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ABSTRACT 

Human herpesviruses are usually acquired early in life and are widely 
distributed in the population. A common feature of all human herpesviruses is 
that they persist in the host after the primary infection. Thus, the host immune 
system resolves the acute stage of the infection but these viruses have evolved 
means to remain in a state of latency in some cells from which they occasionally 
reactivate into a state of replication. A functional immune system will clear 
these episodes and the clinical manifestations are therefore usually mild or 
absent. On the other hand, when the immune system is dysfunctional the 
herpesviruses pose a serious threat. Especially cytomegalovirus (CMV) and 
Epstein-Barr virus (EBV) are associated with severe infections in transplant 
patients and other immunosuppressed patients, where infiltration of virus-
infected leukocytes into organ tissue can give rise to pneumonia, hepatitis and 
renal failure. 

The mechanism behind organ colonization of herpesvirus-infected leukocytes 
is not clear. However, the normal pathway for leukocyte transmigration over 
the endothelial wall is well characterized and involves interaction between 
carbohydrate binding proteins, selectins, and selectin ligands, including the 
Lewis antigen sialyl Lewis X (sLeX). The selectin ligands are therefore 
potential targets in viral pathogenesis and we have previously demonstrated 
that several herpesviruses can in fact activate the cellular pathway for synthesis 
of sLeX and related structures. In this work we aimed at defining the 
mechanism behind herpesvirus-induced selectin-ligand expression using 
herpes simplex virus type 1 (HSV-1) as a model virus. Moreover, we aimed at 
establish a model system for studying the effects of CMV and EBV infections 
on selectin ligand synthesis in leukocytes.  

We determined that sLeX expression in HSV-1 infected fibroblasts depends 
on viral RNA transcription and the cellular protein kinase R, an antiviral 
protein complex that detects small double stranded RNA fragments generated 
by transcription of HSV-1 genes. We also found that the mechanism for HSV-
1-induced expression of sLeX in T-lymphocytes was dependent on viral early 
protein synthesis, contrary to the situation in fibroblasts. Selectin ligands are 
expressed on glycoproteins in the cell and we found that sLeX can also be 
displayed on virus-encoded glycoproteins in fibroblasts. Preliminary data 
suggests that CMV and EBV also can manipulate the cellular machinery for 
selectin-ligand synthesis in leukocytes. 

 



 

Patients with supressed immune system are always at risk of developing severe 
CMV or EBV disease and are therefore carefully monitored for viral DNA in 
the blood. Unfortunately the viral load does not always correlate to disease 
progression and the patients risk severe complications. It is possible that 
selectin-ligands comprise a new set of diagnostic tools that can be used in 
parallel with traditional PCR based methods for better prediction of 
CMV/EBV disease progression. It is also possible that selectin-ligands are new 
targets for antiviral treatment and several substances, which block interaction 
with selectins, are already in clinical trials for evaluation of their anti-metastatic 
potential. 

Keywords: Herpesviruses, HSV-1, CMV, EBV, sialyl Lewis X, Lewis Y, 
selectin, PKR 
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SAMMANFATTNING PÅ SVENSKA 

Herpesvirus är en grupp av DNA-virus av vilka åtta stycken infekterar 
människor. Dessa delas in i tre underfamiljer, dels alfaherpesvirus herpes 
simplex virus typ 1 och typ 2 (HSV-1 och HSV-2) samt varicella zoster virus 
(VZV), dels betaherpesvirus cytomegalovirus (CMV) och Herpesvirus 6 och 7 
(HHV6 och HHV7), och slutligen Epstein-Barr virus (EBV) och Kaposi´s 
sarcoma-associerat herpesvirus (HHV8) vilka är gammaherpesvirus. De flesta 
människor infekteras tidigt i livet och så många som 70-90 procent av 
befolkningen bär på ett eller flera herpesvirus då dessa inte lämnar kroppen 
efter den primära infektionen. I vanliga fall innebär detta inte några 
komplikationer då ett fungerande immunförsvar håller dessa herpesvirus i 
schack och symptomen vid den primära infektionen så väl som vid eventuell 
återaktivering av viruset är då milda eller obefintliga. Då immunförsvaret är 
funktionellt nedsatt, t.ex. vid transplantationer, utgör dessa virus, speciellt 
CMV och EBV, däremot ett potentiellt livsfarlig hot. Den delikata balansen 
mellan virus och immunceller rubbas och viruset får möjlighet att föröka sig i 
kroppen med ökade virusnivåer i vita blodceller som följd. Dessa infekterade 
vita blodceller kan transportera viruset till olika organ där det kan föröka sig 
och orsaka potentiellt livsfarliga skador.  

Det är inte klarlagt hur virusinfekterade celler kan lämna blodbanan för att 
infiltrera olika organ. Den normala mekanismen som vita blodceller använder 
för att påbörja transporten över blodkärlsväggen är däremot välstuderad och 
innefattar att cellen uppvisar speciella kolhydrater (selektin-ligander) på 
cellytan, vilka binder till proteiner (selektiner) som sitter på kärlväggens celler. 
Kontakten mellan dessa påbörjar processen som leder till att blodcellen kan 
tränga ut i vävnaden som omger blodkärlet. Detta är normalt en välreglerad 
mekanism vilken förhindrar ospecifikt läckage av celler och endast tillåter 
aktiverade vita blodceller att lämna blodcirkulationen. Som många andra 
cellulära processer kan även denna kopplas till olika sjukdomsförlopp, det är 
t.ex. välkänt att cancerceller kan uttrycka selektin-ligander vilket korrelerar 
med förmågan att orsaka metastaser och därmed försämrar prognosen avsevärt. 
Det är möjligt att herpesvirus också kan utnyttja selektin-ligander för att via 
blodceller sprida sig i kroppen.  

Uttrycket av selektin-ligander regleras framförallt av en typ av enzymer som 
katalyserar den sista överföringen av monosackariden fukos vilket genererar en 
komplett kolhydratstruktur. Generna som kodar för dessa enzym uttrycks 
normalt sparsamt i kroppens celler men det är tidigare visat att herpesvirus kan 
aktivera dem vid infektion i bindvävsceller. I detta arbete definierade vi några 



 

av mekanismerna bakom HSV-1- aktivering av selektin-ligander både i 
bindvävsceller men även i speciella vita blodceller, T lymfocyter. Dessutom 
etablerade vi nya cellmodeller för studier av CMV- och EBV-infektion och 
visade att även dessa virus har förmågan att aktivera systemet för selektin-
ligand uttryck vid infektion i kliniskt relevanta celler. 

CMV- och EBV-infektioner är vanliga hos personer med nedsatt 
immunförsvar, så som transplantationspatienter. Dessa patienter kontrolleras 
därför regelbundet för nivåer av CMV- och EBV-DNA i blodet. Tyvärr 
överensstämmer inte nivåerna av virus alltid med det kliniska förloppet vilket 
innebär att det är svårt att förutsäga vilka patienter som riskerar allvarliga 
komplikationer av sina virusinfektioner. Det är möjligt att selektin-ligander 
utgör en ny metod som kan komplettera de traditionella mätningarna för att 
bättre förutse sjukdomsförloppet hos CMV och EBV infekterade patienter. I 
förlängningen är selektin-ligander potentiellt ett nytt mål för antivirala 
läkemedel. För närvarande finns det flera substanser vilka blockerar bindningen 
mellan selektin-liganden och dess receptor. Det är möjligt att de här 
substanserna kan användas för att hindra spridning av herpesvirus-infekterade 
vita blodceller hos patienter med nedsatt immunförsvar. Flera av dessa är redan 
under klinisk prövning för blockering av metastaser hos cancer-patienter.  
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1 PREFACE AND AIMS 

Human herpesviruses (formally Herpesviridae) constitute a family of large 
enveloped DNA viruses whose major hallmark is that they after symptomatic 
or asymptomatic primary infection establish a life-long persistent infection, 
called latency, in the infected subject [1]. The latent herpesvirus constantly 
challenge the immune system during the life-time of the infected individual 
and occasionally reactivate into a replicative phase, which may or may not cause 
clinical symptoms [2]. Thus, the state of latency is maintained by an intricate 
interplay between the herpesvirus and the host immune system, controlling the 
infection and suppressing reactivation [3]. The human herpesviruses only 
rarely cause severe symptoms in individuals with a functional immune system 
[4].  

In contrast, owing to the significance of an intact immune system for battling 
primary as well as recurrent infections, herpesviruses often pose a serious threat 
for the many categories of immunocompromised individuals, such as 
transplant or cancer patients. In this context, especially two herpesviruses, 
Epstein-Barr virus and cytomegalovirus (EBV and CMV respectively) entail 
great risks for the immunocompromised individual [5]. Both of these viruses 
are considered to be blood borne as they are found in white blood cells, 
leukocytes, during the latent phase as well as after reactivation. CMV disease 
in transplant patients usually presents with fever and related symptoms but in 
10 to 30% of the cases these patients risk severe end organ disease, including 
hepatitis, pneumonitis and renal failure [6]. For EBV infection in individuals 
with compromised immune system the most feared consequence is post 
transplant lymphoproliferative disorder (PTLD), which is a potentially life-
threatening neoplasm [7].  

End organ disease caused by CMV and EBV in immunocompromised patients 
occurs in patients with high viral load detectable in the blood and can affect all 
organs [8, 9]. However, as high levels of virus alone is not sufficient for 
development of end organ disease it appears that some other confounding 
factor is required for colonization of the target organ by circulating virus or 
virus-containing leukocytes [10]. The nature of any such factor has for long 
been unknown, but data from our laboratory suggests that herpesvirus infection 
of a cell stimulates exposure of signal molecules identical with those used by 
activated leukocytes of different types for leaving the blood stream via 
transmigration.  
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These signals can comprise of carbohydrates expressed on proteins, which 
interact with carbohydrate-binding proteins known as selectins on the 
endothelium, which is the first and essential step during transmigration. The 
induction of ligands for selectin binding on the infected leukocyte would be an 
efficient way to manoeuvre the cell out of the circulation.   

We hypothesize that herpesviruses can manipulate the normal tools utilized by 
leukocytes for targeting peripheral organs and thereby facilitate viral 
dissemination. 

The aims of the present thesis are to: 

1. Define molecular mechanisms -with respect to host as well as 
viral effectors- by which herpesviruses can induce selectin 
ligands in the virus-infected cell 

2. Identify possible viral glycoproteins that may serve as additional 
carriers for selectin ligands. 

3. Characterize virus-induced selectin ligands and related 
glycoepitopes in different types of leukocytes 
infected/immortalized by herpes simplex virus type 1 (HSV-1) 
and blood-borne herpesviruses. 

4. To determine whether herpesviruses-induced expression of 
selectin ligands and related structures, as observed in cell 
culture, also are occurring in clinical specimens from 
herpesviruses-infected, immunosuppressed patients. 

