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Abstract

Uncertainty about the future is an important determinant of well-being,

especially in developing countries where financial markets and other market

failures result in ineffective insurance mechanisms. However, separating the

effects of future uncertainty from realised events, and then measuring its im-

pact on utility presents a number of empirical challenges. This paper addresses

these issues and shows that increased climate variability (a proxy for future in-

come uncertainty) reduces farmers’ subjective well-being, consistent with the

theory of optimal expectations (Brunnermeier & Parker, 2005), using panel

data from rural Ethiopia and a new data set containing daily atmospheric pa-

rameters. The magnitude of our result indicates that a one standard deviation

(7%) increase in climate variability has an equivalent effect on life satisfaction

to a two standard deviation (1-2%) decrease in consumption. This effect is

one of the largest determinants of life satisfaction in rural Ethiopia.

(JEL: C25, D60, I31.)
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“Climate is what you expect, weather is what you get.”

- John M. Wallace, Professor of Atmospheric Science -

1 Introduction

This paper examines the impact of future income uncertainty on experienced

utility. Using two rounds of individual-level panel data, combined with a new

data set of village-level meteorological data, we exploit exogenous variation in

future income uncertainty, proxied by climate variability, to explore the impact

on the self-reported life satisfaction of smallholder farmers in Ethiopia – one of

the least developed countries in Africa, characterised by its high vulnerability

to climate change and variability.

The motivation of this paper is two-fold. First, we want to understand how

uncertainty affects welfare, a question that poses serious difficulties relating

to measurement and identification. We provide supporting evidence for the

theory of optimal expectations presented by Brunnermeier & Parker (2005).

There is substantial evidence to suggest that individuals perform poorly in

assessing probabilities and consequently overestimate the likelihood of success

(Weinstein, 1980; Alpert & Raiffa, 1982; Buehler et al. 1994; Rabin & Schrag,

1999; Brunnermeier & Parker, 2005). In line with this evidence and in contrast

to standard neoclassical models of expectations, we argue that our results can

be better explained by a model of utility and behaviour in which beliefs about

future states of the world impact utility directly (Brunnermeier & Parker,

2002; 2005; Kozegi, 2003; 2006; Caplin & Leahy, 2004; 2005; Gollier, 2005;

Oster, Shoulson, & Dorsey, forthcoming). In section 3, we present a brief

model of optimal expectations, based on Brunnermeier & Parker (2005), that

provides a useful framework for interpreting the results in this paper, and gives

structure to our identification strategy.

Secondly, we want to better understand climatic influence on economic

outcomes. Recent evidence suggests that global climate change is likely to

increase the incidence of environmental disasters, as well as the variability of
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rainfall, temperature, and other atmospheric parameters (IPCC, 2007; 2012),

which in turn increases uncertainty about future income, especially in devel-

oping countries.

While some of the costs related to weather and climate are relatively sim-

ple to measure, such as impacts on agriculture, health, and labour-market

outcomes, other aspects are harder to measure, such as the experienced utility

effects of increased risk and uncertainty associated with higher variability in

weather and climate. It is this aspect of climatic influence, currently absent

from the literature, that we aim to capture here: the role that ex ante be-

liefs about the likelihood of future climatic events plays in decision-making

and determining well-being. In this respect, climate variability is likely to

affect welfare predominantly through the psychological impact of risk and un-

certainty (van den Bos, Hartevald & Stoop, 2009; Hare, Camerer & Rangel,

2009; Delgado & Porcellie, 2009; Doherty & Clayton, 2011). So far, the ma-

jority of the literature on climatic influence has focused on ex post impacts

(Deschênes & Greenstone, 2007; 2012; Guiteras, 2009; Schlenker & Roberts,

2009; Burgess et al., 2012; Dell, Jones, & Olken, 2012; Fisher et al. 2012; Bar-

reca et al., 2013). To the best of our knowledge, there is only one other paper

that has explored the ex ante considerations related to climate change. Colmer

(2013) examines the impact of future income uncertainty (proxied by climate

variability) on household decision-making in the context of child labour and

human capital accumulation.

Our results show that a one standard deviation (7%) increase in climate

variability – defined as the coefficient of variation in rainfall over the previous

5–10 years – has an equivalent effect on life satisfaction to a two standard devi-

ation (1-2%) decrease in real per capita consumption. We show this to be one

of the largest determinants of subjective well-being (SWB) in rural Ethiopia.

In a wider context, our results are consistent with the literature, which demon-

strates that SWB is correlated with stress (Diener & Chan, 2011) and weather

shocks (Carroll et al., 2009). However, we also show that the magnitude of this

effect on the well-being of smallholder farmers in rural Ethiopia is unprece-

dented, and identify a separate channel - uncertainty about future states of
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the world - through which climate affects well-being. This result is consistent

with the theory of optimal expectations, in which beliefs about the state of

the world impact utility directly (Brunnermeier & Parker, 2005). Crucially,

we disentangle the effects of climate variability from weather by controlling

for rainfall and temperature on the day that each household was surveyed, as

well as controlling for realised weather shocks.1

Our result can be interpreted as a causal effect, conditional on the assump-

tion that our measure of climate variability has an impact on experienced util-

ity only through uncertainty about future states of the world. In order to

support this assumption we control for past rainfall shocks, current consump-

tion, contemporaneous weather, and unobserved individual heterogeneity, an

important determinant of SWB.2

We also present the results from a series of placebo and robustness tests

used to disentangle the effect from other confounding factors and provide sup-

porting evidence for the main identification assumption.3

First, we observe that, while rainfall shocks impact current consumption,

climate variability has no effect, indicating a separation between ex ante beliefs

about future shocks, and the ex post impact of shocks.

Secondly, we show that the effect is driven by variation in the short rainy

season (the Belg season), the season in which the annual planting decisions

take place. We also show that the dry season has no effect on life satisfaction,

1It is important to distinguish between weather, defined as atmospheric conditions over
a short period of time, and climate, defined as the behaviour of the atmosphere over a longer
period. By looking at the variability of rainfall over a longer period of time, more extended
inter-annual patterns of climate variability are revealed that cannot be seen over the period
of one year.

2Unobserved individual heterogeneity is a major omitted-variable bias problem in re-
search on SWB. Almost all previous studies on SWB in Africa use cross-sectional data,
which makes it difficult to control for unobserved individual heterogeneity, and is likely to
affect the consistency of estimated parameters. Until now, the only exception has been
the study by Alem & Köhlin (2012), who investigate the determinants of SWB in urban
Ethiopia using three rounds of panel data spanning a decade. Controlling for such unob-
servables is key to understanding the determinants of SWB (Argyle, 1999; Diener & Lucas,
1999; Ferrer-i-Carbonell & Frijters, 2004); Feddersen et al. (2012).

3Appendix C, provides a number of more mechanical robustness tests, which help sup-
port the statistical and economic significance of the results, but matter less for supporting
the identification assumptions made.
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as one would expect if the effects of climate variability on life satisfaction

operate in any way through income channels (through uncertainty or income

shocks).

Thirdly, using a separate panel data set, we find no effect of climate vari-

ability on urban households, indicating that climate variability is not a major

determinant of future income uncertainty in areas that are not dependent on

agriculture for income.

Finally, we examine alternative measures of the dependent variable to ex-

ploit the difference between evaluative measures of SWB, such as life satisfac-

tion, and contemporaneous measures of SWB, such as happiness. We find a

surprisingly similar impact of climate variability on the Cantril ladder scale

(an alternative evaluative measure), and find no effect on happiness, consistent

with the idea that climate variability impacts utility through future income

uncertainty and not contemporaneous effects. In line with this reasoning, we

find that increased temperature on the day of the survey has a positive con-

temporaneous effect on happiness, but not on the evaluative measures.

The paper has the following structure: section 2 presents a brief literature

review; section 3 presents the theoretical framework; section 4 presents the

data and the empirical strategy; section 5 presents our main results; section

6 presents supporting evidence and robustness tests; the final section presents

our conclusions.

2 Background

The past decade has seen rapid growth in research on, and policy interest in,

SWB. In addition to “objective” measures of welfare, most commonly GDP,

subjective measures of welfare are increasingly being used to elicit measures of

experienced utility (Kahneman et al., 1997; Frey & Stutzer, 2002; Kahneman

& Krueger., 2006; Dolan & Kahneman, 2008), to value non-market goods

(Welsch, 2002; 2006; Rehdanz & Maddison, 2005; 2008; Carroll et al., 2009;

Frey et al., 2007; Metcalfe et al., 2011; Feddersen et al., 2012; Levinson, 2012)

and to evaluate government policy (Gruber & Mullainathan, 2005; Diener et
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al., 2009; Dolan et al., 2011; Boarini et al., 2012; Levinson, 2013). Well-

being is a broad measure of welfare that encompasses all aspects of the human

experience. Researchers in this expanding field of economics use subjective

measures of well-being to analyse and evaluate the impact of economic and

non-economic factors on people’s experienced utility.

