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`But I don't want to go among mad people, ' Alice remarked. 

`Oh, you can't help that, ' said the Cat: `we're all mad here. I'm mad. You're mad. ' 

`How do you know I'm mad?' said Alice. 

`You must be, ' said the Cat, `or you wouldn't have come here. 

 

Lewis Carrol – Alice’s Adventures in Wonderland 
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Abstract 

Refractoriness to I-131 in dedifferentiated thyroid cancer is a great concern that restricts radioiodine 
therapy. There is also a lack of knowledge in understanding the mechanisms leading to repressed 
sodium iodide symporter (NIS) expression and impaired iodide uptake in tumor cells. With this 
background, paper I investigated how NIS and iodide transport in normal thyrocytes were affected 
during dedifferentiation induced by epidermal growth factor (EGF). This was done on highly 
differentiated thyroid epithelial cells cultured in low (0.5%) or high (5%) content of fetal bovine serum 
either on filter in bicameral inserts or embedded in 3D collagen gel. EGF abolished TSH-stimulated 
transcription of NIS in both type of cultures. U0126, a MEK inhibitor, reversed this effect but only in 
serum-starved 2D cultures. Inhibition of MAPK signaling failed to recover NIS-mediated iodide 
uptake in the presence of serum and in 3D-cultured follicles irrespective of serum. In contrast, EGF-
induced down-regulation of thyroglobulin, the thyroid prohormone, was blocked by MEK inhibition. 
These findings suggest an additional mechanism besides the classical MAPK signaling that negatively 
regulates NIS and confer resistance to small molecule kinase inhibitors targeting the MAPK pathway 
in dedifferentiated thyroid cells.  
In tumor progression cancer cells lose the ancestral epithelial phenotype and become invasive. Many 
mechanisms cooperate in this process including joint signaling of the MAPK and PI3K/AKT 
pathways, suggesting combined targeted treatment with kinase inhibitors would more effectively 
counteract invasiveness. This possibility was addressed in paper II in which cell migration into 
extracellular matrix from EGF-stimulated follicles was monitored during treatment with inhibitors of 
MEK (U0126) and PI3K (LY294002). Indeed, dual inhibition was required to prevent both cell 
proliferation and migration in response to EGF. Notably, single inhibition of PI3K adversely increased 
EGF-induced migration and invasion, probably by promoting disintegration of the follicular 
epithelium. As LY294002 did not compromise cell survival in the presence of EGF these findings call 
for caution in use of PI3K inhibitors as monotherapy of tumors with a constitutively activated MAPK 
pathway. 
Activating BRAFV600E mutation is a common driver in thyroid cancer. Acquired drug resistance 
involving rebound activation of MAPK signaling restricts the promising possibility to treat BRAF 
mutant tumors with kinase-selective inhibitors as PLX4720. Combined drug treatment to overcome 
this is suggested. In paper III inhibitor efficacy on tumor cell migration was investigated in 
BRAFV600E

 mutant cell lines derived from papillary (BCPAP) and anaplastic (SW1736) thyroid cancer. 
Besides conventional scratch wounding a double-layered collagen gel model was developed for 
analysis of directed tumor cell invasion during prolonged culture. Both PLX4720 and U0126 inhibited 
BCPAP cell migration and reduced tumor cell viability in 3D culture. 2D migration of SW1736 cells 
resisted even combined drug treatment, whereas embedded in collagen gel both drugs reduced the 
invading cell numbers. However, dual inhibition of BRAFV600E and MEK did not prevent invasion 
although rebound activation of MAPK was blocked. This suggests presence of highly invasive tumor 
cell subclones in anaplastic cancer that escape targeted drug therapy due to MAPK independence. 
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The Thyroid Gland 
 
The endocrine thyroid gland is located in the anterior neck. It consists of two lobes, left and 

right, on either side of trachea and connected to each other by the isthmus. There are several 

cell types found in the gland with approximately 70% of the total cell count composed of 

thyroid epithelial cells or the thyrocytes. Other frequent cells are fibroblasts and the 

endothelial cells forming the many capillaries in this highly vascularized organ. There are also 

a small number of parafollicular C cells (Dumont et al., 1992). The principal function of the 

thyroid gland is to produce and release thyroid hormones. Thyroid hormones, 

tetraiodothyronine (T4) and the biologically more active triiodithyronine (T3), are important 

for developmental growth and metabolism. T3 acts through binding to thyroid hormone 

receptors (TRs) present in the nucleus of target cells thereby regulating gene transcription. 

Most cells in vertebrates are sensitive to thyroid hormones, although the effects vary 

considerably in between for example neurons, heart muscle and liver (Boelaert and Franklyn, 

2005). The hormones are synthesized by the thyrocytes, which are organized in spherical 

structures, the follicles. These units are comprised of a single layer of follicular cells 

surrounding a lumen in which a protein enriched fluid, the colloid, is stored. The major 

constituent of the colloid is thyroglobulin (TG), the prohormone of T3 and T4, which will be 

more extensively discussed in later sections. The C cells, which produce calcitonin, are not 

investigated in this thesis and will not be discussed in more detail. 

 

 
Fig. 1. Overview of the location and follicular organization of the thyroid gland in humans. 
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Thyrocytes differ from most endocrine cells in that they have features strongly reminiscent of 

secretory, exocrine cells. This includes a polarized plasma membrane that can be clearly 

divided into an apical and a basolateral domain with different constituent proteins residing 

there. The divergence in protein composition is maintained by intracellular sorting 

mechanisms (Rodriguez-Boulan and Nelson, 1989). Furthermore, the apical-basal polarity of 

epithelial cells is not only restricted to protein composition in the plasma membrane but is 

also manifested in the cells having a polarized distribution of organelles and also by way of 

specialized morphological features that can be found only on one side of the cell for example 

microvilli or pseudopods are present exclusively apically in thyroid cells. One additional 

feature of epithelial cells is the connections between the cells through different intercellular 

junctions. These includes tight junctions, adherens junctions and desmosomes originally 

described 50 years ago (Farquhar and Palade, 1963). 

 

Epithelial Properties  

The junctional features of the thyroid follicular epithelium are important regarding both 

structural organization of the follicle and the functional properties of individual thyroid cells. 

As both features were studied in papers I and II, it is relevant to describe some of these 

aspects in more detail.  

 

Tight junctions 

Tight junction (TJ) is the most apically localized junction and hence establishes a border 

between the basolateral and the apical parts of the cells (Farquhar and Palade, 1963). TJ can 

be said to have both a gate and a fence function. The gate feature arises from the importance 

of TJ in the regulation of paracellular passage of water, ion and molecules while the fence 

function is reflected by the role in maintaining the different protein and lipid composition in 

the apical and basolateral domains of the plasma membrane. Several proteins, both integral 

membrane and cytoplasmic, have been identified in the TJ complex. In the following sections 

the most prominent TJ proteins will be briefly overviewed. More comprehensive reviews of 

other TJ proteins for example tricellulin, PAR proteins, MUPP1, cingulin and symplekin etc., 

can be found in (Gonzalez-Mariscal et al., 2003; Gunzel and Fromm, 2012). 
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Occludin  

The first TJ integral membrane protein discovered was occludin (Furuse et al., 1993). 

Occludin has four transmembrane regions, two extracellular loops and amino and carboxyl 

terminal end being found on the intracellular side. Despite the fact that its presence in TJ is 

apparent, the precise role is still unclear. This is especially emphasized by the fact that in 

occludin-deficient mice many epithelial organs and tissues still develop TJ (Saitou et al., 

2000). Occludin can bind directly to F-actin through interaction with the carboxyl terminal 

end (Wittchen et al., 1999) a feature that differs from the other integral membrane TJ proteins 

that need adaptor proteins for the connection to the cytoskeleton. Occludin is expressed in 

thyrocytes (Grande et al., 2002). 

 

Claudins 

Another class of transmembrane proteins in the TJ is the claudin family first identified in 

1998 (Furuse et al., 1998). Claudins are now considered to be the essential structural part in 

the TJ strands to which the other integral proteins on neighboring cells are associated in a 

homotypic fashion. So far, 27 mammalian claudin genes have been identified (Mineta et al., 

2011) although there is a disagreement about whether the last three members reported should 

be classified as claudins (Maher et al., 2011). Claudins can interact through their extracellular 

loops with other claudins in the same membrane through cis-interactions and with claudins 

expressed by adjacent cells through trans-interactions. This leads to the formation of a zipper-

like structure that contributes to the barrier (Piontek et al., 2008). Madin-Darby canine kidney 

(MDCK) commonly used in epithelial cell research consists of two strains with different 

expression patterns of claudins. The high-resistance type I cells express claudin-1 and 

claudin-4 while type II cells with leaky TJ also express claudin-2. Introduction of claudin-2 in 

type I cells caused the TJ to be leakier indicating that combinations and mixing ratios of 

different claudins give rise to variable tightness of the TJ (Furuse et al., 2001). The 

importance of claudins in the gate function of TJ is also demonstrated in vivo in claudin-1 

deficient mice in which the affected epidermal barrier causes dehydration and early death due 

to excessive water loss (Furuse et al., 2002). Notably, thyroid epithelial cells, which establish 

a very tight epithelium reflecting the importance of keeping the follicle lumen secluded from 

the extra-follicular space, express claudin-1 (Grande et al., 2002). 
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ZO-1 

ZO-1, named after the Latin word zonula occludens for TJ, was the first TJ protein to be 

identified in 1986 (Stevenson et al., 1986), and later on also ZO-2 (Jesaitis and Goodenough, 

1994) and ZO-3 (Haskins et al., 1998) were identified. All three of them are cytoplasmatic 

proteins belonging to a protein family named membrane-associated guanylate kinase 

homologues or MAGUK. These proteins have structurally conserved PDZ, SH3 and GK 

domains. The PDZ domain is important for clustering and anchoring of transmembrane 

proteins (Kim et al., 1995) and proteins with several PDZ domains can function as a scaffold 

to bring different proteins together at a specific submembraneous location. ZO-1 has three 

PDZ domains, the first is associated with claudins (Itoh et al., 1999) and the other two bind to 

junctional adhesion molecules (JAM) representing yet another class of proteins found in TJ 

(Ebnet et al., 2000). In addition, ZO-1 is associated with occludin through the GK domain 

(Fanning et al., 1998; Schmidt et al., 2001) and to F-actin through its carboxyl-terminal end 

(Fanning et al., 1998; Itoh et al., 1997; Wittchen et al., 1999). As excellently reviewed by 

Tsukita (Tsukita et al., 2009), one of the leading scientists in this field, ZO-1 in joint action 

with ZO-2 serve as important organizers that are both required and sufficient for TJ formation 

and establishment of a paracellular barrier. In addition, ZO-1 interacts with cytoplasmatic 

proteins functioning in signal transduction and in regulation of gene expression by binding to 

the transcription factor ZO-1-associated nucleic acid-binding protein or ZONAB (Balda and 

Matter, 2000). Interestingly, ZONAB was later shown to be involved in regulation of 

proliferation epithelial cells (Balda et al., 2003). In paper II ZO-1 was used as a TJ marker to 

reveal the junctional complex that delimits the lumen in cultured thyroid follicles.  