5. To explore the possibility that measurements of selectin ligands 
or related structures can be used as a laboratory diagnostic 
complement to current monitoring of viral DNA levels for 
improved handling of CMV and EBV infections.  
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2 BACKGROUND 

2.1 Herpesviruses 

2.1.1 Human herpesviruses: Structure and basic properties 

Human herpesvirus (Herpesviridae) is a family of large enveloped double 
stranded DNA (dsDNA) viruses of which eight members have humans as their 
natural host (Table 1). The herpesvirus particle has a diameter of about 200 
nm and consists of an icosahedral nucleocapsid of 162 capsomers that is 
surrounded by a double phospholipid bilayer envelope (Fig. 1) [11]. All 
members have a relatively large genome size ranging from 120kb to 250kb and 
encode between 70 and 200 genes (Table 1). Herpesvirus gene expression is 
strictly regulated starting with expression of immediate early alpha () genes 
that encode proteins that activate subsequent viral gene expression as well as 
proteins that interfere with the cellular antiviral response. This is followed by 
expression of early () genes encoding proteins important for viral replication 
(i.e. DNA synthesis) and thereafter, transcription of leaky late (1) genes and 
finally true late (2) genes that encode structural proteins including 
glycoproteins [1, 12, 13]. Of special relevance for the present study are the ten 
or more different glycoprotein species that are located in the envelope of the 
viral particle, and later in the infectious cycle also at the cell surface and other 
membranes of the infected cell [11, 14]. The organization of these 
glycoproteins resemble that of normal cellular glycoproteins, but the genetic 
information for the polypeptide sequence is derived from the viral genome [1].  

Figure 1. Structure of a herpesvirus particle. The linear dsDNA is enclosed in an 

icosahedral capsid that is assembled in the nucleoplasm of the infected cell. The nucleocapsid 
and the proteins that constitute the tegument are assembled at vesicles in the cytoplasm and 
finally surrounded by an envelope that carry the glycoproteins. The final enveloped viral 

particle is transported inside a vesicle and is released upon fusion of the vesicle with the 
plasma membrane [11].  
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2.1.2 Human herpesviruses, similarities, differences and 

tropism 

Herpesviruses are divided into three subfamilies, alpha- (), beta- () and 
gamma- () herpesvirinae on the basis of their biological properties (Table 1) 
[1]. A characteristic feature common to all herpesviruses is that after primary 
infection -- often during childhood- a latent phase is developed that persists 
lifelong in the infected host. The host reservoir for latent viruses differs 
dependent on the subfamily belonging of a herpesvirus (Table 
1).  Occasionally, latent virus is reactivated resulting in recurrent symptomatic 
or non-symptomatic productive infections.  One explanation behind this 
coexistence between the herpesviruses and their host is a profound ability of 
these viruses to modulate the host immune response and, in fact, the function 
of the majority of proteins encoded by each of the large herpesvirus genomes 
is to interfere and interact with different immune effectors, thereby promoting 
viral persistence in its host [15-21]. There are several common characteristics 
shared by human herpesviruses; utilization of the same strategy for replication 
with a strictly controlled transcription program during a productive infection, 
they encode different glycoproteins that are abundantly expressed both in the 
viral particle and at the surface of cells during a productive infection, and they 
can establish and maintain a latent infection by expressing dedicated latency 
associated transcripts (LATs). Despite these similarities, important differences 
can be found between the subfamilies and also within each subfamily. 

The alpha () herpesvirus subfamily contains herpes simplex virus type 1 and 
type 2 (HSV-1 and HSV-2) and varicella zoster virus (VZV). All three cause 
a primary infection of mucoepithelial cells and later establish a persistent 
residence in sensory neuronal cells (Table 1). They are therefore referred to as 
neurotropic viruses, a characteristic distinct from the beta () and gamma () 
herpesviruses. Upon reactivation the -herpesviruses assemble new viral 
particles that are transported anterograde through the neuronal cell to infect 
dermal cells [22]. The most striking difference between the individual alpha 
herpes viruses is that HSV-1 and HSV-2 cause a local primary infection with 
a few blisters, cold soars, and with episodes of reactivation occurring essentially 
at the same location as the first infection, while during VZV primary infection 
the virus is consecutively spread to local immune cells or cells of the lymphoid 
system (i.e. white blood cells, leukocytes) [23, 24]. Trafficking of infected T 
lymphocytes to the skin enables VZV to cause a secondary infection in the 
form of pox lesions that can cover the entire body [24, 25]. Reactivation of 
VZV causes a dermatomal-distributed herpes zoster commonly referred to as 
shingles. Occasionally the -herpesviruses can also cause severe infection of 
the central nervous system (CNS). HSV-2-infection can cause primary and 
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recurrent lymphocytic meningitis, while VZV and HSV-1 primarily cause 
encephalitis leading to severe neurological complications [26, 27]. 

The members of the beta () herpesvirus subfamily address a wide range of 
target cells, including fibroblasts, endothelial cells and leukocytes, in which the 
virus can replicate and thereby cause a lytic infection (Table 1). The primary 
infection by cytomegalovirus (CMV) appears to occur in mucoepithelial cells 
of the oral cavity although the exact location is not known [28, 29]. Further 
viral spread is dependent on white blood cells, leukocytes, and vascular 
endothelial cells. A subset of leukocytes, myeloid hematopoietic cells 
(progenitor cells to monocytes), as well as salivary and kidney epithelial cells 
are believed to be the main reservoirs for harbouring CMV during latency [3, 
30]. Infections with CMV are asymptomatic or mildly symptomatic, 
characterized by fever and malaise both during primary and recurrent infection 
[9, 31]. The remaining herpesviruses of the beta subfamily share the target cell 
promiscuity with CMV but the entry pathway for human herpesvirus 6 and 7 
(HHV6 and HHV7) is not known. The preferred cell types for establishing a 
latent infection by these viruses are CD4+ T-lymphocytes, salivary epithelial 
cells or myeloid lineage hematopoietic cells [3].   

The members of the gamma () herpesvirus subfamily include Epstein-Barr 
virus (EBV) and Kaposi´s sarcoma-associated herpesvirus (KSHV). The 
former is believed to initially infect mucoepithelial cells in the oral cavity while 
it is not known for the latter (Table 1). In contrast to the - and -
herpesviruses, EBV and KSHV favour B-lymphocytes for further spread in the 
host. A distinguishing feature of the primary EBV-infection is that the virus 
enters the lymphoid tissue of the pharynx and infects resting B cells, which 
become dividing lymphoblasts. This situation is referred to as infectious 
mononucleosis (IM) and is characterized by a high number of infected B cells 
and manifested as fever and swollen lymph nodes [32]. The lymphoblasts then 
differentiate into resting memory B cells, viral transcription is suppressed and 
low numbers of latently infected cells continue to circulate in the blood [3, 33]. 
Both EBV and KSHV are associated with lymphoma originating in B cells, 
after a prolonged period of immune suppression, which also separates them 
from the - and -herpesviruses [7].  
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Table 1.  Human herpesviruses: basic properties * 

Type Common name Genome 

size 

Primary target Site of 

latency 

Seroprevalence 

Adults 

worldwide ** 

-herpesvirinae 

HHV-1 Herpes simplex 

virus type 1    

(HSV-1) 

~152kb 

(~90 

genes) 

Mucoepithelial cells 

(predominantly 

orofacial tract) 

Sensory and 

cranial nerve 

ganglia 

50-90% 

HHV-2 Herpes simplex 

virus type 2    

(HSV-2) 

~154kb 

(~90 

genes) 

Mucoepithelial cells 

(predominantly 

genital tract) 

Sensory and cranial 

nerve ganglia 

20-60% 

HHV-3 Varicella zoster virus 

(VZV) 

125kb 

(>70 

genes) 

Mucoepithelial cells 

and T cells 

Sensory and 

cranial nerve 

ganglia 

50-95% 

-herpesvirinae 

HHV-5 Cytomegalovirus 

(CMV) 

~235kb 

(~213 

genes) 

Epithelial cells, 

monocytes, fibroblasts 

and more 

Monocyte 

progenitor cells, 

kidney epithelial 

cell and others 

40-80% 

HHV-6      

(A and B) 

Roseolovirus    ~160kb 

(~88 

genes) 

Epithelial cells, 

monocytes, fibroblasts 

and more 

 

Mainly 

monocytes and 

macrophages 

60-100% 

HHV-7 Roseolovirus ~160kb 

(~97 

genes) 

Epithelial cells, 

monocytes, fibroblasts 

and more 

CD4+ T cells 40-100% 

-herpesvirinae 

HHV-4 Epstein-Barr virus 

(EBV) 

172kb 

(~85 

genes) 

Mucoepithelial cells, B 

cells 

Memory B cells 

 

80-100% 

HHV-8 Kaposi´s sarcoma-

associated 

herpesvirus (KSHV) 

~145kb 

(>87 

genes) 

n.d. ‡ 

 

B cells 3-50%‡‡ 

 

*   Adapted from [1] and [34]) 

**  Differences in seroprevalence occur between different socioeconomic populations and geographical areas 

‡   Not determined 

‡‡  No approved assays are currently available 
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2.1.3 Interplay between the herpesvirus and a functional 

immune system 

The infectious course of herpesviruses can be divided into three different stages 
starting with acute primary infection, which is followed by establishment of 
latency and later episodes of reactivation. The acute infection is usually resolved 
by the concerted action of the innate and adaptive immune response. However, 
the virus is not cleared from the body because of the viral ability to persist in 
the host despite a functional immune system, which results in a life long 
symbiotic relationship [3, 35]. For example, CMV and EBV as well as HSV-
1/2 all have evolved means to interfere with the processing steps of major 
histocompability complex (MHC) class I and II antigen presentation, thereby 
protecting the infected cell from CD8+ cytotoxic T cells (CTL) and CD4+ T 
helper cells (Th) respectively [36]. With a functional immune system this 
complex interplay between the virus and the cells of the immune system ensure 
that the virus pool is maintained but also confined [16, 32, 37]. Consequently, 
herpesviruses alter their gene expression when establishing a latent infection, 
suppressing genes important for lytic replication and inducing latency 
associated transcripts (LATs) also called transcripts expressed in latency 
(TELs) [2, 30, 38]. For a long time a latent herpesvirus infection was regarded 
as totally dormant, with a quiet viral genome and a resting immune system 
[39]. This view is being abandoned as recent reports indicate actively on-going 
immune responses to various herpesviruses also in asymptomatic individuals 
[3, 40]. For example, a large proportion of the T cell pool is directed towards 
herpesviruses regardless of clinical symptoms and as much as 30% of the total 
amount of CD8+ T cells have a phenotype towards CMV, EBV and HSV-1 
even in the absence of an active infection [3, 41-43]. Also, virus-specific CD4+ 
T cells are important not only for resolving the acute infection but also for 
controlling latent infection, and this pool of CD4+ and CD8+ T cells are 
constantly surveying the infected cells for markers of infection, specifically 
epitopes derived from TELs [7, 18, 32, 44-48]. It is now clear that in a subset 
of the ‘‘latently’’ infected cells the virus frequently reactivates and re-enters a 
replicative state. Contrary to the picture of herpesviruses being quiet viruses 
that only rarely give episodes of reactivation it now becoming more and more 
evident that they actually are constantly probing the immune system, causing 
subclinical infections that are eventually cleared by a functional immune 
system.  

2.1.4 Herpesvirus infections in immunocompromised patients 

In individuals with a suppressed immune system the herpesviruses ability to 
interact with and partially circumvent the immune response becomes a deadly 
threat. In this respect CMV and EBV are especially problematic, and 
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associated with severe complications primarily as a consequence of primary 
infection but also during viral recurrence [10, 34, 49, 50]. The seroprevalence 
for herpesviruses is high already early in childhood, increasing with age and 
reaching almost 100% for EBV and 70% for CMV in adults in developing 
countries, although large differences occur between socioeconomic populations 
and also between geographical areas (Table 1) [51-54]. As the herpesviruses 
are so widely spread within the human population the risk of either reactivation 
or primary infection is extremely high in patients with a defective immune 
system.  