Much of the existing evidence on the determinants of SWB come from

studies undertaken in developed countries with similarities, on the impact of

the different correlates of SWB.4 Several studies indicate that income has a

positive effect on SWB, yet there is evidence to suggest that their relationship

exhibits diminishing marginal returns, in part due to the roles that relative

income and social position play, which can affect SWB negatively.5 With its ro-

bustly documented U-shaped impact, age has been found to be one important

determinant of SWB, where the lowest level of SWB experienced is in middle

age (Blanchflower & Oswald, 2004; Ferrer-i-Carbonell & Gowdy, 2007) and

women have been found to report a higher level of SWB than men (Alesina, et

al. 2004). Studies also document a positive impact of being in a relationship

on SWB (e.g. Frey & Stutzer, 2002; Dolan & Kahneman, 2008; MacKerron,

2011). The levels of both physical and psychological health have also been

found to be strong determinants of SWB (e.g., Dolan & Kahneman, 2008).

In recent years, researchers have started to use SWB indicators to inves-

tigate the impact of a number of environmental and climatic variables. Most

recently, Devoto et al. (2012) ran a randomised experiment in Tangier, Mo-

rocco, facilitating the connection of piped water to a random sample of house-

holds. While households did not experience any health benefits from a direct

connection, and the water bill in newly connected households roughly doubled,

households reported increased life satisfaction and other measures of well-being

4Studies on SWB conducted in developing and emerging countries include Ravallion &
Lokshin (2005) on Russia; Kingdon & Knight (2006) and Bookwalter & Dalenberg (2004,
2010) on South Africa; Graham & Pettinato (2001; 2002) on Peru and Russia; Appleton
& Song (2008), Qian & Smyth (2008) and Knight & Gunatilaka (2010) on urban China;
Knight et al. (2009) on rural China; Davis & Hinks (2008, 2010) on Malawi; and Alem &
Martinsson (2011) and Alem & Köhlin (2012) in urban Ethiopia.

5Clark et al. (2007) undertake an extensive survey of the literature on the relationship
between income and happiness.
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associated with access to clean water, indicating welfare improvements even

in the absence of health or income gains.

Using a set of cross-country and panel data from happiness surveys in

combination with data on income and air pollution from European countries,

Welsch (2002; 2006) investigates the relationship between pollution of the en-

vironment and SWB of citizens. The studies find that air pollution impacts

SWB significantly and is one explanatory factor of observed differences in

reported SWB across countries and over time. Similarly, using life satisfac-

tion data from the German Socio-Economic Panel survey in combination with

county-level pollution (sulphur dioxide) data, Luechinger (2009) documents

that higher concentration levels affect SWB negatively and significantly. Fer-

reira & Moro (2010) document a similar negative impact of air pollution cap-

tured by the concentration of PM10 on reported level of happiness in Ireland.

The impact of climatic variables (amount of rainfall and temperature) on

SWB has been investigated by Rehdanz & Maddison (2005), who document

significant impacts on country-wide self-reported levels of happiness. More

recently, Carroll et al. (2009) examine the impact of a period of drought

in Australia on life satisfaction, finding a detrimental impact equivalent to

an annual reduction in income of A$18,000 (US$14,500).6 However, many of

these studies use cross-sectional data and so are unable to control for individual

unobserved heterogeneity. However, the most recent paper in this literature

by Feddersen et al. (2012) examines the differential impacts of weather and

climate change on SWB in Australia, controlling for unobserved individual

heterogeneity. They examine the impact of short-term weather fluctuations

and long-term climate on standard SWB response variables. They find that

day-to-day weather variation impacts life satisfaction by a similar magnitude

to acquiring a mild disability, however, the effect of long-term climate on life

satisfaction disappears with the inclusion of individual fixed effects, suggesting

that unobserved individual-specific factors are responsible for the direct link

between climate and life satisfaction in the studies focussed on average climate.

6Welsch & Kuehling (2009) and Ferreira et al. (2012) undertake comprehensive
overviews of research in the area of environmental quality and SWB.
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While these studies have focussed on long-run climate and weather shocks

– the ex post realisations of weather and climate – we are unaware of any

study that has looked at the effect climate variability – an ex ante consid-

eration –, nor the impact of future income uncertainty on well-being. Given

the importance of risk and uncertainty in developing countries, and the role

that climate change is likely to have on development, exploring the interaction

between these issues is an important area of research.

Despite a large number of papers examining the determinants of SWB, only

a small number of studies provide causal estimates of an event or experience

on SWB. This is because SWB studies rarely have, or make use of, exogenous

variation in their variable of interest. By using fixed effects to control for indi-

vidual heterogeneity, controlling for potential confounding factors, and teasing

out the mechanism by which we expect climate variability to be important –

namely, through the impact of increased stress through uncertainty about fu-

ture income –, we attempt to provide supporting evidence for a causal estimate

of climate variability on the SWB of smallholder farmers in rural Ethiopia.

3 The Optimal Expectations Framework

Based on the work by Brunnermeier & Parker (2005) we construct a model in

which farmers care about their expectations of the future (anticipatory utility)

in addition to their present consumption, that is, all farmers care about current

utility and expected future utility. While all forward-looking farmers who care

about expected future utility will make investments to maximise future utility,

such farmers will have higher current utility if they are optimistic about the

future. In the context of this paper, farmers living in areas with higher climate

variability will have higher subjective probabilities about the likelihood of a

negative income shock being realised in the next period, and so will have

lower current utility. By contrast, farmers living in areas with lower climate

variability will have higher subjective probabilities that a negative income

shock will not occur, and so will have higher current utility.
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3.1 Utility Maximization Given Beliefs

Consider a world in which uncertainty about future income can be described

by a binary state st ∈ {0, 1}, where st = 1 indicates that the farmer is going to

experience a negative income shock and st = 0 indicates that they will not. Let

p(st|st−1) denote the true probability that state st ∈ {0, 1} is realised following

state history st−1 = (s1, s2, . . . , st−1) ∈ {0, 1}. We depart from the standard

neoclassical model in so far as agents are endowed with subjective probabilities

that may not coincide with the true state. Conditional and unconditional

subjective probabilities are denoted p̂(st|st−1) and p̂(st) respectively.

At time t, the farmer receives some level of income which is consumed,

ct. For tractability, we assume there are no savings, so income is equal to

consumption. In addition, the farmer chooses some binary risk management

action, αt ∈ {0, 1}, used to mitigate income shocks, based on their beliefs

about the likelihood of future income shocks to maximise utility,

Ê[U(ct, αt)|st] (1)

,where U(·) is strictly increasing and strictly quasi-concave, and Ê is the

subjective expectations operator associated with p̂, which depends on infor-

mation available at time, t.

The farmer maximises utility of consumption subject to their budget con-

straint:

ct+1 = f(ct, αt, st+1), (2)

g(cT+1) ≥ 0 given c0 (3)

where f(·) provides the evolution of income is continuous and differentiable in

c and α, and g(·) gives the endpoint condition. The optimal choice of action

is denoted α∗(st, p̂) and the induced consumption as c∗(st, p̂).

The utility of the farmer depends on expected future utility or anticipated

utility, such that the subjective conditional belief has a direct impact on utility.
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To clarify this further, we consider time-separable utility flows with exponen-

tial discounting.

Ê[U(ct)|st] = βt−1

(
t−1∑
τ=1

βτu(ct−τ , αt−τ ) + u(ct, αt) + Ê

[
T−t∑
τ

βτu(ct+τ , αt+τ )|st

])

(4)

In this situation, utility at time t is the sum of memory utility from past

consumption, utility from current consumption, and anticipatory utility from

future consumption. Empirically, we identify these factors by controlling for

past weather shocks (memory utility), real per capita consumption and con-

temporaneous weather (current consumption), and climate variability (antici-

patory utility).

3.2 Optimal beliefs

The subjective beliefs of farmers are a complete set of conditional probabilities

following any history of events, p̂(st|st−1). That is, the subjective probability

that a shock will occur depends on the history of shocks in the past. In this

way, locations which have a more variable climate may be more likely to have

a shock in the future.

Following Brunnermeier & Parker (2005), optimal expectations are the

subjective probabilities that maximise the farmer’s lifetime happiness and are

defined as the expected time-average of the farmer’s utility.

Definition 1 Optimal expectations (OE) are a set of subjective probabilities

p̂OE(st|st−1) that maximise well-being

W = E

[
1

T

T∑
t=1

Ê[U(c∗1, . . . , c
∗
T , α1, . . . , αT |st)]

]
(5)

One of the benefits of this model is that if farmers have rational expecta-

tions (i.e. α = s), then the well-being and utility derived from the actions that
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farmer’s will coincide. In this case, utility in time t only depends on present

actions, i.e., memory utility and anticipatory utility does not enter into the

utility function. This could be the case, for example, if an exact weather

forecast or insurance is available. However, if subjective probabilities differ

from the true probability that a shock will occur then there will be a wedge

between well-being and the farmer’s utility, in this case memory utility and

anticipatory utility enter into the utility function as in equation 4.

