
 
 
 
 
 
 
 
 
 
 
Steps Towards Creating Socially Competent Game Characters 





GOTHENBURG MONOGRAPHS IN LINGUISTICS 44 

 

 
 

Steps Towards Creating Socially 
Competent Game Characters 

 

 

 

 

 

 

 

Jenny Brusk 
 

 

 

 

 

 

 

 

 



 ii 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Dissertation for the degree of Doctor of Philosophy in Linguistics, University of 
Gothenburg 

 
© Jenny Brusk, 2014 
Cover: Thomas Ekholm 
Picture: © Jenny Brusk 2014 
Printed by Reprocentralen, Humanistiska Fakulteten,  
University of Gothenburg, 2014 
ISBN 978-91-628-8890-9 
 
Distribution: 
Department of Philosophy, Linguistics and Theory of Science, University of 
Gothenburg, Box 200, S-405 30 Gothenburg, Sweden  

 
 



 

 

 

 

 

 

 

 

 

 

For Thomas, Thea and Mira 





 i 

Abstract 
Ph.D. dissertation in Linguistics at University of Gothenburg, Sweden, 2014 

Title: Steps Towards Creating Socially Competent Game Characters 
Author: Jenny Brusk 
Language: English 
Department: Department of Philosophy, Linguistics and Theory of Science, 
University of Gothenburg, Box 200, S-405 30 Gothenburg 
Series: Gothenburg Monographs in Linguistics 44 
ISBN 978-91-628-8890-9 
 
This thesis investigates and presents approaches towards creating more socially 
competent NPCs by means of natural language dialogues. The aim is to provide 
hands-on solutions for game developers who want to offer interactions with the 
NPCs in the game that are socially driven rather than functionally motivated and 
that encourage the player to build and maintain relationships between the 
character they control and the other game characters. By means of gameplay 
design patterns (GDPs), i.e. a semi-formal means of describing, sharing and 
expanding knowledge about game design, a selection of games have been 
analysed in order to identify existing and hypothetical GDPs for game dialogues. 
The analysis resulted in a number of GDPs that support, or could support, social 
interaction among game characters. A selection of the identified patterns has then 
been modelled using Harel statecharts and implemented in State Chart XML, a 
candidate to become a W3C standard.  

Keywords: dialogue systems, non-playable characters, computer games, 
SCXML, statecharts, socially oriented dialogues 



 ii 

Acknowledgements 
This work would not have been possible without the support of my supervisors 
Torbjörn Lager, Staffan Björk, and Robin Cooper. As my primary supervisor, 
Torbjörn has been my faithful companion from the very beginning. His 
encouragement, patience and never-ending support have kept me going and this 
thesis would not have been without him. I am also deeply indebted to my 
assistant supervisor Staffan Björk, who has been a great friend, teacher, 
inspiration and a valuable sounding board for my work on games. Robin Cooper 
has also been involved in the process of writing this thesis, in particular in 
finalizing the script and reaching an end to this project. Robin has provided me 
with new energy, self-esteem, hope, and great feedback when I had almost given 
up.  

I would also give my warm thanks to Simon Dobnik, who was my opponent 
during my final seminar. Simon’s critique and well thought through feedback 
improved this thesis considerably.  

Thanks to Svenska Spel, Gotland University, department of information and 
communication (IKI) at University of Skövde, department of FLOV University of 
Gothenburg and Graduate School for Language Technology (GSLT) for financial 
support.  

Over the years I have had the opportunity to collaborate with some amazing 
people. First, I’d like to thank Mirjam Palosaari Eladhari, my former colleague at 
Gotland University, for her friendship, collaborations, interesting discussions and 
support throughout the tough years. Thanks also to Anna Hjalmarsson and Preben 
Wik at the Department of Speech, Music and Hearing at KTH for friendship and 
cooperation in the DEAL project. Visiting KTH always gave me a lot of positive 
energy! In 2009 I was invited as a visiting scholar at the Institute for Creative 
Technology, University of Southern California thanks to David Traum. My stay 
at ICT was one the greatest experiences I have had over these years and I learned 
immensely from David and the rest of the Natural Language group. Thank you 
for making me feel so welcome and for taking such interest in my research. It 
really boosted me! Thanks also for letting me take part in interesting seminars, 
lectures, and for openly sharing your research. A particular thanks to Ron 
Artstein who helped me with the statistics and taught me how to use it – I am so 
grateful! Special thanks also to Sudeep and Angela for being the best office 
neighbours!  

Thanks also to all PhD students, supervisors and associates of GSLT and FLOV 
at the University of Gothenburg for interesting courses, discussions, 



 iii 

collaborations, feedback, support and fun. A special thanks to my reviewers Rolf 
Carlson and David House for always believing in me. I would also like to thank 
Staffan Larsson for providing me with valuable feedback at the early stage of my 
work, Sally Boyd for reading and giving feedback on my work on gossip, and 
Åsa Abelin for helping me with various problems concerning my studies.  

Thanks to my friends and colleagues at the computer game development 
programs in Skövde University for keeping my spirits up, in particular Ulf 
Wilhelmsson for reading parts of my script and providing insightful feedback.  

Several anonymous reviewers are worth their acknowledgements for taking their 
time to provide constructive feedback on the papers I have submitted to various 
conferences.  

Thanks to all my friends and relatives who have stood by my side all these years. 
A special thanks to Malina, Pontus, Isak, and Karl for generously sharing their 
home whenever I needed to visit Gothenburg.  

I could not have pursued this work without the support of my beloved family –
Thomas, Thea, and Mira – you make everything worthwhile.  

 

 

 

 

  



 iv 

 

Contents 
	
  

CHAPTER 1: INTRODUCTION ................................................................................... 1	
  

1.1	
   NATURAL LANGUAGE INTERACTION IN GAMES ................................................... 2	
  
1.2	
   CHOICE OF TECHNOLOGY ...................................................................................... 3	
  
1.3	
   A SIMPLE GAME SCENARIO .................................................................................... 4	
  
1.3.1	
   The Waiter Character ............................................................................................. 4	
  
1.3.2	
   Extending the Model with a Dialogue Manager .................................................... 6	
  
1.4	
   THE STRUCTURE OF THE THESIS .......................................................................... 12	
  

CHAPTER 2: CONVERSATIONAL AGENTS ......................................................... 14	
  

2.1	
   CLASSIFICATION OF CAS ...................................................................................... 14	
  
2.1.1	
   Dialogue Systems ................................................................................................. 14	
  
2.1.2	
   Platform and Setting ............................................................................................. 16	
  
2.1.3	
   Examples of ECAs ............................................................................................... 18	
  
2.2	
   NPCS ....................................................................................................................... 18	
  
2.2.1	
   Natural Language Interaction in Games .............................................................. 19	
  
2.2.2	
   NPC Roles ............................................................................................................ 21	
  
2.2.3	
   Believability of NPCs .......................................................................................... 22	
  
2.2.4	
   Examples of Conversational NPCs ...................................................................... 23	
  
2.3	
   SOCIAL ACTIVITIES ............................................................................................... 25	
  
2.3.1	
   Context ................................................................................................................. 25	
  
2.3.2	
   Communicative Acts ............................................................................................ 26	
  
2.3.3	
   Cooperation .......................................................................................................... 26	
  
2.4	
   DIALOGUE MANAGEMENT TASKS ........................................................................ 28	
  
2.4.1	
   Initiative ............................................................................................................... 29	
  
2.4.2	
   Turn-taking ........................................................................................................... 29	
  
2.4.3	
   Incremental Text or Speech Processing ............................................................... 31	
  
2.4.4	
   Multi-party dialogue ............................................................................................ 31	
  
2.5	
   POTENTIAL DESIGN DIFFERENCES BETWEEN PRACTICAL DS AND GAME DS ... 32	
  
2.5.1	
   Correctness and cooperativeness ......................................................................... 33	
  
2.5.2	
   Reliability and Efficiency .................................................................................... 34	
  
2.5.3	
   Error Handling ..................................................................................................... 35	
  
2.5.4	
   User Role and Setting .......................................................................................... 35	
  
2.6	
   RULE-BASED APPROACHES FOR DIALOGUE MANAGEMENT .............................. 36	
  
2.6.1	
   Finite State-based Approach ................................................................................ 36	
  
2.6.2	
   Frame-based Approach ........................................................................................ 38	
  



 v 

2.6.3	
   Plan-based Approach ........................................................................................... 40	
  
2.6.4	
   Information State Update Approach .................................................................... 41	
  
2.7	
   DISCUSSION ............................................................................................................ 42	
  

CHAPTER 3: GAME DIALOGUES ........................................................................... 43	
  

3.1	
   LAYERS OF COMPUTER-BASED GAMES ............................................................... 43	
  
3.2	
   THE GAME SETTING ............................................................................................. 45	
  
3.2.1	
   The Player ............................................................................................................ 46	
  
3.2.2	
   Interactivity and Agency ..................................................................................... 47	
  
3.2.3	
   Game Dialogues .................................................................................................. 49	
  
3.3	
   LANGUAGES FOR COMMUNICATING GAMEPLAY ............................................... 53	
  
3.3.1	
   Gameplay Design Patterns ................................................................................... 55	
  
3.4	
   GDPS FOR GAME DIALOGUES .............................................................................. 58	
  
3.4.1	
   ELIZA .................................................................................................................. 58	
  
3.4.2	
   Zork ..................................................................................................................... 59	
  
3.4.3	
   Grim Fandango .................................................................................................... 60	
  
3.4.4	
   The Elder Scrolls III: Morrowind ........................................................................ 61	
  
3.4.5	
   The Elder Scrolls IV: Oblivion ............................................................................ 62	
  
3.4.6	
   Façade .................................................................................................................. 63	
  
3.4.7	
   Mass Effect .......................................................................................................... 64	
  
3.5	
   A COMPARATIVE ANALYSIS ................................................................................. 65	
  
3.5.1	
   Hypothetical Gameplay Design Patterns ............................................................. 66	
  
3.6	
   CONCLUDING REMARKS ....................................................................................... 68	
  
3.7	
   COLLECTION OF PATTERNS ................................................................................. 70	
  

CHAPTER 4: TECHNOLOGICAL FRAMEWORK ................................................ 73	
  

4.1	
   THE DFP FRAMEWORK ........................................................................................ 73	
  
4.2	
   VOICEXML ............................................................................................................ 74	
  
4.2.1	
   SRGS and SISR ................................................................................................... 76	
  
4.3	
   STATE CHART XML (SCXML) ............................................................................ 78	
  
4.3.1	
   Hierarchy and History ......................................................................................... 79	
  
4.3.2	
   Concurrency ......................................................................................................... 81	
  
4.3.3	
   Broadcast Communication .................................................................................. 83	
  
4.3.4	
   Data Model .......................................................................................................... 84	
  
4.3.5	
   External Communication ..................................................................................... 85	
  
4.4	
   SCXML IN THE BIGGER PICTURE ....................................................................... 86	
  
4.5	
   IMPLEMENTING DIALOGUE MANAGEMENT STRATEGIES IN SCXML .............. 88	
  
4.5.1	
   FSMs in SCXML ................................................................................................. 90	
  
4.5.2	
   Frame-based Approach ........................................................................................ 91	
  
4.5.3	
   Plan-based Approach ........................................................................................... 93	
  
4.5.4	
   Information State Update Approach .................................................................... 93	
  
4.6	
   ADVANTAGES OF USING HAREL STATECHARTS ................................................. 94	
  



 vi 

4.6.1	
   Visual Representation .......................................................................................... 94	
  
4.6.2	
   Statecharts and the Iterative Design Process ........................................................ 96	
  
4.6.3	
   Summary .............................................................................................................. 96	
  
4.7	
   EXAMPLES OF INTERACTIVE SYSTEMS USING A SIMILAR APPROACH .............. 97	
  

CHAPTER 5: FACE MANAGEMENT FOR NPCS .................................................. 99	
  

5.1	
   FACE MANAGEMENT ............................................................................................. 99	
  
5.1.1	
   Threats to Face ................................................................................................... 100	
  
5.1.2	
   Brown and Levinson: Politeness Theory ........................................................... 100	
  
5.1.3	
   Walker, Cahn and Whittaker: Linguistic Style Improvisation ........................... 102	
  
5.1.4	
   Prendinger and Ishizuka: Social Filter ............................................................... 103	
  
5.2	
   INTRODUCING Ρ .................................................................................................... 103	
  
5.2.1	
   Calculating SD and P ......................................................................................... 104	
  
5.3	
   APPLYING Ρ IN A PRACTICAL DIALOGUE ........................................................... 105	
  
5.3.1	
   Activity Analysis ................................................................................................ 106	
  
5.3.2	
   Mental Model ..................................................................................................... 107	
  
5.3.3	
   The Effects of the Social Filter .......................................................................... 108	
  
5.3.4	
   Parallel Dialogues .............................................................................................. 112	
  
5.4	
   SUMMARY AND CONCLUSION ............................................................................. 113	
  

CHAPTER 6: DEAL .................................................................................................... 115	
  

6.1	
   INTRODUCTION TO DEAL ................................................................................... 115	
  
6.1.1	
   Framework ......................................................................................................... 115	
  
6.2	
   TRADE ................................................................................................................... 116	
  
6.2.1	
   The Activity ....................................................................................................... 117	
  
6.3	
   IMPLEMENTATION IN SCXML ........................................................................... 118	
  
6.3.1	
   Opening .............................................................................................................. 120	
  
6.3.2	
   Trading ............................................................................................................... 121	
  
6.3.3	
   Code Example – Negotiation ............................................................................. 126	
  
6.4	
   DISCUSSION .......................................................................................................... 128	
  

CHAPTER 7: CASUAL CONVERSATIONS ........................................................... 129	
  

7.1	
   SMALL TALK ........................................................................................................ 129	
  
7.1.1	
   Integrating Small Talk with the Opening Phase ................................................ 130	
  
7.1.2	
   Giving Small Talk the Same Status as the Practical Conversation .................... 131	
  
7.1.3	
   Giving Practical Conversation Precedence ........................................................ 133	
  
7.1.4	
   Implementation .................................................................................................. 134	
  
7.2	
   GOSSIP .................................................................................................................. 135	
  
7.2.1	
   Background ........................................................................................................ 135	
  
7.2.2	
   The Activity ....................................................................................................... 136	
  
7.3	
   GOSSIP IN FICTIONAL STORIES .......................................................................... 137	
  
7.4	
   A FIRST ATTEMPT TO MODEL GOSSIP .............................................................. 139	
  



 vii 

7.5	
   TWO EXPERIMENTS ON GOSSIP CONVERSATIONS ........................................... 141	
  
7.5.1	
   Hypotheses ......................................................................................................... 142	
  
7.6	
   EXPERIMENT I: IDENTIFYING GOSSIP TEXT ..................................................... 142	
  
7.6.1	
   Material and Procedure ...................................................................................... 142	
  
7.6.2	
   Results ............................................................................................................... 144	
  
7.6.3	
   Discussion .......................................................................................................... 145	
  
7.7	
   EXPERIMENT II: IDENTIFYING GOSSIP ELEMENTS IN A TEXT ........................ 146	
  
7.7.1	
   Material .............................................................................................................. 146	
  
7.7.2	
   Procedure ........................................................................................................... 147	
  
7.7.3	
   Results ............................................................................................................... 147	
  
7.7.4	
   Discussion .......................................................................................................... 151	
  
7.8	
   EFFECT OF INTERPERSONAL RELATIONS ......................................................... 152	
  
7.8.1	
   Conclusion ......................................................................................................... 154	
  
7.9	
   TOWARDS A COMPUTATIONAL MODEL OF GOSSIP .......................................... 155	
  
7.9.1	
   Determining the Appropriateness for Initiating Gossip .................................... 155	
  
7.9.2	
   Initiating Gossip ................................................................................................ 156	
  
7.9.3	
   A Statechart Model for Initiating Gossip .......................................................... 157	
  
7.9.4	
   Conclusion ......................................................................................................... 159	
  
7.10	
   DISCUSSION ........................................................................................................ 160	
  

CHAPTER 8: CONCLUSIONS AND FUTURE WORK ........................................ 163	
  

8.1.1	
   SCXML ............................................................................................................. 168	
  

REFERENCES ............................................................................................................. 170	
  

APPENDIX I: WAITER DM ...................................................................................... 187	
  

APPENDIX II: WAITER DM RUN – LOG .............................................................. 200	
  

APPENDIX III: DEAL ................................................................................................ 207	
  

APPENDIX IV: MOVIE-GOSSIP ............................................................................. 221	
  



 viii 

List of Tables 
Table 1: A Classification of CAs 17	
  

Table 2: Example slots in a frame-based dialogue system 39	
  

Table 3: Gameplay Design Pattern: Information Passing (part I) 56	
  

Table 4: Gameplay Design Pattern: Information Passing (part II) 57	
  

Table 5: New Gameplay Design Patterns for Dialogue 71	
  

Table 6: Gameplay Design Patterns for dialogues found in earlier studies 72	
  

Table 7: Hypothetical Gameplay Design Patterns for Dialogue 72	
  

Table 8: Effects of agreeableness personality dimension 110	
  

Table 9: Effects of extroversion personality dimension 111	
  

Table 10: A comparison between gossip and the opinion genre 139	
  

Table 11: Schema for canned gossip responses 140	
  

Table 12: A preliminary rating of all excerpts. 143	
  

Table 13: Gossip ratings of all 16 questions sorted by their mean value 144	
  

Table 14: Inter-coder reliability 148	
  

Table 15: Relationship between the different elements and gossip. 148	
  

Table 16: Gossip – third person focus 148	
  

Table 17: Gossip – substantiating behaviour 149	
  

Table 18: Gossip – pejorative evaluation 149	
  

Table 19: Co-occurrences grouped by excerpts 150	
  

Table 20: Correlation between gossip and each of the three features 151	
  



 ix 

List of Figures 
Figure 1: The waiter's action manager ................................................................... 5	
  

Figure 2: A detailed view of Serve ......................................................................... 6	
  

Figure 3: Waiter's dialogue manager ...................................................................... 8	
  

Figure 4: Resolve exchange ................................................................................... 9	
  

Figure 5: Updated action manager ....................................................................... 10	
  

Figure 6: Waiter statechart ................................................................................... 11	
  

Figure 7: Updated dialogue manager ................................................................... 12	
  

Figure 8: Components of a spoken dialogue system ............................................ 15	
  

Figure 9: A finite state graph representing a simple practical dialogue ............... 37	
  

Figure 10: Layers of a computer game (Adams, 2010) ©Ernest Adams, 2010. 
Used by permission ...................................................................................... 44	
  

Figure 11:  Interaction Model (Adams, 2010) ©Ernest Adams, 2010. Used by 
permission .................................................................................................... 44	
  

Figure 12: Picture of dialogue menu in Grim Fandango (LucasArts, 1998) ........ 49	
  

Figure 13: Picture of dialogue menu in Morrowind (Bethesda Game Studios, 
2002) ............................................................................................................. 50	
  

Figure 14: Picture of dialogue wheel in Mass Effect (BioWare, 2008) ............... 50	
  

Figure 15: Game Statechart .................................................................................. 78	
  

Figure 16: Pause-and-resume ............................................................................... 80	
  

Figure 17: Emotion and behaviour ....................................................................... 82	
  

Figure 18: Game environment with invoked characters ...................................... 87	
  

Figure 19: Conversation module .......................................................................... 89	
  

Figure 20: Emotions manager ............................................................................ 107	
  

Figure 21: Dialogue manager for introvert waiter ............................................. 112	
  

Figure 22: Parallel dialogue ............................................................................... 113	
  

Figure 23: DEAL interface ................................................................................. 118	
  

Figure 24: Dialogue manager for Shopkeeper in DEAL .................................... 120	
  

Figure 25: Opening ............................................................................................. 121	
  



 x 

Figure 26: Trading .............................................................................................. 121	
  

Figure 27: Define object of interest .................................................................... 122	
  

Figure 28: A detailed view of Define object of interest ..................................... 123	
  

Figure 29: Negotiation ........................................................................................ 124	
  

Figure 30: Resolve exchange. ............................................................................ 125	
  

Figure 31: A modified Trading state .................................................................. 126	
  

 Figure 32 Opening with small talk module ....................................................... 131	
  

Figure 33: Dialogue manager for switching between small talk and practical 
dialogue ...................................................................................................... 132	
  

Figure 34: Giving the practical dialogue precedence ......................................... 134	
  

Figure 35: A model of gossip based on the opinion genre ................................. 140	
  

Figure 36: Chart illustrating co-occurences grouped by excerpts ...................... 149	
  

Figure 37 A statechart model for initiating gossip ............................................. 158	
  

 



 xi 

Abbreviations 
2D Two dimensional 

3D Three dimensional 

ABNF Augmented Backus-Naur Form 

AM Action Manager 

API Application Programming Interface 

ASR Automatic Speech Recognition 

BDI Belief-Desire-Intention 

CA Conversational Agent 

CPU Central Processing Unit 

DFP Data-Flow-Presentation 

DM Dialogue Manager 

ECA Embodied Conversational Agent 

DS Dialogue System 

FADT Formal Abstract Design Tool 

FIA Form Interpretation Algorithm 

FSM Finite State Machine 

FTA Face Threatening Action 

GDP Game Design Patterns 

GOAP Goal Oriented Action Planning 

GTA Grand Theft Auto 

GUI Graphical User Interface 

IPA Intelligent Personal Assistant 

ISU Information State Update 

IVR Interactive Voice Response 

LSI Linguistic Style Improvisation 

MDA Mechanics-Dynamics-Aesthetics  



 xii 

MDP Markov Decision Processes 

NL Natural Language 

NLI Natural Language Interaction 

NLG Natural Language Generation 

NLP Natural Language Processing 

NLU Natural Language Understanding 

NPC Non-playable Character 

P Power 

PC  Playable Character 

POMDP Partially Observable Markov Decision Processes 

RPG Role Playing Game 

SCXML State Chart XML 

SD Social Distance 

SDS Spoken Dialogue System 

SISR Semantic Interpretation for Speech Recognition 

SRGS Speech Recognition Grammar Specification 

TH Talking Head 

TTS Text-To-Speech 

UI User Interface 

UML Unified Modelling Language 

VH Virtual Human 

VW Virtual World 

W3C World Wide Web Consortium 

XML eXtensible Markup Language 



 1 

Chapter 1  

Introduction  
Once you move away from shooting games, when you are face to face with 
characters and you are not necessarily blowing their brains out the speech 
part becomes much more important.  

David Braben, head of Frontier Developments1  

Most of the non-playable characters (NPCs) the player encounters in a computer 
game have only a brief appearance in the player’s game life. The main reason for 
this is that the roles they possess are functionally motivated, for instance as 
shopkeepers to enable trade, enemies to offer challenges, or helpers of various 
kinds to support the player’s progression through the game (see e.g. Isbister, 
2006). 2 An NPC may also have a dramatic role as part of the narrative, but their 
repertoire of possible actions and reactions is usually limited in accordance with 
their functional role and so the function of the NPC often overrides its potential 
for playing an interesting role figure in the story. Engaging in a conversation with 
an NPC typically means that you are confronted with a number of pre-scripted 
dialogue choices appearing on the screen. When selecting one of these choices 
the NPC responds and a new set of options is generated. Some of the options may 
be reliant on the relationship your character has developed with the NPC in 
question, as in Mass Effect (BioWare, 2008) and The Sims™ (Electronic Arts, 
1998-). The dialogue choices may also be used as means for defining and 
developing the playable character’s personality traits as in the role-playing game 
(RPGs) Dragon Age II (Bioware, 2011). The personality traits may in turn affect 
which dialogue and other gameplay options become available for the player later 
in the game.  

This thesis investigates how to create NPCs that exhibit human-like behaviour 
and that can engage in natural language conversations with a human player, i.e. 
basically an embodied conversational agent (ECA) (see for example Cassell, 
Sullivan, Prevost, & Churchill, 2000b) designed for a game. Traditional ECAs 
have mainly been designed to handle practical dialogues, i.e. dialogues “focussed 
on accomplishing a concrete task” (Allen, Byron, Dzikovska, Ferguson, Galescu, 
& Stent, 2001, p. 29), and they are typically placed in a realistic setting. An NPC, 
                                                
1 In an article written by Mark Ward (2002): Fast forward to the future of games, BBC News, Aug 
30. Available at: <http://news.bbc.co.uk/2/hi/technology/2223428.stm> 
2 Chapter 2 provides a more detailed overview of these roles. 



 2 

on the other hand, operates within a given dramatic role in a fictional game world 
and is thus also a carrier of the story. This means that the requirements for a game 
character may differ from a traditional ECA. Therefore, this thesis also explores 
the design space and identifies requirements for a game dialogue system.  

1.1 Natural Language Interaction in 
Games 

While the traditional ECA typically substitutes a human in a real-life situation, an 
NPC plays a dramatic role in a story, which implies that NPCs “[…] do not have 
to be realistic–rather, they have to behave appropriately given the context of their 
roles in the fictional world” (Zubek, 2005, p. 22), i.e. they have to be believable. 
According to Hayes-Roth and Doyle (1998, p. 202) a believable character should 
be a “good conversational partner” that tries to “get the message” rather than 
strive for achieving perfect understanding, and be able to “express themselves” 
rather than retrieve correct responses from a database. These requirements 
assume that the dialogue understanding component of the dialogue system is 
capable of identifying the speaker’s underlying intention and that the character 
has the ability to generate an answer that fits the current context – independently 
of whether it is the best or most correct answer. However, this is very difficult to 
achieve in a dialogue system. From another point of view, this also suggests that 
a character may have flaws that typically are unacceptable for traditional 
conversational agents that solve real-world tasks, for instance being wrong or 
ignoring misunderstandings. It also suggests that these characters should be more 
socially oriented, i.e. care more about the interpersonal relationship than the 
accuracy of their statements. In order for this to be possible, these characters need 
to be equipped with social skills. 

Natural language interaction has been used in games before. The first examples 
of natural language interactions in game-like environments are found in early 
multiplayer virtual worlds, so called multi-user dungeons (MUDs) that were 
developed by university students with a particular interest in natural language 
processing (see for example Bartle, 2003). Other examples include text-based 
adventure games, such as Zork (Infocom, 1980) and The Hitchhikers guide to the 
Galaxy (Infocom, Inc., 1984) that accepted natural language input as the only 
means for interacting with the game. And consequently, interacting with the 
game components, navigating in the world, talking to the other game characters, 
and performing meta-commands, were all conducted in the same interface. The 
input language was restricted so a part of the challenge was to figure out what 
could be said and how to say it in order to be understood. Today, games have in 
many respects abandoned text-based interaction in favour of direct manipulation 



 3 

of graphical user interfaces (GUI), but speech-based interaction has become more 
and more common as a complement or alternative to the GUI. Most games have 
support for voice-based interaction, mainly for issuing commands to the system, 
and there are a number of middleware products that provide Software 
Development Kits for speech recognition specifically designed for game engines.  

Despite these new technological improvements, game dialogues are still mainly 
constructed as branching dialogue trees, presenting the player with a limited 
number of options that each unfolds a new branch in the tree. This is mainly due 
to the complexity of natural language and the difficulty in creating a system that 
can understand and produce unrestricted natural language conversations, or as 
Adams (2010, p. 185) put it: “Game designers would like to be able to include 
natural language in games without trying to solve a decades-old research 
problem”. Also, a game cannot afford to cause player frustration due to poor 
interpretation of the input.  

1.2 Choice of Technology 
An aim of this thesis is to present a work that is directly accessible for the gaming 
industry. It was therefore an early decision to use standard web technology for 
building voice applications since standards are free, accessible, stable, 
distributable (i.e., it works on different browsers and has backward and forward 
compatibility), can easily be validated, and provide consistency. To use standard 
web technology may furthermore be motivated by the fact that games played 
through a web-browser have increased dramatically, mainly due to Facebook, 
which declares that more than 250 million people play Facebook games every 
month.3 Also, XML is extensively used for storing data in game engines and 
therefore most game engines already have support for parsing XML documents.  

The World Wide Web Consortium4 (W3C) is an organization that develops 
standards for the web among which VoiceXML is the most commonly used 
standards for building dialogue systems. In 2006, the W3C introduced the Data 
Flow Presentation (DFP) framework5 for keeping the components that control the 
data and flow of a multimodal application separate from the component(s) that 
communicate with the end user, for example a VoiceXML application. W3C also 
introduced State Chart XML (SCXML) as one of the languages for specifying the 

                                                
3 At Game Developers Conference (GDC) 2013, Facebook announces that over 250 million 
people play Facebook games every month. See e.g. 
<http://www.theverge.com/2013/3/26/4149838/facebook-says-over-250-million-playing-games-
each-month> 
4 The World Wide Web Consortium (W3C) is an international organization that develops 
technical specifications and guidelines that “ensure the long-term growth of the Web”, see 
<http://www.w3.org/Consortium/mission.html> 
5 <http://www.w3.org/Voice/2006/DFP> 



 4 

flow of an application. SCXML can be described as an attempt to render Harel 
statecharts (Harel, 1987) in XML. In its simplest form, a statechart is just a finite 
state machine, where state transitions are triggered by events appearing in an 
event queue. This thesis investigates whether standard web technology in general 
and SCXML in particular is expressive enough to implement game dialogues.  

A recent trend in dialogue management design is to use machine learning 
techniques and stochastic approaches for identifying and implementing dialogue 
strategies (see for example Schatzmann, Weilhammer, Stuttle, & Young, 2006; 
Pieraccini, Suendermann, Dayanidhi, & Liscombe, 2009; Paek & Pieraccini, 
2008; Young et al., 2010). These approaches require that an extensive amount of 
data is collected and processed, which is a time consuming task even if this could 
be done to some extent by means of user simulations and unsupervised learning 
(see for example Schatzmann, Weilhammer, Stuttle, & Young, 2006). The 
standards used in this thesis do not currently support stochastic approaches and so 
the examples given here have been constructed using hand-written rules.  

1.3 A Simple Game Scenario 
The dialogue models presented in this thesis are visualized using Harel 
statecharts (Harel, 1987) and as an introduction to statechart notation, this section 
will present a simple game scenario. As has previously been mentioned, many 
game characters are functionally motivated and the dialogues they are capable of 
engaging in are typically practical. It is also well known that practical dialogues 
have been successfully implemented in commercial applications, due to their 
limited domain and clear task (see for example Allen et al., 2001). For these 
reasons it seems reasonable to start with a game scenario, in which an NPC can 
engage in a practical dialogue with the player. This dialogue will also serve as a 
base model for the extensions that will be presented later in this thesis. 

The setting is a restaurant or tavern, in which the playable character is a customer 
that orders something from an NPC in the waiter role. Initially, the system-
controlled waiter will automatically serve the customer a random dish from the 
counter, just like the waiter character in the game Café World (Zynga Inc., 2009), 
but a conversational module is then added so that the player can order something 
from the menu using natural language.  

1.3.1 The Waiter Character 
The waiter switches between two basic behaviours: idle and serve. Idle is the 
default behaviour and describes a waiter animated with a neutral standing pose 
while waiting for a new customer to arrive. As soon as a customer has been 
detected at a table, the waiter changes action from being idle to serve. Apart from 



 5 

that, no actual interaction takes place between the waiter and the customer. 
Figure 1, below, illustrates the waiter’s action manager, i.e. the mechanism that 
controls the waiter’s behaviour. Just like ordinary finite-state machines, 
statecharts have a graphical notation – for “tapping the potential of high band-
width spatial intelligence, as opposed to lexical intelligence used with textual 
information” (Samek, 2002). The rounded boxes denote states and the arrows 
between the states denote possible transitions. The black dot represents an initial 
pseudostate. Labels connected to transitions represent events (specified by “On” 
in the models) and/or conditions (marked “If”) that will trigger the transition. In 
Figure 1 “done.Serve” is an example of a system-generated event that is raised 
when the state Serve has reached its final state. “EnterCustomer”, on the other 
hand, is user-generated as it is raised when the PC enters the restaurant.  

Figure 1: The waiter's action manager 

One extension to finite state machines that Harel introduced was hierarchical 
states, i.e. states that contain another statechart that in turn may contain another 
statechart down to an arbitrary depth. An infinity sign inside a state box indicates 
that we are dealing with a hierarchical (or compound) state with hidden sub-
states. In order to view the content of such a state in detail, Harel statecharts offer 
a zoom-in function. A state that lacks an infinity sign is atomic, which means that 
it does not contain any sub-states.  

As can be noted in the illustration, the waiter’s action manager (AM), represented 
by the state WaiterAM, is an example of a hierarchical state as it contains two 
states, ActionIdle and Serve, each corresponding to the waiter’s basic 
behaviours mentioned earlier. The infinity sign inside each of these states also 
indicates that they in turn (may) contain sub-states. For example, to complete the 
serve action the waiter has to follow a specific plan: go to the counter, pick up a 
plate, return to the table and finally serve the plate. Serve therefore needs to be 
decomposed into states that correspond to each of these sub-actions and the sub-
actions need to be sequentially ordered: GoToCounter, PickUpPlate, 

WaiterAM

ActionIdle

a

Serve
on done.Serve

on EnterCustomer



 6 

GoToTable, and finally, ServePlate. Figure 2, below, illustrates Serve with 
its child states: 

Figure 2: A detailed view of Serve 

 

1.3.2 Extending the Model with a Dialogue 
Manager 

So far, the waiter has been modelled as a character with two available behaviours 
to switch between, idle and serve, each represented as child states of the actions 
manager (AM). The next step is to give the waiter the ability to engage in a 
dialogue with the player (character) to take the order and receive payment.  

In the simplest and most straightforward case, the waiter greets the customer and 
takes the order. The customer responds by ordering something that is available on 
the menu. Hence, a successful dialogue between the customer and the waiter 
could be as follows: 

PickUpPlate

GoToTable

GoToCounter

ServePlate

on done.GoToCounter

on done.PickUpPlate

on done.GoToTable

Serve
a



 7 

W1:   Hello, may I take your order? 
C1:   I would like bacon and eggs please. 
W2:   Bacon and eggs. Coming right up! 
W3:   [Waiter walks to the counter and picks up a plate of bacon and eggs] 
W4:   Bacon and eggs, that’ll be 4 euros please. 
C2:   4 euros, ok [Customer hands over 4 euros] 
W5:  Thank you! 

Dialogue 1: A simple dialogue between the waiter and a customer 

The waiter establishes contact by greeting the customer in W1. The waiter then 
takes the order and confirms it (W1, C1, and W2) before leaving the table to pick 
up the ordered dish (W3). When the waiter returns to the table to serve the dish, 
payment is requested (W4). The customer confirms the price and hands over the 
money (C2). The waiter receives the money and ends the interaction in W5.  

In the current example the task is to take an order from the customer, serve it and 
receive payment. The current game has a limited setting that in its entirety 
constitutes the domain of the dialogue as well. In other games, the dialogue 
domain may only constitute a particular gameplay mode, which means that it 
takes place in a different interface from the rest of the game. Since we may use 
analogies from the real world, the concepts associated with the domain and the 
expected behaviours are already familiar to the player.  

Figure 3, below, illustrates the flow of the dialogue presented above. An event 
containing the prefix “ca”, such as “ca.order”, is generated when the player says 
something to the NPC (ca stands for “communicative act”). Examples of such 
communicative acts are “greet” and “order”. An event can also contain a data 
payload, which can be accessed through the parameter “_event.data”. Important 
to note is that even though the dialogue manager is modelled by means of Harel 
statecharts, it is not necessary to implement it in SCXML. 



 8 

Figure 3: Waiter's dialogue manager 

While waiting for a customer to arrive and take a seat, the waiter is in the state 
DialogueIdle. As illustrated in the dialogue model, a transition to Greet is 
taken when the condition In(‘TakeOrderAct’) is fulfilled. The “In()”-
predicate states that a specific state, in this case TakeOrderAct, must be active 
in order for the condition to return “true”. The state TakeOrderAct will be 
presented further below. Harel statecharts allow actions to be carried out along 
transitions or within a state, either upon entering the state or when the state is left 
(Harel, 1987), so when the Greet state is entered, the system outputs a prompt in 
which the waiter greets the customer. Usually, a transition is activated by a 
triggering event or when a certain condition holds. However, in some cases it is 
desirable to transition to the next state as soon as the state’s on-entry and/or on-
exit scripts have been executed. In this case it is possible to use so called empty 

WaiterDM

DialogueIdle

a

Greet

If In( )

TakeOrder

OnEntry
Prompt  Greet

Accept

OnEntry
Raise  event  TimeOutE
Prompt  Take  order

On ca.order
order := _event.data.order

ResolveExchange

OnEntry
Prompt  Confirm  order
Raise  event  pursue_req

If In( )

On TimeOutE

ResolveExchange

ReqPayment

OnEntry
Prompt  Request  payment

a

WrapUp

On handovermoney

OnEntry

On done.ResolveExchange



 9 

(ε) transitions, which are transitions that do not specify any event or condition. In 
the model depicted in Figure 3, an empty transition connects Greet with 
TakeOrder, which is activated as soon as the waiter has greeted the customer (as 
specified in the on-entry script). Upon entering TakeOrder, a new prompt is 
generated, this time to take the order. Also, a time out event is raised that will fire 
if the customer does not respond to the waiter’s request. If the user instead 
answers within the set time, the time-out event will be aborted and a state change 
may occur. If not, the waiter can repeat the request. These first steps correspond 
to line W1 of Dialogue 1 above.  

If the customer orders something that is available on the counter, a transition to 
Accept is conducted. The waiter confirms the order upon entering the state (line 
W2 of the dialogue) and the event “pursue_req” is raised, which triggers the 
waiter to go the counter and pick up the requested dish (line W3).  

Figure 4: Resolve exchange 

Returning with the dish and serving it, all that is left for the waiter to do is take 
the check and resolve the exchange, which is pursued in the compound state 
ResolveExchange (see Figure 4, above) ResolveExchange consists of two 
states: ReqPayment and WrapUp. ReqPayment corresponds to line W4 of 
Dialogue 1, above. When the customer hands over the money (line C2), a 
transition to the final state WrapUp is triggered (corresponding to line W5).  

As has already been indicated, the waiter’s AM needs to be adjusted to handle the 
interaction with the customer. The dialogue can only be initiated after the waiter 
has detected a new customer, but before the serve action is initiated. Furthermore, 
the waiter needs to approach the customer before an order can be taken. This 
means that the waiter’s action manager needs two additional steps: “go to table” 

WaiterDM

DialogueIdle

a

Greet

If In(’TakeOrderAct’)

TakeOrder

OnEntry
Prompt Greet

AcceptOrder

OnEntry
Raise event TimeOutE
Prompt Take order

On ca.order
order := _event.data.order

ResolveExchange

OnEntry
Prompt Confirm order
Raise event pursue_req

If In(’ReceivePayment’)

On TimeOutE

ResolveExchange

ReqPayment

OnEntry
Prompt Request payment

a

WrapUp

On handovermoney

OnEntry
Prompt ”Thank you”

On done.ResolveExchange



 10 

and “take order”. Furthermore, when the waiter has taken the order and is about 
to carry out the next step, to serve, the dialogue will either have to be put on hold 
or be terminated. In this example, the waiter will return with the dish and request 
payment and so the waiter’s communicative acts must in some way be 
synchronized with the waiter’s other actions.  

Figure 5 below, illustrates the waiter’s updated actions manager, which apart 
from the inclusion of the state TakeOrderAct now also contains the state 
ReceivePayment to enable the money transaction.  

Figure 5: Updated action manager 

 

The default start state is still ActionIdle, since the waiter is assumed to idle 
until an event is detected that triggers a transition to the newly added 
GoToTable, which is when a new customer has taken a seat. When the table has 
been reached, the waiter’s next move is to take the order and so yet another state 
has been added, TakeOrderAct, which is synchronized with the dialogue 

WaiterAM

ActionIdle

a

GoToTable

TakeOrderAct

On done.GoToTable

Serve

On pursue_req

On handovermoney

On enterCustomer

ReceivePayment

On done.Serve



 11 

manager, such that a transition is triggered from DialogueIdle to Greet 
when WaiterAM is in the state TakeOrderAct. This corresponds to the 
condition In(‘TakeOrderAct’) in WaiterDM (see Figure 3). 

As soon as an acceptable order has been placed, transition to Serve within 
WaiterAM is triggered. The dialogue manager is put on hold until Serve 
reaches its final state and a transition to ReceivePayment has been conducted, 
which is synchronized with the state ResolveExchange in the dialogue 
manager. Now, currently the AM and the DM are said to be synchronized, but in 
fact we have only created two separate statecharts that represent the AM and DM, 
respectively. However, statecharts also support the possibility to have states 
running in parallel, independently from each other, but loosely coupled. Hence, in 
order to synchronize the waiter’s behaviour, the AM and DM must run 
concurrently, as illustrated in Figure 6, below: 

 

Figure 6: Waiter statechart 

The current dialogue model does not account for potential failures, such as when 
the customer orders something that is not available on the counter. One way to 
deal with this circumstance is that only the dishes that are accessible on the 
counters at the time of the order are acceptable orders. The customer must then be 
notified that the requested dish cannot be served, which means that two more 
states must be added – one in which the waiter confirms and accepts the order 
and another one in which the order is rejected. When an ordered is accepted the 
waiter may go to the counter and pick up the dish, but when the order is rejected, 
the waiter has to take a new order. If the customer instead is silent the waiter will 
repeat the request when a certain time period has passed. Figure 7, below, 
illustrates the extended dialogue manager. 

Waiter

WaiterAM

WaiterDM



 12 

Figure 7: Updated dialogue manager 

So far we have shown that statecharts are able to manage the dialogue as well as 
the waiter’s behaviour, but most importantly the synchronization between them.  

1.4 The Structure of the Thesis 
Having established that the main theme of this thesis is to investigate how we can 
create NPCs that are able to engage in interesting and socially meaningful 
dialogues using standard technology we now turn to the structure of the thesis. 

Chapter 2 introduces conversational agents (CAs), in particular Embodied CAs 
(ECAs) and NPCs. Potential differences between practical dialogue systems and 
game dialogue systems that may have consequences for the design are also 
discussed. A number of dialogue management tasks for conversational NPCs are 

WaiterDM

DialogueIdle

a

Greet

If In(’TakeOrderAct’)

TakeOrder

OnEntry
Prompt Greet

Accept

OnEntry
Raise event TimeOutE
Prompt Take order

On ca.order
order:=_event.data.order

ResolveExchange

OnEntry
Prompt Confirm order
Raise event pursue_req

If In(’ReceivePayment’)

On TimeOutE

On done.ResolveExchange

Reject

OnEntry
Prompt Reject

On ca.order
If  ¬Exists(order, counter)



 13 

suggested followed by a review of the most common strategies for managing 
dialogues in practical dialogue systems. 

In chapter 3 we investigate how games can benefit from using natural language 
interaction and explore the design space between game worlds and dialogue 
systems. We will primarily revolve around actual and potential uses of a game 
dialogue system expressed by means of gameplay design patterns (Björk & 
Holopainen, 2005). A goal of the chapter is to identify how novel gameplay can 
be created by means of natural language interaction. The chapter is partly based 
on (Brusk & Björk, 2009). 

In chapter 4, VoiceXML and in particular SCXML are presented as well as their 
position in the Data Flow Presentation (DFP) framework in which they play 
important roles. Harel statecharts (Harel, 1987) will be introduced as well since it 
constitutes the semantics of SCXML, but also because it is a useful tool for 
describing the flow of an event-based application, such as a game or a dialogue. 
We will use Harel statecharts throughout the thesis to illustrate and specify our 
game and dialogue models. Parts of this chapter have previously been published 
in (Brusk & Lager, 2008). 

In chapter 5 we exemplify how our waiter character presented earlier may be 
extended with social awareness. We take Brown & Levinson’s (1987) theory of 
politeness as a point of departure and present face management strategies and 
behaviours based on the interpersonal relationship and the character’s mental 
state. The chapter is partly based on (Brusk, 2008) and (Brusk, 2010). 

Chapter 6 introduces DEAL, a serious games project for language learning. We 
present a dialogue manager modelled using statecharts and implemented in 
SCXML, aimed at describing a shopkeeper at a flea market. By adding a module 
for negotiation we show by example how a shopkeeper in a game can become 
more interesting to interact with. The original version of the chapter has 
previously been published in (Brusk, Lager, Hjalmarsson, & Wik, 2007). 

Chapter 7 is devoted to gossip conversation. We start by giving a background to 
gossip and the structure of gossip, followed by a presentation of two experiments 
conducted at Institute for Creative Technology, University of Southern 
California. The first experiment aimed at investigating how people intuitively 
perceive and define gossip while the second aimed at investigating whether 
people could agree upon a given definition of gossip, and investigate why if not. 
The results from the experiments in combination with earlier studies of gossip 
made by others formed a basis for a first model for initiating gossip, presented in 
the third part of the chapter. The chapter is based on the following articles 
(Brusk, 2009; Brusk, Artstein, & Traum, 2010; Brusk, 2010). 

In Chapter 8 a final discussion, conclusions and further research is presented.  



 14 

Chapter 2  

Conversational Agents 
A Conversational Agent (CA) is a program that can communicate with humans 
using natural language speech or text. Most CAs are designed for engaging in 
practical dialogues over the telephone – so-called interactive voice response 
systems (IVR-systems). Examples of tasks these agents are capable of performing 
are travel arrangements, bank transactions and providing weather reports. There 
are also embodied CAs (ECAs) of various complexities developed for 
multimodal communication.  

This chapter starts with an overview of CAs, including a rough classification. 
Conversational NPCs will be given particular attention and the potential uses of 
natural language interaction in games will be discussed. In later sections, 
dialogue management tasks and various strategies for dialogue control will be 
presented as well as possible design differences between game dialogue systems 
and practical dialogue systems.  

In the next chapter games and game dialogues will be presented in more detail. 

2.1 Classification of CAs 
There are a number of different types of CAs, all designed with a particular usage 
in mind. For the purpose of this thesis, CAs will be categorized based on the type 
of dialogue they can engage in and what type of dialogue system they therefore 
require, whether they are typically used in fictional or realistic settings, and the 
most common platform that they use.  

2.1.1 Dialogue Systems 
Dialogue systems can be either text- or voice-based and a spoken dialogue 
system (SDS) typically consists of the following components (e.g. Jurafsky & 
Martin, 2000; Clark, Fox, & Lappin, 2010) (see Figure 8): an automatic speech 
recognizer (ASR) (assuming speech input is available), which transforms an 
acoustic signal into text; a natural language understanding (NLU) component, 
involving a syntactic and semantic parsing of the input to a formal representation; 



 15 

a dialogue manager (DM), controlling the flow of the dialogue; a language 
generation component, determining the surface structure of the utterance; and a 
text-to-speech component (TTS), transforming the surface utterance into a speech 
output.   

Figure 8: Components of a spoken dialogue system 

A text-based dialogue system naturally lacks the ASR component as well as the 
TTS component. Some systems however provide a TTS component even though 
they do not accept speech input. A dialogue manager often needs to communicate 
with a back-end system, such as a database or knowledge base, in order to 
retrieve or update information.  

There are two main types of DSs: command-based systems and conversational 
systems (Skantze, 2007; Pieraccini & Huerta, 2005; Larsson, 2005). A command-
based system is typically used for practical dialogues in commercial applications 
and so the usability aspect is central (see for example Pieraccini & Huerta, 2005). 
Therefore, it requires good speech recognition (when speech is accepted as input) 
and language understanding, but less investment in dialogue management and 
response generation. Conversational systems, on the other hand, aim to simulate 
human language use and the challenge is therefore to figure out “how to model 
everything that people may say” (Skantze, 2007, p. 12).  

In games, each of these two types may be of relevance. A command-based 
system may for example be used for controlling the game as a complement or 
alternative to the mouse and keyboard, i.e. for voice-based game interfaces. 
Conversational systems are however more relevant for engaging in dialogue with 

Speech Recognition

Language Understanding

Speech Synthesis

Language Generation

Dialogue Management

Database



 16 

the in-game characters. This issue will be further discussed in section 2.2.1, 
below.  

2.1.2 Platform and Setting 
In this rough classification, CAs are divided into four main types: Interactive 
Voice Responses (IVRs), Intelligent Personal Assistants (IPAs), chatbots and 
Embodied Conversational Agents (ECAs). It should be noted that the CAs have 
been classified according to the most common usage, and so there will be 
possibly several examples diverging from the classification. The main purpose is 
however to identify the CAs that are of main interest for this thesis and how they 
differ from other types of CAs. 

IVRs are automated telephone systems that allow humans to interact using voice 
and/or touch-tone input. Apart from the practical uses mentioned earlier, IVRs 
have been extensively used for conducting surveys, in particular surveys of more 
sensitive natures (see for example Corkrey & Parkinson, 2002). IVRs differ from 
the other CAs in that they are mainly command-based.  

A human user can engage in social chat with chatbots, such as A.L.I.C.E.6, by 
means of text input and text or speech output. Chatbots use pattern-matching 
techniques to parse the user’s utterance and generate answers by selecting a 
response from a collection of pre-scripted phrases. This means that chatbots do 
not need to create an understanding of the user’s input, but by having an 
extensive set of templates, the chatbot may appear to be able to maintain a long-
lasting conversation. In that sense it could be argued that they make use of a 
conversational dialogue system. The ultimate goal for a chatbot is also to be 
taken as a human, i.e. to pass the Turing test, and every year the most human-like 
computer program is awarded the Loebner prize. 7 A.L.I.C.E has received the 
award no less than three times (2000, 2001, and 2004). The first and probably the 
most famous chatbot is ELIZA (Weizenbaum, 1966), which will be presented in 
more detail and analysed in section 3.4.1. 

IPAs, such as Apple’s Siri and Samsung’s S Voice, have elements of both IVRs 
as well as chatbots. These agents assist the human user with various tasks and 
interact using natural language. They are specifically designed for smart phones 
and make use of the standard applications already available in phone, such as 
GPS, calendar, messages, music player, etc., and are able to access information 
from a variety of online sources and combine this information to respond to the 
user’s request – e.g. “are there any Japanese restaurants in this area open now?”. 
One could say that IPAs use a conversational dialogue system for managing 
practical dialogues. Different from traditional IVRs their domain is neither static 

                                                
6< http://alice.pandorabots.com/> 
7 <http://www.loebner.net/Prizef/loebner-prize.html > 



 17 

nor defined in beforehand; instead, the information they provide is reliant on the 
information that can be accessed through the channels mentioned above.  

While more and more services are offered online or in shared public spaces, an 
increased interest in giving them a face and/or body has arisen that enables them 
to communicate “face-to-face” as well as to use non-verbal behaviours such as 
gestures and facial expressions in addition to speech. An ECA can range from 
being a two-dimensional agent with a limited set of facial expression to advanced 
3-D characters equipped with a complete set of facial expressions, lip-sync and 
body movements. ECAs can be further divided into virtual humans (VH), talking 
heads (TH) and conversational NPCs, and they all share the goal of having a 
conversational system, but differ in either the setting or platform, or both. In the 
following section ECAs will be given more attention as they are the main targets 
of this thesis, but first a table listing the differences between the CAs is 
presented.    

 

CA DS Setting Platform Dialogue type 

IVR Command Reality Telephone Practical 

Chatbot Conversational Reality Web interface Social chat 

IPA Conversational Reality Smart phone app Practical/expert 

TH Conversational Reality Offline/web interf. Practical 

VH Conversational Reality  Virtual world (VW) Practical/social 

NPC Conversational Fiction Offline/web/VW Practical/social 

Table 1: A Classification of CAs 

It should also be noted that the use of the word “platform” may be a bit 
misleading, but in the absence of a more appropriate word, platform will here 
stand for the environment within or through which the interaction is taking place. 
To further clarify, a virtual world (VW) is a persistent online community capable 
of handling thousands of simultaneous users, such as Second life (Linden Lab, 
2003) and World of Warcraft (Blizzard Entertainment, 2005), but here we accept 
a broader definition that includes other types of 3D virtual environments as well. 

Moreover, several of the CAs are claimed to use a conversational dialogue 
system, but the fact is that this is so hard to achieve that it should be regarded as 
the ultimate goal for these agents rather than that they actually fulfil this 
requirement currently.8  Also, most CAs engage in practical dialogues, but some 
                                                
8 Most attempts to model human behaviour in general fail when it comes to the linguistic 
capabilities. In android science, for example, artificial humans are developed with appearances 
and behaviours that are highly anthropomorphized.  However, the androids lack the ability to 
perform long-term conversations, and according to Ishiguro & Nishio (2007) this is considered to 



 18 

also attempt to engage in more socially oriented dialogues even if these dialogues 
subordinate the task.  

2.1.3 Examples of ECAs 
Ordinarily, ECAs engage in practical dialogues and may be used as tourist 
guides, as for example Waxholm (Carlsson & Granström, 1996), or museum 
guides, such as ADA and GRACE (Swartout et al., 2010), installed at the Museum 
of Science in Boston, USA.  They are also popular as instructors and educators 
(see e.g. Cassell et al., 2000b; Wik, 2011). The ECA Rea (e.g. Cassell, Bickmore, 
Billinghurst, Campbell, Chang, Vilhjálmsson & Yan, 1999) takes the role of a 
virtual real-estate agent that “interacts with users to determine their needs, show 
them around virtual properties, and attempts to sell them a house” (Cassell, 
Bickmore, Campbell, Vilhjálmsson & Yan, 2000a). The August system 
(Gustafson, Lindberg, & Lundeberg, 1999) uses a talking head modelled after the 
deceased Swedish author August Strindberg. Despite its visual appearance and 
name, it makes no attempt to simulate the author. Rather, the agent was used for 
studying how inexperienced users would communicate with a spoken dialogue 
system covering several domains, in this case information about Stockholm and 
The Royal Institute of Technology, as well as some basic knowledge about the 
author himself. Another author that has gone through a virtual resurrection is the 
Danish fairy-tale author Hans Christian Andersen. The ECA was developed 
within the NICE-project (e.g. Bernsen & Dybkjær, 2005) and could talk to the 
user about some of his works, his life, and objects in the environment, among 
other things. ECAs are also used as virtual patients, allowing medical students to 
practice medicine before actually meeting real patients (see e.g. Kenny et al., 
2007).  

The most complex ECAs, the virtual humans, are equipped with personality, 
emotions, and the ability to learn and adapt. The goal for these agents is not 
necessarily to convince someone that they are actually human, but to “serve as 
competent role-players to allow people to have a useful interactive experience” 
(Traum, Swartout, Gratch, & Marsella, 2008, p. 46). 

2.2 NPCs  
NPCs are often used to drive the story forward by informing the player 
(character) about the world, the characters, conflicts, places and so on, in order to 
                                                                                                                                
be the ultimate goal in robotics. On the other hand they have developed an android with 
“teleoperation” (remote control) functionality allowing the android to (appear to) keep up a long 
lasting conversation when it is in fact the human behind the scene that controls the conversational 
behaviour.  
 



 19 

motivate the player to perform the intended actions for game and story 
progression. They may also constitute the obstacles the player must get past in 
order to succeed in reaching a specific goal. Just like other ECAs, NPCs are 
constrained by their role in the game and so is the player’s possibility to interact 
with them. A shopkeeper’s main function is for example to sell items to the 
playable character. In addition, such a character may also be able to provide game 
hints and selected information about other NPCs, events and the like that exist in 
the surrounding. A mentor, on the other hand, instructs the player and hands out 
quests but cannot sell items. The functional role assigned to an NPC thus 
determines whether it can engage in dialogues and, if so, what the player can talk 
to the NPC about. 

2.2.1 Natural Language Interaction in Games 
There are several ways in which natural language dialogue may come into play in 
games. Assuming the commonly made distinction between game (G), player (P), 
playable character (PC) and NPC, and stretching the notion of dialogue 
somewhat, we may distinguish between:  

(1) P in dialogue with G: Games may be ‘voice controlled’. In games 
that require many actions to be performed simultaneously, voice 
commands can release the cognitive load. Voice interaction can be 
particularly suitable for games played on video game consoles since 
their controls only offer a few input combinations as opposed to the 
keyboard. Tom Clancy’s Endwar (Ubisoft, 2008) is an example of a 
game that (according to the developers) can be completed using only 
voice control.   

(2) P in dialogue with PC: Player is directing their PC using dialogue. In 
text-based adventure games and Multi-User Dungeons (MUDs), typed 
commands are the sole way to interact with the game, meaning that no 
difference is made between controlling the game and engaging in P(C) 
- NPC dialogues. 

(3) P in dialogue with P: Player talking to player, using (voice-based) 
chat. In multiplayer online games, chat is often augmented with 
emotes, i.e. reserved actions (for example /yawn or /wave) that can be 
expressed through the avatar.  