 

Adherens junction and E-cadherin 

There are several types of adherens junctions (AJ), the one most studied in polarized epithelia 

is zonula adherens that encircles the cell completely like a belt at the apical/basolateral border 

located basal to the TJ (Farquhar and Palade, 1963). AJ consist of two protein complexes, the 

cadherin-catenin complex and the nectin-afadin complex. Both consist of a transmembrane 

adhesion molecule with an extracellular domain that interacts with corresponding molecules 

across the intercellular cleft and a group of cytoplasmic proteins that bind to the intracellular 

domain and connect it to the actin cytoskeleton. The superfamily of cadherins is responsible 

for calcium-dependent cell-cell adhesion and E-cadherin found in epithelial cells belongs the 

subfamily of classical cadherins (Nollet et al., 2000). Ca2+ binding to ectodomains in the  
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extracellular part of classical cadherins conveys a conformational change (Pokutta et al., 

1994), which enables cis-dimerization between corresponding cadherin molecules on 

neighboring cells (Shapiro et al., 1995) and gradually builds up a structure resembling a 

zipper that provides strength to the AJ (Yap and Manley, 2001). The intracellular domain of 

E-cadherin binds to several members of the catenin family, i.e. p120 catenin (p120ctn) 

(Reynolds et al., 1994), β-catenin and γ-catenin (Ozawa et al., 1989). Furthermore, α-catenin 

is also associated with the complex (Ozawa et al., 1989), although its interaction with E-

cadherin is mediated by the binding to either β- or γ-catenin and thus not directly to E-

cadherin itself (Aberle et al., 1994). β-Catenin is also involved in canonical Wnt signaling in 

which β-catenin translocates to the cell nucleus and trans-activates target genes involved in 

cell growth and survival (Valenta et al., 2012). The Wnt- β-catenin pathway may also regulate 

thyroid cells (Helmbrecht et al., 2001). 

 

Epithelial to mesenchymal transition (EMT) is a fundamental biological process implicated in 

embryonic development, tissue repair and in association with tumor progression and 

metastasis (Kalluri and Weinberg, 2009). Loss of E-cadherin is a key feature and hallmark of 

EMT (Thiery, 2002). This aspect of E-cadherin was investigated along with observations of 

functional dedifferentiation in paper I of the thesis.  

  

Desmosomes 

Desmosomes comprise the third junction complex found in epithelial cells, although variants 

of this adhesive structure are shared by many other cell types. The adhesion molecules of 

desmosomes are membrane-spanning, cadherin-like proteins named desmocollins. 

Cytoplasmic proteins plakophilin and plakoglobin, the latter being identical to γ-catenin, link 

desmosomal cadherins to desmoplakin that in turn anchor the desmosome to the intermediate 

filaments of the cytoskeleton (Garrod and Chidgey, 2008). Very little is known of 

desmosomes in thyroid cells, although it is likely that they cooperate with the AJ in 

establishing a cohesive follicular epithelium. 

 

Functional Properties  

Thyroid cells are highly specialized cells needed for proper execution of the thyroid gland’s 

functions. Conversely, loss of thyroid function leading to dedifferentiation is common in 

advanced thyroid cancer. In paper I, we were interested in studying thyroid dedifferentiation 
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in normal cells and the possibility of preventing or reverting the process by drug treatment 

that interferes with dedifferentiation signals inside the cells. To set the stage for the discussion 

of findings the next section will shortly summarize the most important elements of thyroid 

function and its normal regulation. 

 

Iodide transport and NIS 

Iodine is essential for normal thyroid function, being incorporated in the thyroid hormones. 

The anion species of iodine, iodide or I-, is concentrated 40-fold or more in the thyroid due to 

an active transport mechanism originally named the “iodide pump” (Wolff, 1964). Studies on 

mice thyroid (Andros and Wollman, 1967), and later on in cultured cells using a bicameral 

culture model that enabled monitoring of polarized transport (Chambard et al., 1983; Nilsson 

et al., 1990) provided direct evidence that thyroidal iodide uptake occurs basolaterally, long 

before the molecular nature of the transporting protein was identified. In the same bicameral 

system it was also shown that transcellular transport of iodide depends on a second, apical 

efflux mechanism (Nilsson et al., 1990), hence, it is a two-step process. 

 

In 1996, the sodium iodide symporter (NIS) responsible for the basolateral uptake was cloned 

and characterized from FRTL5 cells, a differentiated rat thyroid cell line (Dai et al., 1996) 

followed by cloning of the gene also in human (Smanik et al., 1996), mouse (Perron et al., 

2001; Pinke et al., 2001) and pig thyroid cells (Selmi-Ruby et al., 2003). Notably, porcine NIS 

(pNIS) investigated in thesis paper I consists of two transcripts generated by alternative 

splicing instead of a single mRNA as in human, rat or mouse. The most abundant transcript of 

pNIS encodes a 643 amino acid protein with 85% identity to the human NIS. The reason for 

alternative splicing is not known (Selmi-Ruby et al., 2003). During NIS-mediated transport 

two sodium ions and one iodide ion are co-transported (Eskandari et al., 1997). The 

mechanism depends on Na+/K+ ATPase, also localized in the basolateral membrane (Gerard et 

al., 1985), which generates the driving sodium gradient. NIS is also capable of transporting 

several other anions that competitively may inhibit iodide uptake (Dohan et al., 2007). Loss of 

NIS expression is frequent in thyroid cancer and this will be discussed further in a later 

section.  

 

While consensus prevails concerning NIS as the one and only basolateral iodide transporter, 

the identity of the apical transporter is more uncertain. A suggested candidate is the chloride  
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transporting protein pendrin, which is expressed apically in thyroid cells (Bidart et al., 2000; 

Royaux et al., 2000). Pendrin or SLC26A4 is encoded by Pendred syndrome (PDS) gene, and 

biallelic mutation of this gene causes Pendred syndrome, an autosomal recessive disorder 

characterized by deafness, goiter and a partial defect in iodine organification (Bizhanova and 

Kopp, 2011). Apical efflux is stimulated by thyroid stimulating hormone (TSH) (Nilsson et 

al., 1990), the main regulator of thyroid function, and it was recently shown that pendrin 

translocates to the membrane in response to TSH in PCCL3 rat thyroid cells suggesting a 

potential role in thyroid hormone synthesis (Pesce et al., 2012).  However, since the majority 

of patients with Pendred syndrome either are euthyroid or have a mild hypothyroidism that 

may get worse only in iodine deficiency (Sato et al., 2001) it is likely that the apical efflux of 

iodide in thyroid cells is not only mediated by pendrin. Another proposed candidate is 

SLC5A8, also named human apical iodide transporter (hAIT) (Rodriguez et al., 2002), 

although it was later shown that this protein does not transport iodide (Paroder et al., 2006). 

Nevertheless, apical efflux is important to consider when evaluating cellular retention of 

radioiodine in experimental settings after tumor therapy with I-131. 

 

 
Fig.2. The polarized thyroid epithelial phenotype. Key molecules involved in different steps 

of thyroid hormonogenesis are differentially located in the basolateral and apical plasma 

membrane domains. 
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Thyroglobulin and thyroid hormone formation 

Thyroid hormone biosynthesis is a complicated process that involves several independent 

steps and factors. In the following section the most important of these will be discussed. As 

already mentioned, TG can be thought of as a prohormone to T3 and T4. It is a very large 

dimeric glycoprotein (MW 660 kDa), the synthesis of which is governed by Nkx2-1 (formerly 

thyroid transcription factor-1 or TTF-1), Foxn1 (formerly thyroid transcription factor-2 or 

TTF-2) and Pax-8 that ensure thyroid specificity of expression (Damante and Di Lauro, 1994; 

Zannini et al., 1997). After synthesis of the peptide chains in the endoplasmic reticulum and 

glycosylation in Golgi, mature but yet un-iodinated TG is transported in vesicles to the apical 

cell surface where it is released into the follicle lumen by exocytosis. Iodination of TG is 

catalyzed by thyroperoxidase (TPO) located in the apical membrane facing the lumen. TPO 

converts I- to an oxidized iodine species that covalently binds to tyrosyl residues in TG thus 

producing 3-iodotyrosine (MIT) and 3,5´-diiodotyrosine (DIT). In the following coupling 

reactions, also requiring TPO activity, T4 and T3 are formed from two DIT or one DIT and 

one MIT, respectively (Dunn and Dunn, 2001; Ekholm, 1990). The oxidation reactions 

require H2O2 that is produced by dual oxidase I and 2 (DUOX1 and DUOX2) also presented 

in the apical membrane (De Deken et al., 2002; Dupuy et al., 1991). Since H2O2 is potentially 

cytotoxic there is a need of a protective mechanism that degrades excess H2O2. The 

intracellular level of H2O2 is kept low by glutathione peroxidase which also prevents 

intracellular iodination (Ekholm and Bjorkman, 1997). In addition, thioredoxin reductase has 

also been suggested to regulate intracellular H2O2 and prevent H2O2-induced apoptosis (Kim 

et al., 2000).  