4 Data and Empirical Strategy

4.1 Data

The analysis conducted in this paper uses two rounds of a panel data set – the

Ethiopian Rural Household Survey (ERHS) – that covers households from 15

villages in rural Ethiopia7. The ERHS was conducted by Addis Ababa Uni-

versity in collaboration with the Center for the Study of African Economies

(CSAE) at the University of Oxford and the International Food Policy Re-

search Institute (IFPRI) in seven rounds between 1994 and 2009. The sam-

pling was constructed carefully to represent the major agro-ecological zones of

Ethiopia. Households from six villages that were affected by drought in cen-

tral and southern Ethiopia were surveyed for the first time in 1989. In 1994,

the sample was expanded to cover 15 peasant associations8 across the major

regions of Ethiopia (Tigray, Amhara, Oromia, and Southern Nations National-

ities and people’s region), representing 1477 households. Further rounds were

completed in 1995, 1997, 1999, 2004 and 2009. The additional villages incor-

porated in the sampling were chosen to account for the diversity in the farming

systems throughout the country. Stratified random sampling was used within

each village based on the gender of household heads.

This paper makes use of the final two rounds, 2004 and 2009, as only these

years contain questions on SWB. This is sufficient to control for unobserved

7See figure 3 in appendix A for the location of these villages.
8A peasant association is the lowest administrative unit in Ethiopia and normally con-

sists of several villages.
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heterogeneity. Attrition of the panel has been low at 1-2 percent of house-

holds per year (Dercon & Hoddinott, 2009). In addition to a specific module

on SWB, the data set contains detailed information on individual and house-

hold characteristics, assets, expenditures, consumption, health, agricultural

production, and information related to input use.

In addition to the household survey data, daily, seasonal and annual rain-

fall data has been constructed from 6-hourly precipitation reanalysis data at

the village level from the ERA-Interim data archive supplied by the European

Centre for Medium-Term Weather Forecasting (ECMWF).9 Previous studies

have relied on the use of meteorological data provided by the Ethiopian mete-

orological service and the number of missing observations is a concern. This

is exacerbated by the serious decline in the past few decades in the number

of weather stations around the world that are reporting. Lorenz & Kunts-

man (2012) show that, since 1990, the number of reporting weather stations

in Africa has fallen from around 3,500 to around 500. With 54 countries in

the continent, this results in an average of fewer than 10 weather stations

per country. Looking at publicly available data, the number of stations in

Ethiopia included by the National Oceanic and Atmospheric Administration’s

(NOAA) National Climatic Data Centre (NCDC) is 18; however, if we were

to apply a selection rule that required observations for 365 days, this would

yield a database with zero observations. For the two years for which we have

economic data (2004 and 2009), weather station data is available for 50 days

in Addis Ababa in 2004 and is available for all 18 stations for an average of 200

days (minimum of 67 days, maximum of 276 days) in 2009. This is likely to

result in a huge increase in measurement error when this data is used to inter-

polate across the 63 zones and 529 woredas (districts) reported in 2008. If this

measurement error is classical, i.e., uncorrelated with the actual level of rain-

fall measured, then our estimates of the effect of these variables will be biased

towards zero. However, given the sparse density of stations across ethiopia

(an average of 0.03 stations per woreda), the placement of stations is likely

to be correlated with agricultural output, i.e. weather stations are placed in

9See Dee et al. (2011) for a detailed discussion of the ERA-Interim data.
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more agriculturally productive areas, where the need for weather information

is higher. As a result, we might expect that estimates using weather stations

are systematically upward biased. For these reasons, the use of remote-sensing

data on a uniform grid has great value in areas with low station density.

The ERA-Interim reanalysis data archive provides 6-hourly measurements

of precipitation, temperature (min., max., and mean), wind speed and wind

direction, relative humidity, cloud cover (a proxy for solar reflectance), and

many other atmospheric parameters, from January 1 1979 until the present

day, on a global grid of quadrilateral cells defined by parallels and meridians

at a resolution of 0.75 x 0.75 degrees (equivalent to 83km x 83km at the

equator).10 Reanalysis data is constructed through a process whereby climate

scientists use available observations as inputs into climate models to produce a

physically consistent record of atmospheric parameters over time (Auffhammer

et al., 2013). This results in an estimate of the climate system that is separated

uniformly across a grid, making it more uniform in quality and realism than

observations alone, and one that is closer to the state of existence than any

model would provide alone. This provides a consistent measure of atmospheric

parameters over time and space. This type of data is increasingly being used by

economists (see Guiteras, 2009; Schlenker & Lobell, 2010; Hsiang et al. 2011;

Burgess et al., 2011; Kudumatsu, 2012), as they fill in the gap in developing

countries, where the collection of consistent weather data is lower down the

priority list in governmental budgets.

By combining the ERHS data set with the ERA-interim data, we create

a unique panel allowing for microeconomic analysis of weather and climate in

Ethiopia.

The outcome variable of interest from the economic data is a measure of

overall life satisfaction asked to the head and spouse of the household. It

is constructed using responses to a single question, scored on a seven-point

scale ranging from one to seven. The variable is constructed using responses

related to the level of agreement with the following statement as the dependent

10To convert degrees to km, multiply 83 by the cosine of the latitude, e.g, at 40 degrees
latitude 0.75 x 0.75 cells are 83 x cos(40) = 63.5 km x 63.5 km.
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variable: “I am satisfied with my life.” A score of one is described as “Very

Dissatisfied” and a score of seven is described as “Very Satisfied”. This is very

similar to the standard questions used in cross-country surveys, such as the

World Values Survey and the Eurobaromoter Survey. Later in the paper, we

demonstrate the robustness of our results to alternative measures of SWB.

4.2 Variables and Descriptive Statistics

Table 1 presents descriptive statistics of the key dependent variable – the

reported level of life satisfaction – for the analysed period. Average reported

level of life satisfaction in rural Ethiopia was 2.93 in 2004 but increased to

3.09 in 2009. In the sample, about 40 percent of the respondents reported

to be dissatisfied in 2004, but the figure declined to 34 percent in 2009. The

proportion of respondents that were very satisfied was around 2 percent in

2004, but the figure increased to just over 6 percent in 2009. Overall, one

notices that there has been a considerable rise in the average reported level

of life satisfaction in rural Ethiopia during the period in which the country

experienced rapid economic growth.

We categorize our explanatory variables into climatic, individual (respon-

dent) and household variables.

Rainfall at each village is calculated by taking all data points within 100km

of the village, which is then interpolated through a process of inverse distance

weighting. Taking the annual measure of rainfall at each village we calculate

the coefficient of variation for rainfall (CV), measured as the standard devia-

tion divided by the mean for the respective periods 2000–2004 and 2005–2009.

One of the major advantages of the CV is that it is scale invariant, providing

a comparable measure of variation for households that may have very different

income levels.

We argue that climate variability, proxied by the CV, is a major determi-

nant of welfare in rural areas as a result of the dependence on agriculture for

subsistence consumption and livelihoods. This consideration is distinct from

the literature, which examines the effects of weather shocks on welfare using
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the level of rainfall or deviation from its mean. Weather shocks are clearly im-

portant for welfare, as a broad literature has already shown; however, the focus

of this paper is on climate variability as a proxy for future income uncertainty.

While the level of rainfall or rainfall shocks tend to be used as instrumental

variables or proxy variables for income or covariate income shocks, there are

limitations to this (Rosenzweig and Wolpin, 2000), including identification is-

sues. For example, more rainfall is usually defined as good, i.e., the coefficient

is positive; however, even controlling for a quadratic rainfall term – expected

to have a negative coefficient, indicating diminishing returns to rainfall – may

not be sufficient identification. If farmers form expectations about the climatic

conditions of their area, we might expect that they plant crops that are suited

to that area. Any deviation from the conditions on which this optimal cropping

decision is based, such as more or less rainfall, may not be welfare-improving.

The formation of these expectations is key for production. For this reason,

we focus on climate variability, which, we argue, generates uncertainty about

the likelihood of future weather shocks. It is important to control for recent

rainfall shocks as this is likely to be correlated with the CV. We include a

dummy variable equal to one if the village has experienced a negative rainfall

shock one standard deviation below the long-run mean in the previous 5 years.

While this measure allows us to observe the realisation of rainfall shocks over

the 5-year period, it is likely that a shock in the previous year would have

the greatest impact on SWB. Our results are also robust to contemporaneous

rainfall shocks in the most recent agricultural year.11

Questions relating to the respondents’ personal characteristics have been

selected based on earlier studies on happiness, comprising the respondent’s age,

gender, unemployment status, marital status, education, religion and health

status.

The household-level variables we control for include the relative position

of the household within the community – an indicator variable to a perceived

change in living standard over the past three years –, social capital proxied

11The results controlling for the impact of contemporaneous rainfall shocks are reported
in table 5 of appendix C. The results remain robust to this specification.
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by an increase or decrease in the number of persons available to help the

household in a time of need, household size, and measures of economic sta-

tus captured by the stock of livestock and real consumption expenditure per

capita. The relative position variable has been constructed from the responses

given to the question “Compared to other households in the village, would

you describe your household as: the richest in the village; richer than most

households; about average; a little poorer than most households; the poorest

in the village?”.

The stock of livestock the household owns is measured in livestock-equivalent

units, and real consumption per capita is adjusted for adult-equivalent units.

