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1 Introduction

The Scheme language has a history of being a vehicle for much experimentation in
design and implementation techniques, owing to its simple semantic underpinning
based on the untyped A-calculus [see Sussman and Steele Jr., 1998]. Implementa-
tions abound: at the time of writing, the Scheme FAQ [Scheme Wiki, 2012] listed
a full 78 different interpreters and compilers.

At present, the Bigloo Scheme compiler is mainly used with a backend that
generates C code, though it also includes backends for the Java and .NET virtual
machines. My project extends Bigloo to portably produce native code using LLVM
[Lattner and Adve, 2004], a compilation framework that has been successfully used
(among other uses) in a backend for the Glasgow Haskell compiler [Terei, 2009].
The question was whether this would be viable as an alternative or primary backend,
and what benefits could be reaped.

1.1 What is Bigloo Scheme?

Scheme is one of the two major dialects of Lisp, the other being Common Lisp.
Standard Scheme has a minimalistic semantics and a syntax based on S-expressions’.
It keeps classic Lisp features like A-expressions, strict call-by-value evaluation, linked
lists, garbage collection, and dynamic typing, while adding a few new features like
a hygienic macro system, mandatory tail call optimization, and first-class continu-
ations. Scheme can be called a “functional language,” but it is also an imperative
language; in modern dialects, even an object-oriented language.

The Bigloo system is a mostly-compliant implementation of Scheme as speci-
fied in the R°RS report [Kelsey and Clinger, 1998]. Though it contains a simple
interpreter, its most important part is a static compiler. The explicit objective of
the Bigloo project is to allow Scheme to be used where otherwise C or C++ would
be required [Inria Sophia-Antipolis, 2011]. This implies some requirements: the
generated code must be fast enough; the compiler’s output must be native binary
objects; and the compiler must have good support for using libraries written in C. In
order to achieve these, Bigloo attempts to translate Scheme into rather straightfor-
ward C code. Its optimizations and transformations are geared towards producing
C code that is structurally similar to how a C programmer would have written the
same program; that avoids unnecessary boxing; that does iteration instead of tail
recursion; and so on.

'Symbolic expressions, a fully-parenthesized prefix notation characteristic of the Lisp family;
example: (+ (x 2 4) 1).



1.2 Native Compilation: C vs LLVM

The strategy of compiling to C has many advantages over producing machine code
directly: most importantly, there is no need to write special code for each CPU
architecture, since this hard work is already done by portable C compilers such as
GCC. But as might be expected, since C was not designed to be used as an inter-
mediate language, there are also disadvantages. The authors of Bigloo acknowledge
this [Serrano et al., 1995], mentioning specifically the difficulty of implementing
call/cc (see section 5.1 about continuations) and the necessity of using conser-
vative garbage collection.

The motivation for this project comes from the view that by using the inter-
mediate language provided by the LLVM project where C is now used, the Bigloo
compiler could have a portable native backend combining most of the advantages
of C with new opportunities stemming from LLVM’s novel design. The LLVM
project provides a “collection of modular and reusable compiler and toolchain tech-
nologies” [Lattner, 2011]. The subproject relevant to my project is called LLVM
Core, and essentially consists of an optimizing compiler for a generic assembly lan-
guage called LLVM IR. This intermediate language has some interesting properties
described in section 4. Potential advantages to using LLVM IR instead of C include

* guaranteed support for full tail-call optimization, which is required by the
Scheme specification but cannot be guaranteed with C function calls;

* climinating the dependence on C compilers, which are large and compli-
cated, and are different enough that Bigloo’s C code must use conditional
compilation for some constructs;

* providing the future possibility to use LLVM’s support for Just-In-Time op-
timization and dynamic compilation, which could greatly enhance the per-
formance and flexibility of Bigloo, since Scheme is a dynamic language; and

* being able to implement nonconservative garbage collection, feasible with
LLVM since it provides flexible hooks for GC implementation, while with

C one is basically restricted to using Boehm’s conservative GC library.