(4) NPC in dialogue with NPC: The use of natural language for 
commenting on the states and the events of a game, such as the 
commentators talking to each other in FIFA (EA Sports, 1993-2012). 
This type of dialogue only involves the player as an audience (cf. 
movies). In some games, for example Skyrim (Bethesda Game 
Studios, 2011), the NPCs can talk to each other under certain 



 20 

circumstances, which give the player the opportunity to perform some 
eavesdropping. 

(5) P in dialogue with NPC: For the purpose of letting NPCs provide the 
player with background story, quests and directions for progressing 
the game, but also in order to uphold ‘social relationships’ with NPCs. 
Dialogues will thus sometimes be task oriented, sometimes of a more 
socially motivated kind. This type of dialogue is what is typically 
meant when one discusses “game dialogues” and occurs first and 
foremost in story-based games, such as adventure games and role-
playing games as a tool for conveying the story. A notable exception 
is The Sims™ (Electronic Arts, 1998), since it makes heavy use of 
dialogue even though the story is player-created. This means that no 
pre-authored content is needed; instead, dialogue is used to 
manipulate the social relationship with other characters. The player 
can choose from a number of communicative actions presented in a 
menu. The selection results in either a physical act visible to the 
player or through an icon symbolising the meaning displayed in a 
speech bubble over the speaker’s head, combined with speech. 
However, the character speaks in “simlish”, a fictional language that 
sounds real and when combined with the other visual cues, meaning is 
created that can be perceived and interpreted by the player. 

The first dialogue type (1) is a typical example of a command-based system. It 
requires an ASR and a simple NLU component, but since it only has to be able to 
understand and respond to simple commands, a simple DM capable of mapping 
an input to a specific output is sufficient. The system cannot understand complex 
sentences nor can the player engage in natural language conversations with the 
game characters and so only a limited grammar specification covering predefined 
commands is necessary. The second pattern (2) is an extension of (1) and may 
therefore involve parsing more complex phrases that in some respect serve as 
commands just like in (1). Even so, its function is sufficiently supported by a 
command-based system. The game character/system is not expected to respond to 
the player’s command verbally, but may act upon the player’s commands in other 
ways. The player may for instance direct the character/game system by giving 
orders in terms of for example a verb phrase “open box” and “go north”, but as in 
the earlier mentioned Zork (Infocom, Inc., 1980), dialogues with other NPCs are 
conducted through the same interface. Player to player conversations (3), for 
example “chats”, are typical for multiplayer games. Unless the player expresses 
emotes, the system doesn’t have to parse the players’ contribution to the 
conversation. Conversations between NPCs in a game (4) are pre-scripted and 
reflect upon the events of the game, such as when the player waits too long to 
strike the ball in golf or when a team scores in football.  (3) and (4) fall outside 



 21 

the division between command-based and conversational dialogue systems, as 
they do not require any natural language processing – (3) because they are 
examples of real human conversations as opposed to simulated ones, and (4) 
because the human is merely the audience.  

The last pattern for natural language interaction in games (5) corresponds to 
simulated conversations between the P(C) and an NPC and requires therefore a 
conversational dialogue system. As for ordinary face-to-face conversations, these 
conversations typically have a specific purpose or goal that can only be achieved 
through interaction, thus presupposing some form of cooperation. This is the only 
example that requires a conversational system. It is also the focus of this thesis. 

2.2.2 NPC Roles 
NPCs are thus used for various purposes in games, functional, social, as well as 
dramatic. Isbister’s (2006, pp. 230-250) taxonomy of NPCs, for example, is 
based on those personality dimensions she considers determine their social 
behaviour: agreeableness (along the friendly-unfriendly scale) and dominance 
(from dominant to submissive). Below, we present the kind of NPCs from her 
taxonomy that the player (or PC) is likely to engage in dialogue with. 

Friendly roles 
Minions are friendly NPCs and the least dominant. Their role is to help and assist 
the PC in accomplishing his or her goals without ever challenging his or her 
authority. The most common player interaction with a minion is to give orders. A 
slightly less submissive is the Rescuee, an NPC in the need of the player’s help. 
Different from a Minion, a Rescuee may develop into a new role after being 
rescued, for instance become the player’s Ally or a Minion. A Sidekick 
accompanies the PC but is not as submissive as the Minion or Rescuee. Rather, 
they are more of a helper character that gives hints to the player and comments on 
the player’s actions. The PC’s relationship to the Sidekick may become deeper if 
the design of it allows so. An Ally, on the other hand, is on a level with the PC 
and assists the PC more actively, such as supporting the PC in fights. When a 
Sidekick follows the PC throughout most parts of the game, an Ally may appear 
briefly under a specific period in the game. Therefore, it is unlikely that the 
player forms any stronger attachment to an Ally as it potentially could with a 
Sidekick. As players sometimes are in need of guidance, specific NPCs may be 
designed to serve that need. Guides are typically accessible throughout the game 
to provide advice from the game’s help system when needed. A Mentor also 
serves as a helper, but has more of a leadership role than either the Sidekick or the 
Guide. The Mentor may instruct and train the PC as well as hand out quests, as 
for example the character “Maze” in Fable (Lionhead Studios, 2004). As such, 



 22 

the Mentor dominates the PC and the PC is in many ways reliant on the Mentor’s 
assistance in pursuing the game objectives. 

Unfriendly roles 
Among the unfriendly roles that Isbister (2006, pp. 240-246) presents; Obstacles, 
Enemies, Competitors, Boss Monster, and Archenemy, only Obstacles are noted 
as being susceptible to having some form of social interaction with the player 
(unless one counts “fighting” as a social interaction). Obstacles are used to 
obstruct the player from pursuing its goals and could in that role also socialize 
with the PC. Just like most of the friendly characters listed above, the unfriendly 
characters are often one-dimensional (also known as flat) and have therefore little 
to offer the player apart from resistance. However, taking into consideration that 
these characters could be multi-dimensional, or deep, they could offer an 
interesting challenge for the player. Imagine a situation where an NPC and the 
PC have conflicting goals, but still see that they need each other in order to 
succeed in reaching their respective goal.  Under those circumstances, socially 
interesting interactions may emerge, where lies and other manipulative behaviour 
are present.  

Neutral roles 
There are also a number of roles that the PC meets that are neither friendly nor 
unfriendly, such as Informants and Traders  (Isbister, 2006, pp. 247-249). These 
characters have an agenda of their own but offer services that the PC is in need 
of. They can also be used for passing on messages and background information. 
Hence, they are also candidates for engaging in natural language dialogues, 
perhaps they are even the first ones to be considered due to the fact that these 
dialogues first and foremost are practical and thus share many similarities with 
practical dialogue systems.  

2.2.3 Believability of NPCs  
Human-like NPCs are adaptations of real people, but what characteristics do they 
need in order to be believable? According to the “media equation” (Reeves & 
Nass, 1996), people have a tendency to treat computers and other types of media 
as humans, even though they apparently lack several important properties for life-
likeness. This may be explained by our ability to use pattern-matching in order to 
make sense out of the world, an observation that constitute the fundamental 
premise of gestalt theory: 

There are wholes, the behaviour of which is not determined by that of their 
individual elements, but where the part-processes are themselves 
determined by the intrinsic nature of the whole. (Wertheimer, 1938, s. 2) 



 23 

The strategies for recognizing patterns have in gestalt theory been identified as a 
number of gestalt laws:  the law of similarity, the law of proximity, the law of 
common faith, the law of good continuation, and the law of closure. The last one, 
the law of closure, refers to way we create a gestalt by filling in the missing 
pieces, which allows us to interpret the following shape as a circle by 
subconsciously filling in the void: 

 

If the lines instead would represent different human-like behaviours, it seems 
fairly reasonable to assume that a human would fill the missing pieces with other 
human-like behaviours and start treating the object as a human even though it is 
not. However, experiences from robotics show that when human likeness 
increases, so does the sense of familiarity up to a point when the robot instead 
becomes repulsive. This dip in familiarity is also known as the uncanny valley 
(Mori, 1970). Achieving even higher human likeness may turn the curve 
upwards, up to the point where 100% familiarity is reached, which corresponds to 
a “healthy human”. Increasing human likeness is thus worth an effort, but only to 
a point where familiarity is sustained and the uncanny valley is avoided.  

2.2.4 Examples of Conversational NPCs 
There are no current examples of commercial games in which the NPC can 
engage in natural language dialogues with the player. The closest example is 
Façade (Mateas & Stern, 2003)9, an interactive drama developed within a 
research project. The story in Façade revolves around a married couple that has 
some marital problems and to which the player character has been invited to for a 
social visit. The gameplay in Façade is based entirely on the social play between 
the characters and the player may “talk” to the NPCs using natural language text 
input and direct manipulation.  

There are undeniably difficulties in on the one hand allowing free-text 
communication and on the other hand telling a story that is already authored. The 
reason is that free-text communication can result in unpredictable input and in 
order to sustain believability, the system must be able to handle a range of 
unrecognized and/or irrelevant contributions as part of the story progression. 
Façade has managed to balance this act in an impressive way by offering 
solutions that take both the local as well as the global context into account. The 
                                                
9  More publications and a downloadable version of the project are available at 
<http://www.interactivestory.net> 



 24 

global context is for instance used when the player says something irrelevant or 
not understandable, while the local context is applied when the input is relevant 
for the current beat10. Façade works because the world in which the story takes 
place is well defined and limited. The playtime is very short compared to 
commercial games and even though their work is impressive it seems difficult to 
scale up. A more detailed presentation of Façade along with an analysis of it in 
terms of gameplay design patterns will be given in chapter 3.  

Another game-like research prototype that uses natural language interaction is the 
research project Interactive Story Project (e.g. Cavazza & Charles, 2005; Mead, 
Cavazza, & Charles, 2003) in which the user participates in a sitcom drama as an 
“active spectator”. The user may directly manipulate the objects in the 
environment as well as use voice to give the main character suggestions on what 
to do. The user may thus change the plan of the character and influence the 
development of the story, but is not acting out a particular role. The context 
determines the current interpretation of the input utterance, which means that an 
utterance can generate different plans depending on the situation. Since the user 
is merely a spectator, the characters have the freedom to choose those acts 
proposed by the user that are understood and relevant under the current 
circumstances. Hence, if the user’s contribution is not understood, the character 
can choose to ignore it.  

Johan Boye and Joakim Gustafson and colleagues (Boye & Gustafson, 2005; 
Gustafson, Boye, Fredriksson, Johanneson, & Königsmann, 2005) have 
developed a game within the European NICE project (2002-2005) on Natural 
Interactive Communication for Edutainment. Their game world is based on the 
fairy-tale Cloddy Hans written by the Danish author H. C. Andersen and consists 
of two fairy-tale characters, Cloddy Hans and Karen, which have conversational 
capabilities. The player acts through Cloddy Hans, who serves as the player's 
helper character. Cloddy Hans can understand commands as well as give advice 
to the player. The player can also talk to Karen, who in one of the scenes controls 
a drawbridge that the player and Cloddy Hans need to cross. The player must 
negotiate with her in order to make her lower the drawbridge. This character has 
thus a different function from Cloddy Hans, which motivates distinct dialogue 
behaviours (Boye & Gustafson, 2005). This was solved by dividing the dialogue 
manager into a generic (kernel) manager and a script-based specific dialogue 
manager, where the latter one made it possible to create unique behaviours for 
each character in the game.  

                                                
10 Within dramatic writing a beat is the smallest element of structure (McKee, 1997). It is an 
exchange of behaviour in action/reaction that shapes the turning of a scene. In Mateas and Stern’s 
use, a beat may be a larger structure, comprised of anywhere from 10 to 100 joint dialogue 
behaviours. 



 25 

2.3 Social Activities 
Interacting with a CA is a form of social activity, which is when two or more 
agents “engage in action in a coordinated way, […] which collectively has some 
purpose or function” (Allwood, 1993, p. 9). Typically, an institutionalized 
activity is associated with certain conventions and norms, and the participants are 
assigned specific roles that determine their communicative behaviour. The 
participants exchange appropriate communicative acts given the context, their 
roles, the purpose for interacting and the surrounding environment (e.g. Halliday, 
1978; Allwood, 1995). The context furthermore determines the meaning potential 
(Halliday, 1978), i.e. what we can mean (see also Wittgenstein, 1953; Allwood, 
1995).  

A social activity can then be classified according to the following parameters 
(e.g. Allwood, 1995; Allwood, Traum, & Jokinen, 2000): The purpose for 
engaging in the activity, the artefacts, which are prominent in the activity, and the 
social and physical environment in which the activity takes place. The examples 
presented later in this thesis will be analysed using these parameters. 

2.3.1 Context 
Ordinarily, communicating with a practical dialogue system is an example of an 
institutionalized social activity. The domain is limited and well defined, within 
which the agent has expert knowledge. A travel agent that books flight tickets, for 
example, must have access to and be able to provide information about 
timetables, available seats, and prices for a particular route. The user does not 
necessarily expect it to be able to check whether they have enough money in their 
bank account to pay for the flight or to provide weather reports of the target 
destination. Interacting with a travel agent can also be said to constitute a specific 
situation type (Halliday, 1978), i.e. a situation classified according to the social 
activity that takes place (in this case trade); the relationship between the 
participants and their roles (travel agent and customer); and the role language 
plays in the situation (booking flight tickets). The meaning potential of the 
situation type in question increases the robustness of the system both because the 
number of possible interpretations is reduced, but also because the user’s 
response in some respect is predictable due to the predefined structure of the 
dialogue. Most of the NPC roles mentioned earlier typically also appear in 
specific situations, but since the NPC acts in a dynamic world the current game 
state must also be considered. 

Most ECAs are displayed to give the illusion that they share the same physical 
space as the human user, thus acting in the user’s physical world with real world 
consequences and with knowledge directly applicable in the user’s primary 



 26 

domain. Games, on the other hand, are generally based (more or less) on fiction 
and the domain is a world of make-believe, in which communication takes place 
at a higher layer by use of metaphors (Clark H. H., 1996). However, a game may 
include real world elements in the fictional world, which allows the player to use 
references to two different but overlapping universes. In Animal Crossing 
(Nintendo, 2001), for example, the game world time is mapped with the player’s 
real time in the physical world. This means that the game characters can 
comment upon the player’s presence in the game and complain if it has been too 
long since the last visit and it allows the characters to greet the player on his or 
her birthday and to celebrate Christmas in real time, but within the game domain. 
The fictional component of games is one of the major differences between 
interacting with an ECA as opposed to an NPC and in section 2.5 the implications 
of this difference related to their dialogue behaviour will be discussed. 

2.3.2 Communicative Acts 
The concept of communicative acts originates from speech act theory, where 
speech acts refer to utterances that change the state of the world, typically the 
mental state of the participants or the state of the dialogue (Austin, 1962; Searle, 
1969; Traum, 1999). According to Allwood (e.g. Allwood, 1976, 1995), a 
communicative act is a speech act that takes the evocative intentionality into 
account – a speech act such as an assertion, for example, will in speech act theory 
only consider the intention to express a belief, whereas it as a communicative act 
also would include the intention of evoking the belief in the hearer. In dialogue 
system design the term “dialogue acts” is often used with basically the same 
meaning (see e.g. Traum, 1999; Jurafsky & Martin, 2000). 

Assuming that the participants follow the conventions and social norms 
associated with the activity they currently take part in, they have a range of 
communicative acts to choose from. Among these acts, some will be assigned the 
sender role, while the others will belong to the receiver role (see e.g. Allwood, 
1995; Allwood, Traum, & Jokinen, 2000). In dialogue with a shopkeeper, for 
example, the customer role is associated with sender obligations such as 
requesting a specific item, while the response obligation for the shopkeeper 
would be to respond to that request, for example by offering the requested item.  

In this thesis, all user input to the dialogue manager will be treated as 
communicative acts.  

2.3.3 Cooperation 
Successful communication assumes that the participants take one another into 
mutual consideration and cooperate in trying to achieve a common purpose (see 
for example Allwood, 1976, p. 40). This includes attempting to understand the 



 27 

other participants’ intentions and making an effort to respond appropriately. In 
order to do so, Grice (1975) says that the participants of a conversation are 
expected to observe the cooperative principle: 

Make your conversational contribution such as is required, at the stage at 
which it occurs, by the accepted purpose or direction of the talk exchange in 
which you are engaged. (Grice, 1975, p. 45) 

Assuming such a principle is acceptable, he continues, one may distinguish four 
categories, or maxims, which will yield results in accordance with the 
cooperative principle (pp. 45): 

A. Maxim of Quantity: Make your contribution as informative as is 
required (for the current purpose of the exchange) and do not make your 
contribution more informative than is required. 

B. Maxim of Quality:  Try to make your contribution one that is true, and 

1. Do not say what you believe to be false. 
2. Do not say that for which you lack adequate evidence. 

C. Maxim of Relevance: Be relevant 

D. Maxim of Manner: Be perspicuous, and 

1. Avoid obscurity of expression. 
2. Avoid ambiguity 
3. Be brief 
4. Be orderly 

These principles describe an ideal cooperative interaction and participants may 
voluntarily or involuntarily fail on one or more accounts. A speaker can for 
example “violate” a maxim or “opt out” from both the maxim and the cooperative 
principle or be unable to fulfil a maxim – i.e. face a “clash”, or “exploit” the 
maxim by “blatantly fail to fulfil it” (Grice, 1975, p. 49) – as in the case of 
indirect speech acts (“can you pass me the salt”) and implicatures (Grice’s 
terminology for utterances with implicated meaning): 

A:  Do you know what time it is? 
B:  The mail was just delivered 

Dialogue 2: Example of conversational implicature 

At first glance speaker A seems to violate the Maxim of Relevance. However, the 
cooperative principle presumes a mutual compliance, meaning that even if the 
answer at first seems to be irrelevant, speaker A will interpret B’s answer as a 
relevant, however partial, contribution. Speaker A may therefore infer that 
speaker B intended to convey that the time is around the time of when the 
mailman usually comes. Conversational implicatures thus explain how we can 



 28 

form a coherent discourse from utterances in a conversation that appears to be 
unconnected (Levinson, 1983). 

Grice’s cooperative principle has been used for dialogue system design. Bernsen 
and colleagues, for example, used Grice’s cooperative principle to form 
guidelines for designing and evaluating dialogue systems for the purpose of 
“optimising the dialogue co-operativity of the system” (Bernsen, Dybkjær, & 
Dybkjær, 1996).  

Allwood criticizes Grice’s maxims for overlapping and for not being exhaustive 
and responds by introducing the notion of Ideal Cooperation, which he suggest is 
achieved when the dialogue participants in their actions (1) take each other into 
cognitive consideration, (2) have a joint purpose, (3) take each other into ethical 
consideration, and (4) trust each other to act in accordance with (1)-(3) (Allwood, 
1976, 1995; Allwood, Traum, & Jokinen, 2000).  

The minimal requirement for cooperation is that the agents take each other into 
cognitive consideration (1), that is, acknowledge each other and attempt to 
understand and perceive the other’s actions. 

Joint purpose (2) is related to the following dimensions: Degree of mutual 
contribution to shared purpose, degree of mutual awareness of shared purpose, 
degree of agreement made about purpose, degree of dependence between 
purposes, and degree of antagonism involved in the purpose. The agents must not 
have independent or antagonistic purposes in order to be counted as joint 
purpose. (Allwood, Traum, & Jokinen, 2000) 

The ethical considerations (3) include strategies for social politeness and face 
management, which will be further discussed in chapter 5.  

It is assumed that the dialogue participants are “motivated rational agents”, which 
is characterized by the following principles (in short) (see e.g. Allwood, Traum, 
& Jokinen, 2000): An “agent” behaves intentionally and with a purpose; a 
“motivated” agent participates voluntarily, seeks pleasure and tries to avoid pain. 
A “rational” agent shows competent and adequate behaviour. Within the principle 
of adequacy, Grice’s maxims of quantity, relevance and manner are included, 
while the maxim of quality partly belongs in the principle of motivated action and 
partly to the principle of competence (Allwood, 1976).  

2.4 Dialogue Management Tasks 
The dialogue management component of a dialogue system is responsible for 
controlling the flow of the dialogue by updating the dialogue context and 
deciding what the agent should say next, and how to say it.  It may also include 



 29 

having access to domain and task knowledge. (See for example Traum & 
Larsson, 2003; Ginzburg & Fernández, 2010; Jurafsky & Martin, 2000).  

Speakers typically distribute their contributions in a structured way to avoid 
overlaps and misunderstandings, and they may give feedback and correct errors 
during the interaction. Bunt (1994) refers to these aspects of conversation as 
dialogue control functions and include features such as turn-taking and initiative. 
Other aspects, such as the number of participants, may have implications for how 
these control functions come into effect. Turn-taking, for example, becomes more 
complex when more than two persons are engaged in the conversation. In the 
following sections a number of tasks an NPC may need to be able to handle will 
be presented.  

2.4.1 Initiative 
A dialogue system can be single initiative, i.e., controlled by either the user (user-
directed) or the system (system-directed). In the former, the system waits for an 
input from the user and then attempts to provide an answer. In the latter, it is the 
system that asks the questions and consequently, the sense of being in control is 
restricted. On the other hand, when the system is in charge, language 
understanding becomes more robust since the system’s limitations are more 
obvious to the user. 

In ordinary face-to-face dialogues, any of the participants may initiate and/or 
control the dialogue and initiative may vary during the course of the interaction. 
This is typically referred to as having mixed initiative (see for example Allen, 
Guinn, & Horvitz, 1999). 

MIMIC – a voice-enabled telephone-based dialogue system (Chu-Carroll, 2000) 
is an example of a system that uses adaptive mixed initiative. The system 
automatically adapts the distribution of initiative based on the information 
extracted from user utterances and dialogue history.  

2.4.2 Turn-taking  
In dialogues there are at least two participants engaged in a conversation and they 
distribute turn in an orderly manner in order to avoid overlaps. If more than two 
participants are involved, turn taking becomes more complex since the 
participants now need a way to determine who should speak next. From studying 
transcripts of real human conversations Sacks, Schegloff and Jefferson (1974) 
found that people distribute turns in a regulated way and that turn-taking typically 
applies at specific points in the dialogue, for instance at sentence boundaries – 
something they refer to as a transition-relevance place (TRP). At a TRP the 
current speaker may select the next speaker, but if the selected speaker refuses to 



 30 

do so, another speaker may self-select. If no one takes the turn, the current 
speaker may continue.  

Turn taking in single initiative systems is easily regulated “because one agent 
initiates all interactions and waits for the appropriate response before moving on 
to the next interaction. Who has the turn is always well-defined, and the agent in 
control always initiates turns” (Allen, Guinn, & Horvitz, 1999).  

Spoken dialogue systems offer different ways for the user to interact with the 
system that will affect turn taking. In so-called “push-to-talk” systems, the user 
presses a button in order to input speech, which means that the system always 
knows when the user is about to speak. Other technologies that are available are 
“barge-in”, “wake-up commands”, and “always listening” (Alewine, Ruback, & 
Deligne, 2004). In barge-in systems, the user may input speech while an audio 
prompt is playing, which causes the prompt to stop playing; wake-up systems 
react to certain keywords and starts processing speech as soon as a keyword has 
been detected; and the always-listening systems, finally, are always prepared for 
a user input.  

Kronlid (2008) investigates turn-taking among a collective of (human or 
artificial) agents, and presents a dialogue manager for multiparty dialogues that 
for example can “identify and handle occurrences of shared TRPs, where the 
current speaker does not select an individual to become the next speaker, but 
instead selects a set of participants of which the next speaker should be a 
member” (p. 126). In multiparty settings, individual differences among the 
participants may also have to be considered; some participants may for example 
be more eager to take and hold the turn than others. The status of the participants, 
the distribution of roles (for instance doctor-patient, friends, mother-child etc.) in 
the situation and other contextual factors may also affect how, and if, the ordinary 
rules for turn-taking apply. Even silence may have to be considered as a turn, for 
instance when it occurs as the second turn of an adjacency pair (Jurafsky & 
Martin, 2000). Jan & Traum (2005) have studied these variations and present an 
algorithm for simulated turn-taking among background characters in a virtual 
world. In this case the actual information that is being exchanged is unimportant. 
Instead the “appearance of conversation and the patterns of interaction” have 
been in focus. Their simulation takes into account parameters such as 
probabilities for talkativeness (wanting to talk), transparency (producing explicit 
positive and negative feedback and turn-claiming signals), confidence 
(interrupting and continuing to speak during simultaneous talk), interactivity (the 
mean length of turn segments between TRPs) and verbosity (continuing the turn 
after a TRP at which no one is self selected). A first study showed that the agents 
simulating turn-taking were perceived to be more believable than those that had a 
random behaviour. This suggests that turn-taking behaviour among virtual agents 
needs to be unique for each individual agent, possibly in accordance with their 



 31 

personality type, and that the behaviour is regulated by rules rather than randomly 
selected. 

2.4.3 Incremental Text or Speech Processing  
Kempen & Hoenkamp (1982; 1987) argue that the stages in spontaneous speech 
production: conceptualization, formulation, and articulation, run in parallel and 
that sentence production therefore is performed incrementally. That is, when a 
segment has completed the conceptualization and formulation stage it can be 
articulated and meanwhile other segments are being processed in the first two 
stages simultaneously. Observations that support this claim include hesitations, 
fill-ins, barge-ins and false-starts, i.e. errors or disfluencies that could have been 
avoided if the process was serial.  

Most dialogue systems, however, generally process input in chunks and produce 
canned text responses, thus offering limited options for different types of 
interruptions. As a step towards creating more accurately modelled speech in 
spoken dialogue, Skantze and colleagues (Skantze & Schlangen, 2009; Skantze & 
Hjalmarsson, 2010) have presented a first attempt at generating speech 
incrementally and Visser and colleagues present a computational model for 
incremental grounding in spoken dialogue systems (Visser, Traum, DeVault, & 
op den Akker, 2012). It has previously not been possible to achieve incremental 
natural language processing using existing standard technology, but recently 
Google in cooperation with W3C presented the Web speech API11, which is a 
JavaScript-based API for creating speech-enabled web pages that support 
continuous speech input. 

For game dialogues based on natural language interaction, incremental 
processing would make it possible for the player as well as the NPCs to give 
continuous feedback, provide quick responses, interrupt and hesitate, and would 
thus be a valuable asset in creating believable dialogue behaviour.  

2.4.4 Multi-party dialogue  
A multi-party dialogue occurs when more than two participants engage in a 
conversation. In Façade, for example the player can engage in a conversation 
involving both characters, and in The Sims™ (Electronic Arts, 1998), socializing 
with the NPC constitute a large part of the gameplay and multi-party dialogue is 
implied even if the player only can address one character at a time.12 

                                                
11 <https://dvcs.w3.org/hg/speech-api/raw-file/tip/speechapi.html>. 
12 Several games in the Sims-series have been released, all sharing the core mechanics of the first 
game.  



 32 

Multiparty dialogues taking place in virtual environments increase complexity in 
several ways  (see e.g. Traum & Rickel, 2002): First, it may be difficult to 
identify the current speaker since the agent may be located outside the visual 
range displayed on the screen. Second, the user may have difficulties in 
separating the voices, especially when the source of the sound cannot be 
determined due to limitations of the sound system. Third, turn-taking may be 
confused when more than two agents are competing for the turn. Ways to handle 
multiparty dialogues among interactive agents have been proposed by for 
example Traum & Rickel (2002) and Kronlid (2008). 

2.5 Potential design differences 
between practical DS and game DS 

Game dialogues are in many ways practical, but some of the requirements that 
are important for practical dialogue systems may need to be adjusted to suit the 
game environment. Jokinen (2009, p. 99) summarizes the desiderata for a 
dialogue agent in the following four points: (1) physical feasibility of the 
interface, (2) efficiency of reasoning components, (3) natural language 
robustness, and (4) conversational adequacy.  

The first point (1) basically means that the agent should be easy to communicate 
with, including ergonomic as well as usability aspects. The second point (2) 
mainly concerns the response time. If the dialogue system takes too long to 
respond the interaction becomes frustrating for the user. The agent may also be 
perceived as impolite. However, based on previous studies, Jokinen means that 
users tend to be more forgiving towards an agent if it is interesting and novel 
(Jokinen & Hurtig, 2006) in (Jokinen, 2009). Natural language robustness (point 
3) means that the system is linguistically capable of handling the task. This is 
typically not an issue for simpler command-based systems that handle well-
structured tasks, but for more elaborate tasks Jokinen stresses the importance of 
high quality of the agent’s communicative abilities to increase the usability. The 
last point, conversational adequacy (4), refers in short to the agent’s capability to 
handle miscommunication cooperatively, appropriately and intelligently (see e.g. 
2.3.3). However, some of these requirements may perhaps be handled differently 
when designing game dialogue systems, which will be discussed below. Also, the 
requirements she suggests do not cover believability aspects and since they are 
important for NPCs the discussion below will also take such issues into account.     



 33 

2.5.1 Correctness and cooperativeness 
The user expects a practical dialogue system to be trustworthy and assumes that 
the information provided by it is correct and relevant. Cooperativeness is one way 
of making the interaction effective, functional, and user-friendly for the human 
user. Its benefits are obvious in these interactions since the user’s main interest is 
to solve tasks. If the CA asks irrelevant questions or starts to talk about 
something else the user might get frustrated and confused and become uncertain 
whether the task has been solved or can be solved altogether. Cooperativeness in 
Grice’s sense (see section 2.3.3) furthermore assumes a mutual interest in 
reaching a particular goal. If the agents have conflicting goals, however, the 
maxims might be violated (or in other ways fail to be fulfilled) on purpose with 
the intent to deceive or start a conflict for example.  

In a fictional setting, such as a game, the possibility of violating the maxims 
when appropriate (or necessary) may actually support a more believable 
behaviour, or as Hayes-Roth and Doyle (1998) put it: “Rather than correctly, 
animate characters must behave appropriately–given their roles, their 
circumstances, and their imperfect human-like natures” (p. 208).  

Since Grice’s maxims have been used to form the guidelines for designing 
dialogue systems it could be interesting to see how different violations to the 
maxims could be used to increase the believability of a game dialogue system: 

Maxim of Quantity: Many NPCs either give out too much information or too 
little information depending on the current game state and the interpersonal 
relationship. This is a tool for the designers to control how the events in the story 
are distributed. Information can also be treated as a reward, delivered when the 
player has achieved something in the game. Sometimes, a character reveals his 
whole life story to the PC – even though they just met. To overwhelm the player 
with information like that is in general not recommended and Sheldon (2004), for 
example, says that characters deserve more respect than being reduced to 
information booths.    

Maxim of Quality: If the participants have conflicting goals, one or both are 
likely to withhold information or lie. We can think of situations where an NPC 
provides the player with false information or withhold information until a 
relationship has been established or a certain game state has been reached. In the 
game L.A. Noire, for example, the player investigates a crime and must take into 
consideration that the people (NPCs) she encounters have reasons to lie or 
withhold information, which also are the explicit options presented to the player 
in the form of  “truth”, “doubt”, and “lie”. 

Another situation in which the maxim of quality may be violated is when the 
participants engage in a gossip conversation as they then might say something for 
which they “lack evidence” (see chapter 7.2).  



 34 

Maxim of Relevance: For the player, a violation of this maxim would be to talk 
about events and objects not belonging to the game domain for example. An NPC 
could also violate the maxim of relevance by not taking into consideration the 
player’s communicative acts or the history of the game session, which is an 
accumulation of the player’s previous actions. There is also a possibility that the 
NPC will provide irrelevant answers due to misunderstandings. In Façade 
(Mateas & Stern, 2005), for example, the NPCs select an answer from a set of 
general answers in case of a misunderstanding.13 This answer may be perceived 
of as an irrelevant, but since these phrases are relevant in the global context, it 
always makes sense in some regard. The player may therefore find the answer 
believable since it creates the illusion that the character either does not care too 
much about what the PC says, which could be excused by the fact the NPCs may 
be distracted due to their marital problems, or prefers to pretend not to have heard 
or understood. In a story-driven setting such as this one it is thus easier for the 
user to create a reasonable explanation for an irrelevant answer.  

Maxim of Manner: According to the maxim of manner, a speaker should try to 
be brief, clear and orderly and avoid ambiguities. How a speaker manages to 
follow these rules may be determined by its personality traits, social status, 
emotional state, and the current situation. For example, an extrovert character is 
possibly more talkative than an introvert character, a frightened or nervous 
character may have trouble being “orderly”, and the function of a character may 
involve using “obscurity of expressions” and “ambiguities, for example a wizard 
speaking in riddles. In general an NPC does not need to follow any rules of 
etiquette, it only needs to play its part in a fictional story – be it functional or 
social – in a believable way.  

2.5.2 Reliability and Efficiency 
The purpose of interacting with a traditional CA is to be provided with a certain 
service. It is therefore important that the CA behaves consistently and that the 
interaction has a predictable outcome. In games, on the other hand, the 
believability of the character may clash with the predictability of the dialogue 
system. This requirement is also related to cooperativeness as discussed above. 
An unfriendly NPC, for example, could have good reasons for lying to the PC, 
especially if its goal is in conflict with the PC’s goal. 

The main motivation for interacting with a practical CA is to successfully 
perform a certain task. One requirement for achieving high user satisfaction in 
these interactions is efficiency, which includes limiting the number of turns and 
seeing that the response time is acceptable (see for example Walker, Kamm, & 
Litman, 2000). In a game, there can be several reasons for the player to engage in 

                                                
13 Answers are primarily selected to suit the local context.   



 35 

a dialogue: to socialize, get game hints or quests, or just for entertainment. A 
friendly NPC should perhaps be designed to handle longer exchanges and a 
variety of topics, while the requirement of a neutral NPC might be to efficiently 
and reliably help the player (or PC) to achieve some goal. 

2.5.3 Error Handling  
Error handling mainly concerns two different types of errors: no input and no 
match. The former refers to situations when the user is silent, i.e. when the 
system cannot detect any input, while the latter occurs when the system fails to 
understand the user’s utterance. Problems in understanding can be of two types 
(Skantze, 2003, 2007): misunderstandings and non-understandings. Basically, 
misunderstandings occur when recognition works but the dialogue system 
misinterprets the user’s intention, while a non-understanding occurs when it fails 
to obtain an interpretation altogether. The quality of the dialogue system may 
have strong impact on how the user perceives the system, which may be 
evaluated in terms of how many times the user must repeat the utterance before 
the dialogue system understands (Walker, Kamm, & Litman, 2000). Any 
dialogue system must be able to handle upcoming errors, but the strategies may 
differ. When the aim of a practical dialogue system is to (cooperatively, see e.g. 
point 4 above) reach a level of understanding in the dialogue that will lead to a 
successful completion of the task, a game dialogue system may allow an NPC to 
behave irrationally or emotionally instead. It can pretend to have understood, 
change subject or perhaps just end the dialogue abruptly (see for example Reilly 
& Bates, 1995).  

2.5.4 User Role and Setting 
We would also like to point to the fact that the user’s role and the setting may 
affect the design choices. A typical CA may assume that the user will play a role 
that is part of his or her real identity (see for example Gee, 2003), such as pupil, 
doctor, or soldier. Whereas a human interacting with an NPC will be assumed to 
play a fictive role, designed at least in part by the game system (see also section 
3.2.1). 14 This change in perspective may have implications for how the human 
participant behaves, what expectations the human has of the NPC’s abilities, and 
the purpose for interacting, all of which in turn may be influenced by the player 
type.15   

                                                
14 For example, in most role-playing games, the player can define the characteristics of her avatar, 
but the properties to choose from are defined by the game system. 
15 Bartle (1996) presents a rough classification of player types, consisting of four dimensions: 
achiever – basically referring to players whose main motivation is to seek rewards, killers – 
players who seek pleasure in sabotaging other players’ game, socializers – who wants to interact 
with other players, and explorers – players whose main motivation is to investigate and explore 



 36 

2.6 Rule-based Approaches for 
Dialogue Management 

Several different approaches exist to dialogue management (DM) for spoken 
dialogue systems and they can be divided into three broad areas (see e.g. Lee, 
Jung, Kim, Lee, & Lee, 2010): rule-based DM, data-driven/statistical DM, and 
hybrid DM. Rule-based DMs are regulated by handcrafted rules. The data-driven 
approaches use machine-learning techniques to accommodate the inherent 
uncertainty of the ASR and are usually based on Markov Decision Processes 
(MPDs), in particular Partially Observable MPDs (POMDPs) (e.g. Pieraccini, 
Suendermann, Dayanidhi, & Liscombe, 2009; Young et al., 2010). The last area, 
hybrid dialogue management, uses a combination of the rule-based approaches 
and the statistically based approaches, where rules are defined to constrain the 
possible actions and thereby rule out those actions that are inappropriate in the 
current situation.  

As have already been mentioned, the current versions of SCXML and VoiceXML 
require extensions to the standard in order to support stochastic-based dialogue 
management. Griol, Callejas, and López-Cózar (2010) present a proposal of how 
to integrate statistical approaches to VoiceXML and we expect to see more 
examples such as this one in the future, but currently these approaches are 
investigated in research projects and are not used for commercial purposes.  

The rule-based approaches may be classified according to their complexity, 
ranging from least to most complex: Finite state-based, frame-based, plan-based 
and agent-based (e.g. Allen et al., 2001; McTear, 2002). The information state 
update approach (Larsson & Traum, 2000) has elements of all the 
aforementioned. In the following sections each of these strategies will be 
presented, followed by a section discussing the different approaches towards 
dialogue management in relation to standard web technology. In 4.5 we will 
discuss and present examples of how these strategies may be implemented using 
SCXML.  

2.6.1 Finite State-based Approach 
Simple practical dialogues can be successfully modelled using a finite state-based 
approach. Consider for example the following dialogue for ordering a ticket 
between different planets in the solar system:  

S:  What planet would you like to go from? 
U:  From Pluto to Mars 

                                                                                                                                
every inch of the game system and the game world. Depending on the motivation behind the play, 
different behaviours are revealed (see for example Yee, 2005) 



 37 

S:  Sorry dude, I didn’t get that 
U:  Pluto 
S:  To which planet? 
U:  Mars  

Dialogue 3: An example of a dialogue between a space travel agent and a 
customer 

In order to provide the user with the requested service – to order a ticket between 
two planets – the system needs to know the planet to departure from as well as 
the destination. In a finite state-based system, this information must be provided 
one at a time in a predefined order. In this example, the system starts by asking 
for the departure planet and when an acceptable input has been given, the system 
continues to ask for the destination. In order to be understood the user may not, as 
in the example above, provide both the departure and destination in one and the 
same utterance.   

A finite state-based system can be visually represented by a graph consisting of 
nodes denoting states and directed, labelled arcs connecting the nodes denoting 
transitions between the states. The graph in Figure 9, below, illustrates Dialogue 
3, above. 

Figure 9: A finite state graph representing a simple practical dialogue 

At each state the dialogue system will generate a prompt. Typically this is a 
canned text response (see e.g. Jurafsky & Martin, 2000) in the form of a pre-
recorded utterance requesting specific information from the user. The system will 
change state if it can match the user's input with any of the outgoing transitions 
from the current state. If not, it will either re-prompt or start over (for instance 
after a number of re-prompts). This means that every exchange is within the 

To which 
planet?

What planet are 
you leaving 

from?

Is-planet(answer)

Sorry dude, I 
didn’t get that.

No-match
Is-planet(answer)

I’m sorry, I still 
don’t 

understand.

No-match
No-match

Is-planet(answer)



 38 

scope of the domain and the current state determines whether or not the input is 
accepted. The conversation is typically system-controlled with the advantage that 
the range of possible (or rather expected) user input is limited enough to perform 
a more robust recognition of the user’s speech. Furthermore, since the system 
operates in a limited domain, ambiguity can be avoided to a greater extent since 
the system can assume the domain-specific interpretation (if such is available) 
(see 2.3.1).  

2.6.2 Frame-based Approach 
A frame-based16 system is in Allen et al.’s (2001) classification regarded as more 
complex than a finite state-based system as it can elicit information in any order 
from the user and fill several slots of information from one user turn. This means 
that a frame-based system requires the following components: (1) A frame (or 
template) that keeps track of the items of information that the system has to elicit 
from the user, (2) a more extensive recognition grammar, and (3) a dialogue 
control algorithm that can determine the system's next actions based on the 
contents of the frame (McTear, 2004). 

The following dialogue example (Dialogue 4, below) is a translation of an 
authentic conversation between the Swedish national rail company (S) and a user 
(U): 

S:  Hello and welcome to SJ. Choose one of the following services: 
Timetable or cancellation.  

U: Timetable 
S:  From where do you want to go, and where to? 
U:  Stockholm and to Alingsås 
S:  From Stockholm Södra to Alingsås. Is that correct? 
U:  From Stockholm central station 
S:  Sorry, I did not get that. Please answer yes or no. From Stockholm 

Södra to Alingsås? 
U:  No 
S:  From where do you want to go and where to? 
U:  From Stockholm central station to Alingsås 
S:  From Stockholm central to Alingsås. Ok.  
S:  When do you want to leave? 
U:  Today 
S:  Today, the 17 of March, ok.  
S:  What time do you want to leave? 
U:  at two o’clock 
S:  at 1400. Do you want to exclude departures with buses or X2000? 
U:  No (Quiet) 
S:  Sorry, I did not get that. Do you want [to exclude] 
U:  [No] 

                                                
16 Also known as form-based systems 



 39 

S:  There is a train leaving from Stockholm at 16:09, arriving in 
Alingsås at 19.15.  

Dialogue 4: Talking to SJ conversational agent – an example of a practical 
dialogue 

In order for the agent to be able to solve the task, it needs to acquire certain 
information from the user, such as point of departure, destination, date and time. 
In this example the agent starts by requesting the cities of departure and 
destination. Even if the agent does not explicitly ask for any other information, it 
can understand and handle any relevant information provided by the user, see e.g. 
Table 2, below (square brackets indicate implicit slots): 

 

Speaker Utterance Slots in frame 
S:  From where do you want to go, and where 

to?  
<from=?> 
<to=?> 
[<date=?>  
<time=?>] 

U:  I would like to go from Stockholm to 
Alingsås today at three o’clock 

to=Alingsås, 
from=Stockholm  
date=today  
time=three o’clock  

S:  You want to go from Stockholm central to 
Alingsås today, the 17 of March, at 1500. 
Is that correct?  

<from=Stockholm> 
<to=Alingsås> 
<date=17 of March> 
<time=1500> 

Table 2: Example slots in a frame-based dialogue system 

This is because all the information that the agent needs in order to be able to 
accomplish the task is collected within the same semantic frame (see e.g. Seneff, 
et al., 1991). SJ’s conversational agent is thus a typical example of a frame (or 
form)-based system, i.e. a system that have empty slots that the user must fill in 
with data necessary for completing the task, just like traditional user interfaces 
(UIs). The slots can be filled in any order (at least initially) and several slots can 
be filled after one user turn, as in the example above. Since the user can 
“override” the system’s question by providing more information than was asked 
for, frame-based systems are often regarded as having mixed initiative (see 
2.4.1). Other examples of frame-based systems are ATIS (Seneff et al., 1991), The 
Philips automatic train timetable information system (Aust, Oerder, Seide, & 
Steinbiss, 1995), and MIMIC (Chu-Carroll, 2000). VoiceXML is another example 
of a frame-based system. The Form Interpretation Algorithm (FIA) that is used to 
fill the form in VoiceXML iterates through three phases: select, which identifies 
the next form item to be visited; collect, in which input is gathered; and process, 
during which the collected data is processed. VoiceXML handles mixed initiative 
through the <initial> element, which allows the user to provide data for any 



 40 

or several of the fields in the form at the initial prompt. If there are remaining 
slots to be filled after initial has done its task, FIA revisit each empty slot in 
document order in a finite state-based manner until the form has been completed.  

2.6.3 Plan-based Approach 
For more complicated tasks, for instance tasks that require some form of 
collaboration or reasoning, more complex systems may be required. Such a 
system may need to be able to identify a goal and plan a sequence of actions to 
reach the goal under the current circumstances.  These systems are referred to as 
plan-based systems and are suitable for creating expert systems, such as the 
Circuit-Fix-It Shop system (Smith & Hipp, 1995), in which the user and agent 
collaborate to solve a task in an otherwise static environment.  

Plan-based systems are often based on the Belief Desire Intention (BDI)-model 
(Bratman, 1987) for specifying the agent’s plans. The belief represents the 
agent’s perception of the world; the desire corresponds to the agent’s needs and 
wants, while intention refers to the agent’s plan to pursue a goal to satisfy the 
need (desire). The plan is constructed according to the agent’s belief about the 
world.  

In dynamic environments, such as virtual worlds, the preconditions for executing 
the plan may change. That is, the agent’s belief no longer corresponds to the 
actual state of the world. In this case the agent may need the ability to re-plan in 
order to achieve the goal, or change goal if desires change. These systems are 
sometimes referred to as agent-based systems (Allen et al., 2001; McTear, 2002).  

To use a plan-based approach for modelling character behaviour in games is 
uncommon since it is too complex, requires too much CPU to process, and is 
difficult to debug. One exception is the game F.E.A.R. in which the developers 
made an attempt to create richer characters by use of so called Goal-Oriented 
Action Planning (GOAP) (Orkin, 2006). The NPC state machines had only three 
states but used the A* algorithm to plan sequences of actions that would lead to a 
successful completion of a desired goal in addition to the more common use of 
path-finding. This way the characters’ behaviours could be varied since different 
actions could be taken to reach a particular goal (Orkin, 2006; Yue & de-Byl, 
2006).  

Even though a system is not capable of planning, i.e. generating a plan in real-
time, it may still be able to specify plans in order to achieve a particular goal. The 
waiter character presented in chapter 1, for example, used a plan in order to serve 
the customer the requested dish (see Figure 2). Plans may thus be constructed 
using statecharts, and other finite state-based approaches, but they cannot be 
generated on the fly using these approaches.   



 41 

2.6.4 Information State Update Approach 
The information state update approach (see e.g. Cooper & Larsson, 1998; 
Larsson & Traum, 2000) takes the advantages of the plan-based approach and 
combines it with the advantages of the simpler finite state- and frame-based 
approaches. Similar to the plan-based approach, an information state can contain 
information about the “mentalistic notions such as beliefs, intentions, plans, etc.” 
as well as the dialogue state (Traum & Larsson, 2003). 

“The term INFORMATION STATE of a dialogue represents the information 
necessary to distinguish it from other dialogues, representing the cumulative 
additions from previous actions in the dialogue, and motivating future action” 
(Larsson & Traum, 2000). An information state is conceived of as consisting of 
several interaction components rather than as a monolithic node. Depending on 
the dialogue that is being modelled, the kind of components may vary, indicating 
that the ISU approach should be viewed as rather “empty” framework that needs 
to be filled with theoretical content (see for example Larsson & Traum, 2000, p. 
326). Larsson (2002), for example, implements a theory of issue-based dialogue 
management for handling questions under discussion based on Ginzburg’s notion 
of a dialogue game board (Ginzburg, 1996). A simplified version is also used to 
exemplify the ISU approach in (Larsson & Traum, 2000). 

In an information state for a dialogue participant, private information is separated 
from the information common for all participants. Given the example used in 
(Larsson & Traum, 2000), the private information consists of two fields: the 
participant’s beliefs (Bel) – a static set of propositions, and the participant’s 
agenda (Agenda), which is a stack of (local) actions – in general those actions 
that should be performed in the next move (Cooper & Larsson, 1998). The set of 
common beliefs are those propositions that represent the common ground (see for 
example Clark & Brennan, 1991), in this case the information that has been 
established during the conversation. The second common field is QUD – a stack 
of questions under discussion. The latest dialogue move performed (lm) is also 
part of the shared information. In the information state approach, a dialogue move 
(for example an utterance) will trigger an update of the information state 
according to a set of update rules. The update strategy decides which rule(s) 
apply at a given point, from the set of applicable ones (Larsson & Traum, 2000).  

The TRINDI Dialogue Move Engine Toolkit (abbreviated to TrindiKit) (Larsson 
& Traum, 2000) has been acknowledged as the first implementation of the 
information based approach to dialogue management (Bos et al., 2003). A later 
example is DIPPER that “borrows many of the core ideas of the TrindiKit, but is 
stripped down to the essentials” (Bos et al., 2003). Chapter 4.5.4 presents how 
Kronlid and Lager (2007) have implemented the ISU-approach using SCXML. 



 42 

2.7 Discussion 
The first part of this chapter introduced conversational agents and classified 
conversational NPCs as a type of ECAs. The roles the NPCs possess were then 
further divided into friendly, unfriendly and neutral, based on Isbister’s (2006) 
classification in order to determine what type of dialogues they are likely to 
engage in, if they are likely to engage in dialogue at all.  

Interacting with neutral NPCs, such as traders and informers is typically a goal-
directed activity in which the characters engage in a practical dialogue and will in 
many respects resemble interactions with traditional ECAs. It is in general also 
important that the NPC is reliable and fairly cooperative to avoid user frustration. 
In these situations, the primary goal is not to socialize but to solve a particular 
task and the participants are expected to follow certain conventions associated 
with the task. It should furthermore be noted that practical dialogues have been 
successfully implemented in commercial systems using a finite state- or form-
based approach and an example of a practical dialogue situated in a game-like 
environment was presented in chapter 1.3.  

Practical dialogues in games is one possible use of natural language interaction in 
games, but for some game characters other types of dialogues are more relevant 
to engage in. With friendly NPCs, for example, the PC may develop a social 
relationship, but in order to do so they also need to be able to engage in casual 
conversations, i.e. conversations that are motivated by “interpersonal needs” 
(Eggins & Slade, 1997). In Chapter 7 approaches towards modelling casual 
conversations will be discussed.. 

It was also suggested that it could be interesting to have unfriendly NPCs that 
constitute non-violent obstacles to the player. They could for instance obstruct 
the player’s progression in the game by spreading lies or in other ways 
manipulate the player (character). This is also a kind of a socially oriented 
dialogue and requires that the NPC is socially skilled. In chapter 5, a waiter 
character with the ability to adjust its behaviour according to the situation is 
introduced.  

 



 43 

Chapter 3  

Game Dialogues 
The dialogue (language) spoken by the characters and the opportunities for 
the player to engage in dialogue are another material resource for action. 
Dialogue is a powerful means for characters to express their thoughts; it is 
instrumental for helping the player to infer a model of the characters’ 
thoughts. Conversely, dialogue is a powerful means to influence character 
behaviour. If the experience makes dialogue available to the player (and 
most contemporary interactive experiences do not), this becomes a powerful 
resource for expressing player intention. (Mateas, 2001, p. 144). 

This chapter will explore and analyse how dialogues with NPCs are treated in 
games today. Various games will be investigated in the search for patterns 
associated with dialogues and dialogue management tasks that recur in games. 
Actual and potential uses of a game dialogue system will be expressed by means 
of gameplay design patterns (Björk & Holopainen, 2005) and it will be 
investigated how novel gameplay can be created by use of natural language 
interaction. The next chapter will follow up on this and present an approach for 
managing natural language dialogues in games.  

3.1 Layers of Computer-based Games 
Computer games as artefacts are multi-facetted means of expression combining 
various artistic disciplines, such as visual art, sound, music, and storytelling, with 
low-level data representations and algorithms in order to create an interactive 
experience for one or more players.  

Playing a game means interacting with the game objects under restrictions 
defined by rules through an interface. Figure 10 shows the relationship between 
the layers involved when playing a game as illustrated by game designer Ernest 
Adams (2010): 

 

 

 

 



 44 

Figure 10: Layers of a computer game (Adams, 2010) ©Ernest Adams, 2010. 
Used by permission 

The User Interface (UI) presents the run-time behaviour of the mechanics as an 
effect of the player’s input – also known as the dynamics of the game (see for 
example Hunicke, LeBlanc, & Zubek, 2004). The player’s interaction with the 
game dynamics and the responses to those actions, i.e., “the structures of player 
interaction with the game system and with other players in the game” (Björk & 
Holopainen, 2005) is often referred to as gameplay. In Adams’ (2010) model 
gameplay is more specifically defined as (1) the challenges that a player must 
face to arrive at the object of the game, and (2) the actions that the player is 
permitted to take to address those challenges (p. 38). In simpler terms, Sid Meyer 
suggests gameplay to be “a series of interesting choices” (quoted in Rollings & 
Morris, 2000). A gameplay mode consists of the particular subset of a game’s 
total gameplay that is available at any one time in the game, plus the user 
interface that presents that subset of the gameplay to the player (Adams, 2010, p. 
40).  

Figure 11:  Interaction Model (Adams, 2010) ©Ernest Adams, 2010. Used by 
permission 

The UI consists of two components: the interaction model and the camera model 
(see Figure 11, above). The interaction model describes the relation between the 
player’s input via the controls and the response to that action from the game 
system. It communicates the player’s possible and impossible actions and is 
responsible for sending the player’s input to the core mechanics. The camera 
model displays the game’s simulated physical space using graphics from a set 
point of view.  



 45 

The core mechanics constitutes the data representations and algorithms, i.e. the 
code layer, in which the game rules are specified, and describe the “essential play 
activity players perform again and again in the game” (Salen & Zimmerman, 
2004). Game mechanics is thus a means or method that facilitates player 
interaction according to the rule-set to attain the goals stated in rules (e.g. 
Hunicke, LeBlanc, & Zubek, 2004; Järvinen, 2008; Sicart, 2008). Game 
mechanics can also be described as “any part of the rule system of a game that 
covers one, and only one, possible kind of interaction that takes place during the 
game, be it general or specific” (Lundgren & Björk, 2003).  

Games are designed with a player experience in mind and so “Player” is regarded 
as one of the layers involved in game design. However, the desired experience or 
“fun” factor varies depending on game genre. A horror game is successful or 
regarded as “fun” if the player experiences fear, for example, while an adventure 
game might rely on a strong story. Hunicke, LeBlanc and Zubek (2004) have 
therefore made an attempt to move beyond the concept of “fun” or “gameplay” 
and instead classify games according to their aesthetic experience, which they 
describe as “the desirable emotional responses evoked in the player, when she 
interacts with the game system”. Aesthetics constitute one of the layers in their 
MDA (Mechanics, Dynamics, Aesthetics) framework, aimed for reasoning about 
game design using different “lenses”, or views – the player’s as well as the 
designer’s.  

3.2 The Game Setting 
Similar to reality-based virtual worlds, (story-driven) game worlds are dynamic 
and populated with characters that regard the virtual environment as their primary 
domain (using Clark’s, 1996, sense). The game world may however differ 
significantly from the real world (as we know it) since it typically has a fictional 
framing. Juul (2005) suggests that video games are “half-real” since they apply 
real rules to fictional worlds. The game may use analogies from the real world, 
but there is typically no claim for it to be a perfect real-world simulator. Instead, 
simulation games are “stylized” and only implement “what are considered 
interesting core parts of the real-world game” (Juul, 2005): 

[…] games are often stylized simulations; developed not just for fidelity to 
their source domain, but for aesthetic purposes. These are adaptations of 
elements of the real world. (p.172) 

This applies to NPCs as well, not only because that makes them more interesting, 
but also because of the complexity of simulating human behaviour. A notable 
example are the characters in The Sims™ (Electronic Arts, 1998), as they 
simulate human life in most respects; they eat, sleep, go to work, study, use the 
bathroom and socialize with each other, but they do not spend time paying bills 



 46 

for example even though bills have to be paid in the game. Instead, this action has 
been simplified to a single click with the mouse. The game (like many other 
games) also uses time anomalies to allow time to run at a faster pace than 
ordinary time.  

3.2.1 The Player 
In character-based games the player is typically represented by an avatar – an 
extension of the player into the game world (Wilhelmsson, 2001). The player’s 
interaction with the other game characters is thus conducted through the filter of 
the avatar and the player is assumed to play a specific role that is an integral part 
of the game’s story. Bartle (2003) distinguishes three levels of immersion the 
player may experience in this relation: at the lowest level he describes the avatar 
as a “puppet” to which the player has no emotional attachment. In that respect the 
avatar is merely a tool for interacting in the world. A player character is an 
extension of the self in the world and anything that happens to the player 
character also happens to one self. The highest level of immersion is achieved 
when the player is the character – which is when the character becomes the 
player’s persona:  

You're not role-playing a being, you are that being; you're not assuming an 
identity, you are that identity. If you lose a fight, you don't feel that your 
character has died, you feel that you have died. There's no level of 
indirection: you are there. (Bartle, 2003, p. 155) 

The PC is typically the protagonist of the story and the players’ goals are a 
reflection of the goals they wish to pursue for their character. When Bartle 
describes the relationship to the avatar in terms of different levels of immersion, 
Gee (2003) discusses the different player identities involved in play: the virtual 
identity, the real identity and the projective identity. The real identity corresponds 
to the physical person playing the game, while the virtual identity corresponds to 
the player’s representation in the game world. The character’s successes and 
failures are a result of the physical person’s actions, combined with the virtual 
character’s restrictions and abilities in the game world. The projective identity, 
lastly, is the interface between the virtual and the real identity and means both “to 
project one’s values and desires onto the virtual character” as well as “seeing the 
virtual character as one’s own project in the making, a creature whom I imbue 
with a certain trajectory through time defined by my aspirations for what I want 
that character to be and become [...]” (Gee, 2003, p. 55). Wilhelmsson (2001) 
prefers to use Game Ego because it “emphasizes its connection to the game 
player as being a part of him or her” (p. 166). Thus, a player has different 
identities when playing a game and different types of avatars offer different 
levels of immersion. This is different from interacting with a traditional ECA as 
these interactions usually are conducted within the user’s primary domain. Only 



 47 

when the user enters a virtual world may some similarity appear, but since these 
most often mirror real situations the user is still expected to use his or her real 
identity in these situations, even though it may mean using a specific role in a 
specific semiotic domain. It is reasonable to assume that the player’s relation to 
its avatar and the fictional world will have impact on their behaviour during play 
and that the expectations of the interactions with other characters in this world are 
different from those that have a real-life framing.  