The consumption measure was calculated using the approach used by Dercon &

Krishnan (1996), which aggregates consumption on both food and non-food ex-

penditures. Nominal consumption expenditures reported by households have

been converted into real consumption expenditures using carefully constructed

price indices from the survey. The consumption variable has been adjusted for

both spatial and temporal price differences.

Table 2 presents the key descriptive statistics of variables for the period

analysed (the full table is available in Appendix A) and table 3 below presents

the distribution of annual rainfall by village.

Rainfall in Ethiopia is low and erratic. From table 3, we observe that there

is considerable inter-annual variability, as well as variability across the villages

of study. The average rainfall across all the villages for the period 1995-2008

is just under 1000mm per annum, though there is considerable heterogeneity.

For example, Haresaw and Geblen, villages from the Tigray region in North-

ern Ethiopia, experienced an average of around 400mm per annum between

1979 and 2009. Some villages also experience significant inter-annual varia-

tion. Figure 1 in the appendix provides a visualisation of the inter-annual

heterogeneity in rainfall, as well as a demonstration of the degree to which

the villages in the sample represent the average climate of Ethiopia. Figure

2 in the appendix shows density plots for the coefficient of variation over the

two periods for which we have economic data, demonstrating the temporal

variation we observe. Figures 4–6 in the appendix provide a visualisation of
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the spatial heterogeneity.

4.3 Empirical Strategy

We examine the effect of climate variability on SWB using the variables defined

in the previous section. The model we present is estimated using a difference-

in-means estimation approach (i.e., fixed-effects or “within” regression) with

cluster-robust Huber-White standard errors at the village level to account

for serial correlation within villages. This allows us to address the issue of

time-invariant unobserved individual heterogeneity, which has been shown to

be important in studies examining the determinants of SWB.12 In addition to

individual fixed effects, we control for year fixed effects to control for aggregate

shocks, economic development, and macroeconomic policies. We also include

month fixed effects to control for seasonal variation in the timing of the survey.

The model is estimated using the following specification:

Wit = αi + β1CVvt + β2SHOCKvt + β3Xit + β4Xht + αm + αt + εit

where subscripts index individual, i, household, h, village, v, month, m and

year, t. Wit is the level of life satisfaction reported by an individual i at time

t. CVvt corresponds to the coefficient of variation at the village level, which

captures anticipatory utility. We also include SHOCKvt, a dummy variable

equal to one if the village has experienced a negative rainfall shock in the past

5 years greater than or equal to a one-standard deviation deficiency below

the long-run mean, which captures memory utility. In addition to these core

variables, we include a set of controls and characteristics, X, measured at the

individual and household level, that are determinants of current utility. αi

corresponds to the individual fixed effect, αt to the year fixed effect, and αm

to the month fixed effect. εivt is a time-varying random shock. Given that

climate variability is random, and assuming that, in the absence of changes in

12Table 4 of appendix C replicates the results from table 4, using village fixed effects as
an alternative to individual fixed effects. The results are robust to this specification.
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variability, Wit would have remained the same, the parameter β1 will represent

the causal effect of climate variability on the life satisfaction of smallholder

farmers in rural Ethiopia. More formally, in the absence of any change in

climate variability, β1 would not be statistically different from zero. Given

that we control for time-invariant unobserved heterogeneity using individual

fixed effects, and attempt to control for other confounding variables that may

be correlated with our measure of climate variability (e.g., whether there was

a negative rainfall shock in the same measurement period, the rainfall and

temperature on the day of the survey to capture potential weather bias, etc.)

we believe that the results presented below, along with the additional evidence

provided by the robustness checks, support a causal interpretation.

As a robustness check, we can extend this approach by applying an ordered

probit with random effects to (1) to account for an ordinal measure of life

satisfaction rather than a cardinal measure. The use of linear regression models

implies that the spacing between different outcomes, e.g., “Very Satisfied”

and “Dissatisfied”, or “Satisfied” and “Very Satisfied”, are uniform. The use

of an ordered probit model assumes that the respondent’s well-being W, is

an unobserved latent outcome conventionally proxied by a self-reported life

satisfaction response, W*, on an ordinal scale. However, since it is not possible

to formulate a fixed effects ordered probit model as the fixed effects are not

conditioned out of the likelihood, we must use random effects.

However, one issue regarding the random-effects ordered probit model, in-

deed any random-effects model, is the strong and often unrealistic assumption

that the unobserved individual heterogeneity term αi is independent of the

observable regressors Xit, i.e., E(εit|αi,Xit) = 0. Because of this strong as-

sumption, random-effects models tend to be avoided by economists and other

social scientists due to issues of bias and uncertainty (Hausmann & Taylor,

1981). As unmeasurable individual heterogeneity has been shown to be an im-

portant determinant of life satisfaction (Argyle, 1999; Diener & Lucas, 1999;

Ferrer-i-Carbonell & Frijters, 2004), we report results from both linear and

non-linear models with fixed and random effects to test the consistency of our

results across models.
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5 Results

Table 4 presents results from generalised least squares with random effects

(RE), ordinary least squares with fixed effects (FE), and an ordered probit

model with RE to account for differences in whether one assumes cardinality or

ordinality in life satisfaction data, exploring whether climate variability affects

the life satisfaction of farmers surveyed in the ERHS. Table 1 in appendix B

presents these results with the full set of variables. Table 2 in appendix A

provides the marginal effects for the ordered probit model.

We can see that the coefficient for climate variability is negative and statis-

tically significant at the 5% level in the most robust specification, controlling

for fixed effects, an indication that anticipatory utility does enter into the

utility function of farmers, which is in line with the theory of optimal ex-

pectations. The signs and qualitative trade-off between the coefficients are

relatively similar, suggesting that there is little difference in the interpreta-

tion of the results whether one assumes cardinality or ordinality in the life

satisfaction data (Ferrer-i-Carbonell & Frijters, 2004). These results provide

point estimates of the effect of climate variability on life satisfaction between

-0.047 and -0.077 for a one-unit increase in the coefficient of variation. This

corresponds to approximately 2.67–4.37% of the standard deviation in the life

satisfaction responses. Following a one standard deviation increase in climate

variability, we would expect a decline in life satisfaction equivalent to 20.5–

33.68% of a one standard deviation in life satisfaction responses. To emphasise

the potential welfare impact of climate variability, we note that this is equiv-

alent to around a two standard deviation (1-2%) decrease in real household

consumption per capita. The magnitude of this effect is considerable. Indeed,

compared to the other determinants of life satisfaction examined in this paper,

climate variability is shown to be one of the largest.

Importantly, our results also reveal that present income (proxied by real

consumption expenditure per capita), has a positive impact on life satisfaction.

While there are clear endogeneity issues, it is important to control for income

to ensure that our measure of climate variability is not capturing any indirect
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impact on well-being through present consumption.

6 Supporting Evidence

As well as showing the robustness of our results to different linear and non-

linear models, we consider a number of additional extensions and robustness

checks to try and disentangle the channel observed in the reduced-form results.

This analysis in this section uses the most robust specification from the main

analysis (the FE model).

First, we attempt to test our identifying assumption that climate variability

impacts well-being through future income uncertainty and not other channels

by examining the impact of CV on real consumption per capita to examine

indirect effects through income.

Second, we attempt to close out the channel that increased climate variabil-

ity reduces social networks through the impact that covariate risk management

might have on self-insurance groups. As argued, actions to reduce exposure to

covariate risk may have detrimental effects on informal insurance groups. If

climate variability impacts life satisfaction only through increased stress about

future income uncertainty, then we should find no effect on consumption, social

networks or self-insurance.

Third, we test our results through the use of placebo effects by looking at

seasonal climate variability. We should observe that only variability during the

rainy season matters, particularly the Belg season, as this is when decision-

making occurs (Bezabih & Sarr, 2012). Generally, farmers in Ethiopia plant

slow-maturing but high-yielding ‘long-cycle’ crops that grow across both the

Belg and Kiremt seasons. We argue that while the Kiremt season rainfall is

important for the final yield, the Belg rains are most important as a determi-

nant of crop failure. If there is not sufficient rainfall during the Belg season

for seeds to germinate, then Kiremt season rainfall is less important.

Fourth, we investigate whether climate variability affects SWB of urban

Ethiopian households, who do not directly depend on the rains for their liveli-

hood.
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Finally, we examine the impact of climate variability on alternative mea-

sures of SWB. We compare our results using the standard life satisfaction

measure to results using the Cantril ladder measure and a measure of hap-

piness. While these measures should display similar results, we exploit what

we argue is an implicit time dimension in the way that these questions are

interpreted. When being asked whether you are satisfied in your life or where

on the Cantril ladder (an alternative measure of life satisfaction), individuals

consider their lives as a whole. By contrast, when asked if an individual is

happy, this is more likely to capture contemporaneous “happiness”. We argue

that if climate variability is capturing the impact of future income uncertainty

then we should find no effect on “happiness”. By contrast, weather effects

such as rainfall and temperature on the day of the survey, if important, should

matter for ‘happiness”.

Appendix B also includes a number of additional robustness tests to check

the validity of our results to alternative specifications and outliers. These

include: changing the period of time over which we define the coefficient of

variation; alternative definitions of climate variability; more mechanical ro-

bustness tests.