2 'The Scheme Language

2.1 Historical Roots

The origins of Lisp lie deep within the ancient history of programming, as recorded
by its primary inventor John McCarthy in a historical review [McCarthy, 1979].
Along with FORTRAN, it was one of the very earliest high-level programming lan-
guages. The initial impulse came in 1956 as a desire for an algebraic list processing
language for the IBM 704 computer. The desire for such a language was related to
the emerging field of research into artificial intelligence and computer processing
of symbolic logic. At this time, FORTRAN was in the developing stages, and it
was unsure whether it would turn out to be suitable for the kind of list processing
in which McCarthy was interested.

The designing of Lisp had two sometimes conflicting goals: to have a program-
ming language that was mathematically useful—i.e., one that could be reasoned
about algebraically and that could naturally describe mathematical problems, es-
pecially symbolic such—and to have a practical and efficient way of programming
the specific type of computers available. McCarthy describes for example how he
chose to formulate the basic list operations as functions just like the arithmetical
operators rather than as special statements—because this simplified the semantics
and made programs easier to reason about. This kind of mathematical aesthetics
was also the reason why garbage collection was chosen over explicit memory man-
agement. However, for practical reasons, “impure functions” (like the RPLACA and
RPLACD functions, mutating the head and tail components of a pair, respectively)
were also allowed, though research on proving properties of programs in the “pure”
subset of Lisp was done in the 1970s.

The early formulations of Lisp [e.g. McCarthy, 1962] define a language that
operates exclusively on symbolic data called S-expressions, which are binary tree
structures whose nodes are symbolic atoms, e.g., (FOO . BAR)*. The program-
ming language itself consists of what were called M-expressions (or meta-expressions),
which describe recursive functions of S-expressions, with basic operations like cos,
car, and cdr to construct pairs and extract their elements, ¢q to check equality of
S-expressions, conditional expressions (at the time a novel feature), along with func-
tional abstraction and application.

When Lisp was being developed, writing a compiler was considered a very large

*Lists were encoded as right-leaning trees ending with a NIL atom; with a syntactical shortcut,
the structure (FOO . (BAR . (BAZ . NIL))) can be written simply (FOO BAR BAZ). This
syntax remains.



Listing 1: The maplist function written in the LISP 1.5 dialect
(MAPLIST (LAMBDA (L FN) (COND
((NULL L) NIL)
(T (CONS (FN L) (MAPLIST (CDR L) FN))) )))

project, and much planning and research was done before any implementation
began. McCarthy and his colleagues sometimes hand-compiled M-expressions to
IBM 704 code for testing. As part of his research, McCarthy decided that in order
to demonstrate that Lisp was a good theoretical tool, he would formulate the equiv-
alent of the universal Turing machine—the Turing machine that simulates arbitrary
Turing machines—i.e., a Lisp function for evaluating arbitrary Lisp functions. This
required a way of representing Lisp functions as Lisp data—i.e., a translation of M-
expressions into S-expressions—and such a representation was developed for the
theoretical purpose of allowing the description of the evalquote function, which in-
deed turned out to be simple and elegant. A graduate student named S.R. Russell
realized that this function could be hand-compiled just as any other function—and
did so, resulting in what McCarthy calls “the unexpected appearance of an inter-
preter.” Programming with S-expressions became the standard procedure, though
in the LISP 1.5 Programmer’s Manual [McCarthy, 1962] this is still seen as only an
internal notation. The plan to develop a way to permit the input of M-expressions
was gradually abandoned, and the notion of “code as data” took off and became
one of Lisp’s most distinguishing features. As McCarthy writes,

One can even conjecture that Lisp owes its survival specifically to the
fact that its programs are lists, which everyone, including me, has re-

garded as a disadvantage. [McCarthy, 1979]

2.1.1 The \-calculus

The A-calculus was developed by Alonzo Church in the late 1920s and first pub-
lished in 1932 [see Church, 1932]. It was a formal system intended as a foundation
for logic, in the vein of Russell’s theory of types and Zermelo’s set theory, but more
natural, being based on functions instead of sets [Cardone and Hindley, 2009]. The
calculus consists only of abstractions, of the form A\x.M (where x is a variable and
M is an expression), and applications of the form FX (where F' is an expression
denoting some abstraction and X is an expression denoting a value to which the
abstraction is to be applied). Precise rules governing the evaluation of this calculus



were given by Church, though the first published papers were found to be contra-
dictory; the substitution rules for application (/5-substitution) are nontrivial. The
A-calculus is considered to be the first in-depth exploration of the formal properties
of functional abstraction [see Cardone and Hindley, 2009].

