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Abstract

We highlight the fact that the Sargan-Hansen test for GMM estimators
applied to panel data is a joint test of valid orthogonality conditions and
coe¢ cient stability over time. A possible reason why the null hypothesis
of valid orthogonality conditions is rejected is therefore that the slope
coe¢ cients vary over time. One solution is to estimate an empirical model
where the coe¢ cients are time speci�c. We apply this solution to the
system GMM estimatior of the Cobb-Douglas production functions for
a selection of Swedish industries, and �nd that relaxing the assumption
that slope coe¢ cients are constant over time results in considerably more
satisfactory outcomes of the Sargan-Hansen test.

1 Introduction

The system GMM estimator, proposed by Arellano and Bover (1995) and Blun-

dell and Bond (1998), has become a popular method for estimating panel data

models.1 In this paper we study this estimator in a setting where slope coe¢ -

cients are time varying. The conventional system GMM estimator is based on

the assumption that the slope coe¢ cients are constant over time, a restriction

that typically results in a large number of overidentifying restrictions. The null

�We thank Steve Bond for very helpful comments on an earlier draft of the paper. Funding
from the Wallander foundation is gratefully acknowledged. All errors are our own.

yDepartment of Economics, University of Gothenburg, Sweden; and The European In-
stitute of Japanese Studies, Stockholm School of Economics, Sweden. E-mail: Yoshi-
hiro.Sato@economics.gu.se.

zDepartment of Economics, University of Gothenburg, Sweden. Address: Department of
Economics, University of Gothenburg. P.O. Box 640, SE 405 30 Gothenburg, Sweden. Tel.:
+46 (0)31 786 4332. Fax: +46 (0)31 7861326. E-mail: mans.soderbom@economics.gu.se.

1There is a large number of recent applications of system GMM estimators. According to
ideas.repec.org, Arellano and Bover (1995) has been cited in more than 1403 papers. Blundell
and Bond (1998) has been cited in 2125 papers.
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hypothesis underlying the Sargan-Hansen test is that all overidentifying restric-

tions, including those resulting from assuming time constant coe¢ cients, are

valid. Hence, if the slope coe¢ cients are in fact time varying, so that (some of)

the overidentifying restrictions do not hold, the Sargan-Hansen test will tend to

indicate that the model is mis-speci�ed.

We show how the system GMM model can be estimated while allowing the

coe¢ cients to be time varying. With this more general formulation of the model,

the resulting Sargan-Hansen test has a more clear-cut interpretation, shedding

light on whether the lagged values of the regressors are valid instruments or not.

Stability of the coe¢ cients over time is easily tested using a Wald test. When

estimating Cobb-Douglas production functions using Swedish �rm-level panel

data on manufacturing industries with time constant coe¢ cients imposed, we

obtain plenty of evidence from the Sargan-Hansen test that the overidentifying

restrictions do not hold. For a more general model with time varying slope

coe¢ cients, in contrast, all speci�cation tests are satisfactory.

The rest of this study is as follows. Section 2 discusses the interpretation

of the Sargan-Hansen test in the context of system GMM estimation with time

constant slope coe¢ cients imposed. Section 3 considers a more general model

with time varying coe¢ cients, and applies it to our empirical data. Section 4

concludes the study.

2 The basic problem

Consider the following linear panel data model with time varying slope coe¢ -

cients:

yi;t = x
0
i;t�t + �i;t for i = 1; 2; : : : ; N and t = 1; 2; : : : ; T; (1)

where yi;t is a dependent variable, xi;t is a column vector of K regressors, and

�i;t is the residual for �rm i at period t. �t is a column vector of K coe¢ cients.

Note that the su¢ x on � indicates that the coe¢ cients are time varying and we

therefore refer to the model as a time varying coe¢ cient (TVC) model.

The conventional setup of a panel data model for GMM estimation is such

that there is a separate set of instruments for each period. Such a framework

enables the researcher to exploit more instruments over time. For simplicity, we

focus on the case where there is one instrument for each regressor, resulting in
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orthogonality conditions of the following form:

E
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1CCCCA ; (2)

which we write in more compact form as

E (Z�0i �i) = 0; (3)

where Z�i is a TK � T matrix of the instruments and �i is a column vector of
the residuals. This TVC model is just identi�ed, i.e., we have TK unknown co-

e¢ cients and TK orthogonality condition. Since no overidentifying restrictions

are imposed, the Sargan-Hansen value associated with the GMM estimator for

this model is exactly zero.