2.1.5 CMV infections in immunocompromised patients 

In patients undergoing transplantation procedures or cancer treatment and in 
patients with other immune deficiencies (e.g. infection with human 
immunodeficiency virus - HIV) CMV is a constant menace resulting in 
frequent episodes of viremia, characterized by a high number of circulating 
infected leukocytes [10]. In solid organ transplant (SOT) patients invasive 
CMV disease usually occurs within the first year and is most often 
characterized by fever, weakness, myalgia and myelosuppression [9]. In some 
patients the infected leukocytes leave the circulation, causing secondary 
infections that lead to the development of life-threatening end-organ disease, 
which can affect several organs leading to pneumonitis, hepatitis, carditis, 
colitis, encephalitis, retinitis or nephritis [55]. Infection with CMV also has 
indirect effects associated with allograft injury and rejection, increased risk for 
additional infections and increased risk of EBV-associated post transplant 
lymphoproliferative disorder (PTLD) [56].  

Due to high incidence of CMV infection during SOT (up to 75%), the patients 
are regularly monitored for CMV load in the blood [10]. This is usually done 
by qPCR with standardized thresholds and once the level of viral genomes rises 
above the limit, treatment with antivirals (valgangciclovir and ganciclovir) is 
started [57]. Antiviral treatment, both with ganciclovir and valganciclovir, is 
effective and the intervention strategy is aimed at only capturing the patients 
who are at risk of developing CMV disease instead of administering universal 
antiviral treatment, thereby lowering the risk of emergence of drug resistant 
CMV strains and reducing the risk of adverse effects of the medication [58-
60]. 

2.1.6 EBV infections in immunocompromised patients 

In most cases EBV infections in patients with a suppressed immune system 
will progress with mild symptoms including fever, malaise and infectious 
mononucleosis (IM). However, during the first year after transplantation some 
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patients will develop PTLD, a potential life-threatening neoplasm [49]. 
PTLD is a collective name for a diverse group of lymphoproliferative disorders 
that occur in 0.3-12.5% of allogenic bone marrow transplantations (BMT) 
patients and SOT patients, based on the type of organ transplanted and 
amount and type of immune suppression employed [61]. PTLD 
histopathologies include polyclonal lymphoid infiltration where EBV infected 
leukocytes can be detected in extravasal tissue [62]. Development of PTLD is 
highly associated with EBV, and viral genomes are found in over 90% of 
transformed B cells during PTLD in the first year after solid organ 
transplantation [61]. Also, the incidence of PTLD is higher in adolescent and 
young transplant recipients than in adults, which is largely explained by their 
60-80% sero-negative status towards EBV [7]. 

In patients with a suppressed immune system EBV also greatly enhances the 
risk of developing various types of lymphoma that are dependent on expression 
of transcripts expressed in latency (TELs) and small nuclear RNAs (e.g. 
EBER1 and 2) [63, 64]. EBV associated lymphomas have a particularly high 
incidence in HIV infected individuals: in HIV patients with Hodgkin´s 
lymphoma (HL) almost all cases are associated with EBV and in patients with 
AIDS and Burkitt lymphomas the association is 40% [7]. The clinical outcome 
of PTLD varies; some lesions diminish after decrease of immune suppression, 
whereas more aggressive treatment might be required, especially after bone 
marrow transplantation the disease most often follows an aggressive course that 
in many cases is fatal [65]. 

In contrast to the situation for CMV infections, no general antiviral treatment 
is available for EBV although circumstantial reports suggest that ganciclovir 
and even ribavirin could be effective [66, 67]. Replication of latent EBV in 
proliferating B cells does not rely on viral DNA polymerase rendering the 
ganciclovir type of drugs ineffective. In the absence of effective antiviral 
treatment several immune modulatory and immune cell therapies have been 
tried and the most successful seem to be infusion with EBV-specific cytotoxic 
T lymphocytes (CTLs) [68-70]. 

2.1.7 Herpesvirus colonization of extravasal organs – 

unanswered questions 

The most severe complications in both CMV and EBV infections are 
associated with virus-infected leukocytes leaving the circulation for infiltration 
of extravasal tissue [5, 71]. Despite this, the mechanisms behind organ 
colonization of virus-infected leukocytes remain largely unknown. However, 
the normal mechanism for leukocyte recruitment to extravasal tissue during 
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inflammation is well characterized and it is possible that herpesviruses utilize 
the same pathway for colonizing organs. Our group recently published 
evidence that HSV-1, CMV as well as VZV all have the capacity to induce 
genes relevant for leukocyte transmigration, at least in fibroblasts, supporting 
this notion [72, 73].  

2.2 Normal and pathological colonization of 
organs by circulating leukocytes 

2.2.1 Licensing of leukocytes to pass the endothelial wall 

Occasionally, certain leukocytes of the blood stream have to cross the 
endothelial wall to perform tasks in adjacent tissue, i.e. to combat invading 
bacteria or viruses. However, the process by which circulating leukocytes may 
cross the endothelial wall to access adjacent tissue is strictly regulated, not least 
to prevent uncontrolled and unspecific leakage of white blood cells from the 
blood stream [74, 75]. This means that only activated or ‘‘authorized’’ 
leukocytes will be equipped with the necessary tools that enable them to 
penetrate the endothelial wall to perform their tasks.  

Passage of activated leukocytes across the endothelial wall is initiated by the 
interactions between two actors: Special carbohydrate-binding protein 
molecules, selectins, that reside at the inner endothelial wall, and selectin 
ligands, surface carbohydrate structures that appear selectively in appropriately 
activated leukocytes and the direct binding target for selectins [76, 77]. Thus, 
most types of circulating leukocytes cannot leave the circulation until they are 
stimulated (except for many granulocytes that are constitutively activated), 
because in their resting state they do not express selectin ligands [75]. 
Therefore, priming of leukocytes for extravasal tasks must imply activation of 
the normally switched off mechanism for selectin ligand formation to make 
them competent for crossing the endothelial wall. 
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2.2.2 Pathological take-over of selectin-mediated functions 

Hostile use of selectin function is an important pathogenic factor in tumour 
metastasis. Thus, by activation of  ‘‘false’’ expression of selectin ligands on 
circulating tumour cells, several types of tumours succeed in passing endothelial 
wall for colonization of extravasal tissue [78], a phenomenon that contributes 
strongly to the metastatic potential of tumour cells. For several tumour types 
there is a direct correlation between the intensity of cell surface selectin ligand 
expression and the metastatic potential [79-82]. This type of hijacking of 
selectin functions has also been found to enhance the tissue invasiveness of a 
virally induced tumour, adult T-cell leukaemia that is caused by a retrovirus, 
human T-lymphotropic virus type 1 (HTLV-1). Thus, during viral 
transformation of virus-infected T cells to tumour cells, HTLV-1 activates 
constitutive expression of selectin ligands thereby promoting spread of 
circulating tumour cells across the endothelium for colonization of skin tissue 
targets [83-85]. Interestingly, the mechanism by which HTLV-1 induces 
expression of selectin ligands on virus-transformed cells and corresponding 
virus-induced expression in CMV-infected cells share many similarities [73, 
84, 85], supporting the notion that this phenomenon may have implications 
for spread of herpesvirus-infected leukocytes in immunocompromised patients 
(Fig. 2).  

Figure 2. Hypothetical mechanism for spread of herpesvirus-infected leukocytes, based on 

published models for how human tumour viruses induce spread of virus-transformed 
leukocytes by fraudulent activation of the natural mechanism by which normal, activated 
leukocytes transmigrate across the endothelial wall [85]. The herpesvirus induces selectin 

ligands on the cell surface of infected leukocytes (See present study (III)). The endothelium 
(orange cells) carries selectins that bind the selectin ligands on the ‘‘authenticated’’ virus-
infected leukocyte. This interaction enables further contact between the leukocyte and the 

endothelial cells and subsequent transmigration across the endothelial wall. The 
herpesvirus-infected leukocyte may then migrate further into extravasal tissue (green cells) 
where the virus replicates and infects new cells. 
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2.3 Leukocyte migration over the endothelial wall 

2.3.1 Selectins 

Selectins are carbohydrate-binding proteins that mediate reversible 
interactions with glycoconjugates enabling tethering and rolling of the 
leukocytes along the endothelium, a prerequisite for subsequent passage across 
the endothelial wall. [76, 77]. E-selectin is expressed mainly on endothelial 
cells and P-selectin, which can be rapidly displayed on platelets and endothelial 
cells upon stimulation, are the most important selectins for this process [75, 
86]. L-selectins are expressed at the surface of many leukocytes, with the 
capacity to induce tethering of blood cells to each other. L-selectins are also 
important in a variety of important selectin-dependent activities of circulating 
leukocytes, e.g. homing to peripheral lymph nodes [87, 88]. E- and P-selectins 
are expressed at the endothelial wall only after inflammatory stimulation [89]. 
Thus, upon activation by mediators of inflammation including histamines, 
tumour necrosis factor  (TNF-) and lipopolysaccharide (LPS) resting 
endothelial cells can rapidly mobilize P-selectin to the cell surface from 
secretory granules [90]. Expression of E-selectin on resting endothelial cells 
also has to be activated by stimulation with TNF-, LPS, interleukin-1 or 
other pro-inflammatory factors [91]. Both E- and P-selectin can support 
recruitment of appropriately ‘‘authorized’’ T cells, monocytes, dendritic cells 
and neutrophils to the stimulated endothelium [92-96], priming their 
transmigration over the endothelium. 

2.3.2 Selectin ligands – versatile carbohydrate epitopes 

The main ligands for selectin binding expressed on activated leukocytes are 
carbohydrate epitopes, glycans, belonging to the Lewis family of glycoepitopes 
(Fig. 3)[97]. The sialyl Lewis X (sLeX) glycoepitope and structural relatives, 
i.e. sulphated variants, are the most important selectin ligands [98, 99], but 
hereafter mainly sLeX will be considered for reasons of brevity. Like many 
other glycoepitopes sLeX can be associated with several types of 
glycoconjugates, including glycolipids and glycans of surface glycoproteins. 
There are two major classes of glycans associated with viral as well as host cell 
membrane proteins, designated N- or O-linked glycans owing to the nature of 
the linkage between the innermost glycan monosaccharide and the polypeptide 
backbone (Fig. 4) [100]. Both of these classes may express sLeX [76], but 
owing to its special relevance for the present study, the present review will focus 
on sLeX as a constituent of O-linked glycoprotein glycans.  
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Figure 3. The Lewis glycoepitope family, showing only a subset of possible sulphated 
variants. The Lewis glycoepitopes are a related set of glycans that carry fucose in an 1-3 
(Lewis X, Y) or an 1-4 (Lewis A,B) linkage to the GlcNAc monosaccharide. Sialyl Lewis 

X (sLeX) and its 6-O-sulfated GlcNAc variants are important for leukocyte recruitment by 
selectins expressed on the endothelium, both during inflammation and routine homing to 
lymph nodes. 