3.2.2 Interactivity and Agency 
While reading a book or watching a movie in the traditional way is a linear 
process, even if the story uses back-flashes or time-jumps (Chatman, 1978), 
playing a game is most often a non-linear process that can take different turns 
depending on the player’s actions. Through his or her actions, the player can 
interrupt as well as re-direct the on-going exposition. This means that the player’s 
actions affect the outcome of the game in different ways and that one play session 
almost never is exactly the same as a previous one. Interacting with the characters 
that populate the world may for example affect their present behaviour as well as 
their future actions. Ryan (2001) calls the ability to respond to changing 
conditions determined by the user’s input “resource interactivity” and continues 
by distinguishing between four strategic forms of interactivity based on 
combinations of two binary modes of interactivity; internal-external modes and 
ontological-exploratory modes. In the internal mode the player uses his or her 
projective identity as described earlier in chapter 3.2.1, i.e. by experiencing the 
world from a first-person perspective using an avatar. In the external mode, the 
player is situated outside the context of the game, typically experiencing the 
game from a god-like perspective with an unclear role in the fictional world, as in 
The Sims (Electronic Arts, 1998), Black & White (Lionhead Studios, 2001) and 
most strategy games. In the other dichotomy, the exploratory mode stands in 
opposition to the ontological mode. In the former the world and plot is already 
created and cannot be altered, while it in the latter is unfolded on basis of the 
user’s choices: “These decisions are ontological in the sense that they determine 
which possible world, and consequently which story will develop from the 
situation in which the choice presents itself” (Ryan, 2001). Combining these 
modes generate the following forms of interactivity:  

• External-exploratory. The main type of interactive narrative that belongs 
to this category is hypertexts, in which a user may navigate through a 
network of textual fragments in a random fashion without participating in 
the fictional world. Even though a game could be constructed as a 
hypertext with included dialogues it would not offer the kind of player 
participation that is interesting for our purposes. 



 48 

• Internal-Exploratory. The user participates in the fictional world, but his 
or her role in the world is limited to actions that have no bearing on the 
narrative events. Typical examples are action-adventure games such as 
Myst (Cyan, Inc., 1993), Max Payne (Remedy Entertainment, 2001) and 
L.A. Noire (Rockstar Games, 2011). Ordinarily, dialogues are conducted 
through menus (will be discussed further down in this section). 

• External-Ontological. The user interacts using a god-view and may 
determine the fate of the characters by choosing a path at decision points. 
Hence, the player is situated outside the game diegesis without a single 
avatar to control. The Interactive Storytelling system presented earlier 
(see 2.2.4) is inspired by the sitcom television show “Friends” and makes 
use of this type of interactivity (Mead, Cavazza, & Charles, 2003). The 
audience may change the outcome by giving suggestions to the characters, 
but have no role of its own in the story.  

• Internal-Ontological. In this mode, the user is given a particular role and 
determines their fate by acting within the time and space of a fictional 
world. For each run, a new life and life-story is produced and the destiny 
of the character is created dramatically by being enacted rather than 
diegetically by being narrated. Emergent games, such as the Grand Theft 
Auto series (Rockstar Games, 1997-2010) (GTA hereafter) belong mainly 
to this category, even though they contain linear assignments to pursue in 
order to progress the over-arching story. Dialogues may occur in these 
games, but since the player is free to move around, dialogues as well as 
other types of narrative blocks, may have trouble in taking the history of 
the play session into consideration and logical mistakes can therefore be 
made.  

Different gameplay modes may use different forms of interactivity and a game 
may thus have elements of more than one of the aforementioned combinations. In 
Heavy Rain (Sony Computer Entertainment, 2010), for example, the player acts 
through four different characters and the actions performed through each of the 
roles affect how the story progresses and finally ends. But, even though the game 
features several different paths and endings, it still is predefined and the destiny 
is therefore enacted through the limitations of the narrative. It could thus be 
described as an internal-exploratory game with some ontological elements. The 
games in the GTA-series (Rockstar Games, 1997-2010) present a similar 
combination, but here the player can choose to play either mode. There is a 
narrative to unfold, but this can be ignored altogether if one prefers to play 
around in the open game world. In that respect GTA is a typical example of an 
Internal-Ontological interactivity form, a sandbox game. 

As can be noted, the different forms of interactivity determine whether the player 
experiences agency or not, that is “the satisfying power to take meaningful action 



 49 

and see the results of our decisions and choices” (Murray, 1997, s. 126). Mateas 
(2001) means that a player will experience agency when there is a balance 
between the material (that is, the materialisation of the narrative that can be 
experienced by the audience, e.g. objects, language) and formal (e.g. the plot) 
constraints. Imbalance may then be experienced when the there are many things 
to do but no way to tell whether one action is more preferable than another or as 
Ryan (2001) suggests, “opportunities for action must be frequent, […] but to 
maintain the narrative on the proper track, the range of actions must be severely 
restricted”.  

3.2.3 Game Dialogues 
When entering a dialogue, the player typically is faced with a text-based menu 
containing the various options available at the current game and/or dialogue state. 
In some games the options display the utterance as told verbatim by the PC, as in 
Grim Fandango (LucasArts, 1998a) (see Figure 12, below).  

Figure 12: Picture of dialogue menu in Grim Fandango (LucasArts, 1998) 

Morrowind (Bethesda Game Studios, 2002) presents the player’s choices as 
hypertext linked to a database, where each choice is an abstract description of the 
dialogue content (see Figure 13, below). Games such as Mass Effect (BioWare, 
2008) and its successors use a similar representation, but present the player’s 
options in a dialogue wheel instead (see Figure 14, below).  

Most game dialogues are constructed as branching trees, i.e. giving options to the 
player that each expands a new branch in the tree. This makes them susceptible to 
combinatorial explosion (Adams & Rollings, 2007; Bateman, 2007) and so to 
limit the possibilities they often have dialogue menus with options that eventually 



 50 

fold back to one single dialogue menu, or link back to a previous menu (see e.g. 
(Adams, 2010, s. 187).17  

 

Figure 13: Picture of dialogue menu in Morrowind (Bethesda Game Studios, 
2002) 

 

Figure 14: Picture of dialogue wheel in Mass Effect (BioWare, 2008) 

Engaging in a dialogue typically means entering a new gameplay mode that is 
separate from the other game activities (see e.g. Adams, 2010, pp.186-192). In 
most games the switch is visibly noticeable, as in early adventure games, e.g. 
Maniac Mansion (Lucasfilm Games, 1987) and Grim Fandango (LucasArts, 
1998a), and role-playing games, e.g. Planescape Torment (Black Isle Studios, 
                                                
17 Cf. branching stories, where each branch in the story tree represents a unique plot line. 
However, in order to keep the number of different paths limited the branches eventually fold back 
to a single path or join another parallel branch. 



 51 

1999). Even though dialogues in more recent game examples still are conducted 
in a separate gameplay mode the switch is less obvious to the player since the 
game seems to go on while the PC is engaged in the dialogue, as in for example 
The Elder Scrolls V: Skyrim (Bethesda Game Studios, 2011) and Mass Effect 
(BioWare, 2008).  

Game dialogues are a means for moving the story, and thus the game, forward. In 
order to do this “[t]he words of the characters have affordances in that they reveal 
salient features of the game environment” (Wilhelmsson, 2001, p. 218) i.e., 
within an utterance the NPC can give hints to the player about important places, 
events, and characters by introducing them as new topics that the player later can 
ask about. Typically, the information is distributed in steps to resemble ordinary 
human dialogues. In the dialogue excerpt from the game Space Bar (Boffo 
Games, Inc., 1997), presented below, the player can either encourage Soldier 
714-Z-367 to tell his story (option 1), or opt out for the information by selecting 
the second alternative:  

1. ENCOURAGE HIM 

Alias Node: “I've got lots of time and lots of curiosity. Let's hear your 
story.” 

Soldier 714-Z-367: “I once lived the routine life of a soldier, in the 
service of the greatest of Zzazzl queens, the revered Zzoonz. Ours was the 
finest swarm on P'zzazz. I was in charge of guarding her majesty's 
tapestries, a position of great importance and responsibility.” 

2. CHANGE THE SUBJECT 

Alias Node: “I'll take a rain check on the story. But tell me, have you 
seen anything strange around here today, or seen anyone acting kind of 
odd?” 

Soldier 714-Z-367: “Other than you asking many questions, no.” 

The first alternative (1) provides the player with new facts (underscored) to ask 
about in the second round. The second alternative (2) however results in a dead 
end. Different forms of challenges can be added to the dialogue, such as requiring 
of the player to use the right phrasing or identifying specific goals that must be 
accomplished in order to progress the game. Such a goal could for instance be to 
manage to get specific information or objects from the character (as in the 
example above). In this particular example, the choices presented to the player 
are in the form of the communicative acts (“encourage him” and “change the 
subject” respectively) rather than the exact phrases that the PC (Alias Node) 
actually says.  

Game dialogues are thus highly functional and serve the player with the proper 
background information to understand the game and get motivated to take certain 



 52 

actions in order to progress the game. Other functions include trading and 
delivering quests, i.e. game objectives that the player may try to accomplish. 
Moreover, as in other fictional stories, the dialogue is essential for revealing 
information about the (main) character (see e.g. Field, 2005). In the light of this, 
dialogue trees with scripted options seem to offer some advantages: (1) The 
scriptwriter has full control of the system and the different dialogue paths are 
determined in advance, (2) the scriptwriter does not have to consider other 
possibilities than those presented to the player, (3) the system understands all 
input from the player and has answers to them, thus making it easier to control 
the flow of the dialogue and to create dialogues that are consistent with the game 
as a whole, (4) the player does not get stuck by not knowing how to formulate a  
relevant question. Instead the challenge can be to choose the option that most 
likely will help the player forward, and finally, (5) the NPC’s, as well as the PC’s 
phrases can be recorded by actors casted for a particular role. 

Menu-based dialogues, such as the one presented above, however suffer from 
certain limitations: (1) the player cannot choose another dialogue move apart 
from those that are displayed in the interface, and any update of the options is not 
to be expected unless the player reaches another game (or dialogue) state. This 
means that there might be a lack of options that mirror the player’s intentions. 
Hence the player may not experience agency in the dialogue. (2) In time the 
player may have figured out how the system works and manage to choose the 
right path immediately, thus making the other options superfluous. If, or when, 
the structure has been identified, the dialogues become predictable. This can also 
affect agency as the player may be faced with a number of options but cannot 
determine which alternative is the most preferable. Since some of the alternatives 
are unimportant, choosing them is meaningless since the outcome is not changed: 
“The meaning of an action resides in the relationship between action and 
outcome” (Salen & Zimmerman, 2004, p. 157). (3) As was discussed earlier, 
game dialogues are typically conducted in a separate interface, thus treating the 
dialogue actions as different from other actions. In this case, the mode of 
interactivity appears to turn from internal to external (as in the dialogue example 
above), where the player browses through a number of options leading to a 
certain outcome rather than experiencing the conversation as part of the diegesis. 
(4) The player may be able to get information from the character, but the player 
cannot provide new information in return (i.e. add new information to the game 
system). (5) Finally, the NPC’s behaviour is in general limited to support certain 
functions rather than offering opportunities to socialize with the NPCs. 

For a dialogue to be meaningful, the NPC must be able to take the local as well as 
the global context into account (as is the case in Façade). That is, if the NPC has 
no memory of previous encounters with the PC, the NPC will appear as either 
ignorant or incompetent (or both), which may affect believability negatively (see 



 53 

for example Sheldon, 2004). A character should be able to have a recollection of 
previous encounters and remember at least core elements from these 
conversations as this information is assumed (by the player at least) to be part of 
their common ground – i.e., beliefs that are shared among the dialogue 
participants (e.g. Clark & Brennan, 1991). Furthermore, to be believable an NPC 
needs to behave variably but yet consistently (see for example Hayes-Roth & 
Doyle, 1998), i.e. according to its personality and the current situation. It is here 
assumed that a character that performs believably in the interaction with the 
player (character) is more likely to have the ability to evoke emotional reactions 
in the player as well as to make it possible for him or her to empathize with it, 
that is, to create the desired aesthetic experience.  

There are thus several areas in which game dialogues may be improved to create 
more believable NPCs and meaningful play. In later sections of this chapter a 
number of games will be analysed in the search for patterns that define and 
constitute P(C)-NPC dialogues. The aim is to both to identify existing patterns as 
well as suggest new patterns that could create new forms of gameplay through 
dialogue. First, however, an overview of languages for communicating game 
design will be given since such a language is needed in order to talk and reason 
about gameplay. 

3.3 Languages for Communicating 
Gameplay 

One problem often faced in game development is communication – both among 
the team members, as they represent various disciplines, as well as with external 
partners, such as publishers and executive producers. It may for example be 
difficult to communicate at the right level, such as when a game producer wants 
to see the technical specification, but rarely has the adequate expertise to 
understand and review it (Bethke, 2003). In 1999, Church called for a common 
design vocabulary to allow designers to be able to “communicate precisely and 
effectively with one another”. He then presented a first attempt to formulate such 
a vocabulary and named it the “Formal Abstract Design Tools” (FADT) (Church, 
1999).  

Kreimeier (2002) argues that a language is needed in order to advance the game 
design profession. As he and others (e.g. Björk, Lundgren, & Holopainen, 2003b) 
have observed, game design has borrowed tools and techniques from other 
related areas, such as film studies and storytelling, perhaps sufficient to cover 
some, but not all, aspects of game design. This may have natural explanations in 
that game research as an academic field is immature and has previously been 
represented by scholars coming from related fields because of a lack of an 



 54 

independent academic game design subject. The initiative for assembling a 
common language has thus mainly come from the game designers themselves. 
One attempt is the 400 project18, initiated by game designers Noah Fahlstein and 
Hal Barwood, which can be regarded as a “checklist” for game design, where 
each item in the list is specified by an ID, an “imperative statement”, such as 
“Provide Clear Short-Term Goals”, an explanation and a domain specifying the 
situation in which the rule may apply. Kreimeier (2002) promotes the use of 
game design patterns, a derivative of Alexander et al.’s (Alexander, Ishikawa, & 
Silverstein, 1977) “pattern language” and Gamma et al.’s “design patterns”, used 
in software development to present solutions to recurring problems in object-
oriented software design (Gamma, Helm, Johnson, & Vlissides, 1995). A pattern 
language consists of a collection of reusable design solutions applied to an 
architecture where “[e]ach pattern describes a problem which occurs over and 
over again in our environment, and then describes the core of the solution to that 
problem, in such a way that you can use this solution a million times over, 
without ever doing it the same way twice” (Alexander, Ishikawa, & Silverstein, 
1977, p. x). The patterns can thus be combined in a multitude of ways and no 
pattern is an isolated entity. The patterns are hierarchically organized such that a 
parent pattern consists of the patterns defined as its children. Kreimeier 
emphasizes that game design patterns first and foremost are concerned with 
content and then continues to give a number of examples in his article.  

Björk and colleagues (2003a; 2003b) present a complete framework for 
describing games and interaction in games. Game design patterns are here treated 
as “higher level, hierarchical conceptual models of the possible designs of games 
which manifest themselves in the structural framework by defining the logical, 
physical and temporal relations of the elements in the framework” (Björk & 
Holopainen, 2003a). In 2005, Björk and Holopainen published Patterns in Game 
Design (Björk & Holopainen, 2005) consisting of a large collection of gameplay 
design patterns (GDPs) with the explicit purpose of establishing a semi-formal 
means of describing, sharing and expanding knowledge about game design. 19 
GDPs constitute the basis for the analyses made later in this chapter for two main 
reasons: (1) the co-author of the original paper on which this chapter is based is 
one of the founders of the concept of GDPs; (2) GDPs are well documented and 
constantly under development.20 The number of patterns is increasing, with close 
to 300 general patterns today as well as several smaller collections (Lankoski & 
Björk, 2007a; 2007b). Other collections include (Cermak-Sassenrath, 2012), 
(Hullett & Whitehead, 2010) and (Milam & Seif El Nasr, 2010). 

                                                
18 <http://www.theinspiracy.com/>. 
19 Björk and others now prefer to use gameplay design patterns instead of game design patterns, 
which indicates a slight change in focus towards gameplay rather than game design in general. 
20  New patterns are for example continuously being added to the project’s wiki: 
<http://gdp2.tii.se/index.php/Main_Page>.  



 55 

Also worth mentioning is the Game Ontology Project21, in which the important 
structural elements of games and the relationships between them are identified 
and hierarchically organized. This project resembles the gameplay design pattern 
projects in many respects, especially as they also claim that they “do not intend to 
describe rules for creating good games, but rather to identify the abstract 
commonalities and differences in design elements across a wide range of concrete 
examples” (Zagal et al., 2005). 

3.3.1 Gameplay Design Patterns  
Gameplay Design Patterns (GDPs) can be used and re-used for creating and 
analysing games. These patterns may be more or less specific and they may be 
related to other patterns such that one pattern can instantiate or modify another 
pattern. GDPs do not, however, reveal how to implement the features in the 
game, and do not attempt to provide that type of information either.  

A Gameplay Design Pattern Template consists of the name of the pattern, a core 
definition and a general description. It also contains a description of how to use 
the pattern, e.g. the choices the game designer is facing by using the pattern, the 
consequences an inclusion of the patterns has to gameplay and the relations the 
pattern has to other patterns: instantiates, modulates, instantiated by, modulated 
by, or potentially conflicting with. A pattern A instantiates pattern B if the 
presence of B automatically follows from the inclusion of A, and consequently B 
is instantiated by A. When the inclusion of pattern A affects the gameplay of 
pattern B, A is said to modulate B. When the inclusion of A makes the presence 
of B impossible, A is potentially conflicting with B (and vice versa).  

To give an example of how a complete description of a gameplay pattern is 
formulated, the gameplay design pattern for INFORMATION	
  PASSING is presented in 
Table 3 (part I) and Table 4 (part II) in the following two pages.	
  22  

  

                                                
21 <http://www.gameontology.org/index.php/Main_Page>. 
22 The full pattern description was retrieved from 
<http://gdp2.tii.se/index.php/Information_Passing>, but the pattern was first introduced in 
(Lankoski & Björk, 2007b). Gameplay Design Patterns are marked in the text using small caps, 
following Lankoski’s (2010) notation. A definition of the other patterns mentioned in the table 
can be found at the GDP wiki: <http://gdp2.tii.se/index.php>. 
 



 56 

 

 

De
fin

iti
on

 

The passing, from a character to another, of information that has, or can have, influence on 
the gameplay. 

De
sc

rip
tio

n  When characters interact with each other in games it is quite common that they exchange 
information, and this regardless of if they are under player control or not. Besides the role 
this information can have in the development of a story, it can also trigger new goals for 
players, make them aware of action possibilities previously overlooked, or improve the 
chances of making good choices. 

Ex
am

pl
es

 

Players of the Thief series of games receive new goals, or have current goals cancelled, as 
their characters overheard discussions between non-playable characters. 

Façade allows players to talk to two non-playable characters through free text input. 
INFORMATION	
   PASSING takes place in both directions since not only do the characters’ 
utterances provide clues for potential conversation topics but the interpretation of the 
player’s input by the game's parser results in the characters changing their opinion about the 
player's character and each other. 

Us
in

g 
th

e 
pa

tt
er

ns
 

INFORMATION	
  PASSING is easily achieved as part of DIALOGUES in a game although the level of 
influence on gameplay can vary. While INFORMATION	
  PASSING resulting in the completion or 
failure of goals directly steers the gameplay, merely providing the player with information 
also lets the pattern provide CLUES or RED	
  HERRINGS (the latter also showing the possibility of 
introducing UNCERTAINTY	
  OF	
  INFORMATION). Similarly, the introduction of PREDEFINED	
  GOALS or 
OPTIONAL	
  GOALS as an effect of INFORMATION	
  PASSING shows two distinctly different ways of 
influencing the gameplay. 

One design choice regarding INFORMATION	
  PASSING is if the events are predetermined CANNED	
  
TEXT	
  RESPONSES, which are part of PREDETERMINED	
  STORY	
  STRUCTURES (as for example in Thief 
series) or if the INFORMATION	
  PASSING is part of the game system (as for example in the Sims 
series). This is especially important regarding the information characters under players’ 
control can pass on to others, since providing options beyond a single utterance or a LIMITED	
  

SET	
  OF	
  ACTIONS easily requires advanced parsing capabilities since such a system in practice 
functions as a CHAT	
  FORUM. 

One specific way of creating INFORMATION	
   PASSING is to present it as GOSSIP between 
characters. EAVESDROPPING can be combined with GOSSIP or work independently as another 
way to instantiate the pattern, but also open up to having GAIN	
  INFORMATION goals requiring 
STEALTH	
  (i.e. the goal to move through a certain area and perform an action without being 
detected). 

The patterns of SYMMETRIC and ASYMMETRIC	
  INFORMATION need not only be applied to players 
but also to a character level in relation to INFORMATION	
   PASSING, as can COMMUNICATION	
  

CHANNELS and those related to PERFECT,	
  IMPERFECT,	
  DIRECT, and INDIRECT	
  INFORMATION. 

Table 3: Gameplay Design Pattern: Information Passing (part I) 

  



 57 

 

Us
in

g 
th

e 
pa

tt
er

ns
 

Diegetic 
Aspects 

One design possibility regarding how the INFORMATION	
  PASSING is represented 
in the game environment is if it should be presented verbatim or symbolic to 
the players. While giving players the access to the exact information passed 
between the characters can more easily provide CLUES or RED	
  HERRINGS it 
typically requires more resources to develop this type of content for the 
game. This extra work however also creates the possibility of providing 
players with INDIRECT	
   INFORMATION and provide a form of PUZZLE	
  SOLVING. In 
contrast, representing the INFORMATION	
  PASSING as symbols (see for example 
the Sims series) makes it easier to integrate with the game system and 
provides easily creates AMBIGUOUS	
  RESPONSES. 

Interface 
Aspects 

For simple CANNED	
  TEXT	
  RESPONSES the interface for supporting INFORMATION	
  

PASSING can be just a button of a menu to choose from a LIMITED	
   SET	
   OF	
  
ACTIONS. 

Narrative 
Aspects 

INFORMATION	
  PASSING is typically a cornerstone in games’ PREDETERMINED	
  STORY	
  
STRUCTURES since not only can it be used to parcel out information to players 
but it can also be used to establish CONFLICTS without the immediate use of 
COMBAT, e.g. to create INTERNAL	
   RIVALRY within FACTIONS. However, this 
typically makes it important that players' have IMPERFECT	
  INFORMATION so that 
is a typically requirement for INFORMATION	
  PASSING. 

Co
ns

eq
ue

nc
es

 

  

Typically, a game event containing INFORMATION	
   PASSING results in 
information being gained by players also, although it may not be the same 
information or only the knowledge that information has been passed. When 
information is revealed, this may cause SURPRISES and the unfolding of 
PREDETERMINED	
   STORY	
   STRUCTURES but regardless of this, the event may be 
sufficient to complete GAIN	
  INFORMATION goals. 

The pattern becomes incompatible with PERFECT	
   INFORMATION whenever 
INFORMATION	
  PASSING events give information not only to characters but also to 
players. 

Re
la
tio

ns
 

Can 
Instantiate 

CLUES,	
   CONFLICTS,	
   GAIN	
   INFORMATION,	
   INDIRECT	
   INFORMATION,	
   INTERNAL	
   RIVALRY,	
  
PREDETERMINED	
   STORY	
   STRUCTURES,	
   OPTIONAL	
   GOALS,	
   PREDEFINED	
   GOALS,	
   RED	
  
HERRINGS,	
  STEALTH,	
  SURPRISES,	
  UNCERTAINTY	
  OF	
  INFORMATION	
  

Can 
Modulate 

DIALOGUES,	
  FACTIONS,	
  PREDETERMINED	
  STORY	
  STRUCTURES	
  

Can Be 
Instantiated 
By 

CANNED	
  TEXT	
  RESPONSES,	
  CHAT	
  FORUMS,	
  DIALOGUES,	
  GOSSIP	
  

Can Be 
Modulated 
By 

AMBIGUOUS	
  RESPONSES,	
  EAVESDROPPING,	
  LIMITED	
  SET	
  OF	
  ACTIONS	
  

POSSIBLE	
  CLOSURE	
  EFFECTS	
  

Potentially 
Conflicting 
With 

PERFECT	
  INFORMATION	
  

Table 4: Gameplay Design Pattern: Information Passing (part II) 

  



 58 

3.4 GDPs for Game Dialogues 
In the following sections a number of games and game-like applications will be 
analysed. The selection consists of commercial games and research projects that 
taken together cover a broad range of game dialogue systems in use. The research 
projects ELIZA (Weizenbaum, 1966) and Façade (Mateas & Stern, 2003; Mateas 
& Stern, 2005) have been included because they are both publicly available as 
well as interesting from a game dialogue perspective. Furthermore, even though it 
is not presented as a game, Façade contains a complete gameplay structure. 
Several of the examples are quite old, and there are two main reasons why they 
still have been chosen: First, they are among the first, or early, examples of 
games that use dialogue. Second, their relatively limited context and variety make 
them easier to analyse and describe than the more complex games that have come 
later. They can in some regard be described as prototypical for a certain kind of 
game dialogue.  

The following questions are investigated:  

• What gameplay patterns for dialogues exist in games and other game-like 
activities? 

• What potential gameplay patterns could be suggested on the basis of what 
we know from experiences in practical dialogue system design?  

• How can novel gameplay be created by use of gameplay design patterns 
associated with natural language interaction? 

These patterns have not been described to the level of detail in the original 
collection but by situating them in the context of dialogue systems and by 
grounding them in concrete game examples, we want to demonstrate their 
meaning and potential. In section 3.7 all retrieved patterns are listed together with 
a definition. 

3.4.1 ELIZA 
ELIZA (Weizenbaum, 1966) (see chapter 2.1) is a computer program that allows 
a human agent to have a dialogue with a fictional Rogerian psychiatrist through a 
text-based interface (an example of P-NPC dialogue, or possibly P-G since the 
NPC is the only perceivable part of the game). Although it can be seen as a 
candidate to pass the Turing test (c.f. Saygin, Cicekli, & Akman, 2000, for 
modern versions of this test), the experience is typically a playful one for users 
aware of the true nature of the psychiatrist consisting of trying to make the 
program say illogical or inappropriate utterances. The interaction with the system 
enforces a turn taking structure similar to TURN-­‐BASED	
   GAMES (Björk and 
Holopainen, 2005). 



 59 

After the first welcoming utterance from ELIZA, the program hands over the 
initiative to the user and waits for input, potentially for an infinite amount of 
time, hence making it a SINGLE	
   INITIATIVE	
   DIALOGUE	
   SYSTEM	
   (see section 2.4.1). 
Players have the possibility of FREE	
   TEXT	
   COMMUNICATION since they can type 
whatever they want to the system and the input is then handled through CHUNK-­‐
BASED	
  DIALOGUE	
  PROCESSING, i.e., the complete utterance is treated as one input 
segment. Since conversing is the only activity one can do in the system it is 
furthermore a trivial example of GAMEPLAY	
  INTEGRATED	
  CONVERSATION, i.e., a game in 
which conversation is the main gameplay element and where the dialogue is an 
integral part of the game mechanics, if one considers the activity gameplay.  

ELIZA never admits to not understanding input from the user, and can maintain 
the illusion of always understanding the user through the possibility of 
responding with context-free questions. This “error-handling” is represented to 
the user as part of the conversation, and not as part of the interface, which can be 
described as the design pattern DIEGETICALLY	
  CONSISTENT	
  DIALOGUE, i.e. all utterances 
are consistent with the represented environment the dialogue takes place within. 
The program does not try to parse and then figure out the semantics of a user’s 
input; it relies on transformation rules to create its output based on the user’s 
input. This means also that ELIZA lacks a proper dialogue manager, but produces 
responses through TEMPLATE-­‐FILLING.	
  Given that the whole experience of interacting 
with ELIZA is in the form of a dialogue, ELIZA can be said to make use of the 
pattern PLAYER	
  CONSTRUCTED	
  WORLD (Björk & Holopainen, 2005), since all specific 
details of the conversation comes from the players. ELIZA can also be said to be 
able to manipulate a language-game (Wittgenstein, 1953), i.e., a small aspect of a 
language focusing on a specific activity and the actions related to the activity (see 
2.3). Ordinarily this would require a model of the context and the current state of 
the activity but given that Rogerian psychology consists of mirroring patients’ 
statements as questions, ELIZA can avoid the need for getting a detailed 
understanding of the overall development of the dialogue.  

3.4.2 Zork 
Zork (Infocom, Inc., 1980) is a text-based adventure game where the player takes 
on the role of an adventurer exploring a fantasy environment in the search for 
treasures. The player controls his avatar through text input and all responses are 
likewise in text, giving an example of P-PC dialogue in a game. Since nothing 
happens until input is given, the game is an example of a TURN-­‐BASED	
  GAME (cf. 
2.4.2) that uses CHUNK-­‐BASED	
  DIALOGUE	
  PROCESSING. Unlike ELIZA, the text given to 
the system does not represent a conversation with a fictional character but rather 
instructions for the system on what actions, mental or physical, the player wants 
the PC to perform. Although these instructions use the representation of the 
game, i.e. the game’s diegesis, error and ambiguity handling require some of the 



 60 

dialogue to be on a meta-level. Thus, it does not have DIEGETICALLY	
  CONSISTENT	
  
DIALOGUE. 

Given that Zork presents players with a diegetic game world, Zork cannot rely 
only on transformation rules as ELIZA to provide feedback. Instead it needs to 
relate the player’s input to the current state of the game world. Specifically, this 
takes place on two levels: to determine if it makes sense diegetically (e.g. not 
trying to pick up a sword that is out of sight), and to generate an appropriate 
response. Some responses are simple uses of the gameplay design pattern CANNED	
  
TEXT	
  RESPONSES,	
  i.e. pre-scripted recorded or text-based utterances (c.f. Jurafsky & 
Martin, 2000) while other require more or less complicated algorithms. In 
addition to these types of responses, Zork needs to inform players when it does 
not understand the input as well as be able to handle loading and saving a game, 
which would correspond to the P-G dialogue in our model. 

The way Zork uses dialogue for manipulating game components makes it 
possible to consider utterances during gameplay as illocutionary acts (Austin, 
1962). This can be described as the gameplay design pattern ILLOCUTIONARY	
  
INTERFACE, since the interface to the game is through communicative acts (see 
section 2.3.2) regardless of whether the generated actions within the game are 
represented as dialogue or not. However, text can also be used to direct and 
communicate with other characters in the game, such as in the sequel to Zork 
where the player could tell the demon to kill the wizard by writing “DEMON, 
KILL WIZARD”. In this case, the player could actually interact both with the 
game system (or the PC) as well as with other characters in the story through the 
same interface.  

Allowing players free text input to the game parser means that players will 
probably have to experiment with what input is acceptable and not in the game. 
Since this interaction is indeed part of gameplay, Zork can be said to have the 
GAME	
  INTERFACE	
  AS	
  PUZZLE. 

3.4.3 Grim Fandango 
Taking place in the Land of the Dead, the game Grim Fandango (LucasArts, 
1998a) makes use of the Aztec belief that dead souls wait for four years until they 
reach the final home: the ninth underworld. The game is a single-player 
adventure game where the player controls Manny Calavera, who has to pay off 
the debts he gained from living a “less-than-perfect” life (LucasArts, 1998b) to be 
able to continue the journey himself. The gameplay takes place through making 
Manny move around, pick up and interact with objects in the environment, and 
start talking to characters he meets.  

Unlike the previous examples, P–NPC dialogues in Grim Fandango are separated 
from other activities in the game. Talking to an NPC in the game takes the player 



 61 

into a different GAME	
  MODE (Björk & Holopainen, 2005) where the different 
phrases that Manny can say are listed in the form of CANNED	
  TEXT	
  RESPONSES that 
are consumed if selected. The selection of utterances depends on where in the 
narrative the player is, thus providing the basis for the pattern CONTEXT-­‐DEPENDENT	
  
DIALOGUE. Each phrase is furthermore coupled with a pre-recorded sound file that 
can be interrupted, which could be interpreted as having the pattern BARGE-­‐IN, but 
as there are no effects of interrupting the disposition it can also be described as an 
interruptible CUT	
  SCENE. All dialogues are initiated and controlled by the player, 
thus making use of the SINGLE	
  INITIATIVE	
  DIALOGUE (see 2.4.1) pattern.  

Each dialogue is purposeful in some way, either as INFORMATION	
  PASSING (Björk & 
Holopainen, 2005), to provide DIEGETIC	
  GAME	
  HINTS, or as a key to change the 
game state. The dialogues in Grim Fandango are also important vehicles for 
conveying the story and creating an atmosphere that is consistent with the stage 
set. The game characters are presented both implicitly, through for instance 
RUMOURS, and explicitly by talking to them in person. The dialogues can also be 
regarded as a way to socialize with the other characters, as some of the choices 
have less or no impact on game progression but more have the function of 
supplying the player with a FREEDOM	
  OF	
  CHOICE (Björk & Holopainen, 2005).  

As a gameplay challenge, the player must sometimes choose the correct phrasing 
among a list of paraphrases, as in the following excerpt:  

Calavera: Come on, Glottis. I need you to be my driver. 
Glottis: I told you... No, I can't. I'm... I'm... I'm too big. 

Dialogue 5: Dialogue excerpt from Grim Fandango 

Player options as a response to Glottis’ utterance: 

1. You're not too big! You're just right! 
2. You're not too big. You just have a self-image problem. 
3. You're not too big. The cars are just too small. 
4. Screw the rules! Come with me! 
5. Alright, back in the shack, mac. 

The first three phrases are similar, but it is critical that the player chooses the 
right attitude in order to succeed. (The right way to approach Glottis is to address 
his vanity so the correct answer would be number 3, “You’re not too big. The 
cars are just too small”). This type of gameplay option can be referred to as 
DELICATE	
  PHRASING.  

3.4.4 The Elder Scrolls III: Morrowind 
The Elder Scrolls III: Morrowind (Bethesda Game Studios, 2002) (Morrowind 
henceforth) is a role-playing game (RPG) played from a first person perspective 
by a single player. The player starts by building the character, such as specifying 



 62 

its race, class, gender, skills and a number of additional attributes. The actions the 
player then chooses to perform will have impact on how the game progresses and 
how the PC is perceived by the other characters in the game. The game 
challenges, as in most RPGs, involve solving quests, exploring, fighting, joining 
guilds, trading and interacting with other characters in the game. A player can 
approach an NPC to initiate a P-NPC dialogue. When the dialogue interface is 
activated, the game world freezes, making it a different GAME	
  MODE. This gives 
consequences to game play such as being able to start a discussion with a guard 
while being chased by a monster (as long as the guard has not noticed the 
monster) and having no risk of being attacked until the discussion has ended. 
Similar to all the previous examples, players initiate and control the dialogue, 
thus making use of the SINGLE	
   INITIATIVE	
  DIALOGUE (2.4.1)	
  and	
  TURN-­‐TAKING (2.4.2) 
patterns.  

Morrowind uses a dialogue system based on hypertexts connected to a database 
in which all interface objects containing text are stored, for instance the PC’s 
diary as well as all dialogue content. Dialogue management is thus restricted to 
selecting the correct database entry for a specific hypertext keyword based on the 
current game state, location, and the NPC currently addressed, which spawns the 
new patterns LOCATION-­‐SPECIFIC	
   DIALOGUE, CHARACTER-­‐SPECIFIC	
   DIALOGUE and a 
generated version of the CONTEXT-­‐DEPENDENT	
   DIALOGUE pattern (cf. elements 
constituting a social activity in 2.3). The selection is also dependent on the PC–
NPC relationship, hence introducing RELATION-­‐DEPENDENT	
  DIALOGUE as a sub-pattern 
to CONTEXT-­‐DEPENDENT	
  DIALOGUE. Although some of the phrases are diegetically 
social interaction, nearly all conversations with NPCs are functionally attempts to 
complete GAIN	
   INFORMATION (Björk & Holopainen, 2005) goals. Further, it is 
possible to use AFFECTIVE	
  COMMUNICATION through the dialogue choices Admire, 
Intimidate, Taunt and Bribe to influence the NPC's disposition towards the PC 
and change preconditions for succeeding with a preferred action. AFFECTIVE	
  
COMMUNICATION can be regarded as a special form of affective actions – previously 
discussed in (Brusk & Eladhari, 2006) and (Eladhari, 2009).  

3.4.5 The Elder Scrolls IV: Oblivion 
Like its predecessor Morrowind, The Elder Scrolls IV: Oblivion (Bethesda Game 
Studios, 2006) (Oblivion henceforth) is a single-player computer role-playing 
game allowing players the freedom of controlling how their characters develop 
within a rich fantasy environment. Besides activities such as fighting, stealing 
and casting spells, players can interact with several hundred NPCs through a 
specialized interface for P-NPC dialogues accessible only when the relation 
between the PC and NPC is sufficiently good. In contrast to Morrowind, Oblivion 
makes use of branching dialogue trees in which the player engages by selecting a 
pre-scripted phrase, hearing the response and choosing a new phrase. The 



 63 

selection of phrases depends on location, current relation between the PC and 
NPC, and status of quests, i.e. the sequel also uses the patterns LOCATION-­‐SPECIFIC	
  
DIALOGUE,	
  CHARACTER-­‐SPECIFIC	
  DIALOGUE,	
  RELATION-­‐DEPENDENT	
  DIALOGUE, and CONTEXT-­‐
DEPENDENT	
  DIALOGUE. As for Morrowind, starting a dialogue puts the player in 
another GAME	
  MODE and the rest of the game world is paused until the dialogue is 
finished. In essence, this shows that the dialogue system is a separate system 
from the main game, both as the actions performed are different as well as the 
fact that these actions do not take up time in the game world. The dialogue 
interface also provides access to another interface where players can try to 
improve (or worsen) the NPC's perception of the PC through a mini-game that is 
focused upon recognizing facial expressions of the NPC. 

Oblivion has previously been analysed for aspects of designing non-playing 
characters (Lankoski & Björk, 2007a) as well as their social networks (Lankoski 
& Björk, 2007b). During this process several patterns related to dialogues were 
identified, including CONTEXTUALIZED	
   CONVERSATIONAL	
   RESPONSES,	
   FREE	
   TEXT	
  
COMMUNICATION,	
   GAMEPLAY	
   INTEGRATED	
   CONVERSATIONS,	
   AMBIGUOUS	
   RESPONSES,	
  
AWARENESS	
  OF	
  SURROUNDINGS,	
   INITIATIVE,	
  EMOTIONAL	
  ATTACHMENT,	
  ACTIONS	
  HAVE	
  SOCIAL	
  
CONSEQUENCES,	
   EAVESDROPPING,	
   SOCIAL	
   NORM, and INFORMATION	
   PASSING, and to a 
lesser degree OWN	
  AGENDA,	
  SENSE	
  OF	
  SELF,	
  COMPETING	
  FOR	
  ATTENTION, and EITHER	
  YOU	
  
ARE	
  WITH	
  ME	
  OR	
  AGAINST	
  ME. Several of these have been mentioned in the earlier 
examples but for documentation purposes it should be noted that they were first 
identified in Oblivion although not studied in greater detail due to a different 
focus and space considerations. 

The latest game in the Elder Scrolls series, The Elder Scrolls V: Skyrim (Bethesda 
Game Studios, 2011), uses basically the same patterns as Oblivion, but during the 
conversation the shift in game mode is seamless since the NPCs seem to continue 
with their activities. Also, instead of zooming in on the NPCs during the 
conversation the visual view remains more or less the same, which gives the 
illusion that the game supports the pattern GAMEPLAY	
  INTEGRATED	
  CONVERSATIONS. 

3.4.6 Façade 
As has already been mentioned, Façade (Mateas & Stern, 2003) is an interactive 
drama that uses natural language interaction to manipulate the game. 23 The player 
plays the role of an old-time friend of the married couple Grace and Trip and is 
invited to their home for a social visit. Standing outside their door, the PC 
involuntarily performs some EAVESDROPPING on the couple quarrelling and it 
becomes obvious that they are having some serious marital problems. This 
opening serves as a prelude to the plot and depending on how the player acts 

                                                
23  The game and associated publications are available for download at 
<http://www.interactivestory.net>. 



 64 

from now on the story will take different turns. As for Oblivion, it has been a case 
study in an earlier paper (Lankoski & Björk, 2007a) where the patterns EMOTIONAL	
  

ATTACHMENT,	
  COMPETING	
  FOR	
  ATTENTION,	
  EAVESDROPPING,	
  AWARENESS	
  OF	
  SURROUNDINGS, 
and EITHER	
  YOU	
  ARE	
  WITH	
  ME	
  OR	
  YOU	
  ARE	
  AGAINST	
  ME were associated with it. The 
expressed design goal of Façade has been to create a drama in which agents 
interact socially with each other and with the PC (i.e. both PC-NPC and NPC-
NPC dialogues), and where each action performed affects the behaviour and 
attitude of the other agents (Mateas & Stern, 2003). The agents in Façade 
therefore show that ACTIONS	
  HAVE	
  SOCIAL	
  CONSEQUENCES, i.e. their behaviour and 
decisions depend upon the other participating agents. Grace and Trip start 
conversations with the PC to gain sympathy, showing examples of INITIATIVE and 
OWN	
   AGENDA. Objects in the environment trigger conversation throughout 
gameplay, showing that the NPCs have EMOTIONAL	
  ATTACHMENT to them and that 
they have LOCATION-­‐SPECIFIC	
  DIALOGUE as well as CHARACTER-­‐SPECIFIC	
  DIALOGUE,	
   i.e. 
each character has its own set of possible responses. 

In Façade the dialogue actually constitutes the major part of the story, and it 
seems reasonable to define a gameplay design pattern, DIALOGUE-­‐BASED	
   GAME	
  

CONSTRUCTION, explaining this type of design decision applied on games. The goal 
can be described as unlocking a RELATION-­‐DEPENDENT	
  DIALOGUE between Grace and 
Trip, signifying that the player has changed the context to create the right 
CONTEXT-­‐DEPENDENT	
  DIALOGUES (but it should be noted that players can set their own 
goals rather than the culturally implied one of helping the couple solve their 
marital issues). 

As for ELIZA and Zork, players interact with the system through FREE	
   TEXT	
  
COMMUNICATION. Although Façade only processes text after the return key has 
been pressed, i.e., by CHUNK-­‐BASED	
  DIALOGUE	
  PROCESSING, NPCs can initiate actions 
regardless of what the player is doing and the system therefore has MIXED	
  INITIATIVE	
  
DIALOGUES. That the time passes while dialogues take place and the people not 
involved in the discussion can perform other actions show that Façade also has 
GAMEPLAY	
   INTEGRATED	
   CONVERSATIONS.  Furthermore, Façade handles MULTI-­‐PARTY	
  
DIALOGUES, as all three characters can be engaged in the same dialogue. The size 
of the group talking is not completely in the player's control: one must consider 
that all characters can perform EAVESDROPPING. Further, characters can BARGE-­‐IN on 
others and the NPCs show a SENSE	
  OF	
  SELF in becoming irritated when interrupted. 

3.4.7 Mass Effect 
Mass Effect (BioWare, 2008) is a space opera game that has received acclaim in 
the popular press for having a novel dialogue system. Although having responses 
available due to the presence of character traits (paragon, renegade or neutral) 
and players choosing type of response rather than exact phrasing have been 
present in earlier games, e.g. the Fallout series (Black Isle Studios, 1997-) and 



 65 

Morrowind respectively, the quality of the writing and integration of the different 
parts may explain the positive reception. Another aspect given the positive 
response may in fact be related to the interface; dialogue options are organized in 
a pie menu with the same type of responses always appearing in the same place, 
which simplifies selection.  

Mass Effect uses a SINGLE	
   INITIATIVE,	
  TURN-­‐TAKING system. Although the dialogue 
system can be compared to Morrowind or Oblivion since they both use the 
LOCATION-­‐SPECIFIC	
   DIALOGUE,	
   CHARACTER-­‐SPECIFIC	
   DIALOGUE,	
   CONTEXT-­‐DEPENDENT	
  
DIALOGUE, and RELATION-­‐DEPENDENT	
   DIALOGUE to CONTEXT-­‐DEPENDENT	
   DIALOGUE 
patterns, the experience is radically different. The reason is that the options 
presented in Mass Effect specify both what the PC will talk about as well as how, 
rather than the “database retrieval” style provided in Morrowind. Responses are 
also CANNED	
  TEXT	
  RESPONSES but support DIEGETICALLY	
  CONSISTENT	
  DIALOGUES since the 
responses are recorded pieces of voice acting with lip-synched avatars.  

The dialogue system is in practice a subsystem of the Mass Effect game engine 
with only some information transfer to the overall game state. As such the 
dialogue system does not support patterns such as EMOTIONAL	
   ATTACHMENT,	
  
COMPETING	
   FOR	
   ATTENTION,	
   AWARENESS	
   OF	
   SURROUNDINGS, and ACTIONS	
   HAVE	
   SOCIAL	
  
CONSEQUENCES. However, the dialogues revolve around personal backgrounds and 
romances, which show that the mentioned patterns can occur on a narrative level 
rather than a gameplay level.  

The second game in the Mass Effect series, Mass Effect 2 (BioWare, 2010), uses 
the same dialogue interface and underlying mechanics. The developers have 
however rewarded dedicated players of the first game with certain bonuses based 
on the experience level of the PC and boosts for having played as either paragon 
or renegade. In the last game of the trilogy, Mass Effect 3 (BioWare, 2012), 
players can issue commands and choose dialogue options using voice.  

3.5 A Comparative Analysis 
After having presented several examples of how dialogues are used in games 
separately, they may now be compared with each other to see how they relate to 
models of dialogues and dialogue systems as presented in the previous chapter. 
By doing so the potential design space between the games can be identified and 
this provides the basis for the discussion later on how the games could provide 
novel gameplay through design changes.  

Grim Fandango, Oblivion, and Mass Effect use finite state-based tree-structures 
(see 2.6.1), where each player choice unfolds the branch of the selected node. 
ELIZA, Zork, Morrowind, and Façade on the other hand do not easily fit any of 
the models presented in section 2.6. The reason why ELIZA does not fit is due to 



 66 

having a negligible internal state, for nearly all input the system remains in the 
same state as before.24 Zork uses a FORM-­‐BASED-like approach (2.6.2) when trying 
to disambiguate the user’s input but does this for the current game state and not 
for the whole game. The dialogue engine in Morrowind resembles ordinary 
information retrieval systems that offer some kind of dialogue management, such 
as the BirdQuest system (Flyckt-Eriksson et al., 2003). The agents in Façade are 
built using a PLAN-­‐BASED approach (2.6.3), but the method used differs from 
ordinary plan-based approaches in that it allows multiple agents (in this case 
Grace and Trip) to have joint goals and behaviours (Mateas and Stern, 2004).  

Although ELIZA, Zork, and Façade have aspects of existing approaches in their 
design, it might be more correct to state that they have a GAME	
   STATE-­‐BASED 
APPROACH. That is, even if ELIZA and Façade are not games per se, the state of 
the dialogue is represented through the complete game state. Morrowind fits this 
model partly as it uses a different gameplay mode for dialogues but has some 
tree-based structures in it. However, the conditions determining what can be 
discussed in each conversation depend on the game state (primarily the NPCs’ 
perception of the PC) and most dialogue can be retrieved in a random access 
manner.  

3.5.1 Hypothetical Gameplay Design Patterns 
By using the example games and identified patterns as starting point we now 
discuss how design choices can be transplanted or modified, and identify 
hypothetical (in the sense that they have not yet been found instantiated in a 
game) gameplay design patterns. As an initial observation, the examples show a 
range of possible uses for dialogues as interfaces to games. ELIZA and Zork use 
dialogues as the sole way to interact with the game and in the first case it is done 
completely within the diegesis of the game. Grim Fandango, Morrowind, 
Oblivion, and Mass Effect have dialogues as separate modes in the gameplay with 
no other activities occurring while the dialogue continues. Façade integrates the 
dialogue into the game interface and lets dialogue and other activities take place 
at the same time. 

Allowing dialogues to take place simultaneously with other activities as Façade 
does, i.e. by using GAMEPLAY	
  INTEGRATED	
  CONVERSATIONS, is a conceptually easy way 
to change designs. This can add stress and tension, e.g. having to convince town 
guards in Morrowind or Oblivion to let the PC enter the city gate while monsters 
are approaching. Besides making verbal expressiveness a potential game skill, 
this also can cause speed of typing to be important for players (assuming that the 
dialogue is text-based rather than voice-based). It should be noted that this idea 

                                                
24 This is not entirely true since ELIZA in fact does need to detect and store keywords in the 
player’s input in order to use it in the response. 



 67 

can be applied in the case of Façade but at a higher level of detail; players can be 
challenged to provide NPCs with proper BASIC	
  INPUT	
  FEEDBACK by redesigning the 
system to support INCREMENTAL	
  INPUT	
  PROCESSING	
  (see 2.4.3), i.e. handling input per 
key strokes or tokens separated by blanks instead of per complete utterances. The 
romantic and intimidating aspects of dialogue in Mass Effect could likewise be 
expanded with requiring players to have appropriate body language and distance 
to achieve the desired effect. To integrate game dialogues with the overall 
gameplay, one has to equate communicative actions with other game actions as 
well as provide a support for these actions to be performed simultaneously. In 
Façade, for example, they developed “A Behaviour Language” (ABL) to 
accomplish this (Mateas and Stern, 2004).  

The personality of NPCs in Grim Fandango and Oblivion are expressed through 
dialogues, and in Façade and Mass Effect the character’s emotional state can be 
perceived as well. These features can be further explored to also include social 
behaviour, dependent on the characters’ interpersonal relationship and the role 
they play in the situation in question.  

The games examined make use of dialogues for gameplay in different ways. In 
ELIZA the dialogue is the gameplay (in the sense that there is gameplay at all) 
while for Zork it is the interface that makes gameplay possible. Grim Fandango, 
Morrowind, Oblivion, and Mass Effect use dialogues to provide information to 
players about the game world and to progress the various plots. In one sense they 
all use dialogues as ILLOCUTIONARY	
  INTERFACES since they can either change the game 
world or the progress of a narrative structure, but this may not be apparent to 
players before they make utterances. Taking an extreme view, one could finish 
any of these games without understanding the dialogues in the games. For Zork 
and Façade one would at least have to parse out the important words used, i.e. 
use GAME	
  INTERFACE	
  AS	
  PUZZLE. Interacting with ELIZA without understanding the 
language the system responds in is unlikely to give a meaningful experience for 
any longer period of time. 

Zork and Façade show that requiring players to perform actions that express an 
understanding of the dialogue is one way of integrating dialogue and gameplay. 
For Zork this consists mainly of figuring out what verbs, adjectives, and nouns 
can be used in the interface. In Façade it is manifested through the vagueness of 
the goal and the openness of how players can express themselves.  

The examples listed above may be perceived as only applicable to natural 
language interactions, but scripted dialogues can also be improved by allowing a 
wider range of utterance options in specific situations. These options may be 
available based on for instance the dialogue history, the character’s internal state 
as well as the interpersonal relationship. One example of a more complex system 
that uses a dialogue menu combined with CANNED	
   TEXT	
   RESPONSES is the 
Augmented Conversation Engine (Swain, 2008). In this system, the response 



 68 

from the NPC is selected from a matrix of trust combined with randomness, 
which summarizes to about twelve different possible answers to a specific user 
input. The problem with this system is however that the number of player options 
available on the screen soon becomes overwhelming and tend to take up most 
part of the screen. 

The combat system in Monkey Island (Lucasfilm Games, 1990), having to know 
the right insults to verbally defeat one’s opponent, provides another alternative. 
This can be generalized into the pattern, COLLOQUIAL	
  MASTERY, i.e. one has to learn 
the use of the language beyond simple information transferral so that one masters 
the idiosyncrasies of the current environment. For example, soldiers may need to 
begin and end every sentence with “sir” and outlaws may need to add curses to 
impress NPCs to fit the SOCIAL	
  NORM. A technically more challenging option is to 
require players to use DELICATE	
  PHRASING, formulating utterances without revealing 
sensitive information or causing insults. In this fashion, game dialogues can 
challenge players’ skills in expressing themselves – either as a standalone game 
or as part of the overall gameplay.   

3.6 Concluding Remarks 
In chapter 2 speech act theory was introduced, which accords well with gameplay 
design. Searle (1969) bases his work on speech acts on the hypothesis that that 
“speaking a language is engaging in a rule-governed form of behavior” (p. 22) 
and just as “we can translate a chess game in one country into a chess game of 
another because they share the same underlying rules, so we can translate 
utterances of one language into another because they share the same underlying 
rules” (p. 40). Searle also makes a distinction between regulative rules, i.e., those 
rules that regulate the interpersonal relationship, for example rules of etiquette; 
and constitutive rules, explicit rules that define or create new forms of behaviour. 
In a similar manner Salen and Zimmerman (2004) have described game rules at 
three levels: operational rules, constitutive rules, and implicit rules. The 
operational rules are the description given to the players that specifies the 
“guidelines” for playing the game. The constitutive rules are, similar to Searle’s 
description, “the underlying formal structures”. The implicit rules correspond to 
Searle’s regulative rules in that they define the “unwritten rules” of the game, 
which regulate things such as cheating and good sportsmanship.  

Interacting with a game system is conceptually the same as interacting with 
another agent (human or artificial). A player performs an action and the game 
system responds to that action in some way. In a similar way, a speaker performs 
speech acts and receives responses to these actions. By treating the player’s 
communicative acts on a par with other game actions, it is possible to achieve	
  
GAMEPLAY	
  INTEGRATED	
  DIALOGUES.  



 69 

In this chapter an analysis of a number of games and game-like activities have 
been presented with regard to their dialogue systems by exploring how common 
dialogue features can be applied in games. Suggested uses have come from 
established techniques used for designing dialogue systems (see for example 
section 2.4 and 2.6) as well as by identifying uses in some examples and 
generalizing them. The specific suggestions have been identified as gameplay 
design patterns although no full descriptions of these have been given.  

Even though natural language interaction adds possibilities and advantages in the 
design of the user interface, it also introduces new problems and difficulties. For 
example, the system may fail to create an interpretation or create an erroneous 
one, and repeated failures in understanding may cause frustration for the player.  
Some suggestions to decrease the potential negative effects of NLI include 
having a range of possible input modalities, letting the system choose reactions 
based on the global state as Façade does by using a beat system, (see e.g. Mateas 
& Stern, 2003), or trusting players’ tendency to try to find meaning in utterances 
as ELIZA does. FREE	
  TEXT	
  COMMUNICATION gives players a large degree of freedom 
but it may still be important to make the range of reasonable options obvious to 
players (see 3.2.2). Another alternative could be to adapt the NPC’s behaviour 
and match it to the player’s behaviour or just let the system take control 
occasionally and help the player to learn how to interact. These solutions would 
make the NPCs behave cooperatively in the sense that they take the player 
(character) into cognitive consideration and make an attempt to understand and 
perceive the player’s action (see section 2.3.3). However, they could still behave 
uncooperatively in other respects. 

Despite such problems, Sali et al. (2010) presents a study showing that NL 
dialogue interfaces (NLI) are the most appreciated form of dialogue system when 
compared to the abstract form used in Mass Effect and the verbatim dialogue 
types such as the one used in Oblivion and Grim Fandango. The subjects 
preferred the NLI, even though they also found it the most difficult to use and 
received the lowest scores when measuring the player’s sense of control. The NLI 
was also regarded as the most engaging of all the interfaces, indicating that 
engagement and appreciation are correlated to some extent. The story 
involvement was lower when using NLI, suggesting that story was less important 
for the players in the study in comparison to engagement.  