We now consider a restricted model speci�cation, in which the coe¢ cients

are constant over time:

yi;t = x
0
i;t� + �i;t for i = 1; 2; : : : ; N and t = 1; 2; : : : ; T: (4)

We refer to it as a constant coe¢ cient (CC) model. GMM estimation based on

the same set of instruments as in the TVC results in exactly the same orthog-

onality condition as eq.(3). In contrast to the CC model, however, this system

of equations is clearly overidenti�ed: there are K unknown coe¢ cients and TK

orthogonality conditions.

The CC model is very common in the literature that utilizes the system

GMM model. Under the null hypothesis that all overidentifying restrictions

are valid, the Sargan-Hansen test statistic has an asymptotic �2 distribution

with (T � 1)K degrees of freedom. Comparing the unrestricted (eq.(1)) and

the restricted (eq.(4)) speci�cations, the Sargan-Hansen test thus has a clearcut

interpretation as a test of coe¢ cient stability over time, i.e., H0 : �1 = �2 =

� � � = �T . Few if any papers in the applied literature advance this interpretation
of the Sargan-Hansen test, however.
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3 An empirical illustration

In this section, we estimate simple non-dynamic Cobb-Douglas production func-

tions with and without time constant slope coe¢ cients imposed. We use (un-

balanced) panel data on Swedish manufacturing �rms covering six industries

(Chemicals, Motor vehicles, Pulp and paper, Wood products, Publishing and

printing, and Machinery) for the period 1997�2006.2 De�ning xi;t � [li;t ki;t]
0

and � = [�l �k]
0, we specify the production function with time constant slope

coe¢ cients (i.e. the CC model) as

yi;t = x
0
i;t� + �tDt + (�i + �i;t) for t = 3; 4; : : : ; T; (5)

where yi;t denotes log value-added, li;t is log employment, ki;t is log physical

capital, Dt is year dummies, �t is year e¤ects, �i is time constant unobserved

�rm e¤ects, and �i;t is a time varying residual. The di¤erenced production

function is expressed as

�yi;t = �x
0
i;t � � + �tDt � �t�1Dt�1 +��i;t for t = 3; 4; : : : ; T: (6)

GMM estimation of the system formed by eqs.(5) and (6) exploits the following

orthogonality conditions: E [�xi;t�1 (�i + �i;t)] = 0, E
hPT

t=3Dt (�i + �i;t)
i
=

0, E [xi;t�2��i;t] = 0, E
hPT

t=3Dt��i;t

i
= 0, and E

hPT
t=3Dt�1��i;t

i
= 0. Re-

sults for the two-step system GMM estimation are presented in the upper part of

Table 1. The standard errors, presented in the parentheses, are robust and cor-

rected according to Windmeijer (2005). Because of the two-step procedure, the

Hansen test is an appropriate test for overidentifying restrictions. Results for

the Hansen test, the di¤erence-in-Hansen test and the Arellano-Bond autocor-

relation test are also reported. All speci�cations include year e¤ect dummies,

but we refrain from reporting the estimated year e¤ects in order to conserve

space.

[Table 1: Estimation results for the time constant coe¢ cient model]

The Hansen test is easily passed for Chemicals, Motor vehicles and Pulp

and paper, while the overidentifying restrictions are rejected for Wood prod-

2The data is from the Structural Business Statistics from Statistics Sweden. The original
database contains detailed information on the income statements, balance sheets, and physical
investment of all �rms active in Sweden, including private and public �rms but not �nancial
�rms. Most of the data are obtained from registers at the Swedish national tax agency.
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ucts, Publishing and printing, and Machinery. Clearly, one reason for the non-

rejection in the �rst three industries may be the relatively small sample size for

these industries. For the industries where there is evidence that the model is

mis-speci�ed, increasing the lag length for the instruments does not really help:

results, shown in the lower part of Table 1, strongly indicate the overidentifying

restrictions should be rejected in all of the three problematic industries when

levels variables dated t � 3 and di¤erenced variables dated t � 2 are used as
instruments.