 

Figure 4. N-linked and O-linked type of glycans. (A) N-linked high mannose structure. N-
glycans are associated with the polypeptide chain via a covalent linkage between the 
innermost N-acetylglucosamine (GlcNAc) of the glycan and a nitrogen atom of an 

aspargine (Asn) residue of the polypeptide. The minimal sequence requirement is Asn-X-
Thr/Ser, where X can be any amino acid except for Pro. (B) O-linked sialyl Tn antigen. O-
glycans are -linked to the polypeptide via an oxygen atom of the hydroxyl groups of serine 

(Ser) or threonine (Thr) residues and the innermost N-acetylgalactosamine (GalNAc) of the 
glycan. 
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* Not determined 

2.3.3 Glycoproteins that harbour selectin ligands 

Although more than 50% of the human proteome represents proteins that 
carry glyco-modifications [121], only a handful of proteins (Table 2) are 
known to present selectin ligands in a way that promotes leukocyte 
transmigration [122-124]. It is evident that the ability to express the particular 
carbohydrate epitopes (sLeX or related structures) as constituents of O-linked 
glycans is a common feature of these glycoproteins (Table 2). For one such 
protein, P-selectin glycoprotein ligand 1 (PSGL-1), the precise location of the 
relevant sLeX-carrying O-glycan has been determined (Table 3) [101-103].  

Table 2. Macromolecules for display of selectin ligand

Selectin ligand 

carrier 

Type of glycans Carbohydrate 

structure 

Selectin binding Model 

system 

Cellular  

PSGL-1             

(P-selectin 

glycoprotein   

ligand 1) 

 

O-linked, mucin-

like domain, N-

linked [101-103] 

sLeX [101-103] E-, L- and 

P-selectin [91, 104-

107] 

mouse 

and 

human 

CD44 (CD44 

molecule Indian 

blood group) 

scattered O-

linked,  

N-linked [108-110] 

 

sLeX, sLeA and 

LeY [111, 112] 

E-selectin [108, 

113] 

mouse 

and 

human 

ESL-1 (E-selectin 

ligand-1) 

 

N-linked [114] Fucose [114, 115] E-selectin [114, 

116] 

mouse 

CD43 (leukosialin) 

 

 

n.d. * n.d. * E-selectin [117] mouse 

and 

human 

Lipids glycosphingolipid sLeX, sLeA [118-

120] 

E-selectin [120] mouse 

and 

human 

 

Herpes simplex virus type 1

gC-1 

(glycoprotein C) 

O-linked in 

mucin-like 

domain, N-linked 

sLeX (present 

work) 

n.d. * human 
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Table 3. O-linked glycan-carrying leukocyte and viral glycoproteins with capacity 
to express sLeX. 

Glycoprotein          Graphic Characteristics* Comment 

  

CD44 

 

 

 

GenBank Access ACI46596.1 

E-selectin 

ligand 

 

 

PSGL-1 

 

GenBank Access: NP_002997.2 

 

Major ligand 

carrier for P 

selectins. 

Sulphated 

tyrosine 

indicated by 

green letters; 

sLeX-carrying 

threonine by red 

letter. 

 

HSV-1 

gC-1 

Genbank Access: AAA45779.1 

 

 

* The amino acid sequence denotes the mucin-like motif of each peptide 

Some of the glycoproteins presenting functional selectin receptors contain 
special mucin-like domains, allowing expression of multiple O-linked glycans 
along a short peptide stretch (Table 3; detailed below). 

The selectin ligands bind to different selectins depending on the 
macromolecule it is displayed on, i.e. PSGL-1 associated sLeX facilitates 
binding to all selectins while CD44 carrying sLeX only mediates E-selectin 
ligand interaction (Table 2 and 3). Hence, the sLeX structure is essential for 
selectin binding but additional factors also regulate the interaction. 
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2.3.4 Biosynthesis of selectin ligands associated with O-linked 

glycans 

Posttranslational glycosylation of proteins or sphingolipids requires the 
synchronous action of roughly 150 enzymes, glycosyltransferases, to a large 
extent located in the golgi compartment where they catalyse the transfer of 
activated sugar nucleotide donors to glycoconjugate acceptors, and 
approximately ten glycosyltransferases are needed for sLeX synthesis [125-
127]. The glycosyltransferases have three specificities (i) sugar specificity, i.e. 
the type of monosaccharide it can transfer, (ii) acceptor specificity and (iii) 
linkage specificity (Fig. 5) [128]. The ‘‘one enzyme -- one linkage’’ hypothesis 
which postulated that each glycosyltransferase only generates one type of 
carbohydrate structure is an oversimplification but can help us understand the 
basics of glycan biosynthesis [128]. 

The most important steps in the synthesis of an O-linked glycan carrying the 
sLeX epitope is depicted in Fig 6. Although single O-linked glycans may be 
scattered along the peptide sequence, several glycoproteins with peptide 
stretches enriched in Ser, Thr and proline (Pro) residues, referred to as mucin-
like proteins, may contain multiple, clustered O-linked glycans. Thus, while 
the clustered Ser and Thr units serve as glycan carriers, the Pro residues enable 
access to the Ser and Thr units by ‘‘bending’’ the polypeptide backbone in an 
appropriate manner for the O-glycosylation machinery [129, 130]. Table 3 
presents partial mucin domain peptide sequences of two important human and 
one viral selectin ligand carriers of glycoprotein nature. 

After the first O-linked GalNAc unit is connected to the peptide, the 
remainder of the O-linked glycan is assembled by the concerted and 
coordinated actions of sequentially acting glycosyltransferases, each adding a 
unique monosaccharide in a unique position to the growing glycan [131]. The 
mode of action and specificities of these glycosyltransferases are illustrated in 
Fig. 6. Important for the regulation of sLeX synthesis is that essentially all of 
the glycosyltransferases operating in O-linked sLeX synthesis, except for the 
last one, are constitutively expressed [132-135], resulting in an accumulation 
of the direct precursor to sLeX, ‘‘the sialylated core 2-precursor’’ (Fig 6). In 
contrast, the genes encoding fucosyltransferases carrying out the last step are 
normally switched off [132, 133]. Consequently, the rate limiting step and 
hence also the switch mechanism for inducing sLeX formation is activating 
one or more of these critical fucosyltransferase genes.  
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Figure 5. Specificities of glycosyltransferases. The one enzyme -- one linkage [128] postulates 

that glycosyltransferases have three distinct specificities. (A) Donor sugar specificity, the type 
of activated monosaccharide the glycosyltransferase is able to transfer. Thus, a given 
glycosyltransferase can only add one type of monosaccharide. Exemplified here by a uridine 

diphosphate galactose (UDP-Gal). (B) Acceptor specificity, represented here by a N-
acetylglucosamine (GlcNAc) of the growing glycan chain. Sometimes the acceptor specificity 
includes larger portions of the acceptor glycans than its terminal monosaccharide (Relevant 

for the present study; see Table 4). (C) Linkage specificity, represented by a beta () 1-4 
linkage between the donated Gal and the acceptor GlcNAc. In most cases the linkage 
specificity is absolute but a few exceptions are known, some of which relevant for the present 

study (See Table 4). 

 

Figure 6. Sequential synthesis of complex O-linked glycans carrying the sLex glycoepitope, 

adapted from [136]. (A) The initial linkage between an N-acetylgalactosamine (GalNAc) 
monosaccharide and a serine (Ser) or threonine (Thr) residue is catalysed by any of twenty 
polypeptide GalNAc transferase (ppGalNAcT) isoenzymes. (B) Subsequent elongation can 

generate eight different core structures with core 1 and core 2 being the most common. For 
brevity only a core 1 structure is displayed, which is generated by the addition of a galactose 
(Gal) by the core 1 1-3 Galactosyltransferase (C1GalT-1). This reaction generates a 

specific acceptor for the subsequently acting glycosyltransferase. Thus addition of an N-
acetylglucosamine and a galactose by a 1-3 N-acetylglucosaminyltransferase (3GlcNAcT) 
and a 1-4Galactosyltransferase (4GalT) respectively further elongate the chain. The 

addition of a sialic acid (N-acetylneuraminic acid (Neu5Ac)) by an 2-3 sialyltransferase 
(ST3GalT) terminates the elongation by creating the direct precursor for sLeX.  (C) Under 
some circumstances a specific fucosyltransferase (FucT) is activated and this opens for the 

final addition of a fucose (Fuc), resulting in formation of a complex type O-glycan decorated 
with the sLeX glycoepitope. This glycoepitope are in many cases associated with larger O-
linked glycans; the one depicted here is the smallest one with capacity to express sLeX. 
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2.3.5 Regulating the rate-limiting step for sLeX synthesis 

Initiation of sLeX formation means activation of the very last rate-limiting 
addition of fucose to the sialylated core 2-precursor. The human genome 
contains 13 genes, each encoding an enzyme, fucosyltransferases (FucT), with 
the capacity to add fucose residues to glycoprotein glycans or peptides (Table 
4) [132, 137]. The nomenclature of genes and their products are as follows: 
The genes are enumerated FUT1-FUT13, whereas the corresponding gene 
products (enzymes) are designated FucT-I to FucT-XIII. Of these enzymes, 
only FucT-III, FucT-V, FucT-VI and FucT-VII (encoded by FUT3, 5, 6 and 
7) are able to add fucose in the specific alpha 1,3 linkage to the sialylated type 
2 precursors, which is a prerequisite to create sLeX [132]. The fine specificities 
of the FucT:s with the capacity to generate the sLeX-characteristic alpha 1-3-
fucosidic linkage varies from enzyme to enzyme (Table 4). For example FucT-
V is a promiscuous enzyme, which accepts all four variants of sialylated or 
nonsialylated core 1 or core 2-precursors. Moreover, this fucosyltransferase can 
form alpha1-3 as well as alpha 1-4 linkages, should the appropriate precursor 
be available. Hence, this enzyme is able to synthesize not only sLeX but also 
Lewis X (LeX), Lewis Y (LeY), sialyl Lewis A (sLeA), Lewis A (LeA) and 
Lewis B (LeB), depending on the identity of particular precursors available in 
the tissue expressing FucT-V (Table 4). In contrast, fucosyltransferase VII 
(FucT-VII) is highly sLeX-specific since this enzyme is able to address only 
the sialylated core 2-precursor, preventing synthesis of any other structures of 
the Lewis family of glycoepitopes, provided that no other relevant 
fucosyltransferase-encoding genes are expressed. Thus, FucT-VII has a narrow 
specificity and can only synthesize sLeX [132, 137, 138]. FUT4 and FUT7 
encode the only fucosyltransferases expressed in leukocytes, determined so far, 
and both are important for proper selectin ligand display [87, 125, 137, 138]. 
Loss of FUT4 and/or FUT7 functional gene products significantly affects E- 
L- and P-selectin dependent binding, at least in mice [124, 139-142].  