 

TG with its iodo-amino acid residues incorporated in the peptide chains is stored in the lumen 

until there is a need of hormone release. This process starts with internalization of TG 

executed by both micropinocytic vesicles and macropinocytosis, the latter through the 

formation of so called pseudopods that project from the apical cell surface in to the colloid 

(Ericson, 1981). Internalized TG can take two different pathways. The most prominent route 

involves fusion of TG-containing vesicles with early endosomes followed by proteolysis in 

secondary lysosomes (Bernier-Valentin et al., 1990). T4 may be deiodinated to T3 already in 

the thyroid. However, most T4 enters the blood stream and will be converted to T3 in 

peripheral tissues (Chanoine et al., 1993). The mechanism by which free thyroid hormones 

are released from the cytoplasm is not fully understood but mononocarboxylate transporter 8 

(MCT8), originally identified as a specific thyroid hormone transporter in target organs as  
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liver, kidney, brain and heart (Friesema et al., 2003) was recently found to be involved in the 

export of thyroid hormones from the thyroid gland in mice (Di Cosmo et al., 2010). The 

second mechanism of TG transport is the direct basolateral release of intact TG in a process 

called transcytosis and this probably explains the presence of circulating TG in blood 

(Romagnoli and Herzog, 1991). The turnover of TG under the influence of dedifferentiation 

stimuli (epidermal growth factor) was evaluated in paper I. 

 

Differentiation signals 

TSH  

TSH or thyrotropin is the main regulator of thyroid function. It is secreted from the anterior 

pituitary gland in response to thyrotropin-releasing hormone (TRH) produced in the 

hypothalamus (Persani, 1998) and regulated by a negative feedback mechanism through 

circulating thyroid hormones. Thus, a hypothyroid state reactively leads to increasing TSH 

levels that stimulate the gland even more. This effect involves many aspects of thyroid 

function collectively contributing to increased hormone biosynthesis. One of the first 

characterized TSH-regulated functions was iodide trapping in vivo (Halmi, 1954). It is now 

known that an increased expression of NIS is primarily responsible for this effect as shown 

both in vitro and in animal models (Levy et al., 1997; Saito et al., 1997). In addition, TSH 

stimulates the expression of TG (Roger et al., 1985), apical efflux of iodide (Nilsson et al., 

1990), iodination (Ekholm and Wollman, 1975), internalization of iodinated TG (Ericson, 

1981) and thyroid hormone release (Dumont et al., 1971).   

 

TSH acts by binding to the TSH receptor (TSHR) present in the basolateral membrane of the 

follicle cells (Chambard et al., 1983). TSHR is a G protein-coupled receptor (Libert et al., 

1989) that signals through activation of both Gs and Gq (Allgeier et al., 1994). Gs stimulates 

adenylate cyclase (AC) that will increase 3´5´-cyclic adenosine monophosphate (cAMP), 

which in turn activates protein kinase A (PKA) (Dumont et al., 1971). Gq stimulates 

phospholipas C (PLC) (Jhon et al., 1993), which stimulates hydrolysis of phosphoinositide to 

inositol triphosphate (IP3) and diacylglycerol (DAG) that increase the concentration of 

intracellular Ca2+
 and activates protein kinase C, respectively. Significant species specific 

differences have been pointed out when it comes to the underlying signaling mechanisms of 

the TSH response in thyrocytes (Song et al., 2010). For example, in dog cells TSH stimulates 

activation of the cAMP pathway leading to H2O2 production while this occurs through Ca2+–

DAG signaling in human or pig cells (Song et al., 2010). 
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TSH stimulates thyroid cell proliferation most evidently resulting in goiter development in 

conditions where circulation TSH is chronically elevated (in hypothyroidism) or in the 

presence of stimulating autoantibodies against TSHR (in Graves’ disease). TSH can function 

as a mitogen either through cAMP pathway (Deleu et al., 1999; Dremier et al., 2002) or 

indirectly through its permissive action on peptide growth factors (Kimura et al., 2001). In pig 

thyroid cells used in this thesis (papers I and II), TSH is not mitogenic (Gartner et al., 1985).  

 

TSH was previously shown to promote the epithelial integrity of porcine thyrocytes when 

Ca2+-dependent cell-cell adhesion was abrogated (Nilsson et al., 1991). The mechanism 

involves stabilization of E-cadherin binding that prevents its premature degradation (Larsson 

et al., 2004), although TSH may also stimulate the expression of E-cadherin at the 

transcriptional level (Brabant et al., 1995). Thus, TSH appears to be required to establish firm 

adhesion between thyroid epithelial cells and that this probably is important to secure 

cohesiveness of the follicular wall and prevent unwanted leakage of luminal content. TSH 

stimulation was, therefore, routinely used in the investigation of growth factor effects in this 

thesis work. 

 

IGF-1  

Insulin and insulin like growth factor-1 (IGF-1) exert moderate proliferative effects that are 

permissive to the action of TSH in human thyrocytes (Roger et al., 1988). The need of 

concomitant signaling of TSH and the IGF-1 signaling pathway for goiter formation was 

recently shown in mice with conditional deletion of the IGF-I receptor (IGF-1R) (Ock et al., 

2013). However, over-expression of IGF-1, IGF-R or both, increased thyroidal iodide uptake 

while at the same time circulating TSH levels decreased, indicating that IGF-1 promotes 

thyroid function in vivo  (Clement et al., 2001). Earlier studies on pig thyroid cells showed 

that IGF-1 in the absence of TSH stimulates only mildly iodide transport whereas in its 

presence iodide transport is highly potentiated (Ericson and Nilsson, 1996). 

 

IGF-IR is a heterotetramer consisting of two ligand binding alfa subunits being completely 

extracellular and two transmembrane beta subunits each containing a tyrosine kinase domain 

in the cytoplasmic portion. After ligand binding, the activated receptor is autophosphorylated  

leading to phosphorylation of several target proteins of which insulin receptor substrate-1 and 

2 (IRS-1 and 2), which function as docking sites for SH-2 containing proteins such as PI3K, 

are of particular importance. Phosphorylated IRS-1 also acts as a docking site for Grb-2, 
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which upon activation binds RAS and initiates MAPK signaling. However, IGF-1R can 

influence multiple intracellular pathways that partly explain the many functions of IGF-1 in 

cells and tissues (LeRoith et al., 1995). IGF-1 was not used in this thesis, but fetal serum 

contains significant amounts of IGF-1 which makes it a relevant molecule to consider.  

 

Dedifferentiation signals 

EGF 

Epidermal growth factor (EGF), one of the most well-studied peptide growth factors ever, was 

first isolated from mouse submaxillary gland and found to have a stimulatory effect on the 

proliferation of epidermal keratinocytes (Cohen, 1962; Cohen and Elliott, 1963). EGF is a 53 

amino acid protein that belongs to a family of growth factors that also includes transforming 

growth factor-α (TGF-α), heparin-binding EGF-like growth factor (HB-EGF), betacellulin, 

amphiregulin, neuregulin, epigen and epiregulin. These proteins are ligands to members of the 

EGF receptor (EGFR) or ErbB receptor family comprising, apart from EGFR, erbB2/Her2, 

erbB3/Her3 and erbB4/Her, all of which share a common structure with an extracellular 

ligand-binding domain and an intracellular receptor tyrosine kinase (RTK) domain. EGF 

binding triggers EGFR homo- or heterodimerization and autophosphorylation, which is 

mediated by the RTK domain that will also function as docking site for different proteins 

further down in the signaling pathway, (Burgess, 2008). This will be described in more detail 

in a separate section below. 

 

In the thyroid, the mitogenic effect of EGF was first shown in sheep (Westermark and 

Westermark, 1982) and later confirmed in other species as dog, pig and human. Besides 

causing stimulation of thyroid cell proliferation, EGF is a powerful antagonist to TSH-

stimulated thyroid function including down-regulation of TG and TPO expression (Kasai et 

al., 1989; Pratt et al., 1989; Roger et al., 1985) and loss of iodide trapping capacity (Bourke et 

al., 1991; Pratt et al., 1989; Waters et al., 1987). Cultured in presence of EGF, dog thyrocytes 

lose both the responsiveness to TSH and cAMP-mediated stimulation of proliferation (Roger 

et al., 1992). Together, this argues that EGF is a major dedifferentiation factor with potential 

implications in the pathophysiology of thyroid proliferative diseases as hypothyroid goiter 

(Pedrinola et al., 2001) and thyroid cancer (Knauf, 2011). In fact, stimulation of human 

thyrocytes with EGF in the presence of serum confers a profound change in global gene 

expression that mimics the expression profile found in papillary thyroid cancer (Hebrant et al., 

2007). EGF also promotes the development of EMT elicited by TGF-beta in primary porcine 
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thyroid cells (Grande et al., 2002). It should be noted, however, that in the absence of other 

EMT inducers, EGF treatment does not seriously inflict on the thyroid epithelial phenotype, 

despite a strong stimulation of cell proliferation and migration. For example, porcine thyroid 

cells cultured in a collagen matrix form new follicles when stimulated with EGF (Westermark 

et al., 1991) and in monolayer cultures in bicameral chambers the epithelial barrier is 

preserved, although at the same time, TSH-stimulated iodide transport is repressed by EGF 

(Nilsson and Ericson, 1994). In papers I and II of this thesis EGF was used to dedifferentiate 

both functionally and structurally pig thyroid cells in 2D and 3D culture, which was further 

investigated for the potential use of small molecule kinase inhibitors against key components 

of EGFR signaling pathways to prevent the effect.  

 

TGF-beta 

Transforming growth factor beta (TGF-β) belongs to a superfamily of cytokines involved in 

many different cellular processes implicated in growth, differentiation and survival of various 

cell types (Heldin et al., 1997). TGF-β consists of three different isoforms, TGF-β1 (Derynck 

et al., 1985) TGF-β2 (de Martin et al., 1987) and TGF-β3 (Derynck et al., 1988) of which 

TGF-β1 is mostly studied. A common feature of TGF-β family receptors is signaling through 

a serine/threonine kinase domain. TGF-β binds to type II receptor (TβR-II) that recruits and 

phosphorylates the type I receptor (TβR-I) (Wrana et al., 1994). The major signaling pathway 

of the activated TGF-β receptor involves SMAD proteins that are stimulated to enter the 

nucleus and after formation of a complex with co-repressors or co-activators gene expression 

is either turned on or off (Massague, 2000). TGF-β stimulation of normal epithelial cells 

causes growth inhibition and this is also true for thyroid cells (Taton et al., 1993). The 

pleiotropic effects of TGF-β signaling aside of growth regulation are very diverse and depend 

on the cell type and the context. Growth arrest and induction of apoptosis are responsible for 

the tumor suppressive effects of TGF-β (Inman, 2011). However, TGF-β also has tumor 

promoting effects in advanced cancer and is one of the most powerful stimuli of EMT 

typically manifested by loss of E-cadherin expression and acquirement of motile phenotype 

(Heldin et al., 2012). EMT makes the tumor cells invade and metastasize, hallmarks of  

disseminated cancer (Hanahan and Weinberg, 2000; Hanahan and Weinberg, 2011). 