The speci�cation of the production function with time varying slope coe¢ -

cients (hereafter, the TVC model) is as follows. The levels equation is speci�ed

as

yi;t = x
0
i;t�t + �tDt + (�i + �i;t) for t = 4; 5; : : : ; T (7)

The di¤erenced equation is then expressed as

�yi;t = x
0
i;t�t � x0i;t�1�t�1 + �tDt � �t�1Dt�1 +��i;t for t = 4; 5; : : : ; T (8)

and the following orthogonality conditions are exploited: E [�xi;t�1 (�i + �i;t)] =

0, E
hPT

t=4Dt (�i + �i;t)
i
= 0, E (xi;t�2��i;t) = 0, E (xi;t�3��i;t) = 0, E

hPT
t=4Dt��i;t

i
=

0, and E
hPT

t=4Dt�1��i;t

i
= 0. Table 2 reports results. Stata code for estima-

tion of the TVC model, and an example, can be found in Appendix 2. Again,

all speci�cations include year e¤ect dummies, but we refrain from reporting the

estimated year e¤ects in order to conserve space.

[Table 2: Estimation results for the time varying coe¢ cient model]

For the three industries that were satisfactory in terms of the Hansen test

in the CC model, the Hansen test in this TVC model is clearly passed. The

Arellano-Bond AR(2) test and the di¤erence-in-Hansen test are also satisfactory.

For the Chemicals and the Motor vehicles, coe¢ cient stability is accepted by the

Wald test for both labor or capital at the 5 percent signi�cance level, which is

expected. Hence, for these industries, assuming time constant slope coe¢ cients

does not seem restrictive. In contrast, for the Pulp and paper, the joint Wald test

rejects the null of coe¢ cient stability. This result suggests that the Wald test

may be more powerful than the Sargan-Hansen test for detecting time varying
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slope coe¢ cients. This conjecture is supported by simulation results reported

in Appendix 1.3

For the other three industries, where the Hansen test results led us to reject

the null in the CC model, the TVC model provides satisfactory results in terms

of the Sargan-Hansen test, the di¤erence-in-Hansen test and the Arellano-Bond

AR(2) test, except for the last industry where the dif-in-Hansen test rejects the

null. The Wald tests all indicate that coe¢ cient stability should be rejected,

as expected. Hence, restricting the slope coe¢ cients to be constant over time

appears to be a crucial modeling issue in the present application.

Before attributing the rejection of the Hansen test of the overidentifying

restrictions in the CC model to parameter instability over time, we check another

possibility that can result in a rejection of the null. Suppose the residual �i;t
follows an AR(1) process,

�i;t = ��i;t�1 + ut; 0 < � < 1;

which implies that the residual in period t is correlated with all past residuals.

If, as is commonly suspected, the regressors are contemporaneously correlated

with the residual, lagged regressors will generally not be valid instruments in this

case. The Sargan-Hansen test should therefore reject the null hypothesis that

the orthogonality conditions hold for the population. Monte Carlo simulations

in Appendix 1 con�rm that autocorrelation in the residual may result in a

high frequency of rejections by the Sargan-Hansen test as well as by the the

Arellano-Bond AR(2) test in the CC model. The simulation also con�rms that,

in this case, applying the TVC model does not solve the problem: the Sargan-

Hansen test and the AR(2) test are still likely to reject the null. In contrast, the

the simulation shows that, when a rejection of the overidentifying restrictions

in a CC model is only attributed to parameter instability, estimation using

the TVC model does yield estimates that pass both the Sargan-Hansen and

the AR(2) tests. Hence, it appears that the conventional methods for testing

will be helpful in enabling researchers to distinguish between autocorrelation

in the error term and time varying coe¢ cients as possible reasons why the

overidentifying restrictions may be rejected.

When we go back to our empirical results for the TVC model, the AR(2)

3The Monte Carlo simulations in Appendix 1 show that the Wald test in CC models reject
the null of parameter stability more often than the Sargan-Hansen test in TVC models does.
This may explain why the null is accepted in the Sargan-Hansen test but not in the Wald test
for the Pulp and paper industry.
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tests for Wood products, Publishing and printing, and Machinery are all passed.

For these industries, we thus attribute the rejection of the overidentifying re-

strictions in the CC model to parameter instability over time. We therefore

prefer the estimates from the TVC model.

Presenting a full set of results for TVC models may be impractical for spatial

reasons. In many cases, researchers are only interested in estimating the average

e¤ects of the regressors. We therefore present in Table 2 the unweighted aver-

age values of the estimated time varying coe¢ cients.4 For comparison, Table

3 reports results for reestimating the CC model using the same set of samples.