Normally an inflammatory stimuli of the leukocyte by interleukin 12 (IL-12) 
and transforming growth factor-1 (TGF-1) activate expression of FUT7 
and this functions as an on-switch for the synthesis of sLeX in resting 
leukocytes [143]. Activation-dependent transcription factors, including T-
cell-specific T-box transcription factor (T-bet) and CRE-binding protein 
(CREB)/activating transcription factor (ATF), induce FUT7 transcription 
upon the stimulation. This process is reversible in normal situations and loss 
of external stimuli results in down modulation of FUT7 expression and loss of 
sLeX [87, 144]. 
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Table 4. Genomic location of fucosyltransferase-encoding genes relevant for this 
study, the linkage specificity, glycan structures synthesised* and cellular expression 
pattern of each fucosyltransferase [73, 132, 137] 

* The structures preferably synthesized by each fucosyltransferase indicated by coloured symbols. The 

uncoloured structures may also be synthesized by the fucosyltransferase but to a lesser extent [132, 145]. 
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2.3.6 Related glycoepitopes of the Lewis family 

The fucosyltransferases are capable of generating a large collection of 
carbohydrate epitopes related to sLeX, many of them differing only in linkage 
specificity between the monosaccharides (Fig. 3 och Table 4). Of particular 
interest for this thesis is the Lewis Y (LeY) epitope, which is dependent on 
expression of the H type 2 precursors and FucT-I (FUT1) for its synthesis. 
LeY can be found in CD34+ hematopoetic precursor cells but is absent in 
mature lymphocytes isolated from both the blood and from the tonsils [146]. 
The LeY glycan can also be found in certain leukemic cell lines and abnormal 
expression is, like sLeX, highly associated with malignancy and strongly 
correlates to poor prognosis [147, 148]. Recently it was shown that LeY 
expressed on tumour cells mediates spread to the lung via interaction with Srfs 
proteins displayed on lung endothelial cells [149]. This indicates that other 
carbohydrate structures related to sLeX can function as mediators of 
transmigration and thereby act as tags for leukocyte homing. 

It is well established that the modified sLeX structure, 6-sulfo sialyl Lewis X 
(6´Sulfo-sLeX) (Fig. 3), is important for L-selectin mediated homing by 
lymphocytes to high endothelial venules (HEV) in peripheral lymph nodes 
(PLN) and it is also expressed by subsets of T lymphocytes destined for routine 
homing to the skin [150, 151]. Lymphocytes obtained from healthy individuals 
mainly express this sulphated derivate of sLeX, which they use for routine 
migration in and out of tissue through interaction with E- and P-selectin 
expressed at the lining of dermal blood vessels [98]. This contrasts to the 
situation in patients with inflammatory disorders where activated T 
lymphocytes largely express the standard sLeX epitope [152]. 

Sialyl Lewis A (sLeA) is Lewis structure that is similar to sLeX, differing only 
in the specific linkage between the distal galactose and its neighbouring 
GlcNAc (Fig. 3). This epitope is atypically expressed in tumours of various 
origins and contributes to the metastatic potential [153-155]. It was recently 
shown that sLeA can be displayed on glycoprotein CD44, mediating 
polymorphonuclear leukocyte (PMN) transmigration over the intestinal 
epithelium [111]. Altogether this suggests that other Lewis structures can 
function as ‘‘address tags’’ during leukocyte homing, guiding the cells to specific 
areas in the body. 
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2.3.7 Molecular mechanisms behind tumour and viral 

hijacking of selectin functions 

Various tumour cells can induce expression of selectin ligands, e.g. sLeX and 
sLeA, by activating FUT-genes and this contributes to their potential for 
colonizing new tissue [78]. It is generally not known how the activation of 
fucosyltransferase-encoding genes is accomplished in cancer cells, only that the 
ability to induce selectin ligands strongly correlates to metastatic capacity and 
poor prognosis. The retrovirus HTLV-1 triggers transformation of the 
infected lymphocyte, causing lymphoma. The virus induces FUT7 
transcription, which leads expression of sLeX on the cell surface and this 
contributes to the skin infiltrating capacity of the transformed cells [138]. The 
mechanism behind transcriptional activation of FUT7 is well described for 
HTLV-1 infected leukocytes. The virus-encoded protein Tax carries out 
transactivation of FUT7, via association with CREB, in HTLV-1 infected 
leukocytes [85], bypassing the need for IL-12 and TGF-1 stimulus in normal 
activation. One important difference compared with the normal situation is 
that Tax confers irreversible activation of sLeX synthesis, leading to the strong 
tissue invasive nature of adult T cell leukemic cells [84, 85]. 

Our group demonstrated that CMV can activate expression from several 
fucosyltransferase genes including FUT1 upon infection in human embryonic 
lung fibroblasts (HELF), leading to expression of LeY as well as sLeX, albeit 
not simultaneously, on the surface of the infected cell [73]. Also, VZV can 
induce sLeX in fibroblasts [73] and HSV-1 can activate expression of FUT5 
that encodes fucosyltransferase V (FucT-V) in fibroblasts [72]. It appears that 
different types of human herpesviruses can interfere with the cellular 
machinery for Lewis antigen synthesis, and that the different herpesviruses can 
induce diverse fucosyltransferases for this purpose. Only two mammalian 
viruses encode glycosyltransferase of their own and none of these viruses infect 
humans [156], implying that any human virus strategy to induce novel 
glycoepitopes must be based on viral modification of host-encoded 
glycosyltransferase gene expression.  
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3 METHODOLOGICAL 
CONSIDERATIONS 

3.1 General workflow 

The complete details regarding the methods and cell types used for the work 
in (I, II, III, IV) are described in detail in the corresponding article. The 
general workflow for infecting cell cultures with herpesviruses starts with 
isolation or growth of cells and subsequent attachment of viral particles to the 
respective cells, after which the residual particles are washed off. The infected 
cells are then incubated for the desired time in a controlled humid atmosphere 
with carbon dioxide to mimic the physiological situation. Thereafter the cells 
are harvested and prepared for respective analysis. There are several 
considerations when preparing an experiment, especially when working with 
different types of viruses and different cell types. In this section a brief overview 
of the workflow and some important aspects of the main methods used for this 
work are described.  

3.2 Cell culture systems 

Peripheral venous blood was obtained from anonymous healthy donors at the 
Department of Transfusion Medicine (Sahlgrenska University hospital, 
Göteborg, Sweden) and peripheral blood mononuclear cells (PBMCs) were 
isolated using ficoll separation as described in (III). For infection protocol with 
CMV the PBMCs were washed and CD14+ monocytes were isolated by 
negative selection. The isolated monocytes were cultured in a low adherence 
plate to avoid differentiation.  

The method of isolating specific cellular components from PBMC using 
magnetic particles conjugated to antibodies is a powerful tool. It enables 
experimentation on primary cells instead of having to rely on transformed cell 
lines with an inherent bias due to alterations in the genome of haploid cells. 
On the other hand, PBMCs are considerably harder to infect in vitro, which 
render the H9 cell line more advantageous for establishing a synchronous 
infection. In (III) we compared the effect of HSV-1 infection in the H9 T cell 
line and in CD3+ T cells isolated from PBMCs. This revealed differences in 
the expression of fucosyltransferase encoding genes that may reflect genetic 
aberrations frequently occurring in cell lines utilized for in vitro experiments. 
In (I, II, IV) we utilized human embryonic lung fibroblasts (HELF), a diploid 
cell type with no alterations in the genome, which is used at a low passage 
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number. By using these unaltered cells it is possible to avoid an inherent source 
of bias that comes with cell lines originating from cancer cells. Also, by using 
a high number of infectious viral particles we could establish simultaneous 
infection with a high reproducibility in this cell type. 

3.3 Herpesvirus infections 

For infection of monocytes with CMV we used cell free viral particles, which 
were prepared by ultra centrifugation to obtain a sufficient concentration for a 
multiplicity of infection (MOI) of 5 plaque forming units (PFU)/cell, and the 
viral particles were allowed to bind to the cells for 3 hours. The cells were 
washed in PBS and fresh growth medium was added. The infection was 
allowed to proceed for 72 hours after which the cells were harvested for DNA 
or RNA content, described below.  

Two separate methods were employed for HSV-1 infection were employed in 
(III), for H9 cells cell free virus was added to the cells but for infection of 
CD3+ T cells a cell-to-cell infection protocol was necessary to obtain a 
sufficient amount of infected cells (>70%) [157]. The cell-to-cell infection 
relies on a primary round of infection in HELFs after which the T cells are 
allowed to co-incubate with infected HELFs to allow the virus to cause a 
secondary infection via the formation of a virological synapse between the cells. 
In (I, II, IV) we used HELFs for studying HSV-1-infection. The viral particles 
were added to the cell culture at a high MOI in order to establish infection in 
all cells simultaneously. In all cases the HSV-1 viral particles were allowed to 
attach for 1 hour before the inoculum was removed. The cells were incubated 
and harvested for DNA or RNA content as described below, or prepared for 
analysis by immunofluorescence. 

There are several methodological considerations when infecting a cell culture. 
We used virus particles only (cell free virus) when infecting monocytes with 
CMV. This differs from the method used for infecting CD3+ T cells where 
cell-to-cell spread was employed. The rationale for this is simply a matter of 
generating a productive infection and does not reflect any attempts to create 
an in vitro situation that resembles the in vivo milieu. The same reasoning 
applies for the synchronous infection of fibroblasts, where the method is a tool 
for transcriptional analysis early after infection.  
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3.4 DNA and RNA isolation and analysis 

For isolation of the DNA the cells were lysed in a buffer with detergents and 
extracted using silica gel columns, then the amount of CMV or HSV-1 DNA 
was assessed by real time PCR (qPCR) (I, II, III, IV) designed to quantify 
genomic CMV DNA [10] or HSV-1 DNA [158]. For isolation of viral and 
cellular RNA, the infected cells were disrupted using a solution with detergents 
and RNA stabilizing agents. The RNA was extracted on a RNA specific silica 
gel column, and the concentration of RNA determined using a 
spectrophotometer. Transcription of the respective gene was determined for 
the total RNA fraction using reverse transcription real time PCR (RT-qPCR) 
with systems previously published [73, 159, 160]. The human 18S ribosomal 
RNA (rRNA) or human RPL4 messenger RNA (mRNA) was used as an 
internal ‘‘house keeping’’ control and the relative concentrations of transcripts 
from the different genes were determined using the CT method, optimized 
to compensate for bias due to sample preparation [72, 161]. As fibroblasts 
(HELFs) down regulate expression of most cellular genes we used 18S rRNA 
as internal reference in (I, II, IV) [162, 163]. However, monocytes are not as 
sensitive to viral modulation of cellular mRNA levels as the fibroblasts 
congruent to the situation observed for T cells in (III) [164]. The RPL4 
mRNA system was preferred for determining fluctuations in low-expressing 
genes in the CMV-monocyte model system using the CT method.  

Depending on the type of experiment, the expression data is normalized either 
against the gene with lowest expression or against the detection limit of the 
system [72]. For comparison between infected and uninfected cells it can be 
useful to normalize against the gene with the lowest expression to visualize 
relative changes. For analysis of residual expression of cellular genes before 
infection it is more useful to normalize against the detection limit of the 
system. Dilution series of plasmid with an insertion of the analysed PCR 
fragment was included in all qPCR runs, which enables comparison between 
the runs.  

