they combine. For example, the first implementation
of clitics in Romanian, which was the intuitive approach, that just kept the clitics and
a boolean parameter, keeping track of whether a given clitic is present or not, made
the resource grammar was so complex, that the PGF file could not be generated by
the GF compiler, as the number of rules was too big. The current implementation of
clitics reduced the number of rules 200 times for the verb category, and 4369 times
for the complementation function. This made possible the generation of a PGF file
for Romanian, which can be used for parsing, multilingual translations and other re-
lated applications. Because of the complexity of the morphology and of the clitics, the
Romanian resource grammar has one of the highest number of rules in the library.

There is a trade-off between the expressive power of a resource grammar and its
efficiency. Our approach covers, as we showed, many specific features of Romanian,
but there are still constructions that the current grammar does not cover. One of them
is the presence of clitic doubling in a relative phrase that contains a nested verb phrase
sequence. For example: Maşina pe care mă roagă ei să o cumpăr (“The car that they
beg me to buy”), where the clitic refers to maşina (“the car”), is generated as maşina
pe care mă roagă ei să cumpăr. This can be understood to have the same meaning,
but it is not correct in standard Romanian. The solution to this problem would require
an additional field for verb phrases. This would bring about an increase in the number
of rules for verbs and functions that involve verbs that would make it impossible, in
the current implementation of PGF, to generate the PGF format file for Romanian. We
prefered to make the grammar as expressive as possible, in the current context of the
GF compiler and resources, but still keeping it reasonably efficient, so that it can be
used in GF-related applications.

4. Future Work

An obvious direction for future work is improving the efficiency of the grammar, mak-
ing it possible to add features that are not currently covered because of complexity
issues.

43

A big step towards a more expressive grammar would be adding a bigger lexicon,
perhaps by import from other open source projects.

Another main direction is to derive an application grammar for Romanian for the
projects that use GF, like WebALT, TALK or KeY.

5. Related projects

The number of open-source projects that attempt to give a formal characterization of
the Romanian language is relatively small, and they deal mostly with the morphological
features of the language.

Roric-Ling2, describes paradigms for inflectional morphology of nouns, adjectives
and verbs. The rules cover a small lexicon (almost 100 entries), but there are many
other cases of inflection which are not treated. For verb conjugation, around 30 forms
of the verb are needed as input. Our approach has a wider coverage of the morphology,
also featuring smart paradigms, which require considerably smaller inputs.

Another significant project that deals with Romanian morphology is the spell checker
from Open Office3. It features a comparable set of rules for inflection of noun and ad-
jectives, and a large database.

The EGLU project [8] features the most comprehensive implementation of the Ro-
manian morphology, a large database, but it does not have such a wide coverage for the
syntax part, and, to our knowledge, no treatment of clitics. It also has the possibility of
performing automated POS tagging and morphological analysis.

Liviu Ciortuz described and implemented a HPSG kernel for Romanian in his PhD
thesis [9], elaborating on NPs, VPs and some aspects about clitics. Our work features
more aspects of the grammar and is a part of a large multilingual framework.

The LinGO Matrix [10] and Pargram [11] projects, are similar to the GF project
and they both feature a computational grammar for Romanian, but they are still under
construction, and were not available for a more detailed comparison.

Regarding the theoretical study of Romanian clitics, we mention the work of P.
Monachesi [12].

Other computational linguistic resources for Romanian are related to the areas like
machine-learning, aquisition of corpora, POS taggers and lemmatisers, word sense
disambiguators and others [13].

6. Conclusions

The current resource grammar integrates Romanian in the GF setting, expressing the
main features of the language. However it is not complete, as it cannot parse arbitrary
sentences, or generate all the possible constructions. The morphology is complete, in
the sense that it covers the main categories and their possible declensions/conjugations,
and can always be applied to a bigger lexicon, or used in application grammars for any
new domain.

Romanian was not integrated in the Romance module, because of some significant
differences from the other languages in the family. Some of these are the enclitical def-
inite article, different forms of nouns and adjectives for case triggered declension, and
the animacy hierarchy for nouns. Another key feature of the grammar is the problem

2http://phobos.cs.unibuc.ro/roric/morpho/demo.html
3http://extensions.services.openoffice.org/node/1392

44

of clitics and clitic doubling, which is considerably different from the languages that
were already present in the GF resource library.

The Romanian resource grammar in GF provides substantial coverage of both mor-
phological and syntactical aspects of the language, and is so far the most comprehen-
sive computational grammar for Romanian.

45

46

Bibliography

[1] Ranta, A.: Grammatical Framework: A Type-Theoretical Grammar Formalism.
The Journal of Functional Programming 14(2) (2004) 145–189

[2] Ranta, A.: The GF Resource Grammar Library. Linguistic Issues in Language
Technology 2 (2009)

[3] Barbu, A.M.: Conjugarea Verbelor Româneşti. Editura Coresi, Bucureşti (2007)

[4] Perkowski, J.L., Vrabie, E.: Covert Semantic and Morphophonemic Categories
in the Romanian Gender System. Slavic and East European Journal 30 (1986)

[5] Chiriacescu, S., von Heusinger, K.: Pe-marking and Referential Persistence in
Romanian. In: SinSpeC - Working Papers of the SFB 732 "Incremental Specifi-
cation in Context". (2009)

[6] Klein, U.: The syntax of Romanian clitic pronouns (2007) Manuscript, University
of Bielefeld.

[7] Angelov, K., Bringert, B., Ranta, A.: PGF: A Portable Run-Time Format for
Type-Theoretical Grammars. Journal of Logic, Language and Information (2009)
To appear.

[8] Tufiş, D., Barbu, A.M.: A Reversible and Reusable Morpho-Lexical Description
of Romanian. In Tufiş, D., Andersen, P., eds.: Recent Advances in Romanian
Language Technology. Editura Academiei Române, Bucureşti (1997) 83–93

[9] Ciortuz, L.V.: DF—A Feature Constraint Concurrent System with application to
Natural Language Processing. PhD thesis, University of Lille (1996)

[10] Bender, E.M., Flickinger, D., Oepen, S.: The grammar matrix: an open-source
starter-kit for the rapid development of cross-linguistically consistent broad-
coverage precision grammars. In: COLING-02 on Grammar engineering and
evaluation, Morristown, NJ, USA, Association for Computational Linguistics
(2002) 1–7

[11] Butt, M., Dyvik, H., King, T.H., Masuichi, H., Rohrer, C.: The parallel grammar
project. In: COLING-02 on Grammar engineering and evaluation, Morristown,
NJ, USA, Association for Computational Linguistics (2002) 1–7

[12] Monachesi, P.: Clitic placement in the romanian verbal complex. In: Clitics in
Phonology, Morphology and Syntax, John Benjamins (2000)

[13] Cristea, D., Forascu, C.: Linguistic resources and technologies for romanian
language. The Computer Science Journal of Moldova 14(1) (2006) 34–73

47

48

2 A Type-Theoretical Wide-Coverage Computational Gram-
mar for Swedish

Malin Ahlberg Ramona Enache

Abstract: The work describes a wide-coverage computational grammar for Swedish.
It is developed using GF (Grammatical Framework), a functional language specialized
for grammar programming. We trained and evaluated the grammar by using Talbanken,
one of the largest treebanks for Swedish. As a result 65% of the Talbanken trees were
translated into the GF format in the training stage and 76% of the noun phrases were
parsed during the evaluation. Moreover, we obtained a language model for Swedish
which we use for disambiguation.

1. Introduction
Two main approaches have divided the research in computational linguistics. The first
and most prominent one is the wide-coverage method, mostly based on statistical meth-
ods, which compensates its usually shallow analysis with its coverage. The second one
is the opposite - provides a deep analysis, but has a limited coverage. Our work on a
computational grammar from Swedish falls into the second category, but aims at get-
ting the best of both worlds by enlarging the coverage in order to fit free text, without
affecting the quality of the model.

2. Background
The computational grammar was developed within GF (Grammatical Framework) [1].
GF is a dependently-typed grammar formalism, based on Martin-Löf type theory, which
is mainly used for multilingual natural language applications.

GF grammars are composed of an abstract syntax, the interlingua of the grammar
which describes the semantics on a language-independent level and a number of con-
crete syntaxes, usually corresponding to natural languages. These describe how the
concepts from the abstract syntax are described in the language. By defining such a
grammar, one also obtains a parser for the language fragment that is described by a
concrete grammar and a natural language generation tool for constructions from the
same language fragment. In this way, due to the division of the GF grammars into ab-
stract and concrete, it is possible to achieve semantics-preserving translation between
any language pair.

However, because the grammar is strict, we can only deal with constructions that
the grammar defines and nothing more. One could classify the limitations of the natural
language grammar into two categories — missing lexical items and missing syntactic
structures. For this reason, GF was mainly used so far for controlled languages [2],
dialogues systems [3] and interactive systems where the user is guided to stay within
the bounds of the grammar by a predictive parser, such as a multilingual tourist phrase-
book [4]. However, there is recent work on parsing free text — a grammar for patent

49

claims from the biomedical domain [5]. This work highlighted a number of caveats of
real-world text, but in the same time gave valuable insights for future work on wide-
coverage GF grammars.

The current work aims at overcoming the second limitation of GF grammars —
adding support for the most common syntactic constructions that could appear in Swedish
texts. For some of these we use dependent types to encode the syntactic phenomena
in an elegant way. The lexicon limitation is not a problem, as we use an existing large
Swedish lexicon [6], which is imported to GF format from an electronic dictionary and
which contains more than 100,000 entries.

Swedish is a North-Germanic language, sharing most of its grammatical structure
with Norwegian and Danish. It spoken by approximately nine million people, in Swe-
den and parts of Finland. Although Swedish syntax is often similar to English, the
morphology is richer and the word order more intricate. It is a verb-second language:
the second constituent of a declarative main clause must consist of a verb. The nor-
mal word order is subject-verb-object, but fronting other constituents (topicalisation)
is very common, especially for temporal and locative adverbial phrases. Fronting the
finite verb marks questions. Special reflexive pronouns and reflexive possessive pro-
nouns for the third person exist, distinct from the normal third person forms.

For testing and evaluation of the grammar and lexicon, we needed a reliable source
for comparison. We have used Talbanken [7], a freely available, manually annotated,
large-scale treebank. The section used for our work contains more than 6,000 sentences
of professionally written Swedish gathered from newspapers, brochures and textbooks.
It is also redistributed in an updated version, Talbanken05 [8].

3. Related Work
There exist a number of parsers for Swedish already, such as the data-driven Malt
parser [9], also trained on Talbanken, the cascaded finite state parser CassSwe [10],
The Swedish Constraint Grammar [11] and the Swedish FDG, which uses the Func-
tional Dependency Grammar [12]. Among computational grammars for Swedish, we
mention the Swedish version of the Core Language Engine [13], which provides a
comprehensive description of syntax and semantics, as well as a translation to En-
glish. Unfortunately, the resource is not available for comparison. Other grammars are
BiTSE [14], a Swedish grammar that uses the HPSG format [15] and developed within
the LinGO Matrix library [16].

Besides the usages mentioned before, GF is currently the leading technology in
the European project MOLTO4, which aims at developing tools for translating between
15 languages in real-time and with high quality. Previous examples of larger type-
theoretical GF grammars that use dependent-types are SUMO-GF [17], a GF represen-
tation of SUMO5, the largest open-source ontology and a natural language generation
grammar via Montague semantics [18].

4. Grammar
The work focuses on the syntactical dimension and the following section illustrates the
work on describing grammatical constructions in the GF formalism.

4http://www.molto-project.eu/
5http://www.ontologyportal.org/

50

Resource grammar The GF package provides an useful resource library [19], cov-
ering the fundamental morphology and syntax of more than 20 languages. There is also
a small test lexicon included, containing a few hundred common words. The grammars
describe how to construct phrases and sentences and how to decline words. They cover
the word order, agreement, tense, basic conjunction, etc. Due to the syntactic similar-
ities between the Scandinavian languages, much of the implementation for Swedish is
shared with Norwegian and Danish. The modules that concern the lexical aspects are
separate, while 85% of the syntax description is shared. There are about 80 functions,
which describe the rules for building phrases and clauses, such as functions for predi-
cation and complementation:

PredVP : NP -> VP -> Cl ; - Predication

ComplSlash : VPSlash -> NP -> VP ; - Complementation

This is the function types – PredVP returns a clause when given its input arguments:
a noun phrase and a verb phrase. In addition to the core resource grammars, which is
shared with all other languages implemented in the library, there is also an extra mod-
ule where language specific constructions may be added.

Lexicon As mentioned before, our main lexical resource is SALDO6 from which
a GF lexicon has been extracted [6]. Valency information, which is a key feature to
good parsing using GF, is extracted from the lexicon Lexin7. This gives us a dictionary
with more than 100 000 entries, covering all but 500 words from Talbanken (excluding
names, compounds and numerical expressions).

4.1. New Features

Earlier it has been hard to identify missing constructions of the Swedish implementa-
tion since there was no large resource available to evaluate it on. Our evaluations are
based on Talbanken and when first conducting tests we found much room for improve-
ment. The items listed below are examples of constructions implemented during this
work.

The s-passive Swedish has two ways of forming passive verb phrases: the periphrastic
passive, formed by using the modal auxiliary verb bli (“become") and the s-passive
which is formed by adding an s to the verb. Passive voice is often used, especially the
s-passive. It is however not so common in the other Scandinavian languages, where not
all words have passive forms for all tenses. The resource grammar for Scandinavian
therefore only implemented the periphrastic passive. During this project, an implemen-
tation of the s-passive was added. A ditransitive verb – ge (“give") (1a) – gives rise to
two passives, (1b) and (1c), both covered by our grammar.

(1) a. Active use of two-place verb
Vi erbjöd henne jobbet
we offered her the job

(We offered her the job)

b. Passive use, first place c. Passive use, second place
Hon erbjöds jobbet Jobbet erbjöds henne
she offered+s the job the job offered+s her
(She was offered the job) (The job was offered to her)

6http://spraakbanken.gu.se/resurs/saldo
7http://spraakbanken.gu.se/lexin/

51

Impersonal constructions Formal subjects are often used in Swedish.

(2) Det sitter en fågel på taket
it sits a bird on the roof

(There is a bird sitting on the roof)

Restrictions on both the verb and the noun phrase are covered by the grammar: the de-
terminer of the noun phrase must be of such type that it requires both the noun and its
modifiers to appear in indefinite form. The verb phrase must consist of an intransitive
verb or be in passive form.

Formalizing the rules for reflexive pronouns by using dependent types An impor-
tant area in a Swedish grammar is the treatment of the reflexive pronouns and the
reflexive possessive pronouns. The reflexives require an antecedent with which they
agree in number and person. They must not be used in subject noun phrases of finite
sentences, as shown by the ungrammatical examples (3b) and (4b). Still our grammar
should accept the sentences (3a) and (4a) :

(3) a. Sina vantar hade han tappat. (SELF’S gloves, he had lost.)

b. *Sina vantar var kvar på tåget. (SELF’S gloves was left on the train.)

(4) a. Han är längre än sin kompis. (He is taller than SELF’S friend.)

b. *Han och sin kompis leker. (He and SELF’S friend are playing.)

In the standard GF analysis, which is performed bottom-up starting from the POS-
tags, information about syntactic roles are given by the functions, not by the categories.
For example, the first argument of the function PredVP always acts as the subject, but
the noun phrase itself does not carry information about its syntactic role. As noun
phrases containing reflexive pronouns may be used as ordinary noun phrases – apart
from the restrictions stated above – we do not want to differentiate them from other NPs
on the type level since this would require code duplication. Still, the type system should
prevent noun phrases containing reflexive pronouns from being used as subjects. This
does not only concern noun phrases, but also adverbial and adjectival phrases (4a).

Our solution introduces the use of dependent types. We make a difference between
subjects and objects by letting the type NP depend on an argument, which may either
be Subject or Object.
PredVP : NP Subject -> VP -> Cl ; - predication

ComplSlash : VPSlash -> NP Object -> VP ; - complementation

PrepNP : (a: NPType) -> Prep -> NP a -> Adv a ; - adv. phrase

We hence combine the-part-of-speech driven analysis normally performed by GF with
a part-of-sentence analysis, where the dependent types give the information we were
missing. This is the first example in GF making use of the dependent types for describ-
ing the syntox of a natural language. The approach could be extended to describing
similar relations in other languages.

Overgeneration Another aspect of the grammar implementation was the avoidance
of overgeneration. As the Swedish resource grammar had not been used for larger
projects, many examples of overgeneration were present that did not cause problems
when working with small lexicons and controlled language. However, when inspecting
the test output from Talbanken, unexpected compositions of functions were identified
and there after fixed.

52

Figure 2.1: The sentence Det är inte lätt (“It is not easy").

5. A GF Treebank and Model-Based Disambiguation

Talbanken contains very valuable information about phrase structures and word usage.
One part of this project has focused on translating trees from Talbanken to GF by
constructing a mapping, which automatically transforms trees in the Talbanken format
to GF abstract syntax trees. We hence get a comparison between the two annotations
and at the same time we extract a GF treebank. Nodes that fail to be translated are
represented by a meta variable, annotated ?. In figure 2.1, the word lätt (“easy") was
unknown and therefore represented by a meta variable in the translated tree. Meta
variables are also used for connecting sister nodes that can be translated on their own,
but not joined into one tree.

Talbanken05 uses three kinds of tags: categories, edge labels and POS-tags. While
the POS-tags are reserved for words, the categories give grammatical information: S,
NP and VP. The edge labels give the part of sentence: SS for subject, OO for object,
etc.

The mapping could in some cases be performed tag-by-tag, but annotational dif-
ferences complicated the translation. One example is valency information, which is
given implicitly by the complements of a word in Talbanken. If a verb is followed by
an object, OO containing an S, we can conclude that this is a sentence-complement
verb. In GF, the valency information is given explicitly for each entry in the lexicon. A
sentence-complement verb has the type VS and the function ComplVS must be used
for combining the verb and a sentence into a complete verb phrase.

The translation of Talbanken to GF gives us a GF treebank consisting of more
than 6000 sentences. Moreover, the treebank could be mapped to another language
from the resource library provided that one defines transfer rules for lexical items and
implements the extra syntactic constructions.

The trees give valuable information about which lexical entries and functions are
needed to parse the sentence. GF has built-in support for probabilities, and when feed-
ing the output from the mapping to our grammar, we get a model of the language.
After the parsing is completed, all trees are ranked, measuring the probability of their
constituents. As the data is extracted from manually annotated, real-world sentences,
it constitutes a reliable source for disambiguation.

53

6. Chunk Parsing
The grammar, which is hand written, cannot be expected to cover all possible expres-
sions of the language. Hence, we combine it with statistical means to get an even better
coverage. The parser should give as much output as possible even when encountering
unknown words and grammatical constructions, idioms and ellipses. Our approach
uses of the rich annotation in Talbanken – we perform chunk parsing relying on the
tags given in the treebank. Consequentially, whenever a sentence is not recognized by
the grammar, it is parsed chunk by chunk. Each chunk is analysed by the grammar-
driven parser, and resulting trees are returned. Noun, adverbial and adjectival phrases
are considered. Due to the differences in the annotation between Talbanken and GF
mentioned is Section 4, verbs are not considered as parsable chunks. Therefore, our
focus is on whole sentences and noun phrases. At the first stage, we try to parse the
basic sentence structure, and therefore allow the parser to treat complicated chunks as
dummy words. This way, we don’t lose the high-level sentence analysis given by GF.
Subsequently, we try to parse the chunks separately as far as possible.

7. Evaluation
For the extraction of a GF treebank from Talbanken (Section 4), the evaluation mea-
sures the numbers of meta variables in each translated tree. Overall we get a number
of 65%, and if we limit our input to simple sentences with no more than 10 words, all
known to our lexicon, we reach 85%.

The evaluation of the parser is performed by testing it on Talbanken sentences and
is still being carried out. So far, our evaluation results cover 600 sentences – about
10% of the treebank. For noun phrases, we cover 76%. By using the chunk parsing
described in Section 4, we identify the structure on 65% of the sentences. That is, the
parser can identify the verbs and how they relate to the noun phrases, prepositions and
particles. However, if a verb is unknown to the grammar, or if it is used with another
valency, other prepositions or particles than the lexicon has assigned it, the sentence
structure cannot be identified. In that case the parser returns chunks, showing the parse
trees of identifiable subphrases.

8. Future Work
Evaluation A more thorough evaluation is still to be done. This should be carried out
by measuring the agreement between all parsed chunks and their respective translation
from Talbanken. Evaluation should also be done manually. For this, we rely on an
expert in Swedish.

Grammar The grammar should cover the most prominent Swedish features. While
statistical methods compensate for constructions not covered by the grammar, we still
aim for an even broader grammar coverage. As examples of constructions to be added,
we mention pronominal object shift, bare indefinites and distinguish between object
and subject control verbs.

9. Conclusion
Our work has resulted in a wide-coverage grammar for Swedish which – combined
with statistical resources – can be used for parsing open-domain text. The grammar
covers a large number of syntactic phenomena and uses an extensive morphological

54

lexicon. To our knowledge, it is the most comprehensive computational grammar for
Swedish and the most complex GF grammar to date. Besides parsing, the grammar
may well be used for language generation. All parts of the project are open-source and
the grammar and other parts are modular and could be reused and further developed.

55

56

Bibliography

[1] Ranta, A.: Grammatical Framework: Programming with Multilingual Grammars.
CSLI Publications, Stanford (2011)

[2] Angelov, K., Ranta, A.: Implementing Controlled Languages in GF. In: CNL.
(2009) 82–101

[3] Ljunglöf, P., Bringert, B., Cooper, R., Forslund, A.C., Hjelm, D., Jonson, R.,
Ranta, A.: The talk grammar library: an integration of gf with trindikit. (2005)

[4] Ranta, A., Enache, R., Détrez, G.: Controlled Language for Everyday Use: the
MOLTO Phrasebook. Proceeding of the 2nd Workshop on Controlled Natural
Languages (CNL 2010) (2011)

[5] España-Bonet, C., Enache, R., Slaski, A., Ranta, A., Marquez, L., Gonzalez,
M.: Patent translation within the MOLTO project. In: Proceedings of the 4th
Workshop on Patent Translation, MT Summit XIII. (2011) 70–78

[6] Ahlberg, M., Enache, R.: Combining Language Resources Into A Grammar-
Driven Swedish Parser. In: Proceedings of LREC. (2012)

[7] Einarsson, J.: Talbankens skriftspråkskonkordans. Lund University: Department
of Scandinavian Languages. (1976)

[8] Nivre, J., Nilsson, J., Hall, J.: Talbanken05: A Swedish treebank with phrase
structure and dependency annotation. In: In Proceedings of the fifth international
conference on Language Resources and Evaluation (LREC2006). (2006) 24–26

[9] Hall, J., Nivre, J., Nilsson, J.: A Hybrid Constituency-Dependency Parser for
Swedish. In: In Proceedings of NODALIDA–2007. (2007) 284–287

[10] Kokkinakis, D., Kokkinakis, S.J.: A Cascaded Finite-State Parser for Syntactic
Analysis of Swedish. In: Proceedings of the 9th EACL. (1999) 245–248

[11] Birn, J.: Swedish Constraint Grammar. Technical report, Lingsoft Inc. (1998)

[12] Tapanainen, P., Järvinen, T.: A non-projective dependency parser. In: In Pro-
ceedings of the 5th Conference on Applied Natural Language Processing. (1997)

[13] Gambäck, B.: Processing Swedish Sentences: A Unification-Based Grammar and
Some Applications. PhD thesis, The Royal Institute of Technology and Stock-
holm University, Dept. of Computer and Systems Sciences (1997)

57

[14] Stymne, S.: Swedish-English Verb Frame Divergences in a Bilingual Head-
driven Phrase Structure Grammar for Machine Translation. Master’s thesis,
Linköping University (2006)

[15] Pollard, C., Sag, I.: Head-Driven Phrase Structure Grammar. University of
Chicago Press (1994)

[16] Bender, E.M., Flickinger, D., Oepen, S.: The Grammar Matrix: An Open-Source
Starter-Kit for the Rapid Development of Cross-Linguistically Consistent Broad-
Coverage Precision Grammars. In: Proceedings of the Workshop on Grammar
Engineering and Evaluation at the 19th International Conference on Computa-
tional Linguistics. (2002) 8–14

[17] Enache, R., Angelov, K.: Typeful Ontologies with Direct Multilingual Verbal-
ization. LNCS Post-Proceedings of the Controlled Natural Languages Workshop
(CNL 2010) , Marettimo, Italy (2011)

[18] Ranta, A.: Computational Semantics in Type Theory. Mathematics and Social
Sciences 165 (2004) 31–57

[19] Ranta, A.: The GF Resource Grammar Library. Linguistic Issues in Language
Technology (2009)

58

Chapter 3

Grammars Describing
Structured Models

59

60

1 Typeful Ontologies with Direct Multilingual Verbal-
ization

Krasimir Angelov Ramona Enache

Abstract: We have developed a methodology for representation of ontologies in
a strictly typed language with dependent types. The methodology is supported by an
experiment where we translated SUMO (Suggested Upper-Merged Ontology) to GF
(Grammatical Framework). The representation of SUMO in GF preserves the expres-
sivity of the original ontology, adding to this the advantages of a type system and built-
in support for natural language generation. SUMO is the largest open-source ontology
describing over 10,000 concepts and the relations between them, along with a number
of first-order axioms, which are further on used in performing automated reasoning
on the ontology. GF is a type-theoretical grammar formalism mainly used for natural
language applications. Through the logical framework that it incorporates, GF allows a
consistent ontology representation, and thanks to its grammatical features the ontology
is directly verbalized in a number of controlled natural languages.

1. Introduction

The constantly growing amount of formal knowledge has brought about the necessity
of a coherent and unambiguous representation of ontologies which can further be pro-
cessed automatically. As a consequence, a number of ontology description languages
like KIF [1], OWL [2], CycL [3] and Gellish [4] has emerged. However, the focus
in all these languages is on the knowledge representation and consequently, they are
mainly descriptive, leaving tasks such as consistency checking or natural language gen-
eration to external tools. Moreover, most languages are based on some kind of untyped
first-order logic with predicates which occasionally allows higher-order constructions.
They aim to maximize the expressivity with the cost of allowing set theoretical para-
doxes to be expressed (Section 1). Also, because of the lack of a type system, one can
easily extend such ontologies with axioms which are not well-formed. Although type
information in these languages is often provided in the form of logical assertions, the
validation of correctness is left to a reasoner which may or may not be able to find all
problems. Even with a complete and decidable reasoner, if the ontological language
has the open-world assumption, a potential problem might be left undiscovered, if it is
not stated explicitly that certain classes in the ontology are disjoint. This is a problem
when dealing with large coverage ontologies. Or, for example, a predicate could be
applied to an argument of the wrong type, or a small change in the signature of a func-
tion could lead to the update of all its occurrences. If all these checks are manual, then
this is a resource-consuming and error-prone process. In contrast, database systems
are equipped with rigid database schemas which ensure that the information is always
kept consistent. The programming languages community was also dealing with that
from the very beginning of computer science and has developed many different type
systems.

61

We have developed a methodology for encoding of ontologies in strictly typed lan-
guage based on type theory with dependent types. As a proof-of-concept, an exper-
iment with SUMO [5], the largest open-source ontology available today. The imple-
mentation language of choice is GF [6]. The result is a controlled language which could
be used to formulate new axioms in SUMO or to render existing axioms in natural lan-
guage. Further on, we analyzed the difference of expressivity compared to the original
ontology and also the other benefits that one can get from encoding an ontology in GF.

SUMO consists of 2 upper-level ontologies (Merge, Mid-level-ontology) describing
general concepts, and 29 domain-specific ontologies for finances (FinancialOntology),
geographical concepts (Geography), and others. The ontology is written in a dialect of
KIF (Knowledge Interchange Format [1]), called SUO-KIF, which permits the declara-
tion of concepts in a human-readable form, featuring support for expressing first-order
predicate calculus constructions. However, due to the modelling of the hierarchy in
SUMO, which treats functions and relations as ordinary concepts, it is possible to ex-
press second-order logic constructions in SUO-KIF, such as quantification over func-
tions and relations.

The SUMO ontology has natural language translations for the Merge module in 12
languages. The translations are based on a set of string templates, which are combined
by concatenation. They are hand-written and cover the ontology partially. However,
the templates are not expressive enough to handle various natural language phenomena
such as case and gender agreement or phonetic mutations. We will show how these
problems were solved by using GF.

GF is a type-theoretical grammar formalism which distinguishes between abstract
and concrete syntax. The abstract syntax is a logical framework based on Martin-
Löf’s type theory [7], in which the application domain can be described in an abstract
language-neutral manner. The concrete syntax is a mapping of the abstract syntax
into some controlled natural language. Since it is possible to have multiple concrete
syntaxes, linked to the same abstract syntax, the abstract syntax acts as a semantic
interlingua which allows simultaneous translation into multiple controlled languages.

We consider the abstract syntax of GF as a kind of ontology description language
and translate some of the axioms from SUMO to statements in the abstract syntax of a
grammar. Other axioms, those related to the natural language generation from SUMO,
are used to generate the concrete syntax. The rest of the axioms are just converted to
abstract syntax trees and used in the automated theorem prover for reasoning.

The development of a grammar for a new controlled natural language from scratch
would involve an ad hoc implementation for low-level linguistic details such as word
order, agreement, etc. This is simplified by using the resource grammar library [8]
developed in GF. The library provides an abstract syntax for common general-purpose
natural language constructions and concrete syntaxes corresponding to 16 languages.
The usage of the library ensures that the rendering is always syntactically correct and
reduces the development effort for new application grammars. The resource grammar
library was used for the generation of the concrete syntax of SUMO.

Another advantage of GF is the portability of the grammars, via PGF [9] – a runtime
binary format, which can be used by applications written in Haskell, Java, JavaScript,
C and Python - through the GF runtime system. In this way, the GF grammars can be
embedded in user applications. GF has been used in various large-scale projects such
as the dialogue system research project TALK [10], the educational project WebALT
[11], the verification tool KeY [12], and the project in multilingual translation MOLTO
[13].

Regarding the automated reasoning and the checking for consistency [14], SUMO

62

was mapped to TPTP-FOF [15], a standard untyped first-order logic language, which
is accepted by most theorem provers. There is an annual competition held during the
premier conference in automated deduction, CADE1, which awards prizes for finding
inconsistencies in one of the two upper ontologies from SUMO, based on these map-
pings2. A similar translation from SUMO-GF to TPTP is provided. The translated
ontology is checked for consistency and is used for making inferences on the abstract
syntax trees or natural language, with the aid of an automated theorem prover (Section
1).

SUMO is also associated with a knowledge engineering environment – Sigma [16],
which can be used for intelligent browsing of the ontology, optimized natural language
generation and automated reasoning [17]. An alternative system with similar capabili-
ties is the KSMSA browser3. The web user interface of GF also evolved in the direction
of ontology browsing. Since his interface is still under development, we will give an
overview of it in Section 1.