Observe that the averages of the time varying coe¢ cients sometimes di¤er quite

substantially from the estimated time constant coe¢ cients. Simulation results

shown in Appendix 1 further indicate that incorrectly imposing time constant

coe¢ cients may result in biased estimates of period averages. In contrast, the

time-averaged coe¢ cient estimates in the TVC model are not signi�cantly dif-

ferent from the average of the true coe¢ cients.

[Table 3: Estimation results for the time varying coe¢ cient model]

4 Conclusions

We have studied the system GMM estimator proposed by Arellano and Bover

(1995) and Bond and Blundell (1998), focusing on the implications of time vary-

ing slope coe¢ cients for the Sargan-Hansen speci�cation test. We have pointed

out that, given how the system GMM model is speci�ed, time varying coe¢ -

cients would violate the overidentifying restrictions underlying the estimator.

Generalizing the system GMM model to allow for time varying coe¢ cients

is reasonably straightforward. Using Swedish �rm-level data, we report system

GMM results which indicate that allowing for time varying slope coe¢ cients can

result in more satisfactory Sargan-Hansen test results. In particular, when we

assume the coe¢ cients to be constant over time, the Sargan-Hansen tests reject

the null of valid orthogonality conditions for three industries. When we instead

estimate an empirical model with time varying coe¢ cients, the Sargan-Hansen

test no longer rejects the null for these industries.

A common response by researchers to a Sargan-Hansen test result indicating

that the overidentifying restrictions should be rejected is to modify the lag

length for the instrument set. However, if coe¢ cient instability is the source
4The standard errors are obtained by the delta method using the covariance matrix.
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of the speci�cation problem such a response will neither be appropriate nor

e¤ective. Our analysis shows that assuming time constant coe¢ cients may be

overly restrictive, that it is straightforward to relax this assumption, and that

doing so can be an e¤ective way of resolving the problem. Our results also show

that standard testing methods can be e¤ective in distinguishing between this

type of speci�cation problem and serial correlation in the error term.
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Appendix 1: Monte Carlo simulations
We implement Monte Carlo simulations, under di¤erent assumptions of the

underlying data generation process in terms of variation in the slope coe¢ cient

and serial correlation in the residual. Firstly, we are interested in to which extent

deviations from a benchmark case (where the underlying data generation process

has a constant coe¢ cient and no autocorrelation in the residual) a¤ect the

probability of a rejection by the Hansen test, the AR(2) test and the Wald test.

Secondly, we investigate whether incorrectly imposing time constant coe¢ cients

biases estimated coe¢ cients.

Data generation process
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We consider a simple univariate data generation process for yi;t:

yi;t = �txi;t + �i;t (9)

for i = 1; 2; : : : ; N and t = 1; 2; : : : ; T . The residual �i;t may be serially corre-

lated:

�i;t = ��i;t�1 + vi;t;

where vi;t = N
�
0; �2v

�
and 0 � � � 1. The variable xi;t is generated by an

AR(1) process:

xi;t = �+ �xi;t�1 + ��i;t + ui;t (10)

for i = 1; 2; : : : ; N and t = 1; 2; : : : ; T , where � is an autocorrelation coe¢ cient

and ui;t = N
�
0; �2u

�
. The term ��i;t is added to create endogeneity between

xi;t and �i;t, with the covariance given by Cov (xi;t; �i;t) = �. The standard

deviation of xi;t within i over time is expressed by �x = �u=
p
1� �2.

We de�ne xi;0 = 1 and set the expected value of xi;t as E [xi;t] = 1. Because

E [xi;t] is expressed by E [xi;t] = �= (1� �), � is set to � = (1� �)E [xi;t] =
1� �.
The coe¢ cient �t is drawn as mutually independent random variable, �t �

N
�
1; �2�

�
. It changes over time when �� is non-zero, while it is constant when

�� = 0.

We provide the following values to the parameters: N = 1000, T = 10,

� = 0:9, �� = 0:2, �u = 0:2, and � = 0:2. We assign di¤erent values to �� and

�.

Because �t is drawn randomly, the average and the standard deviation of

the realized values may not be equal to the theoretical values of 1 and �� ,

respectively. For each sample, we adjust the realized values of �t as

~�t =
��

�
�t � �̂

�
�̂�

(11)

where �̂ and �̂� are the average and the standard deviation of the realized values

of �t, respectively. We then replace �t with ~�t. This adjustment guarantees

that the average and the standard deviation of �t for each sample are equal to

1 and �� , respectively.