When McCarthy was developing Lisp, he did not set out to create an com-
puter language implementation of the A-calculus. He was somewhat familiar with
Church’s notation, but did not understand it fully; describing the insights gathered
from working on symbolic differentiation as a sample problem, McCarthy writes:

To use functions as arguments, one needs a notation for functions,
and it seemed natural to use the A\-notation of Church [1941]. I didn’t
understand the rest of his book, so I wasn’t tempted to try to implement
his more general mechanism for defining functions. [McCarthy, 1979]

2.2 Core Lisp Features

The novel ideas of Lisp, as enumerated by Paul Graham in an article making the
case for Lisp as a repository of powerful language techniques with which the rest
of the programming world has not yet quite caught up? [Graham, 2002], are the
following:

1. conditional expressions instead of simple conditional jumps;

N

. first-class functions, i.e., functions that can be returned and passed as argu-
ments;

3. recursion, which was prohibited in FORTRAN I;

4. dynamic typing, along with the idea of all variables being pointers to some
general kind of object;

5. garbage collection;
6. a nestable expression syntax not just for arithmetic;

7. symbol values, being essentially immutable token strings with quick equality
tests;

8. code as data, i.c., as S-expressions; and

9. the integration of read-time, compile-time, and run-time.

3Graham lists them “in the order of their adoption by the mainstream.”



2.3 Towards Scheme

Throughout the 1960s and 1970s, Lisp began to be used at many different uni-
versities (e.g., the Al labs at MIT, Stanford, and CMU) and research departments
(Xerox, Symbolics) across the U.S. [see Pitman, 1996], and dialects and implemen-
tations proliferated, adding new features and improving performance.

Other research in programming language semantics also made progress. For
the narrative leading towards the development of Scheme, of particular relevance is
the work on languages and theories that treat communicating parallel processes as
the basic abstraction. Simula [Nygaard and Dahl, 1981], the first object-oriented
language, was developed by Norwegian researchers Nygaard and Dahl at the Nor-
wegian Computer Centre between 1962 and 1967 as a language for describing and
simulating “discrete event networks,” and became very influential [see Holmevik,
1994], in large part through inspiring Alan Kay to create the Smalltalk system [Kay,
1993]*. As these systems were developed, there were also attempts to formalize their
semantics mathematically. One of these attempts was the actor model of compura-
tion first published in 1973 [Hewitt et al., 1973], for which Hewitt developed a
language called Planner-73 (later PLASMA).

And this is how Scheme began: as an attempt by Sussman and Steele to un-
derstand the “unusual terminology” of Hewitt’s actor model in terms of ordinary
programming notions [Sussman and Steele Jr., 1998]. They began to write a “toy
implementation” of the actor model as a Lisp dialect. From Algol they took the
idea of lexical scoping, which they thought would provide a simple way to imple-
ment the “acquaintances” of the actor model, while letting actors and functions be
implemented in similar ways. They had the keyword alpha, which worked almost
the same as lambda, but creating an actor instead of a closure. Message passing
was done by applying an actor just like one applies a function. It eventually turned
out that except that actors worked by invoking continuations (see section 5.1) in-
stead of returning values, actors and functions in this language were semantically
identical. They were pleased to have found a very simple core language, built on
the A-calculus, that supported the advanced programming style of the actor model.
Sussman’s and Steele’s ideas about language design and implementation were pub-
lished in a series of papers called “the lambda papers” between 1975 and and 198o0.
Steele wrote the first optimizing Scheme compiler RABBIT in 1978. After pub-

“Itself inspired by Lisp; as Kay writes, “The biggest hit for me while at SAIL in late 69 was
to really understand LISP. Of course, every student knew about car, cdr, and cons, but Utah was
impoverished in that no one there used LISP and hence, no one had penetrated the mysteries of
eval and apply. 1 could hardly believe how beautiful and wonderful the idea of LISP was.”