Several new design patterns were identified through analyses of existing games 
(see the complete list in section 3.6, below). Further analyses of hypothetical re-
designs (see 3.5.1) have provided the basis for the new patterns including DELICATE	
  
PHRASING,	
  COLLOQUIAL	
  MASTERY, and INCREMENTAL	
   INPUT	
  PROCESSING. These patterns 
have not been described to the level of detail in the original collection but by 
situating them in the context of dialogue systems and by grounding them in 
concrete game examples, the meaning and potential are hopefully evident.  



 70 

Regarding the applicability of models presented in section 2.6 to games, the 
examples did not show perfect matches to existing categories. This may be due to 
specialization to the applications in question, but also due to the presence of 
characteristics typically not discussed in computational linguistics. An alternative 
approach, the GAME	
   STATE-­‐BASED	
   APPROACH, has been introduced as has the 
observation that the intention of dialogue systems for games can differ from other 
dialogue systems in that cooperativeness is not always the intended design goal 
(see section 2.5.1).  

One of the complexities associated with natural language understanding in story-
based games is that the system must be able to handle a variety of conversation 
types as well as domains, and a range of unexpected user inputs. When faced 
with complex problems it is usually a good idea to break it down into smaller 
problems – to “divide-and-conquer”. Likewise, a dialogue management 
component can be broken down into smaller modules that can be combined to 
solve more complex problems. In the following chapter a method for creating 
modular based applications for game dialogue design will be presented, which in 
the chapters thereafter is used for implementing some of the patterns presented in 
the following section. 

3.7  Collection of Patterns 
Table 5 to Table 7, present a selection of the patterns mentioned in this chapter. 
Gameplay design patterns that have been defined in earlier studies will only be 
listed here if they occur in several examples or signify an important feature of 
game dialogues.  

New Patterns 
Name Definition 
AFFECTIVE	
  
COMMUNICATION	
  

Communicative act with the sole purpose of emotionally 
affecting the addressee  

BARGE-­‐IN	
   The possibility of interrupting a speaker 
CANNED	
  TEXT	
  RESPONSES	
   Dialogues having pre-scripted recorded or text-based utterances 
CHUNK-­‐BASED	
  DIALOGUE	
  
PROCESSING	
  

Dialogue processing in which the complete utterance is treated 
as one input segment 

CHARACTER-­‐SPECIFIC	
  
DIALOGUE	
  

Character has a unique set of possible responses 

CONTEXT-­‐DEPENDENT	
  
DIALOGUE	
  

A dialogue that is dependent upon where in the narrative the 
dialogue takes place 

DELICATE	
  PHRASING	
   Dialogues requiring the player to choose the right phrasing in 
order to succeed 

DIEGETICALLY	
  
CONSISTENT	
  DIALOGUE	
  

A dialogue in which all utterances are consistent with the 
represented environment the dialogue takes place in 



 71 

New Patterns 
Name Definition 
DIEGETIC	
  GAME	
  HINTS	
   Hints provided by NPCs that help the player move forward in 

the game, but that are thematically within the game diegesis  

DIALOGUE-­‐BASED	
  GAME	
  
CONSTRUCTION	
  

Games design based primarily on dialogue 

FREE	
  TEXT	
  
COMMUNICATION	
  

An interface that accepts natural language text input 

GAMEPLAY	
  INTEGRATED	
  
CONVERSATION	
  

Conversation is an integral part of the game mechanics 

GAME	
  STATE-­‐BASED	
  
APPROACH	
  

The state of the dialogue is represented through the complete 
game state 

ILLOCUTIONARY	
  
INTERFACE	
  

Interface to the game is through communicative acts regardless 
of whether the generated actions within the game are 
represented as dialogue or not 

LOCATION-­‐SPECIFIC	
  
DIALOGUE	
  

Character's set of responses is dependent upon the location 
where the dialogue takes place  

MIXED	
  INITIATIVE	
  
DIALOGUE	
  

A dialogue in which either participant may direct and control 
the dialogue. Control may also switch during the course of the 
interaction  

MULTI-­‐PARTY	
  DIALOGUES	
   Dialogues in which several participants are engaged and can 
contribute 

RELATION-­‐DEPENDENT	
  
DIALOGUE	
  

Character's set of responses is determined by its relation to the 
other participating character(s) 

RUMORS	
   Unconfirmed second hand information spread among the game 
characters 

SINGLE	
  INITIATIVE	
  
DIALOGUE	
  	
  

A dialogue in which one of the participants (typically the 
system) directs and controls the dialogue 

TEMPLATE-­‐FILLING	
   Dialogue systems lacking a dialogue management component 
and in which the system instead produces responses by filling 
templates 

Table 5: New Gameplay Design Patterns for Dialogue 

Patterns Found in Earlier Studies25 
Name Definition 
ACTIONS	
  HAVE	
  SOCIAL	
  
CONSEQUENCES	
  

The behaviour and decisions of a character depend upon the other 
participating character(s)  

EAVESDROPPING	
   The ability to overhear other characters' conversations 

EMOTIONAL	
  ATTACHMENT	
   The ability of agents to have noticeable emotional relations inside the 
game world to the diegetic phenomena in that world. 

INITIATIVE	
   The ability of agents to take actions not directly perceived as the 
consequence of game events. 

                                                
25 See collection of patterns at <http://gdp2.tii.se/index.php?title=Category:Patterns&until=No-
Use+Bonus>. 



 72 

OWN	
  AGENDA	
   The ability of agents to seem to strive towards personal goals. 

SENSE	
  OF	
  SELF	
   The ability of agents to react to events concerning it or to its internal 
states. 

TURN-­‐BASED	
  GAME	
   The players take turns to make their actions to change the game state, 
and the progress of time is not tied to the real time. 

Table 6: Gameplay Design Patterns for dialogues found in earlier studies 

Hypothetical Patterns 
Name Definition 
BASIC	
  INPUT	
  FEEDBACK	
   The ability to provide continuous feedback during conversation 

INCREMENTAL	
  INPUT	
  
PROCESSING	
  

The ability of agents to process natural language input continuously, 
for example per key strokes or tokens separated by blanks, instead of 
after the complete utterance has been formulated 

COLLOQUIAL	
  MASTERY	
   The ability of agents to learn the use of the language beyond simple 
information transferral in order to master the idiosyncrasies of the 
current environment 

SOCIAL	
  NORM	
   The ability of agents to behave according to a specific norm set for a 
particular social situation 

Table 7: Hypothetical Gameplay Design Patterns for Dialogue 



 73 

Chapter 4  

Technological 
Framework 
As has already been announced, the implementations presented in this thesis have 
been developed using SCXML and to some extent VoiceXML. This chapter 
introduces these technologies to the reader and follows up the rule-based 
approaches presented in chapter 2.6. A detailed description of Harel statecharts 
(Harel, 1987) will also be given as they form the semantics of SCXML. The last 
part of the chapter discusses other advantages in using Harel statecharts. Initially, 
however, an introduction to the Data Flow Presentation (DFP) framework will be 
given.26  

4.1 The DFP Framework 
The World Wide Web Consortium (W3C) is an international organization that 
develops technical specifications and guidelines that “ensure the long-term 
growth of the Web” (W3C mission27).  Standards are free, accessible, stable, 
distributable (i.e., it works on different browsers and has backward and forward 
compatibility), can easily be validated, and provide consistency.  

In 2006, W3C introduced the Data Flow Presentation (DFP) framework28, where 
“computation and control flow are kept distinct from application data and from 
the way in which the application communicates with the outside world” 
(McGlashan et al., 2010). The DFP framework is an instance of the Model-View-
Controller pattern (Burbeck, 1992) and consists similarly of three separate layers:  

Data – A component that manages the data for the application. The data can for 
instance be the status of the dialog in collecting certain information, which 
prompts have just been played, and how many of various error conditions have 

                                                
26 Parts of this chapter has previously been published in (Brusk & Lager ,2008). 
27 <http://www.w3.org/Consortium/mission.html>. 
28< http://www.w3.org/Voice/2006/DFP>. 



 74 

occurred so far, and the values entered by the user until they are transmitted to 
the back-end database or file system.  

Flow – A component that controls the application flow by interacting with data 
and presentation layers. The flow layer is not intended to interact directly with 
the user. Rather, it requests user interaction by invoking a presentation 
component running in parallel with the SCXML process, and communicating 
with this component through asynchronous events.  

Presentation – Components of the presentation layer interact with the user. 
Presentation components may support modalities of different kinds, including 
graphics, voice or gestures. VoiceXML 3.0, for example, is designed with the 
DFP Framework in mind.29  

The web standards and working drafts presented here are in particular two of the 
languages that have been chosen to specify the different layers of the Data Flow 
Presentation (DFP) Framework: SCXML and VoiceXML.30  

It should be noted that SCXML has evolved during this thesis project and that the 
implementations listed in the appendices were developed in accordance with the 
current version of SCXML when the programs were written. This means that the 
examples vary in syntax, but hopefully not that much that they will not make 
sense. Furthermore, there is still a lack of platforms and development 
environments for SCXML, but we have had the opportunity to use a platform 
developed by Spyderbrain Technologies31, a platform, which also has been under 
development during this time period. The code samples presented in this chapter 
have however been adjusted to the latest working draft, which according to W3C 
is the final one.  

4.2 VoiceXML 
VoiceXML is a framework for building interactive voice applications.32 It is part 
of the web-based voice infrastructure, which makes it possible to allow 
VoiceXML documents to access the Internet to exchange information with web 

                                                
29 It should be noted that the DFP document dates back to 2006 and no later reports have been 
published. Also, the latest working draft of VoiceXML 3.0 was published in 2010. It is therefore 
not clear exactly where W3C will take this. It should also be noted that W3C in collaboration with 
Google recently has released the WebSpeech API, which might make the DFP framework 
obsolete. However, VoiceXML 2 is an already existing standard and SCXML is in the final round 
of becoming one.  
30 The presentations of SCXML and VoiceXML 3.0 are based on the working drafts released in 
August 1, 2013 and December 16, 2010, respectively.  
31 <http://spyderbrain.ling.gu.se/web_labs.html>. 
32 VoiceXML is a World Wide Web Consortium (W3C) standard. The recommendations can be 
found here:  <http://www.w3.org/TR/voicexml20/>. 



 75 

sites and other Internet servers. W3C estimates that about 85% of all IVRs use 
VoiceXML.33  

A VoiceXML application consists of a set of VoiceXML documents, where each 
document forms a conversational finite state machine (McGlashan, et al., 2004). 
Each conversational state corresponds to a dialogue and the user can only be in 
one dialogue at a time. There are two types of dialogs in VoiceXML: forms and 
menus. Forms present information and gather input, similar to how forms in 
traditional web-based applications work. A form can contain one or more fields, 
each of which may specify a grammar that defines the allowable inputs for that 
field. The following example implements the finite state machine illustrated in 
Figure 9 (see section 2.6.1):  
<vxml version="2.1">  
  <form id="travel">  
    <grammar src="from_to.grxml"    
               type="application/srgs+xml"/> 
    <field name="from">  
      <prompt> What planet are you leaving from? </prompt> 
    </field> 
    <field name="to"> 
      <prompt> To which planet? </prompt> 
    </field>  
    <nomatch count="1"> 
     Sorry dude, but I didn’t get that. 
    </nomatch> 
    <nomatch count="2"> 
     I’m sorry, I still don’t understand. 
    </nomatch> 
  </form> 
</vxml> 

Dialogue control for filling a form in VoiceXML is managed through the Form 
Interpretation Algorithm (FIA), which combines the finite state-based and frame-
based approaches and was previously described in chapter 2. FIA visits each 
unfilled form element in document order and collects the value of the user’s 
input, one at a time. If the dialogue contains the control element <initial>, 
FIA can fill any of the matching slots from the user’s input at the initial prompt 
as was mentioned in section 2.6.2. For this reason, VoiceXML is regarded as 
being able to support mixed initiative dialogues (McTear, 2004). If there are 
remaining slots to fill after <initial> has done its task, FIA revisits each of 
them in document order until it interprets a transfer of control statement, e.g. a 
command to go to another document or submitting data (McGlashan, et al., 
2004). This also means that if FIA is unable to fill any slot from the initial input, 
it will start filling the form from the very beginning. 

                                                
33 <http://www.w3.org/standards/webofdevices/voice>. 



 76 

The code snippet below shows how the previous example may be modified to 
handle mixed initiative using the <initial> element. The example also makes 
use of the built-in error handling provided in VoiceXML for no match events 
(<nomatch>) (see also the specification in Figure 9). The result may be read as 
follows. Initially, the player is expected to respond with (say) “From Mars to 
Venus”, in order to fill both fields in one shot. However, if the response is not 
recognized by the ASR (using the specified grammars) after two attempts, the 
dialogue engine tries instead to split the initial question into two parts, expecting 
responses such as “Mars” or “Venus”, filling one field at a time, as was the case 
in the first example: 
<vxml version="2.1">  
 <form id="get_from_and_to_planets"> 
  <grammar src="from_to.grxml"/> 
  <initial name="bypass_init"> 
    <prompt>Fly from and to where?</prompt> 
    <nomatch count="1"> 
      Sorry dude, but I didn’t get that. 
    </nomatch> 
    <nomatch count="2"> 
      I'm sorry, I still don’t understand.  
        <assign name="bypass_init" expr="true"/> 
        <reprompt/> 
    </nomatch> 
  </initial> 
  <field name="from_planet"> 
    <prompt>From which planet?</prompt> 
  </field> 
  <field name="to_planet">  
    <prompt>To which planet?</prompt> 
  </field> 
 </form> 
</vxml>  

4.2.1 SRGS and SISR 
In the examples above, the grammar references pointed to an external file (using 
the extension “grxml”). Grammar is specified using one of the forms of the W3C 
Speech Recognition Grammar Specification 34  (SRGS) – ABNF (Augmented 
Backus–Naur Form) or XML. The examples given in this thesis have used XML 
syntax for parsing the user’s utterance into raw text format. However, SRGS also 
have syntactic support for a semantic interpretation of the input by means of the 
tag construct. How to specify the content of the tag element and then access the 
semantic information is defined in the W3C’s specification Semantic 
Interpretation for Speech Recognition35 (SISR). 

                                                
34 <http://www.w3.org/TR/speech-grammar/>. 
35 <http://www.w3.org/TR/semantic-interpretation/>. 



 77 

A grammar specifying acceptable planet destinations for the planet traveller 
could for example be as follows:  
<grammar version="1.0" root="planet">                                        
   <rule id="planet">  
      <one-of> 
         <item>Mars</item> 
         <item>Pluto</item> 
         <item>Venus</item> 
      </one-of> 
   </rule>  
</grammar> 

In this case, no semantic interpretation other than the actual input is given. In this 
particular example it would be redundant as we have three distinct answers with 
different meanings. However, if the grammar should accept different expressions 
for one and the same meaning, such as “hello” and “hi”, a semantic specification 
is needed. To exemplify, we revisit our waiter character from chapter 1. Since the 
dialogue manager accepts communicative acts as input, the parser needs to be 
able to interpret the player’s input as a particular communicative act. The 
grammar specified below allows the player to greet the waiter or order something 
from the menu (e.g. “I would like a coffee”). The example is stripped down to 
highlight the essentials.  

 
<grammar version="1.0" root="start">                                        
  <rule id="start">  
     <one-of> 
        <item> <ruleref uri="#greet"/>  
               <tag>out.ca='greet';</tag></item> 
        <item> <ruleref uri="#order"/>  
         <tag>out.ca='order';  
                    out.drink=rules.drink; </tag></item> 
     </one-of> 
  </rule>  
  <rule id="greet">  
     <one-of>  
        <item> hi </item>                                           
        <item> hello </item> 
     </one-of> 
  </rule>    
  <rule id="order"> 
    I would like <ruleref uri="#drink"/>  
  </rule>  
 

 



 78 

 
  <rule id="drink"> 
    <one-of>  
      <item>a coffee <tag> out='coffee';</tag></item>                                              
      <item>a cup of tea <tag> out='tea';</tag></item> 
    </one-of>  
  </rule>  
</grammar> 

In this example the tag construct is used to return the value of the type of 
communicative act (“ca”) that was performed – greet or order – as well as a 
specification of the order (coffee or tea). Later sections will clarify how this 
information can be used for managing the dialogue.    

Tags can also be used to assign synonyms the same value, so that “yeah”, “ok”, 
“yupp” and “yes” all can be treated as a “yes” for example. The rule “greet” 
treats “hi” and “hello” as the communicative act “greet” and makes no semantic 
distinction between the two alternatives. 

Going into more detail about VoiceXML, SRGS, and SISR is beyond the scope 
of this thesis. Suffice it to say that VoiceXML is a well-proven and mature 
technology for the design and implementation of practical dialogues.  

4.3 State Chart XML (SCXML) 
SCXML can be described as an attempt to render Harel statecharts (Harel, 1987) 
in XML. Harel (1987) introduced a number of (at the time) novel extensions to 
finite-state machines, including hierarchy, history, concurrency, and broadcast 
communication. In the following sections these features will be described in more 
detail supported by game-related examples.   

Let us now begin with a very simple example in the form of a ‘game’ where a 
display will show “YOU WON! Play again?” if the player pushes a Play-button, 
and then “Push to Play” if he pushes the Again-button. Not much fun, but it 
serves to introduce some notation. The statechart controlling our game could 
simply be: 

Figure 15: Game Statechart 

a

s1 s2On play

On reset



 79 

Any statechart can be translated into a document written in the linear XML-based 
syntax of SCXML. Here, for example, is the SCXML document capturing the 
above statechart, and thus the logic of our simple game:  
<scxml initial="s1"> 
  <state id="s1"> 
    <transition event="play" target="s2"/> 
  </state> 
  <state id="s2"> 
    <transition event="reset" target="s1"/> 
  </state> 
</scxml>  

The document can be executed by an SCXML conforming processor, thus 
shortening the step from a game specification into a running game application 
that needs to be taken.  

4.3.1 Hierarchy and History 
As has been mentioned earlier, statecharts may be hierarchical, i.e. a state may 
contain another statechart down to an arbitrary depth. From a methodological 
point of view this is important, since it allows us to apply the principles of 
refinement (a top-down design process in which a state is refined into a number 
of sub-states and the transitions between the sub-states spelled out in detail) and 
clustering (a bottom-up design process in which a number of similar states are 
grouped together under the umbrella of a super-state). These principles are very 
general, and they are certainly relevant to game design as well. 

To hierarchically group states reduces the number of transitions considerably 
since the sub-states can share transitions further up in the hierarchy rather than 
having separate transitions to the same target state. States that represent complex 
behaviours can also be decomposed into smaller, more understandable and 
maintainable units by use of hierarchy. Fu and Houlette (2004), for example, 
recommend the use of hierarchical FSMs for specifying the character AI in 
games for the following reasons: 

Hierarchical FSMs have a couple of advantages that tend to make their 
added complexity worthwhile. For one thing, they allow large, complex 
character behaviours to be broken down into smaller, more understandable, 
and more maintainable chunks. As your FSMs grow and become more 
complex, the ability to refactor and decompose FSMs in this way can be 
invaluable. In addition hierarchical FSMs allow you to avoid duplication of 
FSM code (or script), since you can extract common sub-behaviours out 
into separate FSMs that can be referenced by many other FSMs. (Fu & 
Houlette, 2004, s. 297) 



 80 

A complex state may contain a history state (H), which is a pseudo-state serving 
as a memory of which sub-state the complex state S was in, the last time it was 
left for another state. Transition to the history state implies a transition to S. The 
history state can be either deep (specified by an asterix, H*) or shallow. If the 
history is deep, the target state will be the last visited state at the deepest level, 
whereas the shallow version will only find the state one way down in the 
hierarchy of the previous configuration.  

Figure 16: Pause-and-resume 

Figure 16 shows an example of a game that can be played, paused and then 
resumed again. The compound state Game contains two sub-states: Play, which 
also is a compound state, and the atomic state Interrupted. The state Play 
starts in state s1 where an event "play" is expected that will trigger a transition 
to s2.  Suppose that the current state is s2, and that an event "pause" appears in 
the event queue. The transitions leaving s2 are tried from the inside and out, and 
since "reset" does not match the first event in the queue, but "pause" does, a 
transition to the "Interrupted" state takes place. If a "resume" event shows up 
in the queue, the system transfers to the history state H, which implies a transition 
back to the s2 state again.  

a

s1 s2On play

On reset

Play Interrupted

Game

H

a

On resume

On pause



 81 

The SCXML documents corresponding to Figure 16 would be:  
<scxml initial="Game"> 
  <state id="Game" initial="Play"> 
    <state id="Play" initial="s1"> 
      <state id="s1"> 
        <transition event="play" target="s2"/> 
      </state> 
      <state id="s2"> 
        <transition event="reset" target="s1"/> 
      </state> 
      <history id="H"/> 
      <transition event="pause" target="Interrupted"/> 
    </state> 
    <state id="Interrupted"> 
      <transition event="resume" target="H"/> 
    </state> 
  </state> 
</scxml> 

The attribute initial specifies the default start state for nested states.  

4.3.2 Concurrency 
Two or more statecharts may be run in parallel, which basically means that that 
their parent statechart is in two or more states at the same time. This is an 
important mechanism for introducing independency and orthogonality into a 
design. It is well-known (cf. Harel, 1987; Horrocks, 1999; Fu & Houlette, 2004) 
that concurrency and to a some extent also hierarchy are the means by which this 
often cited problem with ordinary finite state machines – the exponential growth 
in the number of states and transitions – can be treated. 

Concurrency may for example be useful when the flow of a game is not (only) 
modelled directly (or scripted), but when the NPCs – their states-of-mind, states-
of-body, as well as their (verbal and non-verbal) behaviours – are modelled in the 
hope that a good game will emerge from the interaction between different NPCs 
and between NPCs and human players. In such cases it makes sense to model 
each NPC as a separate statechart, running in parallel with each other, and 
running in parallel with a statechart modelling the environment.  

Just to give a hint of how this might look like in SCXML, we give a high-level 
view of an architecture where an NPC’s ‘emotions’ and its reactive behaviours 
are working independently. First as a statechart in the graphical notation (Figure 
17) and then translated into SCXML: 

 

  

 



 82 

Figure 17: Emotion and behaviour 

 
<scxml initial="agent"> 
  <parallel id="agent"> 
    <parallel id="emotions"> 
      <state id="AF-dimension" initial="anger">  
        <state id="anger"> 
          <transition event="e" target="fear"/> 
        </state>  
        <state id="fear"> 
          <transition event="d" target="anger"/> 
        </state> 
      </state> 
      <state id="AS-dimension" initial="anticipation"> 
        <state id="anticipation"> 
          <transition event="e" target="surprise"/> 
        </state> 
        <state id="surprise"> 
          <transition event="f" target="anticipation"/> 
        </state> 
      </state> 
    </parallel> 

Agent

AF-dimension

e

Behaviour

AS-dimension

Fear

Anger

d

a

e

Surprise

Anticipation

f

a

Attacking Fleeing
a

e
g



 83 

   <state id="behaviour" initial="attacking"> 
      <state id="attacking"> 
        <transition event="e" target="fleeing"/> 
      </state> 
      <state id="fleeing"> 
        <transition event="g" target="attacking"/> 
      </state> 
    </state> 
  </parallel>  
</scxml> 

The idea is that in the event of (say) an explosion (the event named “e”) the NPC 
will end up in the states of fear, surprise and flight behaviour. Then, if his friend 
dies (the event named “d”), fear will turn into anger, and he will attack instead. 
Note that if we did not have access to concurrency, we would have had to 
distinguish the atomic state FearSurpriseFleeing from other atomic states 
such as AngerSurpriseFleeing, AngerAttackFleeing and so on. And as 
soon as we wanted to extend (say) the emotional dimensions from two into (say) 
three, we would see a large increase in the number of states and transitions 
required.  

Another way to coordinate the behaviours in concurrent states is to check the 
active state of a parallel process by use of the “In()” predicate, which takes a state 
id as its argument and returns true if the state machine is in that state (Barnett, et 
al., 2012). One of the first examples given in this thesis (see Figure 3) used this 
predicate to test whether the waiter was in the state TakeOrderAct – a substate 
of ActionAM – which would trigger the dialogue to be initiated if evaluated to 
true. 

4.3.3 Broadcast Communication 
One statechart S1 may communicate with another statechart Ss (running in parallel 
with S1) by placing, in the global event queue, an event that triggers a transition 
in S2. Since the event in principle can be detected by any transition in any state in 
the statechart, this is often referred to as “broadcast communication”.  

We exemplify parallel statecharts and the communication between their substates 
with an SCXML document featuring two ‘agents’ playing ping-pong.  



 84 

<scxml initial="start"> 
  <parallel id="start"> 
    <state id="Pinger"> 
      <onentry> 
        <send event="ping"/> 
      </onentry> 
      <transition event="pong"> 
        <send event="ping" delay="1s"/> 
      </transition> 
    </state> 
    <state id="Ponger"> 
      <transition event="ping"> 
        <send event="pong" delay="1s"/> 
      </transition> 
    </state> 
  </parallel> 
</scxml>  

Note the use of ‘targetless’ <transition> elements here, where the matching 
of an event results in the running of the transition’s actions (executable content 
such as the <send> elements) but not in any actual transitions. Note also that we 
have delayed each sending of an event with one second, just to make the speed of 
the ping-pong game a bit more realistic.  

4.3.4 Data Model 
SCXML gives authors the ability to define a data model as part of an SCXML 
document. A data model consists of a <datamodel> element containing one or 
more <data> elements, each of which may contain a XML description of data. 
The value of the ‘cond’ attribute in a <transition> element may be an 
expression referencing the data, and transitions may thus be conditioned on the 
data. The <assign> element may be used in actions, or in <onentry> or 
<onexit> elements, to modify the data. A data element always consists of the 
attribute id, specifying the name of the data item, and optionally a value 
specified by the attribute expr (for references to data stored outside the SCXML 
document, src can be used to locate the value of the current data item). As a 
simple illustration, the following state (which could be one of several parallel 
states) serves as a score counter, transferring to the “GameOver” state when the 
count is 3, and incrementing the count each time the “point” event shows up in 
the global event queue.  



 85 

<scxml initial="Scorer"> 
  <state id="Scorer"> 
    <datamodel> 
      <data id="Score" expr="0"/> 
    </datamodel> 
    <transition event="point"> 
      <assign location="Score" expr="Score + 1"/> 
    </transition>  
    <transition cond="Score == 3" target="GameOver"/>  
  </state> 
  <final id="GameOver"/> 
</scxml> 

4.3.5 External Communication 
SCXML also has support for communicating with external services, which is 
very valuable for many reasons. Consider for example Siri (see 2.1), in order to 
accommodate the user’s request she must communicate with one or several 
external applications first and to accomplish this, the dialogue system must have 
support for that type of communication. 

 SCXML offers two different ways of communicating with external processes, 
<send> and <invoke>. <send> is an element that can fire away an event to 
either another SCXML process or some other process. A “delay” attribute allows 
the delivery of the event to be postponed the specified amount of time.  

The <invoke> construct offers a tighter way of communication as it enables the 
invocation of external processes, for instance a VoiceXML process or another 
SCXML process, from within an SCXML session. An invoked process runs in 
parallel with the invoking process and does not share data with it unless explicitly 
requested through the <param> and <content> elements as well as the “src” 
and “namelist” attributes. The processes can communicate by sending and 
receiving events, but in order for the invoked process to get access to the events 
that appear on the global event queue of the invoking process, its “autoforward” 
attribute must be set to true. The invoking process can also send events to the 
invoked process by using the <send> element. The id of the invoked process 
must be specified in the target using the special form “#_invokeid”. An invoked 
SCXML process may also use the <send> element to communicate with the 
parent session. In that case the target must be specified using the form 
“#_parent”.  

 



 86 

4.4 SCXML in the Bigger Picture  
SCXML is intended to control the flow of an application, be it a game or a 
(multimodal) dialogue system. It is not intended to manage lots of data, or to 
directly interact with the user. In this section we will look closer at one particular 
kind of user interaction – dialogue using natural language and in particular 
dialogues between the player and an NPC in the game.  

Conversations between humans often are of the multimodal kind, and so should 
be realistic dialogue with NPCs. An NPC should be able to nod instead of saying 
“yes”, or nod and say ”yes” at the same time. Thus, the boundary between 
controlling the visual appearance and behaviour of an NPC – how it looks and 
what it does – and its natural language capabilities – what it says – is not very 
clear-cut. Therefore there are advantages in controlling and synchronizing them 
using one and the same mechanism.  

As we have indicated already, SCXML is not supposed to directly interact with 
the user. Rather, it requests user interaction by invoking a presentation 
component running in parallel with the SCXML process, and communicating 
with this component through asynchronous events. Presentation components may 
support modalities of different kinds, including graphics, voice or gestures. 
Concentrating on presentation components for spoken language dialogue (a.k.a. 
“voice widgets”) we may assume that they include things like:  

• A Text-To-Speech (TTS) component for presenting the player with 
spoken information.  

• An Automatic Speech Recognition (ASR) component to collect spoken 
information from the player.  

• A combination of TTS and ASR to implement something akin to a field, 
prompting for, and collecting, a value of one single parameter from the 
user.  

• A form-filling algorithm (a.k.a. FIA – the Form Interpretation Algorithm) 
running over an (internal) datamodel, and using TTS and ASR for output 
and input, respectively, and thus implementing something akin to a form, 
collecting values for a set of parameters from the user.  

• Other external interaction components, tailored to particular 
conversational modes, e.g. social talk.  

Note that presentation components may be simple, as the first two components in 
the above list, or complex, as the last three. (The very last one is probably very 
complex.) A complex component may be made up of other (simple or complex) 
components (perhaps using SCXML for controlling the interplay between their 
parts, perhaps not), but for all intents and purposes their complexity is hidden 



 87 

from the developer, and the only way to communicate with them is through the 
global event queue that they share with the invoking SCXML document.   

In a game setting it could be useful to treat each level as a separate process 
invoked from a meta-game controller, and each agent – NPCs as well as the 
PC(s) – within that level to be invoked from within the active game level. Since 
invoked processes have private data models, the agents will have their own 
internal memory, which means that the agents’ common ground will be based 
entirely on the information that is available in the shared environment. Using 
statechart notation it could be visualized as Figure 18, below. The PC and NPC 
are here invoked processes and as can be seen, they have separate data models. 

Figure 18: Game environment with invoked characters 

As long as the invoked agents have set the “autoforward” attribute to true, they 
will have access to all events appearing on the global event queue of the 
environment. The agents may thus communicate by sending and receiving events 
via the parent state, Environment. This way of treating the agents in the world 
would make communication more believable as it would go beyond the 
traditional solution of reading each other’s mind and instead allow all current 
activated agents to capture the same events, which for instance could support the 
notion of eavesdropping. These agents may also be aborted as soon as they have 
served their purposes.  

SCXML+VoiceXML is not just a framework for building spoken dialogue 
systems, but also for controlling telephony – a framework in which technologies 
for voice recognition, voice-based web pages, touch-tone control, capture of 
phone call audio, outbound calling (i.e. initiate a call to another phone) all come 
together, creating a marvellous playground for building new and innovative 
games.  

 

Environment

PC NPC
Data
...

Data
...

Data
...



 88 

4.5 Implementing Dialogue 
Management Strategies in SCXML 

SCXML is thus intended to constitute the dialogue management component in a 
spoken dialogue system within the DFP framework. It communicates with the 
presentation layer, for example a VoiceXML component, through asynchronous 
events. In more concrete terms, when VoiceXML has successfully parsed the 
user’s input, a “filled” event is raised that can be captured by the SCXML 
component. The event data may contain semantic information specified in the 
grammar specification. In the following sections it is assumed that the user 
interacts with a VoiceXML application and that the grammar specification (see 
section 4.2.1) outputs a semantic representation in the form of a communicative 
act, perhaps with some additional information such as the propositional content 
and/or attitude. In the example below, the user from our previous restaurant 
example can either greet the waiter by saying “hello” or “good afternoon”, or 
order a beer (or coke) using the exact phrase “I would like a beer please”. The 
grammar passes on the type of communicative act, corresponding to the value of 
the tag “out.ca”, to the dialogue manager: 
<grammar version="1.0" root="start">                                      
 <rule id="start">                                           
  <one-of>                                                
   <item><ruleref uri="#greet"/> 
     <tag>out.ca='greet' </tag></item>                                              
   <item><ruleref uri="#request"/>  
     <tag>out.ca=’request’;out.request=rules.request;</tag>    
   </item>                                              
  </one-of>                                      
 </rule> 
 <rule id="greet">                                          
  <one-of>                                              
   <item>hello</item>                                              
   <item>good afternoon</item>                                              
  </one-of>                                      
 </rule>                                      
 
 <rule id="request">                                          
  <one-of>                                               
   <item>I would like a coke please  
     <tag> out='coke';</tag></item>                                                
   <item>I would like a beer please  
     <tag> out='beer';</tag></item>                                              
  </one-of>                                      
 </rule>   
</grammar> 

The VoiceXML layer is invoked on start up and runs in parallel with the dialogue 
manager controlled by the SCXML application, as in Figure 19, below.  



 89 

Figure 19: Conversation module 

This way the presentation layer need not be invoked every time the system 
expects a user input, as in the following code skeleton.  
<parallel id="ConversationModule">     
   <state id="PresentationLayer"> 
      <invoke id="conversation" type="x-vxml- 
                                     interpreter"> 
          …   
      </invoke> 

  … 
   </state>       
   <state id="DialogueManager" initial="S"/>  
      <state id="S">      
         <transition event="filled"  
             … 
         </transition>   
         … 
      </state> 
      …   
   </state>        
</parallel>  

Some of the examples listed in the appendix use this structure, but follow the 
SCXML syntax at the time of writing. Using VoiceXML as the presentation layer 
and SCXML for controlling the flow is in line with the intention of the DFP 
framework.  

It could also be useful to design a “meta-dialogue manager” in SCXML that is 
responsible for selecting which dialogue manager to invoke (or close down) in a 
given situation. Since an SCXML process can invoke processes implemented in 
languages other than SCXML, it would be possible for example to invoke an 
AIML-process for social chats and then a VoiceXML process for handling a 
practical dialogue. Thus, such a meta-dialogue manager would provide the 
developer with much freedom in implementing a dialogue manager in a language 

DialogueManager

PresentationLayer

ConversationModule



 90 

that is the most suitable for the task as well as allowing several dialogue 
managers to run in parallel.   

Next we will discuss how SCXML can implement the strategies for dialogue 
management discussed in chapter 2.  

4.5.1 FSMs in SCXML 
It should be clear by now that statecharts really are extended finite state 
machines, and consequently they have the ability to model ordinary finite state 
machines. Translating the finite state-based approach to dialogue management 
into SCXML code is therefore rather straightforward.  

A dialogue such as the one presented in Dialogue 3 could for example be 
managed in the following way:36 
<state id="travel_from_to_planet" initial="from">  
   <datamodel>  
      <data id="fromPlanet"/>  
      <data id="toPlanet"/>  
   </datamodel> 
   <state id="from"> 
      <onentry> 
         <send event="from_dest" target="tts"/>  
      </onentry> 
      <transition event="filled"      
           cond="_event.data.from_planet!= undefined"       
           target="to">  
         <assign location="fromPlanet"  
                 expr="_event.data.from_planet"/>  
      </transition> 
   </state> 
    
   <state id="to">  
      <onentry> 
         <send event="to_dest" target="tts"/>  
      </onentry>     
      <transition event="filled"      
           cond="_event.data.to_planet != ''"  
           target="wrapup"> 
         <assign location="toPlanet"  
                 expr="_event.data.to_planet"/>  
      </transition> 
   </state>      

 

                                                
36 It should be noted that the example is simplified to the extent that it does not have any error 
handling and that it accepts any input from the user. 



 91 

   <state id="wrapup">  
      <onentry> 
         <!-- confirm and wrap up dialogue -->        
      </onentry> 
   </state>  
</state> 

4.5.2 Frame-based Approach 
Frame-based dialogue systems are better at creating flexibility in the dialogue in 
comparison to finite state-based systems, but just like finite state-based dialogue 
systems they are suitable for simpler tasks, in which the system collects 
information from the user in order to fill empty slots necessary for accomplishing 
the task. It ignores the user’s behaviour as long as the relevant information is 
provided, and the agent is expected to behave consistently and predictably. 
Moreover, frame-based systems have limited dialogue management capabilities 
in that they cannot handle topic switches unless they can be regarded as a sub-
dialogue. That is, once left, the dialogue must be restarted rather than resumed if 
a topic change occurs. Statecharts, on the other hand, allow the application to 
return to a previous dialogue state by means of the history state. This means that 
its different task agents may be combined to solve more complex tasks, which 
Allen et al. (2001) refer to as “sets of contexts”, where shifts between 
predetermined topics are made possible. The state of the current dialogue may be 
saved in case of a topic shift and resumed again.  

In the finite state-based example above, the user’s input was stored in a 
datamodel, basically functioning as the fields in VoiceXML. Now, this datamodel 
can also be used to fill several slots in one user turn. The information must first 
be parsed through the grammar, which returns a semantic interpretation in the 
form of the ‘tag’-construct. Assuming the grammar returns values for 
“from_planet” and “to_planet”, as in the previous example, the SCXML dialogue 
manager using a frame-based approach could be implemented as in the code 
example below. 

 



 92 

<state id="travel" initial="bypass_init">                  
   <datamodel>                   
      <data id="fromPlanet"/>                   
      <data id="toPlanet"/>        
      <data id="count" expr="0"/>      
   </datamodel>      
   <state id="bypass_init">             
      <transition cond="count==0"    
                  target="get_from_and_to_planets">            
         <assign location="count" expr="count+1"/>            
      </transition>           
      <transition cond="fromPlanet != undefined &amp;&amp;  
                     toPlanet!=undefined" target="wrapup">             
      </transition>           
      <transition cond="fromPlanet == undefined"  
                  target="from_planet"/>           
      <transition cond="toPlanet == undefined"  
                  target="to_planet"/>          
   </state>             
   <state id="get_from_and_to_planets">             
      <onentry>                   
         <send event="from_to" target="tts"/>                 
      </onentry>                     
      <transition event="filled" target="bypass_init">                      
         <assign location="fromPlanet"                                        
                 expr="_event.data.travel_from"/>                  
         <assign location="toPlanet"                                     
                 expr="_event.data.travel_to"/>                          
      </transition>            
   </state>             
   <state id="from_planet">             
      <onentry>             
         <send event="from" target="tts"/>           
      </onentry>          
      <transition event="filled" target="bypass_init">              
         <assign location="fromPlanet"         
                 expr="_event.data.travel_from"/>             
      </transition>         
   </state>                     
   <state id="to_planet">            
      <onentry>             
         <send event="to" target="tts"/>           
      </onentry>          
      <transition event="filled"  
                  target="bypass_init">              
         <assign location="toPlanet"  
                 expr="_event.data.travel_to"/>            
      </transition>         
   </state>              
   <final id="wrapup"/>         
</state>   

The state bypass_init is responsible for keeping track of the dialogue state, 
i.e. which slots have been filled in the form, and follows the FIA algorithm in 



 93 

determining the next dialogue move.37 This means that in the first iteration it will 
transition to get_from_and_to_planets, which is a state that will attempt to 
fill every slot that matches the user’s input before returning to bypass_init. If 
there are remaining slots to fill, bypass_init will check visit each state that 
request the missing information in a finite state-based manner, in this case either 
from_planet, to_planet, or both, in consecutive order. When the slots have 
been successfully filled, the dialogue can be wrapped up and terminated.  

This is of course a very simple example and should be read as such, but it suffices 
to show that the form-based approach can be implemented in SCXML.  

4.5.3 Plan-based Approach 
A plan is really a sequence of behaviours leading to a specific goal. In a plan-
based approach, such a plan can be generated in real-time by means of logical 
reasoning based on the agent’s goal (desire) and its perception of the world 
(belief) (recall the BDI-model presented earlier, the plan corresponds to the 
agent’s intention). Plans may be constructed as a sequence of states but a state 
machine cannot generate a plan. The Serve state introduced in chapter 1 (see 
Figure 2) constitutes such a plan and consists of a sequence of behaviours that the 
waiter must traverse in order to execute the serve-behaviour. It is also possible to 
observe the waiter’s current behaviour in the plan by the “In”-predicate. SCXML 
thus enables the implementation of plans, but is currently incapable of planning, 
that is, of generating a plan in real-time. It would however be possible for an 
SCXML application to interact with a planner, for example a Prolog program as 
suggested by Radomski and colleagues (Radomski, Schnelle-Walka, & Radeck-
Arneth, 2013) 

4.5.4 Information State Update Approach 
In chapter 2.6.4 we presented the information state update approach as an abstract 
framework that needs to be filled with theoretical content. It was also mentioned 
that an information state contains all information available to an agent during the 
dialogue, of which some is private and some is shared. The question is whether 
SCXML is capable of implementing the ISU approach and according to Kronlid 
and Lager (2007) this is possible and they suggest the following correspondences: 

Information state – datamodel. The statechart can manipulate external data 
through the use of datamodels, in which parameters for specifying the 
circumstance and conditions during which the dialogue takes place can be set. 

                                                
37 Note that “bypass_init” previously was the name of the <initial> element, which keeps track of 
the fields that could be filled from the user’s initial input. The element bypass_init is used in a 
similar way in this example.  



 94 

The datamodel may therefore correspond to the contextual information stored 
in the information state in the IS approach.  

Update rule - transition. Transitions can be regarded as “update rules” (see 
also Gandhe et al., 2008), i.e. “a set of applicability conditions and a set of 
effects” (Larsson & Traum, 2000, p. 5) that change the state of the dialogue. 

Dialogue move – event. Just as an event in SCXML may trigger a transition 
from one state to another and possibly assigning new values to the data 
objects stored in the datamodel, a dialogue move in ISU may trigger an 
update of the information state. 

Gandhe and colleagues (Gandhe, DeVault, Roque, Martinovski, Artstein, Leuski, 
Gerten, & Traum, 2008) have implemented a dialogue manager using the ISU 
approach in SCXML. The state diagrams model the virtual character’s 
conversational obligations, with the different possible sub-dialogues running in 
parallel. Just as Kronlid and Lager suggest, the dialogue moves from either 
participants are treated as events that can trigger a transition to another state (for 
example from question_resolved to question_not_resolved, when the 
player’s latest dialogue move was interpreted as a question). The current data 
model configuration represents the information state and can also be used for 
conditional transitions.  

4.6 Advantages of Using Harel 
Statecharts 

Harel statecharts have previously been promoted as a suitable tool for describing 
dialogue flow (Kölzer, 1999) and the fact that statecharts have been endorsed by 
the World Wide Web Consortium (W3C) to constitute the semantics of the 
SCXML makes them particularly interesting. When control is managed by 
SCXML it allows an application developer to invoke several simultaneous 
presentation components, for example a voice-based component together with a 
multi-modal component, thus making it possible to synchronize speech with 
gestures for example.  

4.6.1 Visual Representation 
System developers are already familiar with the concept behind statecharts 
through Unified Modelling Language (UML) diagrams, which constitute an 
established methodology for system design (see for example Pressman, 2010). 
Horrocks (1999) argues that statecharts can also be used with advantage in the 
design of user interfaces. It is for example both simpler as well as faster to 
describe the flow using statecharts in comparison to describing it using text. He 



 95 

also stresses that a visual representation is easier to understand and follow and 
can thereby simplify communication. Another advantage he lists is the fact that 
statechart design does not require a specific programming language; instead 
statecharts can be created using a simple drawing tool. 

A visual representation makes the system easy to get an overview of, manage and 
communicate to others. There is however no standard way for game designers to 
illustrate game flow, but attempts have been made to create a visual language for 
describing game flow, for example “Computer game-flow design” (Taylor, 
Gresty, & Baskett, 2006). Another example is BrainFrame, a visual authoring 
tool for creating game AI created by Fu & Houlette (2002) that is based on 
FSMs. Other visualization tools that are used are flowcharts (promoted by for 
example Fullerton, 2008), storyboards (see for example Cristiano, 2008) and use 
case diagrams (see also Hammersley, 2009). These tools are sometimes used in 
combination to serve different demands.  

Graphical representations let designers create a blueprint of the game that may 
support communication between the members of the development team. 
Depending on the game designer’s background and skills, tools may either be too 
technical (e.g. UML class diagrams) or too oriented towards the visual and/or 
narrative aspect of the game (e.g. storyboards). For a game designer it is 
important to be able to describe the game at different levels of detail. A game 
designer need not, for example, determine how the game is actually coded, but 
they need to be able to communicate how the game is supposed to work so that it 
can be translated accurately into code. 

FSMs are extensively used for implementing the game AI since they are 
“conceptually simple, efficient, easily extensible, and yet powerful enough to 
handle a wide variety of situations” (Fu & Houlette, 2004, p. 283). Another 
advantage is that they have a visual representation that directly corresponds to the 
actual implementation. Behaviours are expressed in terms of states and changes 
in behaviours are expressed by transitions between states. We have already 
mentioned that FSMs only can be in one state at a time, which is problematic 
when actions are to be combined to form more complex behaviours. An NPC that 
has an action “aim” as well as an action “shoot”, for example, cannot aim and 
shoot at the same time unless there is a separate state for “aim-and-shoot”. This is 
because the NPC cannot be in the atomic states “aim” and “shoot” 
simultaneously. Statecharts have the advantages of FSMs but due to the 
hierarchical and concurrent features they avoid the most pressing problem, the 
state explosion problem. Statecharts are also easier to get an overview of and 
manage due to their “zoom-in” and “zoom-out” features. 



 96 

4.6.2 Statecharts and the Iterative Design 
Process 

In software engineering as well as within game development the iterative design 
approach is often promoted (see e.g. Pressman, 2010; Salen & Zimmerman, 
2004). Typically a project is divided into a number of independent deliverables 
that each iterates through 4 main processes in each cycle: design, prototype, test 
and revise. Projects that use the iterative approach typically apply agile process 
models, such as SCRUM and eXtreme Programming (XP), where small groups 
are responsible for a specific part of the project and have regular “builds” when 
the prototype is tested and evaluated. This process model has become more and 
more common within game development since it gives the team the opportunity 
to test and correct potential design flaws early on in the project. The quality is 
assured and since regular updates are provided it is easier to have control over the 
project’s development.  

Statecharts are well suited for the iterative design approach since the design can 
be broken down into small manageable pieces, each representing separate 
modules that can be worked on in isolation by different members of the team. 
And since statecharts offer an abstract representation of the software design, it 
can be iterated, tested and revised several times before the actual code is written 
(Horrocks, 1999).  

4.6.3 Summary 
Several advantages in using statecharts have been mentioned in this section and 
they can be summarized as follows: 

• They are graphical representations that simplify communication between 
team members 

• They support a modular-based approach to system development, meaning 
that design and implementation can more easily be distributed among 
team members.  

• Statecharts can describe a system at different levels of granularity, thus 
supporting communication at different levels of abstraction. 

• Statecharts support the iterative refinement approach to game design (e.g. 
Kreimeier, 2003; Salen & Zimmerman, 2004) typically used in for 
example agile process models, such as SCRUM, as well as bottom-up 
clustering – allowing the designers to specify and discuss concepts in 
isolation. (We will discuss this further in the section below)  

• They are finite-state based (and most games are finite-state based)  



 97 

4.7 Examples of Interactive Systems 
Using a Similar Approach 

In order to create agents capable of expressing individual behaviour, Egges and 
colleagues conducted an experiment “to realistically connect personality and 3D 
characters not only on an expressive level […], but also on a dialogue level 
(generating responses that actually correspond to what a certain personality in a 
certain emotional state would say)” (Egges, Zhang, Kshirsagar, & Magnenat-
Thalmann, 2003, p. 1). They regard a dialogue system as a collection of dialogue 
units, each handling a specific dialogue between the user and the computer. They 
have implemented such dialogue units as small finite state machines (FSMs) that 
run concurrently under an FSM kernel. The different dialogue units may have 
transitions that correspond to a certain input, but instead of allowing several 
transitions to take place simultaneously, an algorithm selects which transition is 
to be chosen based on priority. The dialogue system also has an interface to a 
mental model that formulates the mental state as a condition specified in XML. 
The data from the emotional state then tags the output text of a response. Even 
though their solution may support individual behaviours in terms of a variety of 
combinations, it still lacks the possibility of allowing the agent to perform several 
forms of expressive behaviour simultaneously and independently.  

Gebhard et al. (Gebhard, Kipp, Klesen, & Rist, 2003) have developed a toolkit 
called SceneMaker for creating interactive stories that uses cascaded FSMs 
(statecharts in effect) to model the scene flow. Every story contains a logical 
scene flow that defines the transitions between scenes, which is provided with 
content that is either pre-scripted or automatically generated. They call the active 
state a node, which can be of one of two types depending on whether it is a super-
state or an atomic state: 

• Scene node - represents a state in which a pre-scripted scene is performed 

• Super node - represents a state in which a pre-scripted or automatically 
generated scene is performed. Super-nodes may contain sub-nodes of 
either node-type, and one of the sub-nodes must be declared the starting 
node. The sub-nodes inherit all the edges that are connected to the super-
node.  

An edge defines the transition between states and like nodes they may have pre-
scripted scenes attached, which will be invoked when the edge is traversed.  

The first system that has been implemented using SceneMaker is the CrossTalk 
System (Gebhard, Kipp, Klesen, & Rist, 2003), in which the user can observe and 
provide feedback in a conversation between two agents, a salesperson and a 
customer, displayed on separate screens. By using simple means, such as 



 98 

applauding or booing, the user can influence agents’ behaviour and the 
progression of the story. 

Zubek (2005) uses a stochastic-based approach (see section 2.6) for modelling 
game dialogues and extends ordinary Hidden Markov Models (HMMs) to 
support hierarchy and parallelism. He applies the method in two different 
“games”: Xenos the innkeeper, a shopkeeper NPC that sells items and delivers 
quests to the player, and Break-up conversation, simulating a break-up 
conversation over chat between the player and the system in the role of the 
“soon-to-be-ex”.  

The dialogue engine iterates over the following consecutive steps: (1) parsing and 
pre-processing of the user’s input; (2) an evidence estimation based on the output 
from (1); (3) state estimation “computes the new belief distributions for each 
parallel space, given the evidence and the last known state”; and (4) action 
production and generation, translated into utterances or emotes (Zubek, 2005, p. 
109).  

The result is an interaction system that exhibits the desirable hierarchical 
parallel property: the interaction retains hierarchical composition of sub-
interactions that can affect over each other, but at the same time allows for 
parallel and independent engagement on different levels of generality. The 
redundant representation softens the performance drop-off at the edge of 
competence, and can be used to mimic some of the human ways of dealing 
with error. (Zubek & Horswill, 2005, p. 145) 

Since SCXML is Turing complete, it would be possible to implement Zubek’s 
approach using SCXML.  



 99 

Chapter 5  

Face Management for 
NPCs 
This chapter revisits the discussion concerning cooperative agents introduced in 
chapter 2, and attempts to model an NPC with the ability to take another game 
character into “ethical consideration” by means of “face management” (see 
Goffman, 1967). Face management can be described as the strategies we use in 
order to maintain our own and the other participants’ public self-image. In this 
chapter we will investigate ways to equip an NPC with face management skills in 
order to make it appear more socially competent. Also, by knowing the 
appropriate way to act in a given situation, the NPC can choose whether to be 
socially compliant or not. This chapter thus aims to present a model for 
implementing the hypothetical game design pattern SOCIAL	
  NORM	
  (see Table 7	
  in 
section 3.7), which will be applied to the waiter character presented earlier in 
1.3.1.38  

We take Brown and Levinson’s (1987) theory of politeness as a starting point, 
and in particular their algorithm for determining the threat to face given a specific 
communicative act in a particular situation. First, the theoretical background is 
given and thereafter the waiter character presented earlier will be revisited and 
updated.  

5.1 Face Management  
Being able to take an order and serve a customer using natural language would 
offer a new gameplay challenge in games such as the waiter character presented 
in chapter 1. However, in the example the waiter will behave in the exact same 
way each time a customer enters the restaurant, which is at odds with Hayes-Roth 
and Doyle’s (1998) suggestion that a character needs to behave variably and 
unpredictably in order to be believable. This section presents an attempt to 

                                                
38 Parts of this chapter have previously been published in (Brusk, 2008) and (Brusk, 2010). 



 100 

improve the waiter’s behaviour by taking ethical considerations into account, 
here in the form of politeness expressed by means of face management actions.  

5.1.1 Threats to Face  
“Face” is often used in metaphorical expressions related to our self-image, such 
as “lose face” which is used as a metaphor for being humiliated. It can be 
described as the mask we use in social situations, the appearance we want to keep 
in the interaction with others. Goffman (1967), for example, defines face as “the 
positive social value a person effectively claims for himself by the line others 
assume he has taken during a particular contact […], an image of self”. This 
implies that we are expected to use different “masks” for different occasions, for 
instance wear a “professional mask” when interacting with people in the work 
environment, and a “parent mask” when interacting with other parents or our 
children’s teachers for example. As professionals we probably want to be 
perceived of as proficient, knowledgeable, and the like, while we as parents may 
want to be perceived of as reliable and affectionate. In the former situation it 
might not be important whether we are affectionate parents, and in the latter 
proficiency in our job may be of less importance. Hence, it is the context that 
determines whether a certain behaviour is face threatening.  

We can assume that all participants in a social situation wish to preserve their 
face, but this is only possible if the other participants cooperate in this attempt 
since every action towards another participant is a potential threat to someone’s 
face. Hence, face preservation is a cooperative effort (see Brown & Levinson, 
1987, p. 61) and an example of the ethical considerations the participants trust 
each other to have – at least in order to achieve Ideal Cooperation (see chapter 
2.3.3). Consequently, participants try to avoid actions and situations that may 
constitute a threat to face, something Goffman (1967) refers to as “the avoidance 
process”. Participants may for example use hedges to diminish the effect of the 
face threatening action (FTA), i.e. a verbal or non-verbal communicative act that 
intrinsically threaten face  (see Brown & Levinson, 1987, p. 65). Sometimes, 
though, the FTA is unavoidable and in order to preserve the face of the 
participants, attempts are made to correct for its effect, something Goffman calls 
“the corrective process”. Here, the strategies we use in order to maintain our own 
and others’ face will be referred to as face management actions. 

5.1.2 Brown and Levinson: Politeness Theory 
Brown and Levinson (1987) attempt to provide a more detailed understanding of 
the mechanisms that control the choice of strategy an agent is confronted with 
when a threat to face is unavoidable. First, when an agent is about to make an 
FTA, they assume that the agent considers the relative weightings of the 



 101 

following three desires: (1) the desire to communicate the FTA, (2) the desire to 
be efficient and urgent, and (3) the desire to maintain the hearer’s (H) face to any 
degree. Second, the agent is assumed to evaluate the interpersonal relationship 
and estimate the value of the FTA in the current context. To do this, Brown and 
Levinson suggest that the agent makes an estimation of the values of three 
socially determined variables: the social distance between the speaker (S) and the 
hearer (H), SD(S, H); the power the hearer has over the speaker, P(H, S): “the 
degree to which H can impose his own plans and his own self-evaluation (face) at 
the expense of S’s plans and self-evaluation”; and, finally, a “culturally and 
situationally defined ranking of imposition” for the act under discussion, I, i.e., 
the extent to which the act interferes with the agent’s self-determination or 
approval. The calculation is then made by a simple addition of the individual 
factors: 39 

(1) SD(S, H) + P(H, S) + I 

Since these values reflect the individual agent’s own perception of the 
interpersonal relationship, they can only be approximations. Brown and Levinson 
however loosely propose that the value of each factor is an integer between 1 and 
n, where n is some “low number”. They furthermore consider the possibility that 
the algorithm is enhanced with other (e.g. cultural) factors that may be of 
importance for determining the face threat in a specific community.  

The evaluation will result in one of the following strategies (Brown & Levinson, 
1987, p. 68-70): 1) to do the FTA, either (a) “on record”, i.e. to unambiguously 
express the intention, or (b) “off record”, by using for example irony or 
metaphors thus by hinting the intention rather than expressing it directly. 2) Not 
to do the FTA. Several different strategies can furthermore be used when going 
“on record” (1a), for example to do it in the most direct and precise way (“baldly, 
without redress”), or by using negative or positive politeness, where negative 
politeness is essentially avoidance-based (S might for example use hedges and 
other softening mechanisms to avoid putting pressure on H) while positive 
politeness is oriented to the positive self-image H claims for himself. 

In the following section we will present a couple of implementations using 
Brown and Levinson’s framework and in chapter 7 we will return to these face-
threatening acts and discuss how they potentially may impact how gossip is 
produced and perceived.  

                                                
39 Brown and Levinson actually use Rx for denoting the ranking of imposition, but we use I 
instead, following Walker et al.’s notation, which is presented next.  