6.1 The Impact of Climate Variability on Consumption

and Social Networks

Table 5 provides support to our hypothesis that climate variability reduces

life satisfaction through future income uncertainty. We observe that there is

no effect of climate variability on real consumption per capita and no effect of

climate variability on potential risk management channels. As further evidence

that we are identifying ex ante components of climate, separate from ex post

impacts, we observe that negative rainfall shocks reduce real consumption

expenditure per capita.
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6.2 Seasonal Variability

Table 6 shows the results from the various seasonal measures of climate vari-

ability. We observe that Belg season variability is important while Kiremt

season and Bega (dry) season variability is not. This supports our hypothesis

that climate variability affects life satisfaction through stress resulting from fu-

ture income uncertainty, as critical decision-making occurs in the Belg season.

As stated above, Belg rainfall is critical for agricultural output in Ethiopia,

even more so than the main Kiremt rainy season, as there needs to be sufficient

rainfall for seeds to germinate. A lack of rainfall in the Belg season may result

in complete crop failure, whereas reductions in rainfall in the Kiremt season

is likely to only reduce yields. Bezabih & Marr (2012) provide supporting evi-

dence for this hypothesis by demonstrating that increased Belg season climate

variability has a positive effect on the extensive margin of crop diversification

– a risk management strategy.

6.3 Rural vs. Urban Differences in the Impact of Cli-

mate Variability on SWB

Table 7 examines the impact of climate variability on SWB in urban Ethiopia.

If we expect that climate variability affects SWB through future income un-

certainty, then we should expect to see no effect of climate variability on SWB

in urban areas, where livelihood does not directly depend on rain.13

We use three rounds of panel data from the Ethiopian Urban Socio-economic

Survey (EUSS) in 2000, 2004, and 2009. This data consists of four cities se-

lected to represent the major urban areas of Ethiopia: Addis Ababa, Awassa,

Dessie, and Mekelle.14

Unlike our rural data, we are only able to control for household fixed ef-

fects, not individual fixed effects; however, we try to match the specification

13We acknowledge the caveat that climate variability could be argued to impact urban
areas through general equilibrium effects on food prices; however, this is more likely to result
from the realisation of shocks than climatic variability.

14See Alem & Söderbom (2012) for more detail on this data set.
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as closely as possible to the model used in the main results to increase the

credibility of our findings.

The results from table 7 demonstrate that SWB in urban areas is unaffected

by climate variability or climate shocks in the previous 5 years. While there

are limitations to this data in terms of the amount of spatial variation we can

capture, we argue that the magnitude of the coefficients is small enough to

support our claim, even in the event of type I error.

6.4 Alternative Measures of SWB

In addition to alternative definitions of the explanatory variable, we also con-

sider alternative dependent variables. Within the SWB literature, it is gen-

erally considered that questions based on the life satisfaction scale and the

Cantril ladder scale are more evaluative measures, whereas questions related

to happiness are a better measure of present affect (Benjamin et al., 2013;

Levinson, 2013).15 Given the proposed channel through which we would ex-

pect climate variability to effect SWB, we should find similar results using the

Cantril ladder scale. We do not expect that climate variability is likely to have

an effect on present happiness, however, since we expect that the impact on

well-being is based on uncertainty about future income.

Consistent with this hypothesis, we observe in table 7 that climate variabil-

ity measured annually and for the Belg season, has a negative and statistically

significant effect on both life satisfaction and responses to the Cantril ladder

scale; however, we observe no effect on happiness, even though all the mea-

sures are positively correlated. This indicates that the happiness responses

may provide a measure of subjective well-being based on present mood, while

life satisfaction and the Cantril ladder scale provide more evaluative measures

of subjective well-being. This conjecture is further supported by the evidence

15The Cantril ladder scale is measured based on the following question: “Suppose we say
that the top of a ladder represents the best possible life for you and the bottom represents
the worst possible life for you, where on the ladder do you feel you personally stand at the
present time?”. The Happiness question, “Taken all together, how would you say things are
for you these days? Would you say you are:” is measured on a 3-step likert scale with the
responses: Not too happy; Pretty happy; Very happy.
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in table 7 that average temperature on the day of the survey has a positive

impact on happiness, while having no impact on the more evaluative measures.

This demonstrates the importance of considering the time dimension implicit

within questions on SWB when drawing policy implications from results.

Given the robustness of our results to the various extensions and tests

shown here and in appendix C, we argue that the impact that climate vari-

ability has on farmers’ SWB in rural Ethiopia is plausibly explained by the

experienced utility effect of future income uncertainty. Given the lack of access

to well-functioning, formal insurance markets to deal with rainfall variability

and the associated risk, it is not surprising that increased climate variabil-

ity, capturing future income uncertainty, has a significant impact on reported

subjective well-being.

7 Conclusion

In this paper we investigated the impact of future income uncertainty, proxied

by climate variability, on the subjective well-being of rain-dependent farm-

ers in Ethiopia by matching two rounds of household-level panel-data with a

long series of atmospheric data supplied by the European Centre for Medium-

Term Weather Forecasting (ECMWF). We implemented a series of linear and

non-linear panel data models that control for time-invariant unobserved het-

erogeneity and performed a number of robustness tests, which help to support

the main identification assumption of this research question – that climate

variability has no impact on experienced utility other than through uncer-

tainty about future states of the world. Of particular importance is our ability

to control for the level of rainfall and temperature on the day that each re-

spondent was surveyed and disentangle the effects of climate variability from

that of weather. Based on our parameter estimates, we computed the welfare

cost of climate variability in terms of equivalent economic loss.

Fixed-effects regression results suggest that climate variability has a signif-

icant adverse impact on the SWB of farm households in rural Ethiopia. A one

standard deviation increase in climate variability is associated with a decrease

24



in life satisfaction equivalent to a 2% decrease in real consumption per capita.

We show this to be one of the largest determinants of life satisfaction in rural

Ethiopia. This result indicates that anticipatory utility is an important de-

terminant of well-being in rural Ethiopia, in line with the theory of optimal

expectations (Brunnermeier & Parker, 2005). We rule out indirect channels

related to effects on consumption and social network changes and demonstrate

that climate variability outside the Belg season is not important for life satis-

faction. Removing these channels is important as they emphasise the channel

which, we argue, underpins our results: that stress resulting from future in-

come uncertainty has a negative impact on well-being. Belg season variability

is arguably the most important determinant for future income uncertainty as

this is the period in which production decisions occur. Furthermore, there

needs to be sufficient rainfall for seeds to germinate. A lack of rainfall in the

Belg season may result in complete crop failure, whereas reductions in rain-

fall in the Kiremt season are likely only to reduce yields. Interestingly, we

show that climate variability does not have any statistically significant impact

on SWB of respondents in urban Ethiopia, whose livelihoods do not directly

depend on rain.

Results also confirm the importance of other conventional correlates of

SWB that were found to be important in studies in other developed and de-

veloping countries, indicating the consistency of these relationships.

We argue that investigating the impact of climate variability on SWB in

rural Ethiopia offers useful insights into the welfare costs of climatic influence.

Our observation that climate variability affects the welfare of farmers increase

the potential welfare cost of climate change, reinforcing the findings of earlier

studies that explore the adverse impact of a changing climate on objective indi-

cators such as agricultural yield and income. Furthermore, we observe that the

main impact of climate variability on well-being arises because of uncertainty

about future income in concordance with the theory of optimal expectations.

As a result, increased access to ex post coping mechanisms such as insurance,

and ex ante risk management strategies, as well as increased information to

help farmers to form better subjective probabilities about the likelihood of
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future shocks, are likely to reduce the importance of anticipatory utility, in-

creasing welfare. Future research questions relate to how optimal expectations

affect decision-making under uncertainty. However, if we expect that individ-

uals living in areas with lower climate variability are more optimistic about

future states of the world, they may invest less in risk-management and con-

sequently may experience greater welfare losses than areas with high climate

variability in the event that bad states are realised. If true, we may expect

under-investment adaptation strategies, reducing the difference between the

short-run (weather) and long-run (climate) elasticity of climatic influence on

economic outcomes and welfare.
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Hólm, L. Isaksen, P. K̊allberg, M. Köhler, M. Matricardi, A. P. McNally,

B. Monge-Sanz, J. Morcrette, B. Park, C. Peubey, P. de Rosnay, C. Tavolato,

J. Thépaut, and F. Vitart (2011). The era-interim reanalysis: configuration

and performance of the data assimilation system. Quarterly Journal of the

Royal Meteorological Society 137, 553–597.

29



Delgado, M. and A. Porcellie (2009). Acute stress modulates risk taking in

financial decision making. Psychological Science 20 (3), 278–283.

Dell, M., B. Jones, and B. Olken (2012). Temperature shocks and economic

growth: Evidence from the last half century. American Economic Journal:

Macroeconomics 4 (3), 66–95.

Dercon, S. and J. Hoddinott (2009). The ethiopian rural household surveys

1989 - 2004: Introduction. IFPRI .