 

As already mentioned, in pig thyroid cells TGF-β1 in synergy with EGF, induces EMT 

leading to loss of epithelial integrity, loss of E-cadherin and gain of N-cadherin expression 



REVERSAL OF THYROID DEDIFFERENTIATION AND AN INVASIVE PHENOTYPE 
___________________________________________________________________________ 

13 
 

(Grande et al., 2002). TGF-β was not investigated directly but its involvement in EMT makes 

it relevant to mention.   

 

MAPK Signaling Pathway 
Further interest in EGF-induced growth and dedifferentiation is due to its major downstream 

mitogen-activated protein kinase (MAPK) signaling pathway, which comprises several proto-

oncogenes and is constitutively activated in many malignant tumors. The canonical MAPK 

pathway consists of four cascades classified according to the last protein in each arm, that is  

extracellular signal-related kinases 1 and 2 (ERK1/2) , c-jun N-terminal kinase (JNK) 1, 2 and 

3, p38-MAPK and ERK5. Peptide growth factor receptors are mainly regulators of the 

ERK1/2 cascade whereas JNK and p38-MAPK is activated by different cellular stress stimuli, 

but there is also evidence of crosstalks between the different MAPK pathways (Pritchard and 

Hayward, 2013). All four cascades consist of a central core of three kinases being activated in 

sequence: MAPK kinase kinase (MKKK), MAPK kinase (MKK) and MAPK. Thus, in a 

series of amplifying threonine and tyrosine phosphorylations MKKK activates MKK that in 

turn triggers the effector kinase, ERK1/2 in the case of EGFR signaling (Yang et al., 2013). 

The identity of the kinases in the linear signaling pathway is unique for each cascade 

(Pritchard and Hayward, 2013). In this thesis particular interest is focused on the MAPK 

pathway downstream of EGFR, which will be described in more detail.  

 

A systematic study of the phosphotyrosine interactome demonstrated that EGFR has several 

different binding partners including growth factor receptor binding protein 2 (Grb2). Grb2 

contains Src homology 2 (SH2) and 3 (SH3) domains that provide a link between the receptor 

and the guanine nucleotide exchanges factors (GEFs) i.e. son of sevenless homologue 1 and 2 

(SOS1, SOS2) (Lowenstein et al., 1992). Guanosine triphosphatases (GTPases), RAS in the 

case of ERK1/2 pathway, play a crucial role in signal transduction. When bound to guanosine 

diphosphate (GDP) the GTPase is inactive but with the assistance of GEFs, GDP dissociates 

from the GTPase allowing the binding of guanosine triphosphate (GTP) by which the GTPase 

is activated. Further on, the GTPase enters an inactive state through hydrolysation of GTP to 

GDP which is facilitated by guanosine activating proteins (GAPs) (Cherfils and Zeghouf, 

2013). 
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The RAS family of small GTPases consists of three isoforms: HRAS, KRAS and NRAS. 

Upon activation RAS proteins interact with various effectors including PI3K, Af6, PKCζ and 

RAF, which takes part in many cellular processes including growth, survival and migration 

(Rajalingam et al., 2007). MKKK activated by RAS also consists of three proteins, ARAF, 

BRAF and CRAF of which BRAF is most easily activated and also has a higher basal kinase 

activity than the other two members of the family (Wellbrock et al., 2004). All three RAFs 

can activate MKK, the MEK1/2 kinases, which are the only widely accepted RAF substrate 

(Matallanas et al., 2011). ERK1/2 in turn is the only known substrate MEK1/2. However, 

after this point the signaling cascade diverges to many different effector mechanisms as 

illustrated by the fact that more than 160 substrates to ERK1/2 exist (Yoon and Seger, 2006) 

and even more candidates have been suggested (Courcelles et al., 2013). ERK1/2 substrates 

include nuclear targets (e.g c-fos and c-jun), substrates belonging to the ribosomal S6 kinase 

(RSK) family and cytoskeletal proteins (e.g paxillin). There are also MAPK phosphatases 

with the potential to dephosphorylate and thereby modulate the amplitude and duration of 

MAPK signaling. These can either be specific to tyrosine, serine or threonine or possess a 

dual specificity for both serine and threonine (Roskoski, 2012). MEK inhibition and 

evaluation of its consequences were a central theme in all papers of this thesis.  

 

PI3K/AKT Signaling Pathway 
Another signaling pathway downstream of EGFR is the phosphoinositide-3 kinase 

(PI3K)/AKT pathway. There are three classes of PI3Ks of which class IA is the most 

extensively studied. PI3Ks are heterodimers classically composed of a regulatory subunit, 

p85, comprising five isoforms and a catalytic subunit of which there are three subunits, 

p110α, p110β and p110δ. The regulatory p85 can bind directly to RTK through the SH2 

domain by which PI3K is activated and also translocated to the plasma membrane 

(Vanhaesebroeck et al., 2012). In addition, PI3K is also a direct substrate to RAS (Sjolander 

et al., 1991). When activated, class I PI3Ks phosphorylates the inositol ring on the membrane 

lipid phosphatidylinositol-4-5-bisphosphate (PI(4,5)P2). When converted to a 

phosphatidylinositol-3-4-5-triphosphate (PI(3,4,5)P3) this provides a binding site for 

downstreams signaling proteins which contains a so called pleckstrin homology (PH) domain.  

Two important proteins with a PH domain are AKT, also called protein kinase B (PKB), and 

phosphoinositide-dependent kinase 1 (PDK1) (Cantley, 2002). Full activation of AKT 

requires phosphorylation on two sites, threonine 308 (T308) by PDK1 and serine 473 (S473) 
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by mammalian target of rapamycin (mTOR) (Sarbassov et al., 2005). Termination of PI3K 

signaling through degradation of PI(3,4,5)P3 is mediated by phosphatases of which the most 

important is phosphatase and tensin homolog (PTEN). Dephosphorylation of the 3 position of 

PI(3,4,5)P3 by PTEN inactivates AKT and downstream signaling of the pathway (Maehama 

and Dixon, 1998). Many substrates have been identified downstream of AKT and the pathway 

appears to involve even more cellular functions than the MAPK pathway, ranging from vital 

processes in cell metabolism to differentiation of specialized tissues in development also 

comprising growth and migration. Of particular relevance for the interpretation of data 

presented in paper II is the role of PI3Ks in epithelial morphogenesis and establishment of 

epithelial junctions (Rivard, 2009; Shewan et al., 2011).  

 

Thyroid Cancer 

Thyroid cancer is the most common endocrine malignancy after ovarian cancer representing 

approximately 1% of all malignant tumors. As for other diseases of the thyroid gland cancer is 

more frequent in females, for example, in Sweden 2011 71% of all newly diagnosed cases 

were women (Socialstyrelsen, 2013). Thyroid cancer is divided in several subtypes depending 

on the histopathological diagnosis. The most common tumor constituting 80-85% of all 

thyroid malignancies is papillary thyroid cancer (PTC) derived from follicular cells. PTC 

together with follicular thyroid cancer (FTC) is collectively called differentiated thyroid 

cancers (DTC). Poorly differentiated thyroid cancers (PDTC) usually arises by tumor 

progression of PTC. Anaplastic thyroid cancer (ATC) is rare but one of the most aggressive 

tumors of all in man. Tumor spreading characteristics vary depending on subtype. PTC is 

subjected to lymphogenic spread to regional lymph nodes in the neck while FTC more often 

gives rise to distant metastases as in lung, skeleton and brain through hematogenic 

dissemination. PDTC mostly derived from advanced PTC is locally aggressive with an 

invasive growth. ATC is highly invasive often with engagement of the trachea or surrounding 

anatomic structures in the neck and distant metastases are found early (Xing, 2013). Patients 

suffering from DTC have mostly a very good prognosis and the overall 5-years survival may 

be as high as 97%  (Howlader N).  In comparison, ATC is very lethal with a median survival 

of 5 month and a 1-year survival of less than 20% (Smallridge and Copland, 2010). Treatment 

of DTC includes thyroidectomy followed by radioiodine therapy (iodine-131), a therapy 

taking advantage of the natural iodide handling system in the thyrocytes. Hence, PDTC that 

have lost the capacity of transport and trapping of iodide are refractory to radioiodine 
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treatment and few alternatives of adjuvant treatment exist for this group of patients. 

Medullary thyroid cancer (MTC) derived from C cells is a neuroendocrine tumor. MTC is not 

a subject in this thesis and will not be further commented on.  

 

Genetic alterations in thyroid cancer 

Several oncogenic alterations in genes encoding key molecules in growth-promoting signaling 

pathways are described for the distinct entities of thyroid cancer. In addition, inactivation of 

tumor suppressor genes is implicated in tumor progression. The most important of these will 

be briefly described in the following section.  

 

RET/PTC rearrangements 

Approximately 20-40% of sporadic of PTC harbor RET/PTC rearrangements, a genetic 

alteration unique for PTC and caused by fusion of the proto-oncogene RET with a partner 

gene, the identity of which determines further subtyping of the tumor (Fusco and Santoro, 

2007).  RET/PTC1 and RET/PTC3 are most prevalent. RET/PTC3 predominates in the cohort 

of children with radiation-induced thyroid cancer appearing after the Chernobyl nuclear plant 

accident in 1986 (Nikiforov et al., 1997). The tyrosine kinase portion of RET that convey the 

oncogenic signal. The fusion protein dimerizes independently of ligand binding leading to 

autophoshorylation and formation of docking sites for molecules initiating MAPK signaling 

and in fact PI3K pathway can also be activated (Riesco-Eizaguirre and Santisteban, 2007). 

RET is not expressed in normal thyroid follicular cells. However, the development of thyroid 

C cells requires RET and MTC can also arise from activating RET mutations. 

 

BRAFV600E mutation 

A valine-to-glutamate substitution at residue 600 in BRAF is the most common activating 

BRAF mutation in human cancer, being most prevalent in melanoma and colon carcinoma 

(Davies et al., 2002).  BRAFV600E is also found in approximately 45% of PTC (Xing, 2013). 