From the total number of ontologies that SUMO provides, 17 were translated into
GF. These are: Merge and Mid-level-ontology – the upper ontologies and 12 domain
ontologies. The remaining ontologies can also be ported to GF using the same tech-
niques, in a semi-automatic way.

The advantages of representing the SUMO ontology in GF are the possibility to
type-check the axioms and the definitions at an early stage and also to generate natural
language of a higher syntactical quality. The translation to GF, is also an in-depth
analysis of SUMO and the benefits that a type system in general, and GF in particular,
could bring to ontology development.

2. The Abstract Syntax of SUMO-GF

The two languages SUO-KIF and GF have been created for different purposes and
have evolved in different ways. It is not surprising that the translation of SUMO from
SUO-KIF to an abstract syntax in GF is not trivial. Still we will show that the differ-
ent ontological concepts - from classes and taxonomical relations to complex logical
axioms have natural representations in GF.

2.1. The Taxonomy

The most central component of every ontology is the taxonomy of classes, and this is
the starting point from where we begin the ontology modelling in GF.

Knowledge representation languages like OWL, KIF and CycL do not set a sharp
border between classes and instances. In fact, the classes are just instances of one
special class which is the class of all classes. In SUMO the special class is called Class
and there is a predicate subclass which is used to assert the taxonomical relations. For
example, the axiom:

(subclass Human Hominid) (3.1)

asserts that the class Human is a subclass of Hominid. Furthermore, there is an axiom
stating that everything that is a subclass of Entity is also an instance of Class and

1http://www.cadeinc.org/
2http://www.cs.miami.edu/ tptp/Challenges/SUMOChallenge/
3http://virtual.cvut.cz/ksmsaWeb/main

63

viceversa:

(<=> (instance ?CLASS Class)

(subclass ?CLASS Entity))

Since the subclass relation is transitive and Entity is the most general class, from the
axiom:

(subclass Class SetOrClass)

it follows that Class is itself an instance of Class:

(instance Class Class)

This kind of cyclic relations were proven to be inconsistent because they lead to
different kinds of paradoxes (Section 1). The other two popular languages OWL and
CycL are not exceptions and similar examples could be constructed in them as well.
This seems to be a common mistake because the first version of Martin-Löf’s [18]
type theory suffered from the same inconsistency which was first demonstrated with
Girard’s paradox [19]. The problem was resolved in the later versions of the theory
[7] by introducing the concepts of small and big types. In the context of SUMO, this
would be translated as a restriction which states that Class cannot be an instance of
Class because it is too big to fit as an instance of itself. The abstract syntax of GF is
a logical framework consistent with the modern type theory, so if we want to model
ontologies like SUMO in GF we have to resolve the conflict.

GF distinguishes between values and types. Every value belongs to some type but
none of the types could be a value as well, so it is not possible for a type to belong to
another type. The solution for the cyclic relation in SUMO is to declare that Class is a
type:

cat Class;

Now the classes will be values of type Class. For instance:

fun Entity : Class;

Hominid : Class;

Human : Class;

Essentially, we cut the class Class from the common hierarchy and move it to another
level (also known as universe in type theory).

Once we have a way to define classes in the abstract syntax we could also define
the taxonomy. In SUMO, the taxonomy is encoded by using the subclass predicate.
In GF, we can translate subclass either as a function or as a type. Since we want to
be able to statically check the axioms for well-formedness we choose to represent the
predicate as a type:

cat SubClass Class Class;

then the human-hominid relation could be asserted as:

fun Human_Class : SubClass Human Hominid ; (3.2)

64

Here, the SubClass type is an example of a dependent type. The dependent types are
not just simple identifiers, but have in addition indices of some type. In this case,
SubClass is a type indexed by two values of type Class. In the case of Human_Class
those are Human and Hominid.

Note that while in the original SUMO axiom (3.1) we had just a logical assertion,
in GF we have to assign an unique identifier (Human_Class) to it. In type theory
this is deeply rooted in Curry—Howard’s correspondence, but it is interesting that a
similar kind of “labeling” of assertions is now emerging in OWL via the Named Graphs
standard [20].

Semantically the subclass predicate in SUMO encodes the reflexive transitive clo-
sure of the taxonomic relation, while the immediate subclass relation is encoded using
the predicate immediateSubclass. To take this into account we define one more type:

cat Inherits Class Class;

Strictly speaking the SubClass type is the translation of the predicate immediate-
Subclass and Inherits is the translation of subclass. However we choose to read simple
subclass axioms such as (3.1) as assertions for immediate subclassing and thus the
conversion tool will generate the SubClass type in GF. The reason for this is that this
would let us do some reasoning with the ontology by using only the tools that are al-
ready available in GF. Our intuition is that this still preserves the principal information
from SUMO.

From the atomic SubClass axioms we can easily infer the reflexive-transitive clo-
sure Inherits. All that is needed is to add two inference rules. The inference rules in
type theory are nothing else but functions with some specific type signatures:

fun inhz : (c : Class)→ Inherits c c;

inhs : (c1, c2, c3 : Class)→ SubClass c1 c2

→ Inherits c2 c3 → Inherits c1 c3;

The type of function inhz states that every class c inherits itself, i.e. this is the reflexivity
axiom. The second function inhs expresses the transitivity over SubClass, i.e. if c1 is a
subclass of c2, and c2 inherits c3 then c1 inherits c3.

The inference rules can be applied using the inference engine built into GF. For
example, from the GF shell the user can use the gt command to generate an expression
of a given type:

SUMO> gt -cat="Inherits Human Hominid"
(inhs Human Hominid Hominid Human_Class (inhz Hominid))

In type theory the types are seen as logical propositions and the existence of a
value of a given type is interpreted as an evidence for the validity of the proposition.
The value is also a constructive recipe for building the proof from the axioms in the
theory. In Section 1 we will use it to generate explanations in natural language for the
proofs.

Some of the classes in SUMO have two or more superclasses. For instance Human
is both a CognitiveAgent and a Hominid. In other situations it is necessary to quantify
over instances of the union of two or more classes. For that purpose we added two of
the primitive operations from description logic – intersection and union of classes:

fun both : Class → Class → Class; – intersection
either : Class → Class → Class; – union

65

With the help of these primitives, the full definition of the class Human is:

fun Human_Class : SubClass Human (both CognitiveAgent Hominid); (3.3)

The reasoning with these two new primitives can be axiomatized with three new infer-
ence rules:

fun bothL : (c1, c2 : Class)→ SubClass (both c1 c2) c1;

bothR : (c1, c2 : Class)→ SubClass (both c1 c2) c2;

eitherC : (c1, c2, c3 : Class)→
SubClass c1 c3 → SubClass c2 c3 → SubClass (either c1 c2) c3;

The first two state that the intersection class of any two classes c1 and c2 is a subclass
of both c1 (function bothL) and c2 (function bothR). The third function (eitherC) states
that if two classes c1 and c2 are both subclasses of c3, then their union class is also a
subclass of c3. Now, with the extended definition for Human (3.3), the proof that every
Human is a kind of Hominid will use the function bothR:

SUMO> gt -cat="Inherits Human Hominid"
(inhs Human (both CognitiveAgent Hominid) Hominid Human_Class
(inhs (both CognitiveAgent Hominid) Hominid Hominid
(bothR CognitiveAgent Hominid) (inhz Hominid)))

At least in some cases, the criterion which distinguishes the members of a given
class from the super class is formally specified. In this case the criterion is specified in
SUMO as an axiom. In our encoding we found it handy to use an encoding which uses
the KappaFn function. KappaFn is a function in SUMO which takes a logical formula
and returns the class of all instances for which the formula is valid. The type of the
function in GF is:

fun KappaFn : (c : Class)→ (Var c→ Formula)→ Class; (3.4)

It takes as arguments the superclass c and the logical formula and returns the subclass.
The type (Var c → Formula) indicates that the argument itself is a function which
takes a variable of class c and returns a formula. Every instance of c for which the
formula is true is also a member of the new subclass. Using KappaFn it is trivial to
define the class NegativeRealNumber as a subclass of RealNumber:

fun NegativeRealNumber : Class;

def NegativeRealNumber = KappaFn RealNumber (\N → lessThan . . .);

Again for the inference of the transitive closure to work we need an inference rule:

fun kappa : (c : Class)→ (p : Var c→ Formula)→
SubClass (KappaFn c p) c;

which defines the semantics of KappaFn, i.e. that the new class is a subclass of the
argument of the function.

66

2.2. Instances

Once we have the taxonomy of the ontology we can proceed with adding some in-
stances. Similarly with the classes we will distinguish between direct instances of a
class and generalized instances. The instances will be defined as values of one of the
following types:

cat El Class;
Ind Class;

The type Ind c is assigned to all instances with principal class c, while El c is the type
of all direct instances of c together with the instances of its subclasses. There is an
injection between this two types:

fun el : (c1, c2 : Class)→ Inherits c1 c2 → Ind c1 → El c2;

The function el injects an instance with principal class c1 into the type of the gener-
alized instances of c2, if there is an evidence that c1 is a subclass of c2 (the argument
Inherits c1 c2). For example in the CountriesAndRegions module of SUMO there is
an instance for the city of London:

fun LondonUnitedKingdom : Ind EuropeanCity ;

The class EuropeanCity is a subclass of City so it is possible to do the coercion. The
following expression is the injection of LondonUnitedKingdom into the generalized
instances of City:

el EuropeanCity City

(inhs EuropeanCity City City EuropeanCity_Class (inhz City))

LondonUnitedKingdom

2.3. Functions, Predicates and Logical Formulas

In SUMO, all functions and predicates are represented as instances of a descendant of
Relation, and the expected classes of the arguments and the result are stated as axioms
in the ontology. For example the definition of the AbsoluteValueFn function is:

(instance AbsoluteValueFn UnaryFunction)

(domain AbsoluteValueFn 1 RealNumber)

(range AbsoluteValueFn NonnegativeRealNumber)

Here the predicates domain and range specify the class of the first argument and the
class of the returned value. The class of AbsoluteValueFn itself is UnaryFunction
which encodes the fact that this is a function with only one argument. From this SUMO
axioms we generate a type signature in GF:

fun AbsoluteValueFn : El RealNumber → Ind NonnegativeRealNumber ;

Note that with our implementation we impose the closed world assumption. The
argument of AbsoluteValueFn is declared of type El RealNumber , and the only way

67

to construct a value of that type is to combine an instance of some subclass c of Real-
Number with a proof object of type:

Inherits c RealNumber

If this object cannot be constructed from the current state of the knowledge base then
the application of AbsoluteValueFn is not possible.

The predicates are declared in a way very similar to the functions. The only differ-
ence is that while the functions return some instance, the predicates are used to create
logical formulas. In the original ontology, there is already a class called Formula which
represents the class of all well-formed SUO-KIF formulas. In principle the predicates
could return Ind Formula but there are two reasons for which we choose not to do that.
The first reason is that if Formula is kept as a class then this would allow quantification
over logical formulas which is not supported in first-order logic. The second reason
is that when the logical axioms are translated to natural language then Formula will
correspond syntactically to a sentence while Ind corresponds to a noun phrase, and this
would make the verbalization of the ontology difficult. Instead we declared Formula
as a type:

cat Formula;

The last piece that is needed to be able to write logical axioms in GF is to add the
standard logical quantifiers and connectives:

cat Var Class;

fun var : (c1, c2 : Class)→ Inherits c1 c2 → Var c1 → El c2;

fun exists : (c : Class)→ (Var c → Formula)→ Formula;

forall : (c : Class)→ (Var c → Formula)→ Formula;

fun not : Formula → Formula;

and , or , impl , equiv : Formula → Formula → Formula;

The only specific thing here is how the variables are introduced by the quantifiers. The
first argument of the quantifier (function exists or forall) is the class over which the
function quantifies. The second argument is the formula over which it scopes. The
quantified variable itself is a high-order argument of type Var c. This type plays a
role similar to the role of El . While the former denotes some known instance, for Var
we neither know the instance, nor its principal class. This is reflected for example in
natural language generation where the grammatical gender is deduced from the class of
the variable instead of the instance itself. This special treatment of variables allows the
generation of more fluent natural language. Still the var function allows the coercion
from type Var to El.

With the usage of quantifiers and connectives all axioms from SUMO, which were
not already converted to type signatures in GF, can be converted to abstract syntax
trees. For example the SUO-KIF formula:

(=> (instance ?P Wading)

(exists (?W) (and (instance ?W BodyOfWater) (located ?P ?W))))

is converted to the following abstract syntax tree in GF:

forall Wading (\P → exists BodyOfWater (\W → located (var P) (var W)))

68

Note that this is more than just a syntactic conversion because the quantifiers in
GF expect explicit class information while in SUMO this is encoded with instance
predicates.

2.4. Proofs in Natural Language

As it was mentioned in Section 1, the proofs in GF are explicitly represented as abstract
syntax trees. Since the abstract syntax trees could also have linearizations in the con-
crete syntax, it is possible to render the proofs in the same controlled natural language
encoding the ontology. For example the following command in the GF shell:

SUMO> gt -cat="Inherits Human Primate" | l -lang=SUMOEng

will derive a proof for Inherits Human Primate and will linearize the proof in En-
glish. The text contains some HTML tags, so when it is rendered in a web browser it
looks like a bullet list:

• human is a subclass of both cognitive agent and hominid

• hominid is a subclass of primate

The natural language rendering can be used to generate end-user explanations for the
inferences in the ontology.

3. Russell’s paradox
Russell’s paradox [21] was first discovered in naïve set theory. It stems from the as-
sumption that for every logical proposition there is a set of entities which satisfy the
proposition. This was shown to be inconsistent with the example of the set of all sets
which are not members of themselves. Such a set cannot exist because then it will
be simultaneously a member and not a member of itself. The design of SUMO fol-
lows naïve set theory and the KappaFn function is exactly the way to build sets from
propositions. Using the function, the paradox can be expressed as:

(instance (KappaFn ”x” (not (instance x x)))

(KappaFn ”x” (not (instance x x))))

The reasoning with SUMO is sound only because the KappaFn function is not axioma-
tised and the automated theorem provers cannot make any inferences.

The paradox is principally avoided in the GF translation by first discarding the
predicate instance and second by making the class Class into a type. This results
into a completely different signature for KappaFn (3.4) which would make the above
statement incorrect even if we still had the predicate instance.

4. Verbalization
Apart from the advantages that the GF type system provides, for the natural language
generation the benefits of using GF are considerably more substantial. The present
work deals with the generation of natural language for the two upper ontologies - Merge
and Mid-level-ontology in 3 languages: English, Romanian and French, as a proof-of-
concept for the capabilities of GF to host a controlled language for ontologies.

For English, about 7,000 concepts and relations have been translated to natural
language. For Romanian and French, only a small number of examples, that illustrate

69

the advantages of GF over a template-based generation, were built. This is due to the
fact that there are no large coverage lexicons for those languages in GF yet.

A typical SUMO template is the predicate age expressed in English:

(format en age "the &%age of %1 is %n %2")

where %n will be replaced with "not" for the negation of the predicate, and with the
empty string for the affirmative form. The structure of the templates is rather simple,
and works reasonably just for morphologically simple languages, such as English. The
templates do not take into account the presence of declension forms for nouns, of the
gender agreement with verbs and prepositions or the various moods of a sentence,
depending on its usage.

This solution is not compositional and leads to incorrect constructions in languages
with a rich morphology such as Romanian. For example the verbalization of "the in-
verse of the square root of X" in Romanian would require the combination of two
templates and would render: inversa lui rădăcina pătrată a lui X, which is consider-
ably different from the correct form - inversa rădăcinii pătrate a lui X. One reason is
that the translation of "square root" should be in Genitive case, whereas the template
only has the Nominative one, and in Romanian the two forms are different. The second
is the matter of the possessive preposition, which in Romanian needs to agree with its
object. The template provides the masculine form as default, but rădăcina pătrată a
lui X is feminine. For French, although nouns do not have multiple declension forms,
there is an agreement in gender and number between nouns and other parts of speech
that determines them, which cannot be handled by the SUMO templates. In addition to
this, for French there is also the problem of phonetic mutations, such as for the usage
of a verb with negative polarity. In case that the verb starts with a vowel, the form
of the particles used to express negation changes, and this is a mutation that SUMO
doesn’t handle, because the templates provide only one value for the particles. It goes
without saying that the French and Romanian resource grammars offer solutions for
these problems, so that the natural language generation in SUMO-GF is syntactically
correct for compositions of patterns also.

Moreover, the feature that shows best the advantage of a typed system in general,
and of GF, in particular, over sets of templates is the assignment of a gender to the vari-
ables, according to the gender of their type, for languages that have gender agreement
[22]. This is a very common feature for Romance and Slavic languages, where there
is a gender differentiation. The SUMO templates simply assume that all the variables
have masculine gender, while in GF, the wrapper function var, that has access to the
class of the variable also, would assign a proper gender to the variable. Since variables
can only be used after being wrapped with var, they will have a correct gender for
any usage in a quantified formula. This behaviour shows the importance of separating
between variables and instances of a class. If Var and Ind or El would have been
unified in the same category, we could not use a wrapper function to change the gender,
since we might accidentally change the gender of an ordinary instance.

An example of how the gender variation feature works in the current implementa-
tion is the GF axiom:

forall Animal (\A→ exists Animal (\B → smaller (varB) (varA)))

which would be linearized in French as:
pour chaque animal A il existe un animal B tel que B est plus petit que A

70

where animal is of masculine gender in French. For a type of feminine gender, such
as house we would have that:

forall House (\A→ exists House (\B → smaller (varB) (varA)))

which would be linearized in French as:
pour chaque maison A il existe une maison B telle que B est plus petite que

A
The axioms are not taken from SUMO, but they are just two examples that illustrate

this linguistic feature, and would not probably hold in general, as the set of animals and
the set of houses are finite, and hence noetherian.

The examples, although few, show the advantages of GF in developing a set of mul-
tilingual aligned syntactically-correct controlled languages for describing ontologies.

Besides axioms, we can also generate natural language for SubClass, Ind dec-
larations and higher-order functions. For example:

beverage is a subclass of food
blue is an instance of primary color
"x is equal to y" is an equivalence relation
Our work provides natural language generation in English for the two biggest mod-

ules Merge and Mid-level-ontology and two domain specific: Elements - featuring
chemical substances and Mondial - featuring countries and cities of the world. As
mentioned before, a total of almost 7 000 objects and 500 relations from SUMO were
verbalized. This process is done automatically for objects and semi-automatically for
relations, and uses the GF resource grammar.

The automatic process takes advantage of the camel case representation of SUMO
concepts. For example, BodyOfWater will be rendered as ”body of water” and parsed
by GF as a noun phrase. Instances are parsed as GF noun phrases, while classes are
parsed as GF common nouns, which are similar to noun phrases, only that they have
variable number, gender and other morphological features. In this way, the represen-
tation of BodyOfWater will also contain the plural form "bodies of water", which we
can use for generating natural language constructions. For functions and predicates
the missing arguments are replaced by some dummy variables and the procedure is
semi-automatical, using the original SUMO templates and hand-written verbalizations
which are further on parsed as noun phrases for functions and clauses with polarity
for predicates. For example, the binary predicate parent will be verbalized as "o1
is the parent of o2" and parsed to a GF abstract syntax tree. This method allows gen-
eralizations, so the 2 negative forms are "o1 is not the parent of o2" and "o1 isn’t the
parent of o2" are automatically obtained from this. For the two domain specific on-
tologies, the information is extracted from the SUMO predicate name that gives the
English verbalization of the concepts. As a result, our approach renders verbalization
of a large number of entries from the ontology, with a high rate of automation, ensuring
syntactical correctness of the generated phrases. For example :

For every unique list LIST, every positive integer NUMBER2 and every positive
integer NUMBER1, we have that if the element with number NUMBER1 in LIST is
equal to the element with number NUMBER2 in LIST, then NUMBER1 is equal to
NUMBER2.

For the same axiom, the SUMO templates generate:
For all unique list ?LIST holds for all ?NUMBER1, ?NUMBER2 holds if ?NUM-

BER1th element of ?LIST is equal to ?NUMBER2th element of ?LIST, then ?NUM-
BER1 is equal to ?NUMBER2

71

The optimized natural language generation mechanism from the Sigma system
would render the axiom as:

* If a list is an instance of unique list
* then for all a positive integer and positive integer
◦ if positive integerth element of list is equal to positive integerth element of list
◦ then positive integer is equal to positive integer

Further optimizing of the code by anaphora generation and a list-like structure of
the arguments for better readibility is possible, like in the proof rendering.

5. Evaluation

During the translation of SUMO to GF, we discovered a number of small inconsis-
tencies in the original ontologies like mismatches between instances and classes, us-
age of undefined objects and usage of functions with a wrong number of arguments.
This represents almost 8% of the total number of axioms from SUMO and was deter-
mined automatically during the type-checking phase. In addition to this, we left out the
higher-order logic constructions such as quantifications on Formula or axioms with
higher-order functions.

However, there are some types of axioms which could not be ported to SUMO-
GF, such as the ones that use quantification over classes, negative type declarations
and axioms which use the predicates subclass, range or domain. In addition to
this, we mention the class of axioms which feature conditional type declarations. For
example:

(=> (and (instance ?DRINK Drinking)

(patient ?DRINK ?BEV))

(instance ?BEV ?Beverage))

The type declaration for BEV appears as a consequence of the fact that it is used in
the process of Drinking. The total number of axioms which are lost in translation is
about 23%. Our observations suggests that those axioms could be paraphrased and
incorporated in the type system but this would require manual work with every axiom.

6. Automated Reasoning in SUMO-GF

Since SUMO offers a generous amount of information in a first-order logic format,
it represents an excellent source for automated reasoning, especially in the context of
SUMO-GF where one can perform automated reasoning on natural language.

As mentioned before, the TPTP-FOF translations of the 2 upper SUMO ontologies
are used yearly in the ATP competition. We have shown already in Section 1 that a
limited kind of ontological reasoning is possible by using GF alone. Unfortunately,
the reasoner in GF is not as optimized as current state of the art theorem provers.
However, to take advantage of the tools that already exists, we translated the 17 SUMO-
GF ontologies to TPTP-FOF, checked them for consistency and used them for solving
small inferences.

Since TPTP is an untyped system, whereas GF is strongly typed, the information
about types needs to be reformulated, with the aid of an additional predicate hasType,
that resembles the original instance predicate from SUMO.

72

For subclasses, the translation reflects the possibility of coercing from the subclass
to the superclass:

fun Adjective_Class : SubClass Adjective Word ;

and would be translated to TPTP as:

fof(axMerge2, axiom, (![X]:
(hasType(type_Adjective, X)=>hasType(type_Word, X)))).

For instance declarations, we have a simpler translation pattern:

fun Flat : Ind ShapeAttribute;

will be translated to TPTP as:

fof(axMerge686, axiom,
hasType(type_ShapeAttribute, inst_Flat)).

A more commonly used approach for expressing typing declarations in first-order logic
is to create a predicate for each type, like:

type_ShapeAttribute (inst_Flat)

We did not choose this method, since the SUMO classes are not just used as types,
in typing declarations, but also as arguments for some functions. By using classes as
predicates, one couldn’t unify the two occurrences in first-order logic.

The functions that manipulate Formula objects, such as not, and, or, impl and equiv
have been translated into their corresponding first-order logic operators that are prede-
fined in TPTP: ∼, &, | and⇒. For the both and either constructors, the built-in & and
| are used again:

fun Togo : Ind (both Country Nation);

will be translated to TPTP as:

fof(axmond72, axiom,
hasType(type_Country, inst_Togo) &

hasType(type_Nation, inst_Togo)).

As for the equality operator equal, the situation is more complicated. In SUMO,
because of the structure of the concepts, it could basically take any arguments, like
classes, and relations and instances. In GF the equal function would just take arguments
of type El Entity , so it would not be possible to test the equality of formulas, functions
or classes. In SUMO, equal is defined as an EquivalenceRelation, with some extra
axioms, for the various kinds of arguments that it might take. For instances, the axiom,
that verifies a property of equal objects:

(=> (equal ?THING1 ?THING2)

(forall (?CLASS)

(<=> (instance ?THING1?CLASS)

(instance ?THING2 ?CLASS))))

could not be translated to GF, as it contains a variable type declaration and quantifi-
cation over a class. Moreover, a more solid interpretation of equality would be using

73

at least a congruence relation, not just an equivalence one. SUMO does not have the
concept of congruence, while theorem provers that can process first-order logic with
equality, usually have specific mechanisms for dealing with the built-in equality from
TPTP [23]. For these reasons, the translation from GF to TPTP, uses the default TPTP
equality for the equal function.

The existential and universal quantifiers from SUMO and GF, were translated as the
built-in quantifiers from TPTP. The type declarations are expressed with the function
hasType for consistency with the type declarations. For example, the axiom from
before was translated to TPTP as:

fof(axMid9, axiom, ![Var_P]:
hasType(type_Wading, Var_P) => ?[Var_W]:
hasType(type_BodyOfWater, Var_W) & f_located(Var_P,Var_W)).

A special case is the translation of higher-order axioms to TPTP. In this case, the
function call is replaced by the definition of the function, rendering a construction in
first-order logic. In this way the function name is used as a macro for its body. This is
the same approach as in [14].

The resulting files have been checked with the first-order theorem prover E [24].
E is a multiple award-winning theorem prover which is freely available and is based
on an equational superposition calculus. It provides support for first-order logic with
equality. E has been used to check the consistency of the largest ontology currently
available - ResearchCyC [25]. The TPTP translations of the GF files were tested for
consistency with E, and no contradiction was found, given the time limit of 1 hour per
file, which was exceeded for the upper-ontologies, due to the increased complexity of
the axioms they contain.

Regarding typical inferences that could be solved on the existing data, we used the
problems from the SUMO webpage 4.

The category of axioms that the SUMO to TPTP translation can express, but the
SUMO-GF to TPTP cannot are mainly the ones that got lost in the SUMO to SUMO-
GF translation. In addition to this, there are the nested predicates, quantifications over
Formula and the class-forming function KappaFn. They are used in SUMO-GF only
for language generation. The loss is almost 23% of the total number of the axioms. The
coverage of the SUMO to GF to TPTP translation is comparable to the direct SUMO
to TPTP translation. It is worth mentioning that the first translation yields to a slightly
slower system because of the additional type declarations that need to be checked by
the theorem prover. However, it is worth investigating if the results could be better, if
one chooses the typed version of TPTP. 5.

7. End-user Interface
An important component of the GF distribution is the front-end user interface. While
the grammarians are supposed to use the GF shell plus some development environment
for writing grammars, end users should have the option to use some more comfort-
able interface. GF comes with a generic web-based interface [26] which could be
specialized further for particular applications. In relation with SUMO, the interface
was extended with features which make the relation of the ontology with the concrete
syntax more transparent.

4http://sigmakee.cvs.sourceforge.net/viewvc/sigmakee/KBs/tests/
5http://www.cs.miami.edu/ tptp/TPTP/Proposals/TypedFOF.html

74

Figure 3.1: Text editor for authoring SUMO axioms using controlled natural language

While in Sigma the knowledge engineers are supposed to write the axioms in KIF,
in GF they could do it in a controlled natural language. The problem with all controlled
languages is that the user has to learn how to write content which is in the scope of the
grammar. The successful use of predictive editors in helping the users build construc-
tions within the bounds of the controlled language was investigated in [27]. In GF
there is a similar predictive editor (fig. 3.1) which guides the authoring by generation
of suggestions. In the example shown the user has just started adding a reference to
a variable and the editor suggests the list of all variables in the current scope which
start with “NU”. The same kinds of suggestions are offered for every word in the sen-
tence. Furthermore, the user could at any time select a phrase (the highlighted phrase
on the picture) and see in the upper-right corner the corresponding ontological type of
the phrase (Class in this case). If the axiom is not well-formed, i.e. contains a type
error for example, then the error is immediately reported and the corresponding phrase
is underlined. This very much resembles an IDE for programming languages, except
for the fact that the input is a kind of natural language.

For nontrivial ontologies of the scale of SUMO it is often helpful to have an over-
all view of the ontology. The browsing functionalities of Sigma very much fulfil the
requirements. A similar browser (fig. 3.2) for the abstract syntax of the grammars was
developed for GF. In the case of SUMO-GF, this corresponds exactly to the taxonomy
plus the signatures of all functions and predicates. The user sees the class hierarchy
on the left-hand side and can start with the exploration of any class, or could use the
search box in the upper-left corner to find a class or function by name.

8. Related Work
At the moment there exists a large number of applications dealing with ontologies and
building various applications on top of them. Regarding the languages that are used
to encode ontologies, as mentioned before, the most popular ones do not have a type
system.

A first exception is the programming language prototype Zhi#6, which is a novel
language for encoding ontologies. It has a static type-system and it is compiled to C#.
It benefits from using the C# built-in types and functions, but also the syntax looks
very much like C# and it is not very intuitive for most users.

A more notable example is CASL (Common Algebraic Specification Language)
[28]. It introduces the notions of strongly-typed and structured ontologies and pro-
vides a strong formal structure for representing them. However, it deals only with the

6http://www.alexpaar.de/zhimantic/ZhiSharp.pdf

75

Figure 3.2: Browser for combined ontology and syntax exploration

algebraic side of the specifications, whereas GF has a built-in natural language gener-
ation component, in addition to the robust type system.

Compared to these languages, GF is the only system which combines a strongly
typed framework for ontology description with a direct multilingual verbalization. To
our knowledge, the current work is the first representation of an ontology in type theory
with dependent types. The benefits of dependent types are visible when expressing
the concepts and relations from SUMO in GF, as they provide better control on their
semantics. robustness to the representation.

Regarding natural language generation, there are many notable applications that
verbalize ontologies. Most of them however, have only English as target. A notable
exception is the KPML project [29], which provides natural language generation for
10 languages. Another interesting case is the Gellish ontology which provides direct
verbalization for English, German and Dutch. However, there is considerably less
progress for Slavic and Romance languages, due to their complexity. The GF approach
has built-in mechanisms for verbalization via the resource grammars, which provide
syntactically correct translations. Moreover, GF also has support for multilingual trans-
lation.

Regarding automatic reasoning, there has been work for checking the consistency
of all the well-known ontologies. A notable example is the use of the E theorem prover
for the ResearchCyC ontology [25]. However, SUMO is the most well-known case
of an ontology which is checked for consistency every year, as part of a CADE com-
petition. Compared to the official SUMO translation to TPTP, our approach has a
comparable expressivity, rejecting the ill-typed axioms at an earlier stage.

The project OntoNat [30] provides automated reasoning for the SUMO ontology
with KRHyper [31]. KRHyper is a theorem prover for first-order logic that implements
hyper tableaux, and a version of it that deals with equality is also available 7. The tool
can answer questions posed in normal English, by using the wordnet mappings and a
simple parser, in order to infer the SUMO expression that should be checked.