Dercon, S. and P. Krishnan (1996). Income portfolios in rural ethiopia and

tanzania: Choices and constraints. Journal of Development Studies 32 (6).
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Table 1: Life Satisfaction Responses from Full Sample

2004 2009 (2004-2009)

Mean Satisfaction 3.82 4.09% 3.97

Very Dissatisfied 6.81% 7.32% 7.08%

Dissatisfied 24.37% 20.79% 22.47%

Slightly Dissatisfied 16.25% 13.14% 14.59%

Neither 7.08% 7.32% 7.21%

Slightly Satisfied 24.92% 22.54% 23.66%

Satisfied 18.33% 22.69% 20.64%

Very Satisfied 2.25% 6.20% 4.35

Total 100% 100% 100%

Observations 1815 2062 3877

Table 2: Summary statistics

Variable Mean Std. Dev. N

Climate Variables

Climate Variability 22.98 7.71 3877

Rainfall Shock (Past 5 years) 0.712 0.45245 3877

Rainfall (mm) (Day of Survey) 3.42 4.65 3877

Temperature (Day of Survey) 26.65 0.829 3877

Respondent variables

Age 46.612 15.203 3774

Female 0.41 0.49 3877

Unemployed 0.016 0.126 3877

Married* 0.764 0.425 3773

Single 0.045 0.208 3773

Divorced 0.045 0.207 3773

Widowed 0.146 0.353 3773

No Schooling 0.563 0.496 3877

Grades 1-7 0.207 0.405 3877

Grades 8 plus 0.049 0.216 3877

Household variables

Log Real Consumption per capita 3.973 0.776 3873

Log Household Size 1.676 0.507 3873

Richest 0.011 0.104 3869

Richer than Most 0.123 0.3288 3869

Average* 0.516 0.49 3869

Poorer than Most 0.456 0.384 3869

Poorest 0.053 0.225 3869

* denotes reference group.
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Table 3: Annual Rainfall (mm) by Peasant Authority and Year

Peasant Association 2004 2009 mean std. dev. CV

Haresaw 395 470 476 155 33.12

Geblen 226 261 278 95 34.24

Dinki 810 865 853 162 18.61

Yetmen 667 713 740 149 20.00

Shumsheha 535 627 645 150 23.34

Sirbana Godeti 1150 1218 1086 172 15.61

Adele Keke 1175 1169 1008 177 17.19

Korodegaga 1478 1589 1364 218 15.60

Turfe Kechemane 1170 1177 1024 197 18.86

Imbidir 1051 1062 936 158 16.68

Aze Deboa 1232 1253 1073 210 19.08

Addado 1258 1399 1188 305 25.29

Gara Godo 1546 1520 1318 271 20.16

Doma 1134 1270 1070 257 23.71

Debre Berhan Villages 838 893 855 154 17.53

The mean, std. dev. and CV are calculated for the period 1980-2009.
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Table 4: Climate Variability and SWB: Results from Alter-
native Models.

Dependent Variable: Life Satisfaction OPROBIT- RE RE FE

Climate Variability -0.047*** -0.077** -0.070**

(0.013) (0.031) (0.030)

Negative Rainfall Shock (past 5 years) -0.115 -0.140 -0.272

(0.081) (0.295) (0.307)

Average Temperature (Day of Survey) 0.030 0.091 0.313

(0.070) (0.165) (0.208)

Rainfall (mm) (Day of Survey) -0.001 -0.003 -0.014

(0.002) (0.006) (0.009)

Log Real Consumption per capita 0.220*** 0.300*** 0.373***

(0.031) (0.059) (0.109)

Month dummies Y Y Y

Year dummies Y Y Y

Village dummies Y Y -

Individual fixed effects N N Y

N 3517 3517 3517

Log-likelihood -5710.6275 - -

Adjusted R2 - 0.155 0.169

OPROBIT-RE, ordered probit with random effects; RE, generalised least squares

with random effects; FE, ordinary least squares with fixed effects. Life Satisfaction

takes a value of 1 = Very Dissatisfied, 7 = Very Satisfied. Control variables include

gender, age, age-squared, log of real household consumption per capita, log of live-

stock owned (tropical livestock units), number of household members, dummies for

marital status, unemployment, education, illness experienced in the previous 4 weeks,

social network changes, relative income, household standing relative to 3 years ago.

Estimates of the control variables are reported in the Appendix. Cluster-robust stan-

dard errors at the village level are in parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01
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Table 5: Climate Variability - Shutting Out Potentially
Confounding Channels.

Dependent Variable: Consumption Decrease in Able to

Networks Borrow Money

FE FE FE

Climate Variability -0.008 -0.003 0.006

(0.019) (0.004) (0.009)

Shock Negative Rainfall -0.426** -0.125** -0.045

(past 5 years) (0.172) (0.054) (0.070)

Fixed Effects Y Y Y

N 3,872 3,795 3,866

Adjusted R2 0.2076 0.045 0.058

Consumption = log real consumption per capita; Decrease in Networks =

There are less people to rely on than 5 years ago, No=0, Yes=1; Able to

Borrow Money = If the household needed 100 Birr for an emergency could

the household obtain it within a week? Yes = 1, No=2. Cluster-robust

standard errors at the village level are in parentheses. * p < 0.1, ** p < 0.05,

*** p < 0.01

Table 6: Seasonal Climate Variability and Life Satisfaction

(1) (2) (3) (4)

FE FE FE FE

Climate VariabilityBelg -0.0234*** -0.0461**

(0.00628) (0.0175)

Climate VariabilityKiremt -0.0171 0.0217

(0.00981) (0.0218)

Climate VariabilityBega -0.0186 -0.0322

(0.0268) (0.0253)

Fixed Effects Y Y Y Y

Observations 3,610 3,610 3,610 3,610

Adjusted R2 0.169 0.163 0.159 0.174

FE, ordinary least squares with fixed effects. Life Satisfaction takes a value of 1

= Very Dissatisfied, 7 = Very Satisfied. Control variables included as in table 4.

Cluster-robust standard errors at the village level are in parentheses. * p < 0.1,

** p < 0.05, *** p < 0.01
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Table 7: Impact of Climate Variability on Life Satisfaction in
Urban Ethiopia

(1) (2) (3)

Dependent Variable: Life Satisfaction OPROBIT RE RE FE

Climate Variability -0.00289 -0.00128 0.00233

(0.00577) (0.0103) (0.00968)

Negative Rainfall Shock (past 5 years) 0.0423 0.0392 0.192

(0.124) (0.242) (0.265)

Year Dummies Y Y Y

City Dummies Y Y -

Household Fixed Effects N N Y

Observations 2931 2931 2931

Adjusted R2 0.241 0.248

FE, ordinary least squares with fixed effects. Life Satisfaction takes a value of 1

= Very Dissatisfied, 4 = Very Satisfied. Control variables included as in table 4.

Cluster-robust standard errors at the city level are in parentheses.* p < 0.1, **

p < 0.05, *** p < 0.01

Table 8: Alternative measures of subjective well-being.

Life Life Ladder Ladder Happiness Happiness

Satisfaction Satisfaction

FE FE FE FE FE FE

Annual CV -0.070** -0.163*** -0.016

(0.029) (0.024) (0.010)

Belg CV -0.023*** -0.039*** -0.003

(0.020) (0.007) (0.001)

Negative Rainfall -0.282 0.069 0.067 0.547 0.005 0.036

Shock (past 5 years) (0.304) (0.320) (0.053) (0.310) (0.096) (0.102)

Average Temperature 0.321 0.289 0.313 0.158 0.128** 0.119*

(Day of Survey) (0.205) (0.201) (0.208) (0.231) (0.058) (0.063)

Rainfall (mm) -0.014 -0.014 -0.019* -0.021** -0.001 -0.001

(Day of Survey) (0.009) (0.009) (0.009) (0.008) (0.000) (0.001)

Fixed Effects Y Y Y Y Y Y

N 3517 3517 3517 3517 3517 3517

Adjusted R2 0.169 0.173 0.271 0.265 0.146 0.145

FE, ordinary least squares with fixed effects. Life Satisfaction takes a value of 1 = Very Dissatisfied, 7 =

Very Satisfied. Control variables included as in table 4. Cluster-robust standard errors at the village level

are in parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01
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Appendices - For Online Publication

The Following Appendices are displayed in three parts. Appendix A presents

a series of Maps and Charts references in the Main text. Appendix B presents

the full regression tables referred to in the main results table. Appendix C

presents a series of mechanical robustness tests that demonstrate the validity

of our results to alternative specifications and outliers.