The mutation leads to constitutive activation of the MAPK pathway and increased 

phosphorylation of ERK that promotes the proliferation of tumor cells. Mutated BRAF is 

overrepresented in PDTC and ATC derived from PTC (Nikiforova et al., 2003) and has been  

correlated to a poorer clinical prognosis (Xing et al., 2005). Inhibitors specific to mutant 

BRAF are initially efficient in targeted therapy of melanoma but are also prone to elicit drug 

resistance (Lito et al., 2013). Since BRAFV600E down-regulates the expression of several genes 

involved in thyroid hormone synthesis including NIS, TPO and TG (Durante et al., 2007; 
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Mian et al., 2008; Romei et al., 2008), specific inhibitors to mutant BRAF might be useful in 

restoring iodide transport capacity and improve the therapeutic outcome of radioiodine 

treatment. BRAFV600E inhibitors have also been given to patients with metastatic PTC with 

promising results and a phase II study has also been initiated (Kim et al., 2013). 

 

RAS mutations 

Another common alteration is RAS mutations for which the encoded GTPase is constantly 

bound to GTP and therefore in constitutively active. NRAS mutations are frequent in FTC, 

PDTC and ATC (Xing, 2013). Since both RAF and PI3K are effectors downstream of RAS, 

either pathway can potentially contribute to tumorigenesis from RAS-mutated cells 

(Malumbres and Barbacid, 2003). A predominant role of AKT has been suggested for FTC 

whereas increased phosphorylation of both ERK1/2 and AKT often coexists in ATC, 

suggesting that targeted therapy of both pathways could be more efficient in these patients 

(Liu et al., 2008). 

 

EGFR amplification 

The presence of activating EGFR mutations in tumors have led to the development of EGFR 

tyrosine kinase inhibitors such as gefitenib currently used in patients with EGFRCA positive 

non-small cell lung carcinoma with some benefits in delaying disease progression (Lee et al., 

2013). EGFR mutations are rare in thyroid cancer (Ricarte-Filho et al., 2012). However, copy 

number gain of EGFR has been reported for 30-40% of FTC and ATC (Liu et al., 2008) with 

over-expression mainly observed in dedifferentiated thyroid tumors (Landriscina et al., 2011).  

 

PI3KCA mutations 

The PI3KCA gene encodes for the p110α subunit and activating mutations or copy number 

gain leading to increased PI3K/AKT signaling have been reported in thyroid cancer with 

highest frequency found in FTCs (5-15%) or ATCs (15-25%) (Xing, 2013).  

 

PTEN alterations 

Deletion or inactivating mutations of PTEN that negatively regulates AKT in normal cells will 

lead to increased activity of the PI3K/AKT pathway and promotion of tumor development 

(Xing, 2013). PTEN is also epigenetically regulated and higher levels of methylated PTEN 

coexisting with other PI3K/AKT alterations have been reported for FTC and PTC (Hou et al., 

2008). 
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Pax8-PPARγ 

Translocation between chromosome 2 and 3 gives rise to the Pax8-peroxisome proliferator 

activated receptor γ (PPARγ) fusion gene (PAX-PPARγ). This fusion gene encodes for a 

fusion protein that acts as a dominant negative inhibitor of wild type PPARγ (Kroll et al., 

2000) and is found in up to 60% of FTC (Xing, 2013). 

 

TP53 mutations   

Inactivating mutations in the tumor suppressor TP53 are preferentially found in advanced and 

highly malignant tumors indicating an important role in tumor progression (Malaguarnera et 

al., 2007). Mutated p53 occurs in 25% of PDTC and the majority (70-80%) of ATC (Xing, 

2013). 

 

Small Molecule Kinase Inhibitors  
Clarifying the identity of which kinase is overactive leading to dysregulated pathway 

signaling in cancer, opens the opportunity for targeted treatment, by allowing the 

development of specific inhibitors. Currently in Sweden only the RTK inhibitor vandetanib is 

approved for treatment of metastatic MTC and in US cabozantinib is in addition approved 

since last year for the same indication. However, clinical trials with small molecule kinase 

inhibitors for other forms of thyroid cancer are in progress (Xing, 2013). This thesis makes 

use of three established kinase inhibitors to block MEK, PI3K and mutant BRAF, 

respectively, in cultured normal thyrocytes and thyroid cancer cell lines. It is therefore 

appropriate to describe their pharmacological feature in some more detail.  

 
U0126 directed against MEK 

Synthesized in the late 1950’s 1,4-diamino-2,3-dicyano-1,4-bis[2-aminophenylthio]butadiene 

or U0126 (Middleton et al., 1958) was in 1998 identified as a specific MEK1/2 inhibitor 

(Favata et al., 1998). The drug was already known to inhibit gene activation through 

transcription factor AP-1 involved in cell cycle control (Angel and Karin, 1991). U0126 

inhibits MEK1/2 non-competitively by binding to the enzyme on a position different from the 

binding sites of ATP or ERK (Favata et al., 1998).  It is regarded as one of the most powerful 

pan-MEK inhibitors. However, due to pharmaceutical limitations it cannot be used clinically, 

although there are other substances MEK inhibitors with better profiles concerning 

bioavailability and solubility are available today (Fremin and Meloche, 2010). Nevertheless, 
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U0126 is widely used experimentally as an important tool to evaluate the contribution of 

MAPK signaling.  

 
Fig.3. Signaling pathways showing the key points of action of the major inhibitors used in 
this study. 
 

LY294002 directed against PI3K 

The natural agent wortmannin originally found to inhibit PI3K is unspecific and afflicted by 

many off-target effects. Another PI3K antagonist, the flavonoid quercetin, was used as a 

model to synthesize more selective inhibitors to PI3K. One of them, (2-(4-morpholinyl)-8-

phenylchromon(e2 -morpholino-8-phenyl-4H-l-benzopyran-4-one) or LY294002 inhibits 

PI3K with a much higher specificity and potency as compared to quercetin (Vlahos et al., 

1994). LY294002 is a pan-PI3K inhibitor acting competitively by blocking ATP binding to all 

PI3K isoforms at micromolar range. However, the specificity profile of LY294002 has been 

reported to be broader than first expected (Gharbi et al., 2007). For example, the catalytic site 

of p100α and mTOR is structurally similar explaining the cross-reactivity and proposing an 

advantage that LY294002 and similar drugs may be used as a dual PI3K/mTOR inhibitor 

(Markman et al., 2010). Hence, the possibility of multiple drug effects should be considered 

when interpreting experimental data using LY294002. 

 

PLX4720 directed against mutated BRAF 

The high prevalence of BRAFV600E mutations in human cancers has encouraged the 

development of inhibitors specifically targeting the mutated form of the kinase. N-(3-(5-

chloro-1H-pyrrolo[2,3-b]pyridine-3-carbonyl)-2,4-difluorophenyl)propane-1-sulfonamide 
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or PLX4720 belongs to the first generation of inhibitors that binds competitively to the ATP-

binding pocket in the kinase-active conformation and efficiently reduces the growth for both 

melanoma cell line and melanoma tumor xenografts (Tsai et al., 2008). PLX4032 or 

vemurafenib is an analogue to PLX4720 but with more favorable pharmacokinetic properties 

in animal studies (Bollag et al., 2010), which led to the recent approval of vemurafenib for 

treatment of metastatic melanoma. Unfortunately, efficient treatment with BRAF inhibitors is 

limited by the high prevalence of acquired drug resistance. Several mechanisms including 

amplification of wild type BRAF (or CRAF), appearance of spliced versions of BRAF being 

drug insensitive, or additional mutations downstream of RAF have been identified (Lito et al., 

2013). Interestingly, there is a divergence in drug response between BRAF mutant cancer cell 

lines in that thyroid-derived and but not melanoma-derived cell lines reactivate MAPK 

signaling pathway by respond to PLX4032 treatment with accelerated HER3 signaling leading 

to drug resistance (Montero-Conde et al., 2013).  



Experimental Models of Thyroid Cancer 
Many experimental systems have been developed to model tumor biology. All of them, with 

their pros and cons, are used in order to increase the understanding of uncontrolled cell 

proliferation and tumor growth, migration and local invasion of tumor cells, and the 

metastasizing process eventually leading to disseminated cancer. Experimental testing of 

potential anti-cancer drugs aiming to affect these parameters is of course a very important task 

in search for new treatments in patients with relapsing or metastatic disease. The next section  

will briefly highlight different in vivo and in vitro models previously employed in thyroid 

cancer research. 

 

Genetically modified mice  

It is well known that rodents chronically stimulated with TSH (Wynford-Thomas et al., 1982), 

or are exposed to ionized radiation or carcinogens develop thyroid tumors (Al-Hindawi et al., 

1977; Kitahori et al., 1988; Wollman, 1963; Wollman and Reed, 1963). However, with the 

invention of targeted expression in transgenic mice it was possible to investigate thyroid 

tumorogenesis elicited by a single known oncogene (Ledent et al., 1991; Ledent et al., 1995; 

Ledent et al., 1994). Later on, the discovery of specific oncogenic mutations in thyroid cancer 

initiated generation of mouse models in which over-expression of the mutated gene elicited 

thyroid tumors with similar properties as the human counterpart. There are several oncogenic 
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mouse models available to this date (Kim and Zhu, 2009; Russo et al., 2011). Among these 

RET/PTC1 (Santoro et al., 1996), RET/PTC3 (Jhiang et al., 1998; Powell et al., 1998) and 

BRAFV600E (Knauf et al., 2005) nicely recapitulates the typical PTC variants. Thyroid-specific 

BRAFV600E expression further leads to an invasive tumor and progression of the phenotype 

resembling EMT associated with TGF-β production (Knauf et al., 2005). Interestingly, in a 

doxycyclin-inducible mouse model there are indications of reversibility and tumor regression 

of BRAF-induced PTC when the oncogenic signal is discontinued (Chakravarty et al., 2011). 

In the same model, treatment with small molecule kinase inhibitors inhibiting BRAFV600E or 

MEK has a therapeutic effect on tumor growth and which in addition reverses 

dedifferentiation and at least partly recovers radioiodine uptake (Chakravarty et al., 2011). 

Presently, there is only one proposed ATC mouse model reported, co-inactivation of two 

tumor suppressor genes TP53 and PTEN, suggesting involvement of PI3K pathway in the 

tumorigenesis of ATC (Antico Arciuch et al., 2011). 