3.5 Detection of cell surface associated 
carbohydrates 

Two main methods were used for detection of carbohydrate structures on the 
surface of the cells; either immunofluorescence detection by confocal 
microscopy or flow cytometry. Both methods rely on the detection of 
carbohydrates by antibody binding either to adherent cells or cells in 
suspension respectively.  
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To define the carbohydrate content of leukocytes, the isolated PBMC fraction 
from immunocompromised patients with CMV viremia was incubated with 
primary mouse IgM antibodies towards sLeX (clone CSLEX) and LeY (clone 
F3) essentially as described for the T cells used in (III) [164]. After washing 
the cells in PBS a secondary IgG goat anti mouse antibody conjugated to 
Alexaflour 647 was applied. Finally a series of washing steps and fixation of the 
cells with paraformaldehyde were applied prior to analysis by flow cytometry. 
In (I, II and IV) we used the same carbohydrate binding IgM antibodies but 
confocal microscopy was used for the immunofluorescence detection. The 
fibroblasts were grown on glass slides and infected with HSV-1 before they 
were fixated using cold acetone. The antibodies were applied and the cells were 
covered with mounting fluid and a cover glass.  

The most obvious reason for choosing one immunofluorescence method over 
another depends on cell type used, the leukocytes are cultured in suspension 
that favour analysis by flow cytometry whereas the adherent fibroblasts favour 
microscopy. However, the flow cytometry method is also preferred when 
analysing large cell populations while confocal microscopy enables higher 
resolution for qualitative analysis of single cells and allows for distinct 
definition of subcellular compartments.  

Irrespective of detection method, one major concern regarding experiments 
with carbohydrates is the low affinity IgM antibodies that depend on 
multivalent interactions with their antigen. One IgM antibody can bind 
multiple epitopes, which enhances the strength of the interaction. In mucin-
like regions of a glycoprotein the O-linked glycans are densely packed together 
and this may strongly impact the binding properties of the IgM antibodies. 
However, there are a large fraction of glycoproteins, many of which are known 
to harbour selectin ligands, that only express dispersed single O-linked glycans 
and these might not be sufficient for detection. Moreover, different IgM 
antibodies towards the same antigen can have slightly different specificity and 
also variable affinity, e.g. clone KM93 and CSLEX towards sLeX. The KM93 
clone recognizes sLeA in addition to sLeX (Gustaf Rydell personal 
communication) and also has higher affinity for sLeX in our hands 
(unpublished observations). To compensate for the dual recognition by KM93 
we included CSLEX or a strict sLeA recognizing clone in the majority of the 
experiments, especially when a strong induction of FUT3 could be observed 
since the product of this gene preferably synthesis sLeA [165].   
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4 RESULTS 

4.1 HSV-1 early transcription induces cellular 
fucosyltransferases 

Most herpesvirus genomes encode a multitude of genes, whose products may 
be engaged in interactions with host gene expression. Defining the detailed 
mechanisms behind such complex interactions is possible only if an appropriate 
model virus is used. We choose HSV-1 as a suitable model herpesvirus because 
of the short time required to execute its replicative cycle, the great number of 
possible target cells that permit experiments under single step growth curve 
conditions, and the general availability of mutant viruses defective in defined 
genes, relevant for the present study.  

The first aim was to define at what step in the viral infection cycle viral 
activation of host FUT genes took place. First we showed that HSV-1 induced 
transcription of FUT5, as previously determined [72], as well as FUT3, FUT6 
and to some extent FUT9 in infected fibroblasts, whereas expression of FUT1, 
FUT2, FUT4 and FUT7 was only marginally altered (I). Next we used FUT5 
as a model gene for defining the early mechanism of HSV-1 activated 
transcription, and found that elevated levels of FUT5 RNA as early as 90 
minutes post infection (p. i.), suggesting that viral immediate genes were 
involved in the activation process. Two important immediate early HSV-1 
proteins are infected cell polypeptide 0 and 4 (ICP4 and ICP0), encoded by 
the viral genes of RS1 and RL2, respectively.  We detected transcription of 
RS1 and RL2 already at 30 minutes p. i., thus immediately before the elevated 
levels of FUT5 at 90 minutes p. i. To further characterize the significance of 
these viral factors we analysed viral mutants defective in ICP0 and ICP4. 
Indeed, ICP0 and ICP4 are vital for completing the HSV-1 infection cycle but 
residual viral transcription remains in HSV-1 mutants defective in these 
proteins. Surprisingly, we found that FUT5 transcription is induced in cells 
infected with both these HSV-1 mutants. To investigate the possibility that 
mere binding and uptake of HSV-1 particles was the only viral factor needed, 
FUT5 transcription was analysed using UV-irradiated virus and virus treated 
with genome-destroying agents (I). However, neither of these virus variants 
was able to activate FUT5 transcription. Moreover, HSV-1-induced FUT5 
transcription took place also when protein synthesis was blocked with 
cycloheximide (CHX) in the infected cells. Altogether these data indicate that 
execution of the virus infectious cycle up to transcription of viral immediate 
early RNA is necessary for induction of cellular fucosyltransferase-encoding 
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genes in the HSV-1-infected fibroblast, whereas later steps are not needed for 
this process. 

Next, we pursued the RNA trail and assayed several cell signalling inhibitors, 
blocking cellular complexes responsive to viral RNA, using the HSV-1-
fibroblast model system (II). We found that the cellular antiviral protein kinase 
R (PKR) complex was required for transcriptional induction of FUT3, FUT5 
and FUT6 in the HSV-1 infected HELF cells. The PKR protein complex 
senses double stranded RNA (dsRNA) with a size of around 80 base pairs, 
which can be generated during transcription of viral open reading frames 
(ORFs) running in the opposite direction [166, 167]. Two inhibitors of PKR, 
C16 and 2-AP [168-171], both blocked induction of fucosyltransferase 
transcription in HSV-1 infected fibroblasts in a dose dependent manner. 
Addition of the highly specific PKR-inhibitor C16 to HSV-1 infected cells 
also precluded the display of sLeX on the cell surface. No involvement of other 
cellular dsRNA-sensing factors were found, indicating that PKR is the main 
mediator of transcriptional activation of FUT3, 5 and 6 during HSV-1 
infection in fibroblasts. The antiviral PKR complex regulates several 
downstream pathways that inhibit viral replication of both DNA and RNA 
viruses [166, 172]. Though we excluded eIF-2, NF-B or JNK in activation 
of FUT3 and 5 other PKR activated signalling intermediates, e.g. IRF-1, 
STAT or p53, may be involved.   

4.2 HSV-1 activation of host FUT genes – a highly 
selective process 

The present study includes unpublished preliminary data indicating that the 
viral activation of host FUT genes is a highly selective process with respect to 
the cellular genes addressed.  The genes encoding FucT-V, FucT-III and 
FucT-VI are located in tandem in this order on chromosome 19 (Fig. 7A) and 
are all induced in a PKR dependent fashion in the HSV-1-infected cell (II). 
On intriguing question was if only the FUT genes were activated by HSV-1 
or if the viral activation process was a more general process affecting a larger 
region of chromosome 19 that includes additional human genes adjacent to the 
FUT gene complex. Thus, we found that the NDUFA11 gene, encoding a 
NADH dehydrogenase located next to FUT5 was down-modulated rather 
than induced by HSV-1, and the NRTN gene situated next to FUT6 was 
found to be transcriptionally silent in HSV-1-infected as well as uninfected 
cells (Fig. 7B and not shown). Altogether, these data indicate that viral 
addressing of the FUT gene triplex in chromosome 19 is strongly selective with 
no effect on immediately adjacent genes. 
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Figure 7. Transcription from the genes flanking the FUT-gene triplet on chromosome 19 
are not specifically targeted by HSV-1 during infection. (A) Part of the short arm of 

chromosome 19 where FUT5, FUT3 and FUT6 are located in tandem, flanked by 
NDUFA11 and NRTN (II). (B) RNA expression of NDUFA11 RNA is down modulated 
by HSV-1 infection as compared to mock infected in HELF cells (Preliminary data from 

the present study). 

4.3 HSV-1 induced sLeX expression in T cells 

Leukocytes play an important role during herpesvirus viremia, which has been 
outlined in great detail for CMV, EBV and VZV [10, 173, 174]. Evidence of 
T cell dependence during HSV-1 and HSV-2 viremia also exists [157, 175]. 
We therefore wanted to expand the HSV-1 infection model to include these 
cells in order to study the natural target cells for blood borne spread of 
herpesvirus. Thus, we examined the selectin ligand expression in HSV-1-
infected T cells, both in a transformed cell line as well as in primary CD3+ T 
cells isolated from blood from anonymous donors (III). We found that HSV-
1-infection of the H9 T cell line is followed by increased display of sLeX and 
increased transcription of FUT3 and FUT6 but also of increased FUT7 and 
FUT1 expression, which is different from the situation in fibroblasts (I). The 
H9 T cell line proved to be a valuable model for studying early kinetics of 
HSV-1 infection. At variance with the results obtained for FUT5 in HSV-1-
infected HELF cells (I,II), we found that transcription of RL2 encoding the 
viral immediate early protein ICP0 was necessary for induction of FUT7 
transcription in the H9 T cell line.  This conclusion is based on the finding of 
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no FUT7 transcription in cells infected with the RL2-deficient viral mutant. 
Moreover, no FUT7 transcription was found in HSV-1-infeted cells treated 
with protein translation inhibitor CHX. In H9 T cells, the mechanism for 
HSV-1-induced FUT3 and FUT6 transcription differs from that of FUT7 
although the results here were not as clear-cut (III). The influence of ICP0 
appeared to be minor; FUT3 and FUT6 may be regulated by some other viral 
factor, possibly ICP4. 

By co-cultivation of HSV-1-infected fibroblasts with Phaseolus vulgaris 
phytohemagglutinin (PHA) stimulated peripheral blood mononuclear cells 
(PBMC) we could efficiently infect CD3+ T cells (III). These were 
subsequently analysed for FUT gene expression and for sLeX expression by 
flow cytometry. We found that HSV-1 induced expression of FUT1, FUT3, 
FUT5 and FUT6 in CD3+ T cells, whereas FUT7 expression remained 
unaltered. Also, the display of sLeX is increased in the infected cell population; 
both the total number of sLeX expressing cells and the intensity of sLeX 
fluorescence signal is enhanced. Altogether the data shows that HSV-1 can 
indeed manipulate the cellular mechanism for selectin ligand synthesis also in 
T cells with a potential role during viremia as an initiating factor for leukocyte 
transmigration. 

4.4 CMV and EBV-induced sLeX and LeY in 
infected leukocytes (preliminary data) 

The present study includes unpublished data indicating that CMV may induce 
Lewis-related glycoepitopes in infected leukocytes in a way that resembles that 
described for CMV infection of HELF cells [73]. Thus, after having 
established the ability of HSV-1 to induce sLeX in cells isolated from blood 
donors we wanted to verify that CMV could induce selectin ligands in 
monocytes, as this cell type is one of the main reservoirs for CMV latency and 
plays an important role in pathogenesis [10, 176, 177].  Blood was obtained 
from healthy anonymous donors and the CD14+ monocyte fraction was 
isolated from the PBMCs by negative selection using magnetic beads. The 
isolated CD14+ monocytes were subsequently infected with CMV at a MOI 
of 1-5 PFU/cell and kept in a non-adherent plate to minimize cell 
differentiation. A preliminary experiment indicated that active CMV 
replication in monocytes, is accompanied by elevated levels of FUT1 
transcription and also increased transcription of FUT6 and FUT7 (Fig. 8). 
This suggested that CMV is able to induce both LeY and sLeX in monocytes 
similarly to the situation in fibroblasts [73].  
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Figure 8. Induction of fucosyltransferases in monocytes by CMV infection. Expression of 
FUT1, FUT6 and FUT7 RNA in mock infected and CMV infected CD14+ monocytes 
was assessed 3 days post infection. Fold change as a result of CMV infection is showed. Fold 

change is calculated by dividing FUT RNA in CMV-infected cells with FUT RNA in 
respective mock-infected cells. 