I0



lishing a revised report on the language [Steele Jr. and Sussman, 1978], it spread
as a tool for research and teaching. It was officially standardized in 1991 [IEEE
Std 1178-1990, 1991]. At present, the most widely implemented standard is that
presented in the Fifth Revised Report [a.k.a R°RS; Kelsey and Clinger, 1998].

Syntax. ‘The syntax of Scheme and other languages in the Lisp family is unusually
simple. There are essentially only three kinds of entities in the Scheme syntax:
literals, symbols, and combinations. A literal is a number, string, or some such
value. Symbols are names like foo. Combinations are arbitrary-length lists of
entities, like (x y z). Evaluating a combination usually means invoking the
function denoted by the first element with the rest of the elements as arguments,
but some symbols (if, lambda, etc) make the combination evaluate as a “special
form.”

There is a close connection between the syntax and semantics. The connection,
perhaps the most distinguishing feature of the Lisp family, called homoiconicity,
is that program code can be read as elements of the fundamental data types of the
language itself: symbols and literals are first-class values, and combinations are sim-
ply lists. So a Scheme program can be seen as simply a particular kind of Scheme
value serialized in Unicode form. Homoiconicity is part of what allows for the Lisp
style of metaprogramming by working directly with source trees through “macro”
functions integrated seamlessly with the programming environment. In Common
Lisp, macros are like functions that receive their argument expressions unevaluated
and return source trees to be inserted by the compiler (during “macro-expansion”).
Standard Scheme instead provides a more sophisticated system of template-like
macro definition that is “hygienic,” i.e., offers certain guarantees regarding vari-
able name capture. Bigloo, like most Scheme implementations, offers both styles
of macro programming.

3 Introduction to Bigloo

Bigloo is mostly written in Scheme; it is a “bootstrapping” compiler, meaning that
to compile it from scratch requires a pre-compiled Bigloo executable. That the
entire compiler is written in Scheme makes working on it relatively easy compared
to if it had been written in C. Parts of the runtime library that compiled programs
call upon are written in C.

The Bigloo design is structured using two non-standard features of Bigloo’s di-
alect of Scheme: a module system and a framework for object orientation. So the
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Listing 2: Annotated Bigloo factorial function
(define (factorial::int n::int)
(if (<= n 1)
1
(* n (factorial (- n 1)))))

large-scale structure of the system is organized using modules: different compila-
tion passes reside in different modules, for instance, but mostly operate on the same
object-oriented data structures. This design makes it convenient to extend the sys-
tem with a new backend: one only needs to extend the backend class, register a
construction function with the compiler driver module, and add a new command-
line option to choose it.

3.1 Language

Since the standard Scheme of the reports is so minimal, concrete Scheme systems
usually provide extensions, both to the language itself and to the standard library.
Bigloo also chooses to deviate from the specification in some instances where fol-
lowing the exact Scheme semantics would make the resulting C code slower or less
straight-forward with little benefit.

3.1.1 Type System

Standard Scheme is latently typed, meaning that types do not appear explicitly
in the source code, and that in the semantics, only values have types, not vari-
ables. Standard functions are defined to cause errors when incorrectly applied;
for instance, first causes an error if applied to a non-list. There is no explicit
way to define derived types like records and product types; with standard Scheme,
the programmer can either use metaprogramming macros to define facilities like
define-record, or simply represent composite values as lists or vectors, perhaps
providing accessor functions to create a pseudo-abstract data type.

In Bigloo’s language, a syntax extension provides optional manifest typing of
variables, which besides being a kind of documentation and a way to detect bugs at
compile time can also help the compiler generate better code. For example, listing
2 shows a recursive factorial function defined with type annotations. The int type
it uses is one of Bigloo’s primitive integral types. With the C backend, this function
is compiled to code that uses C’s primitive int type; the LLVM backend uses the

I2



Listing 3: A simple module header clause
(module math_stuff
(import math_helpers) ;; Import another module.
(export
(factorial::int ::int) ;; Export a function
*pi*) ;; and a variable.
(main math_test)) ;; Declare a main function.

132 type. Without annotations, the function would also be able to handle floating-
point numbers, bignums, and so on, with corresponding cost in performance. By
default, Bigloo will also generate runtime type checking code, though this can be
disabled.