 102 

5.1.3 Walker, Cahn and Whittaker: Linguistic 
Style Improvisation 

Walker and colleagues (1996, 1997) use Brown and Levinson’s algorithm 
combined with speech act theory to produce Linguistic Style Improvisation (LSI). 
LSI is described as the choices a speaker makes about the semantic content, 
syntactic format and the acoustic realization of their spoken utterances. A 
particular speech act is given a specific ranking of imposition based on how they 
relate to the agents’ desire for autonomy and approval. Speech acts that can 
function as a threat to H’s desire for autonomy include those that predicate some 
future act of H, as well as speech acts that predicate some future act of S toward 
H, such as offers, which put pressure on H to accept or reject them. Speech acts 
that threaten H’s desire for approval include all rejections. The ranking of 
imposition is thus based on the speech act type where each speech act has been 
assigned a value between 1 and 50. The threat value, which they denote with Θ, 
is then calculated in accordance with Brown and Levinson’s algorithm:  

(2) Θ = SD(S, H) + P(H, S) + I(speech act) 

The agent evaluates the social distance (which roughly corresponds to how well S 
and H know each other) and assigns it a value between 1 and 50, and the power 
(P) is evaluated similarly (where power is described in a similar fashion as 
proposed by Brown and Levinson). An addition of these values thus generates a 
maximum value of 150. The sum is used to choose one of the following four 
strategies for executing a speech act, selected in order from lowest threat value to 
highest:  

• DIRECT: Do the act directly (corresponds to Brown & Levinson’s “on 
record strategy – baldly”); 

• APPROVAL-ORIENTED: Orient the realization of the act to H’s desire 
for approval (Brown & Levinson’s “on record – positive politeness”); 

• AUTONOMY-ORIENTED: Orient the realization of the act to H’s desire 
for autonomy (Brown & Levinson’s “on record – negative politeness”); 

• OFF-RECORD: Do the act off-record by hinting, and/or by ensuring that 
the interpretation of the utterance is ambiguous (Brown & Levinson’s “off 
record strategy”). 

Walker and colleagues have thus chosen an algorithm that for the most part 
follows Brown and Levinson’s proposal. As noted in (Walker, Cahn, & 
Whittaker, 1996) one weakness in their model is that they only consider the 
imposition of the speech act itself and disregard the propositional content. 
Meaning that the following requests are treated equally: “can I borrow a dollar” 
and “can you lend me $10 000?”. The values they have assigned each speech act 
must also be assumed to be specific for the particular scenario they use (a 



 103 

restaurant scene from Casablanca). A request for X may for example be more or 
less imposing depending on whether it is in line with H’s role to provide S with X 
or not. Acts that are associated with different roles thus ought to be treated as less 
threatening in general than the acts that are not.  

5.1.4  Prendinger and Ishizuka: Social Filter 
Prendinger & Ishizuka (2001a, 2001b) present a program that acts as a social 
filter between the agent’s affective state and its rendering in a social situation. 
They calculate the agent’s emotional state based on the agent’s beliefs, goals, and 
preferences using an inference machine referred to as the “affective reasoner”. 
The social filter program takes as input the agent’s emotional state and outputs 
the conditions for the emotion expression based on the agent’s personality and 
social role. We will return to their implementation in section 5.3.2 and forward. 

Prendinger and Ishizuka’s implementation differ from Walker and colleagues’ 
application on two main accounts: First, they explicitly prioritize the mental state 
of the agent, i.e. its personality type and emotional state, and how it affects the 
agent’s behaviour. Walker and colleagues have not taken into account the agent’s 
mental state. Second, they simplify Brown & Levinson’s algorithm by discarding 
the ranking of imposition and instead consider the agent’s social role awareness, 
which they summarize as the agent’s tendency to accept or violate social 
conventions, for instance those conventions associated with a particular role. The 
agents’ social role awareness becomes especially prominent in socio-
organizational settings where the roles have asymmetrical power built-in, such as 
doctor-patient, teacher-pupil.  

Prendinger and Ishizuka also use a smaller span for determining the social 
distance and power, limited to a value ranging from 0 to 3 (which in itself is a 
modification of Brown and Levinson’s suggestion, as they specified it to be a 
positive number), where 0 corresponds to a very close relationship.  

5.2 Introducing ρ 
We have also used Brown and Levinson’s algorithm as a starting point for 
dealing with face preservation in social interaction. We have furthermore been 
inspired by Walker and colleagues’ application of the algorithm and even 
reconstructed parts of Prendinger and Ishizuka’s implementation in (Brusk, 2008) 
(see appendix I and II).  

In essence, Brown and Levinson’s algorithm covers and supports the possibility 
to take cultural and situational factors into account, but does not specify which 
they are. This means that the parameter I most likely will stand for different 



 104 

things in different situations and therefore cannot be determined using a simple 
calculation similar to SD and P. Walker and colleagues, for example, chose to use 
it to evaluate the degree to which a particular speech act may interfere with the 
agents’ approval or self-determination in one particular context and given one 
particular role (in this case a waiter). Prendinger and Ishizuka chose instead to 
exchange the parameter I with a factor for determining the agent’s inclination to 
adhere to social conventions. We do not consider I to be of less importance than 
SD and P, but we find its role in the algorithm to be too vaguely defined to be 
useful for our purposes. Even though it is context-dependent just like the other 
two variables, it is much more difficult to define since it is a variable that 
possibly combine several different and independent values, e.g. the ranking of 
imposition of a particular speech act with the propositional content uttered in a 
particular situation with a given role distribution. It would thus be very difficult 
to calculate this value appropriately in an implementation. Instead, we propose an 
algorithm that simply measures the interpersonal relationship between the 
participants, which in turn determines the preconditions for a certain type of 
dialogue exchange, denoted ρ:  

(3) ρ = SD(S, H) + P(H, S) 

It is thus Brown and Levinson’s algorithm presented in (1) but with the ranking 
of imposition (I) omitted.  

In the social filter rules, described later in this chapter, ρ is used in combination 
with the agent’s personality type and emotional state to determine the linguistic 
style (neutral, rude or polite) of an utterance. In Chapter 7 ρ is used to determine 
whether it is appropriate to initiate a gossip conversation. 

5.2.1 Calculating SD and P 
It is difficult to accurately specify how well we know another person on an 
arbitrary scale – the question is whether it is easier to use a rough estimation, 
using a scale consisting of a fairly low number of degrees, say from 0 to 3, like 
Prendinger and Ishizuka, or using Walker and colleagues’ scale ranging using a 
much larger span. To have some guideline for specifying the range of the value of 
SD we use the same scale as Prendinger and Ishizuka as given in the previous 
section, but we also specify the meaning of the values by the following 
approximate correspondences: 

0: intimate, such as partners or parent-child 

1: (close) friends 

2: acquaintances 

3: strangers or distant acquaintances 



 105 

The power is also a value between 0 and 3, but is not as easily translated into 
specific relationships. The power H has over S is typically related to the degree to 
which H can control money or goods that S wants (Brown & Levinson, 1987; 
Walker et al., 1996, 1997), and corresponds roughly to how the participants are 
hierarchically organized. A high value of P indicates an asymmetric power 
relationship.  

Both P and SD are context-relative but the meaning of ρ should be rather 
obvious; a low	
  ρ value means that the risk of losing face is low, while a high 
value of	
  ρ increase the risk and in reality delimits the scope of what the agents 
can talk about, assuming that they all are equally interested in preserving their 
own and the other participant(s)’ face.  

5.3 Applying ρ in a Practical Dialogue 
We now aim to show how ρ can be used to specify a conversational agent’s 
dialogue behaviour. In addition, we will allow the agent to let its personality traits 
and emotional state influence the behaviour. We will continue to use the game 
scenario presented in chapter 1 as an example, which means that the waiter’s 
statechart will now be extended with a parallel statechart describing the waiter’s 
emotional state. Since this thesis is not about how to model emotions in artificial 
agents we will only use a very simple model for simulating emotions. The 
personality model is also for demonstrational purposes. The main point is to show 
that different factors can determine and affect the agent’s behaviour and that we 
do not need a lot of information to make the agent appear to be more complex 
than it really is.  

As has already been mentioned, the algorithm for specifying ρ does not take the 
actual speech act into account. In the example given here this is not necessarily a 
problem since the roles are associated with expected communicative acts, which, 
even though they might be regarded as having a high imposition (for example 
requests), are instances of the behaviour each role is expected to have (in this 
case waiter-customer).  

The emotional state of the waiter character and in particular its relationship to the 
customer may be determined by the situation in which the dialogue takes place. It 
should be noted that these factors are both CHARACTER	
  SPECIFIC as well as CONTEXT	
  
DEPENDENT (see 3.7) so the model that will be presented later is a reflection of a 
specific dialogue situation, but a generalization is made about the use of these 
factors per se.   

The dialogue between a waiter and a customer is a typical example of a practical 
dialogue and practical dialogues have been successfully implemented in 



 106 

commercial systems (see e.g. Allen et al., 2001). Some discussion of this have 
been presented earlier, for example: 

• They operate in a well-defined and limited domain – which decreases the 
number of potential interpretations of the input. 

• They have a fairly predictable structure. 

These limitations have consequences that also may contribute to the success: 

• The interaction has a natural termination, which is when the task has been 
completed.  

• The duration of the dialogue is expected to be in parity with the required 
steps to complete the task, so efficiency is often counted as a measure of 
success. 

These two points affect the overall length of the dialogue, meaning that a success 
criterion is to keep the dialogue short and simple.  

5.3.1 Activity Analysis 
Following Allwood’s (e.g. Allwood, 1995; Allwood, Traum, & Jokinen, 2000) 
schema for an activity-based communication analysis, the waiter-customer 
situation can be described as follows: 

Purpose: The activity is a simulation of a restaurant visit in which the goal is to 
get something to eat or drink.   

Roles: the NPC has the waiter role and is expected to take an order and serve the 
customers that enter the restaurant. The user plays the role of a customer who 
visits the restaurant. The NPC is expected to have knowledge of the domain, i.e., 
to know what is and what is not an appropriate order, even though the restaurant 
has a limited supply. If the restaurant does not supply alcoholic drinks, for 
example, the waiter must nevertheless be able to understand such a request and 
inform the guest that the order is rejected. 

Physical and social environment: As has previously been indicated, we will not 
consider the user’s physical environment. Instead the perspective is the player’s 
character, the virtual customer. Therefore, the restaurant is a virtual simulation of 
a physical and social environment.  

Artefacts: The artefacts are likewise virtual representations of real objects, such 
as tables, chairs, a counter and other typical artefacts existing in a restaurant 
environment.  



 107 

5.3.2 Mental Model 
The waiter’s mental model, here referring to a model of the waiter’s personality 
traits and emotions, has been designed with Prendinger and Ishizuka’s (2001a, 
2001b) social filter program in mind (see 5.1.4). As was mentioned earlier, the 
program acts as a social filter between the agent’s affective state and its rendering 
in a social situation. 

In their model, they consider the following two personality dimensions from the 
five-factor model (e.g. McCrae & Costa, 1999) to be relevant for explaining 
social behaviour: Extroversion (outgoing, neutral and introverted), which affects 
the choice of communicative act, and agreeableness (friendly, indifferent and 
unfriendly), which determines the linguistic style of the utterance (c.f. NPC roles 
in 2.2.2). 

For a “cognitively intact” adult, personality is something that is preserved over 
time, or at least changes very slowly (McCrae & Costa, 1999). Therefore 
Prendinger and Ishizuka have treated the values of the personality dimensions as 
facts in their affective reasoner.   

Figure 20: Emotions manager 

We will not use an inference machine such as their affective reasoner; instead, 
the personality traits are integrated in the statechart itself. This means that 
characters with different personality traits are designed with a unique set of 
behaviours (in statecharts specified through states and transitions). An outgoing 
character may for example be inclined to talk more than an introvert character 
(see for example 2.4.2), which may be controlled by means of specifying 
conditions on the transitions for example. Another factor that will affect the 
waiter’s behaviour is his current emotional state. For managing the waiter’s 
different emotions we have created an emotions manager modelled as an 
independent statechart called WaiterEM (see Figure 20, above). Since this is just 
for demonstrating how the waiter can vary his verbal behaviour depending on his 
current emotional state we have chosen a simple model consisting of two basic 
emotions, Joy and Anger, and one state in which the agent is indifferent (here 

WaiterEM

Neutral

AngerJoy

a



 108 

referred to as Neutral).40 The WaiterEM runs in parallel with WaiterAM and the 
WaiterDM. 

5.3.3 The Effects of the Social Filter  
The choice of linguistic style of the utterance is here regarded as an expression of 
politeness (or lack thereof), but the agent’s emotional state and personality type 
can affect how inclined the agent is to accept the rules of politeness, i.e. its 
willingness and/or ability to adjust to a certain SOCIAL	
  NORM. In our model we 
have used three different styles in which a communicative act can be expressed: 
Rude, neutral, and polite. We will assume that some alignment occurs, i.e. if the 
customer is rude, the waiter is more inclined to be rude as well.  

The emotional state (see Figure 20, above) also affects the waiter’s behaviour. An 
angry waiter, for example, may be less patient towards a rude customer or a 
customer that cannot make up his mind and thereby be more inclined to respond 
rudely (or perhaps even aggressively). A joyful waiter, on the other hand, may be 
more polite and patient in general and avoid adapting to a customer that behaves 
badly.   

The following dialogue sample is extracted from running our simple text-based 
prototype that was based on Prendinger and Ishizuka’s application (W=waiter, 
C=customer):  

W: Welcome to our coffee shop! 
C: Hello 
W: May I take your order? 
C: I would like a regular coffee, please 
W: Very well, that will be 2 dollars please 

Dialogue 6: Dialogue retrieved from running our social filter prototype with a 
friendly waiter in a coffeeshop 

The example illustrates a waiter in the emotional state Neutral with a friendly 
and extrovert personality type. We used CANNED	
  TEXT	
  RESPONSES (see 3.7) that are 
stored as data in the datamodel, tagged only with linguistic style (rude, polite 
and neutral tags) and type of communicative act (value of <data id>), as in 
the following data structure for specifying the initial take order phrases:  

                                                
40 An overview of the current state of computational models of emotion can be found in (Marsella, 
Gratch, & Petta, 2010) 



 109 

<data id="take_order_phrases">            
   <phrases> 
      <rude>What do you want?</rude> 
      <polite>May I take your order?</polite>  
      <neutral>What are you having?</neutral>     
   </phrases> 
</data> 

In the current implementation we used a simulated user but assuming a human 
user interacting through a presentation layer implemented in VoiceXML, the 
user’s linguistic style would have to be specified in the grammar, as in the code 
sample below for example: 
<grammar version="1.0" root="start">                                        
  <rule id="start">  
    <ruleref uri="#requestOrder"/>  
      <tag> out.order=rules.order;  
            out.ca='order'</tag> 
  </rule> 
  <rule id="requestOrder">                                            
    <ruleref uri="#requestMarker"/>                                            
    … 
  </rule>                                      
  <rule id="requestMarker">                                            
    <one-of>  
       <item> I would like  
          <tag> out.ls=’polite’ </tag></item>                                              
       <item> I want 
          <tag> out.ls=’neutral’ </tag> </item>                                                
       <item> Give me 
          <tag> out.ls=’rude’ </tag> </item>    
    </one-of>  
  </rule>  
</grammar> 

Dialogue 7 and Dialogue 8, below, illustrate how the linguistic style can be 
affected depending on whether the agent is on the friendly or the unfriendly scale 
of the personality dimension agreeableness. If the customer greets the friendly 
waiter in a rude way and their interpersonal relationship does not in itself 
constitute a potential threat to face (ρ is low), the waiter will choose to answer in 
a neutral tone. However, if the waiter is in the unfriendly dimension of 
agreeableness, it will adapt the customer’s behaviour and use a rude expression 
as well. Similar to Prendinger and Ishizuka’s implementation, agreeableness is 
expressed in the linguistic style (LS). The agent’s personality will thus define the 
behaviour of the statechart, i.e. different personality types will have a different set 
of possible behaviours.  



 110 

W:  Welcome! 
W:  May I take your order? 
C:  Give me a coffee right away! 
W:  A coffee, coming right up! 

Dialogue 7: Friendly waiter 

 
W:  Hello. 
W:  What are you having? 
C:  Give me a coffee right away! 
W:  You will just have to wait for your turn, which possibly is never. 

Dialogue 8: Unfriendly waiter 

The personality traits thus affect the waiter’s behaviour in two ways: by choice of 
communicative act, i.e. what they say, and by choice of linguistic style, i.e. how 
they say it. 

 

S1 Event  LS  ρ	
   Agreeableness  S2  LS  

S1  ca.* Rude  2  friendly  S2  Neutral  
S1  ca.* Rude  2  unfriendly  S2  Rude  

Table 8: Effects of agreeableness personality dimension 

Possible transitions are specified in Table 8 and can be read as follows: The 
waiter is expecting an incoming “Event” in terms of a communicative act 
(denoted as “ca.*”, where * represents different types of communicative acts, e.g. 
“order”), encoded with the linguistic style “LS” in which it was expressed, and 
transferred in the event data. Depending on the interpersonal relationship (ρ) and 
the waiter’s “Agreeableness”, the waiter will perform a communicative act (in 
state “S2 ”) expressed in a specific LS.  

An example of how a social filter rule can be coded in SCXML is given below 
and should be read as if the waiter is in the state Anger and ρ (the interpersonal 
relationship) is below 4, then go to state TakeOrder, otherwise go to the state 
Greet:  
<transition cond="In(’Anger’) &amp;&amp; roh &lt; 4"     
            target="TakeOrder"/>  
<transition target="Greet"/>  

This example is an illustration of the gameplay design pattern CHARACTER-­‐SPECIFIC	
  
DIALOGUE – another waiter might always greet the customer whatever the current 
emotional state. 

Similar to Prendinger and Ishizuka’s implementation, the personality dimension 
Extroversion affects the communicative act rather than the linguistic style. If ρ is 



 111 

low, an introvert waiter may for example take the order directly instead of 
greeting the customer first (as shown in Table 9, below).  

 

S1  Event ρ  Extroversion  S2  
W_DialogueIdle  ca.greet 2  Extrovert  Greet  
W_DialogueIdle  ca.greet 2  Introvert  TakeOrder  

Table 9: Effects of extroversion personality dimension 

Dialogue 9 and Dialogue 10, below, exemplify how the introvert and extrovert 
personality dimensions, respectively, may be shown in the conversational 
behaviour: 

W:  What are you having? 
C:  A coffee  

Dialogue 9: Introvert waiter approaches the customer 

 
W:  Welcome !  
W:  May I take your order? 
C:  A coffee 

Dialogue 10: Extrovert waiter approaches the customer 

If the character should be able to skip a stage, such as Greet, we need to update 
the previous model by adding a transition from W_DialogueIdle to 
TakeOrder. Assuming that the waiter only skips the greeting when not feeling 
threatened by the customer (i.e., ρ is low), the waiter’s dialogue manager could 
be modelled as the statechart in Figure 21, below. If the waiter never greets a 
customer, the state could of course be removed altogether. One could also design 
a character that only greets friends and acquaintances (low ρ) and never the 
customers that generate a high ρ-value. If the waiter’s emotional state determines 
his behaviour, such that he does not greet the customer when angry, the condition 
“In(’Anger’)” must be added to the transition between W_DialogueIdle and 
TakeOrder (see previous code snippet). The choice of communicative act and 
the linguistic style used in the expression are thus dependent on the character’s 
personality, current emotional state and the interpersonal relationship – here 
represented by ρ . How to use these parameters is really up to the designer, 
what’s important here is that we can vary a character’s social behaviour by means 
of states, transitions between states, events, and conditions.  



 112 

Figure 21: Dialogue manager for introvert waiter 

5.3.4 Parallel Dialogues 
Prendinger and Ishizuka (2001b) also implemented a boss character in order to 
demonstrate that the waiter’s behaviour is determined by the interpersonal 
relationship, in particular the equivalent they use to Brown and Levinson’s 
(1987) ranking of imposition, namely whether the character accepts or violates 
social conventions. The dialogue between the waiter and the boss shows how the 
threat value and the waiter’s attitude towards conventions come into effect in the 
waiter’s behaviour. In the example, the waiter tells the boss that he wants to take 
a day off. Depending on the result from the “affective reasoner” and the social 
filtering, the request is expressed politely as “Good afternoon boss. May I take a 
day off tomorrow?” or more casual as a statement in “Good to see you, boss. 
Tomorrow I will take the day off”. In both their examples, the boss rejects the 
waiter’s request, with a socially filtered expression. The waiter will obey the boss 

W_DialogueIdle

a

Greet
If In(’TakeOrderAct’)

TakeOrder

OnEntry
Raise TimeOutE
Prompt Greet

On TimeOutE

On ca.greet

Accept Reject

OnEntry
Raise event TimeOutE
Prompt take order

On ca.order  
If ¬Exists(order, counter)

ResolveExchange

OnEntry
Prompt reject order

OnEntry
Prompt confirm order

If In(’ReceivePayment’)

On TimeOutE

WaiterDialogueManager

If In(’Anger’)

If <=3

On ca.order
If Exists(order, counter)
order:=_event.data.order



 113 

or not depending on whether he respects or violates conventional practices 
toward him. 

Figure 22: Parallel dialogue 

As an extension to our version of the waiter character, the waiter can address the 
boss while being engaged in a dialogue with a customer. Rather than conducting 
the dialogue when the dialogue with the customer is terminated, as in their 
example, the waiter in our example addresses the boss when he passes by, 
signalled by the event ‘approach’ with a data payload specifying the agent to be 
the boss (see Figure 22, above). The dialogue is then managed in a module 
separate from the practical dialogue. Also, the waiter’s interaction with the 
customer is now specified in a new sub-state to WaiterDM, that we have chosen 
to call Customer_dialogue. The dialogue with the boss can then be initiated 
from either the Customer_dialogue or DialogueIdle, and this source state 
determines which state to return to when the dialogue with the boss is finished. If 
the active state is Customer_dialogue, the dialogue with the customer will be 
resumed as soon as the waiter is done talking to the boss. This is possible due to 
the deep history feature (H*) in statecharts, which allows us to save the current 
dialogue state before it is exited. If the source state is DialogueIdle, there is no 
need to save the previous configuration.  

Parallel dialogues are also possible to achieve by means of parallel states or by 
running several invoked dialogue managers simultaneously using the meta-
dialogue manager mentioned earlier. 

5.4 Summary and Conclusion 
This chapter has presented a number of ways to create NPCs with the ability to 
manage face in social situations, i.e. NPCs applying the pattern SOCIAL	
  NORM. The 

WaiterDM

DialogueIdle

a

Customer_dialogue
If In(’TakeOrderAct’)

Boss_dialogue

If In(’TakeOrderAct’)

H*

On approach
If _event.data.agent == ’boss’

On approach
If _event.data.agent == ’boss’

If In(’ActionIdle’)



 114 

first example showed how a character could be modelled to vary its behaviour 
according to the perceived interpersonal relationship. In order to do this, we 
introduced a parameter ρ, which is calculated by a modified version of Brown 
and Levinson’s (1987) algorithm for calculating the weightiness of a face 
threatening action (FTA). The algorithm for calculating ρ was used in 
combination with an evaluation of the customer’s behaviour to determine how the 
waiter should act. The model also took into account the waiter’s current 
emotional state and personality type. In this regard, the models were simple and 
served merely to point out how personality and emotions can be represented 
using statecharts and how these differences may generate different behaviours. 

Walker et al (1996, 1997) calculate the threat to face using Brown and 
Levinson’s original algorithm, but where the factor I specifically corresponds to 
the imposition of a specific speech act. Prendinger and Ishizuka (2001a, 2001b), 
on the other hand, replaced I with “violating or respecting conventional practice”. 
The algorithm presented here thus supports Brown and Levinson’s algorithm as 
well as the variants proposed by Walker and colleagues and Prendinger and 
Ishizuka. The modification allows us to tailor the algorithm for different contexts, 
such as will be noticed in section 7.9, where we introduce sensitivity as an 
evaluation of the propositional content of a particular gossip story.  

 
 



 115 

Chapter 6  

DEAL  
So far we hope to have presented convincing arguments for using a modular-
based approach for designing natural language game dialogues, which is the main 
advantage in using statecharts. Now we also want to show that the approach is 
useful in other contexts and within other frameworks as well. This chapter 
presents our contribution to the DEAL project, a joint project for investigating the 
possibilities of creating a language learning system for conversational training 
that uses gameplay elements to create an immersive learning environment (see 
also Wik, Hjalmarsson & Brusk, 2007a, 2007b).41  

6.1 Introduction to DEAL 
DEAL is an example of a serious game, i.e. a game that has a purpose other than 
to solely entertain, such as teaching, training or advertising (Iuppa & Borst, 
2007). The purpose of the project was to create a language learning system in 
which the user was encouraged to practice conversation by playing a simple 
trading game.  

DEAL sets the scene of a flea market where a talking animated agent (a non-
playable character) is the owner of a shop where used objects are sold. The 
objects sold at a flea market can be a diverse set of items, which can be tailored 
to suit the vocabulary mastered by a language learning student. A flea market is 
also a place where it often is acceptable to negotiate the price. 

6.1.1 Framework 
DEAL is implemented by using components from the Higgins project (see e.g. 
(Edlund et al., 2004): an off-the-shelf automated speech recognition (ASR) 
system, a dialogue manager developed for DEAL purposes, and a GUI with an 
embodied conversational agent (ECA).   

                                                
41 This chapter has previously been published in (Brusk, Lager, Hjalmarsson, & Wik, 2007) 



 116 

The Higgins project aims at developing “a collaborative dialogue system in 
which error handling can be tested empirically” (Edlund et al., 2004). Higgins is 
a module-based system consisting of an interpreter, Pickering, which takes the 
result from the ASR as input and creates a semantic representation of the user's 
communicative act as output. The communicative act is then sent to the discourse 
modeller, Galatea (Skantze, 2005). The output from Galatea constitutes the input 
to the dialogue manager implemented in SCXML.  

The module presented in this chapter has been tested in the SCXML Web 
Laboratory 42 , a web-based interface for SCXML-applications. The dialogue 
manager (DM) has thus been developed separately from Higgins, i.e., there is no 
real connection between Galatea and the DM. Instead, we have made minor 
adjustments of the output from Galatea to fit the syntax of the event data as 
formalised in the SCXML Web Lab.  

The communicative act retrieved from the output of Galatea is treated as an 
incoming event in our application. The SCXML DM responds with a new 
communicative act that in theory is passed to the generator in Higgins and then 
sent back to Galatea again.  

6.2 Trade  
Trade is a common game mechanics used in most role-playing games, such as 
Morrowind (Bethesda Game Studios, 2002) and other types of adventure games, 
for example Animal Crossing (Nintendo, 2001). A shopkeeper in a game is 
typically represented by an NPC, and a trade dialogue may be both practical (to 
successfully complete a transaction) as well as socially oriented, involving 
elements of negotiation and small talk. Trade is thus a good candidate for 
exemplifying how natural language dialogue can be used in a game setting.  

There are thus several reasons why we chose trade for the DEAL project:  

— It involves explicit and well-known roles of the participants. 

— A trading situation is a fairly restricted and universally well-known 
domain. It is something everyone is conceptually familiar with, regardless 
of cultural and linguistic background. 

— Trade may involve bargaining. The negotiation process is in itself an 
interesting research area due to its complexity containing both rational 
and emotional elements. 

                                                
42  <http://spyderbrain.ling.gu.se/index.html>. The SCXML interpreter is written in Oz and 
developed by Spyderbrain technologies.  
 
 



 117 

The aim is to create a believable interaction involving elements of freedom for 
the player combined with an unpredictable outcome associated with a negotiation 
process. 

6.2.1 The Activity 
Just like the activity of ordering something from a waiter at a coffeeshop, the 
DEAL scenario can be analysed using the parameters for “activity-based 
communication analysis” (see section 2.3), as follows. 

Purpose: In serious games there is typically a higher purpose that goes beyond 
the intended player experience provided by the game itself. In this example the 
higher purpose is to be given the possibility to practice conversational skills in a 
target language. To fulfil this goal, the user is encouraged to talk as much as 
possible, e.g. request different items of various colours, forms and sizes, 
negotiate the price and so on. Seen from this perspective, the shopkeeper behaves 
like other task-oriented ECAs and the user interacts using his or her real identity. 
However, by creating a game-like activity around the task, it is assumed that the 
interaction becomes entertaining enough to motivate the user to want to use the 
system and use the system repeatedly. 

The purpose for interacting with a shopkeeper is usually to buy something one 
needs, but it could also be to do a “good deal”, for example to buy something 
valuable for a cheap price. To make the activity into a game, various goals can be 
specified in advance, for instance “you have 30 SEK, buy a red clock and a green 
hammer from the shopkeeper”. 

Roles: There are two well defined, and asymmetric, roles – a shopkeeper, who is 
represented by the NPC, and a customer, the role assigned to the user. Each role 
is associated with certain obligations; the buyer is for example expected to 
request an object while the shopkeeper’s obligation would be to respond to that 
request by presenting an object that matches the customer’s wishes.    

In considering the interpersonal relationship, we can assume that the social 
distance is relatively high since this is a task-motivated interaction rather than 
personally driven. They both have some power over each other since they both 
have something that the other one wants – but the customer is more likely to have 
an advantage as the shopkeeper must keep business going in order to stay in 
business, while the customer most likely can do without the items.  

Artefacts: The setting is a flea market in which used objects are sold. The 
customer (user) can see the objects for sale on the screen, located behind the 
shopkeeper. Between the customer and the shopkeeper is a counter on which the 
shopkeeper may place the requested item. When the shopkeeper and the buyer 



 118 

have come to an agreement, payment is conducted by placing money on the 
counter. 

Physical and social environment: The game uses a first person perspective in a 
single-screen 2D-display (see Figure 23). The imagined player character stands in 
a fixed position in front of a counter face to face to the shopkeeper. Behind the 
shopkeeper is a wall showing the objects for sale and the buyer’s assets are also 
visible in the graphical user interface (GUI). 

 

Figure 23: DEAL interface 

6.3 Implementation in SCXML43 
A transaction can be modelled as consisting of three phases: An opening phase, 
in which the participants acknowledge each other, a trading phase, when the 

                                                
43 The original SCXML implementation is listed in Appendix III. 



 119 

actual transaction takes place – including an optional bargaining phase, and 
finally an end phase, in which the deal is closed and the participants end the 
interaction. As in the following dialogue sample (where P represents the player 
and S the shopkeeper): 

P1:  Hi! I would like to buy a clock  
S1:  A clock.  
S2: What colour did you have in mind? 
P2:  Do you have any green ones? 
S3:  Sure, what size?  
P3:  A small one, please. 
S4:  How about this clock? 
P4:  How much is it? 
S5:  It costs 250 
P5:  That is too expensive. I can pay 125 
S6:  How about 225? 
P6:  150 
... 
S7:  You can get it for 200, no less. 
P7:  Ok, that is a fair price, I'll take it. 
S8:  Fine, 200 then. [The user hands over the money, the shopkeeper 

hands over the object.] 
S9:  Thank you and welcome back! 

Dialogue 11: A typical trade dialogue in DEAL 

In Figure 24, below, an overview of the shopkeeper’s dialogue manager is 
presented.  The top-level state, ShopkeeperDM, contains three sub-states, one 
for each phase: Opening, Trading and Ending. Both Opening and Trading 
are compound states.   

When the player utters P1, the shopkeeper's active state is Opening. After having 
established contact with the shopkeeper by a greeting, the customer expresses a 
request for a specific object, a clock, which initiates the trading phase. The 
shopkeeper checks the inventory, finds several matches and requests additional 
information (S2 and S3) in order to narrow down the search space. When the 
shopkeeper finally retrieves one unique match, the item is presented to the 
customer (S4).  

Having agreed upon the item to trade, a negotiation process may begin, in this 
case initiated by the player in P5. After a series of offers and counteroffers, the 
two participants come to an agreement (S7 followed by P7). The shopkeeper 
confirms the price in S8, and then wraps up the dialogue when the customer has 
handed over the money. 

 



 120 

Figure 24: Dialogue manager for Shopkeeper in DEAL 

Below, a detailed description of the different states – what they do and how they 
work – is given.  

6.3.1 Opening  
Figure 25, below, zooms in on the opening state of the shopkeeper’s dialogue 
manager. Either participant may initiate the dialogue, for instance with a greeting, 
but the player may also choose to immediately request an item which is an event 
that will trigger a transition to Trading. If the player is passive (detected by a so 
called “no input” event), the system may attempt to encourage the player to 
respond by offering assistance, which is done in the state Offer_assistance. 
The player can also specifically ask for help to get assistance, which also triggers 
a transition to Offer_assistance.  

A transition to Trading is triggered when the user requests an object or does not 
provide an input at all. The former event is user-generated and the latter is 

Define_ooi

ShopkeeperDM

Opening

Trading

Resolve_exchange

Negotiation

Ending

On userTakesGoods

On ca.cancel

On done.AcceptTransaction

On done.RejectTransaction

On ca.requestOn no_input

On ca.reject_price

On ca.accept

On ca.reject_object

On ca.accept

On ca.counteroffer



 121 

generated automatically if the player hasn’t responded within a certain amount of 
time. 

Figure 25: Opening 

6.3.2 Trading  
In the original version of the model that was published in (Brusk, Lager, 
Hjalmarsson, & Wik, 2007), the complex state Trading contained three 
substates: Define_ooi (an abbreviation of “define object of interest”), 
Negotiation and Resolve_exchange (see Figure 26, below), all of which 
are complex states themselves. Later, the model has been slightly modified to 
make better use of the advantages that statecharts offer. Below, a presentation of 
the original construction will be given, followed by a section presenting the 
improvement. 

Figure 26: Trading 

 

Define_ooi

ShopkeeperDM

Opening

Trading

Resolve_exchange

Negotiation

Ending

On userTakesGoods

On ca.cancel

On done.AcceptTransaction

On done.RejectTransaction

On ca.requestOn no_input

On ca.reject_price

On ca.accept

On ca.reject_object

On ca.accept

On ca.counteroffer

On no_input

Opening

Greeting

Offer_assistance On no_input

On ca.request
If _event.data.req=’object’

On ca.request
If _event.data.req=’help’



 122 

Define object of interest 
A transaction can only be conducted if the shopkeeper is in possession of a 
specific item that the buyer is interested in purchasing and the buyer has 
something to trade in return (in this case money). The initial step in a trading 
situation is thus to find out what object the customer is interested in buying, here 
referred to as “define object of interest”, which in Figure 27 corresponds to the 
complex state Define_ooi.  

Figure 27: Define object of interest 

Define_ooi contains two states: Find_object – a state for retrieving an 
object from the database, and Present_object – for presenting the object to 
the customer.  

Figure 28, below, presents a more detailed view of Define_ooi. As can be seen 
in the picture Find_object is a complex state containing two states: 
Get_info, which is responsible for collecting the necessary data from the user; 
and Search_object, which does the actual database search based on this data. 
The model is inspired by form-based dialogue systems, such as VoiceXML, with 
regard to collecting the necessary information from the player. This means that 
when the system retrieves too many matches in a search, it tries to narrow down 
the search space by asking the player to specify the missing properties one by one 
until a match is found (Get_info) in a finite state-based manner. A more 
sophisticated system would of course try to ask only relevant questions, i.e. 
questions of distinctive features, but in this prototype we used a database with 
some limitations that prevented us from doing a search with more than one 
parameter at a time. Furthermore, the search is conducted in document order (see 
Appendix III). When a matching object has been found in the database a 
transition to Present_object is triggered, in which the shopkeeper presents the 
object to the user.  

Define_ooi

Find_object

Present_object

On done.dbq
If _event.data != undefined

On done.dbq

On ca.reject

If _event.data == 
undefined



 123 

Figure 28: A detailed view of Define object of interest 

There are three possible outcomes of Define_ooi: the user rejects the object or 
price, accepts the deal or responds with a counteroffer. There is actually also a 
fourth possible outcome, “cancel”, a transition that is leaving the top state 
Trading and therefore is implicit in each and every substate of Trading as 
well.  

Negotiation 
Negotiation is a complex process involving elements of social psychology and 
game theory and can also include emotional elements (e.g. affect) and lies. Our 
implementation so far handles offers and counteroffers. A next possible step 
could be to add complexity in terms of argumentation-based negotiation.  

Negotiation can be viewed as a distributed search through a space of potential 
agreements (Jennings et al., 2001).  The aim is to reach a point in the agreement 
space that will optimise the outcome, which at the same time is accepted by the 
other agent. The agents present offers and counteroffers based on parameters 
such as cost/utility and time. The shopkeeper's strategy used in this example has 
been inspired by the Zeuthen strategy, described in Jennings et al (2001), and the 
“automated bargaining game” presented in Tsang and Gosling (2002). In effect, 
the shopkeeper will give an offer based on his last offer (which has become the 
current price), the cost (minimum acceptable price), and time, corresponding to 
the number of rounds the shopkeeper has left to conclude the deal (see code 
sample in section 6.3.3, below). The buyer will also make offers according to 
those parameters, but the number of rounds will most likely be different, since it 

Define_ooi

On dbq.answerset.size

Find_object

Get_info

Search_object

Gather_props

Select_props

type sizecolor pricerange

Present_object

On done.dbq
If _event.data != ’None’

On done.dbq

On ca.reject_object



 124 

is randomly selected for each agent. Neither agent has information about the 
other agent's time and cost/utility. It is assumed that neither of the agents is 
interested in reaching a breakdown and that they therefore will increase their 
willingness to conclude the deal for each round. The shopkeeper may for instance 
accept any price that exceeds the cost when running out of rounds. A breakdown 
may however occur when the shopkeeper has no more than one turn left and the 
latest bid from the buyer is below the cost or lower than her previous bid. 

Figure 29: Negotiation  

Figure 29 illustrates the negotiation statechart. The states RejectTransaction 
and AcceptTransaction correspond to the shopkeeper’s response to the 
buyer’s offers, while the buyer’s offers are treated as events, where the actual 
event is a communicative act and the event data contains a type specifying the 
communicative act as an offer, accept or reject.  

Resolve exchange 
When the shopkeeper and the buyer have reached an agreement, the next step is 
to conclude the deal. In the complex state Resolve_exchange (Figure 30), the 
shopkeeper starts by confirming the agreed price (Confirm_price), after which 
the buyer is expected to hand over the money (triggering event). When the 
shopkeeper has received the requested amount of money, the state 
Money_transaction is entered. The shopkeeper thanks the buyer and hands 
over the goods and when the buyer takes the goods, the dialogue reaches the end. 

Negotiation

Offer If Counteroffer rejected && 
number of turns left > 1

RejectTransaction AcceptTransaction

If Counteroffer accepted
If counteroffer rejected && 
1>=number of turns left



 125 

 

Figure 30: Resolve exchange.  

Modification 
When the shopkeeper and the buyer have come to an agreement, regardless of 
whether they have negotiated the price or not, a transition to 
Resolve_exchange is triggered. In the first model, both Define_ooi as well 
as Negotiation have a transition to Resolve_exchange triggered by the 
same event – “ca.accept”. This motivates a clustering of these states under a 
common super state to reduce the number of transitions. Let’s call the new state 
ComeToAgreement, to indicate that the participants have reached an agreement 
concerning both the item to trade (identified in Define_ooi) as well as the price 
(in either Define_ooi or Negotiation). By doing so, only one transition to 
Resolve_exchange in case of acceptance is needed. Figure 31, below shows 
the updated version of Trading. This means that when the buyer accepts the 
deal, the event is caught at the top-level state, i.e. in ComeToAgreement rather 
than in either Define_ooi or Negotiation. 

 

 

 

 

 

 

Resolve_exchange

Confirm_price

Money_transaction

HandOverGoods

Thank

On handOverMoney

On userTakesGoods



 126 

Figure 31: A modified Trading state 

Ending 
When the transaction is concluded or the trade has been cancelled, the application 
reaches the end phase, where the agents say goodbye to each other and exit the 
interaction. 

6.3.3 Code Example – Negotiation 
<state id="negotiation" initial="offer"> 
  <onentry>  
    <assign location="Interval"  
            expr="(Price-Minprice) / RoundsLeft"/> 
    <assign name="Price" expr="Price-Interval"/> 
  </onentry> 
 
  <state id="offer"> 
    <transition event="ca"  
      cond="_event.data.ca_type == 'counteroffer'  
        &amp;&amp; PreviousBid &ge; _event.data.offer"     
      target="offer">  

<!-- user offers same or lower bid than previous --> 
      <assign location="RoundsLeft" expr="RoundsLeft-1"/> 
    </transition> 

 

Define_ooi

Trading

Resolve_exchange

Negotiation

On ca.accept

On ca.reject_price

ComeToAgreement
On ca.reject_object

On done.AcceptTransaction

On done.RejectTransaction

On ca.counteroffer



 127 

    <transition event="ca"  
      cond="_event.data.ca_type == 'counteroffer' &amp;   
         &amp; 1 &ge; RoundsLeft &amp;&amp;     
         _event.data.offer &gt; PreviousBid &amp;&amp;     
         _event.data.offer &ge; Minprice"     
      target="acceptTransaction">  
      <assign location ="Price"  
              expr="_event.data.offer"/> 

<!-- Shopkeeper accepts price --> 
    </transition> 
 
    <transition event="ca"  
        cond="_event.data.ca_type == 'counteroffer'  
        &amp;&amp;_event.data.offer &ge; Price-Interval"  
        target="acceptTransaction"> 
      <assign name="Price" expr="_event.data.offer"/> 

<!-- Shopkeeper accepts price--> 
    </transition> 
 
    <transition event="ca"  

 cond="_event.data.ca_type == 'counteroffer'  
  &amp;&amp; 1 &ge; RoundsLeft &amp;&amp;  
  Minprice &gt; _event.data.offer"   

      target="rejectTransaction"> 
    </transition> 
     
    <transition event="ca"  
      cond="_event.data.ca_type == 'counteroffer' &amp;      
       &amp; (Price-Interval) &gt; _event.data.offer"   
      target="offer"> 
      <assign location="PreviousBid"  
              expr="_event.data.offer"/> 
      <assign location ="Price"  
              expr="{NextOffer Price PreviousBid  
                        RoundsLeft Interval}"/> 
      <assign location="RoundsLeft" expr="RoundsLeft-1"/> 
    </transition> 
     
    <transition event="ca"  
       cond="_event.data.ca_type == 'counteroffer'  
             &amp;&amp; Minprice &gt;_event.data.offer"   
       target="offer"> 
      <assign name="PreviousBid"  

   expr="_event.data.offer"/> 
      <assign location ="Price"  
              expr="{NextOffer Price PreviousBid RoundsLeft  

        Interval}"/> 
      <assign location ="RoundsLeft" expr="RoundsLeft-1"/> 
    </transition> 
  </state> 
</state> 

  



 128 

6.4 Discussion 
In this chapter we have given an example of how statecharts can be used to model 
the dialogue manager for a shopkeeper in a game. The example is derived from 
games designed with the patterns associated with ownership, as described by 
Björk & Holopainen (2005) where shops can be used as an arena for trading 
objects. The shopkeeper is capable of presenting objects of interest as well as 
negotiating the price. The dialogue allows mixed-initiative interaction, meaning 
that either participant can initiate and control the dialogue.  

Compared to how trade usually is conducted in games, the NPC in this example 
is able to take a more active part in the interaction, both by allowing the player to 
take initiative (as in the initial request), but also taking initiative when there is a 
need for it (in this case when more information is required). The NPC can also 
start to negotiate when the player provides a counteroffer. The outcome of the 
situation becomes uncertain when we introduce the bargaining process – the price 
is under negotiation and neither participant knows what the final bid will be. In 
this particular case the participants came to an agreement leading to a completion 
of the trade, but situations will occur when the player changes a request, the 
shopkeeper doesn't supply the requested item or the transaction as a whole is 
cancelled.  

Negotiation adds a challenge to a situation in games that usually are associated 
with a straightforward operation – to buy something you want or need and that 
you can afford. Unlike most other challenges found in games, negotiation 
requires social skills to succeed well. Hence, by introducing negotiation we also 
offer a socially oriented gameplay experience. 

 



 129 

Chapter 7  

Casual Conversations 
In the previous chapters we have mainly been concerned with practical dialogues 
and how to make them more socially interesting. The next step now is to explore 
the possibilities for creating NPCs that have the ability to engage in casual 
conversations, that is, conversations that are motivated by “interpersonal needs” 
(Eggins & Slade, 1997), such as small talk and gossip. These types of 
conversations could be very useful in games, both as an instrument to build and 
maintain social relationships among game characters, but also to spread news, 
manipulate, and to create tension between the characters.  

This chapter starts by presenting various solutions to how small talk may be 
integrated in a dialogue model, such as the ones presented earlier. The major part 
of the chapter is however dedicated to gossip conversations, starting with a 
review of previous research. The result from conducting two experiments on 
gossip conversations is then presented, and finally, a statechart model for 
initiating a gossip conversation is introduced.  

7.1 Small Talk  
A common way to socialize with other people is through small talk. Small talk is 
a type of casual conversation that can have different functions depending on 
when it occurs in the conversation. If it is initiated in the beginning of a 
conversation, the purpose is usually to build rapport and establish a common 
ground by revolving around safe topics that the speakers can agree upon (Brown 
& Levinson, 1987). Small talk can then help to “break the ice” and soften a more 
face-threatening act, such as a request (Brown & Levinson, 1987; Bickmore & 
Cassell, 2000, 2001). When it appears in a middle of a conversation, i.e. when 
other topics already have been dealt with, small talk can be used to fill awkward 
pauses – i.e. maintain contact if conversation is running slow or if the agents do 
not know what to talk about or how to act.  Small talk can also be used as an 
“escape strategy” to avoid losing face – e.g. by switching to a “safe” topic when 
the threat to face is becoming too high. Small talk can to some extent also reveal 
the agents’ personality, and be used in games by the NPCs to provide general 



 130 

information about the game world and thereby make less prominent characters in 
the game more interesting to interact with.  

Small talk may have an important role to fill in a practical dialogue system. 
Bickmore & Cassell (2001), for example, found that small talk could be used to 
increase the trust between a user and their virtual real-estate agent (Rea). Their 
experiment however showed that this effect only was noticeable when the user 
had an extrovert personality type, it had no significant effect for introvert users.  

The question is whether the same is true for the relationship between game 
characters and players? Even if it is so one could, on basis of studies made over 
player types (Bartle, 1996; Yee, 2005), also assume that other factors may 
influence how the player perceives a non-playable character. A “socialiser” might 
for instance prefer small talk while an “achiever” perhaps regards it as a waste of 
time unless some reward is expected from it.  

7.1.1 Integrating Small Talk with the Opening 
Phase 

Let’s say we want our waiter to be able to engage in a dialogue such as the 
following: 

(1) Waiter: Welcome! 
(2) PC:   Hi 
(3) PC:   Nice weather today, isn’t it? 
(4) Waiter: Yes, indeed! 

Dialogue 12: A simple small talk dialogue between a waiter and a player 
character 

In the conversation the participants acknowledge each other through a greeting 
followed by small talk as an extension to the greeting. Even if small talk in some 
situations may be regarded as a social obligation it is typically optional, but some 
form of acknowledgement is required in order to start the conversation (see e.g. 
Bunt, 1994). One way to model the dialogue above is therefore to organize the 
two sequences hierarchically under the umbrella of a superstate Opening, as in  
Figure 32, below. 

 



 131 

 Figure 32 Opening with small talk module 

Since a dialogue naturally begins with an exchange of greetings, it follows that 
Greet is the default start state of Opening followed by an optional small talk 
phase. There are several possible options for a transition from Greet to 
SmallTalk to take place: it can be an empty transition such that it is taken as 
soon as the Greet state’s on-entry and on-exit scripts have been executed; it can 
be triggered by a timeout event; or be activated as soon as the player has returned 
the greeting.  

The advantage of grouping small talk with greeting is that it is treated as part of 
the opening phase, which is conceptually reasonable. It doesn’t matter whether 
the agents actually small talk or not. If the purpose for initiating the dialogue is 
different from just engaging in small talk, for example to solve a particular task, 
placing the small talk module in this position serves the function of softening the 
more face-threatening acts to come. It can also serve to help the player getting 
introduced to interacting with the agent. The disadvantage is that when small talk 
is hierarchically organized under the Opening state, it cannot be accessed once 
left.  

7.1.2 Giving Small Talk the Same Status as the 
Practical Conversation 

Encapsulating small talk together with greeting has the effect that the agents 
cannot start to small talk at any other point during the conversation. If we want to 
provide that option, we may take advantage of the modularity that statecharts 
provide by placing small talk on the same level as the practical conversation. This 
solution enables switches between the two dialogue types as is shown in Figure 
33, below.   

Opening

Greet

SmallTalk

a



 132 

DialogueIdle state serves as a transient state (see Horrocks, 1999) that selects 
the next state (Practical, SmallTalk, or Closing) depending on the value of 
the communicative act as given in the event data – assuming that the player’s act 
of saying something, i.e. the locutionary act (Austin, 1962), is treated as a game 
event. Ending is a final state that terminates the current dialogue.44 

Figure 33: Dialogue manager for switching between small talk and practical 
dialogue 

In the model above the practical conversation can be resumed through the use of 
a history state (H*) if it was left before completion. If the practical conversation 
is initiated from DialogueIdle it is assumed that a new session of a practical 
conversation is starting, thus explaining the transition to the start state of 
PracticalDialogue. When SmallTalk is terminated, the system needs to 
return to the state from where the transition to SmallTalk was taken. If the last 
state visited was PracticalDialogue the target state must be the history state 
H*, otherwise the practical conversation is irreversibly interrupted and has to 
start from the beginning again. In order to determine whether to return to 
PracticalDialogue, we have chosen to save the source state in a variable 
“prevDial”, which is then used in the conditional expression on the transition to 
PracticalDialogue. If evaluated to true, a transition to H* in 
PracticalDialogue is taken otherwise SmallTalk will return to 
DialogueIdle. Since SCXML code is executed in document order we do not 
need to evaluate the expression once again; instead, an empty transition is taken 
                                                
44 Transient states are states that may be chosen as a target state if there are several possible target 
states triggered by the same event. None of the transitions leaving a transient state is triggered by 
events. Instead, the transitions are taken under certain conditions. Since there are no events 
associated with the transitions leaving the state, the conditions on the event arrows are evaluated 
on entry to the state and the next state is entered immediately. 

DialogueManager

Greet

SmallTalk

a

DialogueIdle

Closing

PracticalDialogue

H*On ca.request

On ca.small_talk
On ca.ending

On ca.small_talk

If prevDial == ’Practical’

On done.PracticalDialogue



 133 

to DialogueIdle in case none of the previous transitions are executed. This 
means that DialogueIdle is the default target state of SmallTalk. Since 
SmallTalk can be accessed in any order, it can still be initiated directly after the 
greeting phase to reach the same effect as in the previous version.  

Apart from the sequential nature of the practical conversation per se (with an 
opening, task-handling and closing), this model offers a non-sequential treatment 
of the different topics. A topic switch is allowed at any time and either topic can 
be selected first, i.e. none of the topics is considered default.  

7.1.3 Giving Practical Conversation Precedence 
To create NPCs that appear to be capable of keeping up long lasting 
conversations using natural language is a great challenge, but also a great risk. 
The greatest risk is to cause player frustration due to lack of understanding or 
failure to progress the dialogue. iI the player has no idea of what to say or talk 
about the NPC must take initiative and move the dialogue forward. A game 
dialogue system should also be designed to give the illusion that the NPC is more 
competent than it really is. Some strategies that come to mind are (see also 
section 2.5): first, to offer various error handling strategies, e.g. when the system 
does not understand it can act as if it did not pay enough attention or start talking 
about something else instead of insisting to reach understanding as practical 
dialogue systems usually do (by for instance re-prompting). Second, it could 
appear to have social skills, for instance by acknowledging the status of the 
interpersonal relationship and act accordingly. Third, instead of encouraging 
small talk and other types of casual conversations it can merely support them, i.e. 
handle casual conversations to some degree, but give precedence to practical 
conversations and use them as default. This way it is more likely that the 
conversations can reach a completion before the player has discovered the NPC’s 
limitations. 

The model presented in Figure 33, above, can be adjusted to support these 
strategies. By removing the idling state and force transitions to always pass 
PracticalDialogue, but not necessarily the SmallTalk state, we naturally 
give precedence to the practical dialogue. This has the advantage that even if the 
module is included, it can be ignored by the system under certain circumstances, 
for example if the system has detected that the player uses a style that is 
inconsistent with spending time on small talk. An illustration of the alternate 
model is shown in Figure 34, below.  

The advantage with this solution is that the NPC will have as its main goal to 
complete the practical dialogue, but can easily choose to start small talking when 
it fails to understand the player. In fact, both the practical conversation as well as 
small talk can be regarded as error handling strategies, because when the NPC 



 134 

fails to understand something during the practical dialogue it can find its resort by 
starting to do small talk, and if the small talk starts to turn into a more complex 
form of a casual conversation, for instance gossip, that it cannot handle it can 
naturally return to or initiate the practical dialogue.  

Figure 34: Giving the practical dialogue precedence 

 

7.1.4 Implementation 
An example of a practical conversation has already been given; different now is 
the inclusion of a history state to enable the practical dialogue to be resumed. The 
main structure of the example depicted in Figure 34 above, would in SCXML 
notation be as follows:  
<state id="DialogueManager" initial="Greet"> 
   <state id="Greet"…/> 
   <state id="SmallTalk"…/> 
   <state id="PracticalDialogue"> 
      … 
      <history id="h"…/> 
   </state> 
   <state id="Closing"…/> 
</state> 

The previous examples in this thesis have relied on VoiceXML as presentation 
layer, but VoiceXML may not be the most suitable presentation layer for casual 
conversations as it is tailored for filling forms in a specific domain. Instead, the 

DialogueManager

Greet
SmallTalk

a

Closing

PracticalDialogue

H*

On done.PracticalDialogue

If >3

If <=3

On done.SmallTalk

On ca.small_talk



 135 

SmallTalk state may invoke a dialogue manager/ASR/TTS combination able to 
deal with ‘social chat’, such as AIML for example (Wallace, 2005): 
<state id="SmallTalk">     
   <invoke id="c" targettype="AIML" src="chat.aiml"/>     
   <transition event="c.done" target="h".../>   
 </state>  

Another solution is to control which dialogue manager to invoke by means of a 
meta-dialogue manager as was discussed in chapter 4.5.  

Transition from SmallTalk will always target the history state within 
PracticalDialogue, since small talk can be initiated from either Greet or 
PracticalDialogue.  

7.2 Gossip  
Any sociological attempt to understand gossip must live with the fact that, 
long before sociology appeared on the scene and made it the subject of 
scientific investigation, gossip was a social phenomenon of daily life about 
which actors had their own ideas and made their own judgments. From our 
everyday experience we know what is meant when a conversation is called 
a coffee-klatsch. We do not need to resort to a dictionary when a person is 
called a gossip. (Bergmann, 1993, p. 1) 

People seem to have their own intuitive understanding of gossip and there is not 
yet a clear consensus on how gossip should be defined. Most of the definitions 
are either too vague or too general to be useful. The Merriam-Webster online 
dictionary, for example, defines gossip as “rumour or report of an intimate 
nature” and “chatty talk”, neither of which is specific enough. What we need is a 
working definition that (a) matches people’s intuitive notion of gossip to the 
extent possible, given that the notion itself is somewhat vague, and (b) is 
sufficiently precise to provide a basis for computational implementation.  

A number of definitions (e.g. Eder and Enke, 1991; Eggins and Slade, 1997; 
Hallett et al., 2009) have been derived from analysing transcriptions of real 
gossip conversations. These definitions have only minor individual differences 
and can in essence be formulated as “evaluative talk about an absent third 
person”. This is also the definition that will be used as a starting point here. 

7.2.1 Background 
Gossip has been described as a mechanism for social control (Gluckman, 1963; 
Fine & Rosnow, 1978; Bergmann, 1993; Eggins & Slade, 1997) that maintains 
“the unity, morals and values of social groups” (Gluckman, 1963). It has 
furthermore been suggested that gossip is a form of “information-management”, 
primarily to improve one’s self-image and “protect individual interests” (Paine, 



 136 

1967), but also to influence others (Szwed, 1966; Fine & Rosnow, 1978). Gossip 
can furthermore be viewed as a form of entertainment (Abrahams, 1970) – “a 
satisfying diversion from the tedium of routine activities” (Fine & Rosnow, 
1978).  

Recent studies have used a sociological approach focusing on analysing the 
structure of gossip conversations (Bergmann, 1993; Eder & Enke, 1991; Eggins 
& Slade, 1997; Hallett et al., 2009). Rather than observing and interviewing 
people in a certain community about their gossip behaviour, these studies present 
analyses of transcripts of naturally occurring gossip conversations. The studies 
show that gossipers collaborate in creating the gossip, making it a highly 
interactive genre. They also identified two key elements of gossip:  

• Third person focus – the identification of an absent third person that is 
acquainted with, but emotionally disjoint from the other participants. A 
person that is emotionally related to either of the participants may be 
regarded as being “virtually” (Bergmann, 1993) or “symbolically” 
(Goodwin, 1980) present. 