7http://www.uni-koblenz.de/ bpelzer/ekrhyper/

76

9. Future Work
The current work explores aspects of data modelling, compiling from an untyped sys-
tem to a typed one and from a typed system to first-order logic, type inference, natural
language generation, and automated reasoning. These directions can be extended in a
more comprehensive manner and lead to stand-alone projects.

One interesting possibility would be to generate higher-quality natural language,
following the idea8 of truncating the hierarchy even more, separating attributes
and processes. Instances of attribute and its subclasses can be linearized as
adjective phrases, while instances and subclasses of process are to be linearized as
verb phrases. In this way a predicate like:

(attribute ?X NonFullyFormed)

would not be linearized as non fully formed is an attribute of X but as X is not fully
formed. For a predicate like:

(agent Reasoning ?A)

we would obtain A reasons instead of A is an agent of reasoning.
Another interesting application would be to build a user interface, where users

could ask questions and get answers from the theorem prover via the GF to TPTP
translation. If the prover provides a trace of the proof search, this could be converted
back to a GF tree and used for generation of proof explanations in natural language.
When dealing with more complex proofs, more work is needed for rendering readable
natural language. A comprehensive reference for natural language generation from
proofs is [32].

10. Conclusion
The work investigates the representation of upper ontologies in the type-theoretical
functional language GF, which provides mechanisms for direct verbalization as a con-
trolled language, having the SUMO ontology as a use case. The results obtained show
a consistent improvement from the multilingual natural language generation point of
view, in terms of effort, scalability and syntactical correctness of the obtained text.
Moreover, the type system, while still preserving a comparable coverage, prevents type
errors that could lead to inconsistencies in the ontology. Also the editor makes it easier
for users to interact with the ontology by adding content in natural language. From a
knowledge engineering point of view, GF offers obvious advantages for encoding on-
tologies, as the framework defined and applied for SUMO is general enough to fit a
large range of ontologies.

8 http://www.ontologyportal.org/student.html

77

78

Bibliography

[1] Ganesereth, M.R., Fikes, R.E.: Knowledge interchange format. Technical Report
Logic-92-1, Stanford University (June 1992)

[2] Bechhofer, S., van Harmelen, F., Hendler, J., Horrocks, I., McGuinness, D.L.,
Patel-Schneider, P.F., Stein, L.A.: OWL web ontology language reference. (2009)

[3] Cycorp: The syntax of CycL (2002)

[4] Van Renssen, A.: Gellish: A Generic Extensible Ontological Language. PhD
thesis, Delft University (2005) PhD thesis.

[5] Niles, I., Pease, A.: Towards a standard upper ontology. In: FOIS ’01: Proceed-
ings of the international conference on Formal Ontology in Information Systems,
New York, NY, USA, ACM (2001) 2–9

[6] Ranta, A.: Grammatical Framework: A Type-Theoretical Grammar Formalism.
The Journal of Functional Programming 14(2) (2004) 145–189

[7] Martin-Löf, P.: Constructive mathematics and computer programming. In Cohen,
Los, Pfeiffer, Podewski, eds.: Logic, Methodology and Philosophy of Science VI.
North-Holland, Amsterdam (1982) 153–175

[8] Ranta, A.: The GF resource grammar library. Linguistic Issues in Language
Technology 2(2) (2009)

[9] Angelov, K., Bringert, B., Ranta, A.: PGF: A Portable Run-Time Format for
Type-Theoretical Grammars. Journal of Logic, Language and Information (2009)

[10] Ljunglöf, P., Amores, G., Cooper, R., Hjelm, D., Lemon, O., Manchin, P., Perez,
G., Ranta, A.: Multimodal Grammar Library (2006) TALK. Talk and Look: Tools
for Ambient Linguistic Knowledge. IST-507802. Deliverable 1.2b.

[11] Caprotti, O.: WebALT! Deliver Mathematics Everywhere. In: Proceedings of
SITE 2006. Orlando March 20-24. (2006)

[12] Ahrendt, W., Baar, T., Beckert, B., Bubel, R., Giese, M., Hähnle, R., Menzel,
W., Mostowski, W., Roth, A., Schlager, S., Schmitt, P.H.: The key tool. Techni-
cal report in computing science no. 2003-5, Department of Computing Science,
Chalmers University and Göteborg University, Göteborg, Sweden (2003)

[13] : MOLTO - Multilingual Online Translation. European Project (2010–2012)

79

[14] Pease, A., Sutcliffe, G.: First order reasoning on a large ontology. Proceedings
of the CADE-21 workshop on Empirically Successful Automated Reasoning on
Large Theories (ESARLT) (2007)

[15] Sutcliffe, G.: The TPTP problem library and associated infrastructure. Journal of
Automated Reasoning 43 (2009) 337–362 10.1007/s10817-009-9143-8.

[16] Pease, A.: The sigma ontology development environment. Working Notes of the
IJCAI-2003 Workshop on Ontology and Distributed Systems 71 (2003)

[17] Trac, S., Sutcliffe, G., Pease, A.: Integration of the tptpworld into sigmakee. Pro-
ceedings of IJCAR ’08 Workshop on Practical Aspects of Automated Reasoning
(PAAR-2008) 373 (2009)

[18] Martin-Löf, P.: A theory of types (1971) unpublished.

[19] Girard, J.Y.: Interpretation fonctionnelle et elimination des coupures de
l’arithmetique d’ordre superieur, Paris (1972)

[20] W3C: Named graphs (2004)

[21] Russell, B.: Principles of Mathematics. Cambridge University Press, Cambridge
(2011)

[22] Ranta, A.: Structures grammaticales dans le français mathématique. Mathéma-
tiques, informatique et Sciences Humaines (138, 139) (1997) 5–56, 5–36

[23] Slagle, J.R.: Automatic theorem proving with built-in theories including equality,
partial ordering, and sets. J. ACM 19 (1972) 120–135

[24] Schulz, S.: E - a brainiac theorem prover (2002)

[25] Ramachandran, D., Reagan, P., Goolsbey, K.: First-orderized researchcyc: Ex-
pressivity and efficiency in a common-sense ontology. In: In Papers from the
AAAI Workshop on Contexts and Ontologies: Theory, Practice and Applications.
(2005)

[26] Bringert, B., Angelov, K., Ranta, A.: Grammatical framework web service. In:
EACL (Demos). (2009) 9–12

[27] Schwitter, R., Ljungberg, A., Hood, D.: ECOLE — a look-ahead editor for a
controlled language. In: Proceedings of EAMT-CLAW03. (2003) 141–150

[28] Lüttich, K.: Development of Structured Ontologies in CASL. PhD thesis, Uni-
versity of Bremen (2007) PhD thesis.

[29] Bateman, J.A.: Enabling technology for multilingual natural language genera-
tion: the kpml development environment. Nat. Lang. Eng. 3(1) (1997) 15–55

[30] Baumgartner, P., Suchanek, F.M.: Automated reasoning support for sumo/kif.
(2005) Manuscript, Max-Planck Institute for Computer Science.

[31] Wernhard, C.: System Description: KRHyper. Fachberichte Informatik 14–2003,
Universität Koblenz-Landau (2003)

[32] Fiedler, A.: Natural language proof explanation. In Hutter, D., Stephan, W.,
eds.: Mechanizing Mathematical Reasoning. Volume 2605 of Lecture Notes in
Computer Science. Springer Berlin / Heidelberg (2005) 342–363

80

2 Multilingual Verbalization of Modular Ontologies us-
ing GF and lemon

Brian Davis Ramona Enache Jeroen van Grondelle
Laurette Pretorius

Abstract: This paper presents an approach to multilingual ontology verbalisation
of controlled language based on the Grammatical Framework (GF) and the lemon
model. It addresses specific challenges that arise when classes are used to create a
consensus-based conceptual framework, in which many parties individually contribute
instances. The approach is presented alongside a concrete case, in which ontologies
are used to capture business processes by linguistically untrained stakeholders across
business disciplines. GF is used to create multilingual grammars that enable transpar-
ent multilingual verbalisation. Capturing the instance labels in lemon lexicons reduces
the need for GF engineering to the class level: The lemon lexicons with the labels of
the instances are converted into GF grammars based on a mapping described in this
paper. The grammars are modularised in accordance with the ontology modularisation
and can deal with the different styles of label choosing that occur in practice.

1. Introduction
As the adoption of ontologies into enterprise application environments grows, new au-
diences have to deal with ontologies beyond the traditional disciplines that have done
so in the past, such as knowledge engineers and ontologists. These audiences range
from business users, who need to take ownership of the ontologies, to end users, such
as customers or citizens, who are presented with the services based on these ontologies.
As the formalisms themselves are often inaccessible to these new audiences, appropri-
ate visualisations are important. Our experience in practice is that business users often
overcome their perception of graph oriented visualisations being too technical when
gaining experience, but they remain a challenge for incidental reviewers and end users.
Therefore, verbalisation of ontologies into natural language is one of the approaches
that is crucial to make ontologies accessible to new audiences.

Being able to provide verbalisation in a multilingual manner is important: Govern-
ments and enterprise often offer their products and services in international contexts
or to customers of different languages. For instance, Dutch Immigrations offers many
of its services based on ontologies [1], and it typically needs to interface with people
that do not speak Dutch. Also, governments have to deal with numerous international
aspects in legislation when drafting their national laws. Specifically in Europe, large
parts of national legislation is either heavily influenced by or originates in European
legislation. Sharing ontologies capturing such international legislation and being able
to refer to them from local ontologies offers important benefits in areas of productivity
and traceability across local practices.

In this paper, we present an approach for ontology verbalisation based on the Gram-
matical Framework (GF) and the Lexicon Model for Ontologies (lemon) that is essen-

81

tially multilingual and addresses the particular challenges when classes are chosen up
front based on consensus, while multiple parties contribute often changing instances
individually.

We use the Be Informed business process platform9 as an example throughout this
paper. The verbalisation examples described in [2] are built upon and we show how
they can be generated across languages transparently. Finally, we illustrate how the
challenges in this example generalise across other examples, including the generic case
of verbalising Linked Open Data.

2. Related Work
Ontology Lexicalisation

The lemon model builds on previous research for designing lexica for interfacing with
ontologies, in particular that of the LexInfo [3] and LIR [4] models, as well as existing
work on lexicon (meta-)models, in particular the Lexical Markup Framework (ISO-
24613:2008) [5]. In addition, it builds on efforts to link resources via the Web to the
ISOcat meta-data registry [6]. lemon seeks to scale the modelling of lexical and lin-
guistic information related to concepts in ontologies from very simple to quite complex
lexical entries. lemon is closely related the SKOS project10, which attempts to model
simple knowledge organisation systems such as thesauri, classification schemes and
taxonomies on the Semantic Web.

Ontology Verbalisation and CNLs

The application of CNLs for ontology authoring and instance population is an active re-
search area. Attempto Controlled English11 (ACE) [7], is a popular CNL for ontology
authoring and generation. It is a subset of standard English designed for knowledge
representation and technical specifications, and is constrained to be unambiguously
machine-readable into DRS - Discourse Representation Structure, a form of first-order
logic. WYSIWYM (What you see is what you meant)[8], involves direct knowledge
editing with natural language directed feedback. A domain expert can edit a knowl-
edge base reliably by interacting with natural language menu choices and the subse-
quently generated feedback, which can then be extended or re-edited using the menu
options. With respect to GF, there have been a number of GF grammars using ontolo-
gies/databases, such as the grammar representing the structure of SUMO, the largest
open-source ontology 12 as a type-theoretical grammar and verbalise it in 3 languages
[9]. Moreover, an ontology describing paintings and a database describing over 8,000
artifacts from the Gothenburg City Museum were used for generating descriptions of
the paintings in 5 languages [10].

3. Challenges in Verbalising Modular Ontologies
3.1. New audiences for ontologies

An example where ontologies are used in business applications is Be Informed’s busi-
ness process platform. It allows representatives of many disciplines and domain experts

9http://www.beinformed.com/
10http://www.w3.org/2004/02/skos/
11http://www.ifi.unizh.ch/attempto/
12http://www.ontologyportal.org/

82

http://www.beinformed.com/
http://www.w3.org/2004/02/skos/
http://www.ifi.unizh.ch/attempto/
http://www.ontologyportal.org/

to capture the definitions and constraints that the business process must meet and have
engines infer executable business processes and decision services from them automat-
ically. This provides business users with a large degree of control and agility, as the
constraints are easily changed and the process is updated accordingly. The resulting
processes are highly contextual and deal well with exceptions: They allow profes-
sionals to influence their own work, and are resilient to the effects of overrides as is
described in [2].

When ontologies are used to infer business processes in this way, its stakehold-
ers get to interact with the underlying ontologies on a number of levels. The first is
obviously understanding the content of the ontology and the consequences for the in-
ferred business process. The ontology becomes part of the system documentation and
is used for validation and reviewing at specification time or for reference when using
and maintaining the services and its specification/documentation. Also, the ontology
driven services have user interfaces that provide dialog to its end users and the ontol-
ogy typically is the source of many of the textual elements in that dialog, such as the
questions asked, the captions in forms, etc. Finally, the end results of the ontology
driven services are also based on the underlying ontology. In applications, these results
might be represented by generated documents or letters sent to customers. Specifically
when decisions are taken based on models, explaining the end result and the underly-
ing argument have strong ties with the concepts and their textual representations in the
ontology.

Case

ActivityRole

<Abstract>
Artifact

Time Limit

Object

Assigns

Creates

Performs

Decision

Decides

Post Condition

Requires Running
Requires Expired

Pre Condition

Requires Role

Requires
Available

Requires
Taken

Requires
Available

Requires
Completed

Document Appointment Note

Begins
Ends

Suspends
Resumes

Creates
Changes
Corrects
Deletes
Lookup

Subtypes

Figure 3.3: Summary of the classes used to capture business processes

Be Informed’s business processes are inferred from an ontology capturing all rele-
vant activities, artifacts, involved roles etc. and the conditional relations between these.
The meta model, as shown in Figure 3.3, contains the conceptualisation of the business
process domain, that instead of using flow semantics to capture who does what and
when, is based on pre- and post-conditions. Each activity may have pre-conditions that
have to be met before it may be performed, and post-conditions that capture what con-
ditions have to be met in order for the activity to be complete. Figure 3.4 contains an
of example how this meta model is used to capture the business process of applying for
a grant.

In [2], this example is discussed in more depth and the model from Figure 3.4 is
verbalised using a pattern sentence approach. The result when verbalising the example

83

<Case>
Grant Application

<Activity>
Accept

<Activity>
Archive

<Activity>
Assess

<Activity>
Publish

<Role>
Case Handler

<Document>
Rejection

Letter

<Document>
Application

Form

<Document>
Confirmation

Letter
<Decision>
Eligibility

<Time Limit>
Acceptible Response Time

<Object>
Grant Application

<Time Limit>
Retention

Period

RemovesCreates

BeginsEnds

Creates
[Eligibility=FALSE]DecidesRequires

CreatesAssigns

Begins Requires
Expired

Performs (if needed) Performs

Creates
[Eligibility=TRUE]

Figure 3.4: An example of an grant application process

used throughout the paper with the pattern sentence approach is the following.

1. The activity PUBLISHING THE RESULT may be performed if

(a) a document of type DOCUMENT WITH DETAILS is available.

2. The activity PUBLISHING THE RESULT is completed if

(a) a document of type SUBMISSION FORM has been created.

Although the sentences generated have proven useful in practice, some additional re-
quirements exist in areas such as grammatical correctness and fluency. For instance,
the first sentence part is grammatically incorrect, as the label inserted is a verb phrase
in itself. Also, the pattern sentences approach proves not to scale in terms of number of
supported languages. Every grammar translation needs to deal with all lexical aspects
(and their peculiarities) of their specific language.

3.2. Differences between classes and instances

Within the field of knowledge representation, both classes and instances are typically
treated as equal means of expression when creating an ontology and both can be used
by the knowledge engineer as he sees fit to best capture the conceptualisation of his
choice.

In the use case presented in this paper however, class and instance information
are typically in separate, but linked ontologies and these ontologies differ greatly in
characteristics related to ownership and rate of change:

• Classes are chosen based on consensus across multiple parties, while the in-
stances are provided by individual parties without requiring consensus on the
data;

• The classes are often determined once and are fixed, whereas the instances of
these classes are introduced over time and may change often;

• Classes may use an ontology formalism as its native/original representation,
where instances often have existing databases or other information stores as pri-
mary sources, and the ontology is used exclusively for sharing the data;

84

• The classes are typically created by knowledge engineers or other information
professionals, while instances are created by a wide range of people, who enter
data in the original databases, and might not deal with ontologies at all.

In the Be Informed use case provided throughout this paper, the product contains
default meta models consisting of the classes that are used in modelling. Although
these might be adjusted or extended in individual implementations, this is typically
done early in the design phase. An example of such a meta model is shown in Figure
3.3. When adopting the product, the majority of effort is spent on creating detailed
models based on the classes in the meta model. Meta models and their extensions are
typically created by knowledge engineers, while the models themselves are built by
both knowledge engineers and domain experts. Moreover, it is considered crucial that
business users, who adopt the complete model for validation, can make changes and
updates.

The choices made in the lexicalisation/verbalisation of classes and instances re-
spectively, follow a similar pattern as the classes and instances themselves:

• In general the labels and lexical representations for the classes are created along-
side the ontology that contains the classes and may require guidelines to be met.
The labels of the instances are often chosen by people less or unskilled in knowl-
edge representation or may even originate from existing databases. This compro-
mises the coherent adherence to guidelines for the lexical properties of instance
labels;

• Classes may have complex lexical and grammatical consequences, and also in-
troduce sentence patterns and planning. Instances have only labels with limited
complexity at a lexical level.

The separation between reaching consensus on the types of things considered and
identifying the individual things generalises well across other scenario’s of both the
use of ontologies and their verbalisation. For instance, ontologies used in Linked Open
Data typically expose these characteristics. An example of this is the verbalisation
of structured knowledge about 8000 artifacts from the Gothenburg City Museum into
natural language descriptions [10]: The conceptualisation of painters, paintings and
materials is codified in an ontology with classes, the facts about the individual paintings
are exported out of a database into ontologies with instances.

3.3. Practices in choosing labels

In practice, different styles of choosing labels are found when modellers are, for in-
stance, modelling and naming concepts within a business process model.

In practice, there is a difference between concepts that are commonly referred to
by a proper name (term) and concepts that do not have a term associated with them
and are referred to by description. For example, when modelling business processes,
the ontology typically contains activities. Some activities may have names (terms),
but more often a label describes what is done in the activity. Examples are “Publish-
ing the result”, “Publish the result” or “The result is published” (when the activity is
completed). This phenomenon also occurs in multilingual contexts when a name for
the concept exists in the source language of a model but not in the target language, in
which case some form of description is necessary.

85

Another source of label choosing practices can, especially in business use of on-
tologies, be found in the diverse background of the people involved in modelling. Typ-
ically, the domain experts may have experience in other structured conceptualisation
approaches and the naming conventions or practices that come with it. For instance,
many information professionals have backgrounds in systems development disciplines
and are familiar with techniques like UML and Entity Relational modelling, influenc-
ing their naming practices.

Providing guidelines and practices for systematically choosing good labels con-
tributes to reducing the number of label variants used in modelling. However, for in-
dustry adoptability and robustness in practice, ontology verbalisation techniques should
be able to deal systematically with these challenges and practices, both in terms of the
number of constraints required for accurate modelling and also the implications of lan-
guage variation and multilingualism for any given ontology concept.

4. Ontology Verbalisation using GF and lemon

We present a multilingual ontology verbalisation approach that addresses the chal-
lenges discussed in Section 3. It is based on the Grammatical Framework, currently
developed in the Molto Project13, and lemon, the Lexicon Model for Ontologies, cur-
rently developed in the Monnet Project14.

Both projects have a strong focus on ontologies and multilingualism, and comple-
ment each other well in our approach: GF provides sophisticated multilingual grammar
support while lemon provides state of the art ontology lexicalisation techniques.

4.1. Introduction to lemon and GF

Lexicon Model for Ontologies, or lemon is a model for representing lexical informa-
tion about words and terms relative to an ontology on the Web. lemon is what we
term an ontology-lexicon in that it expresses how the elements of the ontology, i.e.
classes, properties, and individuals, are realised linguistically. The model follows a
principle called semantics by reference whereby it is assumed that the (lexical) mean-
ing of the entries in the lexicon are expressed exclusively in the ontology. Hence the
lexicon merely points to the appropriate concepts. lemon is designed to be a basic
model supporting the exchange of ontology-lexica on the Semantic Web. The core of
lemon contains the basic elements required to define lexical entries and their associa-
tion to their lexical forms and, moreover, to concepts in the ontology representing their
meaning. It consists of:

• Lexicon: This object represents the lexicon as a whole. It must be marked with
a language, and all objects in the lexicon belong to this language.

• Lexical Entry: An entry for a given lexicon is a container for one or several
forms. It also contains one or more meanings of a lexeme. All forms of an entry
must have the same part of speech. An entry may have multiple meanings.

• Lexical Form: This is the inflectional form of an entry. It must have one canon-
ical form, but may have any number of other forms. Stems and other partial
morphological units can also be modeled as abstract forms.

13http://www.molto-project.eu/
14http://www.monnet-project.eu/

86

http://www.molto-project.eu/
http://www.monnet-project.eu/

• Representation: A lexical form may have several representations, ranging from
different orthographies, to phonetic representation as well as standard written
representation.

• Lexical Sense: This links a lexical entry to the reference in the ontology i.e. a
concept, property or instance.

• Component: A lexical entry may also be broken up into a number of compo-
nents.

The following example gives a simple lexicon with a single lexical entry:

@prefix lemon: <http://www.monnet-project.eu/lemon#>.
@prefix bpo: <http://www.beinformed.com/resource/>.

:lexicon lemon:entry:adult_applicant;
lemon:language "en".

:adult_applicant
lemon:canonicalForm [lemon:writtenRep "Applicant is Adult"@en];
lemon:sense [lemon:reference bpo:adult_applicant].

This simple English lexicon has a single entry, with canonical form “Applicant is
Adult”, and a sense that refers to the entry in Be Informed Business Process ontology.

The Grammatical Framework (GF) [11] is a formalism for describing multilingual
grammars. A GF grammar consists of an abstract syntax, acting as a semantic interlin-
gua and a number of concrete grammars that verbalise the abstract syntax in multiple
languages. In this way the semantic level is the central part of the grammar, connecting
any language pair of concrete syntaxes.

Most GF grammars are used to describe fragments of natural language. The largest
and most general such grammar is the resource grammar library, which contains re-
source grammars for 24 languages, and implements the most common syntactic con-
structions (such as predication, complementation, etc.) for these languages.

The resource grammar library supports the development of so-called application
grammars for more restricted domains by providing standard language-specific techni-
calities so that they do not need to be described again in the new (application) grammar.
This makes it easier to develop application grammars by assembling the primitive con-
structs from the resource grammar and obtain syntactically-correct text in languages
from the library.

In the work reported on in this paper GF is used to develop an application grammar
for the Be Informed use case, discussed in section 3.

4.2. Modular GF grammars based on decoupling of classes and instances

The ontology verbalisation approach exploits the complementary strengths of GF and
lemon. GF is used to capture ontological information as well as the required sentence
structure while lemon is the source of concrete label information. The approach is
explained by using as example the Be Informed business process ontology and the
pre- and post-condition sentence patterns of [2]. The aim of the business processes
ontology in Figures 3.3 and 3.4 is to specify business processes in terms of pre- and
post-conditions, which in turn requires the verbalisation of such conditions.

A challenge resulting from the strict separation of (ownership of) TBox and ABox
is that the lexical information required in verbalisation of the complete ontology also

87

needs modularisation along these boundaries and that restrictions with respect to avail-
ability/feasibility of knowledge engineering to the different ontology parts also apply
to the lexical information associated with those parts.

The grammar modularisation follows the structure of the meta model in Figure 3.3
(a similar approach was followed in [10]). The verbalisation proceeds according to the
sentence patterns described in [2]. In particular, each activity may have pre-conditions
and post-conditions verbalised as conditional statements (“A if B”), where A and B
are simple propositional statements with modalities, as appropriate. All concept labels
are to be verbalised as propositional statements in accordance with specifications, as
explicated in [2].

The modular layered approach to verbalisation is illustrated in Figure 3.5 by means
of the pre-condition triple

(Activity,Requires_Available,Artifact subtyped as Document).

Instance labels
Form chosen by modeler

Propositional statement

Conditional statement

Conditional statement
with modality

<Activity>
Intake

<Document>
Submission Form

requires
available

"intake" "submission form"

"the intake is completed" "the submission form is available"

"the intake is completed, if the submission form is available"

"the intake may be completed, if the submission form is available"

Ontology instances

lemon

ontology

grammatical
framework

Figure 3.5: Layered verbalisation procedure

The TBox abstract syntax caters for the pattern sentence structure (the conditional
and propositional statements), the modalities, the concept classes and the relations be-
tween them. The polarities and modalities are introduced as separate functions, allow-
ing for the addition of more modalities by merely creating two additional functions per
modality (positive and negative form), using the primitive operation already defined.
The (meta model) classes are modelled as GF categories and the relations become GF
functions with a return type used for verbalisation, as shown in the code segment taken
from the TBox abstract syntax module:

cat
Activity; -- meta model type
Document; -- meta model type
Artifact; -- meta model type

Fragment; -- type for proposition
BIText; -- type for language generation

fun
requires_available : Activity -> Artifact -> Fragment;
subDocArtifact : Document -> Artifact;
FCan : Fragment -> BIText;

88

The conceptual modularisation of the grammar is completed by the ABox abstract
syntax, which uses the TBox abstract syntax, and contains the label/instance definitions
(ABox information) as GF function declarations with category types, for example,

AIntake : Activity;
SubmissionForm : Document;

The verbalisation of the information captured by the ontology, as well the pattern
sentences in which they may occur, is addressed in the concrete syntaxes for English
and Dutch. The linearisation categories for the (abstract syntax) categories provide
detailed linguistic structure in terms of parts of speech etc, for rendering correct ver-
balisations. Complex (GF record) types are used to facilitate label variants. The pred-
icates that are built with transitive verbs (creates, deletes, corrects, changes) are ren-
dered in the passive voice, as required by the Be Informed application. The TBox
concrete syntax also provides primitives for creating the main categories, for example
mkActivity (see next section) for Activity from basic parts of speech from the
resource library, and hides the implementation details from the users, thereby ensuring
that the optimisations are as seamless as possible.

The TBox concrete grammar (code segment below) provides the linearisation of
both the propositional and the conditional statements. In particular, the overloaded
function mkFragm implements both the simple propositional statement (as complete
sentence pattern) (hasExt = False) and the conditional statement (hasExt =
true) by means of pattern matching on the number and types of the arguments. The
overloaded function mkBIText completes the verbalisation by finally adding modal-
ity and polarity, as necessary. We show mkFragm and a part of mkBIText by way of
illustration.

Utt and S are GF resource grammar library categories for sentences, questions,
etc. and declarative sentences, respectively, while Fragm is a user defined complex
(GF record) type. VV is the the resource grammar library category for verb-phrase-
complement verbs.

lincat
Activity = {noun : NP; subj : NP; vp : VP; hasVerb : Bool};
Document, Artifact = NP;

lin
requires_available ac ar = mkFragm ac.subj ac.vp (mkS (mkCl ar
(mkVP available_A)));
subDocArtifact d = d;
FCan frag = mkBIText frag positivePol may_VV;

oper
Fragm = {subj : NP; pred : VP; ext : {s : S; hasExt : Bool}};

ifExt : {s : S; hasExt : Bool} -> S -> S = \ext,s -> case
ext.hasExt of {

True => Sentence.SSubjS s if_Subj ext.s;
False => s
};

mkFragm = overload {
mkFragm : NP -> VP -> Fragm =

\np, vp ->

89

{subj = np;
pred = vp;
ext = {s = dontCareS; hasExt = False}};

mkFragm : NP -> VP -> S -> Fragm =
\np, vp, sub ->
{subj = np;
pred = vp;
ext = {s = sub; hasExt = True}};

};

mkBIText = overload {
mkBIText : Fragm -> Pol -> Utt =
\frag, pol ->

mkUtt (ifExt frag.ext (mkS pol (mkCl frag.subj frag.pred)));
.......

mkBIText : Fragm -> Pol -> VV -> Utt =
\frag, pol, vv ->
mkUtt (ifExt frag.ext (mkS pol (mkCl frag.subj
mkVP vv frag.pred))));

};

In the ABox concrete syntax the labels are defined according to the required types
using either provided primitives or basic parts of speech, for example,

AIntake = mkActivity (mkNP the_Quant intake_N);
DSubmissionForm = mkNP the_Quant

(mkCN submission_N (mkNP form_N));

where the functions mkN, mkCN, mkNP, mkVP, mkCl, mkS, mkUtt, etc., and many
more, are available in the GF resource grammar library for supporting and facilitating
application grammar development.

The function mkActivity, used in linearising the label AIntake, converts the
label “intake” to a propositional statement, where the verb to be used with activities
expressed as nouns or noun phrases is always “to complete’, i.e. “the intake is com-
pleted” as prescribed by the meta model in Figure 1. We return to the mkActivity
function in Section 4.3 where the handling of label variants is discussed.

The final (customary) component in the suite of modules that constitute a GF ap-
plication grammar is a dictionary of application specific lexical items that do not occur
in the resource grammar lexicon and additional linguistic constructs that are language
specific and/or are not included in the resource grammar, for example, verb nominali-
sation. Examples (showing the abstract as well as the concrete syntax) are as follows:

oper
intake_N:N;
submission_N:N;
form_N:N;

and

oper
intake_N = mkN "intake";
submission_N = mkN "submission";
form_N = mkN "form";

90

An example of a pre-condition triple and its verbalisation in English and Dutch by
means of the GF grammar is follows:
(Activity, Requires_Available, Artifact, subtyped as Document), in-
stantiated with the labels “intake” and “submission form”, is rendered as the pre-
condition, containing the propositional statements “the intake may be completed” and
“the submission form is available”, with modality added:

The intake may be completed , if the submission form
is available.
De inname kan worden afgerond , als het aanvraagformulier
beschikbaar is.

Other typical examples of linearisations are as follows:

Pre-conditions:

44b may be completed , if the document with details
is available.
44b kan worden afgerond , als het document met details
beschikbaar is.

Post-conditions:

If 44b has been completed ,
the submission form has been created.

Als 44b afgerond is , is het aanvraagformulier aangemaakt.

Propositional statements (intermediate layer):

44b has been completed.
44b is afgerond.

In summary, the modularisation of the grammar was illustrated by showing how
concepts and relations between them are introduced as categories and functions in the
TBox abstract syntax and reused in the in the ABox abstract syntax to instantiate ab-
stract instances. The concrete syntaxes were shown to provide linearisations, using
different variants, for the instance labels, the propositional, and the conditional state-
ments that consitute the pre- and post-conditions in the ontology.

4.3. Dealing with different variations of labels

In the previous section the focus was on modularisation as a mechanism to support
efficient and effective ontology development. By separating the TBox and ABox in-
formation in different grammar modules the modeller is allowed to concentrate on
application dependent information while generic business process modelling support
is provided by the grammar. In this section we discuss the extent to which the BI
grammar may allow for label variants and what kinds of variation is accommodated at
present.