Appendix A - Maps, and Graphs

Appendix A presents a series of graphs and maps that have been referenced to

in section 2 of the main text. It also provides the complete table of descriptive

statistics referred to in the data description.
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Figure 1: Differences in the average annual rainfall of the villages and Ethiopia
as a whole.
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Figure 3: The ERHS Villages (Dercon & Hoddinott, 2009)

2



Figure 4: Average Annual Rainfall (1979-2011)

Figure 5: The Coefficient of Variation (1979-2011)
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Table A1: Summary statistics - Ethiopian Rural Household Survey

Variable Mean Std. Dev. N Mean Std. Dev. N

Dependent Variables Muslim 0.24 0.427 3781

Reported Life Satisfaction 3.97 1.70 3877 Other 0.016 0.125 3781

Cantril Ladder 4.47 1.81 3866 No Schooling 0.563 0.496 3877

Reported Happiness 1.86 0.645 3869 Grades 1-7 0.207 0.405 3877

Climate Variables Grades 8 plus 0.049 0.216 3877

Climate Variability (Annual) 22.98 7.71 3877 Illness 0.249 0.432 3796

Climate Variability (Belg) 36.29 11.78 3877 Household variables

Climate Variability (Kiremt) 23.17 10.34 3877 Richest 0.011 0.104 3869

Rainfall Shock (Past 5 years) 0.712 0.45245 3877 Richer than Most 0.123 0.3288 3869

Log Annual Std. Dev. Rainfall (mm) 5.90 0.479 3877 Average* 0.516 0.49 3869

Rainfall (mm) (Day of Survey) 3.42 4.65 3877 Poorer than Most 0.456 0.384 3869

Average Daily Temperature (Day of Survey) 26.65 0.829 3877 Poorest 0.053 0.225 3869

Respondent variables Richer than three years ago 0.469 0.499 3849

Age 46.612 15.203 3774 Poorer than three years ago 0.236 0.425 3849

Female 0.41 0.49 3877 No change in income compared to three years ago* 0.293 0.455 3849

Unemployed 0.016 0.126 3877 Larger social network 0.271 0.444 3795

Married* 0.764 0.425 3773 Smaller social network 0.277 0.447 3795

Single 0.045 0.208 3773 Smaller social network 0.277 0.447 3795

Divorced 0.045 0.207 3773 No change in social network* 0.451 0.497 3795

Widowed 0.146 0.353 3773 Livestock 2.844 3.079 3854

Not Religious* 0.002 0.043 3781 Log Real Consumption per capita 3.973 0.776 3873

Christian 0.742 0.437 3781 Log Household Size 1.676 0.507 3873

* denotes reference group.
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Appendix B - Main Results

Appendix B provides the complete regression tables for the main analysis re-

ferred to in section 3. Table 1 provides the main results. Table 2 provides the

marginal effects for the ordered probit specification.

Table A1: Life Satisfaction Regressions: Main Results

(1) (2) (3)

Dependent Variable: Life Satisfaction OPROBIT-RE RE FE

Core variable

CV -0.047*** -0.077** -0.070**

(0.013) (0.031) (0.030)

Negative Rainfall Shock (past 5 years) -0.115 -0.140 -0.272

(0.081) (0.295) (0.307)

Average Temperature (Day of Survey) 0.030 0.091 0.313

(0.070) (0.165) (0.208)

Rainfall (mm) (Day of Survey) -0.001 -0.003 -0.014

(0.002) (0.006) (0.009)

Individual Characteristics

Age -0.026*** -0.033*** -0.046**

(0.007) (0.012) (0.020)

Age squared 0.000*** 0.000*** 0.000***

(0.000) (0.000) (0.000)

Female 0.004 0.013 -

(0.040) (0.063) -

Unemployed -0.310** -0.414** -0.804*

(0.154) (0.185) (0.407)

Single -0.237** -0.338*** -0.553*

(0.098) (0.122) (0.277)

Divorced 0.050 0.109 -0.060

Continued on next page
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Table A1 – continued from previous page

(1) (2) (3)

OPROBIT-RE RE FE

(0.095) (0.120) (0.350)

Widowed - 0.009 0.014 0.066

(0.059) (0.104) (0.199)

Christian 1.221** 1.339*** -

(0.496) (0.233) -

Muslim 1.106** 1.179*** -

(0.500) (0.260) -

Other 1.502*** 1.784*** -

(0.514) (0.356) -

Grades 1-7 -0.071 -0.111** -0.042

(0.049) (0.051) (0.157)

Grades 8 plus -0.310*** -0.498*** -0.537

(0.090) (0.151) (0.303)

Illness -0.048 -0.056 -0.032

(0.043) (0.090) (0.099)

Household Characteristics

Richest 0.295* 0.233 0.111

(0.173) (0.399) (0.705)

Richer than most 0.377*** 0.540*** 0.315**

(0.059) (0.098) (0.147)

Poorer than Most -0.567*** -0.871*** -0.792***

(0.046) (0.086) (0.147)

Poorest -1.062*** -1.452*** -1.430***

(0.095) (0.101) (0.208)

Richer than 3 years ago 0.097** 0.139 -0.003

(0.043) (0.103) (0.156)

Poorer than 3 years ago -0.213*** -0.336*** -0.410**

Continued on next page
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Table A1 – continued from previous page

(1) (2) (3)

OPROBIT-RE RE FE

(0.052) (0.094) (0.142)

Increased Social Network 0.052 0.058 0.018

(0.044) (0.097) 0.156

Decreased Social Network -0.082* -0.117 -0.364***

(0.045) (0.074) (0.142)

Livestock 0.015*** 0.017 0.020

(0.005) (0.059) (0.017)

Log Real Consumption per capita 0.220*** 0.300*** 0.373***

(0.031) (0.059) (0.109)

Log Household Size 0.090* 0.114 0.114

(0.048) (0.112) (0.215)

Year Dummies YES YES YES

Month Dummies YES YES YES

Village Dummies YES YES -

Individual Fixed-Effects NO NO YES

Observations 3,517 3,517 3,517

Log-likelihood -5710.6275 - -

R2 - 0.155 0.169

a OPROBIT-RE, ordered probit with random effects; RE, generalised least squares

with random effects; FE, ordinary least squares with fixed effects. Life Satisfaction

takes a value of 1 = Very Dissatisfied, 7 = Very Satisfied.
b Cluster-robust standard errors at the village level are in parentheses.
c * p < 0.1, ** p < 0.05, *** p < 0.01
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Table A2: Marginal Effects: Computed from Table A2, Column 1

(1) (2) (3) (4) (5) (6) (7)

VD D SD Neither S SS VS

Core variable

CV 0.060*** 0.091*** 0.025*** 0.003*** -0.034*** -0.102*** -0.043***

Individual Characteristics

Age 0.002*** 0.004*** 0.001*** 0.000** -0.001*** -0.004*** -0.001***

Age squared 0.000*** 0.000*** -0.0000*** -0.000*** -0.000*** 0.000*** 0.000***

Female* -0.002 -0.003 -0.000 -0.000 0.001 0.003 0.001

Unemployed* 0.032** 0.050** 0.013** 0.001* -0.019** -0.055** -0.023**

Single* 0.024** 0.038** 0.010** 0.001** -0.014** -0.042** -0.004

Divorced* -0.004 -0.007 -0.001 - 0.000 0.002 0.007 0.003

Widowed* 0.000 0.001 0.000 0.000 -0.000 -0.001 -0.000

Christian* -0.132** -0.204** -0.056** -0.007** 0.079** 0.225** 0.095**

Muslim* -0.129** -0.185** -0.050** -0.006** 0.072** 0.205** 0.086**

Other* -0.164*** -0.253*** -0.069*** -0.008** 0.099*** 0.280*** 0.117***

Grades 1-7* 0.006 0.010 0.002 0.000 -0.004 -0.011 -0.004

Grades 8 plus* 0.032*** 0.050*** 0.013*** 0.001*** -0.019*** -0.055*** -0.023***

Illness* 0.004 0.006 0.001 0.000 -0.002 -0.007 -0.002

Household Characteristics

Continued on next page
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Table A2 – continued from previous page

(1) (2) (3) (4) (5) (6) (7)

VD D SD Neither S SS VS

Richest* -0.031* -0.048* -0.013* -0.001 0.018* 0.053* 0.022*

Richer than Most* -0.041*** -0.063*** -0.002*** -0.0021*** 0.024*** 0.069*** 0.029***

Poorer than Most* 0.061*** 0.094*** 0.025*** 0.003*** -0.036*** -0.103*** -0.043***

Poorest* 0.116*** 0.179*** 0.049*** 0.006*** -0.069** -0.197*** -0.083***

Richer than 3 years ago* -0.010** -0.016** -0.004** -0.000** 0.006** 0.017** 0.007**

Poorer than 3 years ago* 0.023*** 0.021*** 0.009*** 0.001*** -0.014*** -0.039*** -0.016***

Increased Social Network* -0.004 -0.006 -0.001 -0.000 0.002 0.007 0.003

Decreased Social Network* 0.009** 0.014** 0.004** 0.000* -0.005** -0.016** -0.006**

Livestock -0.001 -0.002*** -0.000*** -0.000*** 0.001*** 0.003*** 0.001***

Log Real Consumption

per capita -0.020*** -0.031*** -0.008*** -0.001*** 0.012*** 0.034*** 0.014***

Log Household Size -0.008 -0.012 -0.003 -0.000 0.004 0.013 0.005

*** p<0.01, ** p<0.05, * p<0.1
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Appendix C - Robustness tests

Appendix C presents additional robustness tests referred to in section 4.