• An evaluation of the person in focus or of his or her behaviour. Eggins & 
Slade (1997) propose that the evaluation necessarily is pejorative to 
separate gossip from other types of chat. Instead of claiming that the 
evaluation necessarily is pejorative, Hallet et al. (2009) suggest that it is 
“unsanctioned”.  

In addition to the two elements described above, Eggins and Slade (1997) 
propose a third obligatory element: 

• Substantiating behaviour – An elaboration of the deviant behaviour that 
can either be used as a motivation for the negative evaluation, or as a way 
to introduce gossip in the conversation. Eder & Enke (1991) use a 
different model, but the substantiating behaviour component corresponds 
roughly to their optional Explanation act.  

There seems to be a consensus that gossip conversations have third person focus. 
The question is whether a gossip conversation necessarily has both a 
substantiating behaviour component as well as a pejorative evaluation 
component, and if they do, can they be identified? In the experiments presented 
later in this chapter, we hope to shed light on whether these components are 
necessary or not.  

7.2.2 The Activity 
In terms of a social activity, gossip can be analysed as follows:  

Purpose: We have already touched upon and given a number of different reasons 
why people gossip: To exchange information, to negotiate accepted and 



 137 

appropriate behaviour, and to establish and maintain group membership. We also 
engage in gossip simply because we find it entertaining.  

Roles: Gossip, just like other types of casual conversations, has an unclear role 
distribution. The roles are symmetric in the sense that none of the participants are 
higher ranked than the other and the social distance between the participants is 
rather low; in fact, gossip requires that ρ is fairly low. The participants must 
know each other well enough and have some knowledge of or connection to the 
person in focus and none of the participants should be ranked higher in status 
than each other.  Gossip about a colleague is for example highly inappropriate 
between a boss and a lower ranked employee. Gossip between equally ranked 
employees are however acceptable, especially when the target in focus is the 
boss. Gossip is thus highly regulated by certain social rules that participants must 
obey in order to succeed with the gossip. For a gossip conversation to take off, 
the hearer(s) must agree or at least show acceptance. A gossip initiation may fail 
if any of the hearers disagrees, or even defends the target or the target’s 
behaviour. In that case a gossip conversation may turn into a debate, where the 
first utterance may be treated as an opinion and the responses as reactions or 
counterarguments to that opinion (see for example an investigation of the opinion 
genre in (Horvath & Eggins, 1995)). 

Artefacts: Gossip is independent of artefacts; it is a socially oriented 
conversation that revolves around people rather than objects.  

Physical and social environment: The participants must be physically (and to 
some extent socially) distant from the gossip target. Gossip typically takes place 
in a “safe” environment among friends. 

7.3 Gossip in Fictional Stories 
Since a game is placed in a fictional setting, it seems natural to study gossip 
occurring in other fictional settings, such as in movies or books. As we see it, 
there are some significant similarities between dialogues in screenplays and game 
dialogues: (1) They are both tailored to fit a particular scene, which means that 
they have a natural beginning and end as well as a language use that is consistent 
with both the role characters as well as the overall theme. (2) They are based on 
fiction and just like the characters in games present accentuated interpretations of 
human behaviour; role characters are imaginary figures with accentuated human 
behaviours. (3) One could say that scripted dialogues reflect “ideal” 
conversations, i.e. conversations in which all uninteresting and unnecessary parts 
have been removed; hence they are already distilled (Larsson et al., 2000). One 
major difference is of course that in a game one of the role characters is played 
by a human. One must also take into account that scripts are adjusted for an 



 138 

audience, i.e. the information exchanged in these conversations tends to either be 
more explicit and extensive than in ordinary conversations, or accompanied with 
pictures that allow the dialogue to be reduced. So even if they are distilled, other 
complexities may have been added to these dialogues.45 In a way it is the same 
with games, some information must be explicitly provided to the players in order 
for them to be properly grounded. In games so called cut scenes, i.e. non-
interactive sequences, are often used for this purpose. 

There are thus some considerations to account for:  

- A screenplay is created for a viewer, which means that some parts are left 
out and only implicitly implied. 

- It is assumed that the dialogue is presented visually; hence non-verbal 
cues are commonly used (“show not tell”). 

- The dialogues have been written to keep the viewer interested and 
engaged – it does not contain long, irrelevant exchanges.  

- While the audience of a movie or TV-show only participate passively, a 
player of a game takes an active part in progressing the story. This means 
that one role has to be assigned to the player. 

- Humour is important  

A player of a game is actively engaged in performing actions that affect how the 
story is being told, whereas the story in a movie is narrated independently of the 
audience’s interferences. That is, the narrative content (story) may be the same 
but the narrative discourse (see e.g. Chatman, 1978) – the way the story is told – 
may differ. In this sense, interacting with a game character is similar to 
interacting with a typical ECA. They both serve as an interface to an underlying 
system. But when the ECA typically is used as a substitute for a human, with 
whom users communicate using their real identities, a game character has been 
given a role. And when players interact with the game character they are 
expected to play their part, i.e. through the projective identity (see 3.2.1).   

Since gossip implies and requires many other social aspects of interaction apart 
from the mere gossip conversation, an NPC that can engage in gossip will also 
have the ability to use their social skills in other contexts as well. This includes 
acknowledging the interpersonal relationship and identifying and placing 
themselves in the social hierarchy or social network and adjusting their behaviour 
accordingly. These capabilities open up for a range of new types of gameplay 
options, for instance gameplay based on social relations or dialogue games. 
Gossip can also serve as a vehicle for story progression as well as support the 
pattern INFORMATION	
  PASSING (Lankoski & Björk, 2007b). Thus, there are good 
reasons for introducing a more in depth treatment of the gameplay design pattern 
                                                
45 Thanks to Dr. Anton Leuski at USC/ICT for pointing that out.  



 139 

GOSSIP as it was introduced in	
  (Lankoski & Björk, 2007b). Here the focus will be 
on the conversational structure, while the social consequences beyond direct 
interpersonal relationship between the participants will be ignored.  

7.4 A First Attempt to Model Gossip  
The structural analyses of gossip made by Eder and Enke (1991) and Eggins and 
Slade (1997), show that when the gossip target has been introduced almost any 
gossip element can follow. This means that the structure is unpredictable and 
highly complex. Since a gossip conversation in a game or a movie should be 
limited to a particular scene, we started by investigating whether it would be 
possible to treat gossip as belonging to the “opinion genre” with which it shares 
many similarities. The opinion genre has been suggested to be an expression of 
an attitude towards some person, event or thing (Horvath & Eggins, 1995; Eggins 
& Slade, 1997). The obligatory elements of opinion are however less than those 
constituting gossip, and consists solely of an opinion followed by a reaction, 
which is a response ranging on a scale from disagree to agree. When a reaction 
for example involves a “request for evidence”, the structure however becomes 
more complex. In this case, the conversation may have elements of “evidence” 
and finally a “resolution” (given that the hearer accepts the evidence). This 
dialogue from the TV-show Desperate housewives (2004) demonstrates the 
similarities between gossip and opinion: 

Speaker Utterance Gossip Opinion 
Gabrielle Can I say something? I’m 

glad Paul’s moving 
Third person focus Opinion 

Bree Gaby! Rejection/Encouragement Objection/denial 
Gabrielle I’m sorry, but he’s just 

always given me the creeps. 
Haven’t you guys noticed? 

Substantiating behaviour Provide 
evidence 

Gabrielle He has this dark thing going 
on. There’s some-thing about 
him that just feels… 

Pejorative evaluation Provide 
evidence 

Lynette Malignant? Pejorative evaluation Agree 
Gab Yes Acknowledgement Agree 
Susan We’ve all sorta felt it Agree Agree 
Bree That being said, I do love 

what he’s done with the lawn 
Wrap-up Wrap-up 

Table 10: A comparison between gossip and the opinion genre 

From this first analysis, we created a simple dialogue model using statecharts, 
presented in Figure 35 in below. 



 140 

Figure 35: A model of gossip based on the opinion genre 

This model is a reflection of a particular dialogue occurring in a specific scene 
and constructed based on the constituents of the opinion genre. By regarding 
gossip as a form of opinion, we managed to create a simpler dialogue model 
while still capturing the whole gossip scene. 

Some of the responses to an opinion could be exchanged by another dialogue 
function, but a specific utterance could also be interpreted in various ways. For 
instance, even though Bree’s response appears to be an objection (“Gaby!”) (line 
2 of table 1), the effect is more or less the same as if she would have requested 
evidence (e.g. by a probe, such as “why?” or “how so”). That is, Gabrielle 
responds by providing an explanation for her opinion rather than discarding the 
gossip. If Bree instead would have said “me too”, in a dialogue between just the 
two of them, the gossip could be completed immediately and Gabrielle would not 
have to substantiate her statement (as in line 3), instead the dialogue could be 
wrapped up. If Bree’s objection had been more convincing, it is likely that Gaby 
would have chosen to withdraw her statement and thereby discard further gossip.  
Worth noticing is that the ProvideEvidence state can be iterated, meaning that 
the initiator may have to convince the addressee further.  

We implemented a prototype of the model by cutting out the phrases and listing 
them according to the following schema: 

 

Function Iter. Utterance 
Initiate 1 I am glad Paul is moving out  
ProvideE 1 He is just always giving me the creeps. Haven't you noticed? 
ProvideE 2 He has this dark thing going on 
ProvideE 3 There is something about him that feels malignant  
WrapUp: 1 That being said, I do love what he has done with the lawn 

Table 11: Schema for canned gossip responses 

Gossip

Opinion

WrapUp

ProvideEvidence

On ca.agree

On ca.requestEvidence

On ca.reject
On ca.requestEvidence

On ca.reject

On ca.agree



 141 

   

The NPC can start a gossip conversation by retrieving the first phrase of the 
“Initiate”-type. If the user then asks for more information or a clarification using 
typed text, such as “how so?” the NPC will provide evidence (ProvideE) to 
substantiate the opinion or negative evaluation unless the last iteration has been 
met. When the list of available responses runs out, the NPC can wrap up the 
conversation. The NPC was implemented as a SitePal-agent46 (a talking head) 
invoked from the SCXML process. The SCXML code is found in Appendix IV.  
The dialogue manager was implemented in SCXML while VoiceXML was used 
for the presentation layer. The grammar was limited to a few probes and 
communicative acts of agreement. Still, the implementation showed that it is 
possible to create limited gossip conversations as opinion using natural language 
input to CANNED	
  TEXT	
  RESPONSES (see 3.7), but the implementation does not take 
into account the interpersonal relationships between the participants and their 
relation to the target, which are important aspects of gossip. The next step is 
therefore identify what is required in order to build a complete model of a gossip 
conversation, but in order to do so we first need a working definition of gossip.  

7.5 Two Experiments on Gossip 
Conversations 

In order to investigate how people understand and identify gossip, two 
experiments on gossip conversations were conducted. The aim of the experiments 
was to verify to what extent the definition of gossip accords with intuitive 
recognition of gossip episodes, and secondly whether people could reliably 
identify constituent elements. 

The data was collected using online questionnaires that were distributed through 
different email-lists mainly targeting researchers and students within game 
design, language technology, and related fields, located primarily in North 
America and Europe. The lists were chosen to reach a large number of people at 
the same time, but it should be noted that most of the participants were 
academics. The questionnaires had the following structure: The first page 
consisted of an introduction, including instructions, and each page thereafter had 
a dialogue excerpt retrieved from a screenplay followed by the question and/or 
task.  

                                                
46 <http://www.sitepal.com/> 



 142 

7.5.1 Hypotheses  
Based on the previous studies presented earlier (in particular Bergmann, 1993; 
Eder & Enke, 1991; Eggins & Slade, 1997) the following hypotheses were 
formulated: 

• The more gossip elements present in the text, the more likely the 
conversation will be considered gossip. 

• Third person focus is a necessary (but not sufficient) element of gossip.  

• Conversations in which the participants (including the target) are 
intimately related will be less likely to be rated as gossip than 
conversations in which all participants are emotionally disjoint. 

7.6 Experiment I: Identifying Gossip 
Text 

The aim of the first experiment was to investigate how people intuitively 
understand and interpret gossip conversations.   

7.6.1 Material and Procedure  
The questionnaire contained 16 different dialogue excerpts retrieved from 
transcripts of the famous sitcoms Desperate Housewives47 and Seinfeld48. The 
excerpts were selected to cover different combinations of the elements presented 
in the previous section (third person focus, an evaluation, and a motivation for the 
evaluation), as in the following dialogue:49 

B:  Tisha. Tisha. Oh, I can tell by that look on your face you’ve got 
something good. Now, come on, don’t be selfish.  

T:  Well, first off, you’re not friends with Maisy Gibbons, are you? 
B:  No. 
T:  Thank god, because this is too good. Maisy was arrested. While 

Harold was at work, she was having sex with men in her house for 
money. Can you imagine? 

B:  No, I can’t. 
T:  And that’s not even the best part. Word is, she had a little black 

book with all her clients’ names.  
R:  So, uh … you think that’ll get out? 
T:  Of course. These things always do. Nancy, wait up. I can’t wait to 

tell you this. Wait, wait. 

                                                
47 © Touchstone Television 
48 © Castle Rock Entertainment. 
49 Excerpt retrieved from Desperate Housewives, Touchstone Television. 



 143 

We made a preliminary analysis to determine whether the elements were present 
or not (see Table 12, below).  

 
 

Q 3rd p Pej. Eval Subst. Behav. Gossip 

1     

2 –  – – 

3   –  

4   –  

5  –   

6 – – – – 

7     

8     

9    – 

10     

11 – – – – 

12     

13     

14     

15 – – – – 

16   – – 

Table 12: A preliminary rating of all excerpts.50 

The instructions contained no information about the elements and no definition 
was given. To each excerpt we provided some contextual information, such as the 
interpersonal relationship between the speakers and other people mentioned in 
the dialogue, e.g.: 

The married couple, Bree (B) and Rex (R) Van de Kamp, are having lunch 
at the club. Some women laughing at the next table cause the two of them to 
turn and look. One of their acquaintances, Tisha (T), walks away from that 
table and heads to another one. Maisy Gibbons is another woman in their 
neighbourhood, known to be very dominant and judgmental towards the 
other women. 

The subjects were asked to read and rank the excerpts using the following scale: 

• Absolutely not gossip  

                                                
50The symbols used in the table should be read as follows:  () element present, (–) element not 
present, and () ambiguously present.  



 144 

• Could be considered gossip in some contexts 

• Would be considered gossip in most contexts 

• Absolutely gossip 

For the purpose of analysis we converted the above responses to integers from 0 
to 3. 

7.6.2 Results  
A total of 52 participants completed the experiment. Table 13 shows the 
distribution of ratings for each of the 16 excerpts (the table is sorted by the mean 
rating). 

 

ID Rating distribution Mean 
rating 

0 1 2 3 

11 50 1 1 0 0.058 

6 46 5 0 1 0.154 

15 33 15 4 0 0.442 

2 28 20 4 0 0.538 

5 30 15 6 1 0.577 

10 17 24 10 1 0.904 

9 10 26 13 3 1.173 

16 11 17 16 8 1.404 

4 8 18 18 8 1.500 

14 11 13 11 17 1.654 

3 6 20 11 15 1.673 

1 1 17 25 9 1.808 

13 3 18 17 14 1.808 

12 5 9 15 23 2.077 

8 3 0 11 38 2.615 

7 1 2 4 45 2.788 

Table 13: Gossip ratings of all 16 questions sorted by their mean value 

 

  



 145 

 

It is apparent from the table that a few excerpts are clearly gossip or clearly not 
gossip, but there is much disagreement on other excerpts. Inter-rater reliability is 
α = 0.437: well above chance (0), but not particularly high.51  Only 7 of the 16 
excerpts (ID # 2, 5, 6, 7, 8, 11, 15) were clearly rated as gossip or not gossip by 
more than half of the subjects, and only 5 of those have a mean rating below 0.5 
or above 2.5.  

Despite the apparently low agreement, the results correspond fairly well with our 
expectations (c.f. Table 12). The 3 excerpts with a mean value below 0.5 had no 
gossip elements at all and the other two excerpts with a median value of 0 had 
only one gossip element. Similarly, the two excerpts rated highest clearly had all 
gossip elements (7 & 8). The rest of the excerpts, however, either lacked one 
element or had one element that was un-clear in some regard (see discussion, 
below). Conversations between family members or partners also caused higher 
disagreements, which seem to support Bergmann’s (1993) remark: “[…] we can 
ask whether we should call gossip the conversations between spouses […] alone. 
This surely is a borderline case for which there is no single answer” (p. 68).  

7.6.3 Discussion  
Among the nine excerpts with a mean value approximately between 1 and 2 (ID 
#1, 3, 4, 9, 10, 12, 13, 14, and 16), we made the following observations: 3 
excerpts lacked one element; in 2 of them, the gossipers were family members or 
partners; 3 excerpts had an ambiguous focus, among which one also possibly was 
perceived as a warning.  

By “ambiguous focus” we mean that it is unclear whether the person in focus is 
the speaker, the addressee or the absent third person. In the first two cases, the 
absent third person seems to play a sub-ordinate role rather than focused role, for 
instance as part of a self-disclosure or a confrontation. If the conversation is the 
least bit confrontational, the addressee tends to go into defence rather than 
choosing a more typical gossip response, such as support, expansion, or challenge 
(Eder & Enke, 1991) in order to protect the face. Hence, no “gossip fuel” is 
added to the conversation.  

The result of the excerpt below (corresponds to dialogue #14 in table Table 12) is 
however more difficult to explain. One possible explanation is that the initiator 
was unacquainted with the target, but perhaps more likely is that some of the 
subjects interpreted the conversation as mocking rather than gossip:  

                                                
51 The reported value is Krippendorff’s α with the interval distance metric (Krippendorff 1980). 
Interval α is defined as 1 – Do/De, where Do (observed disagreement) is twice the mean variance 
of the individual item ratings, and De (expected disagreement) is twice the variance of all the 
ratings. For the above table, Do = 1.327 and De = 2.585. 



 146 

E: Who’s that? 
D:  That’s Sam, the new girl in accounting. 
W: What’s with her arms? They just hang like salamis. 
D:  She walks like an orangutan. 
E:  Better call the zoo. 

Dialogue 13: Dialogue example from questionnaire 

7.7 Experiment II: Identifying Gossip 
Elements in a Text 

While the first experiment aimed to understand people’s intuitive notion of 
gossip, the aim of the second experiment was to investigate whether the subjects 
could accept and apply a given definition by identifying the three obligatory 
elements of gossip according to Eggins and Slade (1997) (see also 7.2.1): third 
person focus, pejorative evaluation, and substantiating behaviour. In addition to 
the elements, we provided the definition of gossip presented in section 1: 
“evaluative talk about an absent third person”. 

The results from the first experiment indicated that conversations in which the 
person in focus was ambiguous received a lower gossip rating than those having 
an unambiguous third person focus. So an additional goal was to investigate 
whether changing the relationship between the participants in these examples 
and/or excluding information about their relationship status would affect the 
gossip rating.  

7.7.1 Material  
We used excerpts from Seinfeld52, Desperate Housewives53, Legally blonde54, and 
Mean girls55. In total we selected 21 excerpts, of which 8 also occurred in the first 
experiment. Two of the recurring excerpts were used both in their original 
versions as well as in modified versions, in which we had removed information 
about the emotional connections between the participants. The purpose of this 
was to find out whether changing the interpersonal relationship would change the 
gossip rating.  

                                                
52 Castle Rock Entertainment. 
53 Touchstone Television. 
54 Directed by Robert Luketic. Metro Goldwyn Mayer (2001). 
55 Directed by Mark Waters. Paramount Pictures (2004). 



 147 

7.7.2 Procedure 
The subjects were instructed to read the excerpts and then identify the gossip 
elements according to the following description: 

• The person being talked about (third person focus) – the “target”, e.g. 
“Maisy Gibbons was arrested”  

• Pejorative evaluation. A judgment of the target him-/herself or of the 
target’s behaviour. This evaluation is in most cases negative, e.g. “She’s a 
slut”, “He’s weird” 

• The deviant behaviour that motivates the gossip and provides evidence for 
the judgment (also called the substantiating behaviour stage), e.g. “Maisy 
Gibbons was arrested” 

For each element they found, they were asked to specify the corresponding line 
reference as given in the text. They were also instructed to say whether they 
considered the conversation to be gossip or not gossip. If their rating disagreed 
with the definition, i.e. if they had found all the elements but still rated the 
conversation as not gossip, or if one or more elements were lacking but the 
conversation was considered gossip anyway, they were asked to specify why.  

7.7.3 Results 
We analysed the results from the 19 subjects who completed ratings for all 21 
excerpts. This gave a total of 399 yes/no judgments on 4 attributes. Inter-coder 
reliability is shown in Table 14.  The easiest attribute to interpret is third person 
focus. All but three of the subjects marked either 4 or 5 excerpts as not having 
third person focus, with the remaining subjects not deviating by much (marking 
3, 6, and 7 excerpts). Moreover, the subjects agree on which excerpts have third 
person focus: only one excerpt gets a substantial number of conflicting ratings 
(see the analysis given below in section 7.7.4), while the remaining 20 excerpts 
get consistent ratings from all subjects with only occasional deviation by one or 
two of the deviant subjects. This accounts for the high observed agreement on 
this feature (94.9%). Expected agreement is high because the corpus is not 
balanced (16 of 21 excerpts display third person focus), but even so, chance-
corrected agreement is high (85.1%), showing that third person focus is an 
attribute that participants can readily and reliably identify.56 

The remaining attributes, including gossip, are less clear. Agreement on all of 
them is clearly above chance, but is not particularly high, showing that these 

                                                
56 To clarify, since third person focus is present in a majority of the examples the expected 
agreement of this category is high. In order to make the result comparable across studies, 
observed agreement has to be adjusted for chance agreement (See for example Artstein & Poesio, 
2008) 



 148 

notions are either not fully defined, or that the excerpts are ambiguous. Gossip 
itself is identified somewhat more reliably than either substantiating behaviour or 
pejorative evaluation; this casts doubt about the ability to use the latter two as 
defining features of gossip. 

 

 Alpha Observed 
agreement 

Expected 
agreement 

Gossip 0.466 0.744 0.520 
Third person focus 0.851 0.949 0.661 
Substantiating behaviour 0.376 0.709 0.533 
Pejorative evaluation 0.384 0.733 0.567 

Table 14: Inter-coder reliability 

To test the relationship between the various features, we looked for co-
occurrences among the individual judgments. We have a total of 399 ratings (21 
excerpts times 19 judges), each with 4 attributes; these are distributed as shown 
in Table 15. We can see that third person focus is an almost necessary condition 
for classifying a screenplay conversation as gossip, though it is by no means 
sufficient.  

 

  3rd person ¬3rd person 

  Subst ¬Subst Subst ¬Subst 

Gossip Pejor 168 24  2 

 ¬Pejor 33 14   

¬Gossip Pejor 25 20 17 17 

 ¬Pejor 6 23 3 47 

Table 15: Relationship between the different elements and gossip. 

Table 16-Table 18 show the co-occurrences of individual features to gossip; the 
association is strongest between gossip and third person focus and weakest 
between gossip and pejorative evaluation. 

 

 3rd person ¬3rd person 

Gossip 239 2 

¬Gossip 74 84 

Table 16: Gossip – third person focus 

 



 149 

 

 Substantiating 
behaviour 

¬Substantiating 
behaviour 

Gossip 201 40 

¬Gossip 51 107 

Table 17: Gossip – substantiating behaviour 

 

 Pejorative ¬Pejorative 

Gossip 194 47 

¬Gossip 79 79 

Table 18: Gossip – pejorative evaluation 

In addition to the co-occurrences of features on the individual judgments, we can 
look at these co-occurrences grouped by screenplay. Table 19 shows for each of 
the 21 excerpts, how many subjects identified each of the four features (the table 
is sorted by the gossip score). The same co-occurrences are illustrated in the chart 
below. It is apparent from the tables that all the features are correlated to some 
extent.  

 

 
Figure 36: Chart illustrating co-occurences grouped by excerpts 

  

0	
  
2	
  
4	
  
6	
  
8	
  
10	
  
12	
  
14	
  
16	
  
18	
  
20	
  

2	
   11	
   19	
   14	
   5	
   15	
   21	
   12	
   20	
   16	
   8	
   7	
   17	
   18	
   4	
   10	
   6	
   9	
   1	
   3	
   13	
  

N
o.
	
  o
f	
  r
es
po
nd
en
ts
	
  

Excerpt	
  ID#	
  

Gossip	
   3rd	
  Pers	
   Subs.	
  Beh	
   Pej.	
  Eval	
  



 150 

 

 

ID57 Gossip Third  
person 

Subst. 
behaviour 

Pejorative 
evaluation 

2 0 0 1 3 

11 0 0 9 9 

19 0 1 6 8 

14 1 0 2 12 

5 7 19 5 1 

15 7 19 18 17 

21 8 17 6 16 

12 9 17 10 14 

20 13 13 10 10 

16 14 18 14 7 

8 14 19 7 19 

7 14 19 9 9 

17 14 19 17 18 

18 15 19 19 19 

4 17 19 12 9 

10 17 19 16 19 

6 17 19 19 19 

9 18 19 17 8 

1 18 19 19 19 

3 19 19 18 18 

13 19 19 18 19 

Table 19: Co-occurrences grouped by excerpts 

Table 20 shows the correlation between gossip and each of the other three 
features. The first column calculates correlation based on the individual 
judgments (399 items, each score is either 0 or 1); the second column calculates 
correlation based on the rated excerpts (21 items, each score is an integer 
between 0 and 19, as in Table 19); and the third column groups the judgments by 
subject (19 items, each score is an integer between 0 and 21, indicating the 
number of dialogues in which the subject identified the particular feature; the full 
data are not shown). 

 

                                                
57 Presentation was ordered by ID, same for all subjects. 



 151 

Correlation with gossip 
Pearson’s r 

Individual Excerpt Subject 

Third person 0.622*** 0.849*** 0.503* 

Substantiating behaviour 0.518*** 0.765*** 0.625** 

Pejorative evaluation 0.321*** 0.518* 0.459* 

* p < 0.05 ** p < 0.01 *** p < 0.001 

Table 20: Correlation between gossip and each of the three features 

All the correlations are significantly different from 0 at the p ≤ 0.05 level or 
greater. The differences between the columns are not significant, except for the 
difference between the third person correlation by individuals and that by 
excerpt, which is significant at p ≤ 0.05. The correlations between the features on 
the individual judgments show that subjects tend to identify the different features 
together; this may be partly a reflection of awareness on their part that the 
features are expected to go together, given the task definition. The correlations 
between the excerpt scores show that the excerpts themselves differ along the 
four dimensions, and these differences go hand in hand. Finally, we see that the 
subjects themselves differ in how often they identify the different features, 
though the correlations are likely to be just a reflection of the first tendency 
identified above, to mark the features together. 

7.7.4 Discussion 
We wanted to find out whether the subjects would accept, understand and be able 
to apply a given definition. The results from the experiment showed that the 
subjects accepted the given definition to some extent and managed to apply it. 
When the subjects disagreed they were asked to say why. One of the subjects, for 
example, explicitly disagreed with the definition given in the introduction and 
provided a counter definition: “Gossip is idle talk or rumour, especially about the 
personal or private affairs of others”. Yet another subject was uncertain about 
which definition to use: “Depends what you mean by gossip. It can either mean 
malicious, behind the back talk of other people or idle chat.  If you mean ‘idle 
chat’ with gossip then this is also gossip”. A possible explanation could be that 
the subjects refer to different forms of gossip (see for example Gilmore, 1978) 
and therefore apply different definitions (such as the lexical definition presented 
earlier) than the one that was given in the experiment.  

Several subjects stated that they judged the conversation as gossip even if they 
did not identify any pejorative evaluation, and they also questioned whether the 
evaluation had to be pejorative or even present at all, or as one of the subjects put 
it: “Although there is no pejorative evaluation (at least not clearly) I believe this 



 152 

is gossip”. These subjects thus explicitly reject Eggins and Slade’s (1997) 
requirement that the evaluation has to be pejorative.  

The examples above show that people have variable intuitions of gossip and 
consequently the concept of gossip is somewhat vague. Even so, the experiment 
also showed that people to a large degree are in agreement when the examples 
according to the given definition clearly are gossip or not gossip. Meaning that 
even though the definition does not capture all types of (potential) gossip 
conversations, it captures those episodes that most people agree to be gossip, 
which for our purpose is sufficient.  

7.8 Effect of Interpersonal Relations 
In some particular cases, the subjects did not choose gossip even if all elements 
had been found. The results from the first experiment indicated that this deviation 
either was related to the interpersonal relationship between the gossip participants 
or that the focus was ambiguous. In order to test whether changing the inter-
personal relationship between the participants would change the gossip rating, we 
compared the results from the conversations we had modified with their original 
counterparts. In one of the original excerpts, the addressee was romantically 
involved with the man that the speaker was talking about. The speaker formulated 
the negative assessment and deviant behaviour in a way that for most people 
would be interpreted as a warning, which probably explains why only 7 of the 19 
subjects rated the original conversation as gossip. The modified version was, on 
the other hand, rated as gossip by all subjects.   

In the second dialogue, the speaker questions the addressee’s choice of person to 
date, and does this by both evaluating the person negatively as well as providing 
evidence for the evaluation. It turns out, however, that the addressee thinks she is 
going out for a date with someone else, so a large part of the conversation deals 
with trying to identify the target: 

A: Hey, by the way, did you ever call that guy from the health club? 
B:    Oh yeah! Jimmy. 
A:    Can't believe you're going out with him...  
B:    Why?  
A:    I dunno. He's so strange. 
B:    How so?  
A:    Did you notice he always refers to himself in the third person. 

Jimmy can dunk. Jimmy's new in town. Jimmy we'll see you later.          
B:    No No... That's not him. That's the guy who gave me Jimmy's 

number.          
A:   That's Jimmy. That's the way he talks.          



 153 

B:    I'm going to go see Mel Tormé with him?  

Dialogue 14: Original excerpt 

A:    Hey, by the way, did Elaine ever call that guy from the health club? 
B:   Oh yeah! Jimmy. 
A:  Can't believe she’s going out with him...  
B:   Why?  
A: I dunno. He's so strange. 
B: How so? 
A:   Did you notice he always refers to himself in the third person. 

Jimmy can dunk. Jimmy's new in town. Jimmy we'll see you later.          
B:   No No... That's not him. That's the guy who gave her Jimmy's 

number.          
A:   That's Jimmy. That's the way he talks.          
B: She’s going to go see Mel Tormé with him?  

Dialogue 15: Modified excerpt 

15 of 19 subjects rated the original conversation as gossip, while all subjects 
rated it as gossip in the modified version. These comparisons indicate that the 
status of the relationship between the gossipers and the gossip target affects 
whether the dialogue is considered gossip or not. In the original version of both 
these examples, the focus was ambiguous, i.e. the focus was as much on the 
addressee as on the absent third person. 

We have shown that third person focus is a key element of gossip. The 
correlation was also confirmed by the subjects themselves in their comments, 
where the lack of third person often was listed as a reason for not choosing 
gossip. In the following example (Dialogue 16) the respondent regarded the 
conversation as gossip even if it really was an insult directed towards the 
addressee, but explained it as its “[…] almost like he’s forgotten he’s talking to 
the person he’s giving this opinion/gossip about”:  

E:  I can’t imagine doing all this and Donovan’s internship next year 
W:  Elle, c’mon, there’s no way you’ll get the grades to qualify for one 

of those spots. You’re not smart enough...  I didn’t mean… 
E:   Am I on glue, or did I not get into the same law school you did, 

Warner? 
W:  Well, yeah, but… 
E:  But what? We took the same LSAT, we take the same classes, … 
W:  I just don’t want to see you get your hopes up. You know how you 

get.  
E:  I’ll never be good enough for you, will I? 

Dialogue 16: Dialogue excerpt retrieved from the movie Legally Blonde.58 

                                                
58 (Lutz & Smith, 2001) 



 154 

The highest disagreement concerning third person focus was found in the 
following excerpt: 

K:  Okay, what is it? 
G: Regina says everyone hates you because you’re such a slut. 
K: She said that? 
G: You didn’t hear it from me. 

Dialogue 17: Example of dialogue excerpt causing high disagreement 

The dialogue contains an ambiguous focus in that it both includes a quote as well 
as a confrontational insult. By using the third person reference, Gretchen avoids 
taking responsibility for the insult. In some sense both Karen and Regina are in 
focus, where Karen is the target of the pejorative evaluation and Regina can be 
interpreted as being the focus of the substantiating behaviour component. How 
Regina’s role is interpreted is determined by the respondents’ personal attitude 
towards gossiping in general (i.e. whether they interpret Gretchen’s utterance as 
containing an implicit evaluation of Regina’s behaviour or not), and how they 
perceive the interpersonal relationship between Karen and Gretchen. Gossip has 
an inherent contradiction in that it both has a function of negotiating the accepted 
way to behave while it at the same time often is considered an inappropriate 
activity that can have serious negative consequences for both the gossipers as 
well as the gossip target (see e.g. Gilmore, 1978; Bergmann, 1993; Eggins and 
Slade, 1997; Hallett et al., 2009).  

7.8.1 Conclusion 
The aim of these studies has been to get a workable definition of gossip that 
people can agree upon and that is sufficiently precise to provide a basis for 
computational implementation.  

We conducted two experiments to investigate people’s intuitive notion of gossip 
and the results show that (1) conversations in which all elements are present, 
where no intimate relationships exist between the participants, and in which the 
person in focus is unambiguous, are very likely to be considered gossip. (2) 
Conversations that have at most one gossip element are not considered gossip. (3) 
Inconsistencies are mainly found in conversations that lack one or two elements 
or have at least one element that is ambiguous, or are taking place between 
gossipers that have an intimate relationship.  

We have suggested that third person focus is a necessary, but not sufficient, 
element of gossip, but the other elements are less clear even if their co-
occurrence in a conversation clearly affects the gossip score.  In the second 
experiment this might be due to the instructions, but it does not explain the 
unbiased results from the first experiment. So we can clearly see that all three 



 155 

elements are important for the understanding of gossip, even though the subjects’ 
had trouble in identifying them.  

7.9 Towards a Computational Model of 
Gossip 

From the first attempt to model gossip in combination with the experiments 
conducted on gossip conversation we are now about to propose a tentative model 
for initiating gossip. The experiments show that the interpersonal relationship 
between the involved parties has a central role in determining whether a 
conversation can be regarded as gossip and whether it is appropriate to initiate a 
gossip conversation at all. Therefore, it seems reasonable to revisit the theory of 
face management presented in chapter 5.  

7.9.1 Determining the Appropriateness for 
Initiating Gossip 

Gossip has been described as containing “morally contaminated information”, 
which can damage the initiator’s reputation (Bergmann, 1993). Because of this, 
the initiator must make sure that the recipient is willing to gossip (Bergmann, 
1993) and that the relationship is sufficiently good to minimize the threat to face.  
In section 5.2 we introduced ρ for determining the preconditions for a certain 
type of conversation to take place. ρ is individually calculated by each participant 
and corresponds to the individual’s perception of the status of the interpersonal 
relationship. In this section, ρ will be used by the NPC to determine whether it is 
appropriate to initiate a gossip conversation at all.  

From previous studies and the experiments presented earlier, it is however clear 
that there is more to a gossip conversation than the perceived relationship 
between the participants. The following factors will therefore be considered in 
the model presented later in this section: 

• The (perceived) relationship between the NPC and the player character 
(PC) (ρ) 

• The relationship between each of the participants and the potential target 

• The news value of the gossip story 

• The sensitivity of the story content  

In order to qualify as gossip, the story must have a news value (see for example 
Bergmann, 1993 and Crawford, 2004): 



 156 

[…] the primary purpose of a Gossip system is to move information through 
the cast of Actors. Information is interesting only so long as some people 
know it and other people don’t; after everyone knows it, gossip’s dramatic 
value evaporates. (Crawford, 2004, p. 235) 

A gossip story is assumed to contain the elements presented earlier: third person 
focus, a (pejorative) evaluation of the person in focus or of their behaviour, and a 
“substantiating behaviour” component. It is assumed that revealing the story is 
more or less sensitive for the gossip target, i.e. the factor “sensitivity” symbolizes 
a measure of how hurtful it would be for the gossip target if the information were 
spread. Also, information is typically spread exponentially and so its news value 
is reduced when the story is revealed.  

Gossip is thus here understood as a conversation in which the participants reveal 
a sensitive gossip story with a certain news value about an absent person who 
unambiguously is in focus.  

7.9.2 Initiating Gossip 
Crawford (2004) presents a model of how a character can initiate gossip in a 
game. The decision to gossip is taken in two steps: In the first step the character 
chooses one of the characters in the surrounding that could be a potential gossip 
partner. In the second step, the character evaluates whether it is appropriate to 
gossip. The first decision is based on factors such as trust and affection, similar to 
our ρ value, while the other decision relies on the initiating character’s 
loquaciousness, cf. the effects of the NPC’s personality type as presented earlier 
in 5.3.2 and 5.3.3. In deciding what to talk about, Crawford suggests that the 
character should only reveal information that the other character is unaware of to 
avoid the pre-sequences typical for gossip initiations (see for example Bergmann, 
1993). To get inside the mind of a scripted character is of course possible and his 
argument for doing so has a point, but in the model we will propose here, we will 
not consider that option. Instead, we will use a slightly different approach.  

First, we evaluate the interpersonal relationship in accordance with the rules for 
social politeness as introduced in chapter 5. In 5.2.1 we proposed that the social 
distance (SD) can have one of the following values (with approximate 
correspondences): 0 for intimate relationships; 1 for friends; 2 for acquaintances; 
and 3 for strangers. The target is then selected on basis of the following factors 
assuming that there is an NPC (S) who is talking to the player character (PC) (H) 
about a third person (T): 

• S perceives that the risk of losing face is low in the interaction with H, 
i.e., the social distance between S and H is (perceived to be) low and there 
is a (perceived) symmetric power relationship between them (ρ < 3). 

• S has new, sensitive information about T. 



 157 

• S knows T and believes that H knows, or is acquainted with, T too, i.e. 
SD(S, T)<3 and SD(H, T)<3. 

• S does not have an intimate relationship with T, and believes that the 
same holds for H, i.e., SD(S, T) >0 and SD(H, T) > 0. 

• S believes that T cannot hear the conversation. 

Next we need to determine the news value of the gossip story, which in our 
model is stored as a parameter, NewsVal, ranging from the value 0 (“common 
knowledge”) to 2 (“recently gained information”). The information is assigned a 
news value when it first is stored in the database, but as soon as it has been 
revealed, the news value decreases (for that character). We assume that the 
information is spread exponentially, i.e., that each person in possession of the 
information spreads it to at least two others up to a certain point in time when the 
information no longer is relevant or new.  

Third, we evaluate how sensitive the information is in itself or to the character it 
concerns. If it is indifferent for the person in focus that the information is 
revealed or if the behaviour is generally acceptable within that culture (e.g. 
within the group, community, or society) it is unlikely that it will be regarded as 
gossip. In order to account for this, we have added a sensitivity value for the 
propositional content of the gossip story. Sensitivity is here specified to be an 
integer between 0 and 3, where 0 indicates a generally acceptable behaviour. The 
sensitivity is furthermore individually based and can only be an approximation 
(just like the evaluation of the social distance and the power). This is because a 
specific event or appraisal means different things for different people and the 
sensitivity can furthermore vary over time. A woman who is pregnant, for 
example, might want to keep it a secret until the risk of miscarriage has 
decreased. The sensitivity level can therefore be high initially, but decrease in 
time and become completely relaxed closer to giving birth. Hence, it is here 
assumed that the values of sensitivity and NewsVal decrease over time. 

7.9.3 A Statechart Model for Initiating Gossip 
Figure 37, below, presents a statechart specification for initiating gossip.  



 158 

Figure 37 A statechart model for initiating gossip 

The model works as follows: S and H are engaged in a conversation. If S and H 
are acquainted and have equal status, i.e. ρ<3, a transition to the state 
InitiateGossip is triggered. The source state is here unspecified, but we can 
assume that the participants have greeted each other and perhaps small talked for 
a while before gossip is initiated. 

S starts by searching for a potential gossip target (T) in the database (Get(T, 
DB)) according to the specification presented previously, which is performed on 
entry of the state SelectTarget. The story must not be about S him/herself or 
about H. If such a target exists in the database (DB), i.e., T≠void, a transition 
from SelectTarget to EstablishGossip is activated. If there is no target 
that fulfils the initial criteria, the gossip is cancelled (never initiated).  

The default start state in EstablishGossip is GetGossipStory, in which a 
search for a story about T is conducted. The search has two possible outcomes: 
there is a story about T such that NewsVal=2 and Sensitivity > 0, or it fails 
to find such a story.  

If a story is found, the next step is to establish H and T’s relationship. If S is 
uncertain of their relationship, a transition is taken to the state EstablishId, in 
which S requests a clarification that will help to establish the social distance 
between H and T, for instance as a question: “Do you know T?” or “Have you 
heard about T”. If H responds with a request for clarification of who T is, then S 

InitiateGossip

SelectTarget

a

Tell

If

  Get(T,  DB)  
  1<=  SD(T,  S)  <=2  &&  
  T  !=  H  &&  
  T    is  out  of  range  

GetGossipStory
Get(I,  DB),  such  that  
I.subject  ==  T  &&  
sensitivity(I)  >  0  &&
NewsVal  ==  2  

ExpandId

EstablishId

If I == undefined

If 
I != undefined && ?SD(T, H)

Onentry
reqClarification  SD(H,  T)

On ca.reqClarification

If T != undefined 

If
Believe(S, (SD(T, H)) >= 1)

EstablishGossip

Onentry
Prompt  ca.tell(I)

CancelInitGossip If
Believe(S, (SD(T, H)) == 0)

If T == Nil

Onentry
Prompt  withdraw  
Raise  event  Cancel

On ca.reject

On Cancel

On ca.reqClarification



 159 

can provide more information about T, which is handled in ExpandId. For 
example: 

S: Do you know Lisa? 
H: Lisa, who? 
S: Lisa who works in the store with Jay. 

Dialogue 18: Example dialogue for clarifying the identity of the target 

If S believes that SD(H, T)=0, i.e., that they are intimately related, S will choose 
to back away from the gossip and the gossip is cancelled (which corresponds to a 
transition to CancelInitGossip). Otherwise, S will spread the gossip (which is 
performed in the state Tell). If no story exists that fulfils the criteria, S will 
attempt to find a new target. 

This tentative model attempts to simulate the processes involved when a person 
intends to initiate a gossip conversation. To actually implement the model may be 
a tricky task, mainly because of the intricacy of the information that needs to be 
stored in the database. To have an anecdote of gossip nature may be one thing, 
but to be able to elaborate on the identity of the target, his or her relationship to 
the participants (including the speaker) as well as the ability to follow up on the 
gossip are tasks that require reasoning. This could be done by invoking a Prolog 
process or by allowing Prolog to be integrated in the SCXML data model as 
Radomski, Schnelle-Walka, and Radeck-Arneth (2013) suggest. A simpler 
solution would of course be to pick a gossip story in the database about an absent 
character, assume the other participants know him or her, and then ignore 
whether they are emotionally involved or not. This solution would however fail 
to account for the effect gossip may have on the interpersonal relationship.  

7.9.4 Conclusion 
One of the most important factors of gossip initiation is the status of the 
relationship between the gossipers and between them and the target. We therefore 
suggest that the following factors determine whether the NPC can introduce 
gossip at all: The (perceived) relationship between the NPC and the PC (ρ); the 
relationship between each of the participants and the potential target; the news 
value of the gossip story; and how sensitive the story is (culturally and 
personally). More specifically this means that the target must not be intimately 
related to any of the participants and that the participants must be friends or 
acquaintances. We have no restrictions concerning gossip between closely related 
participants, even if it is unclear whether it should to be considered gossip (see 
e.g. Bergmann, 1993). Such a restriction would be unnecessary since it just 
means that the risk of losing face is very low.  



 160 

There are many different forms of gossip (see for example Gilmore, 1978) and 
many ways in which gossip can be initiated. In the model proposed here gossip 
has been limited to a conversation in which the speaker reveals a gossip story 
about an absent person who unambiguously is in focus. The gossip story may be 
more or less sensitive for the target and it has a news value that decreases when 
the gossip is shared.  

The target is selected first (either by being mentioned in the previous discourse or 
by searching the database on entry of SelectTarget), but it could equally well 
be the story that is chosen first. There are a number of reasons why we chose the 
former alternative: First, even if it is the behaviour that is being evaluated, it is 
always a person that (at least) implicitly is being judged and thereby can be 
damaged by the gossip. Second, the target may already be in focus or mentioned 
(for instance in a pre-sequence, see Bergmann, 1993), as in the following 
example, where the actual gossip is initiated when Jerry expresses his opinion in 
line 3 (we have removed a sequence in which the participants try to establish the 
identity of the target): 

1. Jerry: Hey, by the way, did you ever call that guy from the health 
club? 

2. Elaine: Oh yeah! Jimmy.  
[…] 
3. Jerry: Can't believe your going out with him... 
4. Elaine: Why? 
5. Jerry: I dunno. He's so strange. 
[…] 

Dialogue 19: Dialogue excerpt from Seinfeld59 

Third, if the initiator misinterprets the target’s relation to the addressee(s), it is 
the initiator that is considered to behave inappropriately. Hence, by making a 
mistake in the selection of the target the initiator faces the risk that the gossip 
backfires. The NPC will cancel the gossip if he suspects that the relationship 
between the target and the addressee is close.  

7.10 Discussion 
ECAs are created to simulate human behaviours and among the things humans do 
in order to socialize and share information is to gossip. Gossip is multifunctional 
and one of our most important means for building and maintaining social 
relationships. Through gossip we establish the accepted way to behave as 
members of a social group (see for example Eggins & Slade, 1997). In worlds 
populated with virtual humans, their ability to gossip can be a useful asset for a 
                                                
59 ©Castle Rock Entertainment, 1998. 



 161 

human user in gaining information and establish relationships that affect future 
actions. An NPC capable of engaging in gossip conversations will be a resource 
for different types of useful information that otherwise would be difficult to 
access, such as cultural cues among members of a social group as well as tensions 
or conflicts between different group members. 

In order to model gossip, we have to understand gossip – both how it is used as 
well as how it is produced. Gossip seems to work at different levels; the actual 
gossip conversation, the interpersonal relationship between the gossipers, the 
relationship each of them have to the target and finally the consequences of the 
gossip, i.e. the effects of the gossip, for instance changes in the relationships 
between the parties involved, including the target. Gossip can for instance get 
back at the gossiper himself; hence, we must determine the interpersonal 
relationships between those involved in the conversation (including the absent 
target) and how these relations are affected by the conversation. In order to do so, 
we need to both identify the dialogue moves typical for gossip as well as how 
these moves are distributed among the participants. Furthermore, we need to 
determine when it is appropriate for a character to initiate gossip, with whom, and 
why. We must furthermore be able to quantify the degree to which the gossip is 
harmful for the target. In the extension we also need to consider the implications 
such a dialogue will have for the progression of the game or scenario as a whole.  

This chapter has presented a number of arguments for studying people’s 
interpretation of human gossip, i.e. fabricated gossip for instance found in movie 
scripts, rather than naturally occurring human gossip. First, these conversations 
are fictional just like conversations in game worlds; second, they are limited to fit 
a particular scene, meaning that they are limited in time and scope; third, they are 
distilled, i.e. they do not contain sequences that are irrelevant and uninteresting 
from a gameplay perspective. It should however be said that this approach 
requires access to scripts (or transcriptions) in which gossip is likely to occur. It 
our case it has meant analysing a large number of scripts in search of gossip 
episodes that could be used in the experiments.  

We initially defined gossip as evaluative talk about an absent third person, a 
definition that comprises the lowest common denominator of the definitions that 
we have found useful. We tested whether this definition was sufficient for 
creating a computational model of gossip and concluded that the three obligatory 
elements, third person focus, substantiating behaviour and (pejorative) 
evaluation, were not sufficient to define gossip, but that they clearly affected the 
gossip score. Only third person focus was a necessary, but insufficient element. 
Even though a gossip story contains all elements, it may differ on the account of 
how sensitive the story is to the participants and whether the information is new 
to them. In some situations revealing sensitive news might backfire, while 
spreading “old” stories might make the agent seem uninformed. For that reason 



 162 

we added two parameters, sensitivity and news value, to the model for initiating 
gossip.  

Previous studies (e.g. Eder & Enke, 1991; Eggins & Slade, 1997) have shown 
that gossip is a highly interactive genre that does not follow the typical turn-
taking structure significant in most goal-directed conversations. These exchanges 
are usually built around adjacency pairs (Schegloff & Sacks, 1973), naturally 
assigning each participant either the sender role or the receiver role. Instead, any 
participant can add fuel to the gossip in terms of for example elaborations, 
evaluations, rhetorical questions, probes, refusals, agreements and disagreements. 
The participants can also back off at any time, for example if the gossip gets out 
of line.  

We have presented a model of how an NPC may initiate and tell a gossip story, 
which means that the NPC is in control over the information that is being spread. 
To automatically detect gossip is however a much more difficult task. The NPC 
would for example need the ability to separate “Bill (Clinton) has had a sexual 
relationship with Monica (Lewinsky)” from “Bill (as in our common friend) has 
had a sexual relationship with Monica (someone we mutually know and that is 
not Bill’s wife)”. From a gossip point of view these two utterances differ vastly 
from each other. In the first example, the gossip is about famous persons neither 
of the participants (presumably) knows, while the latter example refers to 
acquaintances, who may be affected by the information exchange in some way or 
another. To gossip about famous people causes little threat to our own face, while 
we take social risks by talking about people we mutually know. This is an 
example of a situation where gossip can backfire. We would like our NPCs to 
have the ability to make this judgement in most situations, but occasional failures 
are acceptable, as they would only make the NPC more human-like. 

We think that gossip can form an important mechanism for creating games based 
on social interaction between the player and the NPCs and it is not far-fetched to 
think that gossip could be used to increase the player’s emotional attachment to 
specific NPCs. Several gameplay design patterns may also be supported through 
gossip, e.g. INFORMATION	
  PASSING,	
  ACTIONS	
  HAVE	
  SOCIAL	
  CONSEQUENCES, and RUMORS.  



 163 

Chapter 8  

Conclusions and 
Future Work 
The purpose of this work has been to investigate and present approaches for 
dealing with socially oriented dialogues and believable behaviour applied to 
NPCs in games. It builds on theories of social politeness, gossip and activity 
based communication to explain and suggest ways to manage such dialogues. In 
statecharts we found a language to express these models, and by use of gameplay 
design patterns we found a language to express the actual and hypothetical 
gameplay mechanics associated with dialogues and other forms of PC-NPC 
interaction that exist in games. Another important aspect has been to present an 
approach that is accessible and usable to game developers. For this reason, it was 
an early decision to use standard technologies as they are free, accessible, stable, 
and provide consistency. Furthermore, it allows developers to use existing 
frameworks and off-the-shelf products for their application. Of particular interest 
was SCXML as it explicitly is meant to define the flow of an application, for 
example a game or a (game) dialogue system. 

Much is left to do. The emotional impact is only touched upon here and the work 
on a gossip module is in its infancy, but we see an interesting opening here for 
creating socially believable game characters. By equipping them with strategies 
for how to behave in various situations we can create characters that may provide 
“the illusion of life” (Bates, 1994). We can design characters that are not 
cooperative in Grice’s sense as discussed in chapter 2.5.1, characters that can 
determine whether it is appropriate to gossip, that can adjust their social 
behaviour according to for example their mental state and the interpersonal 
relationship, and therefore are able to negotiate the price in a trading situation. 
We argue that these types of behaviours increase believability and motivate 
natural language dialogues in games. They can be used to create new types of 
games, perhaps focusing on social relationships, in which manipulations, gossip 
and lies are examples of strategies that could be used in order to advance in the 
game. Social skills are also interesting for virtual humans to make them 
believable.  



 164 

In traditional drama, dialogue and language use are important means to present 
the characters, their personality, intentions, goals and thoughts. This information 
helps the audience to understand the motivation behind the actions and perhaps 
even foresee how the character will behave in certain situations. Games allow the 
audience to become immersed in the story by participating as one of the roles 
with the ability to affect how the story is presented and the direction it takes. The 
player is encouraged to interact with the environment, the characters and objects 
that exist there, and to decide where to go and what to do. This is a major 
difference between traditional storytelling media such as film and literature, 
where the reader is merely an observer, who is presented the narrative in a 
particular order determined by the author. A player is, on the other hand, given 
the freedom to choose a path and unfold one of possibly several story branches. 
The same applies to character development – in fixed stories the characters 
transform according to a predefined pattern, while in a game they may instead 
transform the story according to the player’s actions. This thesis has presented 
several ways in which a character can act variably depending on the situation and 
current game state. Initially, an analysis was made to identify the different ways 
natural language dialogues may be used in games in order to determine the scope 
of this thesis, which resulted in the following classification: 1) For 
communicating with the game system; 2) for directing the playable character(s); 
3) for letting NPCs communicate with each other; 4) for player-to-player chats; 
and 5) for letting NPCs engage in socially oriented conversations with the player 
(character). The last point was then selected as focus of the thesis.  

Next, a classification of conversational agents was made in which NPCs were 
categorised as a type of ECA, but while most ordinary ECAs aim to mimic 
humans in realistic settings, NPCs may exhibit human-like behaviour in a 
fictional environment. Just like most ordinary ECAs, some NPCs may engage in 
practical dialogues and the requirements for building these NPCs are in many 
respects similar to those used for building cooperative agents. But for socially 
oriented NPCs, however, some of these requirements may need to be handled 
differently: 

• To be believable, the NPC’s dialogue system may need various and 
sometimes unconventional ways to handle errors. The NPC could for 
instance act as if it did not hear, pretend to understand, change the subject, 
or end the dialogue abruptly.  

• The dialogue system should take into account the NPC’s role, mental 
state, and goal in the game as well as the current situation including the 
interpersonal relationship, even if it means acting uncooperatively. This 
point may also be relevant for virtual humans. 

• Socially oriented NPCs should be able to handle longer exchanges with 
varying topics. 



 165 

This means that an NPC may talk too much or too little (or ignore the PC 
altogether), spread gossip and engage in other forms of casual conversations. 
Even lying and deception could be appropriate for an NPC under certain 
circumstances.  

In order to identify relevant areas for improving game dialogues, an analysis of a 
number of prototypical games was conducted by means of gameplay design 
patterns (GPDs). The analysis resulted in a list of existing and hypothetical GDPs 
that are relevant for designing game characters in general and game dialogues in 
particular. Several of these patterns were thereafter implemented in the 
prototypes. It is assumed that all prototypes use FREE	
  TEXT	
  COMMUNICATION and 
require DIEGETICALLY	
  CONSISTENT	
  DIALOGUES. CHARACTER-­‐SPECIFIC	
  DIALOGUE	
  is also used 
in all the prototypes – a pattern that is particularly noticeable in asymmetric 
relations, such as waiter-customer or doctor-patient, since the behaviour is 
dependent on the roles the characters have. In a gossip conversation this is less 
obvious due to the fact that gossip is mainly conducted between persons of (more 
or less) equal status that at least are acquainted with each other; so rather than 
having dialogue specific for a particular role it may be the gossipers’ relationship 
to each other and to the person in focus that determine what becomes	
  CHARACTER-­‐
SPECIFIC	
   DIALOGUE. By means of parallel statecharts it becomes possible to 
synchronize the NPC’s animations with its verbal behaviour and enable GAMEPLAY	
  

INTEGRATED	
  DIALOGUES.   