Manifest typing of function parameter is also an important part of the object
system, described in section 3.1.3. Also, Bigloo supports the semi-standard SRFI-9
framework for defining record types.

When using the C backend, the Bigloo type system is integrated with the C
type system. This makes it easy to import and export functions between C and
Bigloo.

3.1.2 Module System

To help give structure to larger programs, Bigloo code is organized in modules
with statically defined interfaces. The module is the basic unit of compilation; one
module corresponds to one object file. Tools are provided to calculate dependencies
between modules to make compilation of large systems easy. A module is defined
by a module header clause at the beginning of a source file, see e.g. listing 3.

3.1.3 Objects

Object oriented programming is built into Bigloo on a fundamental level: class
declarations belong to module interfaces, object operations are primitive within
the compiler, and so on, though it is not the case that “everything is an object.”
The object system is similar to CLOS [Common Lisp Object System; see Pitman,
1996, chapter 7] but was primarily inspired by another Scheme object system called
Meroon [see Queinnec, 1993]. Compared to CLOS, Bigloo’s object system (like
Meroon) is more similar to other widely-used object systems in that its runtime
dispatching only considers one argument, the “self” or “this” parameter, whereas

13



CLOS uses “multiple dispatch.” Also, Bigloo’s object system, again like Meroon,
supports only single inheritance.

As with CLOS, classes and methods are defined separately. A method is a func-
tion that is specialized on the runtime type of its first argument. Many methods can
be collected by belonging to the same generic function. A generic function consists
of a name and a type signature, and belongs to a certain class. Different concrete
methods for every subclass can then be associated with this generic function. To
invoke a generic function, the appropriate method for the class of the “this” pa-
rameter must be found. The LLVM backend uses the dispatching code of the C
runtime library to do this.

3.2 Limitations

Bigloo’s most significant deviation from RsRS is that tail calls in the general case are
not optimized in the way the specification requires. Tail calls to functions locally
defined (using define or the functional let construct) are optimized into jumps,
which takes care of the most common cases, but this is not enough to support
some kinds of programming that Scheme was designed to allow: coroutines, actor-
style control flow, and so on. At least the GNU C compiler attempts to do some
tail call optimization, but makes no guarantees. In practice, Bigloo developers are
recommended to avoid general tail recursion, lest the program run out of stack
space.

3.3 Optimizations

Aside from standard optimizations like tail-call optimization, loop unrolling, and
inlining, Bigloo uses some novel techniques that are well-suited for Scheme’s dy-
namic nature. A compilation pass called storage use analysis [see Serrano and Feeley,
1996] is used to discover information pertaining to the optimal allocation of value
storage: replacing heap allocations with stack allocation, handling closures efh-
ciently, allowing unboxed representations, and eliminating redundant type checks.
Bigloo also incorporates research on when automatic inline expansion of functions
should be done [see Serrano, 1997].

4 Introduction to LLVM

The name LLVM was originally an acronym for “Low-Level Virtual Machine.” Un-
like most other virtual machines, such as the Java and .NET virtual machines,

14



LLVM has no security features (like bytecode verification or obligatory checking
of dynamic types or array bounds), no built-in garbage collection, and no concern
for cross-platform portability of compiled modules. In many respects it has more
in common with a C compiler than a typical virtual machine, except instead of
C it works with a language explicitly designed to be an intermediate language for
compilers; and instead of following the classical model of a compiler executable
transforming an input source file into an output object file, it also provides an
object-oriented library for compiling and executing functions.

4.1 Virtual Machine Characteristics
4.1.1  Values and Types

The type system of LLVM IR is one of its most important features. Functions,
instructions, and values all have well-defined and statically checked types. In typical
machine assembly languages, there is a set of untyped but word-sized registers, and
a byte-addressed store of untyped memory; in LLVM IR, instead there are typed
names representing values of a given size and type, which in the compiled machine
code may be held in either registers or memory.

The essential primitive value types of LLVM are integral and floating-point
numbers of various sizes; there is also the void type, the type of labels, and a type
for what LLVM calls “metadata.” From these types, we can build derived types:
pointers, structures, arrays, and vectors (like arrays of primitive values intended to
be optimized with SIMD techniques).