 

Cell lines 

Another and perhaps more convenient way to experimentally study oncogenes and tumor-

associated factors is the use of immortalized but untransformed non-human cell lines 

transfected with the gene of interest. For example, inducible BRAFV600E expressed in the 

PCC13 rat thyroid cell line makes a model of tumor progression in which TGFβ up-regulated 

by BRAFV600E induces EMT in cooperation with constitutive MAPK signaling (Riesco-

Eizaguirre et al., 2009). Otherwise, cancer cell lines established from malignant thyroid 

tumors have served as valuable tools in innumerable studies aiming to study various aspects 

of tumor cell behavior with the benefit of being derived from human tumors. However, 

significant redundancy and misidentification were recently found among several thyroid 

cancer cell lines (Schweppe et al., 2008). The cell lines analyzed in this study are summarized 

in table 1. Thus, choice of cell line should be carefully considered before entering a study in 

which cell origin and context are of importance. Another concern regarding cell lines is to be 

aware of the apparent risk of altered cell behavior during propagation due to selection and 

acquisition of new mutations. It was recently shown that cell lines established from DTC have 

adopted an in vitro signature with a gene expression profile and phenotype that closest 

resemble undifferentiated tumors (van Staveren et al., 2007). It is likely that such changes 

inflict on the responsiveness to reagents and drugs that makes comparison to the originating 

primary tumor and translations to in vivo conditions difficult or even impossible. 

Nevertheless, some progress have been made using cell lines to better understand mechanisms 
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of functional dedifferentiation that might explain loss of NIS expression and resistance to 

radioiodine therapy, trying to redifferentiate and recover NIS-mediated iodide uptake. For 

example by targeting established thyroid cancer cell lines with poor iodide uptake with small 

molecule kinase inhibitors alone or in combination with histonedeacetylase (HDAC) inhibitor 

SAHA increased trapping of radioiodide was observed (Hou et al., 2010). In addition, DNA 

methylation inhibitors have been shown to partially restore both NIS expression and iodide 

uptake (Venkataraman et al., 1999). On the other hand, another DNA methylation inhibitor 

(5-aza-2'-deoxycytidine) failed to redifferentiate thyroid cancer cell lines in a recent study 

(Dom et al., 2013). Contradicting results are also reported for all-transretinoic acid (ATRA) 

used for the same purpose (Malehmir et al., 2012; Vivaldi et al., 2009) . 

 

Primary cell culture 

Tumor cells are by definition fundamentally different from normal cells in particular 

regarding growth control. However, differentiated tumors retain many features of the 

ancestral cell. Moreover, growth factor stimulation of normal epithelial cells can induce not 

only proliferation but also dedifferentiation, cell migration and even complete EMT 

suggesting primary cultures may be instrumental to better understand at least some aspects of 

tumor cell behavior shared by non-transformed cells. Tumor cells produce their own growth 

factors, which is important for sustained proliferative signaling (Hanahan and Weinberg, 

2011). Auto- or paracrine growth factors may also be important for induction of EMT and 

tumor cell migration. As mentioned before, the gene expression profile of normal human 

thyrocytes treated with EGF in the presence of serum mimics the transcriptome monitored in 

PTC (Hebrant et al., 2007). This included, for example galectin-3, which is not expressed in 

the normal thyroid but potentially can transform thyrocytes (Takenaka et al., 2003).  

Combined activation by EGF and TGF-β induces EMT in normal porcine thyrocytes (Grande 

et al., 2002) and matrix invasion of cells from 3D cultured thyroid follicles (Nilsson et al., 

1995). Together this indicates that primary normal thyroid cells under the influence of growth 

factors can serve as a potentially interesting model for further investigation of targeted drug 

effects. 

Studies on primary human thyroid tumor samples in cell culture or explants are yet few, but 

recent findings suggest this is a promising future approach for possible individualized patient 

investigations (Antonelli et al., 2008a; Antonelli et al., 2008b; Bravo et al., 2013).  
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Aims of the Thesis 
 

Paper I: Recovery of NIS expression by inhibition of MEK 

Possibilities to redifferentiate thyroid cancer cells and obtain sufficient expression of NIS, the 

primary iodide transporter in normal thyroid cells, in order to improve radioiodine therapy 

have proven to be difficult for various reasons. There is also a relative lack of knowledge of 

mechanisms that repress NIS expression leading to loss of thyroid iodide uptake, although 

most likely both genetic and epigenetic aberrations cooperate. This study was undertaken to 

elucidate if we can learn more from investigations on normal thyrocytes triggered to 

dedifferentiate by EGF-induced activation of the MAPK signaling pathway. Specifically, 

identification of limiting factors or culture conditions for the recovery of NIS expression by 

single drug treatment with MEK inhibitor was addressed. To this purpose 2D and 3D cultures 

were compared based on reports that microenvironment influences gene expression and drug 

responses in both normal and tumor cells (Bissell and Hines, 2011; Bissell et al., 2003; 

Correia and Bissell, 2012) 

 

Paper II: Inhibition of thyroid cell migration by MEK and PI3K inhibitors 

Experimental findings mainly based from non-thyroid studies indicate that uncontrolled 

PI3K/AKT signaling play a major role in cancer cells migration and invasiveness and that 

PI3K inhibition may diminish tumor spreading. However, co-activation of other oncogenic 

pathways may modify the drug response and even lead to the opposite, and increased 

metastatic behavior, as recently reported for colon cancer (Tenbaum et al., 2012). In thyroid 

there are only few studies so far addressing to role of PI3K in tumor cells (Burrows et al., 

2013), and knowledge of the response of normal thyroid cells to PI3K inhibitors is sparse. 

This was investigated in 3D-cultured thyroid follicles focusing on the contribution of PI3K in 

EGF-induced cell migration and any possible influences on preservation of the epithelial 

phenotype. 

 

Paper III: Inhibition of thyroid cancer cell invasion by BRAFV600E and MEK inhibitors  

Scratch wounding and transmigration across matrix-coated permeable filter are convenient 

but simplified methods for investigation tumor cell migration and invasion in vitro. In this 

study we wanted to investigate whether 3D culture inside extracellular matrix modifies the 

migrating behavior of PTC- and ATC-derived thyroid cancer cell lines harboring oncogenic 
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BRAFV600E mutations and the response to a BRAF-specific inhibitor. The possibility of 

rebound activation of MAPK signaling during prolonged exposure to BRAF inhibitor and its 

consequences for invasiveness and the responsiveness to co-treatment with a MEK inhibitor 

were also addressed. 

 

Methodological Considerations  
In the following section some general aspects of the methods used in this thesis and related 

issues of concern will be discussed. For more information the reader is referred to the 

individual papers.  

 

Isolation of porcine thyroid follicles 

Major parts of this thesis (paper I and II) are based experiments on primary cultured porcine 

thyrocytes. Isolation and enrichment of porcine thyroid follicles is a well established method 

in our laboratory developed already in 1980. Basically the protocol comprises repeated cycles 

of enzymatic degradation and mechanical disintegration (Denef et al., 1980). Thyroid glands 

are dissected from connective tissue and cut into small pieces before incubation in a solution 

containing collagenase, DNAse and trypsin inhibitor followed by filtration and centrifugation 

at low speed in order to separate the follicles from large indigestible remnant tissues and 

single cells. Thus, the preparation is essentially free from fibroblast, endothelial cells and 

blood elements.   

 

Selection of thyroid cancer cell lines 

In paper III we wanted to preferentially study BRAFV600E mutant cells and we choose ATC 

derived SW1736 and PTC derived BCPAP, both having the mutation and recommended as 

safe regarding origin and without contamination in the study of Schweepe et al (Schweppe et 

al., 2008). Studies on cell lines not harbouring BRAFV600E mutation (Hth7 with mutation of 

NRAS Q61R) are being initiated but paper III only includes SW1736 and BCPAP as of the 

time of writing of this thesis.  

 

2D and 3D cell culture 

Most experiments in paper I were conducted on normal porcine thyrocytes cultured in 

Transwell™ bicameral insert chamber system suitable for monitoring transport across a tight 

monolayer. The model has previously been used in several studies in our laboratory as it is 
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better than any other in vitro systems as it mimics the natural route of iodide transport in the 

thyroid (Ericson and Nilsson, 1996; Nilsson and Ericson, 1994; Norden et al., 2007). 

Establishment of an epithelial barrier is absolutely necessary for proper measurement of 

active transport that can be distinguished from passive flux through leaky junctions. To ensure 

this, both transepithelial resistance (TER) and potential difference (PD) were measured during 

the entire experiments. This was particularly important when cells were treated with growth 

factors or drugs for prolonged time periods. For paper I we also adopted a 3D model in which 

thyrocytes were cultured in a collagen gel. Use of collagen type I as matrix to study cell 

behavior in a 3D matrix has a long history (Elsdale and Bard, 1972). Earlier studies also 

showed that embedding thyroid follicles in a collagen gel stabiles the correct polarity 

presumably through providing an interaction of the cell membrane with an extracellular 

component to which the cell can adhere (Chambard et al., 1981; Garbi et al., 1984). Notably, 

collagen gel embedded follicles were previously used as a model to investigate cell migration 

induced by peptide growth factors (Nilsson et al., 1995; Westermark et al., 1991). In paper I a 

modified version of the collagen gel culture in which follicles were allowed to reconstitute 

prior to experimental start provided a model in which functional dedifferentiation focusing on 

pNIS expression and iodination in response to chronic EGF stimulation was studied. In paper 

II this model was further employed to investigate involvement of MEK and PI3K pathways in 

EGF-induced cell migration.  In paper III we used tumor cell lines also embedded in collagen 

and extended the single gel culture into invasion assay consisting of a double gel setup, we 

studied the effects of inhibitors.  