In addition to CMV, we also wanted to investigate the ability of EBV to induce 
Lewis-related glycoepitopes in transfected/immortalized B cells. Initial 
experiments with CD19+ B-lymphocytes isolated from healthy blood donors 
transfected with EBV indicated that also a representative for -Herpesviruses 
may enhance the display of selectin ligands on the surface of the infected cells, 
when compared with freshly isolated CD19+ B cells from the same individual. 
This phenomenon appears to be specific for each individual, as we observed a 
strong induction of sLeX and related epitopes in B cells from one subject when 
they were transfected with EBV, while in the other no induction was observed 
(Table 5).   
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Table 5. Selectin ligand expression‡‡ in EBV-transfected CD19+ cells 
(preliminary data) 

Donor 1 LeX sLeX sLeX / sLeA‡ LeY 

CD19+ * 0.7% 1.2% 1.2% 1.9% 

CD19+ (EBV) ** 34.5% 6.9% 18.6% 2.1% 

Donor 2     

CD19+ * 2.3% 3.1% 1.1% 0.9% 

CD19+ (EBV) ** 3.4% 1.4% 3.9% 0.6% 

‡‡ Percentage of cells expressing selectin ligand above threshold as determined by flow cytometry  

‡ Antibody recognizing both epitopes (clone KM93) 

* CD19+ B lymphocytes isolated from blood donor 

** CD19+ B lymphocytes isolated from blood donor transfected with EBV DNA 

 

Finally, in a pilot study we also analysed leukocytes, from patients with a 
suppressed immune system, regarding the display of Lewis antigens on the cell 
surface. We found that patients with an ongoing CMV viremia as determined 
by qPCR also had circulating leukocytes expressing both elevated levels of LeY 
and in some cases sLeX compared to healthy controls corroborating the results 
from the in vitro CMV-infected CD14+ monocytes. There was no correlation 
between viral load and the intensity or frequency of sLeX/LeY-positive 
leukocytes from the patients. Specimens with high sLeX expression were low 
in LeY-expression and vice versa (Table 6). 
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Table 6. Expression of sLeX and LeY ‡ in leukocytes from immunosuppressed 
patients with CMV and/or EBV viremia 

CMV  

DNA copies / ml 

(log)* 

EBV  

DNA copies / ml 

(log)* 

LeY 

intensity** 

sLeX 

intensity** 

3.43 - ++ - 

2.07 - +++ - 

3.99 - + +++ 

2.51 - ++ - 

2.87 - ++ - 

2.43 - ++ - 

2.4 3.8 - +++ 

2.9 2.77 ++ - 

     ‡  Expression of sLeX and LeY was determined by flow cytometry 

      *  Copy numbers of viral genomic DNA in the blood determined by qPCR  

     ** Intensity was graded (+) > 2 arbitrary log units (++) 2.5 -- 3 arbitrary log units (+++) > 3 arbitrary log 

units 
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4.5 Identification of a viral glycoprotein that 
serves as a “professional” sLeX presenter 

We also aimed at defining the sLeX carriers in HSV-1-infected human 
fibroblasts, a cell type that normally scarcely expresses any mucin-like proteins. 
The HSV-1 genome encodes 15-17 potential glycoproteins of which two, 
glycoprotein C (gC-1) and glycoprotein I (gI-1), have relatively long mucin-
like domains associated with O-linked glycans [178-180]. We infected 
fibroblasts with viral mutants lacking either the entire gC-1 protein or the 
mucin-like domain of gC-1 and found that sLeX expression was totally 
abrogated. Both mutants still induced transcription from FUT3, FUT5 and 
FUT6 as determined by RT-qPCR and processed FUT3 and FUT5 proteins 
could also be detected with immunoblot. Co-localization studies with gC-1 
and gI-1 showed that both proteins where displayed at the surface of the 
infected cell although not completely overlapping. This suggests that gI-1 is 
transported through the normal trans-golgi network and therefore has access 
to the glycosyltransferases residing there. This together with the observation 
that mutant viruses devoid of gC-1 fail to express sLeX indicates that gI-1 only 
acquire the short Tn antigen and cannot harbour longer Lewis structures in its 
mucin-like domain as suggested before [178]. Accordingly, gC-1 can act as a 
presenter of selectin ligands and other O-linked glycans in infected fibroblasts 
and other infected cells and tissues that lack endogenous glycoproteins 
optimized for presenting sLeX-carrying O-glycans.  
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5 DISCUSSION 

Human viruses practise a total form of intracellular parasitism in the sense that 
they have to totally rely on the host cell metabolic machinery for gene 
expression, protein synthesis, genome replication, and assembly of progeny 
virus [181]. This includes also the genetically large human herpesviruses with 
genomes that encode a multitude of effectors engaged in focussing cell 
metabolism towards viral production. Until recently, it was believed that viral 
shutdown of host cell gene expression was complete, at least for lytic human 
herpesviruses such as HSV-1, implying that permissive cells shortly after virus 
infection become virus factories without any other metabolism than basic 
supply functions such as energy and raw materials for virus multiplication. 
During the last few years several lines of evidence have challenged this model, 
and contrary to previous models, it is now clear that replication of all 
herpesviruses takes place in parallel with expression of several host genes during 
the course of the infectious cycle [162]. This phenomenon does not necessarily 
represent incomplete viral suppression of host gene expression. In contrast, 
data from the present study demonstrates that there is an intricate interplay 
between viral and host gene expression. Thus, we demonstrate that specific 
herpesvirus gene products, like guided missiles, may address and activate the 
transcription of selected silent host genes in the infected cells, resulting in 
surface expression of novel potential virulence factors.  

These virus-induced structures belong to the large family of Lewis-related 
glycoepitopes of which sLeX and derivatives thereof are the most well 
characterized owing to their significance as selectin ligands for homing of 
various types of leukocytes. Data is now accumulating that sLeX-related 
structures such as LeY, sLeA and others, although not constituting selectin 
ligands, may play roles in homing and organ colonization of different types of 
circulating cells [111, 149]. It is therefore not surprising that these functions 
have been hijacked in different pathological processes, not least for spread of 
various tumour cells, some of which are virally induced. There is now evidence 
suggesting that the hostile use of selectin ligands may not only be restricted to 
tumours and tumour viruses but also to the family of human herpesviruses. The 
present study aims at revealing details of the mechanisms involved in 
herpesvirus-induced expression of selectin ligands and related structures in the 
infected cell. Although other herpesviruses such and CMV and EBV may be 
more relevant from the clinical point of view, these viruses are difficult to use 
in mechanistic studies that require synchronously infected cell cultures. 
Therefore, it was considered advantageous to use the HSV-1-infected cell as a 
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model system owing to a short replicative cycle and other HSV-1 features that 
promote molecular studies (I, II, III, IV). 

The first aim was to identify the different host genes that were activated by 
different herpesviruses for expressing Lewis glycoepitopes in virus-infected 
cells and how different activation patterns may induce formation of different 
structures. Our data indicates that the direct precursors to sLeX, ‘‘the sialylated 
Type 2 structure’’ is available in uninfected cells owing to presence of all the 
necessary glycosyltransferases needed to produce this precursor (I, II, III). 
Synthesis of Lewis epitopes must therefore be triggered by activation of one or 
more of a number of genes encoding critical fucosyltransferases that are rate 
limiting for formation of each of these structures. Dependent on the 
specificities of the particular FucT activated, different structures may be 
formed. If FUT7, encoding the strictly sLeX-specific FucT-VII, is activated, 
as is the situation for HSV-1-infected H9 cells (III) only sLeX can be formed 
(Table 4). Should FUT3 and FUT6 be activated, as is the situation for HELF 
cells infected with VZV or HSV-1 (I, II and [73]), then sLeX, LeX, LeA or 
sLeA could be formed (Table 4). However, no evidence for other virus-
induced glycoepitopes than sLeX are found in these cells, when infected by 
HSV-1 or VZV (I and [73]), most likely because the balance of the previously 
acting glycosyltransferases in HELF cells does not permit formation of the 
critical precursors to LeY, LeA, LeX, LeB or sLeA (Table 4). In conclusion, 
alphaherpesvirus-induced expression of Lewis glycoepitopes appears to be 
restricted to sLeX due to lack of precursors for alternative Lewis glycoepitopes 
or because the virus-activated FUT genes are compatible only with sLeX 
synthesis even if alternative precursors were available. 

The situation for CMV is more complex owing to its capacity to activate FUT1 
in addition to FUT3, FUT6, and FUT7 ([73] and present study). FUT1 
encodes an enzyme, adding fucose in an alpha 1-2 linkage rather than the 
sLeX-characteristic alpha 1-3 linkage, and this enzyme is responsible for 
formation of H Type 2, the direct precursor to LeY. This equips CMV with a 
switch between formation of either sLeX or LeY at the cell surface, dependent 
on the balance between H Type 2 and ‘‘the sialylated Type 2 structure’’, which 
in turn reflects the balance between the CMV-induced FUT1 gene product 
and the sialyltransferases engaged in sLeX formation (Fig. 6; Table 4) ([73] 
and present study). Thus, viral control of Lewis glycoepitope expression in 
herpesvirus-infected cells is a combination of the specificities of the enzymes 
encoded by the virus-activated FUT-genes and the balance of the host cell 
levels of the other glycosyltransferases engaged in synthesis of Lewis 
glycoepitopes (I, II, III and [73]). 
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Figure 9. Pathway for HSV-1 induction of selectin ligands in fibroblasts and leukocytes. (1) 
Entry of HSV-1 viral particles with subsequent release of viral DNA in the nucleus and 

start of viral transcription. (2) Synthesis of selectin ligands (Based on viral activation of 
FUT genes via any of mechanisms ‘‘F’’ or ‘‘L’’) on glycoproteins (represented by HSV-1 
glycoprotein C) in the golgi compartment. (3) Transport of glycoproteins or viral particles to 

the cell membrane in vesicles, for subsequent display at the cell surface. Activation 
mechanism details: (F) Activation of the cellular antiviral complex PKR by dsRNA, 
generated by active viral transcription, is necessary for induction of FUT3, 5 and 6 in 

fibroblasts. (L) Induction of FUT7 is dependent on the viral immediate early protein ICP0 
in a T cell line. Details of both activation mechanisms are presented in I,II, and III. 
Enlarged is chromosome 19 that accommodates FUT1 and FUT2 on the long arm. The 

short arm of chromosome 19 accommodates the triplet of FUT5, FUT3 and FUT6 flanked 
by NDUFA11 and NRTN. 
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One pertaining question regards the level of specificity that characterizes the 
herpesvirus-induced transcriptional activation of selected FUT-genes. A 
number of glycosyltransferases with possible relevance for formation of O-
linked glycans have been analysed by us in this respect. Thus, transcription of 
human genes encoding two sialyltransferases (ST3Gal-III and ST3Gal-IV), 
the ‘‘Core 2 GlcNA-transferase’’, engaged in formation of large O-linked 
sLeX-expressing glycans, and at least ten of the twenty ppGalNAc-T:s 
engaged in initiation of O-linked glycosylation (Fig. 6), are either down-
regulated by herpesvirus infection or the RNA levels are remaining constant 
(II, [73], present study and preliminary data). The human FUT5, FUT3, and 
FUT6 genes are placed in tandem on the chromosome 19 short arm (Fig. 7A) 
(II), and one intriguing question is whether herpesvirus-induced activation is 
a part of a broad activation of this domain of chromosome 19. However, the 
finding that one of the immediately adjacent gene to the FUT5,3 and 6 cluster, 
NDUFA11, in fact is down-regulated by HSV-1 infection and the other 
adjacent gene, NRTN, is silent, in infected as well as uninfected cells, indicates 
a high degree of specificity in the herpesvirus control of FUT-genes (Fig. 7B). 
Hence, herpesvirus gene products may specifically address a few Lewis-related 
FUT-genes out of the around 150 different glycosyltransferase genes encoded 
by the human genome. 