Results
We implement 1,000 Monte Carlo replications with �ve sets of parameters:
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(�� ; �) = (0; 0) ; (0:025; 0) ; (0:050; 0) ; (0; 0:25) ; (0; 0:5), and estimate the

CC model and the TVC model using the two-step system GMM. Table 4 re-

ports the probability of a rejection by di¤erent speci�cation tests at the 5%

signi�cance level. In the benchmark case (the column [1]) where �� = 0 and

� = 0, all probabilities are around 5%, which is in line with our expectations.

As we increase the value of �� (the columns [2] and [3]), the probability of a

rejection by the Hansen test and the dif-in-Hansen test increases. Because the

residual and lagged regressors are uncorrelated in our data generation process,

the rejection is solely attributed to parameter instability. It is also re�ected in

a higher frequency of rejections by the Wald test of stability of the estimated

time varying coe¢ cients in the TVC model. Note that the Wald test is slightly

more likely to reject the null than the Hansen test in the CC model.

[Table 4: Results for Monte Carlo simulations]

The probabilities of a rejection by the Hansen test and the dif-in-Hansen test

in the TVC model remain around 5%, which con�rms our argument that these

tests purely verify the validity of overidentifying restrictions and instruments.

Are the coe¢ cient estimates biased when we incorrectly impose a restric-

tion of a time constant coe¢ cient? Table 4 also reports the probability of the

estimated � being signi�cantly di¤erent from the average of the true �.5 It

is shown that the probability increases as �� rises, suggesting that incorrectly

imposing time constant coe¢ cients may result in biased estimates. In contrast,

the average of the estimated time varying coe¢ cients in the TVC model does

not signi�cantly di¤er from the true coe¢ cient average.

Autocorrelation in the residual may also results in a rejection of overidenti-

fying restrictions by the Sargan-Hansen test. Columns [4] and [5] report results

for the data generation processes with residual autocorrelation. It is shown that

the probability of a rejection by the Hansen test increases when the autocorre-

lation coe¢ cient becomes large. In contrast to the parameter instability cases,

allowing for time varying slope coe¢ cients does not solve the problem: the

Hansen test and the AR(2) test are still likely to reject the null. This di¤erence

can be exploited in distinguishing a rejection in the Hansen test attributed to

parameter instability and to residual autocorrelation.

5The average is taken from �3, �4, . . . , �10 because the CC model covers equations for
T � 3.
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Appendix 2: STATA instruction for es-
timation of the TVC model
This instruction describes how to estimate a dynamic panel model with

time-varying coe¢ cients using the command XTABOND2 in STATA.

We consider the following panel data model with time-varying coe¢ cients

�t:

yi;t = �txi;t + �tDt + (�i + �i;t) for t = 4; 5; : : : ; 10; (12)

where yi;t is a dependent variable, xi;t is a regressor, �t is year speci�c e¤ects,

Dt is year dummies, �i is unobserved �rm-speci�c e¤ects, and �i;t is a residual

term that can potentially be correlated with xi;t. We assume for convenience

that the numbers of time periods is 10. Because we will use the second and the

third lags of xi;t as instruments for the di¤erence equations, the model is de�ned

for t � 4. The level equation can in fact be de�ned even for t = 3 because the
instrument used for levels equations is the lagged �rst di¤erence. This, however,

complicates the application of XTABOND2. We therefore de�ne both the level

and the di¤erence equations for t � 4.
Eq.(12) constitutes the level equations. The instruments used for the es-

timation are �xi;t�1 for xi;t, and 1 for Dt. The expression for each period

is:

yi;4 = �4xi;4 + �4D4 + (�i + �i;4) inst. �xi;3; 1 (13)

yi;5 = �5xi;5 + �5D5 + (�i + �i;5) inst. �xi;4; 1 (14)
...

yi;10 = �10xi;4 + �10D10 + (�i + �i;10) inst. �xi;9; 1 (15)

The di¤erence equations are expressed as

�yi;t = ��t�1xi;t�1+�txi;t��t�1Dt�1+�tDt+��i;t for t = 4; 5; : : : ; 10 (16)

The instrumentals used for the di¤erence equations are xi;t�2 and xi;t�3 for
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xi;t�1 and xi;t�2, 1 for Dt�1 and Dt. The expression for each period is:

�yi;4 = ��3xi;3 + �4xi;4 � �3D3 + �4D4 +��i;4 inst. xi;1; xi;2; 1; 1 (17)

�yi;5 = ��4xi;4 + �5xi;5 � �4D4 + �5D5 +��i;5 inst. xi;2; xi;3; 1; 1 (18)
...