 

Iodide transport and iodination 

In paper I iodide transport and iodination was studied in 2D and 3D culture respectively. This 

was done by adding trace amount of 125I-, only to the basal medium in Trasnwell™ chambers, 

and the measuring the accumulated activity either in the apical medium or trapped in follicles 

depending on type of experiment. In filter-cultured cells it is possible to differentiate between 

iodide transport through the epithelial cells including both the basolateral uptake mediated by 

NIS and apical efflux of iodide (Nilsson et al., 1990; Nilsson and Ericson, 1994) although this 

was not pursued in this thesis. To avoid confounding iodination in iodide transport studies, it 

is essential to inhibit TPO with methimazole (MMI). In collagen gel-cultured follicles it was 

not possible to distinguish 125I- uptake from unspecific binding of 125I-, which required long 

rinsing to remove.  However, in the absence of TPO inhibitor organification primarily 

representing iodinated TG is readily measured in the 3D model. As this was found to be 
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abolished by perchlorate, it is evident that the trapped activity depends on active transport by 

NIS and also that the cells formed tight follicles with a secluded lumen in which iodinated TG 

is stored. Conversely, 2D cultured cells on filter were not suitable for iodination as the 

radiotracer is rapidly diluted in the large apical medium volume away from the apical 

membrane where iodination normally take place (Ekholm, 1981; Ekholm and Bjorkman, 

1997). Thus, both the models used in this thesis are complementary in experimental 

investigation of thyroid function.  

 

NIS mRNA expression 

NIS expression was analyzed by RT-qPCR in paper I. Primers used have previously been 

designed for to detect all transcripts present in porcine cells (Norden et al., 2007) but the 

reference gene was replaced by ubiquitin since the long term treatments radically affected 

other genes tested as for example 18s, GAPDH or beta actin . RNA was extracted from either 

2D or 3D cultures by using RNeasy micro kit (Qiagen) and in both cases by direct lysis but an 

additional centrifugation step was included for 3D cultures to remove residual medium before 

the lysis. Reverse transcription was performed on the extracted RNA and qPCR was run using 

SYBR green method and relative expression was analyzed with ΔΔCt method (Livak and 

Schmittgen, 2001) 

 

Analysis of phosphorylated ERK1/2 or AKT 

Downstream signaling and protein analysis of phosphorylated ERK1/2 or AKT was 

performed by SDS PAGE and Western blot. Cells cultured in 2D were directly lysed in the  

presence of inhibitors of proteinases and phosphatases. In 3D cultures three gels were pooled 

and collagenase treated (100 U/ml) for 1 hour before the cells were pelleted and lysed. The 

transferring of the proteins to a membrane being probed for phosphorylated protein and after 

removing the first antibodies also reprobing it for total ERK1/2 or AKT for loading control.  

 

Cell proliferation and survival 

Cell proliferation was estimated by [3H] thymidine incorporation in paper II and III. After 

incubation, excessive activity was removed by extensive washing before solubilization of the 

gel and liquid scintillation counting. For 3D-cultured cell lines this method was technically 

problematic with inconsistent results although morphological analysis revealed difference in 

cell density after treatment with inhibitors. Evaluation of tumor cell number in collagen gel 

was therefore limited to microscopy. Nucleus was counterstained with 4',6-diamidino-2-
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phenylindole dihydrochloride (DAPI). When stained with DAPI nucleus with apoptotic cells 

will display a characteristic pattern of nuclear condensation and fragmentation which can be  

used to evaluate the viability of the cell. This is also important because the cells were treated 

for long time with drugs. Quantification of follicle number based on DAPI staining (paper II) 

was done in a standardized manner in which all follicles in four fields at 20X were counted.  

 

Migration and invasion assays 

In both paper II and III the migration and invasive behavior of normal follicular cells and 

thyroid cancer cells were investigated. In paper II this was based on reconstituted follicles and 

hence the starting point was cells in a highly differentiated state. Cell migration was evaluated 

by direct microscopy and quantified by counting the number of follicles with a typical pattern 

of radial protrusion of cells from the core epithelial lining. In paper III the migration capacity 

in human cancer cell lines was studied by scratch wounding at high cell density followed for 

24 h of recovery. Scratch wounding is a classical in vitro method to estimate migration 

potential of cells, that lately also have been adapted to high-throughput screening in 384-well 

format (Yarrow et al., 2004). Since cell behavior can be modulated in presence of 

extracellular matrix we also wanted to study SW1736 and BCPAP when embedded in 

collagen. Migration of cells randomly dispersed in gels was impossible to evaluate so we 

developed the 3D model by embedding the cell-containing gel in another gel which made it 

possible to monitor and grade the amount of cells invading from the first to second gel over 

time by light microscopy. Invasion was documented by images taken at four opposite 

locations of the gel interface.  

When following migration in vitro with the routine or invented methods used in this thesis, it 

is impossible to completely distinguish migration from potential proliferation which also 

could contribute to the covering of scratch wound or the increased number of cells in the outer 

second gel. Since results of scratch wounding were evaluated after 24 h this avoided a major 

contribution of proliferation. Invasion into the second gel was extended for longer time (3-6 

days) hence proliferation likely influenced the number of cells.  

 

Fluorescence microscopy in 3D cultures 

Immunofluorescent labeling of 3-D cultured cells required optimization of protocols to reduce 

background staining. This included incubation overnight with blocking solution and primary 

antibody, prolonged incubation with secondary antibody, and extended time for washing. The 

intensity and distribution of TG immunoreactivity (cytoplasmic or lumen) were analyzed in 
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paper I and localization of ZO-1 was imaged in paper II to evaluate EGF and drug effects on 

thyroid function and epithelial phenotype respectively. In addition, F-actin labeled with 

phalloidin-FITC was analyzed in paper III to characterize cell shape changes of 3D-cultured 

cancer cell lines. Imaging of fluorescent signal in thick specimens and in which the objects of 

interest are dispersed in many focal planes is challenging. In an attempt to improve the 

evaluation, follicles were also cultured in a sandwich model seeded between two acellular 

gels. However, this method was rejected due to unwanted spontaneous spreading of cells 

forming a monolayer in the intervening space.   
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Results and Discussion 
 

Switching from MAPK-dependent to MAPK-independent repression of the sodium-iodide 

symporter in 2D and 3D cultured normal thyroid cells (paper I) 

 

The main findings in paper I were:  

• Serum potentiates TSH-stimulated NIS expression and iodide transport in porcine 

thyroid epithelial cells 2D-cultured on a permeable filter.  

• In this system, EGF down-regulates NIS expression in both a MEK-dependent and 

MEK-independent manner depending on the serum concentration. 

• In thyroid cells embedded in collagen gel, serum is important for the viability and 

reconstitution of follicles but does not potentiate NIS expression or iodination.  

• In reconstituted follicles EGF down-regulates NIS and prevents iodination entirely by 

a MEK-independent mechanism. 

• Other investigated thyroid functions i.e. synthesis and turnover of TG and 

transepithelial electrolyte transport, are inhibited by activation of the MAPK signaling 

pathway. 

 

 
 

Fig.4. Interplay between FBS and MEK and Non-MEK dependent pathways leading to 

downregulation of NIS in 2D and 3D cultures of thyroid cells. 
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Refractoriness to radioiodine (iodine-131) in advanced thyroid cancer is primarily caused by 

loss of NIS expression (Schlumberger et al., 2007) and this has been found to be difficult to 

restore, which would be preferable since it would increase the possibilities to offer 

radiotherapy to patients with relapsing or widespread tumors. Interestingly, in a mouse model 

of BRAFV600E-induced PTC it was found that when the oncogenic signal is shut down or 

MEK is inhibited, the expression of thyroid proteins TSH, TG and TPO was restored but NIS 

did not respond to the inhibitor as efficiently (Chakravarty et al., 2011). To further study 

MAPK involvement in down-regulation of NIS and iodide transportation we modeled this by 

stimulating normal thyroid cells cultured either on Transwell filters or in a collagen gel with 

EGF. In 2D culture, two different mechanisms were found. Firstly, in low serum conditions 

where the cells had a suboptimal TSH response in comparison to what was possible to achive 

in high serum conditions, EGF had a pronounced down-regulating effect on NIS expression 

and iodide transport, but over time the barrier function was lost which made it problematic to 

study iodide transport after long term treatment. In this low serum condition all parameters 

(apart from NIS-mediated transport also electrolyte transport and the barrier function) were 

readily restored in the presence of the MEK inhibitor U0126, suggesting a MEK-dependent 

mechanism responsible for EGF-induced thyroid dedifferentiation. When the serum level was 

raised to 5% during EGF-stimulation the MEK inhibitor still could prevent phosphorylation of 

ERK1/2 and also inhibit the loss of electrolyte transport, but interestingly NIS mRNA levels 

remained low indicating that in this condition the repression of NIS gene transcription is 

MEK-dependent only to a minor extent and a major MEK-independent mechanism is 

responsible. It should be mentioned that this shift was not due to reactivation of the MAPK 

signaling pathway, which is a common mechanism in tumor cells leading to acquisition of 

drug resistance to small molecule kinase inhibitors targeting this pathway (Alcala and 

Flaherty, 2012). In addition, poor recovery of NIS expression did not seem to be mediated by 

the PI3K pathway, which was found to contribute little if any to EGF responses in confluent 

primary cultured thyroid cells. So the findings were paradoxical with serum factor(s) on one 

hand promoting a differentiated state and high iodide transport capacity of the thyrocytes and 

on the other hand modifying the EGF response leading to persistent loss of NIS expression.  

 

It has been shown that when thyroid cells are organized in a follicle-like structure NIS is 

expressed more (Bernier-Valentin et al., 2006). In addition, in breast epithelial cells 3D 

microenvironment also regulates gene expression (Bissell et al., 2003). So we decided to  
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culture the same thyroid cells as follicles embedded in a 3D matrix of collagen which 

potentially could give more insight in how serum, EGF and TSH modify the response and the 

effect of MEK inhibition. It was very interesting to find that even though serum was still 

important for the reconstitution of follicles early after plating serum concentration did not 

seem to affect function, that is the follicles responded equally well at both short and long 

term-stimulation with TSH regardless if the level of serum was kept high or lowered. 

Moreover, MEK inhibition was inefficient and could not rescue NIS expression or iodination.  

On the other hand, both synthesis and distribution of TG was reversed when U0126 was 

added. Hence, similar to the aforementioned mouse PTC model (Chakravarty et al., 2011), 

although both NIS and TG are affected by activation of the MAPK signaling pathway, the 

ability of small kinase inhibitors against MEK to reverse the phenotype differs with NIS being  

more refractory.  Together, this suggests that a MEK independent mechanism more 

specifically repress the expression of NIS. 