Basically, the grammar allows two broad kinds of labels. Firstly labels in the form
of nouns or compound nouns (names or terms) are permitted, for example, “Intake”
and “Equality principle”. Secondly, labels may take the form of a proposition such as
“The Result is published” or other verb oriented style labels such as “Publishing the
result” or “Publish the result”.

91

While allowing the modeller some freedom of choice in label selection, the verbal-
isation of label variants that refer to the same concept or relation in the ontology should
be unique.

The following code fragment from the TBox concrete syntax shows how some of
these design choices may be implemented:

mkActivity = overload {
mkActivity: N -> V2 -> NP -> Activity = \n,v,o -> lin Activity {

noun = mkNP the_Quant (mkCN n (mkAdv of_Prep o));
subj = o;
vp = passiveVP v;
hasVerb = True

};
mkActivity: V2 -> NP -> Activity = \v,o -> lin Activity {

noun = nominalize (mkVPSlash v) o;
subj = o;
vp = passiveVP v;
hasVerb = True

};
mkActivity: NP -> Activity = \o -> lin Activity {

noun = o;
subj = o;
hasVerb = False

}
};

In this way, the ABox concrete syntax may be used to create an object of type Activity
by, for example, either providing an NP for simple cases like “Intake” or a V2 or an
object NP for labels such as “Publishing the result” and “Publish the result”.

There are a number of other fields that are used in the English TBox concrete syn-
tax that ensure an optimized natural language generation such as “The Results are
published” or “Intake is completed if the results are published”, but these details are
just handled in the grammar, and the users of the ABox syntax do not need to be aware
of them.

It should be noted that these choices of implementation are, to some extent, lan-
guage specific since in labels of the latter kind the English gerund is used while in
Dutch the infinitive form of the verb plus “van” is customary.

In the following example the label variant “publish the result” is rendered as in the
sentences below:

Post-condition triple:

(Activity, Creates_Artifact, Document)

Linearisation:

If the result has been published , the submission form
is available.
Als het resultaat gepubliceerd is , is het
aanvraagformulier beschikbaar.

4.4. Multilingual aspects

In the GF grammar the multilingual correspondence of the bilingual system is via
the ontological labels. For instance, “Publishing the result” in English corresponds

92

to “Publiceren van het resultaat” in Dutch because they both map to the instance
APublishingOfResult. However, word-wise there is no one-to-one correspon-
dence, since this would not scale up when adding more languages and extending the
ontology with more instances. From this perspective it resembles the lemon notion of
multilingualism and supports the automated mapping from lemon to GF, as discussed
in a subsequent section.

Moreover, since the TBox syntax mainly uses the resource library and aligneable
primitives from there, it can be abstracted in a functor, so that the new languages can
inherit it, at least partially. In this way, adding a new language would be a simpler
process, since it would mainly require the writing of a new lexicon and translating the
instances from the ABox concrete syntax. An investigation into this aspect forms part
of future work.

4.5. Generating the instance grammars from lemon

We reiterate that the exploratory work presented in this paper focuses on three aspects
of modular ontology verbalisation, as also illustrated in Figure 3.5. In section 2 we
addressed the modularisation of the GF grammars, used for the verbalisation, in accor-
dance with the modular ontologies. It was noted that the labour intensive component
of the product is the creation of the ABox grammars (that contain instances and their
labels) and that the flexibility in specifying labels is of strategic importance. Section
2, therefore, focused on label variants currently allowed by the GF grammar. In this
section we now briefly turn our attention to the third aspect viz. an automated way of
populating the ABox grammars by making use of lemon. The approach is based on
the observation that the lemon entries contain all the essential information required to
construct GF lexicon entries and linearisation rules for the instance labels in the ABox
grammars.

We illustrate this by means of an example in which essential parts of the linguistic
information, necessary to create an instance label, are shown. We consider the en-
try for the instance label “Sketch of the situation”, which is represented as a lemon
decomposition:

#Sketch of the situation
lemon:decomposition (:sketch_component :prep_component

:det_component :sit_component);

lemon:phrase_Root
[lemon:constituent :NP;
lemon:edge [lemon:constituent :NN; lemon:leaf:sketch_component];
lemon:edge [lemon:constituent :PP;
lemon:edge [lemon:constituent :P; lemon:leaf:prep_component];
lemon:edge [lemon:constituent NP;
lemon:edge [lemon:constituent :DET; lemon:leaf:det_component];
lemon:edge [lemon:constituent :NN; lemon:leaf:sit_component

]]]];

:sketch_component lemon:element sketch.
:sketch a lemon:Word .
:sketch isocat:partOfSpeech isocat:noun .

:prep_component lemon:element of.
:of a lemon:Word .

93

:of isocat:partOfSpeech isocat:preposition .

:det_component lemon:element the.
:the a lemon:Word .
:the isocat:partOfSpeech isocat:determiner.

:sit_component lemon:element situation.
:situation a lemon:Word .
:situation isocat:partOfSpeech isocat:noun .

It consists of a phrase_Root entry which describes the syntactic decomposition of
the entry. The lemon entry is decomposed into a noun phrase, in turn decomposed into
a noun, a preposition, a determiner and another noun. Each component in the lemon
decomposition is comprised of elements, for example the preposition of a the noun
situation.

In GF the same information is encoded as follows, making use of functions from
the resource grammar library:
ABox abstract syntax:
DSketchOfSituation : Document where Document is a class in the ontol-
ogy and a category in GF.
ABox concrete syntax:
DSketchOfSituation = mkNP a_Quant (mkCN sketch_N
(PrepNP of_Prep (mkNP the_Det situation_N)))where mkNP, mkCN
and PrepNP are functions from the resource grammar library.
Dictionary abstract syntax: sketch_N : N and situation_N : N
Dictionary concrete syntax: sketch_N = mkN “sketch” and
situation_N = mkN “situation”.

The constituent structure (syntax tree) of the label “Sketch of the situation” is given
in the first part of the lemon entry and by the GF ABox concrete syntax entry, while
the lexical information is available in the second part of the lemon entry and the GF
dictionary entry. An appropriate generalisation of this correspondence (mapping) will
cover all possible lemon entry syntax trees and their GF equivalents. This will form the
basis for an automated procedure to generate ABox concrete syntax entries for instance
labels from lemon and is part of our future work. Furthermore, this approach is well
suited to multilingual entries in lemon and their representation and verbalisation in GF,
the investigation of which also forms part of future work.

5. Discussion and Future Work

In this paper we demonstrated how GF and lemon can be combined to provide multi-
lingual verbalisation in a specific class of problems, where ontologies are modularised
into ontologies containing consensus based classes and (multiple) instance ontologies.
In these scenarios, the instances are typically not created by knowledge engineers and
are often based on information stores other than ontologies.

We showed an approach to grammar development that leads to grammars being
modular along the same boundaries as the ontologies, with the grammar modules also
having the same dependency structure as the ontology parts.

Additionally, we introduced mechanisms in the TBox grammar that deal automat-
ically with the different styles of label choosing that are encountered in practice. This
is particularly relevant in cases where different disciplines are involved in creating the

94

instances and in multilingual cases where concepts may have a name in one language
and can only be referenced by describing them in another language.

By generating the instance grammars from the ontology labels encoded in lemon,
the need for GF engineering at the instance level is reduced. This is crucial for the
adoption of this mechanism, as the instance data either already exists in databases or
is created by people who may not be expected to engineer GF representations of the
labels they choose.

In terms of multilingualism this approach supports and suggests two ways of ver-
balisation. In cases where translations of the labels are available inside lemon lexica,
multiple ABox syntaxes can be generated for the different languages. This approach
has the benefit that labels may differ quite significantly across languages, but obviously
requires translation of the ontology. Alternatively, translation could be performed at
the GF grammar level if the label styles align across languages. In cases where aligned
dictionary grammars are available, this approach could prove particularly efficient.

Future work also includes the extension of this approach to include different levels
of paraphrasing and advanced sentence planning in order to achieve improved fluency
in and across sentences. Finally, we envisage investigating label choosing practices as
encountered amongst professionals in the different fields that may benefit from a frame-
work as described in this paper. The importance of robustness under lexical variance
as found in real world applications suggests an in depth study of label style variation
and its impact on ontology verbalisation.

Acknowledgements

The authors wish to gratefully acknowledge the support for this work by the Euro-
pean Commission (EC). This work was partially funded by the EC within the EU FP7
Multilingual Ontologies for Networked Knowledge (MONNET) Project under Grant
Agreement No. 248458 and the MOLTO Project under Grant Agreement No. 247914.

95

96

Bibliography

[1] Heller, R., Teeseling, F.: Knowledge applications for life events: How the dutch
government informs the public about rights and duties in The Netherlands. In:
Proceedings of the 6th European Semantic Web Conference on The Semantic
Web: Research and Applications. ESWC 2009 Heraklion, Berlin, Heidelberg,
Springer-Verlag (2009) 846–850

[2] Van Grondelle, J.C., Gülpers, M.: Specifying flexible business processes using
pre and post conditions. In: PoEM. Volume 92 of Lecture Notes in Business
Information Processing., Springer (2011) 38–51

[3] Buitelaar, P., Cimiano, P., Haase, P., Sintek, M.: Towards linguistically grounded
ontologies. In: The Semantic Web: Research and Applications. (2009) 111–125

[4] Montiel-Ponsoda, E., de Cea, G., Gómez-Pérez, A., Peters, W.: Modelling multi-
linguality in ontologies. In: Proceedings of the 21st International Conference on
Computational Linguistics (COLING). (2008)

[5] Francopoulo, G., George, M., Calzolari, N., Monachini, M., Bel, N., Pet, M.,
Soria, C.: Lexical markup framework (LMF). In: Proceedings of the 2006 Inter-
national Conference on Language Resource and Evaluation (LREC). (2006)

[6] Kemps-Snijders, M., Windhouwer, M., Wittenburg, P., Wright, S.: ISOcat: Cor-
ralling data categories in the wild. In: Proceedings of the 2008 International
Conference on Language Resource and Evaluation (LREC). (2008)

[7] Fuchs, N.E., Kaljurand, K., Kuhn, T.: Attempto Controlled English for Knowl-
edge Representation. In Baroglio, C., Bonatti, P.A., Małuszyński, J., Marchiori,
M., Polleres, A., Schaffert, S., eds.: Reasoning Web, Fourth International Sum-
mer School 2008. Number 5224 in Lecture Notes in Computer Science, Springer
(2008) 104–124

[8] Power, R., Scott, D., Evans, R.: What you see is what you meant: direct knowl-
edge editings with natural language feedback. In Prade, H., ed.: 13th European
Conference on Artificial Intelligence (ECAI’98). John Wiley and Sons, Chich-
ester, England (1998) 677–681

[9] Angelov, K.A., Enache, R.: Typeful ontologies with direct multilingual verbal-
ization. In: Controlled Natural Languages Workshop (CNL 2010), Marettimo,
Italy (2011)

[10] Dannélls, D., Enache, R., Damova, M., Chechev, M.: Multilingual online gener-
ation from semantic web ontologies. In: WWW2012. EU projects track, Lyon,
France (04/2012 2012)

97

[11] Ranta, A.: Grammatical Framework: Programming with Multilingual Grammars.
CSLI Publications, Stanford (2011) ISBN-10: 1-57586-626-9 (Paper), 1-57586-
627-7 (Cloth).

98

3 Multilingual Grammar for Museum Object Descrip-
tions

Dana Dannélls Aarne Ranta Ramona Enache

1. Introduction
During the last decade, there has been a shift from developing natural language systems
to developing domain independent applications that are capable of producing natural
language descriptions directly from Web ontologies ([1, 2, 3]). Many of the existing
systems employ verbalisation methods to present the content of the ontology structure
to particular subset of users, almost exclusively in English language. The problem
with the existing verbalization methods is that they assume each ontology statement
is mappable to natural language, which is not always the case, in particular for lan-
guages other than English. Moreover, the task of producing adequate natural language
descriptions by employing verbalization methods is very difficult if not impossible.

We have developed a grammar application in GF that applies natural language
generation techniques to generate multilingual descriptions about museum artefacts,
starting from the CIDOC-CRM ontology. We opted for a layered representation of
the natural language generation system, where the ontology represents the first layer,
which provides the semantic structure and the instances that we will verbalize. A sec-
ond layer is the natural language generation grammar, which defines the way in which
we combine ontology data in order to create text. Due to the multilingual context,
the generation grammar aims to be general enough to allow the same assertions to be
expressed in all the languages.

At our knowledge, this is the first attempt to develop a prototype that exploits nat-
ural language generation techniques such as applying discourse strategies to generate
multilingual descriptions in at least five languages from semantic web content, in par-
ticular from OWL ontology standards such as CIDOC-CRM.

1.1. The purpose of this document

Work package 8 foresees several tasks:

• integrate data from the Gothenburg City Museum (GCM) with the Conceptual
Reference Model CIDOC-CRM ontology standard

• build a prototype of a cross-language retrieval and representation system to be
tested with objects in the museum

• implement a multilingual domain application grammar that is capable of gener-
ating well-formed object descriptions from CIDOC-CRM

The purpose of this document is to describe the developed domain specific applica-
tion grammar we have been implementing. The grammar presented here allows to gen-
erate well-formed multilingual natural language descriptions about museum artefacts
with the aim of empowering users who wish to access cultural heritage information
through different computing devices.

99

1.2. Use cases

Some of the the key benefits of the grammar application that is being developed in this
project are:

• acceptability and usability by other grammarians

• acceptability and usability by the industrial environment

• possibilities of reuse by other applications

2. The grammar development workflow
To accomplish the goals of this workpackge we found it necessary to develop a specific
ontology model to store and present detailed information about specific artefacts that
are available in the Gothenburg City Museum database. The focus was on painting
objects, as described in [4]. The main model for the painting ontology development
was the CIDOC–CRM, which provided a detailed conceptual reference as a starting
point for the ontology design. Using the painting ontology as a point of departure
we were able to develop two different generations modules: one that applies direct
verbalization (section 3) and another that exploits discourse pattern generation (section
3).

The painting ontology containing data from the museum has been integrated into
the Reason-able View of Linked Data for Cultural Heritage, [5] which is also part of
workpackage 4, see [6]. Basically, we integrated the paintings and the other objects
in one single repository, providing an interoperable framework that is to used retrieve
information about museum objects, [7].15 From this Web repository it is possible to re-
trieve a set of RDF triples that provides a formal description about the museum object,
including the name of the object, the painter who created it, the year of painting, the
material that was used to execute the object, the current location of the object, how it
was acquired, its value and other semantic information that is given both in the form of
Id’s and canned text, such as about the content or historical knowledge about an object.

The retrieved information forms the input to the domain grammar application from
which we are able to generate multilingual descriptions as described below (section 3).

3. The grammar
3.1. Ontology verbalization

An important component in the natural language generation system is the layer that
connects the ontology with the generation grammar. On one step we get it by importing
the Painting ontology in GF, as it contains the instances of most fields that describe the
paintings. However, the painting names and painters need to be imported directly from
the database.

Unlike previous experiments with representing SUMO (Suggested Upper-Merged
Ontology) in GF ([8, 9]), the representation of the painting ontology doesn’t use de-
pendent types, since simple types are enough to describe the concepts and relations
and model the hierarchy in a simplified way that suffices the needs of the generation
grammar.

For example, the classes OilPainting and Painting, along with the inheri-
tance relation between them are represented as GF categories:

15http://museum.ontotext.com

100

http://museum.ontotext.com

cat Painting ;
cat OilPainting ;

fun OilPainting_Painting : OilPainting -> Painting ;

where the inheritance relation is modeled as a coercion function between the two
types. In the concrete syntaxes, all coercion functions will be linearized as the identity,
since they shouldn’t be visible in verbalization.

The instances are represented as GF instances of the GF mappings of their ontology
classes. For example:

fun AerosolPaint : Material ;

The advantage is that when porting the Painting grammar to a new language, one
could linearize certain categories to different parts of speech, depending on how the
concepts are expressed in the language.

Developing a concrete syntax for the ontology grammar is quite straightforward for
English, but could be a challenge for other languages. The examples from the current
grammar were translated manually, because the number of paintings that we described
was very small.

However, in the future, we plan to build the lexicon multilingual lexicon automati-
cally in 2 steps:

• port the painting ontology (at least the classes and instances) in another language
by using the lexical translation tools from WP3, which would ensure a semantics-
preserving mapping of the lexical units by using multilingual resources, such as
DBPedia.

• as we assume that the painter name and painting name are the only attributes
that might not be found in the Painting Ontology, we add them on the fly, for the
painting that we want to verbalize and not for the whole database. The reason is
that they will be represented as proper names, whereas the other features could
be mapped to different parts of speech depending on the language. Moreover, the
names of the painting and its creator can be translated using the same resources
as in the previous step, before added to the concrete syntax.

The automation of lexicon acquisition will be possible as soon as there will be an
integration of the WP3 tools to the grammar development ones.

3.2. Discourse pattern generation

In the first deliverable of this workpackage, e.g. [10] we presented a number of features
and discourse patterns that we learned by analyzing a large set of well-formed object
descriptions. Below we summarize some of the discourse patterns the analysis reveled.

• painting paintingtype painter

• painting painter year

• painting museum painter size

• painting painter represented museum

• painting material year painter

101

• painting painter year museum colour size

The initial idea was to follow these features and patterns when generating multilin-
gual descriptions.

We isolated a number of attributes of paintings that we decided to focus on in the
prototype development. We agreed that each description should convey at least 3 main
features of a painting. This assumption enable us to define a default representation in
GF and thereby always produce a description about an object. These three features are:

1. the name of the painting — Painting

2. the name of the painter — Painter

3. the type of painting (for example, oil painting) — PaintingType

and 5 optional ones that allow us to generate more detailed descriptions:

1. the colours used in the painting — Colour

2. the size of the painting — Size

3. the material of the painting — Material

4. the year when the painting was created — Year

5. the museum where the painting is currently displayed — Museum

The difference between the 2 categories of features, is that we don’t expect to find
all the optional categories in all the painting descriptions from the database, but we
want to have only one representation for the instances of paintings from the ontology
which we will verbalize and only one verbalization function in the grammar, which
would be easier to port to new languages.

The solution is to wrap the categories representing optional features in a num-
ber of categories inspired by the Maybe type from Haskell, which retains the pres-
ence/absence of the feature and in case the feature is present, its value.

Hence, we can represent the text generation as one function taking all the features
as arguments:

MkGenText :
Painting -> Painter -> PaintingType ->
OptColour -> OptSize -> OptMaterial ->
OptYear -> OptMuseum -> GenText ;

where OptColour, OptSize, OptMaterial, OptYear and OptMuseum
are the wrapper categories. The concrete representations of MkGenText opt for dif-
ferent text patterns, depending on the presence of the optional parameters.

For the cases, where the name of the painter or the painting is missing, we created
a number of instances that indicate the absence of the features:

• NoPainting

• NoPainter

102

In this way, we get the most detailed description that one can form with the available
features. This differentiates the current approach from the previous one, described in
[11], where each text-generation pattern is represented separately, so that the user can
choose the sort of descriptions that she wants.

The reason why the current grammar only retains the most informative description
is that the implementation of the patterns contains redundancies and entails more ef-
fort from the grammar writer. On the other hand, the usage of the patterns provides
more options for natural language generation, because we can control the amount of
information that we describe.

The grammar structures is ported to 5 languages: English, French, Italian, Finnish
and Swedish.

3.3. General design issues

The current approach reduces the use of dependent types to a minimum, in order to
keep the grammar simpler and make it easier for users to port it to new languages. The
only use of dependent types in the current grammar is for representing the painting
structure. This is necessary for enforcing a predefined structure on the generated text.
For example the definition (def) below enforces the generated text (MkGenText) to
bear the eight features.

fun
vtext2gtext : VerifiedText -> GenText ;

def
vtext2gtext (MkVerifiedText pg pr pt cr se ml yr mm _) =

MkGenText pg pr pt cr se ml yr mm ;

This makes it possible to control the natural language generation; keeping the descrip-
tions consistent with the ontology. For example, the painting GSM940042Obj is rep-
resented as following:

GSM940042ObjPainting : CompletePainting
GSM940042Obj MiniaturePortrait JKFViertel (MkYear (YInt 1814))
(MkMuseum GoteborgsCityMuseum) (MkColour Grey)

(MkSize (SIntInt 349 776)) (MkMaterial Wood) ;

Thus, when a description is generated, we get all the information that is associated
to it in the Painting ontology.

This is however just an optional feature, because one can preserve the semantic con-
sistency by adding another layer, exterior to the grammar, that calls the text-generation
function with the proper arguments. But the possibility of having it inside the grammar
is more attractive, since it shows the power of GF.

In any case, the dependent types don’t bring about any change when porting the
grammar to new languages, as they are just a way to group together features that used
for generation.

The previous version of the grammar featured a more extensive use of dependent
types including the type used to represent a painting and all its attributes that is pre-
served in the current implementation. Moreover, the previous grammar used semantic
definitions for functional programming-inspired pattern-matching on the relevant fea-
tures that each pattern needs to use. This entails that the case analysis is done just
once – in the abstract syntax and doesn’t need to be repeated for each language. The

103

current implementation implements it in the concrete syntax, which could lead to code
repetition across the languages.

In both cases, the dependent types don’t need to be implemented in the concrete
syntax, and the less-experienced user won’t need to manipulate them in order to port
the grammar to a new language. The current grammar is even more user-friendly, as
the dependent types are almost seamless, and the users don’t need to use them, if the
grammar is used within a runtime system that doesn’t provide support for them, such
as Java or C.

When adapting the grammar to a new language, the only thing the grammarian
needs to create about is one function, MkGenText and the lexicon.

MkGenText painting painter paintingtype colour
size material year museum =

let
s1 : Text = mkText (mkS pastTense
(mkCl painting

(mkVP (mkVP (mkVP (passiveVP paint_V2) material.s)
(SyntaxEng.mkAdv by8agent_Prep (mkNP painter))) year.s))) ;

sizeS : S = mkS (mkCl it_NP size.s) ;
colourS : S = mkS (mkCl it_NP

(mkVP (passiveVP paint_V2) colour.s)) ;

s2 : Text = case <size.isGiven, colour.isGiven> of {
<True,True> => mkText (mkS and_Conj sizeS colourS) ;
<True,False> => mkText sizeS ;
<False,True> => mkText colourS ;
_ => emptyText

} ;

s3 : Text = case museum.isGiven of {
True => mkText (mkS

(mkCl (mkNP this_Det paintingtype)
(mkVP (passiveVP display_V2) museum.s))) ;

_ => emptyText
} ;

in
mkText s1 (mkText s2 s3) ;

3.4. Generation Results

The application outputs consist of short, well-formed natural language descriptions in
five languages. On the syntactic level, sentence structures contain passive construc-
tions, aggregations and generation of referring expressions. Some examples are given
below.

Painting: MkGenText GSM940051Obj BrynolfWennerberg
PortraitPainting NoColour NoSize (MkMaterial Wood)
(MkYear (YInt 1889)) (MkMuseum GoteborgsCityMuseum)

• PaintingEng: Hisingen was painted on wood by Brynolf Wennerberg in 1889.
This portrait is displayed at the City Museum of Gothenburg.

• PaintingFin: Maalauksen Hisingen on maalannut Brynolf Wennerberg puulle
vuonna 1889. Tämä muotokuva on esillä Göteborgin kaupunginmuseossa.

104

• PaintingFre: Le tableau Hisingen a été peint sur bois par Brynolf Wennerberg
en 1889. Ce portrait est exposé dans le musée municipal de Göteborg.

• PaintingIta: Il quadro Hisingen è stato dipinto su legno da Brynolf Wennerberg
nel 1889. Questo ritratto è esposto nel museo municipale di Goteburgo.

• PaintingSwe: Hisingen målades på trä av Brynolf Wennerberg år 1889. Den här
porträttmålningen är utställd på Göteborgs stadsmuseum.

Painting: MkGenText GSM980019Obj AnnaLindskog OilPainting
(MkColour Black) (MkSize (SIntInt 435 365)) (MkMaterial Canvas)
(MkYear (YInt 1885)) (MkMuseum GoteborgsCityMuseum)

• PaintingEng: The girl was painted on canvas by Anna Lindskog in 1885. It is of
size 435 by 365 and it is painted in black. This oil painting is displayed at the
City Museum of Gothenburg.

• PaintingFin: Maalauksen Flickan on maalannut Anna Lindskog kankaalle vuonna
1885. Se on kokoa 435 kertaa 365 ja se on maalattu mustalla. Tämä öljymaalaus
on esillä Göteborgin kaupunginmuseossa.

• PaintingFre: Le tableau Flickan a été peint sur toile par Anna Lindskog en 1885.
Il est de taille 435 sur 365 et il est peint en noir. Cette peinture à l’ huile est
exposée dans le musée municipal de Göteborg.

• PaintingIta: Il quadro Flickan è stato dipinto su tela da Anna Lindskog nel 1885.
Misura 435 per 365 ed è dipinto in nero. Questo dipinto ad olio è esposto nel
museo municipale di Goteburgo.

• PaintingSwe: Flickan målades på duk av Anna Lindskog år 1885. Den är av
storlek 435 gånger 365 och den är målad i svart. Den här oljemålningen är
utställd på Göteborgs stadsmuseum.

4. Conclusion and future work
The presented grammar consists of one discourse patten that contains a small amount
of features a painting object description should convey. From this pattern we are able to
generate different descriptions depending on the information that is available about this
object. The main advantage of the grammar is that it can be ported the other languages
very easily, by only modifying one pattern and changing the lexical entities.

One of the functionalities the current grammar does not cover is the ability to com-
bine different features across different sentences. However, the simplicity of the gram-
mar makes the working effort of adding new patterns for distributing features differ-
ently across sentences minor. Moreover, with only small modifications, such as se-
lecting other types of referring expressions, we are able to increase the fluency of the
output results depending on the language.

In the nearest future we intend evaluate the generation results and port the grammar
to 10 additional languages. We plan to increase the coverage of grammar and the
lexicon for at least 5 languages.

It will be interesting to test how the grammar performs with different objects and
on other domains. Another possible future direction is to generate texts in different
formats that can be adaptable to different user needs, for example by modifying the
style of the generated texts in terms of syntactic variations.

105

106

Bibliography

[1] Schwitter, R., Tilbrook, M.: Controlled Natural Language meets the Semantic
Web. In: Proceedings of the Australasian Language Technology Workshop, Mac-
quarie University (2004) 55–62

[2] Fuchs, N.E., Kaljurand, K., Kuhn, T.: Attempto Controlled English for Knowl-
edge Representation. In Baroglio, C., Bonatti, P.A., Małuszyński, J., Marchiori,
M., Polleres, A., Schaffert, S., eds.: Reasoning Web, Fourth International Sum-
mer School 2008. Number 5224 in Lecture Notes in Computer Science, Springer
(2008) 104–124

[3] Williams, S., Third, A., Power, R.: Levels of organisation in ontology verbal-
isation. In: Proceedings of the 13th European Workshop on Natural Language
Generation (ENLG), Nancy, France (September 2011) 158–163

[4] Dannélls, D.: The painting ontology. Journal of applied ontologies (2011) Sub-
mitted.

[5] Damova, M., Dannélls, D.: Reason-able view of linked data for cultural heritage.
In: Proceedings of the third International Conference on Software, Services and
Semantic Technologies (S3T). (2011)

[6] Damova, M.: Data Models and Alignment. (May 2011) Deliverable 4.2. MOLTO
FP7-ICT-247914.

[7] Dannélls, D., Damova, M., Enache, R., Chechev, M.: A Framework for Improved
Access to Museum Databases in the Semantic Web. In: Language Technologies
for Digital Humanities and Cultural Heritage. (2011)

[8] Enache, R.: Reasoning and language generation in the sumo ontology. Master’s
thesis, Chalmers University of Technology (2009)

[9] Enache, R., Angelov, K.: Typeful ontologies with direct multilingual verbaliza-
tion. Workshop on Controlled Natural Languages (CNL) 2010 (2010)

[10] Dannélls, D.: D.8.1 Ontology and corpus study of the cultural heritage domain.
(2011) Deliverable of EU Project MOLTO Multilingual Online Translation.

[11] Dannélls, D., Damova, M., Enache, R., Chechev, M.: Multilingual online gen-
eration from semantic web ontologies. In: Proceedings of the World Wide Web
Conference (WWW2012), Lyon, France (2012)

107

108

Chapter 4

Bootstrapping Grammars from
External Sources

109

110

1 Controlled Language for Everyday Use:
the MOLTO Phrasebook

Aarne Ranta Ramona Enache Grégoire Détrez

Abstract: Controlled languages are usually targeted for technical domains and de-
signed to be unambiguous. This paper presents a controlled language whose domain
is touristic phrases, aimed to be usable by anyone without prior training. Despite its
informal nature, the language of phrases has a firm notion of semantics, defining the
correctness of translations. However, this semantics is formulated in terms of context
and situation rather than by logical formulas. Moreover, the language is often ambigu-
ous, and the translation may depend on resolving the ambiguity. This paper shows how
to formalize a semantics for tourist phrases and implement it in 15 languages, how to
deal with the ambiguities, and how to make the system available for layman users on
the web and on mobile phones. While a useful application as such, the Phrasebook also
paves the way for an extended notion of controlled language, and the techniques are
aimed to be general enough to support many such extensions.

1. Introduction

Controlled languages are typically designed for use on technical domains. Their users
are experts such as aircraft engineers [1], medical doctors [2], and topographers [3].
The language is typically a natural-language image of a formal system, such as pred-
icate logic in [4] or OWL (Web Ontology Language) [5] in [6]. The purpose of these
controlled languages is to support knowledge representation, reasoning, and mechani-
cal checking of correctness; the main point of using a natural language fragment rather
than a formalism is to have a notation that is readable without special training. When
there is no underlying formalism, as in [1], the purpose is to eliminate the ambiguity,
vagueness, and unclarity of uncontrolled natural language.

However, the notion of controlled language can be given a wider interpretation:
it can be just any fragment of natural language specified with a formal set of rules.
Actually it can be seen as the technological counterpart of Wittgenstein’s philosophical
notion of language games [7], which are systems of rules specifying how language is
used for performing different tasks. In the tradition represented by Wittgenstein and his
followers, language games are the very essence of language: they should not be seen as
mere fragments of an underlying total system, but as the building blocks that actually
constitute the thing called language. Very little can be rigorously said about natural
language as a whole, whereas these limited fragments are units that (at least in many
cases) permit a formal description and—consequently—a computer implementation.

When we start looking at language from the language game point of view, we sud-
denly begin to see “formal systems” everywhere. One of the most basic ones is the
social game of greetings and politeness phrases. For instance, when I ask for some-
thing, I attach the word please. When you hand it over to me, you say here we are,
to which I should say thank you, and you can conclude by replying you’re welcome.