LLVM strictly upholds the difference between integers and pointers. There is a
well-typed instruction (getelementptr) for calculating the address of a particular
element of a derived type; if one wishes to do explicit pointer arithmetic, one must
use explicit conversion instructions.

4.1.2  Functions, Blocks, and Instructions

All'IR instructions occur within some function definition. They are also organized
into “basic blocks,” such that every label must be preceded by a “terminator in-
struction,” e.g., a branch or return.

4.1.3  Static Single Assignment

Value names in LLVM 1R are sometimes called “registers,” but they differ from
typical machine registers in that they can only be assigned to once. This require-
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ment comes from the fact that LLVM enforces so-called static single assignment
form (SSA), which is a way of writing code that makes many optimizations eas-
ier. However, code generators do not need to worry about this too much, because
all variables can be coded as loads from and stores to stack or heap memory; one of
LLVM’s optimization passes (mem2reg) then effectively transforms this usage into
conventional SSA form.

4.2 API vs Generating Assembly

There are three different manifestations of LLVM IR: the internal representation
of programs within the LLVM runtime, storable “bitcode,” and human-readable
assembly text. The LLVM Ci++ library provides an official API for directly creating
programs in the internal format, which has some advantages over going via bitcode
or assembly. One slight benefit is related to performance: the work of writing and
reading assembly code is eliminated. But the major advantage is that using the API
lets one bypass the whole procedure of generating an object file, opening up for
other models of compilation than the classical static model: for example, allowing
programs to access the compiler at runtime to specialize closures, or doing different
kinds of dynamic optimization. LLVM itself has support for JIT compilation, and
there is an ever-growing field of literature about how to optimize dynamic programs
based on statistical information about runtime execution paths [see e.g. Arnold
etal., 2005]. Scheme specifies the eval function for evaluating arbitrary forms at
runtime, which Bigloo currently implements by interpretation; it would be nice to
also offer runtime compilation.

s Compilation Topics

5.1 Continuations

The ability to directly manipulate the current continuation is one of the distinguish-
ing features of Scheme. The notion of a continuation (or “context”) is often used in
formal specifications of programming language semantics, and denotes, for some
particular expression which is to be evaluated, the entire “remaining” computation
to be performed with the expression’s value as input. In Scheme, this remain-
ing computation can be “reified” as a function-like value using the special form
call-with-current-continuation (or call/cc). The meaning of invoking
such a reified continuation is to replace the current continuation with the continu-
ation that was reified, with the arguments to the functions becoming the inputs to
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that continuation. The call/cc form takes as argument a unary function, which is
applied to the reified continuation of the call/cc form; the function’s return value
becomes the value of the call/cc form. But since the continuation of the form
has been reified, and possibly saved in some variable in an outer scope, it is possible
for the call/cc form to “return any number of times.” This operation allows the
implementation of many different more or less exotic control structures: exceptions
can be quite naturally formulated in terms of call/cc, as well as “backtracking”
nondeterministic operators like amb, cooperative threads, and so on.

Compiling first-class continuations efficiently is notably difficult. One strategy
involves using the CPS transform to automatically rewrite the input program into
“continuation-passing style,” [see e.g. Appel, 1992] in which all functions are made
to accept the current continuation as a functional argument, and in which instead
of returning its computed value, a function body passes control to the continuation
with a tail call. Thus the call/cc operator is trivial to implement as simply making
visible the otherwise implicit continuation parameter.

In this style, functions never return, and if compiled into C code, where tail
call optimization cannot be guaranteed, the call stack will grow indefinitely. There
are ingenuous methods for solving the stack growth problem, even with reasonably
portable C code, but these incur some function call overhead. Also, the “inside-out”
call structure makes it trickier to support callback functions from C into Scheme:
for example, consider using a comparison function in continuation-passing style
with the standard C gsort function.