�yi;10 = ��9xi;9 + �10xi;10 � �9D9 + �10D10 +��i;10 inst. xi;7; xi;8; 1; 1(19)

I name the variables as follows in STATA:

dependent variable: y

regressor: x

year: t

year dummies: t1, t2, ..., t10

In addition, I generate the following terms. Firstly, the cross terms of x and

time dummies:

"x_t3" = x * t3

"x_t4" = x * t4

"x_t5" = x * t5
...

"x_t10" = x * t10

Secondly, the cross terms of the second lag of x and time dummies:

"L2x_t4" = L2.x * t4

"L2x_t5" = L2.x * t5
...

"L2x_t10" = L2.x * t10

Next, the cross terms of the third lag of x and time dummies:

"L3x_t4" = L3.x * t4

"L3x_t5" = L3.x * t5
...

"L3x_t10" = L3.x * t10

Lastly, the cross terms of the lagged di¤erence of x and time dummies:

"LDx_t4" = LD.x * t4

"LDx_t5" = LD.x * t5

12



...

"LDx_t10" = LD.x * t10

The values of these cross terms at di¤erent periods are shown in the attached

Table 5.

The STATA command used for the estimation is as follows:

XTABOND2 y x_t3-x_t10 t3-t10 if t>=4,

gmm(LDx_t4-LDx_t10, lag(0 0) equation(level) passthru)

iv(t3-t10, equation(level))

gmm(L2x_t4-L2x_t10 L3x_t4-L3x_t10, lag(0 0) equation(diff))

iv(t3-t10, equation(diff))

twostep robust noc

To easily understand, separate lines of gmm- and iv-instruments are presented

for the levels equation (noted as equation(level)) and the di¤erence equation

(noted as equation(diff)). For the levels equations, the model speci�cation

y x_t3-x_t10 t3-t10 implies that the level equation at, for instance, t = 4

corresponds to Eq.(13) because only x_t4 and t4 are nonzero. The instrument

speci�cation LDx_t4-LDx_t10 implies that the instrument applied at t = 4 is

�xi;3 because only LDx_t4 is nonzero. Note that passthru tells STATA not to

take the �rst di¤erence of the instruments speci�ed for the level equations as

STATA otherwise does it. Note also that the iv-instruments speci�ed for the

level equations are not automatically �rst-di¤erenced. The instruments applied

at t = 4 are therefore 1 (for D4).

For the di¤erence equations, STATA automatically takes the �rst di¤erence

of the model speci�cation. This implies the di¤erence equation at t = 4 corre-

sponds to Eq.(17) because the �rst di¤erence of x_t3 and that of x_t4 at t = 4

are �xi;3 and xi;4, respectively, and other terms in x_t3-x_t10 are zero (see
Table 5). Similarly, the �rst di¤erence of t3 and that of t4 at t = 4 are �1 and
1, respectively, and the other terms in t3-t10 are zero. The gmm-instrument

speci�cation for the di¤erence equations implies that the instruments applied

at t = 4 are xi;1 and xi;2 because only L2x_t4 and L3x_t4 are nonzero. For

the iv-instrument speci�cation, STATA automatically takes the �rst di¤erence.

The iv-instruments applied at t = 4 become �1 and 1 (for D3 and D4).
The if-condition t>=4 excludes the di¤erence equation at t = 3. Without

it, the equation �yi;3 = �txi;3 + �3D3 +��i;3 is included in estimation, which

is nonsense.
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System GMM estimation with the second lag of the regressors as instruments for the differenced equation

Number of observations 2251 2476 1614 11319 15427 14995

Number of firms 404 449 278 1996 2787 2631

Variables

l i,t 1.001 0.952 0.866 1.064 0.925 0.993

(0.068) (0.058) (0.094) (0.047) (0.055) (0.032)

k i,t 0.069 0.094 0.173 0.021 0.125 0.050

(0.040) (0.051) (0.063) (0.031) (0.023) (0.025)

Specification tests

Arellano-Bond test for AR(2) (p-value) 0.091 0.127 0.891 0.013 0.647 0.398

Hansen test (p-value) 0.832 0.594 0.338 0.000 0.021 0.000

Dif-in-Hansen test (p-value) 0.638 0.588 0.957 0.065 0.198 0.000

System GMM estimation with the third lag of the regressors as instruments for the differenced equation