111

These four phrases get their precise meanings in the context of this game. Actually,
each of them could be used in some other context and mean something different. This
is seen clearly when we look at their translations. Here is a simple dialogue in three
languages:

English Swedish German
A beer please. En öl tack. Ein Bier bitte.
Here we are. Var så god. Bitte.
Thank you. Tack. Danke.
You’re welcome. Var så god. Bitte.

English makes most distinctions here, by using a different phrase for each of the four
moves of the game. Swedish uses tack for both asking and thanking. German uses dif-
ferent phrases for these two, but the word bitte (literally, “I request”) is otherwise used
for everything! Nevertheless, there’s no problem in translating Swedish and German
phrases to English, as soon as we know what move they express in the language game.

Of course, it is just a coincidence that English has unambiguous phrases for all
language game moves here. English, and all other languages, are full of ambiguities,
if we look only at the syntax without context. This is not just a feature of everyday
language but even of mathematics, as convincingly shown in [8]. But the ambiguities
are almost always easily resolved by looking at the context of use.

An ambiguity specific to English is generated from the word you. It has two trans-
lations in Swedish (the familiar singular du, the plural or formal singular ni), three in
German (the familiar singular du, the familiar plural ihr, and the formal Sie), and up to
eight in languages like Spanish (singular/plural, familiar/formal, masculine/feminine).
For instance, the English phrase are you German has eight translations in Spanish. The
translation is determined by the context of use—basically, by the addressee.

The “language game” of social phrases is not only a philosophical experiment, but
also a lucrative business. Phrasebooks like Berlitz and Lonely Planet are still sold
in millions of copies, although electronic phrasebooks running on mobile phones are
taking more and more of the market share. A typical electronic phrasebook is just a
digital version of the printed book: a collection of phrases that can be looked up either
by typing search strings or by browsing in hierarchic menus. A particularly smart
example is the Chinese iPhone application YoChina1, which puts each phrase into a
context and also shows a set of responses from which the interlocutor can choose.

Even the most sophisticated commercial phrasebooks are still just collections of
canned phrases: fixed strings, which, even though there might be thousands of them,
don’t cover all possible combinations of the concepts involved. A different approach
can be taken by using machine translation; thus Google Translate 2 is available as
a mobile phone application that actually translates each individual phrase separately.
While this is the most natural and powerful approach to the problem, it still has open
issues. The first issue is quality: even though Google Translate often does a good job,
it can just as easily produce something totally wrong, and this can lead to embarrassing
situations if used in a social context of communication (mostly resolved by a good
laugh, of course). In particular, Google Translate is based on a generic, statistical
language model which cannot make distinctions like the ones needed for the different
uses of German bitte. The second issue with Google Translate as used by a traveller far

1http://www.yocoy.com
2http://translate.google.com

112

away from home is the cost of mobile data transfer. It may just be too expensive to use
the service.

In this paper, we will introduce a controlled language translator approach to tourist
phrasebooks. We will show a formal semantic model, which unambiguously specifies
an infinite class of phrases. Then we will show how the semantic model is translated
to phrases in 15 natural languages. The translations are reversible, which means that
the phrasebook can both generate natural language from the formal semantics and in-
terpret it in the formal semantics. The combination of generation and interpretation is
translation; our phrasebook is able to translate equally well with all of the 14*15=210
language pairs. The translator runs as an off-line application on Android mobile phones
and can be downloaded free of charge from Android Market3. The phrasebook is also
available as a web application4.

Figure 1 (left) shows the web interface to the phrasebook. The user has constructed
the English sentence how far is the Russian restaurant, which the system has translated
to the other 14 languages. The construction is carried out by a predictive parser [9],
which predicts the set of possible next words at each point. The input can be made by
typing text (in the white slot on the right) or by clicking at one of the rectangles showing
a word. The possible continuations here are ? (to terminate the phrase), by (as in by
tram), and from (as in from the hotel). As soon as there is enough input to translate,
the translations are shown. Figure 1 (right) shows the Android mobile application. For
size reasons, the application shows only one target language at a time. As a bonus, it
has speech synthesizer output for some languages.

Touristic phrases are a rich domain, and one could easily spend a lifetime on build-
ing, refining, and extending an electronic phrasebook. What we want to show in this
paper is a technology that gives maximal support to this work. The technology is based
on GF (Grammatical Framework, [10]), which is a grammar formalism designed for
supporting multilingual grammars of controlled languages. In addition to a program-
ming language, GF provides RGL (Resource Grammar Library, [11]), which encapsu-
lates the low-level linguistic knowledge of morphology and syntax that is needed when
building high-quality translation systems.

In addition to the grammar engineering tools, GF has a set of tools supporting run-
time applications. These include libraries for web servers and clients [12] and, most
importantly for the current purpose, a Java-based run-time system for Android phones.

Thus, at the same time as the phrasebook is a practical help for tourists, it is a
showcase for a powerful general technology. This technology is being developed in
the European MOLTO project 5). In addition to using GF, MOLTO explores ways to
use statistical translation models to help the construction and improve the coverage
of grammar-based systems. The MOLTO Phrasebook is a first experiment of this:
some of the languages involved were implemented by programmers not knowing the
language at all, but using a statistical model to bootstrap the grammar and a native-
speaker informant to evaluate it. This was developed into a general method that will be
usable for any further project of building multilingual controlled language systems.

The structure of the paper is as follows: Section 2 specifies the coverage of the
MOLTO phrasebook by giving an overview of its semantic model. Section 3 shows ex-
amples of how the different languages are implemented by using GF and RGL. Section
4 shows how ambiguities are displayed to users by means of disambiguation grammars.

3https://market.android.com/details?id=org.grammaticalframework.android.apps.phrasedroid
4http://www.grammaticalframework.org/demos/phrasebook/
5Multilingual On-Line Translation, http://www.molto-project.eu

113

Figure 4.1: The MOLTO Phrasebook as a web application (left) and as an Android
mobile application (right).

114

Section 5 introduces the method of example-based grammar writing using statistical
models and human informants. Section 6 explains the Java run-time system of GF and
the architecture of the mobile Android application. Section 7 presents some results
from evaluation, and Section 8 concludes.

2. The Semantic Model
In GF, a semantic model is called an abstract syntax. It is defined by giving a set
of categories (keyword cat) and a set of functions (keyword fun), which together
define the notion of well-typed trees. For instance, the phrases in the beer-ordering
dialogue above can be given the following abstract syntax:

cat
Phrase ; Item

fun
GivePlease : Item -> Phrase
HereWeAre : Phrase
ThankYou : Phrase
YouAreWelcome : Phrase
ABeer : Item

The model could be made more precise by specifying that these phrases must ap-
pear in a certain order to constitute a valid dialogue. But for the purposes of a phrase-
book, it is enough to specify uniquely each type of phrase by giving it a function name.
All functions in this simple model are actually constants, i.e. they take no arguments—
except GivePlease, which takes an Item as its argument.

The linguistic realizations of the semantic model are specified by a concrete syn-
tax, which tells how trees formed in abstract syntax are linearized into strings in dif-
ferent languages. We will return to the details of linearization in Section 3; just to give
an example, the following linearization rules (lin) could be given for German:

lin
GivePlease item = item ++ "bitte"
HereWeAre = "bitte"
ThankYou = "Danke"
YouAreWelcome = "bitte"
ABeer = "ein Bier"

All linearization rules in GF can be also used for parsing, that is, converting strings
to trees. This tiny example clearly shows that parsing can be ambiguous, that is, return
more than one tree. The everyday counterpart of parsing ambiguity is shown by the
situation where someone asks: “What is bitte in English?” The correct answer is that
it depends on context: it may mean please or here we are or you are welcome.

In the full MOLTO Phrasebook, none of the 15 languages is unambiguous. What
we need is an abstract syntax that formalizes all possible distinctions, so that each
abstract syntax tree has a unique linearization in every language. Now, capturing all
relevant distinctions in 15 languages might sound like a hopeless task, but in fact the
semantic model scaled up quite well when the grammar was extended language by
language. After a careful initial design (with awareness of what typically happens in
languages), almost no changes were needed in the abstract syntax when new languages
were added.

115

category explanation example
Phrase complete phrase, unit of translation Where are you?
Greeting idiomatic greeting hello
Sentence declarative sentence I am in the bar
Question question, either yes/no or wh where are you
Proposition can be used as sentence or question this pizza is good
Object object of wanting, ordering, etc two pizzas and a beer
Item a single entity this pizza
Kind a type of an item pizza
Quality qualification of an item very good
Place location the bar
PlaceKind type of location bar
Person agent wanting or doing something you
Action proposition about a Person you are here
Nationality complex of language, property, country Swedish, Sweden
Language language (can be without nationality) Flemish
Citizenship property (can be without language) Belgian
Country country (can be without language) Belgium
Currency currency Swedish crown
Number number expression in words two hundred and five
Price price (number + currency) sixty-five dollars

Table 4.1: Some of the 42 categories of the Phrasebook.

Printed phrasebooks have canned, static phrases, whereas a digital grammar-based
phrasebook has rules for forming phrases from smaller expressions. The MOLTO
Phrasebook has 42 categories and 290 functions. Of the functions, 130 take argu-
ments and 160 are constants, which means that they are either lexical items or canned
phrases. What is a lexical item in one language can be a multiword phrase in another
language, as shown for instance by bitte vs. here we are. The number of phrases is in-
finite because of recursion, but on the reasonable level of tree depth 3, the Phrasebook
has 484,938 abstract syntax trees of phrases.

The full code of the phrasebook, with some documentation, can be found on-line6.
We will here show a sample of the coverage, and then focus on a few interesting prob-
lems created by some of the constructions. Table 1 gives some of the categories, and
Table 2 some of the combination functions.

For a detailed sample, let us focus on the category Action, and the ways of asking
persons for information about themselves and what they do. The complete Phrase
corresponding to the question

Are you Swedish?

has the tree (in GF’s LISP-like notation)

PQuestion (QProp (PropAction
(ACitizen YouFamMale (CitiNat Swedish))))

This tree is formed by the functions

6http://www.grammaticalframework.org/examples/phrasebook/doc-phrasebook.html

116

arguments value examples
Number, Kind Object five pizzas
Quality, Kind Kind Italian pizza
Kind Item this pizza, the pizzas
PlaceKind Place the bar, a bar
Proposition Sentence the bar is open, the bar isn’t open
Proposition Question is the bar open
Action Proposition I speak Polish
Person, Object Action you have beer, you have no beer
Person, Citizenship Action you are German
Person, Place Action you are in the bar
Person, Sentence Action you know that I am in the bar
Person, Person Action you know my wife
Person, Question Action you know how far the bar is
Person, Number Action I am seventy years old
Person, Number Action I have six children
Person, Name Action my name is Bond
Person Action I am hungry
Person, Item Action I like this pizza
Person, Country Action I live in Sweden
Person, Language Action I speak Polish
Person, Currency Action I have Swedish crowns
Person, Object Action I want two apples
Person, Place Action I want to go to the hospital
Person Question how old are you
Item Question how much does the pizza cost
Item, Price Proposition the pizza costs five euros
Place Proposition the museum is open
Place, Date Proposition the museum is open today
Place, Day Proposition the museum is open on Mondays
Place, Date Greeting see you in the bar on Monday
Person Person my wife, your husband
Number, Currency Proposition five euros
Place Question how far is the zoo
Place, Place Question how far is the centre from the hotel
Transport, Place Question which bus goes to the hotel

Table 4.2: Some of the 130 combination rules of the Phrasebook.

117

PQuestion : Question -> Phrase
QProp : Proposition -> Question
PropAction : Action -> Proposition
ACitizen : Person -> Citizenship -> Action
YouFamMale : Person
CitiNat : Nationality -> Citizenship
Swedish : Nationality

But thinking in terms of reliable translations, there are many more trees, resulting
from the semantic ambiguity of English you. Of these, the Phrasebook deals with
dimensions of gender and politeness; plural you is not covered by the current version
(mostly because it is not so frequently needed). Thus you corresponds to four constants
of type Person,

YouFamMale, YouFamFemale, YouPolMale, YouPolFemale

Varying this constant in the above tree gives four French linearizations:

YouFamMale: Est-ce que tu es suédois ?
YouFamFemale: Est-ce que tu es suédoise ?
YouPolMale: Est-ce que vous êtes suédois ?
YouPolFemale: Est-ce que vous êtes suédoise ?

Although German also has gender, it makes no difference in this example. Thus we
obtain

YouFamMale, YouFamFemale: Bist du schwedisch?
YouPolMale, YouPolFemale: Sind Sie schwedisch?

One challenge in the Phrasebook is to communicate the ambiguities to the end user:
when she types in Are you Swedish?, she should get a list of the alternatives in the
desired target language, with explanations that enable her to decide which alternative
to choose in her situation of use. We will return to this question in Section 4.

As Action is a subcategory of Proposition, it can be used for both questions
and assertions, both positive and negated. Thus the functions involved in the question
can be reused for sentences like I am not Swedish, which has two French translations.
In general, the design of the abstract syntax follows two principles, which can be ex-
plained via geometrical metaphors:

Convexity: for any two phrases contained, also all phrases “between” them (i.e. com-
bining their concepts in different ways) are contained. This principle guarantees that
the users can easily learn what to expect from the phrasebook, and their expectations
will be fulfilled.

Orthogonality: phrases are built from the least number of independent components.
While convexity is a great help for the user of the phrasebook, orthogonality helps the
developer by giving her the minimum of concepts to implement for each language. A
user who knows that the Phrasebook contains the property Swedish and the country
France will, by convexity, expect it also to contain the property French and the country
Sweden. The category Nationality is used to guarantee this, as it collects triples
of language, property, and country. These triples can often be formed by a systematic
word formation mechanism (e.g. Swedish, Swedish, Sweden), which helps the devel-
oper.

118

As a downside, abstract concepts like Nationalitymay be more complex to im-
plement than more specific concepts like Language, Citizenship, and Country.
7 Often there is no regular word formation mechanism, and there are countries and lan-
guages that do not fit into the “national state” concept. For instance, the languages
spoken in Belgium are Flemish and French. Thus in the Phrasebook, Belgium is a
country without a lexically associated language, whereas Flemish is a language with-
out a lexically associated country.

The set of combination rules in the Phrasebook is quite useful as it is, but the set
of lexical items is still small and a little random. Therefore an obvious next step in
developing the Phrasebook is to add words for drinks, food, nationalities, places, and
so on. Keeping all this in synchrony for 15 simultaneous languages is not trivial.

3. Concrete Syntax

Constant phrases, such as thank you and please, are easy to define for all languages.
Combination rules are more tricky: even in the small fragment covered by the Phrase-
book, linguistic problems such as inflection, agreement, and word order arise, and
require expertise in the grammar of each of the target languages. Fortunately for the
Phrasebook, this expertise was readily available in the GF Resource Grammar Library
(RGL). This is of course not just a lucky coincidence—it is more proper to say that the
Phrasebook was built as a showcase of GF in general and of the RGL in particular.

A concrete syntax has two components. One is linearization rules (lin) as shown
above, telling how abstract trees are mapped into strings. The other one is the lin-
earization types of categories (lincat). These types are linguistic categories such
as sentences, noun phrases, and adjectives. In the lin rule examples so far, only one
linearization type was used: the type Str of strings. But this is usually not enough.
For instance, to account for all combinations of a German noun, we need the type

{s : Number => Case => Str ; g : Gender}

that is, a record with a string depending on number and case (the component s), and
a gender (component g). In other languages, nouns can have other linearization types,
and the features number, case and gender can get other values than in German. But in
RGL, all this complexity is defined internally, and the user only needs to know that the
type CN covers common nouns in all RGL languages.8

To give a sample of linearization types used in the Phrasebook, let us consider the
categories needed in the example Are you Swedish?:

category linearization type explanation
Phrase Text text
Question QS question
Proposition Cl clause
Person NP noun phrase
Action Cl clause
Citizenship A adjective
Nationality {l : NP ; p : A ; c : NP} NP, adjective, NP

7The terminological choice between “Nationality” and “Citizenship” is of course arbitrary, and only an
implementation detail not visible to the end user.

8See http://grammaticalframework.org/lib/doc/synopsis.html for RGL categories and functions.

119

All these types are standard linguistic categories of RGL, except the one of Nationality,
which uses a record consisting of a language noun phrase l, a property adjective p, and
a country noun phrase C. This record is, so to say, the linguistic representation of the
complex concept of a nationality, thus representing a lexical family.

The linearization rules are specified by RGL functions, most of which have the
name mkC for the value category C. Thus we have

PQuestion q = mkText q
QProp p = mkQS (mkQCl p)
PropAction a = a
ACitizen p c = mkCl p c
YouFamMale = youSg_Pron
CitiNat n = n.p
Swedish = mkNationality "Sweden" "Swedish"

The last rule uses the operation mkNationality, which takes a string for a noun
and for an adjective, to form the country name from the noun (Sweden) whereas both
the property and the language use the adjective (Swedish). This is the only English-
specific rule in this set. Other languages have different ways of defining this lexical
family. Finnish, for instance, uses the country name as the language name, just spelled
with a small initial.

Another example of a lexical family is types of locations. They are defined

PlaceKind = {name : CN ; at : Prep ; to : Prep}

Thus places have associated prepositions, used for expressing location and direction.
For instance, in English we have in the bar, at the station for the location and to ex-
pressing the direction for both. In Finnish, prepositions are expressed by cases, so
that “bar” uses so-called internal cases (baarissa “in the bar” inessive, baariin “to the
bar” illative) whereas “station” uses external cases (asemalla “at the station” adessive,
asemalle “to the station” allative). Sometimes even more fine-grained distinctions are
needed; for instance, in Swedish “to the toilet” is expressed as på toaletten in phrases
relating to the function (“I want to go to the toilet”), whereas phrases expressing pure
direction say till toaletten.

The prepositions are thus stored in the record as lexical properties of the places;
they are idiomatic in each language and highly unpredictable. GF provides ways to
express them on a reasonably high level, so that just the minimal information need be
given in the lexicon: thus in Finnish, we just need the noun and an identifier ssa or
lla which is conventionally used for indicating the type of local case:

Bar = mkPlace (mkN "baari") ssa
Station = mkPlace (mkN "asema") lla

To determine this little piece of information—the proper case or preposition for each
location—is linguistic knowledge that turned out to be possessed only by native speak-
ers, who made several corrections to the initial grammars.

As the RGL has a common API for the syntax functions of the 18 languages in-
cluded, combination rules in application grammars can in principle be expressed by
code that is common to all languages. This is technically implemented by the use of
functors ([10], chapter 5), and it is the technique used, for instance, in the GF imple-
mentation of Attempto Controlled English [13]. The use of a functor means that the

120

languages use the same syntactic structures to express the meanings. For instance, all
languages in the Phrasebook use an equivalent of you know that I am in the bar to
express this proposition. However, the Phrasebook domain is particularly rich of id-
ioms that the languages express by different syntactic means. This was a challenge we
expected, and one of the reasons why the Phrasebook was an interesting case study for
multilingual translation in the first place. Thus, of the 130 combination rules, only 96
(74%) are implemented by a functor; usually the percentage is close to 100.

Some typical examples of non-functorial expressions are the following:

I am fifty years old: French j’ai cinquante ans (“I have fifty years”).

my name is Bond: German ich heisse Bond (“I have-name Bond”), French je m’appelle
Bond (“I call myself Bond”).

I am hungry: French j’ai faim (“I have hunger”), Finnish minun on nälkä (“of-me is
hunger”).

I like this pizza: Italian questa pizza mi piace (“this pizza pleases me”).

I am married: Finnish olen naimisissa (“I am in-marriage”, with a special adverbial).

how old are you: French combien d’ans as-tu (“how many years do you have”).

how far is the station: French à quelle distance est la gare (“at what distance is the
station”), Italian quanto dista la stazione (“how much does the station distance”, with
a special verb).
Most of these variations are clustered in systematic ways, so that for instance all Ro-
mance languages use the same structure and all Germanic languages (except perhaps
English) another structure. The construct how with an adjective or adverb does not
exist in Romance languages, and is hence not even a part of the RGL API.

4. Ambiguity and Disambiguation
The abstract syntax is by definition unambiguous. Therefore the main way in which a
grammar developer can analyse the ambiguity of a string is by inspecting the abstract
syntax trees. But this device is of course not appropriate for a tourist phrasebook: it
would be awkward and often useless to show the syntax trees to the user.

Fortunately, the technique of multilingual grammars provides a straightforward,
declarative way to display ambiguities: one can write for each language a special con-
crete syntax, which is like the original grammar except that it eliminates its ambiguities
by using alternative (although less idiomatic and often longer) expressions—a disam-
biguation grammar. For example, the original English grammar linearizes each of
the four abstract variants of you as just you, but the disambiguation grammar attaches
an explanation in parentheses: you (familiar,male), you(polite,female), etc. This idea is
inspired by the notion of feedback texts of the WYSIWYM system [14].

The implementation of a disambiguation grammar can be written on top of the
base grammar by using restricted inheritance: it inherits everything from the base
grammar except those rules that need disambiguation. Those rules can then be replaced
by other rules. The following module is a complete code for a disambiguation grammar
for the phrasebook dealing with the four you’s. The unambiguous variants are formed
from you by attaching an adverbial to it.

concrete DisambPhrasebookEng of Phrasebook = PhrasebookEng -
[YouFamMale, YouFamFemale, YouPolMale, YouPolFemale]

** open SyntaxEng, ParadigmsEng in {
lin

121

YouFamMale = mkNP you_NP (mkAdv "(familiar,male)") ;
YouFamFemale = mkNP you_NP (mkAdv "(familiar,female)") ;
YouPolMale = mkNP you_NP (mkAdv "(polite,male)") ;
YouPolFemale = mkNP you_NP (mkAdv "(polite,female)") ;

}

In the full Phrasebook, the number of ambiguous constructs is between 10 and 20 for
each language. An ambiguity shared by all languages is the notion of the currency
crown, as used for the currency of different Scandinavian countries. In the normal
usage, one says crown rather than e.g. Danish crown, if it is clear from the context
that one is speaking about Danish crowns. The implementation of this does not use the
disambiguation grammar, because both expressions make sense in the base grammar
as well. Thus the base grammar defines crowns by using the variants construct of GF
(expressed by |):

DanishCrown =
mkCN (mkA "Danish") (mkN "crown") | mkCN (mkN "crown")

SwedishCrown =
mkCN (mkA "Swedish") (mkN "crown") | mkCN (mkN "crown")

and similarly in all languages.
Since the abstract syntax encodes all interpretations that are relevant in any of the

languages, it can lead to spurious ambiguities when applied to any particular language
pairs. For instance, the familiar you is sinä and the polite you is Te in Finnish, without
the gender distinction involved anywhere in the sentence. Hence, when translating
from English to Finnish, only two alternatives should be displayed. The same thing
may happen in Italian, where the masculine and feminine forms of some adjectives are
the same. Thus are you Swedish has only two translations (sei/è svedese) even though
are you Italian has four (sei/è italiano/italiana).

In the Phrasebook, the user should of course not see spurious ambiguities but only
relevant ones. This is guaranteed by the following modification of GF’s translation
algorithm, which otherwise shows as many translation strings as there are parse results.
Each translation is equipped by the set of those disambiguating expressions that give
rise to it. The translation algorithm is as follows:

parse the source sentence to obtain trees t1, . . . , tn
for each target language Li:

for each tree tj : linearize tj in Li

group trees with the same linearization sk into the pair < sk, {t | t∗ = sk} >
return each sk together with the linearizations of the associated trees in the disambigua-
tion grammar of the target language
Here is an example of the algorithm at work:

English input:

Are you Swedish?

French output:

Est-ce que tu es suédois ? (Are you (Familiar,Male) Swedish?)

Est-ce que tu es suédoise ? (Are you (Familiar,Female) Swedish?)

Est-ce que vous êtes suédois ? (Are you (Polite,Male) Swedish?)

122

Est-ce que vous êtes suédoise ? (Are you (Polite,Female) Swedish?)

Italian output:

Sei svedese? (Are you (Familiar,Male) Swedish? / Are you (Familiar,Female)
Swedish?)

È svedese? (Are you (Polite,Male) Swedish? / Are you (Polite,Female)
Swedish?)

As a further optimization, the algorithm could compress the alternatives (Familiar,Male)
and (Familiar,Female) to just (Familiar). This would be helped by a disambiguation
grammar that has more structure than just the unanalysed strings in parentheses. One
could also achieve this by some hand-written code in the phrasebook application; how-
ever, this would be against the purpose of developing the Phrasebook as a show-case
for a general technology.

5. Example-Based Grammar Writing

In previous projects, the typical author of a GF concrete syntax is fluent in the target
language and has GF skills which are directly proportional to the complexity of the
abstract syntax to implement. However, when dealing with 15 languages and a reason-
ably rich semantic interlingua, the task of finding such people is a difficult one. When
adding the time constraints yielded by the MOLTO deadlines and the time needed to
improve a native speaker’s GF skills or a GF programmer’s knowledge of a language
that she had little to no skill in before, the task seemed to be a mission impossible. This
was the case for German, Dutch, Danish, Norwegian and Polish. As a solution to this,
we devised the example-based grammar learning system, that is meant to automate a
significant part of the grammar writing process and ease grammar development. The
two main usages of the system are, first, to reduce the amount of GF programming nec-
essary in developing a concrete grammar, and, secondly and more importantly, to make
the extraction of certain features of a language automatic for grammar development.

In the last years, the GF community has constantly increased and so has the number
of languages in the resource library and the number of application grammars using
them. The writer of a concrete application grammar is typically different from the
writer of the resource grammar for the same language, has less GF skills and is most
likely unaware of the almost 300 constructors that the resource grammars implement
for building various syntactical constructions [11]. In order to hide this detail, an API
is provided so that the domain grammar writer only needs to know the GF categories
and look up how they can be built from each other.

For example, the sentence my name is John is parsed to the following abstract
syntax tree:

PredVP (DetCN (DetQuant (PossPron i_Pron) NumSg)
(UseN name_N)) (UseComp (CompNP (UsePN john_PN)))

If we use the API constructors, the abstract syntax tree is simpler and more intuitive,
as the structure is flatter and each function has an easily memorable name:

mkCl (mkNP (mkQuant i_Pron) name_N) (mkNP john_PN)

123

Figure 4.2: The example-based grammar learning schema

The example-based grammar learning system aims to make one step more in this di-
rection and reduce the need for using even the API functions. The key idea is based on
parsing, followed by compilation to API. It provides considerable benefits, especially
for idiomatic grammars such as the Phrasebook, where the abstract syntax trees are
considerably different.

For example, when asking for a person’s name in English the question what is her
name has the syntax trees shown above. On the other hand, in French the question
would be translated to je m’appelle John (literally, “I call myself John”), which is
parsed to:

PredVP (UsePron i_Pron)
(ComplSlash (SlashV2 appeler_V2) (UsePN john_PN))

and corresponds to the following API abstract tree:

mkCl i_NP appeler_V2 (mkNP john_PN)

By replacing i_NP and john_PN with variables, this tree can be used as the lineariza-
tion of a two-place predicate:

lin HasName x y = mkCl x appeler_V2 (mkNP y)

Figure 2 shows the algorithm for example-based grammar writing. It shows the
construction steps of the concrete syntax of the Phrasebook grammar for the language
X, where the developer has basic or no skills in the language. In our experiment X was
one of Danish, Dutch, German, Norwegian, and Polish. The arrows represent the main
steps of the process, whereas the circles represent the initial and final results after each
step of the process. For every step, the estimated time is given. This is variable and
greatly influenced by the features of the target language and the semantic complexity
of the phrases and would only hold for the Phrasebook grammar.

124

Initial resources:

• English Phrasebook

• resource grammar for X

• script for generating the inflection forms of words and the corresponding lin-
earizations of the lexical entries from the Phrasebook in the language X. For
example, in the case of the nationalities, since we are interested in the names
of countries, languages and citizenship of people and places, we would generate
constructions like "I am English. I come from England. I speak English. I go
to an English restaurant" and from the results of the translation we will infer the
right form of each feature. In English, in most cases there is an ambiguity be-
tween the name of the language and the citizenship of people and places, but in
other languages all three could have completely different forms. This is why it is
important to make the context clear in the examples, so that the translation will
be more likely to succeed. The correct design of the test of examples, is language
dependent and assumes analysis of the resource grammar, also. For example, in
some languages we need only the singular and the plural form of a noun in order
to build its GF representation, whereas in other languages such as German, in
the worst case we would need 6 forms which need to be rendered properly from
the examples.

• script for generating random test cases that cover all the constructions from the
grammar. It is based on the current state of the abstract syntax and it generates for
each abstract function some random parameters and shows the linearization of
the construction in both English and language X, along with the abstract syntax
tree that was generated.

Example-based concrete grammar learning algorithm:

• Step 1: Analysis of the target grammar and lexicon acquisition

The first step assumes an analysis of the resource grammar and extracts the in-
formation needed by the functions that build new lexical entries. A model is
built so that the proper forms of the word can be rendered, and additional infor-
mation, such as gender, can be inferred. The script applies these rules to each
entry that we want to translate into the target language, and one obtains a set of
constructions.

• Step 2: Generation of examples in the target language

The generated constructions are given to an external translator tool (Google
translate) or to a native speaker for translation. One needs the configuration
file even if the translator is human, because formal knowledge of grammar is not
assumed.

• Step 3: Parsing and decoding the examples with GF

The translations into the target language are further more processed in order to
build the linearizations of the categories first, decoding the information received.
Furthermore, having the words in the lexicon, one can parse the translations of
functions with the GF parser and generalize from that.

125

• Step 4: Evaluation and correction of the resulting grammar
The resulting grammar is tested with the aid of the testing script that generates
constructions covering all the functions and categories from the grammar, along
with some other constructions that proved to be problematic in some language.
A native speaker evaluates the results and if corrections are needed, the algo-
rithm runs again with the new examples. The examples validated by the native
informant are kept for regression testing of the future results. The algorithm is
repeated as long as corrections are needed.

It is worth noting that the time needed for preparing the configuration files for a
grammar will not be repeated, since the files are available for future usage. The time
for the second step can be saved if automatic tools, like Google translate are used. This
is only possible in languages with large corpora available. Good results were obtained
for German and Dutch with Google translate, but for languages like Polish, which are
both complex and lack enough resources, the results are discouraging. If the statistical
oracle works well, the only step where the presence of a human translator is needed is
the evaluation and feedback step. An average of 4 hours per round and 2 rounds were
needed for the languages for which we performed the experiment. The final results are
comparable to a grammar developed by a native speaker GF programmer.

However, one can already remark that the success of this method also depends
highly on the lexicon acquisition, which we perform in the first step. What is more is
that the lexicon is language-dependent, and is not alignable. Also, without previous
knowledge of all the languages, one cannot foresee what words we would need to use,
and since they are not used in all languages, it wouldn’t make sense to have them all in
a multilingual aligned lexicon. For the moment, this task was solved by either guessing
the correct part-of-speech based on a similar concrete grammar already developed(for
example Danish and Norwegian were bootstrapped from Swedish) or by having the
lexicon built and POS-tagged with the aid of native informants.