Chapter 1 presented a waiter character that interacts with a human user in natural 
language. In chapter 5, the waiter’s dialogue manager was extended with the 
pattern SOCIAL	
  NORM, i.e. the ability to behave according to a specific norm set for 
a particular situation (see section 3.7). Based on Brown and Levinson’s (1987) 
algorithm for evaluating the threat to face of a certain action in a specific context, 
the parameter ρ was introduced as a measure of the individual’s evaluation of the 
interpersonal relationship based on the distribution of power among the members 
and the social distance between them (corresponding to Brown and Levinson’s P 
and D values, respectively). As such it differs from Brown and Levinson’s 
algorithm as well as Walker and colleagues’ (1996) approach since it does not 
explicitly take into account the evaluation of the imposition of the act (the I 
value). The reason why we chose not to explicitly consider I is that we found the 
parameter too vague to be useful for our purposes: I “is a culturally and 
situationally defined ranking of impositions by the degree to which they are 
considered to interfere with an agent’s wants of self-determination or of 
approval” (Brown & Levinson, 1987, p. 77) as such it “involves a complex 
description” (ibid., p. 77), meaning that I stands for different things in different 
contexts and may consist of a combination of different but interrelated values, 
which suggest that it is difficult to compute. Instead, ρ is used to determine the 
precondition for behaving in a certain way. The value of ρ can for example be 



 166 

used as a condition for determining which transition to choose given a specific 
state and be combined with any parameter that suits the given context, similar to 
the I-value in Brown and Levinson’s algorithm. Just like Brown and Levinson’s 
(1987) algorithm, a low  ρ indicates that the risk of losing face is low since the 
social distance between the participants as well as the distribution of power has 
been evaluated to be low or equal. A high ρ means that either the social distance 
is high and/or the power is perceived of as asymmetrical (in some situations the 
asymmetrical power is built-in). In the examples presented in Chapter 5, the 
parameter was used to determine which communicative act to perform in a 
particular situation and which linguistic style to use, and in Chapter 7 it was used 
for determining whether it is appropriate to initiate a gossip conversation in the 
current situation.  

A shopkeeper with the ability to negotiate price was then introduced. As part of 
the DEAL project, the overarching goal was to create a conversational training 
partner for a language learner, also reported in (Wik, Hjalmarsson, & Brusk, 
2007b; Hjalmarsson, Wik, & Brusk, 2007). In games, TRADE is a common 
gameplay pattern, allowing players to exchange goods for money in order to 
improve their possibilities to increase their experience points or in other ways 
advance in the game. NEGOTIATION is a sub-pattern, but is mostly used when trade 
is conducted between players. The NPC in the shopkeeper role calculates a 
counteroffer based on the last bid, the cost, and the number of turns left before 
the shopkeeper considers the negotiation to have broken down. The shopkeeper 
can also refuse to sell the item altogether if the customer’s bid is considered an 
insult – for example lower than the cost or lower than the customer’s previous 
bid. The customer is on the other hand expected to perform a similar calculation 
but instead of the cost, the customer assigns the object a certain value and the 
number of acceptable turns is most likely different from the shopkeeper’s. This is 
of course information that is not shared between the participants. Instead, the 
outcome is unpredictable and highly dependent on the player’s behaviour. Also, 
the number of acceptable turns on behalf of the shopkeeper can be randomized to 
make its behaviour even less predictable. The outcome is thus determined by the 
participants’ ability to reach a point in the agreement space that is accepted by 
both agents. Sometimes the participants fail to reach an agreement and the 
negotiation breaks down. Negotiation was here reduced to a mathematical model 
for reaching this point in the agreement space; an interesting further step would 
be to introduce argument-based negotiation. Negotiations are also important 
within diplomacy, and could thus be useful in war-games for example. 

In Chapter 7 it was suggested that there are situations in which an NPC should be 
able to engage in gossip conversations. In particular situations when it is 
important that the NPC behaves believably like a human agent. This is also 
applicable for virtual worlds populated with virtual humans. Various proposals of 



 167 

gossip definitions were presented, but it soon became clear that a workable 
definition, that captures those dialogues people intuitively identify as gossip, does 
not exist. In an attempt to formulate such a definition, two experiments on gossip 
conversations were conducted. Based on previous research on gossip, three 
elements were proposed to be significant for gossip conversations; third person 
focus, an evaluation of the person in focus or of his or her behaviour, and some 
form of explanation or motivation substantiating the judgment. The aim was to 
investigate people’s intuitive notion of gossip and the results showed that (1) 
conversations in which all gossip elements are present, where no intimate 
relationships exist between the participants, and in which the person in focus is 
unambiguous, are very likely to be considered gossip; (2) conversations that have 
at most one gossip element are not considered gossip; and (3) inconsistencies are 
mainly found in conversations that lack one or two elements or have at least one 
element that is ambiguous, or are taking place between gossipers that have an 
intimate relationship. Hence, it is clear that all three elements are important for 
the understanding of gossip, even though the subjects had trouble in identifying 
them. This suggests that we need to further investigate these elements to see how 
they can be specified more clearly. We have taken a first step toward a 
computational account of gossip, by empirically verifying the extent to which the 
given definition can be applied and the components recognized by people. Some 
of the next steps to further this program would be to include authoring content for 
believable characters that follow this definition, as well as attempting to 
automatically recognize these elements. 

Several of the previous studies referenced in this thesis presented interesting 
findings about the nature of gossip. For example, like other casual conversations, 
gossip lacks a concrete goal; instead the goal is interpersonal in nature, for 
instance to negotiate the appropriate way to behave. It was also concluded earlier 
that the participants must make the judgement that the  ρ value is low before 
entering a gossip conversation in order to avoid the gossip backfiring. A low 
ρ   indicates that the participants are closely related and equal in power, which 
suggest that the roles are symmetrical. One of the participants is always the 
initiator and may as such have a dominant role in the conversation, at least 
initially, but this may change during the course of the interaction making the role 
distribution unclear. Any participant can contribute to the conversation in various 
ways; Eggins and Slade (1997) mention for example probes, enhancements and 
extensions concerning substantiating behaviour and pejorative evaluations, as 
well as rhetorical questions and opinions as possible contributions. Chapter 7 
proposed a model for selecting a target and tell a gossip story. The next step is to 
create a computational model of gossip that also takes into account the other 
participants’ contribution to the conversation. In order to do this it could be worth 
while to use machine learning techniques since it is unlikely that “the hand-



 168 

crafted set of rules does in fact optimally cover all possible aspects of user 
behaviour” (Schatzmann, Weilhammer, Stuttle, & Young, 2006, s. 103).  

 When gossip is possible in a virtual world, i.e. a world populated by a large 
number of other characters, the consequences of spreading the gossip may be 
considered in the larger context and not only among the participants engaged in 
the actual conversation. These consequences should also be further investigated. 

It has not been the goal of this thesis to argue that natural language dialogue 
should replace these other forms of dialogue systems in games. Rather, the 
application areas mentioned here suggest that NL dialogues may be considered 
when designing specific situations where dialogue has a limited and well-defined 
purpose, social or functional. This is also similar to how typical ECAs operate. A 
well-defined domain limits the reasonable scope for the dialogue and ensures that 
the dialogue, even though apparently unlimited, becomes manageable.  

8.1.1 SCXML 
This thesis has presented a large number of reasons for why statecharts and 
SCXML should be a good fit for the gaming industry. Statecharts allow us to 
solve small problems in isolation that combined can solve bigger problems. We 
would like to summarize our arguments as follows: At its core, SCXML has 
FSMs – and it has been shown, over and over again, that FSMs are useful for 
describing the flow of a game, i.e. the pace and sequence of its states and events, 
and the range of choices in its progression. As a result of its Harel Statechart 
heritage, SCXML also supports hierarchy and concurrency, and thereby avoids 
the most pressing problem with ordinary FSMs – the notorious state explosion 
problem. The presence of hierarchy furthermore allows the developer to describe 
game flow at different levels of granularity, and to apply the methodological 
principles of top-down refinement and bottom-up clustering. In addition, the fact 
that SCXML is closely aligned to statechart theory and UML2 will help those 
using model driven development methodologies. It is possible to use a top-down 
approach (so called refinement) as well as bottom-up approach (clustering) in the 
design process and tasks may be delegated to different team members. Moreover, 
SCXML is at the final stage of becoming a web standard, which means that it is 
free to use, accessible, stable, distributable, and provides consistency. It is XML-
based, and most game engines already handle XML data. The fact that SCXML is 
endorsed by the W3C may translate to better support in tooling, number of 
implementations and various runtime environments.  

In particular SCXML and VoiceXML forms a powerful combination, where 
SCXML is used for specifying and implementing the flow aspect of a dialogue 
system, and VoiceXML supplies the voice widgets required. This enables an 
approach to the development of natural language enabled games where natural 



 169 

language dialogue flow is seen as just an aspect of the overall game flow, and 
where SCXML is used for specifying and implementing (the major parts) of both 
kinds of flow. By moving dialogue control to SCXML we have been able to 
design different strategies for concluding a deal as well as for managing face. In 
fact, specifying dialogue flow by using statecharts turned out to be so intuitive 
that we decided to move all control to SCXML – an approach that is in line with 
how the DFP is supposed to work.  

 

 

 



 170 

References 
Abrahams, R. D. (1970). A Performance-Centered Approach to Gossip. Man, 5 
(2), 290-301. 

Adams, E. (2010). Fundamentals of Game Design (2. ed. ed.). Berkeley, Calif., 
USA: New Riders. 

Adams, E., & Rollings, A. (2007). Fundamentals of Game Design. Upper Saddle 
River, New Jersey, USA: Pearson Prentice Hall. 

Alewine, N., Ruback, H., & Deligne, S. (2004). Pervasive Speech Recognition. 
IEEE Pervasive Computing, 2 (4), 78-81. 

Alexander, C., Ishikawa, S., & Silverstein, M. (1977). A Pattern Language: 
Towns, Buildings, Construction. New York, USA: Oxford University Press. 

Allen, J. F., Byron, D. K., Dzikovska, M., Ferguson, G., Galescu, L., & Stent, A. 
(2001). Towards conversational human-computer interaction. AI Magazine, 22 
(4), 27-37. 

Allen, J. F., Guinn, C. I., & Horvitz, E. (1999). Mixed Initiative Interaction. IEEE 
Intelligent Systems , 14 (5), 14-23. 

Allwood, J. (1995). An Activity Based Approach to Pragmatics. University of 
Gothenburg, Dept. of Linguistics. Gothenburg: Gothenburg Papers in Theoretical 
Linguistics 76. 

Allwood, J. (1993). Language, Communication and Social Activity - Towards 
and Analysis of The Linguistic Communicative Aspects of Social Activities. In 
K. Junefelt (Ed.), Proceedings of the XIVth Scandinavian Conference of 
Linguistics and the VIIIth Conference of Nordic and General Linguistics: Special 
Session on Activity Theory. Gothenburg: University of Gothenburg. 

Allwood, J. (1976). Linguistic Communication as Action and Cooperation. 
University of Gothenburg, Dept. of Linguistics. Gothenburg: Gothenburg 
Monographs in Linguistics 2. 

Allwood, J., Traum, D., & Jokinen, K. (2000). Cooperation, dialogue and ethics. 
International Journal Human-Computer Studies, 53, 871-914. 

Artstein, R., & Poesio, M. (2008). Inter-Coder Agreement for Computational 
Linguistics. Computational Linguistics , 34 (4), 555--596. 

Aust, H., Oerder, M., Seide, F., & Steinbiss, V. (1995). The Philips automatic 
train timetable information system. Speech Communication, 17 (3-4), 249-262. 



 171 

Austin, J. L. (1962). How to Do Things With Words (2nd edition ed.). Cambridge, 
Massachussetts, USA: Harvard University Press. 

Barnett, J., Akolkar, R., Auburn, R., Bodell, M., Burnett, D. C., Carter, J., et al. 
(2012, February 16). State Chart XML (SCXML): State Machine Notation for 
Control Abstraction. From W3C Working Draft: http://www.w3.org/TR/scxml/ 

Bartle, R. A. (2003). Designing Virtual Worlds. Indianapolis New Riders: New 
Riders. 

Bartle, R. A. (1996). Players Who Suit MUDs. Journal of MUD research, 1 (1). 

Bateman, C. (2007). Dialogue Engines. In C. Bateman (Ed.), Game Writing: 
Narrative Skills for Videogames (pp. 267-292). Boston, MA, USA: Charles River 
Media. 

Bates, J. (1994). The Role of Emotion in Believable Agents. Communications of 
the ACM , 37 (7), 122-125. 

Bergmann, J. R. (1993). Discreet Indiscretions: The Social Organization of 
Gossip. (J. J. Bednartz, Trans.) New York: Aldine de Gruyter. 

Bernsen, N. O., & Dybkjær, L. (2005). Meet Hans Christian Andersen. 
Proceedings of the 6th SIGdial Workshop on Discourse and Dialogue. Lisbon, 
Portugal: ISCA Archive. 

Bernsen, N. O., Dybkjær, H., & Dybkjær, L. (1996). Co-operativity in Human-
Machine and Human-Human Spoken Dialogue. Discourse Processes, 21 (2), 
213-236. 

Bethesda Game Studios. (2002). The Elder Scrolls III: Morrowind [Computer 
game]. Ubisoft. 

Bethesda Game Studios. (2006). The Elder Scrolls IV: Oblivion [Computer 
game].. Bethesda Softworks LLC . 

Bethesda Game Studios. (2011). The Elder Scrolls V: Skyrim [Computer game].. 
Bethesda Softworks LLC. 

Bethke, E. (2003). Game Development and Production. Plano, Texas, USA: 
Wordware Publishing. 

Bickmore, T., & Cassell, J. (2000). "How about this weather?" Social Dialogue 
with Embodied Conversational Agents. Proceedings of the American Association 
for Artificial Intelligence (AAAI) Fall Symposium on Narrative Intelligence, (pp. 
4-8). Cape Cod, MA. 

Bickmore, T., & Cassell, J. (2001). Relational Agents: A Model and 
Implementation of Building User Trust. Proceedings of the SIbrujGCHI 
conference on Human factors in computing systems (pp. 396 - 403). New York, 
USA: ACM. 



 172 

Bioware. (2011). Dragon Age II [Computer game]. Electronic Arts. 

BioWare. (2010). Mass Effect 2 [Computer game]. Electronic Arts, Inc. 

BioWare. (2008). Mass Effect [Computer game]. Microsoft Game Studios. 

BioWare. (2012). Mass Effect 3 [Computer game]. Electronic Arts. 

Björk, S., & Holopainen, J. (2003a). Describing Games: An Interaction-Centric 
Structural Framework. In M. Copier, & J. Raessens (Ed.), Level Up Conference 
Proceedings: Proceedings of the 2003 Digital Games Research Association 
Conference. Utrecht: University of Utrecht. 

Björk, S., & Holopainen, J. (2005). Patterns in Game Design. Hingham, 
Massachusettes: Charles River Media. 

Björk, S., Lundgren, S., & Holopainen, J. (2003b). Game Design Patterns. In M. 
Copier, & J. Raessens (Ed.), Level Up Conference Proceedings: Proceedings of 
the 2003 Digital Games Research Association Conference. Utrecht: University of 
Utrecht. 

Black Isle Studios. (1997-). Fallout [Computer game]. Interplay Productions Inc. 

Black Isle Studios. (1999). Planescape: Torment [Computer game]. Interplay 
Entertainment Corp. 

Blizzard Entertainment. (2005). World of Warcraft [Computer game]. Blizzard 
Entertainment. 

Boffo Games, Inc. (1997). The Space Bar [Computer game]. Bomico 
Entertainment Software GmbH. 

Bos, J., Klein, E., Lemon, O., & Oka, T. (2003). DIPPER: Description and 
Formalisation of an Information-State Update Dialogue System Architecture. 4th 
SIGdial Workshop on Discourse and Dialogue (pp. 115–124). Sapporo, Japan: 
ACL. 

Boye, J., & Gustafson, J. (2005). How to do dialogue in a fairy-tale world. 
Proceedings of SigDial: 6th Workshop on Discourse and Dialogue, (pp. 242-
246). Lisbon. 

Bratman, M. E. (1987). Intention, Plans, and Practical Reason. Cambridge, 
Massachusetts, USA: Harvard University Press. 

Brown, P., & Levinson, S. C. (1987). Politeness: Some universals in language 
usage. Cambridge: Cambridge University Press. 

Brusk, J. (2010). A Computational Model for Gossip Initiation. In P. Lupkowski, 
& M. Purver (Ed.), Aspects of Semantics and Pragmatics of Dialogue. SemDial 
2010, 14th Workshop on the Semantics and Pragmatics of Dialogue (pp. 139-
142). Poznan: Polish Society for Cognitive Science. 



 173 

Brusk, J. (2008). Dialogue Management for Social Game Characters Using 
Statecharts. Proceedings of ACM SIGCHI International Conference on Advances 
in Computer Entertainment Technology, (pp. 219-222). Yokohama, Japan. 

Brusk, J. (2009). Using Screenplays as Corpus for Modeling Gossip in Game 
Dialogues. In J. Edlund, J. Gustafson, A. Hjalmarsson, & G. Skantze (Ed.), 
Proceedings of DialHolmia: 2009 Workshop on the Semantics and Pragmatics of 
Dialogue (pp. 139-140). Stockholm: Royal Institute of Technology. 

Brusk, J., & Björk, S. (2009). Gameplay Design Patterns for Game Dialogues. 
Proceedings of DiGRA 2009: Breaking New Ground: Innovation in Games, Play 
Practice and Theory. West London, UK: Brunel University. 

Brusk, J., & Eladhari, M. (2006). Playing the Character. Seminar on Playing 
Roles. Tampere, Finland: Tampere University. 

Brusk, J., & Lager, T. (2008). Developing Natural Language Enabled Games in 
SCXML. Journal of Advanced Computational Intelligence and Intelligent 
Informatics (JACIII) , 12 (2), 156-163. 

Brusk, J., Artstein, R., & Traum, D. (2010). Don't tell anyone! Two Experiments 
on Gossip Conversations. Proceedings of the SIGDIAL 2010 Conference (pp. 
193-200). Association for Computational Linguistics. 

Brusk, J., Lager, T., Hjalmarsson, A., & Wik, P. (2007). DEAL – Dialogue 
Management in SCXML for Believable Game Characters. Proceedings of ACM 
Future Play (pp. 137-144). Toronto, Canada: ACM. 

Bunt, H. (1994). Context and Dialogue Control. Think , 3:19-33 (1994). Think 
Quarterly, 3, 19-33. 

Burbeck, S. (1992). Applications Programming in Smalltalk-80(TM): How to use 
Model-View-Controller (MVC). Urbana-Champaign (UIUC) Smalltalk Archive , 
2nd. University of Illinois. 

Carlsson, R., & Granström, B. (1996). The Waxholm Spoken Dialogue System. 
(Z. Palková, Ed.) Phonetica Pragensia IX. Charisteria viro doctissimo Premysl 
Janota oblata, 1, 39-52. 

Cassell, J., Bickmore, T., Billinghurst, M., Campbell, L., Chang, K., 
Vilhjálmsson, H., et al. (1999). Embodiment in Conversational Interfaces. 
Proceedings of the CHI'99 Conference, (pp. 520-527). Pittsburgh, PA. 

Cassell, J., Bickmore, T., Campbell, L., Vilhjálmsson, H., & Yan, H. (2000a). 
Human Conversation as a System Framework. In J. Cassell, J. Sullivan, S. 
Prevost, & E. Churchill (Eds.), Embodied Conversational Agents (pp. 29-63). 
Cambridge, MA: MIT Press. 

Cassell, J., Sullivan, J., Prevost, S., & Churchill, E. (Eds.). (2000b). Embodied 
Conversational Agents. MIT Press. 



 174 

Cavazza, M., & Charles, F. (2005). Dialogue Generation in Character-based 
Interactive Storytelling. Proceedings of AAAI First Annual Artificial Intelligence 
and Interactive Digital Entertainment Conference. Marina del Rey, California, 
USA. 

Cavazza, M., Martin, O., Charles, F., Mead, S. J., & Marichal, X. (2003). Users 
Acting in Mixed Reality Interactive Storytelling. Proceedings of the 2nd 
International Conference on Virtual Storytelling, (pp. 189-197). 

Cermak-Sassenrath, D. (2012). Experiences with design patterns for oldschool 
action games. In Proceedings of The 8th Australasian Conference on Interactive 
Entertainment: Playing the System (IE '12) (p. Article no. 14). New York, NY, 
USA: ACM. 

Chatman, S. (1978). Story and Discourse: Narrative Structure in Fiction and 
Film. Ithaca and London: Cornell University Press. 

Chu-Carroll, J. (2000). MIMIC: An Adaptive Mixed Initiative Spoken Dialogue 
System for Information Queries. Proceedings of the sixth Conference on Applied 
Natural Language Processing (pp. 97-104). Morristown, USA: ACM. 

Church, D. (1999). Formal Abstract Design Tools. Retrieved 06 11, 2010 from 
Gamasutra: 
http://www.gamasutra.com/view/feature/3357/formal_abstract_design_tools.php 

Clark, A., Fox, C., & Lappin, S. (Eds.). (2010). The Handbook of Computational 
Linguistics and Natural Language Processing. West Sussex, UK: Wiley-
Blackwell. 

Clark, H. H. (1996). Using Language. Cambridge: Cambridge University Press. 

Clark, H. H., & Brennan, S. E. (1991). Grounding in Communication. In L. B. 
Resnick, J. M. Levine, & S. D. Teasley (Eds.), Perspectives on Socially Shared 
Cognition. Washington D.C.: American Psyhological Association. 

Cooper, R., & Larsson, S. (1998). Dialogue Moves and Information States. 
Gothenburg Papers in Computational Linguistics. Gothenburg, Sweden: 
University of Gothenburg. 

Corkrey, R., & Parkinson, L. (2002). Interview voice response: Review of studies 
1989-2000. Behavior Research Methods, Instruments, & Computers, 34 (3), 342-
353. 

Crawford, C. (2004). On Interactive Storytelling. Indianapolis, Ind.: New Riders. 

Cristiano, G. (2008). The Storyboard Design Course: The Ultimate Guide for 
Artists, Directors, Producers and Scriptwriters. Thames & Hudson Ltd. 

Cyan, Inc. (1993). Myst [Computer game]. Brøderbund Software, Inc. 

EA Sports. (1993-2012). FIFA [Computer game]. Electronic Arts. 



 175 

Eder, D., & Enke, J. L. (1991). The Structure of Gossip: Opportunities and 
Constraints on Collective Expression among Adolescents. American Sociological 
Review , 56 (4), 494-508. 

Edlund, J., Skantze, G., & Carlson, R. (2004). HIggins - a Spoken Dialogue 
System for Investigating Error Handling Techniques. Proceedings of 
INTERSPEECH 2004 - ICSLP, 8th International Conference on Spoken 
Language Processing, (pp. 229-231). Jeju Island, Korea: ISCA Archive. 

Egges, A., Zhang, X., Kshirsagar, S., & Magnenat-Thalmann, N. (2003). 
Emotional Communication with Virtual Humans. Proceedings of the 9th 
International Conference on Multi-Media Modeling .  

Eggins, S., & Slade, D. (1997). Analysing Casual Conversation. London, UK: 
Equinox Publishing Ltd. 

Eladhari, M. P. (2009). Characterising action potential in virtual game worlds 
applied with the mind module. Gotland University, Department of Game Design, 
Narrative and Time-based Media. Middlesbrough: University of Teesside. 

Electronic Arts. (1998-). The Sims(tm). Electronic Arts. 

Fey, T. (Writer), & Waters, M. (Director). (2004). Mean Girls [Motion Picture]. 

Field, S. (2005). Screenplay : The Foundations of Screenwriting. Westminster, 
MD, USA: Dell Publishing. 

Fine, G. A., & Rosnow, R. L. (1978). Gossip, Gossipers, Gossiping. Personality 
and Social Psychology Bulletin , 4 (1), 161-168. 

Fu, D., & Houlette, R. (2002). Putting AI in entertainment: an AI authoring tool 
for simulation and games. Intelligent Systems, IEEE , 17 (4), 81-84. 

Fu, D., & Houlette, R. (2004). The Ultimate Guide to FSMs in Games. In S. 
Rabin (Ed.), AI Game Programming Wisdom 2. Hingham, Massachusettes, USA: 
Charles River Media, Inc. 

Fullerton, T. (2008). Game Design Workshop (2nd ed.). Burlington, MA, USA: 
Elsevier Inc. 

Gamma, E., Helm, R., Johnson, R., & Vlissides, J. (1995). Design Patterns: 
Elements of Reusable Object-Oriented Software. Addison-Wesley Professional 
Computing Series. 

Gandhe, S., DeVault, D., Roque, A., Martinovski, B., Artstein, R., Leuski, A., et 
al. (2008). From Domain Specification to Virtual Humans: An Integrated 
Approach to Authoring Tactical Questioning Characters. Proceedings of 
INTERSPEECH 2008 - 9th Annual Conference of the International Speech 
Communication Association (pp. 2486-2489). Brisbane, Australia: ISCA Archive. 



 176 

Gebhard, P., Kipp, M., Klesen, M., & Rist, T. (2003). Authoring Scenes for 
Adaptive, Interactive Performances. AAMAS'03: Proceedings of the Second 
International Joint Conference on Autonomous Agents and Multiagent Systems 
(pp. 725-732). New York, USA: ACM. 

Gee, J. P. (2003). What Video Games Have to Teach us About Learning and 
Literacy. New York: Palgrave MacMillan . 

Gilmore, D. (1978). Varieties of Gossip in a Spanish Rural Community. 
Ethnology , 17 (1), 89-99. 

Ginzburg, J. (1996). Dynamics and the Semantics of Dialogue. In J. Seligman 
(Ed.), Language, Logic and Computation (Vol. 1). Stanford: CSLI Lecture Notes, 
CSLI. 

Ginzburg, J., & Fernández, R. (2010). Computational Models of Dialogue. In A. 
Clark, C. Fox, & S. Lappin (Eds.), The Handbook of Computational Linguistics 
and Natural Language Processing. West Sussex, UK: Wiley-Blackwell. 

Gluckman, M. (1963). Papers in Honor of Melville J. Herskovits: Gossip and 
Scandal. Current Anthropology , 4 (3), 307-316. 

Goffman, E. (1967). On Face-Work: An Analysis of Ritual Elements in Social 
Interaction. In E. Goffman, Essays on Face-to-Face Behavior. New York, USA: 
Pantheon Books. 

Goodwin, M. H. (1980). He-Said-She-Said: Formal Cultural Procedures for the 
Construction of a Gossip Dispute Activity. American Ethnologist , 7 (4), 674-
695. 

Grice, H. P. (1975). Logic and Conversation. (P. Cole, & J. L. Morgan, Eds.) 
Syntax and Semantics: Speech Acts , 3, 41-58. 

Griol, D., Callejas, Z., & López-Cózar, R. (2010). Statistical Dialog Management 
Methodologies for Real Applications. Proceedings of the SIGDIAL 2010 
Conference (pp. 269-272). Association for Computational Linguistics. 

Gustafson, J., Boye, J., Fredriksson, M., Johanneson, L., & Königsmann, J. 
(2005). Providing computer game characters with conversational abilities. 
Proceedings of Intelligent Virtual Agents (IVA05) (pp. 37-51). Kos, Greece: 
Lecture Notes in Computer Science, Springer Berlin / Heidelberg. 

Gustafson, J., Lindberg, N., & Lundeberg, M. (1999). The August Spoken 
Dialogue System. Proceedings of Sixth European Conference on Speech 
Communication and Technology (EUROSPEECH'99). Budapest, Hungary: ISCA 
Archive. 

Hallett, T., Harget, B., & Eder, D. (2009). Gossip at Work: Unsanctioned 
Evaluative Talk in Formal School Meetings. Journal of Contemporary 
Ethnography , 38 (5), 584-618. 



 177 

Halliday, M. A. (1978). Language as a Social Semiotics: The Social 
Interpretation of Language and Meaning. Baltimore: University Park Press. 

Hammersley, T. (2009, June 24). Planning For Fun In Game Programming - 
Part 2. Retrieved 06 15, 2011 from Gamasutra: 
http://www.gamasutra.com/view/feature/4060/planning_for_fun_in_game_.php 

Harel, D. (1987). Statecharts: A Visual Formalism for Complex Systems . 
Science of Computer Programming , 8 (3), 231-274. 

Hayes-Roth, B., & Doyle, P. (1998). Animate Characters. Autonomous Agents 
and Multi-Agent Systems , 1 (2), 195-230. 

Hjalmarsson, A., Wik, P., & Brusk, J. (2007). Dealing with DEAL: A Dialogue 
System for Conversation Training. In S. Keizer, H. Bunt, & T. Paek (Ed.), 
Proceedings of the 8th SIGdial Workshop on Discourse and Dialogue. Antwerp, 
Belgium: Association for Computational Linguistics. 

Horrocks, I. (1999). Constructing the User Interface with Statecharts. Boston, 
MA, USA: Addison Wesley Longman Publishing Co., Inc. . 

Horvath, B. M., & Eggins, S. (1995). Opinion Texts in Conversation. In P. H. 
Fries, & M. Gregory (Eds.), Discourse in Society: Systemic Functional 
Perspectives (pp. 29-46). Norwood, NJ, USA: Ablex. 

Hullett, K., & Whitehead, J. (2010). Design patterns in FPS levels. FDG '10: 
Proceedings of the Fifth International Conference on the Foundations of Digital 
Games (pp. 78-85). New York, NY, USA: ACM. 

Hunicke, R., LeBlanc, M., & Zubek, R. (2004). MDA: A Formal Approach to 
Game Design and Game Research. Challenges in Game AI Workshop, AAAI-04. 
AAAI Technical Report WS-04-04. 

Infocom, Inc. (1984). The Hitchhiker's Guide to the Galaxy [Computer game]. 
Infocom, Inc. 

Infocom, Inc. (1980). Zork I: The Great Underground Empire [Computer game]. 
Infocom, Inc. 

Isbister, K. (2006). Better game characters by design: A psychological approach. 
San Francisco: Morgan Kaufmann. 

Ishiguro, H., & Nishio, S. (2007). Building artificial humans for understanding 
humans. Journal of Artificial Organs , 10 (3), 133-142. 

Iuppa, N. V., & Borst, T. (2007). Story and Simulations for Serious Games: Tales 
from the Trenches. Burlington, MA, USA: Focal Press. 

Järvinen, A. (2008). Games without Frontiers: Theories and Methods for Game 
Studies and Design . Tampere: Tampere University Press. 



 178 

Jan, D., & Traum, D. (2005). Dialog Simulation for Background Characters. 
Intelligent Virtual Agents. 3661/2005, pp. 65-74. Lecture Notes in Computer 
Science. 

Jennings, N. R., Faratin, P., Lomuscio, A. R., Parsons, S., Sierra, C., & 
Wooldridge, M. (2001). Automated Negotiation: Prospects, Methods and 
Challenges. Int. Journal of Group Decision and Negotiation , 10 (2), 199-215. 

Jokinen, K. (2009). Constructive Dialogue Modelling. Chichester, West Sussex, 
UK: John Wiley & Sons, Ltd. 

Jokinen, K., & Hurtig, T. (2006). User Expectations and Real Experience on a 
Multimodal Interactive System. Proceedings of Interspeech-2006. Pittsburgh, 
US. 

Jurafsky, D., & Martin, J. H. (2000). Speech and Language Processing: An 
Introduction to Natural Language Processing, Computational Linguistics, and 
Speech Recognition. Upper Saddle River, New Jersey, USA: Prentice-Hall, Inc. . 

Juul, J. (2005). Half-real: Video Games between Real Rules and Fictional 
Worlds. Cambridge, Massachusetts, USA: The MIT Press. 

Kempen, G., & Hoenkamp, E. (1987). An Incremental Procedural Grammar for 
Sentence Formulation. Cognitive Science , 11, 201-258. 

Kempen, G., & Hoenkamp, E. (1982). Incremental sentence generation: 
Implications for the structure of a syntactic processor. In J. Horeck (Ed.), 
Proceedings of the Ninth International Conference on Computational Linguistics 
(Coling '82). Prague: North-Holland Publishing Company. 

Kenny, P., Parsons, T., Gratch, J., Rizzo, A., & Leuski, A. (2007). Virtual 
Patients for Clinical Therapist Skills Training. 7th International Conference on 
Intelligent Virtual Agents . Paris, France. 

Kreimeier, B. (2003). Game Design Methods: A 2003 Survey. Retrieved 06 11, 
2010 from Gamasutra: 
http://www.gamasutra.com/features/20030303/kreimeier_01.shtml 

Kreimeier, B. (2002, Mar 13). The Case for Game Design Patterns. Retrieved 02 
15, 2011 from Gamasutra:  
http://www.gamasutra.com/view/feature/4261/the_case_for_game_design_patter
ns.php 

Krippendorff, K. (1980). Content Analysis: An Introduction to Its Methodology. 
Beverly Hills, CA: Sage. 

Kronlid, F. (2008). Steps towards Multi-Party Dialogue Management. PhD 
Thesis, University of Gothenburg, Department of linguistics. 



 179 

Kronlid, F., & Lager, T. (2007). Implementing the Information-State Update 
Approach to Dialogue Management in a Slightly Extended SCXML. In R. 
Artstein, & L. Vieu (Ed.), Proceedings of the 11th International Workshop on the 
Semantics and Pragmatics of Dialogue (DECALOG), (pp. 99-106). Trento, Italy.  

Kölzer, A. (1999). Universal Dialogue Specification for Conversational Systems. 
Linköping Electronic Articles in Computer and Information Science, 4 (028). 

Lankoski, P. (2010). Character-Driven Game Design: A Design Approach and 
Its Foundations in Character Engagement. PhD Thesis, School of Art and 
Design, Aalto University. 

Lankoski, P., & Björk, S. (2007a). Gameplay Design Patterns for Non-Player 
Characters. In A. Baba (Ed.), Situated Play: Proceedings of the 2007 Digital 
Games Research Association Conference (pp. 416-423). Tokyo, Japan: The 
University of Tokyo. 

Lankoski, P., & Björk, S. (2007b). Gameplay Design Patterns for Social 
Networks and Conflicts. Proceedings of Game Design and Technology 
Workshop. Liverpool: John Moores University. 

Larsson, S. (2005). Dialogue Systems: Simulations or Interfaces? In C. Gardent, 
& B. Gaiffe (Ed.), Proceedings of DIALOR'05: The Ninth Workshop on the 
Semantics and Pragmatics of Dialogue (SemDial). Nancy, France. 

Larsson, S., & Traum, D. (2000). Information State and Dialogue Management in 
the TRINDI Dialogue Move Engine Toolkit. Natural Language Engineering , 6 
(3 & 4), 323-340. 

Larsson, S., Jönsson, A., & Santamarta, L. (2000). Using the Process of Distilling 
Dialogues to Understand Dialogue Systems. Proceedings of ICSLP 2000, (pp. 
374-377). Beijing, China. 

Lee, C., Jung, S., Kim, K., Lee, D., & Lee, G. G. (2010). Recent Approaches to 
Dialog Management for Spoken Dialog Systems. Journal of Computing Science 
and Engineering , 4 (1), 1-22. 

Levinson, S. C. (1983). Pragmatics. Cambridge: Cambridge University Press. 

Linden Lab. (2003). (Linden Lab) Retrieved 09 03, 2012 from Second Life: 
http://secondlife.com 

Lionhead Studios. (2001). Black & White [Computer game]. EA Games. 

Lionhead Studios. (2004). Fable [Computer game]. Microsoft Game Studios. 

LucasArts. (1998a). Grim Fandango [Computer game]. LucasArts. 

LucasArts. (1998b). Grim Fandango: Manual. LucasArts. 

Lucasfilm Games. (1987). Maniac Mansion [Computer game]. Lucasfilm Games. 



 180 

Lucasfilm Games. (1990). The Secret of Monkey Island [Computer game]. 
Lucasfilm Games. 

Lundgren, S., & Björk, S. (2003). Game Mechanics: Describing Computer-
Augmented Games in Terms of Interaction . Proceeding of Technologies for 
Interactive Digital Storytelling and Entertainment (TIDSE). . Darmstadt, 
Germany . 

Lutz, K. M., Smith, K. (Writers), & Luketic, R. (Director). (2001). Legally 
Blonde [Motion Picture]. 

Marsella, S., Gratch, J., & Petta, P. (2010). Computational Models of Emotion. In 
K. R. Scherer, T. Bänziger, & E. Roesch (Eds.), A Blueprint for Affective 
Computing: A sourcebook. Oxford, UK: Oxford University Press. 

Mateas, M. (2001). A Preliminary Poetics for Interactive Drama and Games . 
Digital Creativity , 12 (3), 140-152. 

Mateas, M., & Stern, A. (2004). A Behavior Language: Joint Action and 
Behavioral Idioms. In H. Prendinger, & M. Ishizuka (Eds.), Life-like Characters. 
Tools, Affective Functions and Applications. Springer. 

Mateas, M., & Stern, A. (2005). Façade. http://www.interactivestory.net/. 

Mateas, M., & Stern, A. (2003). Façade: An experiment in building a fully-
realized interactive drama. Game Developers Conference: Game Design Track.  

McCrae, R. R., & Costa, P. T. (1999). A Five-factor Theory of Personality. In L. 
A. Pervin, & O. P. John (Eds.), Handbook of Personality (2nd Edition ed., pp. 
139-153). New York, USA: The Guilford Press. 

McGlashan, S., Burnett, D. C., Akolkar, R., Auburn, R., Baggia , P., Barnett, J., 
et al. (Eds.). (2010, December 16). Voice Extensible Markup Language 
(VoiceXML) 3.0 (Working draft), 3.0. Retrieved 08 10, 2011 from 
http://www.w3.org/TR/voicexml30/ 

McGlashan, S., Burnett, D. C., Carter, J., Danielsen, P., Ferrans, J., Hunt, A., et 
al. (Eds.). (2004, March 16). Voice Extensible Markup Language (VoiceXML) 
Version 2.0. W3C Recommendation, 2.0. Retrieved 03 08, 2011 from 
http://www.w3.org/TR/voicexml20/ 

McKee, R. (1997). Story: Substance, Structure, Style and The Principles of 
Screenwriting. New York, NY, USA: HarperCollins. 

McTear, M. F. (2004). Spoken Dialogue Technology. London: Springer-Verlag. 

McTear, M. F. (2002). Spoken Dialogue Technology: Enabling the 
Conversational Interface. ACM Computing Surveys , 34 (1), 90-169. 



 181 

Mead, S., Cavazza, M., & Charles, F. (2003). Influential Words: Natural 
Language in Interactive Storytelling. Proceedings of the 10th International 
Conference on Human-Computer Interaction. Crete, Greece. 

Milam, D., & Seif El Nasr, M. (2010). Analysis of Level Design 'Push & Pull' 
within 21 games. Foundations of Digital Games. Monterey, California, USA. 

Mori, M. (1970). The Uncanny Valley. Energy (4), 33-35. 

Murray, J. H. (1997). Hamlet on the Holodeck: The Future of Narrative in 
Cyberspace. Cambridge, MA: MIT Press. 

Nintendo. (2001). Animal Crossing. Nintendo Co., Ltd. 

Orkin, J. (2006). Three States and a Plan: The A.I. of F.E.A.R. Proceedings of 
GDC.  

Paek, T., & Pieraccini, R. (2008). Automating Spoken Dialogue Management 
Design Using Machine Learning: An Industry Perspective. Speech 
Communication , 50, 716-729. 

Paine, R. (1967). What is gossip about? An Alternative Hypothesis. Man , 2 (2), 
278-285. 

Pieraccini, R., & Huerta, J. (2005). Where do we go from here? research and 
commercial spoken dialog systems. 6th SIGdial Workshop on Discourse and 
Dialogue, (pp. 1-10). Lisbon. 

Pieraccini, R., Suendermann, D., Dayanidhi, K., & Liscombe, J. (2009). Are We 
There Yet? Research in Commercial Spoken Dialog Systems. In V. Matoušek, & 
P. Mautner (Eds.), Text, Speech and Dialogue (Vol. 5729, pp. 3-13). Berlin, 
Heidelberg: Springer. 

Prendinger, H., & Ishizuka, M. (2001a). Let's talk! Socially Intelligent Agents for 
Language Conversation Training. IEEE Transactions on Systems, Man, and 
Cybernetics – Part A: Systems and Humans. Special Issue on Intelligent Agents – 
The Human in the Loop. , 31 (5), 465-471. 

Prendinger, H., & Ishizuka, M. (2001b). Simulating Affective Communication 
with Animated Agents. Proceedings of 8th IFIP TC.13 Conference on Human-
Computer Interaction (INTERACT'01), (pp. 182-189). Tokyo. 

Pressman, R. S. (2010). Software Engineering: A Practitioner's Approach (7th 
Edition ed.). New York, NY, USA: McGraw-Hill. 

Radomski, S., Schnelle-Walka, D., & Radeck-Arneth, S. (2013). A Prolog 
Datamodel for State Chart XML. Proceedings of the SIGDIAL 2013 Conference 
(pp. 127-131). Metz, France: Association for Computational Linguistics. 



 182 

Reeves, B., & Nass, C. (1996). The Media Equation: How People Treat 
Computers, Television, and New Media Like Real People and Places. New York: 
Cambridge University Press. 

Reilly, W. S., & Bates, J. (1995). Natural Negotiation for Believable Agents. 
Technical Report CMU-CS-95-164, Carnegie Mellon University, School of 
Computer Science, Pittsburgh, PA, USA. 

Remedy Entertainment. (2001). Max Payne [Computer game]. Gathering. 

Rockstar Games. (1997-2010). Grand Theft Auto (series) [Computer game]. 
Rockstar Games. 

Rockstar Games. (2011). L.A. Noire [Computer game]. Rockstar Games. 

Rollings, A., & Morris, D. (2000). Game Architecture and design. Scottsdale, 
Ariz.: Coriolis. 

Ryan, M. (2001). Beyond Myth and Metaphor – The Case of Narrative in Digital 
Media. Game Studies: The International Journal of Computer Game Research , 1 
(1). 

Sacks, H., Schegloff, E., & Jefferson, G. (1974). A simplest systematics for the 
organization of turn-taking for conversation. ,. Language , 50 (4), 696-735. 

Salen, K., & Zimmerman, E. (2004). Rules of Play: Game Design Fundamentals. 
Massachusettes: MIT Press. 

Sali, S., Wardrip-Fruin, N., Dow, S., Mateas, M., Kurniawan, S., Reed, A. A., et 
al. (2010). Playing with Words: From intuition to evaluation of game dialogue 
interfaces. Foundation of Digital Games (FDG) (pp. 179-186). Monterey, CA, 
USA.: ACM. 

Samek, M. (2002). Practical Statecharts in C/C++”, , 2002. San Fransisco, CA, 
USA: CMP-Books. 

Saygin, A. P., Cicekli, I., & Akman, V. (2000). Turing Test: 50 Years Later. 
Minds and Machines , 10 (4), 463-518. 

Schatzmann, J., Weilhammer, K., Stuttle, M., & Young, S. (2006). A Survey of 
Statistical User Simulation Techniques for Reinforcement-Learning of Dialogue 
Management Strategies. The Knowledge Engineering Review , 21 (2), 97-126. 

Schegloff, E. A., & Sacks, H. (1973). Opening up Closings. Semiotica , 7 (4), 
289-327. 

Searle, J. R. (1969). Speech Acts: An Essay in the Philosophy of Language. New 
York, USA: Cambridge University Press. 

Seinfeld, J., & David, L. (Writers). (1989-1998). Seinfeld [Motion Picture]. 



 183 

Seneff, S., Glass, J., Goddeau, D., Goodine, D., Hirschman, L., Leung, H., et al. 
(1991). Development and preliminary evaluation of the MIT ATIS System. 
Proceedings of the DARPA Speech and Natural Language Workshop, (pp. 88-
93). 

Sheldon, L. (2004). Character Development and Storytelling for Games. Boston, 
MA, USA: Course Technology. 

Sicart, M. (2008). Defining Game Mechanics. Game Studies: the international 
journal of computer game research , 8 (2). 

Skantze, G. (2007). Error Handling in Spoken Dialogue Systems: Managing 
Uncertainty, Grounding and Miscommunication. PhD Thesis, Royal Institute of 
Technology, Dept of Speech, Music and Hearing, Stockholm. 

Skantze, G. (2003). Exploring Human Error Handling Strategies: Implications for 
Spoken Dialogue Systems. Proceedings of ISCA Tutorial and Research 
Workshop on Error Handling in Spoken Dialogue Systems, (pp. 71-76). Chateau-
d'Oex-Vaud, Switzerland. 

Skantze, G. (2005). GALATEA: A Discourse Modeller Supporting Concept-level 
Error Handling in Spoken Dialogue Systems. In L. Dybkjær, & W. Minker (Ed.), 
Proceedings of the 6th SIGdialWorkshop on Discourse and Dialogue, (pp. 178-
189). Lisbon, Portugal. 

Skantze, G., & Hjalmarsson, A. (2010). Towards Incremental Speech Generation 
in Dialogue Systems. Proceedings of the SIGDIAL 2010 Conference (pp. 1-8). 
Tokyo, Japan: Association for Computational Linguistics. 

Skantze, G., & Schlangen, D. (2009). Incremental Dialogue Processing in a 
Micro-Domain. Proceedings of the 12th Conference of the European Chapter of 
the Association for Computational Linguistics (pp. 745-753). Morristown, NJ, 
USA: Association for Computational Linguistics. 

Smith, R. W., & Hipp, D. R. (1995). Spoken Natural Language Dialog Systems: 
A Practical Approach. New York, NY, USA: Oxford University Press. 

Sony Computer Entertainment. (2010). Heavy Rain [Computer game]. Sony 
Computer Entertainment. 

Swain, C. (2008). The Augmented Conversation Engine - A System for 
Achieving Believable Conversation in Games and Interactive Stories. 
Proceedings of ACM SIGCHI International Conference on Advances in 
Computer Entertainment Technology (ACE 2008) (pp. 213-218). ACM. 

Swartout, W., Traum, D., Artstein, R., Noren, D., Debevec, P., Bronnenkant, K., 
et al. (2010). Ada and Grace: Toward Realistic and Engaging Virtual Museum 
Guides. In J. Allbeck, N. Badler, T. Bickmore, C. Pelachaud, & A. Safonova 



 184 

(Eds.), Lecture Notes in Computer Science: Intelligent Virtual Agents (Vol. 6356, 
pp. 286-300). Springer Berlin / Heidelberg. 

Szwed, J. F. (1966). Gossip, Drinking, and Social Control: Consensus and 
Communication in a Newfoundland Parish. Ethnology , 5 (4), 434-441. 

Taylor, M. J., Gresty, D., & Baskett, M. (2006). Computer game-flow design. 
Comput. Entertain. , 4 (1). 

Traum, D. (1999). Speech Acts for Dialogue Agents. In M. J. Wooldridge, & A. 
Rao (Eds.), Foundations for Rational Agency (pp. 169-201). Dordrecht, The 
Netherlands: Kluwer Academic Publishers. 

Traum, D., & Larsson, S. (2003). The Information State Approach to Dialogue 
Management. In J. van Kuppevelt, & R. W. Smith (Eds.), Current and New 
Directions in Discourse and Dialogue (pp. 325-353). Kluwer Academic 
Publishers. 

Traum, D., & Rickel, J. (2002). Embodied agents for multi-party dialogue in 
immersive virtual worlds. first International Joint Conference on Autonomous 
Agents and Multiagents Systems (AAMAS '02), (pp. 766-773). Bologna, Italy. 

Traum, D., Swartout, W., Gratch, J., & Marsella, S. (2008). A Virtual Human 
Dialogue Model for Non-Team Interaction. In L. Dybkjær, & W. Minker (Eds.), 
Recent Trends in Discourse and Dialogue.  

Tsang, E., & Gosling, T. (2002). Simple Constrained Bargaining Game. In 
Distributed Constraint Satisfaction Workshop, First International Joint 
Conference on Autonomous Agents and Multi-Agent Systems (AAMAS-2002). 
Bologna, Italy. 

Ubisoft. (2008). Tom Clancy's EndWar [Computer Game]. Ubisoft. 

Walker, M. A., Cahn, J. E., & Whittaker, S. J. (1997). Improvising Linguistic 
Style: Social and Affective Bases for Agent Personality. Proceedings of the first 
international conference on Autonomous agents, Feb 5-8, pp. 96-105. Marina del 
Rey, USA. 

Walker, M. A., Cahn, J. E., & Whittaker, S. J. (1996). Linguistic Style 
Improvisation for Lifelike Computer Characters. In P. C. Hiroaki Kitano (Ed.), 
Entertainment and AI/A-Life: Papers from 1996 AAAI Workshop.  

Walker, M., Kamm, C., & Litman, D. (2000). Towards Developing General 
Models of Usability with PARADISE. Natural Language Engineering , 6 (3&4), 
363-377 . 

Wallace, R. (2005). Artificial Intelligence Markup Language (AIML) Verson 
1.0.1. Working Draft. From http://docs.aitools.org/aiml/spec/WD-aiml 



 185 

Weizenbaum, J. (1966). Eliza - a Computer Program for the Study of Natural 
Language Communication Between Man and Machine. Communications of the 
ACM , 9 (1), 36-45. 

Wertheimer, M. (1938). Gestalt theory. In W. D. Ellis (Ed.), A source book of 
Gestalt psychology. London: Routledge & Kegan Paul. 

Wik, P. (2011). The Virtual Language Teacher: Models and applications for 
language learning using embodied conversational agents. PhD Thesis, KTH 
School of Computer Science and Communication. 

Wik, P., Hjalmarsson, A., & Brusk, J. (2007a). Computer Assisted Conversation 
Training for Second Language Learneres. Proceedings of Fonetik. 50, pp. 57-60. 
Stockholm, Sweden: Speech, Music and Hearing, KTH, TMH-QPSR. 

Wik, P., Hjalmarsson, A., & Brusk, J. (2007b). DEAL A Serious Game For 
CALL Practicing Conversational Skills In The Trade Domain. Proceedings of the 
SLaTE Workshop on Speech and Language Technology in Education. 
Farmington, Pennsylvania USA: Carnegie Mellon University and International 
Speech Communication Association (ISCA). 

Wilhelmsson, U. (2001). Enacting the Point of Being: Computer Games, 
Interaction and Film Theory. PhD Thesis, University of Copenhagen (University 
of Skövde), Dept of Film and Media Studies (Dept of Humanities). 

Visser, T., Traum, D., DeVault, D., & op den Akker, R. (2012). Toward a Model 
for Incremental Grounding in Spoken Dialogue Systems. Workshop on Real-Time 
Conversations with Virtual Agents (RCVA 2012). Santa Cruz, California. 

Wittgenstein, L. (1953). Philosophische Untersuchungen (Philosophical 
investigations) (3. ed., repr ed.). (G. E. Anscombe, Trans.) Oxford: Blackwell 
Publishing. 

Yee, N. (2005). Motivations of Play in MMORPGs. In S. de Castell, & J. Jenson 
(Ed.), Proceedings of DiGRA 2005: Changing Views: Worlds in Play. 
Vancouver: University of Vancouver. 

Young, S., Gasic, M., Keizer, S., Mairesse, F., Schatzmann, J., Thomson, B., et 
al. (2010). The Hidden Information State Model: A practical framework for 
POMDP-based spoken dialogue management. Computer Speech and Language , 
24 (2), 150-174. 

Yue, B., & de-Byl, P. (2006). The State of the Art in Game AI Standardisation. 
Proceedings of the 2006 international conference on Game research and 
development (pp. 41-46). Murdoch University, Australia, Australia: Murdoch 
University. 

Zagal, J. P., Mateas, M., Fernández-Vara, C., Hochhalter, B., & Lichti, N. (2005). 
Towards an Ontological Language for Game Analysis. In S. de Castell, & J. 



 186 

Jenson (Ed.), Changing Views: Worlds in Play (DiGRA 2005). Vancouver: 
University of Vancouver. 

Zubek, R. (2005). Hierarchical Parallel Markov Models for Interactive Social 
Agents. PhD Thesis, Northwestern University, Computer Science Department. 

Zubek, R., & Horswill, I. D. (2005). Hierarchical Parallel Markov Models of 
Interaction. Artificial Intelligence and Interactive Digital Entertainment (AIIDE 
2005) Conference, (pp. 141-146). Marina del Ray, CA. 

Zynga Inc. (2009). Café World [Computer Game]. 