Number of observations 9322 12640 12361

Number of firms 1759 2450 2360

Variables

l i,t 1.166 0.995 0.983

(0.064) (0.063) (0.044)

k i,t -0.029 0.142 0.052

(0.045) (0.033) (0.037)

Specification tests

Arellano-Bond test for AR(2) (p-value) 0.045 0.342 0.211

Arellano-Bond test for AR(3) (p-value) 0.214 0.353 0.304

Hansen test (p-value) 0.000 0.003 0.002

Dif-in-Hansen test (p-value) 0.052 0.001 0.034

Table 1: Estimation results for the time constant slope coefficient model (the CC model)

Chemicals Motor vehicles Pulp and paper Wood products
Publishing and 

printing
Machinery



Number of observations 1847 2026 1336 9322 12640 12361

Number of firms 357 403 252 1759 2450 2360

Variables

l i, 1999 0.927 0.963 1.069 0.971 0.948 0.972

(0.101) (0.067) (0.162) (0.046) (0.056) (0.039)

l i, 2000 0.940 0.967 1.109 0.999 0.960 0.963

(0.103) (0.076) (0.166) (0.048) (0.056) (0.041)

l i, 2001 0.945 0.958 1.109 1.005 0.951 0.943

(0.116) (0.076) (0.162) (0.051) (0.056) (0.040)

l i, 2002 0.924 0.960 1.205 0.972 0.957 0.950

(0.132) (0.076) (0.163) (0.054) (0.056) (0.041)

l i, 2003 0.945 0.921 1.274 0.953 1.010 0.954

(0.142) (0.070) (0.211) (0.054) (0.058) (0.041)

l i, 2004 0.969 0.930 1.264 0.969 0.989 0.959

(0.154) (0.079) (0.198) (0.054) (0.058) (0.042)

l i, 2005 0.951 0.925 1.329 0.957 1.035 0.976

(0.155) (0.092) (0.213) (0.054) (0.061) (0.043)

l i, 2006 0.983 0.965 1.264 0.983 1.058 1.005

(0.170) (0.099) (0.217) (0.056) (0.062) (0.044)

k i, 1999 0.125 0.113 0.038 0.104 0.143 0.148

(0.078) (0.068) (0.106) (0.039) (0.024) (0.029)

k i, 2000 0.111 0.102 0.041 0.106 0.137 0.171

(0.079) (0.074) (0.108) (0.043) (0.024) (0.032)

k i, 2001 0.133 0.108 0.023 0.098 0.140 0.177

(0.090) (0.078) (0.111) (0.047) (0.025) (0.033)

k i, 2002 0.151 0.092 -0.048 0.133 0.146 0.182

(0.106) (0.083) (0.113) (0.050) (0.025) (0.034)

k i, 2003 0.141 0.130 -0.101 0.159 0.122 0.184

(0.117) (0.083) (0.150) (0.052) (0.026) (0.036)

k i, 2004 0.128 0.145 -0.101 0.143 0.141 0.185

(0.127) (0.089) (0.138) (0.053) (0.025) (0.037)

k i, 2005 0.140 0.135 -0.159 0.156 0.121 0.181

(0.128) (0.099) (0.150) (0.054) (0.026) (0.037)

k i, 2006 0.125 0.106 -0.111 0.159 0.102 0.163

(0.139) (0.101) (0.149) (0.055) (0.026) (0.038)

Average effects

l i,t 0.948 0.949 1.203 0.976 0.989 0.965

(0.129) (0.075) (0.183) (0.050) (0.056) (0.040)

k i,t 0.132 0.116 -0.052 0.132 0.132 0.174

(0.105) (0.082) (0.125) (0.048) (0.023) (0.034)

Specification tests

Arellano-Bond test for AR(2) (p-value) 0.327 0.203 0.597 0.082 0.351 0.137

Hansen test (p-value) 0.518 0.291 0.543 0.104 0.206 0.208

Dif-in-Hansen test (p-value) 0.155 0.326 0.834 0.082 0.443 0.014

Wald test of stability of the coefficients for 

l i,t  (p-value)
0.853 0.610 0.061 0.063 0.000 0.044

Wald test of stability of the coefficients for 

k i,t  (p-value)
0.835 0.117 0.039 0.004 0.078 0.165

Joint test of the two Wald tests (p-value) 0.528 0.062 0.002 0.000 0.000 0.000

Table 2: Estimation results for the time varying slope coefficient model (the TVC model)