Among the 5 languages considered, a concrete Phrasebook grammar was success-
fully built for Danish, Dutch, German and Norwegian, whereas for Polish, it was not
possible to get through the first and most difficult step—target grammar analysis and
lexicon acquisition, because of the complex morphology of the language and the lack
of available resources. In the end the concrete grammar was developed by the writer of
the resource grammar.

The experiment involved 7 programmers with basic or advanced GF skills that
wrote 10 resource grammars, whereas for the 4 languages mentioned before, the example-
based algorithm was used. The approximate development total time is 1 person month
for the whole Phrasebook, or 1.5 days per language on the average.

Based on this case study, we roughly estimated the effort used in constructing the
necessary sources for each new language and compiled Table 3.

Explanation of the scores

Grammarian’s language skills:

• - : no skills

• # : basic skills(general knowledge of the grammar)

• ## : medium skills(fluent)

• ### : advanced skills(native speaker)

126

Language Fluency GF skills Inf. dev. Inf. testing Ext. tools RGL edits Effort
Bulgarian ### ### - - - # ##
Catalan ### ### - - - # #
Danish - ### + + + ## ##
Dutch - ### + + + # ##

English ## ### - + - - #
Finnish ### ### - - - # ##
French ## ### - + - # #
German # ### + + + ## ###
Italian ### # - - - ## ##

Norwegian # ### + + + # ##
Polish ### ### + + + # ##

Romanian ### ### - - + ### ###
Spanish ## # - - - - ##
Swedish ## ### - + - - ##

Table 4.3: Development effort for the Phrasebook.

Grammarian’s GF skills

• — : no skills

• # : basic skills(simple GF exercises)

• ## : medium skills(more comprehensive GF exercises)

• ### : advanced skills(resource grammar writer/substantial contributor)

Informant needed for development/Informant needed for testing

• —: no

• + : yes

Changes on the resource grammars

• —: no changes

• # : 1-3 minor changes

• ## : 4-10 minor changes, 1-3 medium changes

• ### : >10 changes of any kind

Overall effort

: less than 8h/person

: 8-24h/person

: >24h/person
This experiment is significant because it is a showcase for the ongoing work on

example-based concrete grammar learning technology which will make GF grammar
writing easier in terms of adding more languages and developing larger grammars,
but also because it represents an analysis on the possible interaction of GF with other
available translation tools, which will ease the work of both beginners and advanced
users of the technology.

127

6. The Mobile Application

If one wants to build a tool for a controlled language for everyday usage, it seems
logical for this tool to be as unobtrusive as possible. Moreover, since our language is
targeting tourists, we have to take into account a particular setting where people, when
going on vacation, may not have access to a computer and access to Internet can be
very limited due to low coverage or prohibitive costs. This are the criteria that we tried
to meet when building PhraseDroid, an application that works offline, on smartphone
devices and with a simple user interface. Moreover, we wanted to do this by creating
a technology that is as general as possible, and in fact applies to any multilingual GF
grammar.

PhraseDroid is an Android application, that can be used on handheld devices run-
ning the Android operating system. Figure 1 shows a screen shot of the application in
its current state. As you can see, the application is using the same “magnet interface”
as the web application. This permits the user to compose a sentence while staying in
the coverage of the grammar. Moreover, this kind of interaction works well on devices
with touch screens because the magnets are large enough to be able to be selected with
fingers.

What is more is that the Android platform provides a high-quality speech synthesis
for several of the languages covered by the grammar, which can be plugged into our
application. This gives clear benefits compared to a traditional (paper) phrasebook.

As mentioned in Section 1, there are more and more phrasebook applications de-
veloped for smartphones nowadays. They can be divided in two main categories:

The finite phrasebook. Those are usually made of a list of sentences translated in one,
or more, foreign languages. Those phrasebooks are lacking from the point of view of
expressivity since it isn’t possible to change a sentence as needed, even if a very similar
sentence is covered by the phrasebook.

The application providing machine translation through an on-line service. The Google
Translate application (and the various applications that are just front-ends to it) is the
best example in this category. This kind of applications can obviously be used while
traveling, but they require the possibility to connect to the Internet, which is not guar-
anteed when one is travelling abroad due to technological or economical reasons. In
addition, unlike in our application, the translation engine is not tailored toward tourist
usage but is generic, which can lead so sub-optimal translation in many cases.

In contrast, our application, once installed, works off-line and features a grammar
design specifically for tourist translations. And since the user inputs the sentence to
be translated herself, it allows a great deal of variation and fine-tuned translation for a
given situation.

The application is based on a Java interpreter for GF’s binary grammar format,
called PGF [15]. Therefore the application is very modular: adapting the application
to a different controlled language requires little more than dropping a new pgf file in
the right folder. This means that one can in no time create a translation application
for another controlled language given that a GF grammar for this language has been
written.

Thus an important part of the process of creating the application was to write a
library in Java that provides the functions needed in the application. Its usage is not
limited to Android phones, but it can also be plugged in into any Java program, whether
on a desktop computer, or a web browser plug-in. In the current state, the Java library
supports (predictive) parsing, linearization, and random generation of well-typed trees.

128

This is less than the features available in the full GF interpreter, written in Haskell, but
it is sufficient for machine translation and lots of other uses.

7. Evaluation
7.1. Translation Quality

This is the first criterion of evaluation. It was first assessed by the systematic use of
native speaker testers, and later by comments collected from more random users of
the web demo and the Android application. The goal has been what might be called
perfect quality, in terms of meaning-preservation, grammaticality, idiomaticity, and
fluency. Hence all errors found in earlier versions were corrected immediately. With
the first “official version” (the one also running on Android), few direct errors have
been found, but there are some inadequacies that appear in reports:

Some sentences permitted by the abstract syntax are semantically anomalous, e.g. is
there an airplane to the toilet. This could be fixed by using a more strict type system;
however, we consider this to be less important as long as the translations are correct.

The choice of prepositions is not always fine-grained enough; for instance the distinc-
tion between gå till toiletten and gå på toaletten (both “go to the toilet”) in Swedish is
not handled (cf. Section 4).

The usage of nationality adjectives for persons is not always optimal, but nouns should
be introduced in the lexical family. Thus I am a Finn would be better than I am Finnish,
with corresponding variations in many languages.

7.2. Coverage

There is no end of conceivable extensions if we want to cover everything that a tourist
might want to say. The syntactic combination rules are sufficient for many situations,
but they should definitely be extended with more vocabulary. For instance,

drinks, food, currencies, countries

time expressions like half past eight

free-string input for names of places and persons

7.3. Engineering Effort

One of the main goals of the MOLTO project is to improve the productivity of GF-
based translation systems "by an order of magnitude". This means that the development
time of translation systems should be shortened to 10% of the original. The develop-
ment time for the Phrasebook was two working days per language on average. If this
is the baseline to be compared with at the end of the project (in 2013), then a new lan-
guage should be possible to add in a couple of hours. Some of this improvement can
be possible to reach by a better use of example-based grammar writing.

However, some parts of the grammar may be inherently difficult, due to idiomatic
structures. Another way to interpret the productivity improvement would then be in
terms of the concepts covered. If the first Phrasebook built in two days covers hun-
dreds of concepts, a realistic goal could be to cover thousands of concepts in the same
time. To this end, methods of automatic lexicon extraction are being developed, with
ontologies, terminologies, and statistical translation models as sources.

129

7.4. Usability

The size of the run-time PGF grammar is 500 kB. It runs smoothly on both web appli-
cations and mobile phones. For mobiles, a substantial optimization effort was needed,
but it was made on the level of GF and will therefore benefit all future applications.

The web application provides the input method of typing strings, which the mobile
doesn’t have. This will certainly become an issue when the Phrasebook is extended to
contain thousands of concepts. It will also become an issue how to navigate in the large
space of words to find exactly the phrase one wants to use. A hierarchical approach
similar to syntax editors [16] will probably be introduced as a useful complement to
string-based input.

The mobile application has some usability issues reported by users, which will have
to be addressed in future releases.

8. Conclusion
We have explained a controlled language approach to a multilingual tourist phrasebook,
covering 15 languages. While intending to build a useful application for travellers, we
have also seen it as an experiment to extend the notion of controlled language and scale
it up in various respects:

extending the notion of semantics from logic to “language games” (Section 2)

porting a controlled language from one language to many (Section 3)

coping with ambiguity, rather than banning it (Section 4)

making it easier to implement controlled languages, in terms of both effort and skill
(Section 5)

building applications for laymen rather than specialists, and making them run on light
devices (Section 6)
Our conclusion is that there is a lot of potential in controlled languages to become
more useful in everyday life, the multilinguality aspect being at least as interesting for
laymen as the traditional reasoning aspect is.

Acknowledgements

The MOLTO Phrasebook is a collaborative project. In addition to the authors of this
paper, it has involved Krasimir Angelov, Olga Caprotti, Thomas Hallgren, Inari Lis-
tenmaa, Jordi Saludes, Adam Slaski, and Shafqat Virk as programmers and Richard
Bubel, Rise Eilert, Karin Keijzer, Michał Pałka, Willard Rafnsson, and Nick Smallbone
as testers and informants. The research leading to these results has received funding
from the European Union’s Seventh Framework Programme (FP7/2007-2013) under
grant agreement n:o FP7-ICT-247914.

130

Bibliography

[1] The Boeing Company: Boeing Simplified English Checker.
http://www.boeing.com/assocproducts/sechecker/ (2001)

[2] Shiffman, R.N., Michel, G., Krauthammer, M., Fuchs, N.E., Kaljurand, K., Kuhn,
T.: Writing clinical practice guidelines in controlled natural language. In: Pro-
ceedings of the 2009 conference on Controlled natural language. CNL’09, Berlin,
Heidelberg, Springer-Verlag (2010) 265–280

[3] Hart, G., Johnson, M., Dolbear, C.: Rabbit: Developing a control natural lan-
guage for authoring ontologies. In: ESWC. (2008) 348–360

[4] Fuchs, N.E., Kaljurand, K., Kuhn, T.: Attempto Controlled English for Knowl-
edge Representation. In Baroglio, C., Bonatti, P.A., Małuszyński, J., Marchiori,
M., Polleres, A., Schaffert, S., eds.: Reasoning Web, Fourth International Sum-
mer School 2008. Number 5224 in LNCS, Springer (2008) 104–124

[5] Dean, M., Schreiber, G.: OWL Web Ontology Language Reference (2004)
http://www.w3.org/TR/owl-ref/.

[6] Gruzitis, N., Barzdins, G.: Towards a More Natural Multilingual Controlled
Language Interface to OWL. In: 9th International Conference on Compu-
tational Semantics (IWCS). (2011) 335–339 http://www.aclweb.org/
anthology/W/W11/W11-0138.pdf.

[7] Wittgenstein, L.: Philosophical Investigations. Basil Blackwell, Oxford (1953)

[8] Ganesalingam, M.: The Language of Mathematics. PhD thesis, Department of
Computer Science, University of Cambridge (2010) http://people.pwf.
cam.ac.uk/mg262/.

[9] Angelov, K.: Incremental Parsing with Parallel Multiple Context-Free Grammars.
In: Proceedings of EACL’09, Athens. (2009)

[10] Ranta, A.: Grammatical Framework: Programming with Multilingual Grammars.
CSLI Publications, Stanford (2011) ISBN-10: 1-57586-626-9 (Paper), 1-57586-
627-7 (Cloth).

[11] Ranta, A.: The GF Resource Grammar Library. Linguistics in Language Technol-
ogy 2 (2009) http://elanguage.net/journals/index.php/lilt/
article/viewFile/214/158.

[12] Bringert, B., Angelov, K., Ranta, A.: Grammatical Framework Web Service. In:
System demo, Proceedings of EACL’09, Athens. (2009)

131

http://www.w3.org/TR/owl-ref/
http://www.aclweb.org/anthology/W/W11/W11-0138.pdf
http://www.aclweb.org/anthology/W/W11/W11-0138.pdf
http://people.pwf.cam.ac.uk/mg262/
http://people.pwf.cam.ac.uk/mg262/
http://elanguage.net/journals/index.php/lilt/article/viewFile/214/158
http://elanguage.net/journals/index.php/lilt/article/viewFile/214/158

[13] Ranta, A., Angelov, K.: Implementing Controlled Languages in GF. In: Proceed-
ings of CNL-2009, Athens. Volume 5972 of LNCS. (2010) 82–101

[14] Power, R., Scott, D.: Multilingual authoring using feedback texts. In: COLING-
ACL 98, Montreal, Canada (1998)

[15] Angelov, K., Caprotti, O., Enache, R., Hallgren, T., Listenmaa, I., Ranta, A.,
Saludes, J., Slaski, A.: D10.2 molto web service, first version. (D10.2) (06/2010
2010)

[16] Khegai, J., Nordström, B., Ranta, A.: Multilingual Syntax Editing in
GF. In Gelbukh, A., ed.: Intelligent Text Processing and Computational
Linguistics (CICLing-2003), Mexico City, February 2003. Volume 2588 of
LNCS., Springer-Verlag (2003) 453–464 http://www.cs.chalmers.se/
~aarne/articles/mexico.ps.gz.

132

http://www.cs.chalmers.se/~aarne/articles/mexico.ps.gz
http://www.cs.chalmers.se/~aarne/articles/mexico.ps.gz

Chapter 5

Grammar-Based Hybrid
Systems for Machine
Translation

133

134

1 Patent Translation within the MOLTO Project

Cristina España-Bonet Ramona Enache
Adam Slaski Aarne Ranta

Lluís Màrquez Meritxell Gonzàlez

Abstract: MOLTO is an FP7 European project whose goal is to translate texts be-
tween multiple languages in real time with high quality. Patents translation is a case of
study where research is focused on simultaneously obtaining a large coverage without
loosing quality in the translation. This is achieved by hybridising between a grammar-
based multilingual translation system, GF, and a specialised statistical machine transla-
tion system. Moreover, both individual systems by themselves already represent a step
forward in the translation of patents in the biomedical domain, for which the systems
have been trained.

1. Introduction

MOLTO1 is an European project within the Seventh Framework Programme. Its main
goal is to develop a set of tools for translating texts between multiple languages in real
time with high quality.

MOLTO clearly bets for high quality translation, the cost to pay is to limit the cov-
erage to restricted domains which can be covered by a grammar. As its main technique,
the project uses domain-specific semantic grammars and ontology-based interlinguas.
These components are implemented in GF (Grammatical Framework) [12], which is a
grammar formalism where multiple languages are related by a common abstract syn-
tax. Up to now, GF has been applied in several small-to-medium size domains such as
dialogue systems2 or the translation of mathematical exercises3.

When dealing with real text from a given domain, a grammar fails to cover any
ungrammatical construction used. However, empirical machine translation systems in
general, and statistical machine translation systems (SMT) in particular, have good
coverage on any sort of text. The aim of MOLTO is to get the best of both worlds by
building a hybrid GF-SMT system that achieve high-precision and good coverage.

Patents have been chosen for the opening of the system to non-restricted language.
This election has two main reasons. First, the language of patents, although having a
large amount of vocabulary and richness of grammatical structure, still uses a formal
style that can be interpreted by a grammar. And second, there is nowadays a growing
interest for patents translation. The high and increasing number of registered patents
has created a huge multilingual database of patents distributed all over the world. So,

1MOLTO: FP7-ICT-247914, 2010–2013, www.molto-project.eu
2TALK project, Tools for Ambient Linguistic Knowledge: IST-507802, 2004–2006, www.talk-

project.org
3WebALT project, Web Advanced Learning Technologies: EDC-22253, 2005–2007, we-

balt.math.helsinki.fi

135

SET Segments EN tok DE tok FR tok

Training 279,282 7,954,491 7,346,319 8,906,379
Development 993 29,253 26,796 33,825
Test 1,008 31,239 28,225 35,263

Table 5.1: Numbers for the patents aligned corpus in English (EN), German (DE) and
French (FR).

there is an actual need for building systems able to access, search and translate patents,
in order to make these data available to a large community.

The objective of MOLTO with respect to patents translation is twofold. On one
hand, research on hybrid translation systems is being carried out to study the best ap-
proach to combine GF and a SMT system. On the other hand, a prototype for machine
translation and retrieval within patents will be built. The purpose of this paper is to
focus on the first part and depict the current status and prospects for the translation
system.

The paper is organised as follows. The next section, Section 1, describes the cor-
pora and linguistic processors used in this work. We detail in Section 1 the two inde-
pendent systems to translate patents. Afterwards, Section 3 depicts the hybridization
prospects for these systems, and finally Section 1 summarises and outlines future work.

2. Patents Domain

A patent is an official document granting a right. Besides the terms of the patent it-
self, it also contains information about its publication, authorship and classification for
example. Being an official document, the structure giving the terms of the patent is
quite fixed. Every patent has a title, a description, an abstract with the most relevant
information and a series of claims.

A claim is a single (possibly very long) sentence composed mainly of two parts: an
introductory phrase and the body of the claim, usually linked by a conjunction. It is in
the body of the claim where there is the specific legal description of the exact invention.
Therefore, claims are written in a lawyerish style and use a very specific vocabulary of
the domain of the patent.

2.1. Corpus

MOLTO works with European patents and the task is restricted to English, French and
German. A first domain of application includes biomedical and pharmaceutical patents.
We select patents with IPC (International Patent Classification) code A61P, correspond-
ing to “Specific therapeutic activity of chemical compounds or medical preparations”.

A parallel corpus in the three languages has been gathered from the corpus of
patents given for the CLEF-IP track in the CLEF 2010 Conference4. These data are an
extract of the MAREC corpus, containing over 2.6 million patent documents pertaining
to 1.3 million patents from the European Patent Office5 (EPO). Our parallel corpus is a
subset with those patents with translated claims and abstracts into the three languages.
From this first subset we selected those patents that deal with the appropriate domain.

4http://clef2010.org/
5http://www.epo.org/

136

The final corpus built this way covers 56,000 patents out of the 1.3 million. That
corresponds to 279,282 aligned parallel fragments as it can be seen in Table 5.1. A
fragment is the minimum segment aligned in the three languages, so, it is shorter than
a claim and, consequently, shorter than a sentence. Two small sets for development
and test purposes have also been selected with the same restrictions: 993 fragments for
development and 1008 for test.

2.2. Linguistic processors

The detection and correct tokenisation of chemical compounds has been shown to be
crucial in the performance of translators (see Section 1 for the analysis). A regular
tokeniser would for example split the compound “cis-4-cyano-4-(3-(cylopentyloxy)-4-
methoxyphenyl)cyclohexane-1-carboxylic” by the puctuation into 9 tokens and, conse-
quently, each of the tokens would be translated as an independent word. To deal with
this peculiarity of the domain, we developed a pipeline to detect, tokenise and translate
compounds.

Compound recogniser and tokeniser As a first approximation we devise a recog-
niser and tokeniser based on affix detection. A list with 150 affixes has been compiled
and it is used to select the candidate tokens to be a compound from the corpus. The can-
didates selected this way are matched against a dictionary and those without a match
are considered to be compounds and do not get an internal tokenisation. 103,272 com-
pounds are found with this procedure within the training corpus defined in the previous
section.

However, this list of compounds contains some noise. Examples of noise are in
this context proper names with the defined affixes (Hôpital), words that do not appear
in the dictionary (extracorporeal) or simply typos (comparoate). The amount of noise
is considerable, but extra words do not in general imply a wrong tokenisation. So, the
method works better as a (non-)tokeniser than as a compound detector and it bets for
high recall instead of precision.

Given the power of GF, one can also build a simple grammar for translating com-
pounds. What makes the difference between this rule-based approach and a mere trans-
lation of each word in the compound is that in this case the possible reordering of the
words is already defined by the grammar. So, functional words like acid, ester or alde-
hyde swap its position with the radical words whenever necessary.

Part-of-speech tagger, lemmatiser and named entity recogniser Part-of-speech
(PoS) tagging and lemmatisation are necessary in the lexicon building of the patents
grammar. GENIA [14], a linguistic processor prepared specially to process texts from
the biomedical domain, is used for both purposes.

Named entities are marked in the text and are not translated by GF, but translated
independently and substituted afterwards. In the biomedical domain, a simple heuristic
works as well tagging proper names as a state-of-the-art tagger not specifically trained.
We consider to be proper names the words starting with a capital letter (after lower-
casing the sentences), and the words containing numbers or special characters inside.
This simple methodology lead to 100% precision and recall for the first 200 fragments
in the training corpus of Section 3, where the proper names were manually annotated
and the output was compared to that of the named entity recogniser. In this case 176
proper names were properly classified and replaced with a place holder name.

137

3. Individual translation systems for patents

The translation of patents can be approached through different methods. In this work
we focus on GF and SMT systems, and specialise the two of them into the patents
domain.

3.1. Interlingua-based translation, GF

The key concept of GF is the division of a grammar in an abstract syntax part and the
concrete syntaxes corresponding to each of the target languages. The largest and most
general example of such a grammar is the resource library [13], comprising 20 lan-
guages, for which the main grammatical constructions are provided. The library can be
further used by domain-specific grammars, which can use the grammatical construc-
tions from here alleviating the burden of handling linguistic difficulties and allowing a
better focus on the higher-level details.

Even with this easiness, building a rule-based general-purpose translation system
is a laborious task. However, we assume that most of the claims can be covered by
a limited set of grammatical constructions and extend the GF resource grammar with
these constructions.

Grammars like this one with non-trivial coverage usually are ambiguous, the num-
ber of the interpretations is the product of the number of parse trees for each subcon-
struction. On the good side, the grammar covers all possible interpretations, but on the
other side, in order to make it usable, statistical based disambiguation needs to be used.

The task of translation is resumed to parsing from the source language to an ab-
stract syntax tree and linearising it in the target language. Still, the system is restricted
to the language generated by the grammar. Lexicon building is then an important step
since the vocabulary of patent claims is virtually unlimited. The GF library multilin-
gual lexicon contains the most common entries for structural parts-of-speech and it is
used as a base to be extended with nouns, adjectives, verbs and adverbs. The abstract
syntax for these PoS is created from the claims in one language (English). Once it is
built, it is lemmatised and manually corrected from noise and ambiguities. Then, the
proper inflection is generated using the implemented GF paradigms and the English
dictionary of the GF library. Base forms are translated into the necessary languages
and the inflection is generated for each of them.

The following figure shows the basic steps of the full system’s behaviour:

Figure 5.1: GF translation system for patent claims.

Up to now, performance of the grammar aimed to parse full claims is still unsatis-
factory. The high level of ambiguities remaining results in slowness, and coverage is
up to now a 15% of the working corpus. Hybrid systems can deal with ambiguities,
i.e., multiple translation options, and can complete with statistical translations the parts
not covered by GF. However, the grammar must be expanded so that the two systems
can collaborate on equal terms.

138

DE2EN EN2DE

METRIC Bing Google Domain Bing Google Domain

1−WER 0.52 0.64 0.72 0.42 0.51 0.69
1−TER 0.59 0.67 0.76 0.45 0.53 0.71
BLEU 0.43 0.58 0.65 0.33 0.45 0.58
NIST 8.25 9.67 10.12 6.53 8.05 9.40
ROUGE-W 0.40 0.48 0.52 0.34 0.41 0.48
GTM-2 0.30 0.40 0.47 0.25 0.32 0.43
METEOR-pa 0.60 0.69 0.74 0.36 0.45 0.57
ULC 0.09 0.29 0.41 0.03 0.19 0.43

Table 5.2: Automatic evaluation using a set of lexical metrics of the in-domain SMT
system for the English-German language pair. Results of two state-of-the-art systems,
Bing and Google, are showed for comparision.

FR2EN EN2FR

METRIC Bing Google Domain Bing Google Domain

1−WER 0.54 0.66 0.78 0.57 0.63 0.73
1−TER 0.59 0.70 0.80 0.60 0.66 0.74
BLEU 0.45 0.62 0.70 0.43 0.53 0.62
NIST 8.52 10.01 10.86 8.39 9.21 9.96
ROUGE-W 0.41 0.50 0.54 0.39 0.45 0.49
GTM-2 0.32 0.43 0.53 0.31 0.36 0.45
METEOR-pa 0.61 0.72 0.77 0.57 0.65 0.71
ULC 0.07 0.28 0.44 0.10 0.23 0.39

Table 5.3: As in Table 5.2 for the English-French language pair.

3.2. Statistical translation, SMT

The statistical system is a state-of-the-art phrase-based SMT system trained on the
biomedical domain with the corpus described in Section 3. Its development has been
done using standard freely available software. A 5-gram language model is estimated
using interpolated Kneser-Ney discounting with SRILM [6]. Word alignment is done
with GIZA++ [7] and both phrase extraction and decoding are done with the Moses
package [8, 9]. The optimisation of the weights of the model is trained with MERT [10]
against the BLEU [11] evaluation metric.

Table 5.2 shows a first evaluation of this system (Domain) using a variety of lexical
metrics. This set of metrics is a subset of the metrics available in the Asiya evalu-
ation package [16]. We specifically select this set of metrics because all of them are
available for the three languages: English, German and French. Together with our in-
domain system we show the same evaluation for two public SMT systems for general
translation: Bing6 and Google7. These systems can be considered the state-of-the-art
of a SMT open domain translator.

In general, our in-domain trained system performs significantly better than the two
general purpose ones mainly because of two reasons. First, it has been trained on the

6http://www.microsofttranslator.com/
7http://translate.google.com

139

DE2FR FR2DE

METRIC Bing Google Domain Bing Google Domain

1−WER 0.42 0.52 0.76 0.30 0.43 0.65
1−TER 0.47 0.56 0.68 0.32 0.46 0.66
BLEU 0.29 0.43 0.56 0.24 0.39 0.53
NIST 6.72 8.21 9.10 5.35 7.30 8.88
ROUGE-W 0.31 0.38 0.45 0.29 0.37 0.44
GTM-2 0.24 0.30 0.41 0.21 0.28 0.41
METEOR-pa 0.45 0.56 0.64 0.26 0.39 0.51
ULC 0.03 0.22 0.41 -0.03 0.19 0.44

Table 5.4: As in Table 5.2 for the French-German language pair.

specific domain and second, the tokenisation tools have been specifically developed
to deal with chemical compounds. The concrete values can be read in Tables 5.2, 5.3
and 5.4 for the language pairs English-German, English-French and French-German
respectively.

Even though the Domain system shows a good performance among SMT systems,
some of the observed translation errors would not be produced by a rule-based system,
which, on the other hand, would probably produce different ones. Table 5.5 displays
two translations from German into English where this is made evident. In the first one,
systems are not able to capture the different order in the verb position, although the
translation is adequate lexically. The second sentence is an example of the importance
of the chemical names. Google, for instance, tokenises the compound by the punctu-
ation. Some of the tokens are then translated, but the full compound is not recovered.
Bing and Domain do not tokenise the compound, but according to the results, the word
does not appear in the training corpus and has not been translated. These kinds of er-
rors can be easily alleviated by the GF grammar and are a motivation to combine GF
and SMT for the translation of patents.

4. Hybridisation approaches

Hybrid approaches in MOLTO depart from three key assumptions when facing the
combination of paradigms: 1) the quality of a completely translated sentence by a GF-
based system will be always better than the translation obtained with SMT; 2) when the
GF-based systems fails at producing a complete translation it can probably produce a
set of partial translations (phrases) with confidence scores or probabilities; 3) the SMT
system is always capable of generating an output translation. Assumption number one
implies that our combination setting will be set as a fall-back strategy, i.e., in general
SMT will be seen as a back-off for GF-based MT. Assumption number two makes
it possible to combine partial outputs from GF with the SMT system in a real hybrid
approach. Assumption number three guarantees that a translation will be always output
by the combined system.

Keeping these premises in mind we develop combination schemes to integrate
grammar-based and statistical MT systems in a hybrid approach. We can divide the
schemes in three big groups:

Hard integration: Force fixed GF fragment translations within a SMT system.

140

DE Verwendung nach Anspruch 23 , worin das molare Verhältnis von Arginin zu Ibuprofen 0,60 : 1
beträgt .

EN The use of claim 23 , wherein the molar ratio of arginine to ibuprofen is 0.60 : 1 .

Domain The use of claim 23 , wherein the molar ratio of arginine to ibuprofen 0.60 : 1 .
Google The method of claim 23 , wherein the molar ratio of arginine to ibuprofen 0.60 : 1 is .
Bing Use of claim 23 , wherein the molar ratio of arginine to ibuprofen is 0.60 : 1 .

DE (±)-N-(3-Aminopropyl)-N,N-dimethyl-2,3-bis(syn-9-tetradecenyloxy)-1-propanaminiumbromid
EN (±)-N-(3-aminopropyl)-N,N-dimethyl-2,3-bis(syn-9-tetradeceneyloxy)-1-propanaminium bromide

Domain (±)-N-(3-Aminopropyl)-N,N-dimethyl-2,3-bis(syn-9-tetradecenyloxy)-1-propanaminiumbromid
Google (±)-N-(3-aminopropyl)-N , N-dimethyl-2 , 3-bis (syn-9-tetradecenyloxy) is 1-propanaminiumbromid
Bing (±)-N-(3-Aminopropyl)-N,N-dimethyl-2,3-bis(syn-9-tetradecenyloxy)-1-propanaminiumbromid

Table 5.5: Examples of wrong German-to-English translations in SMT systems. This
kind of errors are not produced by the GF grammar for translating compounds.

Soft integration led by SMT: Make available GF fragment translations to a SMT sys-
tem.

Soft integration led by GF: Complement with SMT options the GF translation struc-
ture.

Each one of these options involves either the modification of the original systems
or the construction of a new architecture. The most important thing in order to combine
methodologies is that GF is able to parse general text robustly, it must be able to skip
those structures not covered by the grammar and give some general information so that
the statistical component of the engine takes care of the fragments. The first work on
this task is the robust parser being developed for GF. Current experiments use shallow
parsing as a first approximation and efforts are being made to increase the coverage.

Similarly, it is important that systems can share information. In order to make
available GF translations to a SMT system one mainly needs to be able to feed an SMT
decoder with translation pairs. GF translation pairs can be obtained by using its high
quality alignments and extract the phrases in the SMT style. Since GF alignments are
reliable, this will add a set of high quality phrases to be combined with those coming
from the pure SMT system in the translation table. GF has been adapted for this pur-
pose so that it is able to generate both alignments in the usual format8 and with a text
Giza-like nomenclature.

4.1. Ongoing work: robust GF with an extended lexicon

A first combination of GF and statistical methods is being developed for the English-
to-French translation of patents. The kernel of the system is the Interlingua based
translation of Section 1. The system uses the patents grammar together with the re-
source grammar, builds automatically the lexicon from the English text and translates
it into French. The GF translation mechanism is then applied on sentences that can be
parsed, otherwise a chunker is used to fragment the sentence and only the parts of the
sentence that can be handled by the grammar are translated. The other parts can be

8Graphviz, an open source graph visualization software (http://www.graphviz.org/).

141

sent to the SMT system, or alternatively the SMT system can be fed with the phrases
translated with GF.