Bigloo does not use the CPS transform. Instead, it compiles function calls
and returns in the obvious way. The call/cc operator is implemented by sim-
ply copying the relevant execution context—i.e., all registers and the entire stack
containing arguments, local variables, and return addresses—into heap-allocated
memory. The register set is saved and restored using the ISO C functions set jmp
and longjmp. There is no legal way to save and restore the contents of the stack,
but the way Bigloo’s C backend implements this works in practice: it simply uses
memcpy to copy memory relative to the address of the “first” variable of the main
function.

For the LLVM backend, I chose to simply disable the call/cc operator, as the
JVM backend also does. The stack-copying approach using setjmp and longjmp
could be implemented without much difficulty, but LLVM currently does not en-
courage this, and using such techniques may cause hard-to-diagnose problems.
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5.2 Exceptions

Theoretically, exceptions can be viewed as restricted continuations: ones that may
not escape their dynamic scope. In terms of the execution stack, throwing an ex-
ception simply means discarding (“unwinding”) the top entries of the stack until a
matching catch statement is found, whereas restoring a continuation in the general
case may require loading a totally different stack.

In Bigloo, exceptions are, as continuations are in the C backend, implemented
using setjmp and longjmp. Scheme code using exceptions is transformed into
code that only uses simple primitives for pushing and popping the execution con-
texts off a global stack of contexts. This was also implemented in the LLVM back-
end.

5.3 Runtime Library

The code that Bigloo’s C backend generates depends on a library of runtime func-
tionality to implement fundamental data structures and built-in functions. This
common functionality is separately compiled and linked together with the gener-
ated code as a dynamic or static library. Its data types and functions are exposed to
the generated code through the single header file bigloo.h. This library contains
a large amount of support code for file and socket I/O, threads, process control,
arithmetic and string operations, Unicode support, etc. The LLVM backend reuses
as much of this as possible.

6 Results
6.1 An LLVM Backend for Bigloo

The result of my project is an extension of the Bigloo compiler system that compiles
Scheme modules into native code through LLVM. It handles a large subset of the
Bigloo language with only a few exceptions. It is compatible with modules com-
piled through the C backend and uses the standard Bigloo runtime library. The
runtime performance is currently worse than that of the C backend, but I expect
that this is mostly because of the workaround described in section 6.1.2, which
could be fixed somewhat straightforwardly, though it would take more time than
allowed by the scope of this project.
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Listing 4: Assigning a ¢-node
(instantiate::ir-assignment
(name "%foo")
(node (instantiate::ir-instr-phi
(table ~((, (make-ir-lit-int i32 0)
, (make-ir-label "a"))
(, (make-ir-lit-int i32 5)
, (make-ir-label "b")))))))

6.1.1 IR library

As there was no existing library for interfacing Bigloo and LLVM, I wrote a module
to do this. It would have been possible to create a binding to the C++ LLVM AP],
but I decided to generate IR text files instead: this was easier to implement, and fits
well with Bigloo’s existing model of compilation. However, the module is designed
to be adaptable; if an API binding is made in the future, the object representation
of IR code could be translated into API calls.

IR nodes are represented as instances of Bigloo classes. For example, the node
corresponding to the IR code

%foo = phi i32 [0, %al, [1, %b]

is shown in listing 4.

6.1.2 Macro Functions

Many standard functions in the Bigloo library are defined as “macro functions.”
This is a third type of function that is defined neither as a body of Scheme code nor
as an FFI-style declaration of an external C function, but as a format string yielding
a string containing C code, applications of which the code generator handles by
simply splicing in the given string. For example, the c-eq? function is defined like
this:

(extern (infix macro c-eq?::bool (::obj ::obj) "=="))

This introduces a difficulty in creating a new backend. There is a facility for adding
backend-dependent variants; the Java version of this function, for example, is de-

fined like this:
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(java (class foreign
(method static c-eq?::bool (::obj ::0bj) "EQ")))

For the LLVM backend, it would be good to be able to define this kind of macro as
a function returning IR code. I chose to postpone this in favor of a simple tempo-
rary solution that works without needing to manually write new definitions of the
many macro functions spread throughout the Bigloo system. The temporary solu-
tion I implemented creates a C file for each compiled module, containing function
variants of every used macro function; for the c-eq? function, C code like the
following might be generated:

obj_t bgl macro_c_eq (obj_t a, obj_t b) { return a == b; }

Uses of the c-eq? function are then compiled as function calls to this external

function, which is compiled with a C compiler and linked into the final program.
This solution is basically a hack, but considering the large quantity of macro

functions defined in the standard library—as well as in other libraries and applications—

I chose to do the simplest thing that would work and let me continue with the rest

of the backend. Of course, this compromises one of the project’s goals, namely

to get rid of the need for a C compiler, and also has a negative effect on runtime

performance. If this backend is to be included with the Bigloo system, a system for

defining inline LLVM macros will have to be designed.