Table A1: Changes to the Temporal Measurement of Climate
Variability

(1) (2) (3)

Annual Belg Kiremt

Climate Variability (10 years) -0.0642 -0.0293*** -0.0205

(0.0521) (0.0062) (0.0222)

Climate Variability (9 years) -0.0550 -0.0208*** -0.0352

(0.0419) (0.0068) (0.0228)

Climate Variability (8 years) -0.615** -0.0222*** -0.0398**

(0.0274) (0.0059) (0.0134)

Climate Variability (7 years) -0.0580 -0.0230*** -0.0278**

(0.0247) (0.0047) (0.0176)

Climate Variability (6 years) -0.0580 -0.0230*** -0.0278**

(0.0366) (0.0065) (0.0127)

Climate Variability (5 years) -0.0700** -0.0234*** -0.0171

(0.0297) (0.0063) (0.0098)

Climate Variability (4 years) -0.0481** -0.0149* -0.0182*

(0.0217) (0.0080) (0.0098)

Climate Variability (3 years) -0.0166 0.0195* -0.0087*

(0.0144) (0.0095) (0.0047)

Climate Variability (2 years) -0.0087 0.0144 -0.0058*

(0.0108) (0.0125) (0.0031)

Month Dummies Yes Yes Yes

Year Dummies Yes Yes Yes

Individual Fixed Effects Yes Yes Yes

Observations 3,610 3,610 3,610

Adjusted R2 [0.153 - 0.166] [0.162 - 0.173] [0.153 - 0.166]

a FE, ordinary least squares with fixed effects. Life Satisfaction takes a value of 1 =

Very Dissatisfied, 7 = Very Satisfied. Control variables included as in table 4.
b Cluster-robust standard errors at the village level are in parentheses.
c For each different measure we control for whether a rainfall shock was experienced

over the same period. After 5 years, all villages had experienced a shock and so we

controlled for whether a shock was experienced in the previous 5 years.
d The range of the Adjusted R2 is reported.
e * p < 0.1, ** p < 0.05, *** p < 0.01

Table A1 demonstrates the robustness of our results to alternative time

periods over which we measure the coefficient of variation. Most importantly,

we observe that our measure of Climate Variability over the Belg season is
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significant over most alternative time periods. Given the small number of

villages and rounds of data, one of the major limitations of this study is the

amount of spatial and temporal variation we are able to identify an effect

from. As we extend the number of time periods over which we measure the

coefficient of variation, this is likely to reduce the variation through time as

well, reducing the signal that we are able to capture. Similarly, as we reduce

the number of years over which we measure the coefficient of variation, we

are less likely to distinguish between climate and weather. In addition to the

controls displayed in the table, we control for whether the village experienced

a weather shock in the previous x years, in which x is equal to the time scale

over which we measure the coefficient of variation, ranging from 2 years up to

10 years. Unfortunately, each village in our sample had experienced at least

one shock after 5 years and so we held the variable fixed at 5 years for time

scales above 5 years.

Table A2: Climate Variability and Life Satisfaction - Removal of Outliers.

Dependent Variable: Life Satisfaction Geblen Removed Korodegaga Removed Both Removed

Belg Climate -0.017** -0.023*** -0.015*

Variability (0.007) (0.006) (0.007)

Negative Rainfall Shock 0.075 0.232 0.238

(past 5 years) (0.325) (0.312) (0.312)

Average Temperature 0.280 0.390* 0.407**

(Day of Survey) (0.193) (0.187) (0.164)

Rainfall (mm) -0.006 -0.007 -0.006

(Day of Survey) (0.004) (0.004) (0.004)

Month dummies Y Y Y

Year dummies Y Y Y

Individual fixed effects Y Y Y

N 3,351 3,288 3,122

Adjusted R2 0.169 0.179 0.170

a FE, ordinary least squares with fixed effects. Life Satisfaction takes a value of 1 = Very Dissatisfied,

7 = Very Satisfied. Control variables included as in table 3.
b Cluster-robust standard errors at the village level are in parentheses.
c * p < 0.1, ** p < 0.05, *** p < 0.01

Table A2 demonstrates the robustness of our results to the removal of
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outliers in the explanatory variable. We begin by dropping the village with

the highest climate variability, Geblen. In the next test, we drop the village

with the lowest climate variability, Korodegaga. In the final test, we drop both

villages. The fact that these results remain significant once we have removed

so much of the variation emphasises the importance and magnitude of the

effect.

Table A3 shows how our results are robust to an alternative specification of

our explanatory variable, which we define as the standard deviation of rainfall

over each period: 2000–2004, and 2005–2009.

Table A3: Climate Variability and Life Satisfaction
- Alternative Explanatory Variable.

Dependent Variable: Life Satisfaction FE FE

Annual Climate Variability (log of std. dev) -1.222**

(0.517)

Belg Climate Variability (log of std. dev) -0.934***

(0.031)

Negative Rainfall Shock (past 5 years) -0.326 0.131

(0.282) (0.295)

Average Temperature (Day of Survey) 0.496** 0.309

(0.214) (0.196)

Rainfall (mm) (Day of Survey) -0.006 -0.006

(0.004) (0.004)

Month dummies Y Y

Year dummies Y Y

Individual fixed effects Y Y

N 3,610 3,610

Adjusted R2 0.175 0.178

a FE, ordinary least squares with fixed effects. Life Satisfaction takes

a value of 1 = Very Dissatisfied, 7 = Very Satisfied. Control variables

include gender, age, age-squared, log of real household consumption per

capita, log of livestock owned (tropical livestock units), number of house-

hold members, dummies for marital status, unemployment, education,

illness experienced in the previous 4 weeks, social network changes, rel-

ative income, household standing relative to 3 years ago.
b Cluster-robust standard errors at the village level are in parentheses.
c * p < 0.1, ** p < 0.05, *** p < 0.01

We observe surprisingly similar effects in terms of magnitude to our orig-

12



inal measure of climate variability. As with our standard measure of climate

variability, the coefficient of variation, a one standard deviation increase in the

standard deviation of rainfall (0.479) results in a decrease in life satisfaction

equivalent to a two percent decline in real consumption per capita.

Table A4: Climate Variability and SWB: Results from Alternative Models
with Village Fixed Effects.

Dependent Variable: Life Satisfaction OPROBIT- RE RE FE

Climate Variability -0.050*** -0.059*** -0.079**

(0.006) (0.011) (0.030)

Negative Rainfall Shock (past 5 years) -0.040 0.209 -0.139

(0.062) (0.207) (0.291)

Average Temperature (Day of Survey) -0.069* -0.171* 0.088

(0.037) (0.089) (0.158)

Rainfall (mm) (Day of Survey) -0.003 -0.003 -0.004

(0.004) (0.006) (0.006)

Month dummies Y Y Y

Year dummies Y Y Y

Village Fixed Effects N N Y

N 3,461 3,461 3,461

Log-likelihood -5,649.0032 - -

Adjusted R2 - 0.213 0.219

a OPROBIT-RE, ordered probit with random effects; RE, generalised least squares with random effects;

FE, ordinary least squares with fixed effects. Life Satisfaction takes a value of 1 = Very Dissatisfied, 7

= Very Satisfied. Control variables include gender, age, age-squared, log of real household consumption

per capita, log of livestock owned (tropical livestock units), number of household members, dummies

for marital status, unemployment, education, illness experienced in the previous 4 weeks, social network

changes, relative income, household standing relative to 3 years ago.
b Cluster-robust standard errors at the village level are in parentheses.
c * p < 0.1, ** p < 0.05, *** p < 0.01

Table A4 demonstrates the robustness of our results to village fixed effects.

As we observe there is very little change in the magnitude of the coefficients

when we control for these factors.
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Table A5: Climate Variability and SWB: Results from Alterna-
tive Models with Contemporaneous Weather Shock Controls.

Dependent Variable: OPROBIT- RE RE FE

Life Satisfaction

Climate -0.049*** -0.079*** -0.073**

Variability (0.012) (0.030) (0.003)

Negative Rainfall Shock -0.135* -0.160 -0.276

(Last Agricultural Year) (0.062) (0.298) (0.302)

Average Temperature 0.025 0.083 0.315

(Day of Survey) (0.071) (0.006) (0.224)

Rainfall (mm) -0.003 -0.003 -0.016

(Day of Survey) (0.004) (0.006) (0.009)

Month dummies Y Y Y

Year dummies Y Y Y

Village Dummies Y Y -

Individual Fixed Effects N N Y

N 3,461 3,461 3,461

Log-likelihood -5,623.6164 - -

Adjusted R2 - 0.153 0.169

a OPROBIT-RE, ordered probit with random effects; RE, generalised least squares with

random effects; FE, ordinary least squares with fixed effects. Life Satisfaction takes a

value of 1 = Very Dissatisfied, 7 = Very Satisfied. Control variables include gender,

age, age-squared, log of real household consumption per capita, log of livestock owned

(tropical livestock units), number of household members, dummies for marital status,

unemployment, education, illness experienced in the previous 4 weeks, social network

changes, relative income, household standing relative to 3 years ago.
b Cluster-robust standard errors at the village level are in parentheses.
c * p < 0.1, ** p < 0.05, *** p < 0.01

Table A5 shows that controlling for the negative rainfall shocks in the most

recent agricultural has no qualitative effect, and only a minor quantitative

impact on our results.
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