 

Dual contribution of MAPK and PI3K in epidermal growth factor-induced destabilization 

of thyroid follicular integrity and cell migration into extracellular matrix (paper II) 

The main findings of paper II were: 

• EGF-induced proliferation of thyroid cells cultured as reconstituted follicles in 

collagen gels involves both MAPK and PI3K signaling. 

• In the same time EGF antagonizes TSH-stimulated enlargement of the follicle lumen, 

although in absence of kinase inhibitors the follicles remain intact. 

• Radial cell migration induced by EGF is also dependent on MEK and PI3K, 

augmented by serum, and concomitant inhibition is needed for full inhibition of 

migration. 

• Single treatment with MEK inhibitor only partly inhibited migration but fully 

restitutes the follicular structure.  

• Single treatment with PI3K inhibitor adversely promotes EGF-induced cell migration 

and in addition provokes follicle disintegration.   

• As revealed by ZO-1 staining, EGF treatment in the presence of PI3K inhibitor allows 

migrating cells to retain the epithelial phenotype with capacity to reform follicles. 

• EGF exerts a cytoprotective effect that counteracts apoptosis resulting from PI3K 

inhibition. 
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Fig.5. A representation of the morphological changes induced by various treatments used in 

this study. 

 

In paper II we wanted to further investigate the collagen gel model focusing first on the 

possibility to pharmacologically block thyroid cell migration in a 3D context and, secondly, 

on possible mechanisms that may keep the integrity of the follicular epithelium during EGF-

induced migration. Since PI3K signaling, in addition to the more well studied MAPK 

pathway has been suggested to contribute to thyroid cancer cell spreading (Burrows et al., 

2013), we also wanted to include this pathway in the evaluation. First, we monitored cell 

proliferation based on [3H]thymidine incorporation and found that this was increased by EGF 

regardless of serum content, although the effect was prominent in serum-starved cells. 

Inhibition of MEK or PI3K with U0126 and LY294002, respectively, reduced growth and 

when drugs were combined an additive effect was observed. We then analyzed the 

morphology of gel-cultured follicles treated with combinations of TSH, EGF, serum and 

inhibitors and also quantified the number of follicles with signs of cell migration. Radial 

migration was clearly induced by EGF and in addition there was a pronounced effect on the 

lumen structure as compared to TSH-stimulated follicles. The lumen structure was clearly 

restored in presence of U0126 regardless of serum but the inhibitory effect on cell migration 

was more obvious in low serum conditions. Thus, in follicles cultured in 5% FBS and 

stimulated with EGF there was a significant amount of ongoing migration when MEK was  
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inhibited from the start of experiment. Combined treatment with U0126 and LY924002 was 

needed to inhibit cell migration completely.  

 

When cells were stimulated with EGF in the presence of a PI3K inhibitor, remarkable 

morphological changes were observed by direct microscopy, as if the entire follicular 

structure was abolished due to augmented cell migration. This pattern was especially 

pronounced at 5% FBS, although still obvious in reduced serum. However, 

immunolocalization of ZO-1 revealed that despite the chaotic growth pattern most cells were 

organized in follicles although with much distorted shapes and the lumens were still delimited 

by tight junctions with seemingly normal appearance. Interestingly, small aggregates of cells 

frequently found in cultures with combined EGF and LY294002 treatment expressed ZO-1 

and had lumens. Counting them showed significantly increased numbers of lumen-containing 

structures only in this treatment group. It should be reminded that this was observed despite 

the fact that cell proliferation was reduced (by PI3K inhibition), indicating that new follicles 

were formed not because of increased cell number but rather reorganization of preexisting 

cells after breakdown of the original follicles. Hence, PI3K seems to be important for keeping 

the follicular structure intact. There is a considerable cross-talk between PI3K and MAPK 

signaling and PI3K can influence MAPK pathway and vice versa. Furthermore, depending on 

the situation PI3K can potentially even prolong the period of time when ERK is being 

phosphorylated (Aksamitiene et al., 2012). When added to TSH-stimulated cells LY294002 

did not induce any migration, but morphologically the follicles appeared affected and DAPI 

staining revealed an increased number of cells with condensed or fragmented nuclei indicative 

of apoptosis. However, in the presence of EGF this pattern did not occur.  Therefore, EGF 

supports cell survival that otherwise is threatened by repression of vital PI3K-dependent 

cellular functions.  
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Differential effects of MAPK pathway inhibitors on migration and invasiveness of 

BRAFV600E mutant thyroid cancer cells in 2D and 3D culture (paper III) 

 
The main findings of paper III were: 

• Comparing two thyroid cancer cell lines of different tumor origin (BCPAP from PTC 

and SW1736 from ATC) BCPAP was more affected by PLX4720, a BRAFV600E-

specific inhibitor, and U0126 in all parameters evaluated.  

• Rebound activation of MAPK/ERK1/2 pathway after PLX4720 treatment is evident in 

SW1736 but not in BCPAP although both harbor the BRAFV600E mutation.  

• Migration of SW1736 in 2D culture (wound assay) is largely resistant to both 

PLX4720 and U0126, although both inhibitors blocked cell proliferation.  

• In 3D culture BCPAP cells are highly dependent on MAPK pathway for survival 

while SW1736 cells are much less sensitive. 

• Single or dual inhibition of BRAF and MEK in 3D-grown SW1736 hamper cell 

migration but do not prevent matrix invasion during prolonged culture. 

 

 
Fig.6. Overview of the ‘gel-in-gel’ method employed to culture thyroid cancer cells in this 

study. 

Migration assays in vitro do not normally take microenvironment and extracellular matrix into 

consideration. In paper III we wanted to focus on the major oncogenic alteration in PTC, 

BRAFV600E mutation, and its possible contribution to migration and invasion by setting up a 

3D culture system and comparing this with findings in a conventional scratch wound assay in 

2D culture. Two different cells lines were chosen, the PTC-derived BCPAP and ATC-derived 

SW1736. To evaluate the influence of MAPK signaling we selected one powerful MEK 

inhibitor, U0126, which is commonly used in experimental studies, and one BRAFV600E 

inhibitor, PLX4720, which is the predecessor to PLX4032 or vemurafenib used in clinical  
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trials. Based on phosphorylation of ERK1/2, both cell lines were clearly inhibited by both 

substances administered one at the time but as previously reported for thyroid cancer cell lines 

(Montero-Conde et al., 2013) SW1736 showed a pronounced rebound activation of MEK in 

presence of PLX4720. However, rebound signaling was abolished with dual treatment, that is 

MEK remained silenced. Somewhat surprisingly, it was not necessary to prevent reactivation 

of MEK to sustainably inhibit tumor cell proliferation. 

Next, we evaluated the potential effect of MAPK inhibition on the migration of tumor cells as 

monitored after scratch wounding of confluent 2D cultures. This showed major differences in 

drug response between the cell lines. First of all, BCPAP migrated more slowly than SW1736 

and was unable to close the wound after 24 hours, which SW1736 did. BCPAP was also very 

sensitive to MEK or BRAF inhibition. SW1736 on the other hand was less affected and 

combined drug treatment did not produce a significant difference.  

When embedded in collagen type I matrix cell proliferation was lowered in both cell lines as 

compared to 2D cultures. It should be mentioned that it was difficult to evaluate drug effects 

on growth after [3H] thymidine labeling due to large variations within and between 

experiments. As an alternative method we stained F-actin, which made it easy to evaluate cell 

density in the entire gel volume. This showed that SW1736 increased in number between 24 

and 72 hours whereas the amount of BCPAPs was fairly constant during the same time. In the 

presence of inhibitors, most notably U0126, the cell viability of BCPAP was markedly 

reduced with very few cells remaining after treatment for 48 hours. U0126 inhibited 3D 

growth of SW1736 but there were no evident signs of reduced survival. SW1736 multiplied in 

the presence of PLX4720, and the combined treatment with MEK inhibitor had no obvious 

additive effect. 

Finally, we wanted to study drugs effects on matrix invasion of the cell lines. To this purpose 

a new model that allowed directed migration to be monitored embedding the cell-containing 

gel in a second gel of collagen. Cells entering the second, outer gel were monitored by direct 

microscopy for as long as 6 days without signs of side effects due to prolonged culture. In the 

absence of inhibitors, both cell lines migrated into the outer gel with a clear difference 

demonstrating that SW1736 has a much more invasive phenotype. Drug-treated BCPAP were 

unable to invade, which was expected by the finding most cells died under treatment. Also, 

the migration of SW1736 was much reduced. However, neither single nor dual treatment with 

PLX4720 and U0126 prevented matrix invasion completely, that is many tumor cells entered 
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the second gel after 6 days of treatment. Together, this suggests involvement of a MAPK-

independent mechanism in migration of SW1736 and that targeting this pathway alone is 

insufficient to prevent tumor cell invasion. 
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Concluding Remarks 
Regarding thyroid dedifferentiation: 

• EGF-induced down-regulation of TG is MAPK dependent, whereas the negative effect 

on NIS expression occurs in two ways: the classical MAPK signaling and a non-MEK 

mechanism. 

• Culture context, 2D or 3D, determines which mechanism predominates and whether 

MAPK inhibitors can restitute NIS expression or not. 

• The findings offer a new explanation for loss of iodide uptake in response to receptor 

tyrosine kinase activation. 

 

Regarding thyroid cell migration: 

• EGF-induced cell migration in 3D-cultured thyroid follicles is concerted by MAPK 

and PI3K-mediated signals, and both pathways must be blocked to prevent matrix 

invasion. 

• PI3K-regulated mechanism(s) supervise maintenance of follicular structure and 

integrity of the epithelium, ultimately supporting thyroid cell survival. Inhibition of 

PI3K under activation of the MAPK pathway provokes follicle disintegration and 

accelerated cell migration. 

• This motivates a cautionary note of a potentially disadvantageous effect of PI3K 

inhibitors unless MAPK signaling is simultaneously blocked. 

 

Regarding thyroid cancer cell invasion: 

• BRAFV600E mutant cell lines derived from different types of thyroid cancer possess 

different sensitivity to BRAF and MEK inhibitors regarding tumor cell migration and 

invasion. 

• Rebound activation of MEK after BRAF inhibition does not necessarily correlate with 

gain of tumor cell growth or altered tumor cell motility. 

• Dual inhibition of BRAF and MEK do not prevent matrix invasion of 3D-cultured 

thyroid tumor cells derived from anaplastic cancer. Such treatment may select tumor 

subclones with a higher invasive potential. 
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