6.1.3 Using Clang to Translate Prelude Code

The header file bigloo.h included by all compiled Bigloo programs contains a
lot of definitions of data structures and macros, as well as declarations of library
functions. Much of this is relevant to the LLVM backend, but cannot be used
directly, since LLVM does not support C header files.

Translating C code into LLVM 1R is a problem adequately solved by Clang,
an LLVM subproject that implements a fully functional C compiler using LLVM
as a backend. To translate the needed parts into LLVM code semi-automatically,
I used the Clang compiler with the ~emit-11vm option on a dummy C program
that used only the needed parts of Bigloo’s header file.

However, this approach only works for data structure definitions and macros
that evaluate to expressions which can be represented as LLVM functions. Some
macros evaluate to global definitions of values (e.g., DEFINE_STRING); since LLVM
has no macro facilities, I implemented this kind of functionality by hand in the

backend.
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6.1.4 LLVM Optimization

LLVM IR code generated by the new backend is suboptimal but highly amenable
to the kinds of automatic optimization performed by LLVM’s optimizer. Most
obvious is the elimination of allocations, loads, and stores done by the mem2reg
optimization pass. Before LLVM’s optimization, a simple factorial function com-
piles to 85 instructions and labels; after optimization, this number is reduced to
19. The unoptimized code does 20 stack allocations, 22 loads, and 22 stores; the
optimizer eliminates a// of these through phi conversion and strength reduction.

7 Future Work

Some work remains for the LLVM backend to be a usable replacement for the C

backend.

7.1 Macros

For performance, the macro functions addressed in section 6.1.2 should be imple-
mented as LLVM functions or inlined IR code. The current design for specifying
macro functions puts the definitions in the module header, but it does not seem
like a good choice to put large amounts of IR generating code there. One possi-
bility would be to allow just giving the name of an IR generating function. I also
think that given the large amount of macro functions for which IR generating code
would need to be hand-written, the IR library should offer a (perhaps macro-based)
wrapper to write IR code more concisely.

7.2 64-bit

The LLVM backend currently assumes that Bigloo is being used in the 32-bit mode,
mostly because the development computers I had access to had 32-bit CPUs. Sup-
porting 64-bit compilation would require a new compiler switch and some condi-
tional compilation—Bigloo’s data structures and object tags are different on 64-bit
architectures.

7.3 Tail Calls

The LLVM backend is not concerned with tail call optimization. As mentioned in
section 3.2, the Bigloo optimizer converts some tail-calling functions into loops, but
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in general, Bigloo intentionally deviates from the Scheme requirement for full tail
call optimization. This is a compromise to enable more straightforward compilation
and compliance with C calling conventions.

LLVM itself has support for tail call optimization, but only when both caller and
callee functions are marked to use the non-compliant fastcc calling convention.
Functions using this calling conventions can only be called from within LLVM.
However, the LLVM backend could mark module-local functions with this option,
since these functions will not be called from outside LLVM.

7.4 API & JIT

In the future, it would be nice to create a binding to LLVM’s API for dynamic code
generation, and use this instead of source file generation. This would potentially
allow for dynamic recompilation and adaptive optimization, though that would
require some changes to the Bigloo design.

8 Conclusion

The project has demonstrated that using LLVM as a backend for the Bigloo Scheme
compiler is a viable option. Future work to make the LLVM backend fully inte-
grated may encourage a more general way of defining external C functions within
Bigloo itself and the Bigloo community. Having a preliminary LLVM backend
points towards a future where Bigloo users may enjoy the benefits of runtime com-
pilation, which is a strong part of the Lisp heritage [Graham, 2002].
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