5. Conclusions
One of the goals of the MOLTO project is to build a high-quality and robust translator
for patents in at least three European languages: English, German and French. In
order to achieve this purpose several systems are being developed. One of them is a
multilingual rule-based translation system, and another one is a statistical translation
system. Both of them depart from general systems and have been specialised into the
patents domain. Besides, these two approaches will be merged to forge hybrid systems,
and some ongoing work is devoted to build independent modules of the individual
systems that can ease the integration.

The work is still in progress. The GF grammar needs a more thorough evaluation,
in order to decide upon future extensions that would improve its coverage. A dedicated
chunker in the three languages is also being built to divide claims and allow a sepa-
rate treatment. And probably the most difficult step is to implement a disambiguation
module that deals with the open language found in patents.

On the other hand, the in-domain SMT system already outperforms state-of-the-art
general translation systems. The more advanced hybrids will combine the large cov-
erage shown by SMT together with the capabilities of GF in generating grammatically
correct translations.

Acknowledgements
This work has been funded by the European Community’s Seventh Framework Pro-
gramme (FP7/2007-2013) under grant agreement number 247914 (MOLTO project,
FP7-ICT-2009-4-247914). The work was conducted using the Matrixware Research
Collection, provided by IRF www.ir-facility.org. Authors are thankful to Au-
rélien Max and Xavier Auvray for their help with the French processing tools and the
preliminary evaluation respectively.

142

Bibliography

[1] Ranta, A.: Grammatical Framework: Programming with Multilingual Grammars.
CSLI Publications, Stanford (2011) ISBN-10: 1-57586-626-9 (Paper), 1-57586-
627-7 (Cloth).

[2] Tsuruoka, Y., Tateishi, Y., Kim, J., Ohta, T., McNaught, J., Ananiadou, S., Tsujii,
J.: Developing a robust part-of-speech tagger for biomedical text. In Bozanis, P.,
Houstis, E.N., e., eds.: Advances in Informatics. Volume 3746. Springer Berlin
Heidelberg (2005) 382–392

[3] Ranta, A.: The GF resource grammar library. Linguistic Issues in Language
Technology 2(1) (2009)

[4] Stolcke, A.: SRILM – An extensible language modeling toolkit. In: Proc. Intl.
Conf. on Spoken Language Processing. (2002)

[5] Och, F.J., Ney, H.: A systematic comparison of various statistical alignment
models. Computational Linguistics 29(1) (2003) 19–51

[6] Koehn, P., Shen, W., Federico, M., Bertoldi, N., Callison-Burch, C., Cowan, B.,
Dyer, C., Hoang, H., Bojar, O., Zens, R., Constantin, A., Herbst, E., Moran, C.:
Open Source Toolkit for Statistical Machine Translation. Technical report, Johns
Hopkins University Summer Workshop. http://www.statmt.org/jhuws/ (2006)

[7] Koehn, P., Hoang, H., Mayne, A.B., Callison-Burch, C., Federico, M., Bertoldi,
N., Cowan, B., Shen, W., Moran, C., Zens, R., Dyer, C., Bojar, O., Constantin,
A., Herbst, E.: Moses: Open source toolkit for statistical machine translation. In:
Annual Meeting of the Association for Computation Linguistics (ACL), Demon-
stration Session. (Jun 2007) 177–180

[8] Och, F.J.: Minimum error rate training in statistical machine translation. In: Proc.
of the Association for Computational Linguistics, Sapporo, Japan (July 6-7 2003)

[9] Papineni, K., Roukos, S., Ward, T., Zhu, W.J.: Bleu: a method for automatic
evaluation of machine translation. In: Proceedings of the Association of Compu-
tational Linguistics. (2002) 311–318

[10] Giménez, J., Màrquez, L.: Asiya: An Open Toolkit for Automatic Machine
Translation (Meta-)Evaluation. The Prague Bulletin of Mathematical Linguistics
(94) (2010) 77–86

143

144

2 A Hybrid System for Patent Translation

Ramona Enache Cristina España-Bonet
Aarne Ranta Lluís Màrquez

Abstract: This work presents a HMT system for patent translation. The system
exploits the high coverage of SMT and the high precision of an RBMT system based on
GF to deal with specific issues of the language. The translator is specifically developed
to translate patents and it is evaluated in the English-French language pair. Although
the number of issues tackled by the grammar are not extremely numerous yet, both
manual and automatic evaluations consistently show their preference for the hybrid
system in front of the two individual translators.

1. Introduction
Hybrid MT (HMT) is an emerging and challenging area of machine translation, which
aims at combining the known techniques into systems that retain the best features of
their components, and reduce the disadvantages displayed by each of the methods when
used individually.

This work presents a hybrid translation system specifically designed to deal with
the translation of patents. The language of patents follows a formal style adequate to
be analysed with a grammar, but at the same time uses a rich and particular vocabulary
adequate to be gathered statistically. We focus on the English-French language pair so
that the effects of translating into a morphologically rich language can be studied.

With respect to the engine, a grammar-based translator is developed to assure gram-
matically correct translations. We extend GF (Grammatical Framework, [12]) and write
a new grammar for patent translation. The SMT system that complements the RBMT
is based on Moses [9]. This system works on two different levels. First, it is used to
build the parallel lexicon of the GF translator on the fly. Second, it is the top level
decoder that takes the final decision about which phrases should be used.

In the following Section 2 describes recent work both in patent translation and
hybrid systems. Section 2 explains our hybrid system and Section 3 evaluates its per-
formance. Finally, Section 3 summarises the work and outlines possible lines to follow.

2. Related work
This work tackles two topics which are lately attracting the attention of researchers,
patent translation and hybrid translators.

The high number of patents being registered and the necessity for these patents to be
translated into several languages are the reason so that important efforts are being made
in the last years to automate its translation between various language pairs. Different
methods have been used for this task, ranging from SMT [1], [2] to hybrid systems
[3], [4]. Besides full systems, various components associated to patent translation are
being studied separately [7], [8], [9].

145

Part of this work is being done within the framework of two European projects,
PLuTO (Patent Language Translations Online9) and MOLTO (Multilingual Online
Translation10). PLuTO aims at making a substantial contribution to patent translation
by using a number of techniques that include hybrid systems combining example-based
and hierarchical techniques. On the other hand, one of MOLTO’s use cases aims at ex-
tending a grammar-based translator with an SMT to gain robustness in the translation
of patents. This paper is carried out within MOLTO.

HMT is not only useful in this context but is being applied in different domains and
language pairs. Besides system combination strategies, hybrid models are designed so
that there is one leading translation system assisted or complemented by other kinds of
engines. This way the final translator benefits from the features of all the approaches.
A family of models are based on SMT systems enriched with lexical information from
RBMT [10], [11]. On the other side there are the models that start from the RBMT
analysis and use SMT to complement it [12], [13], [14].

Our work can be classified in the two families. On the one hand, SMT helps on the
construction of the RBMT translator but, on the other hand, there is the final decoding
step to integrate translations and complete those phrases untranslated by RBMT. We
use GF as rule-based system.

GF is a type-theoretical grammar formalism, mainly used for multilingual natural
language applications. Grammars in GF are represented as a pair of an abstract syntax
–an interlingua that captures the semantics of the grammar on a language-independent
level, and a number of concrete syntaxes –representing target languages. There are also
two main operations defined, parsing text to an abstract syntax tree and linearising trees
into raw text. In this way one can translate between two target languages of the same
multilingual grammar, by combining parsing and linearization.

The GF resource library [13] is the most comprehensive grammar for dealing with
natural languages, as it features an abstract syntax which implements the basic syntactic
operations such as predication and complementation, and 20 concrete syntax grammars
corresponding to natural languages. This layered representation makes it possible to
regard multilingual GF grammars as a RBMT system, where translation is possible
between any pair of languages for which a concrete syntax exists. However, the trans-
lation system thus defined is first limited by the fixed lexicon defined in the grammar,
and secondly by the syntactic constructions that it covers. For this reason, GF gram-
mars have a difficult task in parsing free text. There is some recent work on parsing the
Penn Treebank with the GF resource grammar for English [24], whereas the current
work on patent translation is the first attempt to use GF for parsing un-annotated free
text.

3. HMT system

The patent translator is a hybridisation between rule-based and statistical techniques.
So, the final system is not only a combination of two different engines but the subsys-
tems also mix different components. We have developed a GF translator for the specific
domain that uses an in-domain SMT system to build the lexicon; an SMT system is on
top of it to translate those phrases not covered by the grammar. In the following we
describe the individual translators and the data used for their development.

9http://www.pluto-patenttranslation.eu/
10http://www.molto-project.eu/

146

3.1. Corpus

A parallel corpus in English and French has been gathered from the corpus of patents
given for the CLEF-IP track in the CLEF 2010 Conference11. These data are an extract
of the MAREC corpus, containing over 2.6 million patent documents pertaining to
1.3 million patents from the European Patent Office12 (EPO). Our parallel corpus is a
subset with those patents with translated claims and abstracts into the two languages.
From this first subset we selected those patents that deal with the biomedical domain.

The final corpus built this way covers 56,000 patents out of the 1.3 million. That
corresponds to 279,282 aligned parallel fragments extracted from the claims. A frag-
ment is the minimum aligned segment in the two languages, so, it is shorter than a
claim and, consequently, shorter than a sentence. The length of the fragments is vari-
able and depends on the aligned units that can be extracted from the xml mark-up
within the patent such as paragraph tags for example. Two small sets for development
and test purposes have also been selected with the same restrictions: 993 fragments for
development and 1008 for test.

3.2. In-domain SMT system

The first component is a standard state-of-the-art phrase-based SMT system trained
on the biomedical domain with the corpus described in Section 3. Its development
has been done using standard freely available software. A 5-gram language model is
estimated using interpolated Kneser-Ney discounting with SRILM [6]. Word alignment
is done with GIZA++ [7] and both phrase extraction and decoding are done with the
Moses package [8, 9]. Our model considers the language model, direct and inverse
phrase probabilities, direct and inverse lexical probabilities, phrase and word penalties,
and a non-lexicalised reordering. The optimisation of the weights of the model is
trained with MERT [10] against the BLEU [11] evaluation metric.

A wider explanation of this system, the pre-process applied to the corpus before
training the system and a deep evaluation of the translations can be found in España-
Bonet et al. [2].

3.3. GF system

As explained in Section 2, the extension of GF to a new domain implies the construc-
tion of a specialised grammar that expands the general resource grammar. Since in
our case of application we are far from a close and limited domain, some probabilistic
components are also necessary. The general architecture is illustrated by Figure 5.2.
A GF grammar-based system alone cannot parse most patent sentences. Consequently,
the current translation system aims at using GF for translating patent chunks, and as-
semble the results in a later phase.

As a pre-process, claims are tagged with part-of-speech (PoS) with Genia [14], a
PoS tagger trained on the biomedical domain. From the PoS-tagged words only the
ones labelled as nouns, adjectives, verbs and adverbs are kept, since the GF library
already has an extensive list of functional parts of speech such as prepositions and
conjunctions. We use the extensive GF English lexicon13 as a lemmatiser for the PoS-

11http://clef2010.org/
12http://www.epo.org/
13The GF English lexicon is based on the Oxford Advanced Learner’s Dictionary, and contains around

50,000 English words.

147

Figure 5.2: Architecture of the GF translation system.

tagged words, so that one can build their correspondent abstract syntax entry. More-
over, all the inflection forms of a given word are obtained from the same resource.

This process is made online. For every sentence to translate, the lexicon is enlarged
with the corresponding vocabulary. The French version of the lexicon is built by trans-
lating the individual entries from the English lexicon (all inflection forms) with the
SMT individual system trained on the patent corpus. The French translations are lem-
matised with an extensive GF French lexicon, based on the large morphological lexicon
Morphalou [23] in order to get their inflection table. The part-of-speech is assumed to
be the same as in the English counterpart.

When this procedure is applied on the test set, the part-of-speech tagger is able to
find 2,013 lexicon entries. However, due to part-of-speech mismatching or to the fact
that a given word was not found in the SMT lexical table, 43.81% of the entries could
not be translated to French.

In order to increase the coverage of the final GF translation, the grammar is adapted
to deal with chunks instead of with full sentences. So, the source text is chunked into
noun phrases (NP), adjective phrases (AP), adverbial and prepositional phrases (PP),
relative pronouns (RP) and verb phrases (VP). Other kinds are ignored.

Some technical details have to be taken into account in order to build the patents
grammar for chunks. Whereas NPs can be translated directly, a VP, RP or AP needs to
have an NP to agree with, otherwise the GF grammar cannot know which linearisation
form to choose. For NP and PP which can be translated independently, a mapping into
corresponding GF categories is defined, whereas for VP, RP and AP, their GF mapping
requires an NP in order to build their correspondent linearisation. If the required NP
is not found, the chunk is sent to the SMT. Also, the VP category from the English
and French GF resource grammars is implemented as a discontinuous category, so that
it can handle discontinuous constituents in English and clitics in French. The patent
grammar uses a category built on top of VP, which represents the flattened version of a
VP, with all the constituents combined.

Because the syntactical structure of chunks is important in this case, a post-processing
step is needed. This is meant to ensure that the PoS-tagging is consistent and that cer-
tain aspects captured in the grammar can be properly reflected in the claims. One can

148

Word PoS Chunk PoS Chunk
Genia Genia Final Final

the DT B-NP DT B-NP
use NN I-NP NN I-NP
of IN B-PP IN I-NP
claim NN B-NP NN I-NP
1 CD I-NP CD I-NP
, , O , O
wherein IN B-PP RP B-RP
said V B-VP DT B-NP
use NN B-NP NN I-NP
is VBZ B-VP VBZ B-VP
intramuscular JJ B-ADJP JJ I-VP
. . O . O

Table 5.6: Chunk detection for the example sentence Ex1.

see the importance of this step with an example.

Ex1 The use of claim 1 , wherein said use is intramuscular .

In the previous example, “said”, a frequent used word in patent claims, acts as a
definite article, whereas Genia tags it as a verb and therefore is it not merged with
the following noun into a noun phrase. Moreover, the relative pronoun “wherein” is
labelled as an adverb or noun phrase. The post-processing process updates the tags of
certain entries and the tag of the following word, when needed.

Table 5.6 shows how the original tagging from Genia is converted into the correct
GF parse chunks: the use (NP), of claim 1 (PP), wherein (RP), said use (NP), is intra-
muscular (VP). As one can notice, chunks are merged when needed, like for the PP of
claim 1, where the preposition was merged with the NP into a single chunk. The same
goes for the VP chunk, as it is aimed to combine two-placed verbs or copulas with their
objects before parsing.

GF parses the corresponding English chunks to obtain a forest of abstract syntax
trees. In order to disambiguate among the possible options, all of them are linearised,
looked up in the French corpus and the most frequent linearisation is kept as the best
translation.

The translation sequence is done from left to right, so that the last-occurring NP is
retained, and is used to make the agreement with VP, RP or AP. If no such NP can be
found, or if the GF grammar is not capable to parse the one indicated by the chunker,
the current chunk is passed to the SMT. In the working example, this in not necessary,
and GF grammar alone obtains a translation for the full sentence:

1. the use → “l’ utilisation” (NP)

2. of claim 1→ “selon la revendication 1” (PP)

3. wherein→ “dans laquelle” (RP agreeing with “l’ utilisation”’)

4. said use→ “ladite utilisation” (NP)

5. is intramuscular→ “est intramusculaire” (VP agreeing with “ladite utilisation”)

Finally, chunks are combined together with the punctuation marks, other non-
included elements and untranslated chunks in the same order as in the source language.

149

GF SMT

NP 2,366 (14.9%) 2,199 (13.8%)
VP 275 (1.7%) 1,302 (8.2%)
AP 1,960 (12.3%) 1,935 (12.2%)
RP 648 (4.1%) 86 (0.5%)
Other – 5,099 (32.0%)

Total 5,301 (33.3%) 10,621 (66.7%)

Table 5.7: Number and percentage of individual chunks translated by the HI system.

3.4. Top SMT layer

The grammar-based translator already makes use of the SMT system trained on patents
to translate the GF English lexicon. This way, the vocabulary is disambiguated to-
wards the biomedical domain, but still there are non-parseable chunks with unknown
vocabulary in the lexicon that cannot be translated using the grammar.

To gain robustness in the final system, the output of the GF translator is used as
a priori information for a higher level SMT system. The SMT baseline is fed with
phrases which are integrated in two different ways. In both cases SMT leads the trans-
lation since it is the system that chooses the final reordering of the translation, GF
constraints parts of the translation.

Hard Integration (HI): Phrases with GF translation are forced to be translated this
way. The system can reorder the chunks and translates the untranslated chunks, but
there is no interaction between GF and pure SMT phrases.

Soft Integration (SI): Phrases with GF translation are included in the translation ta-
ble with a certain probability so that the phrases coming from the two systems interact.
Probabilities in the SMT system are estimated from frequency counts in the usual way;
the probabilities in the GF system are a fixed value in the interval [0, 1] for all the
phrases. This probability is given to the chunk translation pair as a whole, so when
competing with SMT translations that have four translation probabilities (phrase-to-
phrase and word-to-word in the two directions) the probability mass is divided among
them to combine the systems in the translation table. Notice that a probability of one
for a phrase does not imply a sure translation not only because of this, but also because
at the end, the language model chooses the translation.

4. Results and discussion
The complete hybrid system and the individual components introduced in Section 2 are
evaluated on the patents test set both automatic and manually.

After the pre-process, the test set is divided in 15,922 chunks. From these chunks
33.3% can be translated using the GF patents grammar, and the remaining 66.7% must
be passed to the SMT system. Table 5.7 shows the concrete percentages for every kind
of chunk. Notice that GF only is designed to deal with the four most frequent types
of chunks, and punctuation and conjunctions for example are ignored by GF. For these
majority categories, GF can handle half of NP and AP, almost all RP but only 17.4%
of VP.

150

WER PER TER BLEU NIST GTM-2 MTR-pa RG-S* ULC

GF 60.96 50.08 58.90 26.56 5.57 22.74 38.76 29.00 16.17
SMT 27.03 17.50 25.32 63.18 9.99 44.58 71.64 72.65 67.14

HI 33.56 21.95 31.24 55.88 9.24 38.81 67.30 67.80 58.84
SI1.0 26.76 17.39 25.10 63.56 10.02 44.86 71.96 72.89 67.56
SI0.5 26.63 17.32 25.02 63.60 10.03 44.84 71.94 72.93 67.60
SI0.0 27.08 17.48 25.36 63.15 9.99 44.54 71.60 72.66 67.11

Table 5.8: Automatic evaluation of the baselines and hybrid systems.

There are several reasons why GF cannot translate the chunks. In 18.3% of the
cases the chunks could not be parsed by the GF English grammar. When parsed, 15.5%
of the chunks could not be translated due to missing words in the bilingual lexicon and
to a lesser extent 1.1% could not be translated because of the missing information
about agreement. 31.3% of the chunks are labelled as Other (punctuation marks, item
markers, etc.) and ignored by GF.

Splitting the sentences in chunks proved to be crucial for the final translation.
84.7% of the fragments to be translated contained at least one chunk that could not
be parsed by the English grammar, and even more, 93.1% of the fragments contained
at least one chunk that could not be translated. So, the coverage of a GF translation
at sentence level would be of only 6.9%. At chunk level the coverage increases up to
33.3%.

Still this limited coverage cannot compete with that of a statistical system. Table 5.8
reports an automatic evaluation using several lexical metrics for both GF and SMT
individual systems (top rows). This set of metrics is a subset of the metrics available
in the Asiya evaluation package [16]. For all the metrics the SMT system beats the GF
one in a significant way. This is mainly due to the coverage, SMT is able to translate
the whole sentence which is not the case of GF. However, GF is able to deal with some
grammatical issues that cannot be recovered statistically. The most evident example
is agreement in gender and number. Contrary to English, French adjectives and nouns
agree in gender and number and relative pronouns agree with their relative. This is
taken into account by construction in GF so that mistaken SMT translations such as “le
médicament séparée” is correctly translated as “le médicament séparé” (the separate
medicament) or “composition pharmaceutique selon la revendication 1, dans lequel”
is correctly translated as “composition pharmaceutique selon la revendication 1, dans
lequelle” (the pharmaceutical composition of claim 1, wherein).

These are minor details from the point of view of the lexical evaluation metrics
however, they make a difference to the reader. Although in few occasions the under-
standing of the sentence is compromised because of the lack of agreement, the fluency
of the output is not harmed.

Therefore we incorporate these well-formed translations into the SMT system. A
hard integration of the translations does not allow them to interact. GF translations are
always used and the statistical decoder reorders them and completes the translation with
its own phrase table. This system is named HI in Table 5.8. Results are below those of
the SMT system because the system is being forced to use the high quality translations
together with translations of elements not considered. Just to give an example, GF will
highly benefit from incorporating a grammar to deal with compounds and numbers.
Currently these elements typical of the domain are not specifically approached.

A softer integration of the translations is done by the family of systems denoted by

151

SMT Tied SI0.5

Tester1 4 9 10
Tester2 3 13 7
Tester3 2 17 4
Tester4 6 5 12

Total 15 44 33

Table 5.9: Manual evaluation of the 23 different sentences from a random subset of
100 sentences.

GF Une utilisation selon la revendication 3, dans laquelle le médicament séparé est administré at the same time as...
SMT Utilisation selon la revendication 3, dans laquelle le médicament séparée est administré en même temps que...

HI Une utilisation selon la revendication 3, dans laquelle le médicament séparé est administré en même temps que...
SI0.5 Utilisation selon la revendication 3, dans laquelle le médicament séparé est administré en même temps que...

Ref. Utilisation selon la revendication 3, dans laquelle le médicament séparé est administré en même temps que...

Figure 5.3: Example where GF translates with the correct gender of the adjective and
the SMT completes the untraslated words.

SI in Table 5.8. In this case, GF translations are given a probability which ranges from
null to one with the same value given to all the phrases. Several experiments have been
carried out for different values in the interval. We show in the bottom rows of Table 5.8
just three of them: 0, 0.5 and 1. Relative probabilities between the systems result not
to be as important as the fact of allowing the interaction.

The combination of all the phrases improves the translations according to all the
lexical metrics considered. There is an increment of 0.42 points of BLEU, 0.30 of
TER and 0.46 of ULC, an uniform linear combination of 13 variants of the metrics
considered. Improvements are moderate because of two reasons. First, SMT transla-
tions are already good for a start. Second, the amount of issues that GF handles are
limited to be reflected on automatic metrics.

We have conducted a manual evaluation of the translations. To do this, 100 sen-
tences have been randomly selected and four evaluators have been asked to indicate the
grammatically most syntactically correct translation between two options: the SMT
translation and the SI0.5 hybrid translation. The main aspects that we evaluated were
correct agreement and properly inflected words.

For the whole testing corpus, 78.47% of the sentences were identically translated by
the SMT and HMT. For our manually tested corpus, we only inspected the 23 sentences
where the systems had a different output. The results can be seen in Table 5.9. The
hybrid system is better than the SMT one according to the four evaluators, and the
improvements come from discrepancies in gender, number and agreement. The SMT
translations were preferred in the cases where the hybrid translation failed to translate
certain words, so that the final claim has a visible hole –which makes it syntactically
incorrect.

Figure 5.3 shows an example sentence where these features are observed. GF is
doing the gender agreement between noun and adjective correctly (“séparée” vs. “sé-
paré”) but is not able to translate the full sentence (“at the same time as”). The two
hybrid systems in this case are able to construct the correct translation which coincides
with the reference.

152

5. Conclusions and future work
This work presents a HMT system for patent translation. The system exploits the high
coverage of statistical translators and the high precision of GF to deal with specific
issues of the language.

At this moment the grammar tackles agreement in gender, number and between
chunks, and reordering within the chunks. Although the cases where these problems
apply are not extremely numerous both manual and automatic evaluations consistently
show their preference for the hybrid system in front of the two individual translators.

The coverage of the grammar can be extended in order to deal with more typi-
cal structures present in patent documents. The coverage of VP is particularly low
because of the missing verbs from the French lexicon and the syntactically complex
verb phrases –such as cascades of nested verbs, which are not handled by the patents
grammar yet. Also, a grammar to translate compounds will be included as they are a
significant part of the biomedical documents. Moreover, the grammar component can
be extended to handle the ordering at sentence level besides of the reordering within
the chunks. This is specially interesting to deal with languages like German where the
structure of the sentence is different from the structure in English for example.

The previous improvements will increase the number of chunks that can be parsed
by the grammar; in order to increase the percentage of translations it is also necessary to
improve the lexicon building procedure. An obvious improvement would be a bilingual
dictionary of idioms, so that the translation would not just map word-to-word, but also
phrase-to-phrase.

Finally, we plan to implement another version of the hybrid system where GF gram-
mars are applied at an later stage –after the English chunks are translated into French
by the SMT system. The GF grammars will be used to to restore the agreement for
chunks like VP, RP and AP, like before. The main difference is that due to an earlier
use of SMT, one can capture idiomatic constructions better, and use GF just in the end
for improving syntactic correctness.

Acknowledgements
This work has been partially funded by the European Community’s Seventh Frame-
work Programme (FP7/2007-2013) under grant agreement number 247914 (MOLTO
project, FP7-ICT-2009-4-247914).

153

154

Bibliography

[1] Ranta, A.: Grammatical Framework: Programming with Multilingual Grammars.
CSLI Publications, Stanford (2011) ISBN-10: 1-57586-626-9 (Paper), 1-57586-
627-7 (Cloth).

[2] Koehn, P., Hoang, H., Mayne, A.B., Callison-Burch, C., Federico, M., Bertoldi,
N., Cowan, B., Shen, W., Moran, C., Zens, R., Dyer, C., Bojar, O., Constantin,
A., Herbst, E.: Moses: Open source toolkit for statistical machine translation. In:
Annual Meeting of the Association for Computation Linguistics (ACL), Demon-
stration Session. (Jun 2007) 177–180

[3] Ceausu, A., Tinsley, J., Way, A., Zhang, J., Sheridan, P.: Experiments on Domain
Adaptation for Patent Machine Translation in the PLuTO project. Proceedings of
the 15th Annual Conference of the European Association for Machine Translation
(EAMT 2011) (2011)

[4] España-Bonet, C., Enache, R., Slaski, A., Ranta, A., Màrquez, L., Gonzàlez, M.:
Patent translation within the molto project. In: Proceedings of the 4th Workshop
on Patent Translation, MT Summit XIII, Xiamen, China (sep 2011) 70–78

[5] Ehara, T.: Rule based machine translation combined with statistical post editor
for japanese to english patent translation. MT Summit XI Workshop on patent
translation, 11 September 2007, Copenhagen, Denmark (2007) 13–18

[6] Ehara, T.: Statistical Post-Editing of a Rule-Based Machine Translation System.
Proceedings of NTCIR-8 Workshop Meeting, June 15–18, 2010 (2010) 217—-
220

[7] Sheremetyeva, S.: Natural language analysis of patent claims. In: Proceedings of
the ACL-2003 workshop on Patent corpus processing - Volume 20. PATENT ’03,
Stroudsburg, PA, USA, Association for Computational Linguistics (2003) 66–73

[8] Sheremetyeva, S.: Less, Easier and Quicker in Language Acquisition for Patent
MT. MT Summit X, Phuket, Thailand, September 16, 2005, Proceedings of
Workshop on Patent Translation (2005) 35–42

[9] Sheremetyeva, S.: On Extracting Multiword NP Terminology for MT. EAMT-
2009: Proceedings of the 13th Annual Conference of the European Association
for Machine Translation, ed. Lluís Màrquez and Harold Somers, 14-15 May 2009,
Universitat Politècnica de Catalunya, Barcelona, Spain (2009) 205–212

155

[10] Eisele, A., Federmann, C., Saint-Amand, H., Jellinghaus, M., Herrmann, T.,
Chen, Y.: Using moses to integrate multiple rule-based machine translation en-
gines into a hybrid system. In: Proceedings of the Third Workshop on Statistical
Machine Translation. StatMT ’08 (2008) 179–182

[11] Chen, Y., Eisele, A.: Hierarchical hybrid translation between english and german.
In Hansen, V., Yvon, F., eds.: Proceedings of the 14th Annual Conference of the
European Association for Machine Translation, EAMT, EAMT (5 2010) 90–97

[12] Habash, N., Dorr, B., Monz, C.: Symbolic-to-statistical hybridization: extending
generation-heavy machine translation. Machine Translation 23 (2009) 23–63

[13] Federmann, C., Eisele, A., Chen, Y., Hunsicker, S., Xu, J., Uszkoreit, H.: Further
experiments with shallow hybrid mt systems. In: Proceedings of the Joint Fifth
Workshop on Statistical Machine Translation and MetricsMATR. (July 2010) 77–
81

[14] España-Bonet, C., Labaka, G., Díaz de Ilarraza, A., Màrquez, L., Sarasola, K.:
Hybrid machine translation guided by a rule-based system. In: Proceedings of
the 13th Machine Translation Summit, Xiamen, China (sep 2011) 554–561

[15] Ranta, A.: The GF resource grammar library. Linguistic Issues in Language
Technology 2(1) (2009)

[16] Angelov, K.: The Mechanics of the Grammatical Framework. PhD thesis,
Chalmers University of Technology, Gothenburg, Sweden (2011)

[17] Stolcke, A.: SRILM – An extensible language modeling toolkit. In: Proc. Intl.
Conf. on Spoken Language Processing. (2002)

[18] Och, F.J., Ney, H.: A systematic comparison of various statistical alignment
models. Computational Linguistics 29(1) (2003) 19–51

[19] Koehn, P., Shen, W., Federico, M., Bertoldi, N., Callison-Burch, C., Cowan, B.,
Dyer, C., Hoang, H., Bojar, O., Zens, R., Constantin, A., Herbst, E., Moran, C.:
Open Source Toolkit for Statistical Machine Translation. Technical report, Johns
Hopkins University Summer Workshop. http://www.statmt.org/jhuws/ (2006)

[20] Och, F.J.: Minimum error rate training in statistical machine translation. In: Proc.
of the Association for Computational Linguistics, Sapporo, Japan (July 6-7 2003)

[21] Papineni, K., Roukos, S., Ward, T., Zhu, W.J.: Bleu: a method for automatic
evaluation of machine translation. In: Proceedings of the Association of Compu-
tational Linguistics. (2002) 311–318

[22] Tsuruoka, Y., Tateishi, Y., Kim, J., Ohta, T., McNaught, J., Ananiadou, S., Tsujii,
J.: Developing a robust part-of-speech tagger for biomedical text. In Bozanis, P.,
Houstis, E.N., e., eds.: Advances in Informatics. Volume 3746. Springer Berlin
Heidelberg (2005) 382–392

[23] Romary, L., Salmon-Alt, S., Francopoulo, G.: Standards going concrete: from
lmf to morphalou. In: Proceedings of the Workshop on Enhancing and Using
Electronic Dictionaries. ElectricDict ’04, Stroudsburg, PA, USA, Association for
Computational Linguistics (2004) 22–28

156

[24] Giménez, J., Màrquez, L.: Asiya: An Open Toolkit for Automatic Machine
Translation (Meta-)Evaluation. The Prague Bulletin of Mathematical Linguistics
(94) (2010) 77–86

157

158

3 Hybrid Translation for European Biomedical Patents

Cristina España-Bonet Ramona Enache
Erzsébet Galgóczy Aarne Ranta Lluís Màrquez

Abstract: Patent translation is of great importance for patent agencies where some
parts of the documents must be available in several languages. For European patents
these languages include English, French and German. We present and compare here
the translation engines developed for translating English patents into French and Ger-
man. The translators include a statistical system (SMT) that assures a full coverage,
an interlingua engine with statistical components based on Grammatical Framework
(GF) that assures grammatically correct translations, and a hybrid system (HMT) com-
bination of both. Biomedical patents are chosen as the domain where to develop and
test the systems. Due to its limited coverage, the pure GF system showed the lowest
performance, whereas the HMT gave slight improvements over pure SMT.