Wood products
Publishing and 

printing
MachineryChemicals Motor vehicles Pulp and paper



System GMM estimation with the second lag of the regressors as instruments for the differenced equation

Number of observations 1847 2026 1336 9322 12640 12361

Number of firms 357 403 252 1759 2450 2360

Variables

l i,t 0.894 0.943 1.094 1.070 0.934 0.986

(0.130) (0.070) (0.106) (0.051) (0.064) (0.046)

k i,t 0.141 0.118 0.066 0.029 0.135 0.116

(0.073) (0.067) (0.082) (0.039) (0.023) (0.031)

Specification tests

Arellano-Bond test for AR(2) (p-value) 0.446 0.166 0.617 0.058 0.379 0.174

Hansen test (p-value) 0.395 0.163 0.188 0.000 0.059 0.000

Dif-in-Hansen test (p-value) 0.350 0.750 0.800 0.012 0.155 0.000

Table 3: The CC model reestimated using the same set of samples as in Table 2

MachineryChemicals Motor vehicles Pulp and paper Wood products
Publishing and 

printing



[1] [2] [3] [4] [5]

σ β = 0, ρ = 0 

(Benchmark)
σ β = 0.025, ρ = 0 σ β = 0.050, ρ = 0 σ β = 0, ρ = 0.25 σ β = 0, ρ = 0.50

Specification with time-constant coefficient (the CC model)

Probability of a rejection by the Hansen test 0.048 0.654 1.000 0.306 0.898

Probability of a rejection by the dif-in-Hansen test 0.050 0.198 0.627 0.403 0.957

Probability of a rejection by AR(2) test 0.059 0.048 0.058 1.000 1.000

Probability of the estimated β being significantly 

different from the average of the true β
0.044 0.096 0.234 0.891 1.000

Specification with time-specific coefficient (the TVC model)

Probability of a rejection by the Hansen test 0.049 0.049 0.043 0.227 0.666

Probability of a rejection by the dif-in-Hansen test 0.046 0.054 0.042 0.139 0.508

Probability of a rejection by AR(2) test 0.059 0.044 0.053 1.000 1.000

Probability of a rejection by the Wald test 0.056 0.776 1.000 0.134 0.472

Probability of the average of the estimated β being 

significantly different from the average of the true β
0.051 0.057 0.045 0.935 1.000

Table 4: Results for Monte Carlo simulations



t = 3 t = 4 t = 5 ⋯ t = 10

t3 1 0 0 ⋯ 0

t4 0 1 0 ⋯ 0

t5 0 0 1 ⋯ 0

⋮ ⋮ ⋮ ⋮ ⋱ ⋮

t10 0 0 0 ⋯ 1

D(t3) 1 -1 0 ⋯ 0

D(t4) 0 1 -1 ⋯ 0

D(t5) 0 0 1 ⋯ 0

⋮ ⋮ ⋮ ⋮ ⋱ ⋮

D(t9) 0 0 0 ⋯ -1

D(t10) 0 0 0 ⋯ 1

x_t3 x(3) 0 0 ⋯ 0

x_t4 0 x(4) 0 ⋯ 0

x_t5 0 0 x(5) ⋯ 0

⋮ ⋮ ⋮ ⋮ ⋱ ⋮

x_t10 0 0 0 ⋯ x(10)

D(x_t3) x(3) - x(3) 0 ⋯ 0

D(x_t4) 0 x(4) - x(4) ⋯ 0

D(x_t5) 0 0 x(5) ⋯ 0

⋮ ⋮ ⋮ ⋮ ⋱ ⋮

D(x_t9) 0 0 0 ⋯ - x(9)

D(x_t10) 0 0 0 ⋯ x(10)

L2x_t4 0 x(2) 0 ⋯ 0

L2x_t5 0 0 x(3) ⋯ 0

⋮ ⋮ ⋮ ⋮ ⋱ ⋮

L2x_t10 0 0 0 ⋯ x(8)

L3x_t4 0 x(1) 0 ⋯ 0

L3x_t5 0 0 x(2) ⋯ 0

⋮ ⋮ ⋮ ⋮ ⋱ ⋮

L3x_t10 0 0 0 ⋯ x(7)

LDx_t4 0 x(3)-x(2) 0 ⋯ 0

LDx_t5 0 0 x(4)-x(3) ⋯ 0

⋮ ⋮ ⋮ ⋮ ⋱ ⋮

LDx_t10 0 0 0 ⋯ x(10)-x(9)

Table 5: Values of the variables at different periods
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