A striking feature of HSV-1 activation of FUT-genes in fibroblasts is that this 
process is extremely rapid: already 90 minutes after HSV-1 has attached 
significant levels of virus-induced FUT5 transcripts are detectable (I). 
However, we found that the mere binding of the virus to the cell surface was 
insufficient to activate the host FUT-genes (I, II). In contrast, available data 
indicates that viral RNA rather than virus-specific proteins are the viral gene 
products that address and activate FUT5 (I, II). There are several host cell 
factors that sense and response to foreign RNA [172, 182], but there is no 
evidence that any other RNA sensing protein than PKR is addressed in the 
HSV-1 activation of FUT5, FUT3, and FUT6 in HELF cells (II). Activated 
PKR may affect host gene transcription in several ways [166].The present data 
exclude that some of the most well characterized PKR-dependent mechanisms 
for influencing host gene expression are engaged in HSV-1 activated FUT 
transcription, such as NF-B, JNK, p38 and eIF-2 (II and unpublished 
observations). However, PKR is a multifunctional RNA-sensing factor with 
several more or less characterized down-stream regulatory activities [166, 183], 
one or more of which may be engaged in HSV-1 activation of FUT 
transcription. The HSV-1 mode of FUT activation in HELF cells is indicated 
as pathway F in Fig. 9. The notion of PKR as a target for viral early RNA-
dependent transcriptional induction of FUT-genes is attractive as PKR is 
constitutively expressed in the cytoplasm of low active cells such as confluent 
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HELF [166, 172, 183]. Hence, the PKR complex should be available for 
HSV-1 dsRNA transcripts early upon infection, permitting rapid induction of 
fucosyltransferases.  

There are important differences between the mechanisms behind HSV-1 
induction of sLeX in leukocytes compared with HEL cells, both with respect 
to the host FUT-genes addressed and the viral factors engaged (I, II, III). This 
was most evident for the situation in HSV-1 infected H9 cells, an established 
T cell line, where the transcriptional induction of FUT7 was found to be 
dependent on immediate early viral protein, identified as ICP0, rather than 
viral RNA, which was the case for the HSV-1-infected fibroblasts (Pathway 
‘‘L’’ in Fig. 9) (III). In the corresponding situation in HTLV-1-transformed 
cells it was found that the HTLV-1 transactivator Tax was the only viral factor 
engaged in activation of FUT7 transcriptional activation [138]. The HSV-1 
genome encodes several immediate early factors that often act in concert with 
ICP0 and the present data do therefore not exclude that ICP4 or any other 
HSV-1 immediate early factor is engaged in FUT7 induction in addition to 
ICP0. On the other hand, FUT6 and FUT3 transcription could be activated 
in HSV-1 infected leukocytes of different types, but the data did not permit 
detailed analysis as to the nature of the viral factors engaged (III).  The HSV-
1-induced activation of FUT7 is in line with the notion that activation of this 
gene is the cause of sLeX appearance on leukocytes during priming of these 
cells for crossing the endothelial wall [184, 185]. HSV-1-induced FUT 
activation was also analysed in a number of CD3+ T cells from blood donors, 
and surprisingly a more heterogeneous pattern of different FUT-genes were 
observed (III), indicating a significant role for FUT6 for virus-induced sLeX 
appearance in these latter cells.  

It is proved that HTLV-1-induced sLeX indeed is a colonisation factor for 
addressing virus-transformed cells to the skin; a phenomenon of relevance for 
viral pathogenesis [85, 138]. But can we be sure that the herpesvirus-induced 
activation of FUT-genes and subsequent sLeX expression really is a viral 
pathogenic factor also in the progress of herpesvirus disease? In contrast, can 
this phenomenon represent a cellular defence mechanism against an imminent 
virus infection; does the virus or the host benefit from expression of sLeX or 
LeY? There are reasons to believe that both answers are applicable. On one 
hand, considering the engagement of a classical innate immune factor such as 
PKR in virus-induced FUT transcription in HELF cells it difficult to totally 
ignore the possibility of a cellular defence mechanism. One such possible 
benefit for the host, supported by the present data, could be that sLeX 
expressed from herpesvirus-infected cells in affected organs may attract 
circulating T lymphocytes and neutrophils. These cells are actively expressing 
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surface L-selectin with pronounced affinity for sLeX [186]. On the other hand, 
it is easier to envision herpesvirus-induced FUT activation and subsequent 
sLeX expression as a viral colonisation factor in the leukocyte situation. Since, 
(i) induced sLeX expression is the normal activation mode for permitting 
normal leukocytes to access extravasal tissue, (ii) it is the mechanism used by 
another human virus, HTLV-1, for hostile colonisation of extravasal tissue, 
(iii) and aberrant expression of sLeX and related structures is an important 
metastatic tool for tumours of several origins. 

Leukocytes express several glycoproteins with mucin domains that may carry 
sLeX attached to O-linked glycans (Table 3), but in case the expression of 
these glycoproteins is low, the level of endogenously expressed O-glycan 
carriers may be suboptimal for display of sLeX. Most herpesviruses encode 
more than ten distinct glycoproteins each, some of which contain mucin-like 
domains and these glycoproteins are often synthesized at high rates in the 
infected cell [187]. One important question is whether any of these viral 
glycoproteins can support sLeX expression. The present study compared two 
different HSV-1 glycoproteins with large mucin domains in this context (IV): 
One monotonous mucin-like domain with repeats of densely packed Ser and 
Thr stretches (glycoprotein gI-1) and one heterogeneous mucin-like motif 
more sparsely decorated with Ser and Thr units (gC-1) (Fig. 10). Our finding 
that only, the gC-1 mucin-like domain was associated with the sLeX epitope, 
emphasizes that specific sequence detail requirements of a mucin-like motif 
most be satisfied to permit sLeX expression. This conclusion is further 
supported by evidence that the O-glycan crowdedness of the gI-1 mucin motif 
is not compatible with elongation to larger glycans [178]. 

 

 

  



Herpesvirus-induced glycans 

40 

 

Figure 10. Glycosylation sites of HSV-1 glycoprotein C (gC-1) and glycoprotein I (gI-1). 
Schematic representation of gC-1 and gI-1 with their respective mucin-like domain 
indicated in green. The blue lollipops represent putative sites for larger O-linked glycan 

structures in the mucin motif of gC-1. The short black lines represent putative sites for the 
short Tn antigens in the mucin motif of gI-1. Sites for potential N-linked glycans are 
represented in red.   

Most of the mechanistic studies in the present work have been carried out using 
HSV-1 as a model virus. It is evident that infections by other herpesviruses, 
such as CMV and EBV, have greater clinical impact in the perspective of 
immunocompromised patients. One pertinent question is therefore to what 
extent the results from the model systems involving HSV-1 are applicable for 
infections with other herpesviruses. So far, the present study only contains 
preliminary data that relates to CMV and EBV, but it is evident that CMV is 
able to induce a prominent increase in FUT1, FUT6 and FUT7 transcription 
in CD14+ monocytes isolated from blood donors (Fig. 8), which is in line with 
the results from the model systems described above. Of special interest for the 
CMV situation is the profound induction of FUT1 as well as FUT7 (Fig. 8), 
which is compatible with a switch between sLeX and LeY synthesis reported 
for fibroblasts [73]. No transcription data is available for EBV-transfected 
CD19+ B cells from blood donors. However, in one case transfection with 
EBV caused induction of a variety of Lewis-related glycoepitopes including 
sLeX (Table 5). These data suggest, that much of the model studies involving 
HSV-1 (I, II, III) and CMV [73] may be of value also for interpretation of 
results obtained from CMV- or EBV-infected cells from healthy blood donors, 
and possibly also from immunosuppressed patients infected with these viruses. 

One problem associated with the current diagnostic monitoring of CMV and 
EBV is that high levels of virus DNA in the blood do not always correlate with 
clinical status [10]. One intriguing question is therefore whether herpesvirus-
induced expression of sLeX or related glycoepitopes is of any pathogenic 
relevance, as proven for the HTLV-1 skin colonisation [85] or for the sLeX-
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dependent metastatic behaviour of several tumours [78, 81, 155, 188, 189]. 
One could consider the possibility that sLeX or other related Lewis structures 
are major independent virulence factors of clinical significance (as suggested in 
the model of Fig 2), complementing high viral DNA levels for disease 
progression in immunosuppressed patients. If so, it could be expected that no 
direct correlation between CMV and EBV DNA levels on one hand and the 
number or intensity of cells expressing sLeX or LeY on the other hand should 
be found. The data of the present study, aimed at clarifying the status of sLeX 
and LeY in this context, is preliminary and carried out on total leukocyte 
fractions from immunosuppressed patients and therefore they do not permit 
any detailed conclusions (Table 6). However, three distinct features are 
discernible: (i) Some but not all patients with high levels of viral DNA express 
high levels of sLeX/LeY. (ii) There is no correlation between virus DNA levels 
and the degree of Lewis antigen expression. (iii) Absence of combination of 
concomitant sLeX and LeY expression is in accordance with the LeY/sLeX 
switch presented above. This last aspect is of interest since LeY is the natural 
ligand to thrombomodulin, an important modulator of inflammation, and 
expression of LeY may therefore be associated with a quite different biological 
behaviour than sLeX expression on CMV-infected leukocytes [190]. 

It is evident that further studies are needed to evaluate to what extent CMV- 
and EBV-induced selectin ligands and related structures contribute to the 
progress of virus-induced disease in immunocompromised patients. Should 
such studies indicate that sLeX/LeY are important factors for development of 
CMV or EBV disease in these patients, future results from the present study 
could be of relevance in two respects. Firstly, measurements of levels of 
leukocyte expression of selectin ligands may complement the current 
monitoring of CMV and EBV levels in blood for improved prediction of 
imminent CMV/EBV disease. Secondly, interference with selectin ligands is 
now under consideration as anti-metastatic therapeutics and a few inhibitors 
have reached clinical trials [191]. Should the selectin-dependent model, 
presented in Fig. 2, for spread of CMV- or EBV-infected circulating 
leukocytes into adjacent tissue be valid, then it is plausible that the same type 
of agents could be used as a complement to traditional antiviral treatment in 
immunosuppressed patients. 
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