1. Introduction
Patent classification, retrieval and translation are an important focus in nowadays re-
search. The high number of patents being registered in the patent agencies and the
necessity for these patents to be translated into several languages are a motivation to
automate its translation between various language pairs. Different methods are used for
this task, ranging from statistical machine translation systems [1, 2] to hybrid systems
[3, 4, 5].

In the last years two European projects have been devoted to patent analysis: PLuTO
(Patent Language Translations Online14) and MOLTO (Multilingual Online Transla-
tion15). PLuTO developed hybrid systems combining example-based and hierarchi-
cal techniques. On the other hand, one of MOLTO’s use cases aimed at extending a
grammar-based translator with an SMT to gain robustness in the translation of patents.

Hybrid translation systems can be especially appropriate for patent translation. The
language of patents, although having a large amount of vocabulary and richness of
grammatical structure, still uses a formal style that can be interpreted by a grammar.
Parallel corpora in the official languages are also available so that SMT systems output
fluent translations with a wide coverage. With these premises it seems natural to com-
bine a rule based system with statistical components. This work follows this approach.
We enrich a GF grammar to deal with the translation of patents in the biomedical do-
main and train an in-domain SMT system. A full hybrid system with components of
the two individual ones is also developed.

The paper is organised as follows. Section 3 introduces the basic resources and
individual systems to be applied to patent translation. Section 3 presents the architec-
ture of the translation engines here developed and Section 3 analyses the results and
compares them with other devoted translators. Finally Section 3 draws the conclusions.

14http://www.pluto-patenttranslation.eu/
15http://www.molto-project.eu/

159

2. Basic Resources and Systems
2.1. Corpus

A parallel corpus on the selected domain is needed in order to train the statistical sys-
tem. For our experiments we use a part of the Marec corpus made available by the
CLEF Initiative16.

There are 119,337 documents with IPC code A61P, the one we chose to represent
the biomedical domain. From these documents we select the aligned fragments in every
patent with trilingual claims. That leads to 281,283 aligned parallel segments and about
8 million tokens (7,954,491 tokens for English, 7,346,319 for German and 8,906,379
for French).

Besides a standard cleaning of the corpus, the detection and correct tokenisation of
chemical compounds has been shown to be crucial in the performance of translators as
explained in [2]. The same preprocess and tokenisation is used in this work for all the
systems.

2.2. SMT System

We build a state-of-the-art phrase-based SMT system trained on the biomedical domain
with the corpus described in Section 3. Its development has been done using standard
freely available software. A 5-gram language model is estimated using interpolated
Kneser-Ney discounting with SRILM [6]. Word alignment is done with GIZA++ [7]
and both phrase extraction and decoding are done with the Moses package [8, 9]. The
optimisation of the feature weights of the model is done with Minimum Error Rate
Training (MERT) [10] against the BLEU [11] evaluation metric. Our model considers
the language model, direct and inverse phrase probabilities, direct and inverse lexical
probabilities, phrase and word penalties, and a non-lexicalised reordering.

As a byproduct of training the SMT system lexical and phrase tables are obtained.
The word-to-word translations are deduced from the alignments given by GIZA++.
The final translation tables are also obtained from these alignments, using the heuris-
tic “grow-diag-final” and the phrase extraction script in Moses. These resources are
important to build the patent’s lexicon that uses the GF engine.

2.3. GF Translation System

GF is a grammar formalism designed for multilingual grammars [12]. It represents
grammars as a pair of an abstract syntax —interlingual representation of the semantics
and a number of concrete syntaxes—representing target languages implementing the
abstract syntax. The two main operations performed on GF grammars are parsing text
to an abstract syntax tree and linearising trees into a target language.

The largest and most comprehensive GF application is the resource grammar li-
brary [13] which describes the basic syntax of 27 languages. Using this grammar, one
can develop application grammars easily, by using the language primitives from the
resource grammar corresponding to a given language.

By combining parsing and linearisation, one can achieve automatic translation be-
tween any pair of languages of a GF grammar. The advantage is that the translation
will be syntactically correct, as each concrete syntax implements the language-specific
issues separately. However, the approach is limited by the coverage of the grammar

16http://www.clef-initiative.eu/

160

Figure 5.4: The input is prepro-
cessed and used to build the lexicon
and mark the chunks to translate.

Figure 5.5: Details of the lexicon build-
ing process.

and it is difficult to translate free text. The addition of statistical components in patent
translation has been the first attempt to use GF for parsing free text [2].

3. Hybrid System
3.1. GF Architecture

This work is a continuation of a basic architecture described in [5]. Among some
improvements we point out the fact that a semi-automatic technique for lexicon acqui-
sition has been replaced with a number of automated methods. In addition to this, the
original system that translated English claims to French has been adapted to translate
claims to German, dealing in this way with the three official languages of the EPO.

Figures 5.4 and 5.5 show the main modules of the GF translator developed for
patents. The first thing to notice is the fact that the GF translator works at chunk level
due to the difficulty to parse full claims. All the necessary preprocess before really
translating a chunk is depicted in Fig. 5.4. After tokenising the text, claims are tagged
with part-of-speech (PoS) with Genia [14], a PoS tagger trained on the biomedical
domain. The output of the tagger is used for two purposes, as input for the chunker and
as the source to build the lexicon.

From the PoS-tagged words only the ones labelled as nouns, adjectives, verbs and
adverbs are kept, since the GF library already has an extensive list of functional PoS
such as prepositions and conjunctions. The extensive GF English lexicon17 is used as
a lemmatiser for the PoS-tagged words, so that one can build their correspondent ab-
stract syntax entry (Figure 5.5). Moreover, all the inflection forms of a given word are
obtained from the same resource. This process is made online for most of the systems.
For every sentence to translate, the lexicon is enlarged with the corresponding vocab-
ulary. The French/German version of the lexicon is built by translating the individual
entries from the English lexicon (all inflection forms) with the SMT individual system
trained on the patent corpus. The translations are lemmatised with an extensive GF

17The GF English lexicon is based on the Oxford Advanced Learner’s Dictionary, and contains around
50,000 English words.

161

lexicon in order to get their inflection table. The PoS is assumed to be the same as in
the English counterpart.

3.2. Domain-Specific Grammar Structure

The patent grammar has concrete syntaxes for English, French and German and is build
on the resource grammars with some additions for dealing with specific features of the
patent domain and with chunk translation. These additions include 4 new categories
for parsing chunks (Parse_AdjP, Parse_AdvP, Parse_VP, Parse_NP), 3
for agreement among them (NP_VP, NP_AdjP, NP_RelP) and aslo 8 functions
that deal with these agreements and the parsing of chunks. 9 extensions to the re-
source grammar dealing with general-purpose constructions have been included. Ex-
amples of these constructions with descriptive names are Nominalisation (“re-
covering the antibodies”), Aggregation (mouse antibody – antibody of mouse),
Adjectivisation (“immunised mouse”) or GerundAsAdj (“following states”).
Finally the grammar contains 20 constructions to deal with claim-specific data.

3.3. Domain-Specific Lexicon

We devise several ways of automating the lexicon acquisition process. For this, one
needs to construct a base dictionary from which the final lexicon is built. Two different
dictionaries are created:

Core Lexicon. It is made of 198 words. These elements are selected as the most
common English words appearing in the training corpus used in the SMT system. The
English words are translated to French and German and, since it is a small dictionary,
it has been manually checked assuring a correct translation. The dictionary contains
only single words, not multiple mappings or phrases.

Static Lexicon. The methods for acquiring the lexicon differ for French and Ger-
man. For French, the lexicon contains 3,983 words and is built from the SMT transla-
tion tables. It is constructed by looking for the most likely translation of the English
words in the translation tables. Contrary to the core lexicon, the static one contains
one-to-many translations.

For German, the static lexicon is built using the SMT word alignments. From
the aligned word-to-word pairs, the ones with the highest respective probabilities are
selected and lemmatised using the GF dictionary and smart paradigms18. In the same
step, word pairs get matched with a previously SMT-built English lexicon based on the
patents corpus; so in the end, we are left with mappings from said English lexicon to
entries from the German GF dictionary. A dictionary extracted from Wiktionary is also
used to finally build a static lexicon with 43,084 entries.

Dictionary of German Compounds. The lexicons just described contain one-to-
one and one-to-many translations. While this is a workable approach in translating
English to French, the mappings are ambiguous in the case of English to German. For
example, the English phrase nucleotide sequence translates to German as Nucleotidse-
quenz. If one attempts a one-to-one mapping, one inevitably ends up with nucleotide
→ Nucleotidsequenz and sequence→ Nucleotidsequenz.

There are two accepted ways to deal with the problem [15]. First, on can split Ger-
man compounds in the original corpus in order to make the one-to-one mapping possi-
ble and rejoin the constituents in a later step. Alternatively, one can create new “single-

18A smart paradigm is GF function that takes the basic form of a word and builds the whole GF represen-
tation, by using a set of rules for inferring the other forms.

162

WER PER TER BLEU NIST GTM2 MTRst CPOc CPOp SPOp SPpN ULC

GF-Sts 63.58 54.09 62.30 24.22 5.17 21.39 35.34 24.34 25.53 29.91 3.59 64.46
GF-SaBs 64.73 49.77 62.58 24.24 5.36 20.82 38.15 29.04 30.33 34.74 4.15 70.94
GF-SaEs 63.43 48.63 61.30 25.50 5.55 21.59 39.92 29.80 31.10 35.97 4.27 74.01
GF-UnBs 64.74 49.77 62.59 24.24 5.36 20.82 38.15 29.04 30.33 34.75 4.15 70.93
GF-UnEs 63.43 48.62 61.31 25.50 5.55 21.59 39.92 29.81 31.11 35.97 4.27 74.02

Table 5.10: GF translation for the English-to-French language pair.

WER PER TER BLEU NIST GTM2 MTRst CPOc CPOp SPOp SPpN ULC

GF-Sts 80.75 73.11 80.07 17.11 3.71 15.85 25.57 15.01 14.21 7.32 2.90 50.74
GF-SaBs 73.45 62.57 72.01 21.67 4.80 19.44 34.69 22.14 20.50 20.50 3.91 75.71
GF-SaEs 74.70 64.04 73.59 20.70 4.61 18.74 33.21 21.03 19.80 19.80 3.93 72.71
GF-UnBs 73.46 62.58 72.02 21.67 4.79 19.44 34.68 22.15 20.52 20.52 3.91 75.71
GF-UnEs 74.70 64.04 73.59 20.70 4.61 18.74 33.21 21.03 19.80 19.80 3.93 72.71

Table 5.11: GF translation for the English-to-German language pair.

word” compound entries for English, which can be mapped to the German compound.
In our approach we decided to go with the first method by applying a greedy method
of looking up the German compound or its substrings matching to compounding words
in the dictionary and splitting them if there was a match. With this process a dictionary
with 7,774 entries is built.

Dynamic lexicon acquisition. In addition to the static lexical resources, different
variants of the main architecture use different automated lexicon acquisition tech-
niques:

Static. Uses the static dictionaries for French and German and does not add new
lexical items (GF -Sts).

Runtime safe. Uses a base lexicon (core, GF -SaBs, or static, GF -SaEs) to start
with and adds the lexical items that are not present there. The method assumes that
the English words are found in the English monolingual dictionary and that the target
translation is found in the corresponding target dictionary and has the right PoS tag.
We assigned a confidence score to each of the translated chunks. The score is 4 for
unambiguous translations and 1 for the ambiguous ones.

Runtime unsafe. Uses a base lexicon (core, GF -UnBs, or static, GF -UnEs) to
start with and adds the lexical items that are not present there. The method adds words
regardless whether they are found in the monolingual dictionaries and builds the repre-
sentation with the help of smart paradigms. This approach is used for nouns, adjectives
and adverbs. As before, chunk translations are labeled with confidence scores: 4 for
translations that are not ambiguous and contain only “safe" words from dictionaries, 1
for translations that are “safe" but ambiguous, and 0.2 for translations that contain at
least an “unsafe" word. Dependent “safe" elements such as RelP, AdvP and VP which
depend on an NP are labeled as 0.2 in this system.

3.4. Final SMT Decoding

As it has been seen, the grammar-based translator already makes use of the SMT system
trained on patents to translate the GF English lexicon. Although it already uses of
hybridisation techniques, we consider this first approximation as a baseline for the more
advanced hybrid systems. The reason is that even the vocabulary is disambiguated
towards the biomedical domain thanks to the hybridisation, still there are non-parseable
chunks with unknown vocabulary in the lexicon that cannot be translated using the

163

WER PER TER BLEU NIST GTM2 MTRst CPOc CPOp SPOp SPpN ULC

GF-SaEs 63.43 48.63 61.30 25.50 5.55 21.59 39.92 29.80 31.10 35.97 4.27 34.93
SMT 27.16 18.00 25.57 62.40 9.95 44.99 75.71 63.71 65.91 47.54 3.60 78.81

SI-Sts 27.47 18.25 25.88 62.17 9.93 45.01 75.86 63.18 65.69 70.14 7.53 85.92
SI-SaBm 26.96 18.14 25.54 62.50 9.94 45.31 75.83 63.32 65.77 70.14 7.58 86.26
SI-SaEm 27.24 18.54 25.79 62.44 9.93 45.09 75.84 62.71 65.47 69.49 7.58 85.84
SI-UnBm 27.12 18.26 25.58 62.35 9.93 44.98 75.81 63.13 65.78 69.92 7.57 86.05
SI-UnEm 27.09 18.39 25.66 62.56 9.94 45.26 75.95 62.93 65.62 69.80 7.59 86.08

Google 2011 36.17 24.08 34.32 53.46 9.20 36.55 67.73 54.57 56.88 62.45 6.94 73.89
Google 2012 32.46 20.82 30.54 57.86 9.70 40.28 71.56 60.17 62.56 45.48 3.46 73.19
Google 2013 26.15 18.05 24.61 66.47 10.39 46.77 77.81 65.22 68.38 72.75 7.85 89.23

Table 5.12: Comparative table for the English-to-French language pair.

WER PER TER BLEU NIST GTM2 MTRst CPOc CPOp SPOp SPpN ULC

GF-SaBs 73.45 62.57 72.01 21.67 4.80 19.44 34.69 22.14 20.50 20.50 3.91 31.24
SMT 30.93 22.82 29.33 57.59 9.40 42.98 67.84 52.89 51.62 51.62 6.95 85.03

SI-Sts 32.95 23.83 31.35 56.02 9.22 41.73 66.18 50.53 48.49 48.49 6.75 81.89
SI-SaBm 32.95 23.94 31.43 56.00 9.19 41.89 66.17 51.35 49.76 49.76 6.81 82.47
SI-SaEm 32.63 23.36 30.98 56.59 9.23 42.12 66.94 51.69 50.39 50.39 6.81 83.17
SI-UnBm 32.58 24.50 31.16 56.06 9.21 42.25 65.83 51.67 50.27 50.27 6.87 82.81
SI-UnEm 32.94 23.73 31.39 56.28 9.19 42.16 66.40 51.75 50.04 50.04 6.80 82.77

Google 2011 48.59 34.91 46.53 45.22 8.04 32.45 57.17 41.37 38.08 38.08 5.63 64.47
Google 2012 40.20 26.99 38.29 53.43 9.01 39.89 63.34 49.88 47.23 65.23 6.23 79.65
Google 2013 33.25 23.22 31.78 61.65 9.85 45.79 68.72 55.35 52.36 52.36 6.55 86.17

Table 5.13: Comparative table for the English-to-German language pair.

grammar. That is to say, the system is not able to translate robustly a whole test set.
The percentage of sentences that can be completely translated from beginning to end
by GF is 6.9%.

To gain robustness in the final system the output of the GF translator is used as
a priori information for a higher level SMT system. An SMT system trained in the
same way as the SMT baseline is fed with these GF phrases, both in the development
process and at decoding time. In our main system, we allow the phrases to interact, and
therefore, we name it as a Soft Integration (SI).

Phrases with GF translation are included in the translation table with a certain prob-
ability so that the phrases coming from the two systems interact. Probabilities in the
SMT system are estimated from frequency counts in the usual way; the probabilities
in the GF system are assigned to divide phrases in two or three groups according to
the confidence on the translation as explained above. The GF score is divided homo-
geneously among the four lexical features of the translation table. So, a score of 4
means a score of 1 for each feature (generative and discriminative lexical translation
probabilities, and generative and discriminative translation models). This value does
not imply a sure translation because other features such as language model, penalties
and reordering also interact, but it is given a high value so that SMT phrases at most
can tie. In the same way, a score of 1 is converted into a 0.25 for each feature, and the
most unsafe translations, those with score 0.2, have a minimum contribution of 0.05 per
feature. This small value makes them very difficult to be chosen but still complement
the translation in case there is not better choice coming from the SMT.

Several GF translations for every chunk are available. Notice that the final trans-
lation table contains both grammatical and non-grammatical phrases coming from the
SMT system and only grammatical phrases or chunks from the GF one.

164

4. Results and Discussion

We evaluate the performance of three different translators for biomedical patents: i)
the SMT in-domain system, ii) the GF with automated lexicon acquisition and iii) the
complete hybrid system.

In order to do a complete analysis with automatic metrics we do not use a single
metric such as the standard BLEU but an heterogeneous set. The Asiya evaluation
package [16] is used for this purpose. From the full set of metrics available for English,
French and German we select a representative subset build up with:

Lexical metrics: PER [17], TER [18] and WER [19] based on edit distances; BLEU
and NIST [20], based on n-gram matching; and GTM [21] and METEOR [22], based
on the F-measure.

Syntactic metrics [23]: SPOp and SPpN , based on the lexical overlap or the NIST
score over the part-of-speech (Shallow Parsing); and CPOp, and CPOc, based on the
lexical overlap among part-of-speech or constituents of constituent parse trees.

The Uniform Linear Combination (ULC) of metrics used in the evaluation consid-
ers all these metrics.

Tables 5.10 and 5.11 show the automatic evaluation of the GF translator for French
and German respectively. The nomenclature of the five systems is that defined in the
previous section, and the s at the end of the names indicates that one considers single
GF translations: from the all the translation options generated, only the most frequent
in the corpus is kept. Scores associated to each chunk have no effect at this point.

Translation with a static lexicon (GF -Sts) is significantly below those with runtime
lexicons. 4,877 and 2,857 chunks can be translated with a static lexicon for French and
German respectively, whereas if one builds the dynamic lexicon on top of it the number
grows up to 7,150 and 6,784. So, GF -Sts is worse because it translates less chunks.

For dynamic lexicons two conclusions can be extracted. First, runtime safe and
unsafe make no difference at all. The number of chunks translated by the two versions
is almost the same and confidence scores do not have any effect here. Second, building
the lexicon on top of the base one (GF -xxBs) is better for German, but starting from
the static lexicon (GF -xxEs) is better for French. In both cases the positive difference
is of 1 point of BLEU and more than 3 of ULC for example.

10,306 chunks are detected by Genia, plus 3,107 punctuation elements. So, ap-
proximately half of the tokens are translated by GF alone. There might be several
reasons why GF cannot translate the chunks. First and most important, in some cases
the chunks cannot be parsed by the GF English grammar. When parsed, there might be
a lack of information about agreement or, in case of dynamic lexicons, missing words
in the bilingual lexicon. As an example, let’s see the effect on the GF -UnBs system.
In this case 3,449 chunks cannot be translated. In a 82% of the cases chunks cannot be
translated because of the parsing, a 13% is due to the missing entries in the lexicons
and the remaining 5% is due to missing the agreement.

To complement these untranslated chunks we combine the GF translations with the
SMT ones. The statistical system by its own has a high performance (see for example
BLEUs close to 60 in Tables 5.12 and 5.13). The domain can be considered restricted
for a SMT and the most repetitive structures are correctly translated. These structures
are also covered by GF, so, in most cases translations coming from the two individual
systems coincide. Within the phrases selected in the final translation of the full hybrid
systems (SI-xxxx) only between 5-7% of the common chunks are uniquely translated
by GF, 45-60% are translations only seen in the SMT system and between 35-50%
appear in both. With this low contribution of GF in the final translation, SMT and

165

hybrid are close one to each other. For English-to-French translation the hybrid system
is globally better whereas for English-to-German the statistical is.

In the final decoding of the full hybrid, the language model which, together with
the word penalty, has the highest weight in the final score of a translation, is favouring
translations with structures similar to those seen in the training data. So, when the
final decoding has freedom to choose, it reproduces the most frequent structures. In
some cases that simply favours a correct SMT translation in front of another correct
GF translation; in some others, a correct translation is lost because the language model
is not seeing at large distances.

The reordering between chunks/phrases is also done by the SMT decoder, only
the reordering intra-chunk is done by GF. The following natural step is to allow the
grammar to reorder the chunks, and this implies a GF capable of parsing full sentences.
Ongoing work is being done for robust parsing in GF [24]. Other improvements are
related to the coverage of structures by the grammar and the lexicon.

The tables of results show a comparison with Google Translate19 too. We have
translated the test set at three different periods distant one year, February 2011, April
2012 and May 2013. The hybrid translator is better than Google 2011 and Google
2012, but the current Google translator is the best system for almost all the metrics
both for German and French, with the exception of edit distance metrics which favour
our in-domain SMT system. Google signed an agreement with the EPO in March
2011 so, their training corpus might already contain EPO patents at this time and the
comparison between systems might not be completely fair.

A similar thing happens with the PLuTO translator. It is a hybrid data-driven sys-
tem built following established design patterns, with an extensible framework allowing
for the interchange of novel or previously developed modules as it is defined in [25].
The project dealt with English, French, German, Spanish, Portuguese, Chinese and
Japanese. For the languages we are interested in, they have at their disposal the Marec
corpus and EPOs translation memories and therefore we have not included their trans-
lations in our analysis.

5. Conclusions

This work presents and analyses several translation engines developed for patent trans-
lation in the biomedical domain. Given that there is enough parallel corpus available,
the SMT system showed to be the most appropriate in terms of performance/effort.
However, a manual inspection of the translations confirms that some aspects such as
agreement and concordance are better covered by the GF system than by the SMT one.
In general, these issues do not damage the understanding of the sentence, but patent
translation needs of high precision translation, without any room for ambiguities gen-
erated by incorrect translations.

This has been the main aim to build a hybrid translator between GF and SMT. The
current HMT system uses more than a 90% of phrases from the statistical system. This
is possibly due to the strength that has the language model in the final decoding, and to
the fact that it has been estimated in the same corpus where the SMT system has been
trained. Besides, the reference translations are also gathered from the Marec corpus,
so, at the end, all the automatic mechanisms try to reproduce the specific language of
the Marec data.

19http://translate.google.com

166

A key element to improve the hybrid system with the GF grammaticality is a robust
parsing that allows to keep the GF structure of the source sentence in the translation.
This would specially benefit the English-to-German translation, where the SMT system
is better. Increasing the number of structures covered by the grammar and the entries
in the lexicon would also provide the final system with more grammatical chunks.
Regarding the final SMT decoding, the addition of linguistic features could also help
in the same direction. This includes considering features such as PoS and the kind of
chunk. Features with information on the origin system of every translation option and
additional language models for PoS and chunks can also favour grammatically correct
output.

Acknowledgements
This work has been partially funded by the European Community’s Seventh Frame-
work Programme (FP7/2007-2013) under grant agreement number 247914 (MOLTO
project, FP7-ICT-2009-4-247914).

167

168

Bibliography

[1] Ceausu, A., Tinsley, J., Way, A., Zhang, J., Sheridan, P.: Experiments on Domain
Adaptation for Patent Machine Translation in the PLuTO project. Proceedings of
the 15th Annual Conference of the European Association for Machine Translation
(EAMT 2011) (2011)

[2] España-Bonet, C., Enache, R., Slaski, A., Ranta, A., Màrquez, L., Gonzàlez,
M.: Patent translation within the MOLTO project. In: Proceedings of the 4th
Workshop on Patent Translation, MT Summit XIII, Xiamen, China (sep 2011)
70–78

[3] Ehara, T.: Rule based machine translation combined with statistical post editor
for japanese to english patent translation. MT Summit XI Workshop on patent
translation, 11 September 2007, Copenhagen, Denmark (2007) 13–18

[4] Ehara, T.: Statistical Post-Editing of a Rule-Based Machine Translation System.
Proceedings of NTCIR-8 Workshop Meeting, June 15-18, 2010 (2010) 217–220

[5] Enache, R., España-Bonet, C., Ranta, A., Màrquez, L.: A hybrid system for
patent translation. In: Proceedings of the 16th Annual Conference of the Euro-
pean Association for Machine Translation (EAMT12), Trento, Italy (may 2012)
269–276

[6] Stolcke, A.: SRILM – An extensible language modeling toolkit. In: Proc. Intl.
Conf. on Spoken Language Processing. (2002)

[7] Och, F.J., Ney, H.: A systematic comparison of various statistical alignment
models. Computational Linguistics 29(1) (2003) 19–51

[8] Koehn, P., Shen, W., Federico, M., Bertoldi, N., Callison-Burch, C., Cowan, B.,
Dyer, C., Hoang, H., Bojar, O., Zens, R., Constantin, A., Herbst, E., Moran, C.:
Open Source Toolkit for Statistical Machine Translation. Technical report, Johns
Hopkins University Summer Workshop. http://www.statmt.org/jhuws/ (2006)

[9] Koehn, P., Hoang, H., Mayne, A.B., Callison-Burch, C., Federico, M., Bertoldi,
N., Cowan, B., Shen, W., Moran, C., Zens, R., Dyer, C., Bojar, O., Constantin,
A., Herbst, E.: Moses: Open source toolkit for statistical machine translation. In:
Annual Meeting of the Association for Computation Linguistics (ACL), Demon-
stration Session. (Jun 2007) 177–180

[10] Och, F.J.: Minimum error rate training in statistical machine translation. In: Proc.
of the Association for Computational Linguistics, Sapporo, Japan (July 6-7 2003)

169

[11] Papineni, K., Roukos, S., Ward, T., Zhu, W.J.: Bleu: a method for automatic
evaluation of machine translation. In: Proceedings of the Association of Compu-
tational Linguistics. (2002) 311–318

[12] Ranta, A.: Grammatical Framework: Programming with Multilingual Grammars.
CSLI Publications, Stanford (2011) ISBN-10: 1-57586-626-9 (Paper), 1-57586-
627-7 (Cloth).

[13] Ranta, A.: The GF resource grammar library. Linguistic Issues in Language
Technology 2(1) (2009)

[14] Tsuruoka, Y., Tateishi, Y., Kim, J., Ohta, T., McNaught, J., Ananiadou, S., Tsujii,
J.: Developing a robust part-of-speech tagger for biomedical text. In Bozanis, P.,
Houstis, E.N., e., eds.: Advances in Informatics. Volume 3746. Springer Berlin
Heidelberg (2005) 382-392

[15] Popović, M., Stein, D., Ney, H.: Statistical machine translation of german com-
pound words. In: FinTAL - 5th International Conference on Natural Language
Processing, Springer Verlag, LNCS, Turku, Finland (August 2006) 616–624

[16] Giménez, J., Màrquez, L.: Asiya: An Open Toolkit for Automatic Machine
Translation (Meta-)Evaluation. The Prague Bulletin of Mathematical Linguistics
(94) (2010) 77–86

[17] Tillmann, C., Vogel, S., Ney, H., Zubiaga, A., Sawaf, H.: Accelerated DP based
Search for Statistical Translation. In: Proceedings of European Conference on
Speech Communication and Technology. (1997)

[18] Snover, M., Dorr, B., Schwartz, R., Micciulla, L., , Makhoul, J.: A Study
of Translation Edit Rate with Targeted Human Annotation. In: Proceedings of
AMTA. (2006) 223–231

[19] Nießen, S., Och, F.J., Leusch, G., Ney, H.: An Evaluation Tool for Machine
Translation: Fast Evaluation for MT Research. In: Proceedings of the 2nd Inter-
national Conference on Language Resources and Evaluation. (2000)

[20] Doddington, G.: Automatic evaluation of machine translation quality using n-
gram co-occurrence statistics. In: Proceedings of the 2nd Internation Conference
on Human Language Technology. (2002) 138–145

[21] Melamed, I.D., Green, R., Turian, J.P.: Precision and Recall of Machine Trans-
lation. In: Proceedings of the Joint Conference on Human Language Technology
and the North American Chapter of the Association for Computational Linguis-
tics (HLT-NAACL). (2003)

[22] Banerjee, S., Lavie, A.: METEOR: An Automatic Metric for MT Evaluation
with Improved Correlation with Human Judgments. In: Proceedings of ACL
Workshop on Intrinsic and Extrinsic Evaluation Measures for MT and/or Sum-
marization. (2005)

[23] Giménez, J., Màrquez, L.: Linguistic features for automatic evaluation of hetero-
geneous mt systems. In: Proceedings of the Second ACL Workshop on Statistical
Machine Translation. (June 2007) 256–264

170

[24] Angelov, K.: The Mechanics of the Grammatical Framework. PhD thesis,
Chalmers University of Technology, Gothenburg, Sweden (2011)

[25] Tinsley, J., Way, A., Sheridan, P.: PLuTO: MT for Online Patent Translation. In:
Proceedings of the 9th Conferences of the Association for Machine Translation
in the Americas (AMTA 2010). (2010)

171

172

	Introduction
	Contributions
	Creating Language Resources
	Grammars Describing Structured Models
	Bootstrapping Grammars from External Sources
	Grammar-Based Hybrid Systems for Machine Translation

	Further Frontiers of Multilingual Grammar Development

	Creating Language Resources
	An Open-Source Computational Grammar for Romanian
	A Type-Theoretical Wide-Coverage Computational Grammar for Swedish

	Grammars Describing Structured Models
	Typeful Ontologies with Direct Multilingual Verbalization
	Multilingual Verbalization of Modular Ontologies using GF and lemon
	Multilingual Grammar for Museum Object Descriptions

	Bootstrapping Grammars from External Sources
	Controlled Language for Everyday Use: the MOLTO Phrasebook

	Grammar-Based Hybrid Systems for Machine Translation
	Patent Translation within the MOLTO Project
	A Hybrid System for Patent Translation
	Hybrid Translation for European Biomedical Patents