 



 187 

Appendix I: Waiter DM 
<scxml initial="Environment" scriptlanguage="javascript" 
id="top"> 
  <parallel id="Environment"> 
    <datamodel> 
      <data ID="customers"> 
        <customers> 
          <customer> 
            <name>Lisa</name> 
            <sd>1</sd> 
            <p>1</p> 
            <regular>true</regular> 
            <relation>8</relation> 
            <regorder>latte</regorder> 
          </customer> 
          <customer> 
            <name>Pelle</name> 
            <sd>2</sd> 
            <p>3</p> 
            <regular>true</regular> 
            <relation>2</relation> 
            <regorder>espresso</regorder> 
          </customer> 
          <customer> 
            <name>Kalle</name> 
            <sd>2</sd> 
            <p>1</p> 
            <regular>false</regular> 
            <relation>5</relation> 
          </customer> 
        </customers> 
      </data> 
      <data ID="greet_phrases"> 
        <phrases> 
          <rude>Yeah?</rude> 
          <rude>What's up?</rude> 
          <rude>Huh?</rude> 
          <rude>Ok?</rude> 
          <polite>Welcome to our coffee shop!</polite> 
          <polite>Good day!</polite> 
          <polite>Please feel welcome!</polite> 
          <polite>Nice day so far?</polite> 
          <neutral>Welcome</neutral> 
          <neutral>Can I help you?</neutral> 
          <neutral>Hello</neutral> 
          <neutral>Hi there!</neutral> 
          <flirt>Ciao bella!</flirt> 
          <flirt>Hello there beauty!</flirt> 
        </phrases> 
      </data> 



 188 

      <data ID="take_order_phrases"> 
        <phrases> 
          <rude>What do you want?</rude> 
          <rude>So, what's it gonna be?</rude> 
          <rude>I don't have all day!</rude> 
          <rude>Wanna leave?</rude> 
          <polite>May I take your order?</polite> 
          <polite>Can we offer you something?</polite> 
          <polite>We have espresso, latte, regular coffee  
          </polite> 
          <polite>Do you find anything in your taste?               
          </polite> 
          <neutral>What are you having?</neutral> 
          <neutral>Have you decided yet?</neutral> 
          <neutral>What can I serve you?</neutral> 
          <neutral>Latte, espresso or regular coffee?  
          </neutral> 
          <flirt>What can I get you, sweetie?</flirt> 
          <flirt>Have you anything in mind, apart from  

            me?</flirt> 
        </phrases> 
      </data> 
      <data ID="reject_phrases"> 
        <phrases> 
          <rude>Do you see any alcohol here?</rude> 
          <rude>Does this look like a bar to you?!</rude> 
          <rude>Didn\'t I just tell you we don\'t serve  
                alcohol?</rude> 
          <rude>We don't have that!</rude> 
          <polite>I am sorry, but we only serve coffee  
                  here</polite> 
          <polite>I am truly sorry, but this is a  
                  coffeeshop</polite> 
          <polite>I am afraid you can only buy coffee  
                  here</polite> 
          <polite>I am sorry to say this, but we only serve  
                  coffee here</polite> 
          <neutral>Sorry, we only have coffee</neutral> 
          <neutral>You can only buy coffee here</neutral> 
          <neutral>I can only offer you coffee</neutral> 
          <neutral>We only serve coffee here</neutral> 
          <flirt>Sorry dear, this is a coffeeshop</flirt> 
          <flirt>Me too, is that a date?</flirt> 
        </phrases> 
      </data> 
      <data ID="accept_phrases"> 
        <phrases> 
          <rude>Two dollars</rude> 
          <rude>Ok, Two dollars</rude> 
          <rude>Two dollars even</rude> 
          <rude>Two dollars excluding tips</rude> 
          <polite>Very well, that will be two dollars  
                  please</polite> 
          <polite>Thank you. Two dollars please</polite> 



 189 

          <polite>That will be two dollars, thank  
                  you</polite> 
          <polite>Thank you for your order. That\'ll be two  
                  dollars</polite> 
          <neutral>OK, Two dollars please</neutral> 
          <neutral>OK, that\'ll be two dollars</neutral> 
          <neutral>Two dollars please</neutral> 
          <neutral>Now that sums up to two  
                   dollars</neutral> 
        </phrases> 
      </data> 
      <data ID="resp_req_day_off_phrases"> 
        <phrases> 
          <polite>Good afternoon Boss, Would it be okay for  
                  me to take the day off tomorrow?</polite> 
          <neutral>Excuse me Boss, may I take the day off  
                   tomorrow?</neutral> 
        </phrases> 
      </data> 
      <data ID="viol_req_day_off_phrases"> 
        <phrases> 
          <polite>Good Afternoon Boss, I need to take the  
                  day off tomorrow</polite> 
          <neutral>Hey Boss, I will take the day off  
                   tomorrow</neutral> 
          <rude>Boss! I will not be here tomorrow, just for  
                the record</rude> 
        </phrases> 
      </data> 
      <data ID="reject_day_off_phrases"> 
        <phrases> 
          <rude>No way! We are busy as hell tomorrow so I  
                will need you here!</rude> 
          <neutral>Actually, I need you tomorrow. Thank  
                you.</neutral> 
          <polite>It will be a busy day. So I kindly ask  
                  you to come.</polite> 
        </phrases> 
      </data> 
      <data ID="resp_response_reject_phrases"> 
        <phrases> 
          <polite>Okay, Boss, I will be here</polite> 
          <neutral>Alright, I</neutral> 
          <rude>We're not slaves you know!</rude> 
        </phrases> 
      </data>  
      <data ID="viol_response_reject_phrases"> 
        <phrases> 
          <polite>You don't have to thank me because I will  
                  not be here tomorrow!</polite> 
          <neutral>Well, I will not be here tomorrow so you  
                   better find a replacer</neutral> 
          <rude>To my knowledge we do not hold people as  
                slaves in this country so don\'t expect to  



 190 

               see me here tomorrow</rude> 
        </phrases> 
      </data> 
      <data ID="propose_order"> 
        <offer> 
          <drink name="'espresso'"> 
            <text>Can I offer you an espresso today?</text> 
            <type>coffee</type> 
          </drink> 
          <drink name="'latte'"> 
            <text>Latte?</text> 
            <type>coffee</type> 
          </drink> 
          <drink name="'regular'"> 
            <text>Would you like a regular coffee?</text> 
            <type>coffee</type> 
          </drink> 
        </offer> 
      </data> 
    </datamodel> 
    <parallel id="Waiter1"> 
      <datamodel> 
         <data ID="coworkers"> 
           <coworkers> 
              <coworker> 
                  <name>waiter2</name> 
                  <threat>2</threat> 
                  <resp_conv_pract>false</resp_conv_pract> 
              </coworker> 
              <coworker> 
                 <name>friendly_manager</name> 
                 <threat>5</threat> 
                 <resp_conv_pract>false</resp_conv_pract> 
              </coworker> 
           </coworkers> 
        </data> 
        <data ID="respect_social_conv"/> 
        <data ID="current_customer"/> 
        <data ID="newC" expr="0" eval="true"/> 
        <data ID="addressee"/> 
        <data ID="manner"/> 
      </datamodel> 
      <state id="Actions"> 
        <initial> 
          <transition target="Idle"/> 
        </initial> 
        <transition event="approach"  
                   cond="event.data.data.role=='coworker'"> 
          <script>  
addressee=event.data.data.name.text() 
resp=coworkers.coworker.(name==addressee).resp_conv_pract.* 
                       
coworkerThreat=parseInt(coworkers.coworker.(name==addressee
).threat.*) 



 191 

          </script> 
        </transition> 
        <history id="H_acts"/> 
        <state id="Idle"> 
          <onentry> 
            <log expr="'in idle'"/> 
          </onentry> 
          <transition event="approach"  
                    cond="event.data.data.role=='customer'"  
                    target="Service"> 
            <script>  
current_customer=event.data.data.name.text() 
respect_social_conv='true' 
threat=parseInt(customers.customer.(name==current_customer)
.sd.*) + 
parseInt(customers.customer.(name==current_customer).p.*) 
newC=1 
            </script> 
          </transition> 
        </state> 
        <state id="Service"> 
          <onentry> 
            <log expr="'in service'"/> 
            <log expr="current_customer"/> 
            <log expr="threat"/> 
          </onentry> 
          <transition event="exit_customer_dialogue"  
                      target="Idle"> 
             <script> newC=0 </script> 
          </transition> 
        </state> 
      </state> 
      <state id="Dialogue_acts"> 
        <initial> 
          <transition target="Init_Dialogue"/> 
        </initial> 
        <state id="Init_Dialogue"> 
          <onentry> 
            <log expr="'in initdial'"/> 
          </onentry> 
           <transition event="approach"  
                    cond="event.data.data.role=='customer'"  
                    target="Service_conv"/>                 
           <transition event="approach"  
                    cond="event.data.data.role=='coworker'"  
                    target="Internal_conv"/> 
        </state> 
        <state id="Service_conv"> 
           <datamodel> 
              <data ID="greet"/> 
              <data ID="take_order" expr="0" eval="true"/> 
              <data ID="phraseNo" expr="0" eval="true"/> 
              <data ID="order" expr="'nil'"/> 
           </datamodel> 



 192 

          <initial> 
            <transition target="Select_DA"/> 
          </initial> 
          <history id="H" type="deep"> 
            <transition target="Select_DA"/> 
          </history> 
          <transition event="approach"  
                    cond="event.data.data.role=='coworker'"  
                    target="Internal_conv"/> 
          <state id="Select_DA"> 
            <onentry> 
              <raise sendid="a" event="timeout"  
                     delay="500ms"/> 
              <raise sendid="orderTO"  
                     event="takeorder_timeout" delay="1s"/> 
            </onentry> 
            <transition cond="order=='done'"  
                        target="Init_Dialogue"> 
              <raise sendid="done"  
                     event="exit_customer_dialogue"  
                     delay="100ms"/> 
            </transition>              
            <transition event="timeout"  
                        cond="take_order==0 &amp;&amp;  
                          In('Anger') &amp;&amp; 3>threat"  
                        target="Take_order"> 
              <script>manner='neutral' 
                           greet='true'</script> 
            </transition> 
            <transition event="timeout"  
                        cond="greet!='true'"  
                        target="Greet"> 
              <script> 
                 if(threat>2){manner='polite'} 
                 else{manner='neutral';} 
              </script> 
            </transition>  
            <transition event="cGreet"  
                        cond="greet!='true' &amp;&amp;  
                       (event.data=='polite' || threat>2)"  
                        target="Greet"> 
              <script>manner='polite'</script> 
            </transition>    
            <transition event="cGreet"  
                        cond="event.data=='rude' &amp;&amp;  
                              3>threat"  
                        target="Take_order"> 
              <script>manner='neutral' 
                      greet='true'</script> 
            </transition> 
            <transition event="cGreet"   
                        cond="greet!='true'"  
                        target="Greet"> 
              <script>manner='neutral'</script> 



 193 

            </transition>  
            <transition event="timeout"  
                        cond="greet=='true' &amp;&amp;  
                              order=='nil' &amp;&amp;  
                              take_order==0"  
                        target="Take_order"/>          
            <transition event="takeorder_timeout"  
                        target="Take_order"/> 
            <transition event="order"  
                        target="Handle_order"> 
              <script> 
                   order=event.data.order 
              </script> 
            </transition> 
            <onexit> 
              <cancel sendid="a"/> 
              <cancel sendid="orderTO"/> 
              <cancel sendid="req"/> 
            </onexit>           
          </state> 
          <state id="Greet"> 
            <onentry> 
              <raise sendid="b" event="wGreet"  
                     delay="200ms"/> 
              <script> textp='greet_phrases.' + manner +  
                       '[' + phraseNo + '].text()'; 
                       if(phraseNo>2) {phraseNo=1;} else  
                      {phraseNo+=1;} 
                       greet='true' 
              </script> 
              <log expr="eval(textp)"/> 
            </onentry> 
            <transition target="Select_DA"/> 
            <onexit> 
              <cancel sendid="b"/> 
            </onexit> 
          </state> 
          <state id="Take_order"> 
            <onentry>           
              <script> 
               textp='take_order_phrases.' + manner + '[' +  
                     take_order + '].text()' 
                     if(take_order>2) {take_order=1;} else  
                    {take_order+=1;} 
              </script> 
              <log label="'waiter'" expr="eval(textp)"/> 
              <raise sendid="req" event="req_order"  
                     delay="100ms"/> 
            </onentry> 
            <transition target="Select_DA"/> 
          </state> 
          <state id="Handle_order"> 
            <initial> 
              <transition target="Select_response"/> 



 194 

            </initial> 
            <transition event="serve_response"  
                        target="Select_DA"/> 
            <state id="Select_response"> 
              <onentry> 
                <log label="'current order'" expr="order"/> 
              </onentry> 
              <transition cond="order=='beer'||  
                                order='wine'"  
                          target="Refuse_serve"/> 
              <transition cond="order=='latte' ||  
                                order=='espresso' ||  
                                order=='regular' ||   
                                order=='coffee'"  
                         target="Serve"/> 
            </state> 
            <state id="Refuse_serve"> 
              <onentry> 
                <script>textp='reject_phrases.' + manner +  
                   '[' + phraseNo + '].text()' 
                   if(phraseNo>2) {phraseNo=1;} else  
                  {phraseNo+=1;} 
                   order='nil'</script> 
                <log label="'waiter'" expr="eval(textp)"/> 
                <raise event="serve_response"  
                       expr="'reject'" delay="200ms"/> 
              </onentry> 
            </state> 
            <state id="Serve"> 
              <onentry> 
                <script>textp='accept_phrases.' + manner +  
                       '[' + phraseNo + '].text()' 
                        if(phraseNo>2) {phraseNo=1;} else  
                       {phraseNo+=1;} 
                        order='done'; </script> 
                <log label="'waiter'" expr="eval(textp)"/> 
                <raise event="serve_response"  
                       expr="'accept'" delay="200ms"/> 
              </onentry> 
            </state> 
          </state> 
        </state> 
        <state id="Internal_conv"> 
          <datamodel> 
             <data ID="reqdayoff"/> 
          </datamodel> 
          <initial> 
             <transition target="Select_act"/> 
          </initial> 
          <state id="Select_act"> 
            <transition event="exit_internal_conv"  
                        target="H"  
                        cond="In('Cust1_dialogue')"> 
              <log expr="'going to H'"/> 



 195 

            </transition> 
            <transition event="exit_internal_conv"  
                        target="Init_Dialogue"> 
              <log expr="'going to init'"/> 
            </transition> 
            <transition cond="addressee!='waiter2'  
                              &amp;&amp; reqdayoff!='true'  
                              &amp;&amp; In('Anger')"  
                        target="Request_dayoff"> 
              <script>  
                  if(coworkerThreat>4){manner='neutral'} 
                  else{manner='rude';} 
                  reqdayoff='true'; 
              </script> 
            </transition>  
            <transition cond="addressee!='waiter2'  
                              &amp;&amp; reqdayoff!='true'"  
                        target="Request_dayoff"> 
              <script>  
                  if(coworkerThreat>4){manner='polite'} 
                  else{manner='neutral';} 
                  reqdayoff='true'; 
              </script> 
            </transition>    
            <transition event="manager_response"  
                        cond="event.data=='reject'"  
                        target="Wrap_up"> 
              <script> response='reject'; </script> 
              <raise event="change_emotion" expr="'anger'"  
                     delay="50ms"/> 
            </transition>    
            <transition event="manager_response"  
                        cond="event.data=='accept'"  
                        target="Wrap_up"> 
              <script> response='accept';</script> 
              <raise event="change_emotion" expr="'joy'"  
                     delay="50ms"/> 
            </transition>    
          </state> 
          <state id="Request_dayoff"> 
            <onentry> 
              <raise event="req_dayoff" delay="200ms"/> 
              <script> textp='viol_req_dayoff_phrases.' +  
                       manner + '[0].text()' </script> 
              <log expr="eval(textp)"/> 
            </onentry> 
            <transition target="Select_act"/> 
          </state> 
          <state id="Wrap_up"> 
            <transition cond="In('Anger') &amp;&amp;  
                            addressee=='friendly_manager'  
                            &amp;&amp; response=='reject'"  
                        target="Select_act"> 
              <log label="'waiter'"    



 196 

       expr="viol_response_reject_phrases.neutral.text()"/> 
              <raise event="exit_internal_conv"  
                     delay="100ms"/> 
            </transition> 
            <transition cond="addressee=='friendly_manager'  
                             &amp;&amp; response=='reject'"  
                        target="Select_act"> 
              <log label="'waiter'"  
        expr="viol_response_reject_phrases.polite.text()"/> 
              <raise event="exit_internal_conv"  
                     delay="100ms"/> 
            </transition> 
            <onexit> 
              <cancel sendid="wuto"/> 
            </onexit> 
          </state> 
        </state> 
      </state>       
      <state id="Emotion"> 
        <transition event="change_emotion"  
                    cond="event.data=='joy'"  
                    target="Joy"/> 
        <transition event="change_emotion"  
                    cond="event.data=='anger'"  
                    target="Anger"/> 
        <transition event="change_emotion"  
                    cond="event.data=='neutral'"  
                    target="Neutral"/> 
        <initial> 
          <transition target="Neutral"/> 
        </initial> 
        <state id="Joy"> 
          <onentry> 
            <log expr="':)'"/> 
          </onentry> 
        </state> 
        <state id="Neutral"> 
          <onentry> 
            <log expr="':|'"/> 
          </onentry> 
        </state> 
        <state id="Anger"> 
          <onentry> 
            <log expr="':('"/> 
          </onentry> 
        </state> 
      </state> 
    </parallel> 
    <parallel id="Friendly_Manager"> 
      <state id="Friendly_Manager_DAs">               
        <transition event="req_dayoff"  
                    target="Friendly_Manager_DAs"> 
          <raise event="manager_response" expr="'reject'"  
                 delay="500ms"/> 



 197 

          <log label="'manager'"  
              expr="reject_dayoff_phrases.neutral.text()"/> 
        </transition>  
      </state> 
      <state id="Friendly_Manager_Acts"> 
        <datamodel>  
          <data ID="friendlyManagerData"> 
            <data> 
              <role>coworker</role> 
              <name>friendly_manager</name> 
            </data> 
          </data> 
        </datamodel> 
        <initial> 
          <transition target="Friendly_Manager_Act_idle"/> 
        </initial> 
        <state id="Friendly_Manager_Act_idle"> 
          <onentry> 
            <raise sendid="m" event="timeoutact"  
                   delay="1s"/> 
          </onentry> 
          <transition event="timeoutact"  
               target="Friendly_Manager_Approach_counter"/> 
        </state> 
        <state id="Friendly_Manager_Approach_counter"> 
          <onentry> 
            <raise event="approach"  
                   expr="friendlyManagerData"  
                   delay="300ms"/> 
            <log expr="'manager approaching'"/> 
          </onentry> 
        </state>  
      </state> 
    </parallel> 
    <state id="Customers"> 
      <initial> 
        <transition target="Customer1"/> 
      </initial> 
      <parallel id="Customer1"> 
        <datamodel> 
          <data ID="manner" expr="'polite'"/> 
          <data ID="thinkingdone"/> 
          <data ID="cust1data"> 
          <data> 
            <role>customer</role>  
            <name>Lisa</name> 
          </data> 
          </data> 
          <data ID="orderprio"> 
            <orders> 
              <order>latte</order> 
              <order>beer</order> 
              <order>regular</order> 
            </orders> 



 198 

          </data> 
        </datamodel> 
        <script> orderNo=0; 
                 line_length=0; </script> 
        <state id="Cust1_actions"> 
          <initial> 
            <transition target="Stand_in_line"> 
              <script> line_length+=1  
                       linepos=line_length-1;</script>  
            </transition> 
          </initial> 
          <state id="Stand_in_line"> 
            <transition event="next" cond="linepos>0"  
                        target="Stand_in_line"> 
              <script> 
                 linepos-=1; 
              </script> 
            </transition> 
            <transition cond="linepos==0"  
                        target="First_in_line"> 
              <raise event="approach" expr="cust1data"  
                     delay="200ms"/> 
            </transition> 
          </state> 
          <state id="First_in_line"> 
            <onentry> 
              <log expr="'first in line'"/> 
            </onentry> 
            <transition event="exit_customer_dialogue"  
                        target="Leave_line"> 
              <raise event="next" delay="200ms"/> 
            </transition> 
          </state> 
          <final id="Leave_line"/> 
        </state> 
        <state id="Cust1_dialogue"> 
          <initial> 
            <transition target="Cust1_greet"/> 
          </initial> 
          <state id="Cust1_greet"> 
            <onentry> 
              <raise event="timeout" delay="700ms"/> 
            </onentry> 
            <transition event="timeout"  
                        cond="In('First_in_line')"  
                        target="Cust1_order"> 
              <log label="cust1data.name"  
                   expr="'Good day'"/> 
              <raise event="cGreet" expr="manner"   
                     delay="200ms"/> 
            </transition>                 
            <transition event="wGreet"  
                        cond="In('First_in_line')"  
                        target="Cust1_order"> 



 199 

              <log label="cust1data.name"  
                   expr="'Good day'"/> 
              <raise event="cGreet" expr="manner"   
                     delay="200ms"/> 
            </transition> 
          </state> 
          <state id="Cust1_order"> 
            <onentry> 
              <log expr="'in cust1order'"/> 
              <raise event="thinking" delay="800ms"/> 
            </onentry> 
            <transition event="thinking"> 
              <script>thinkingdone='true'; </script> 
            </transition> 
            <transition event="req_order"  
                        cond="3>orderNo &amp;&amp;  
                              thinkingdone=='true'"  
                        target="Cust1_order"> 
              <raise event="order" delay="200ms"  
                     expr="orderprio.order[orderNo]"/> 
              <script> textp='I would like a ' +  
                   orderprio.order[orderNo].text() + ',  
                   please';</script> 
              <log label="cust1data.name" expr="textp"/> 
              <script> orderNo+=1; </script> 
            </transition> 
            <transition event="serve_response"  
                        cond="event.data=='accept'"  
                        target="Cust1_end_dialogue"> 
              <log label="cust1data.name"  
                   expr="'That looks great! Thank you!'"/> 
            </transition> 
            <transition event="serve_response"  
                        cond="event.data=='reject'"  
                        target="Cust1_order"> 
              <log label="cust1data.name"  
                   expr="'Okay, Hmmm'"/> 
            </transition> 
          </state> 
          <state id="Cust1_end_dialogue"> 
            <transition event="exit_customer_dialogue"  
                        target="leave"> 
              <log label="cust1data.name"  
                   expr="'Goodbye!'"/> 
            </transition> 
          </state> 
          <final id="leave"/>  
        </state> 
      </parallel> 
    </state> 
  </parallel> 
</scxml> 

 



 200 

Appendix II: Waiter DM run – log                        
09.44.30 :| 	
  

09.44.30 in initdial 	
  

09.44.30 in idle 	
  

09.44.30 Configuration {top,Environment,Customers,Custo
mer1,Cust1_dialogue,Cust1_greet,
Cust1_actions,Stand_in_line,Wait
er2,Friendly_Manager,Friendly_Ma
nager_Acts,Friendly_Manager_Act_
idle,Friendly_Manager_DAs,Waiter
1,Emotion,Neutral,Dialogue_acts,
Init_Dialogue,Actions,Idle} 

09.44.30 first in line 	
  

09.44.30 Configuration {top,Environment,Customers,Custo
mer1,Cust1_dialogue,Cust1_greet,
Cust1_actions,Waiter2,Friendly_M
anager,Friendly_Manager_Acts,Fri
endly_Manager_Act_idle,Friendly_
Manager_DAs,Waiter1,Emotion,Neut
ral,Dialogue_acts,Init_Dialogue,
Actions,Idle,First_in_line} 

09.44.31 Ext. Event <event> <name>approach</name> 
<data> <data> 
<role>customer</role> 
<name>Lisa</name> </data> 
</data> </event> 

09.44.31 in service 	
  

09.44.31 Lisa 	
  

09.44.31 2 	
  

09.44.31 Configuration {top,Environment,Customers,Custo
mer1,Cust1_dialogue,Cust1_greet,
Cust1_actions,Waiter2,Friendly_M
anager,Friendly_Manager_Acts,Fri
endly_Manager_Act_idle,Friendly_
Manager_DAs,Waiter1,Emotion,Neut
ral,Dialogue_acts,Actions,First_
in_line,Service_conv,Select_DA,S
ervice} 



 201 

09.44.31 Ext. Event <event> <name>timeoutE</name> 
<data/> </event> 

09.44.31 Lisa Good day 

09.44.31 in cust1 order 
09.44.31 Configuration {top,Environment,Customers,Custo

mer1,Cust1_dialogue,Cust1_action
s,Waiter2,Friendly_Manager,Frien
dly_Manager_Acts,Friendly_Manage
r_Act_idle,Friendly_Manager_DAs,
Waiter1,Emotion,Neutral,Dialogue
_acts,Actions,First_in_line,Serv
ice_conv,Select_DA,Service,Cust1
_order} 

09.44.31 Ext. Event <event> <name>timeout</name> 
<data/> </event> 

09.44.31 Welcome 	
  

09.44.31 Configuration {top,Environment,Customers,Custo
mer1,Cust1_dialogue,Cust1_action
s,Waiter2,Friendly_Manager,Frien
dly_Manager_Acts,Friendly_Manage
r_Act_idle,Friendly_Manager_DAs,
Waiter1,Emotion,Neutral,Dialogue
_acts,Actions,First_in_line,Serv
ice_conv,Service,Cust1_order,Gre
et} 

09.44.31 Configuration {top,Environment,Customers,Custo
mer1,Cust1_dialogue,Cust1_action
s,Waiter2,Friendly_Manager,Frien
dly_Manager_Acts,Friendly_Manage
r_Act_idle,Friendly_Manager_DAs,
Waiter1,Emotion,Neutral,Dialogue
_acts,Actions,First_in_line,Serv
ice_conv,Service,Cust1_order,Sel
ect_DA} 

09.44.31 Ext. Event <event> <name>cGreet</name> 
<data>polite</data> </event> 

09.44.31 Ext. Event <event> <name>timeoutact</name> 
<data/> </event> 

09.44.31 manager approaching 

09.44.31 Configuration {top,Environment,Customers,Custo
mer1,Cust1_dialogue,Cust1_action
s,Waiter2,Friendly_Manager,Frien
dly_Manager_Acts,Friendly_Manage
r_DAs,Waiter1,Emotion,Neutral,Di
alogue_acts,Actions,First_in_lin
e,Service_conv,Service,Cust1_ord
er,Select_DA,Friendly_Manager_Ap



 202 

proach_counter} 

09.44.32 Ext. Event <event> <name>timeout</name> 
<data/> </event> 

09.44.32 waiter1 What are you having? 

09.44.32 Configuration {top,Environment,Customers,Custo
mer1,Cust1_dialogue,Cust1_action
s,Waiter2,Friendly_Manager,Frien
dly_Manager_Acts,Friendly_Manage
r_DAs,Waiter1,Emotion,Neutral,Di
alogue_acts,Actions,First_in_lin
e,Service_conv,Service,Cust1_ord
er,Friendly_Manager_Approach_cou
nter,Take_order} 

09.44.32 Configuration {top,Environment,Customers,Custo
mer1,Cust1_dialogue,Cust1_action
s,Waiter2,Friendly_Manager,Frien
dly_Manager_Acts,Friendly_Manage
r_DAs,Waiter1,Emotion,Neutral,Di
alogue_acts,Actions,First_in_lin
e,Service_conv,Service,Cust1_ord
er,Friendly_Manager_Approach_cou
nter,Select_DA} 

09.44.32 Ext. Event <event> <name>approach</name> 
<data> <data> 
<role>coworker</role> 
<name>friendly_manager</name> 
</data> </data> </event> 

09.44.32 Configuration {top,Environment,Customers,Custo
mer1,Cust1_dialogue,Cust1_action
s,Waiter2,Friendly_Manager,Frien
dly_Manager_Acts,Friendly_Manage
r_DAs,Waiter1,Emotion,Neutral,Di
alogue_acts,Actions,First_in_lin
e,Service,Cust1_order,Friendly_M
anager_Approach_counter,Internal
_conv,Select_act} 

09.44.32 	
   Good Afternoon Boss, I need to 
take the day off tomorrow 



 203 

09.44.32 Configuration {top,Environment,Customers,Custo
mer1,Cust1_dialogue,Cust1_action
s,Waiter2,Friendly_Manager,Frien
dly_Manager_Acts,Friendly_Manage
r_DAs,Waiter1,Emotion,Neutral,Di
alogue_acts,Actions,First_in_lin
e,Service,Cust1_order,Friendly_M
anager_Approach_counter,Internal
_conv,Request_dayoff} 

09.44.32 Configuration {top,Environment,Customers,Custo
mer1,Cust1_dialogue,Cust1_action
s,Waiter2,Friendly_Manager,Frien
dly_Manager_Acts,Friendly_Manage
r_DAs,Waiter1,Emotion,Neutral,Di
alogue_acts,Actions,First_in_lin
e,Service,Cust1_order,Friendly_M
anager_Approach_counter,Internal
_conv,Select_act} 

09.44.32 Ext. Event <event> <name>thinking</name> 
<data/> </event> 

09.44.32 Configuration {top,Environment,Customers,Custo
mer1,Cust1_dialogue,Cust1_action
s,Waiter2,Friendly_Manager,Frien
dly_Manager_Acts,Friendly_Manage
r_DAs,Waiter1,Emotion,Neutral,Di
alogue_acts,Actions,First_in_lin
e,Service,Cust1_order,Friendly_M
anager_Approach_counter,Internal
_conv,Select_act} 

09.44.32 Ext. Event <event> <name>req_dayoff</name> 
<data/> </event> 

09.44.32 manager Actually, I need you tomorrow. 
Thank you. 

09.44.32 Configuration {top,Environment,Customers,Custo
mer1,Cust1_dialogue,Cust1_action
s,Waiter2,Friendly_Manager,Waite
r1,Emotion,Neutral,Dialogue_acts
,Actions,First_in_line,Service,C
ust1_order,Internal_conv,Select_
act,Friendly_Manager_DAs} 

09.44.32 Ext. Event <event> 
<name>manager_response</name> 
<data>reject</data> </event> 



 204 

09.44.32 Configuration {top,Environment,Customers,Custo
mer1,Cust1_dialogue,Cust1_action
s,Waiter2,Friendly_Manager,Waite
r1,Emotion,Neutral,Dialogue_acts
,Actions,First_in_line,Service,C
ust1_order,Internal_conv,Friendl
y_Manager_DAs,Wrap_up} 

09.44.32 waiter1 You don't have to thank me 
because I will not be here 
tomorrow! 

09.44.32 Configuration {top,Environment,Customers,Custo
mer1,Cust1_dialogue,Cust1_action
s,Waiter2,Friendly_Manager,Waite
r1,Emotion,Neutral,Dialogue_acts
,Actions,First_in_line,Service,C
ust1_order,Internal_conv,Friendl
y_Manager_DAs,Select_act} 

09.44.32 Ext. Event <event> 
<name>exit_internal_conv</name> 
<data/> </event> 

09.44.32 going to H 	
  

09.44.32 Configuration {top,Environment,Customers,Custo
mer1,Cust1_dialogue,Cust1_action
s,Waiter2,Friendly_Manager,Waite
r1,Emotion,Neutral,Dialogue_acts
,Actions,First_in_line,Service,C
ust1_order,Friendly_Manager_DAs,
Service_conv,Select_DA} 

09.44.33 Ext. Event <event> <name>timeout</name> 
<data/> </event> 

09.44.33 Ext. Event <event> 
<name>takeorder_timeout</name> 
<data/> </event> 

09.44.33 waiter Can we offer you something? 

09.44.33 Configuration {top,Environment,Customers,Custo
mer1,Cust1_dialogue,Cust1_action
s,Waiter2,Friendly_Manager,Waite
r1,Emotion,Neutral,Dialogue_acts
,Actions,First_in_line,Service,C
ust1_order,Friendly_Manager_DAs,
Service_conv,Take_order} 



 205 

09.44.33 Configuration {top,Environment,Customers,Custo
mer1,Cust1_dialogue,Cust1_action
s,Waiter2,Friendly_Manager,Waite
r1,Emotion,Neutral,Dialogue_acts
,Actions,First_in_line,Service,C
ust1_order,Friendly_Manager_DAs,
Service_conv,Select_DA} 

09.44.34 Ext. Event <event> <name>req_order</name> 
<data/> </event> 

09.44.34 Lisa I would like a latte, please 

09.44.34 in  cust1order 

09.44.34 Configuration {top,Environment,Customers,Custo
mer1,Cust1_dialogue,Cust1_action
s,Waiter2,Friendly_Manager,Waite
r1,Emotion,Neutral,Dialogue_acts
,Actions,First_in_line,Service,F
riendly_Manager_DAs,Service_conv
,Select_DA,Cust1_order} 

09.44.34 Ext. Event <event> <name>order</name> 
<data> <order>latte</order> 
</data> </event> 

09.44.34 current order latte 

09.44.34 Configuration {top,Environment,Customers,Custo
mer1,Cust1_dialogue,Cust1_action
s,Waiter2,Friendly_Manager,Waite
r1,Emotion,Neutral,Dialogue_acts
,Actions,First_in_line,Service,F
riendly_Manager_DAs,Service_conv
,Cust1_order,Handle_order,Select
_response} 

09.44.34 waiter Thank you. Two dollars please 

09.44.34 Configuration {top,Environment,Customers,Custo
mer1,Cust1_dialogue,Cust1_action
s,Waiter2,Friendly_Manager,Waite
r1,Emotion,Neutral,Dialogue_acts
,Actions,First_in_line,Service,F
riendly_Manager_DAs,Service_conv
,Cust1_order,Handle_order,Serve} 

09.44.34 Ext. Event <event> 
<name>serve_response</name> 
<data>accept</data> </event> 

09.44.34 Lisa That looks great! Thank you! 



 206 

09.44.34 Configuration {top,Environment,Customers,Custo
mer1,Cust1_dialogue,Cust1_action
s,Waiter2,Friendly_Manager,Waite
r1,Emotion,Neutral,Dialogue_acts
,Actions,First_in_line,Service,F
riendly_Manager_DAs,Service_conv
,Cust1_end_dialogue,Select_DA} 

09.44.34 in initdial 	
  

09.44.34 Configuration {top,Environment,Customers,Custo
mer1,Cust1_dialogue,Cust1_action
s,Waiter2,Friendly_Manager,Waite
r1,Emotion,Neutral,Dialogue_acts
,Actions,First_in_line,Service,F
riendly_Manager_DAs,Cust1_end_di
alogue,Init_Dialogue} 

09.44.34 Ext. Event <event> 
<name>exit_customer_dialogue</na
me> <data/> </event> 

09.44.34 Lisa Goodbye! 

09.44.34 in idle 	
  

09.44.34 Configuration {top,Environment,Customers,Custo
mer1,Cust1_dialogue,Cust1_action
s,Waiter2,Friendly_Manager,Waite
r1,Emotion,Neutral,Dialogue_acts
,Actions,Friendly_Manager_DAs,In
it_Dialogue,leave,Leave_line,Idl
e} 

09.44.34 Int. Event Cust1_dialogue.Done 

09.44.34 Int. Event Cust1_actions.Done 

09.44.34 Int. Event Customer1.Done 

09.44.34 Ext. Event <event> <name>next</name> 
<data/> </event> 

09.44.34 Ext. Event <event> <name>thinking</name> 
<data/> </event> 

 
 

 

 



 207 

Appendix III: DEAL 
<?xml version="1.0"?> 
<!-- synergy version 1.0--> 
<scxml initialstate="start"> 
  <datamodel> 
    <data name="Nil"/> 
    <data name="OUD"/> 
    <data name="Color"/> 
    <data name="Price"/> 
    <data name="Cost"/> 
    <data name="Type"/> 
    <data name="Size"/> 
    <data name="Pricerange"/> 
    <data name="Text" expr="'no object is selected yet'"/> 
    <data name="RoundsLeft"/> 
    <data name="PreviousBid" expr="0" eval="true"/> 
    <data name="Interval"/> 
    <data name="Rounds" eval="true"> 
      fun {$ Price} 
          if 10>=Price then ({OS.rand()} mod 5) + 1 
          else ({OS.rand()} mod 5) + 5 end 
      end  
    </data>  
    <data name="NextOffer" eval="true"> 
      fun {$ P B R I} 
        if R==0 then R = 1 end 
        if I>=(P-B) div R then P-((P-B) div R) 
        else P-I 
        end 
      end 
    </data> 
  </datamodel> 
  <parallel id="start"> 
    <state id="system"> 
      <initial> 
        <transition target="opening"/> 
      </initial> 
      <state id="opening"> 
        <initial> 
          <transition target="greeting"/> 
        </initial> 
        <transition event="ca"                            
                   cond="Eventdata.ca_type==request_object" 
                   target="search_object"> 
          <assign name="Color"  
               expr="{CondSelect Eventdata color Color}"/> 
          <assign name="Type"  
               expr="{CondSelect Eventdata type Type}"/> 
          <assign name="Size"  
               expr="{CondSelect Eventdata size Size}"/> 



 208 

          <assign name="Pricerange"  
                  expr="{CondSelect Eventdata pricerange  
                       Pricerange}"/> 
          <log label="user" expr="Eventdata.string"/> 
          <log label="system" expr="Eventdata.grounding"/> 
        </transition>    
        <transition event="noinput" target="trading"/> 
        <state id="greeting"> 
          <transition event="ca"                                
                     cond="Eventdata.ca_type==greeting">     
            <log label="user" expr="Eventdata.string"/>                 
            <send target="Self" event="greet"  
                  expr="o(agent:system string:'Welcome')"/> 
          </transition> 
          <transition event="help"  
                      target="offerAssistance"/> 
        </state>  <!--greeting--> 
        <state id="offerAssistance"> 
          <onentry> 
            <log label="system" expr="'How can I help  
                                      you?'"/> 
            <send target="Self" event="assist"  
                  expr="o(agent:system string:'How can I  
                          help you?')"/> 
          </onentry> 
        </state>  <!--offerassistance--> 
      </state>   <!--opening--> 
      <state id="trading"> 
        <initial> 
          <transition target="define_ooi"/> 
        </initial> 
        <transition event="ca"                           
               cond="Eventdata.ca_type==cancel_transaction" 
               target="ending"> 
          <log label="Eventdata.agent"  
               expr="Eventdata.string"/> 
        </transition> 
        <state id="define_ooi">  
          <initial> 
            <transition target="supp_obj_info"/> 
          </initial> 
          <transition event="ca"  
                   cond="Eventdata.ca_type==request_object" 
                   target="search_object"> 
            <assign name="Type"  
                  expr="{CondSelect Eventdata type Type}"/> 
            <assign name="Color"  
                expr="{CondSelect Eventdata color Color}"/> 
            <assign name="Size"  
                  expr="{CondSelect Eventdata size Size}"/> 
            <assign name="Pricerange"  
                  expr="{CondSelect Eventdata pricerange  
                         Pricerange}"/> 
            <log label="user" expr="Eventdata.string"/> 



 209 

            <log label="system"  
                 expr="Eventdata.grounding"/> 
          </transition> 
          <transition event="ca"                 
                      cond="Eventdata.ca_type==accept  
                      andthen OUD\=undefined" 
                      target="resolve_exchange"> 
            <log expr="Eventdata.string"/> 
          </transition>  
          <state id="present_selected_object"> 
            <onentry> 
              <log label="system"  
                   expr="'How about '#Text#'?'"/>   
              <send target="Self" event="present_object"  
                    expr="o(agent:system type:Type  
                    color:Color size:Size string:Text)"/> 
            </onentry> 
            <transition event="ca"                         
                   cond="Eventdata.ca_type==request_price"> 
              <log label="user" expr="Eventdata.string"/> 
              <log label="system"  
                   expr="'It costs '#Price"/>                
              <send target="Self" event="present_price"  
                  expr="o(agent:system price:Price)"/> 
            </transition> 
            <transition event="ca"                                     
                    cond="Eventdata.ca_type==reject_object" 
                    target="define_ooi"> 
              <log label="user" expr="Eventdata.string"/> 
              <assign name="OUD" expr="Nil"/> 
              <assign name="Color" expr="Nil"/> 
              <assign name="Type" expr="Nil"/> 
              <assign name="Size" expr="Nil"/> 
              <assign name="Pricerange" expr="Nil"/> 
              <assign name="Price" expr="Nil"/> 
              <assign name="RoundsLeft" expr="Nil"/> 
            </transition> 
            <transition event="ca"  
                     cond="Eventdata.ca_type==reject_price" 
                     target="negotiation"/> 
            <transition event="ca"  
                     cond="Eventdata.ca_type==counteroffer" 
                     target="negotiation"> 
              <assign name="PreviousBid"  
                      expr="{CondSelect Eventdata offer  
                             PreviousBid}"/> 
              <log label="Eventdata.agent"  
                  expr="Eventdata.string#' '#PreviousBid"/> 
            </transition> 
            <transition event="ca"                             
                      cond="Eventdata.ca_type==reject_type" 
                      target="supp_obj_info"> 
              <assign name="OUD" expr="Nil"/> 
              <assign name="Color" expr="Nil"/> 



 210 

              <assign name="Type" expr="Nil"/> 
              <assign name="Size" expr="Nil"/> 
              <assign name="Pricerange" expr="Nil"/> 
              <assign name="Price" expr="Nil"/> 
              <assign name="RoundsLeft" expr="Nil"/> 
            </transition> 
            <transition event="ca"                           
                     cond="Eventdata.ca_type==reject_color" 
                     target="supp_obj_info"> 
              <assign name="Color" expr="Nil"/> 
              <assign name="OUD" expr="Nil"/> 
              <assign name="Price" expr="Nil"/> 
              <assign name="RoundsLeft" expr="Nil"/> 
            </transition> 
            <transition event="ca"                           
                cond="Eventdata.ca_type==reject_pricerange" 
                target="supp_obj_info"> 
              <assign name="OUD" expr="Nil"/> 
              <assign name="Pricerange" expr="Nil"/> 
              <assign name="Price" expr="Nil"/> 
              <assign name="RoundsLeft" expr="Nil"/> 
            </transition> 
            <transition event="ca"                           
                      cond="Eventdata.ca_type==reject_size" 
                      target="supp_obj_info"> 
              <assign name="Size" expr="Nil"/> 
              <assign name="OUD" expr="Nil"/> 
              <assign name="Price" expr="Nil"/> 
              <assign name="RoundsLeft" expr="Nil"/> 
            </transition> 
          </state> <!--present_selected_object--> 
          <state id="supp_obj_info" > 
            <initial> 
              <transition target="get_info"/> 
            </initial> 
            <state id="get_info"> 
              <initial> 
                <transition target="select_properties"/> 
              </initial>   
              <state id="select_properties"> 
                <transition target="ask_type"                                     
                            cond="Type==undefined"/> 
                <transition target="ask_color"                                     
                            cond="Color==undefined"/> 
                <transition target="ask_size" 
                            cond="Size==undefined"/> 
                <transition target="ask_pricerange"                                     
                            cond="Pricerange==undefined"/> 
              </state>  <!--select_properties--> 
              <state id="ask_type"> 
                <onentry> 
                  <log expr="'Are you looking for something  
                     in particular? We have clocks, swords  
                     and other things'"/> 



 211 

                  <send target="Self" event="asktype"/> 
                </onentry> 
                <transition target="gather_prop_info"/> 
              </state>   <!--ask_type--> 
              <state id="ask_color"> 
                <onentry> 
                  <log label="system"  
                    expr="'What color would you prefer?'"/> 
                  <send target="Self" event="askcolor"/> 
                </onentry> 
                <transition target="gather_prop_info"/> 
              </state>   <!--ask_color--> 
              <state id="ask_size"> 
                <onentry> 
                  <log label="system"  
                       expr="'What size do you prefer?'"/> 
                  <send target="Self" event="asksize"/> 
                </onentry> 
                <transition target="gather_prop_info"/> 
              </state> <!--ask_size--> 
              <state id="ask_pricerange"> 
                <onentry> 
                  <log label="system"  
                       expr="'And what pricerange did you  
                            have in mind?'"/> 
                  <send target="Self"  
                        event="askpricerange"/> 
                </onentry> 
                <transition target="gather_prop_info"/> 
              </state> <!--ask_pricerange--> 
              <state id="gather_prop_info"> 
                <transition event="ca"                                     
                   cond="Eventdata.ca_type==request_object"  
                   target="search_object"> 
                  <assign name="Type"  
                          expr="{CondSelect Eventdata  
                               type Type}"/> 
                  <assign name="Color"  
                          expr="{CondSelect Eventdata  
                               color Color}"/> 
                  <assign name="Size"  
                          expr="{CondSelect Eventdata  
                               size Size}"/> 
                  <assign name="Pricerange"  
                          expr="{CondSelect Eventdata  
                               pricerange Pricerange}"/> 
                  <log label="Eventdata.agent"  
                     expr="Eventdata.string"/> 
                  <log label="system"  
                       expr="Eventdata.grounding"/> 
                </transition> 
                <transition event="ca"  
                         cond="Eventdata.ca_type==no_match"    
                         target="select_properties"> 



 212 

                  <log expr="'I am not sure of what you  
                            mean now!'"/> 
                </transition> 
              </state>  <!--gather_prop_info-->              
            </state> <!--get_info--> 
            <parallel id="search_object"> 
              <state id="DB"> 
                <invoke id="dbq" targettype="x-dbQuery"> 
                  <content> 
                    <dbQuery mode="unique"> 
                      <entry> 
                        <entityid>2</entityid> 
                        <text>'a cheap red and medium  
                                 size clock'</text> 
                        <size>2</size> 
                        <color>red</color> 
                        <type>clock</type> 
                        <price>10</price> 
                        <cost>7</cost> 
                        <pricerange>1</pricerange> 
                        <num>3</num> 
                      </entry> 
                      <entry> 
                        <entityid>1</entityid> 
                        <text>'a cheap small black  
                                clock'</text> 
                        <size>1</size> 
                        <color>red</color> 
                        <type>clock</type> 
                        <price>1</price> 
                        <cost>1</cost> 
                        <pricerange>1</pricerange> 
                        <num> 2</num> 
                      </entry> 
                      <entry> 
                        <entityid>3</entityid> 
                        <text>'a large green  
                                 clock'</text> 
                        <size>3</size> 
                        <color>green</color> 
                        <type>clock</type> 
                        <price>100</price> 
                        <cost>40</cost> 
                        <pricerange>2</pricerange> 
                        <num>4</num> 
                      </entry> 
                      <entry> 
                        <entityid>4</entityid> 
                        <text>'a medium size blue  
                                 clock'</text> 
                        <size>2</size> 
                        <color>blue</color> 
                        <type>clock</type> 
                        <price>1000</price> 



 213 

                        <cost>500</cost> 
                        <pricerange>2</pricerange> 
                        <num>1</num> 
                      </entry> 
                      <entry> 
                        <entityid>5</entityid> 
                        <text>'a small knife'</text> 
                        <size>1</size> 
                        <color>black</color> 
                        <type>dagger</type> 
                        <price>10000</price> 
                        <cost>700</cost> 
                        <pricerange>3</pricerange> 
                        <material>steal</material> 
                        <num>2</num> 
                      </entry> 
                      <entry> 
                        <entityid>6</entityid> 
                        <text>'a large sword'</text> 
                        <size>3</size> 
                        <color>silver</color> 
                        <type>sword</type> 
                        <price>100000</price> 
                        <cost>90000</cost> 
                        <pricerange>3</pricerange> 
                        <material>steal</material> 
                        <num>1</num> 
                      </entry> 
                    </dbQuery> 
                  </content> 
                </invoke> 
              </state>  <!-- DB -->  
              <state id="DB_search"> 
                <datamodel> 
                  <data name="EventNr"  
                        expr="1" eval="true" /> 
                  <data name="Searches"  
                        expr="0" eval="true" /> 
                </datamodel> 
                <onentry> 
                  <send target="dbq" 
                        event="extendQuery" 
                        expr="fun {$ O} O.num>=1 end" 
                        delay="100ms"/> 
                  <if cond="Type\=undefined" > 
                    <send target="dbq"  
                          event="extendQuery" 
                          expr="fun {$ O} O.type==Type end" 
                          delay="300ms"/> 
                    <assign name="Searches"  
                            expr="Searches+1"/> 
                  </if> 
                  <if cond="Color\=undefined"> 
                    <send target="dbq" 



 214 

                        event="extendQuery" 
                        expr="fun {$ O} O.color==Color end" 
                        delay="500ms"/> 
                    <assign name="Searches"  
                            expr="Searches+1"/> 
                  </if> 
                  <if cond="Size\=undefined"> 
                    <send target="dbq" 
                        event="extendQuery" 
                        expr="fun {$ O} O.size==Size end" 
                        delay="700ms"/> 
                    <assign name="Searches"  
                            expr="Searches+1"/> 
                  </if> 
                  <if cond="Pricerange\=undefined"> 
                    <send target="dbq"  
                         event="extendQuery" 
                         expr="fun {$ O}  
                            O.pricerange==Pricerange end" 
                         delay="900ms"/> 
                    <assign name="Searches"  
                            expr="Searches+1"/> 
                  </if> 
                </onentry> 
                <onexit> 
                  <send target="dbq" event="Cancel"/> 
                </onexit> 
                <transition event="dbq.answerset.size" 
                            cond="EventNr==Searches"  
                            target="select_properties"> 
                  <log expr="'We have '#Eventdata#'  
                             different '#Type#'s'"/>   
                </transition>  
                <transition event="dbq.answerset.size" 
                            cond="EventNr\=Searches"> 
                  <assign name="EventNr"  
                          expr="EventNr+1"/> 
                </transition> 
                <transition event="dbq.Done" 
                        cond="Eventdata\=o"                                
                        target="present_selected_object"> 
                  <assign name="Type"  
                          expr="Eventdata.type"/> 
                  <assign name="Color"  
                          expr="Eventdata.color"/> 
                  <assign name="OUD"  
                          expr="Eventdata.entityid"/> 
                  <assign name="Price"  
                          expr="Eventdata.price"/> 
                  <assign name="Size"  
                          expr="Eventdata.size"/> 
                  <assign name="Pricerange"  
                          expr="Eventdata.pricerange"/> 
                  <assign name="Cost"  



 215 

                          expr="Eventdata.cost"/> 
                  <assign name="Text"  
                          expr="Eventdata.text"/> 
                </transition>              
                <transition event="dbq.Done" 
                              cond="Eventdata==o"> 
                  <log expr="'I am sorry, we just sold  
                               the last one.'"/> 
                  <assign name="OUD" expr="Nil"/> 
                  <assign name="Type" expr="Nil"/> 
                  <assign name="Color" expr="Nil"/> 
                  <assign name="Price" expr="Nil"/> 
                  <assign name="Pricerange" expr="Nil"/> 
                  <assign name="Size" expr="Nil"/>      
                  <assign name="RoundsLeft" expr="Nil"/>              
                </transition>      
              </state>     <!--DBsearch--> 
            </parallel> <!--search_object"-->  
          </state>      <!--supp_obj_info--> 
        </state>         <!--define_ooi-->  
        <state id="negotiation"> 
          <initial> 
              <transition target="smart_seller"/> 
            </initial>         
            <transition event="ca"                 
                        cond="Eventdata.ca_type==accept" 
                        target="resolve_exchange"> 
              <log expr="Eventdata.string"/>  
            </transition>          
            <state id="smart_seller">  
              <initial> 
                <transition target="smartoffer"/> 
              </initial>   
              <onentry> 
                <assign name="RoundsLeft"  
                        expr="{Rounds Price}"/> 
                <assign name="Interval"  
                       expr="(Price-Cost) div RoundsLeft"/> 
                <assign name="Price"  
                        expr="Price-Interval"/> 
              </onentry> 
            <state id="smartoffer"> 
              <onentry> 
                <log label="system" expr="'Smart Seller  
                     offers the object of price '#Price"/> 
                <send target="Self" event="sysoffer"  
                      expr="o(agent:system price:Price)"/>  
              </onentry> 
              <transition event="ca"  
                  cond="Eventdata.ca_type==counteroffer  
                  andthen PreviousBid >= Eventdata.offer"  
                  target="smartoffer">  
                <log label="Eventdata.agent"  
                     expr="Eventdata.string#'  



 216 

                            '#PreviousBid"/> 
                <log expr="'user offers same or lower bid  
                           than previous'"/> 
                <assign name="RoundsLeft"  
                        expr="RoundsLeft-1"/> 
              </transition> 
              <transition event="ca"  
                      cond="Eventdata.ca_type==counteroffer  
                      andthen 1>=RoundsLeft andthen  
                      Eventdata.offer>PreviousBid andthen  
                      Eventdata.offer>=Cost"  
                      target="accept_transaction"> 
                <log label="Eventdata.agent"  
                     expr="Eventdata.string#'  
                            '#Eventdata.offer"/> 
                <assign name="Price"  
                        expr="Eventdata.offer"/> 
                <log label="system" expr="'System accepts  
                            price: '#Price"/> 
              </transition> 
              <transition event="ca"  
                   cond="Eventdata.ca_type==counteroffer  
                   andthen Eventdata.offer>=Price-Interval"  
                   target="accept_transaction"> 
                <log label="Eventdata.agent"  
                     expr="Eventdata.string#'  
                          '#Eventdata.offer"/> 
                <assign name="Price"  
                        expr="Eventdata.offer"/> 
                <log label="system" expr="'System accepts  
                            price: '#Price"/> 
              </transition> 
              <transition event="ca"  
                      cond="Eventdata.ca_type==counteroffer  
                      andthen 1>=RoundsLeft andthen  
                              Cost>Eventdata.offer"  
                      target="reject_transaction"> 
                <log label="Eventdata.agent"  
                     expr="Eventdata.string#'   
                          '#PreviousBid"/> 
              </transition> 
              <transition event="ca"  
                  cond="Eventdata.ca_type==counteroffer  
                  andthen ((Price-Interval)>Eventdata.offer  
                  orelse Cost>Eventdata.offer)"  
                  target="smartoffer"> 
                <assign name="PreviousBid"  
                        expr="Eventdata.offer"/> 
                <log label="Eventdata.agent"  
                     expr="Eventdata.string#'  
                          '#PreviousBid"/> 
                <assign name="Price" expr="{NextOffer  
                          Price PreviousBid RoundsLeft  
                          Interval}"/> 



 217 

                <assign name="RoundsLeft"  
                        expr="RoundsLeft-1"/> 
              </transition> 
            </state> <!-- smart_offer --> 
            <state id="accept_transaction"> 
              <onentry> 
                <log label="system" expr="'Okey, we have a 
                             deal!'"/> 
              </onentry> 
              <transition target="resolve_exchange"/> 
            </state> <!--accept_transaction--> 
            <state id="reject_transaction"> 
              <onentry> 
                <log expr="'Deal is off!'"/> 
              </onentry> 
              <transition target="ending"/> 
            </state> <!--reject_transaction--> 
          </state> <!-- smart_seller--> 
        </state> 
        <state id="resolve_exchange"> 
          <initial> 
            <transition target="confirm_price"/> 
          </initial> 
          <state id="confirm_price"> 
            <onentry> 
              <log expr="'That will be '#Price# ',  
                          please '"/> 
              <send target="Self" event="confirmprice" 
                    expr="o(agent:system price:Price)"/> 
            </onentry> 
            <transition event="handovermoney"   
                        target="moneytransaction"/> 
          </state>  <!--confirm_price--> 
          <state id="moneytransaction"> 
            <initial> 
              <transition target="thank"/> 
            </initial> 
            <state id="thank"> 
              <onentry> 
                <log expr="'Thank you very much!'"/> 
              </onentry> 
              <transition target="handovergoods"/> 
            </state> <!--thank-->  
            <state id="handovergoods"> 
              <onentry> 
                <log expr="'And your goods..  
                    (shopkeeper hands over the goods)'"/> 
                <send target="Self"  
                      event="handovergoods"/> 
              </onentry> 
              <transition event="usertakesgoods" 
                          target="ending"/> 
            </state>  <!--handovergoods--> 
          </state>  <!--moneytransaction-->              



 218 

        </state>  <!--resolvexchange--> 
      </state> <!--trading--> 
      <state id="ending"> 
        <onentry> 
          <log expr="'Welcome back!'"/> 
        </onentry> 
        <transition target="exit"/> 
      </state> <!--ending--> 
    </state>  <!--system--> 
    <state id="user"> 
      <datamodel> 
        <data name="ReqType"/> 
        <data name="ReqColor"/> 
        <data name="ReqSize"/> 
        <data name="ReqPricerange"/> 
        <data name="ReqPrice"/> 
        <data name="Money" expr="500"/> 
        <data name="Bid"/> 
        <data name="Raise"/> 
        <data name="UserRoundsLeft"/> 
        <data name="UserRounds" eval="true">    
              fun {$ P} 
                  if 15>=P then ({OS.rand()} mod 5) + 1 
                  else ({OS.rand()} mod 10) + 1 end 
              end  
        </data> 
      </datamodel> 
      <onentry> 
        <send target="Self" event="ca"  
              expr="o(ca_type:greeting string:'hi')" 
              delay="200ms"/> 
      </onentry> 
      <transition event="greet" > 
        <send target="Self" event="ca"  
              expr="o(agent:user ca_type:request_object  
                    type:clock string:'I would like to  
                    buy a clock' grounding:'a clock')"/>  
        <assign name="ReqType" expr="clock"/> 
        <log expr="Eventdata.string"/> 
      </transition> 
      <transition event="asktype"> 
        <send target="Self" event="ca"  
              expr="o(agent:user ca_type:request_object  
              type:clock string:'a clock, please'  
              grounding:'a clock')"/> 
        <assign name="ReqType" expr="clock"/> 
      </transition> 
      <transition event="askcolor"> 
        <send target="Self" event="ca"  
              expr="o(agent:user ca_type:request_object  
                    color:green string:'Do you have any   
                    green one?' grounding:'green')"/> 
        <assign name="ReqColor" expr="green"/> 
      </transition> 



 219 

      <transition event="asksize"> 
        <send target="Self" event="ca"  
              expr="o(agent:user ca_type:request_object  
                    size:1 string:'a small one'  
                    grounding:'small')"/> 
        <assign name="ReqSize" expr="1"/> 
      </transition> 
      <transition event="askpricerange"> 
        <send target="Self" event="ca"  
              expr="o(agent:user ca_type:request_object  
                    pricerange:1 string:'the cheapest'  
                    grounding:'a cheap one')"/> 
        <assign name="ReqPricerange" expr="clock"/> 
      </transition> 
      <transition event="present_object"> 
        <send target="Self" event="ca" 
              expr="o(agent:user ca_type:request_price  
              string:'How much is it?')"/> 
      </transition> 
      <transition event="present_price"> 
        <assign name="Bid" expr="Eventdata.price div 2"/> 
        <assign name="UserRoundsLeft" expr="{UserRounds  
                     Eventdata.price}"/> 
        <assign name="Raise" expr="(Eventdata.price-Bid)  
                             div UserRoundsLeft"/> 
        <send target="Self" event="ca" 
              expr="o(agent:user ca_type:counteroffer  
              offer:Bid string:'No, that is too  
              expensive! I can pay you ')"/>  
      </transition>   
      <transition event="sysoffer"  
                  cond="1>=UserRoundsLeft andthen  
                        Money>Eventdata.price"> 
        <send target="Self" event="ca" 
              expr="o(agent:user ca_type:accept  
              offer:Eventdata.price string:'I will take  
              it')"/> 
        <log expr="'Okey, I take it, I do not have time  
                to argue about the price any more...'"/> 
      </transition> 
      <transition event="sysoffer"  
                  cond="(Bid+Raise)>=Eventdata.price  
                  andthen Money>=Eventdata.price" > 
        <send target="Self" event="ca" 
            expr="o(agent:user ca_type:accept  
            offer:Eventdata.price string:'I take it!')"/> 
        <log expr="That is a fair price, I will take    
                   it!'"/> 
      </transition> 
      <transition event="sysoffer" cond="1>=UserRoundsLeft  
                      andthen Eventdata.price>=Money"> 
        <send target="Self" event="ca"  
            expr="o(ca_type:cancel_transaction offer:Bid  
            agent:user string:'Thanks, but no thanks, I  



 220 

            think I will move on...')"/> 
      </transition> 
      <transition event="sysoffer"  

       cond="Eventdata.price>=(Bid+Raise)"> 
        <assign name="Bid" expr="Bid+Raise"/> 
        <assign name="UserRoundsLeft"  
                expr="UserRoundsLeft-1"/> 
        <send target="Self"  event="ca"    
              expr="o(ca_type:counteroffer agent:user   
              offer:Bid string:'I can pay you ')"/> 
      </transition> 
      <transition event="confirmprice"> 
        <log expr="'Okey, here you are'"/> 
        <send target="Self" event="handovermoney"/> 
      </transition>      
      <transition event="handovergoods"> 
        <send target="Self" event="usertakesgoods"/> 
      </transition>  
    </state> 
  </parallel>  
  <final id="exit"/> 
</scxml> 
 
 
 

 



 221 

Appendix IV: Movie-gossip  
<?xml version="1.0"?> 
<!DOCTYPE scxml SYSTEM "assets/dtd/scxml.dtd"> 
<scxml initial="init" 
xmlns="http://www.w3.org/2005/07/scxml"> 
  <invoke targettype="x-sitepal-agent" ID="agent"> 
    <param name="agent" expr="1608122"/> 
    <param name="height" expr="600"/> 
    <param name="width" expr="500"/> 
  </invoke> 
  <invoke ID="parser" targettype="x-srgs-parser"/> 
  <state id="init"> 
    <transition event="ready" target="npc"/> 
  </state> 
  <datamodel> 
    <data ID="numofE"/> 
    <data ID="iterations" expr="0"/> 
    <data ID="utterance"/> 
    <data ID="threat" expr="3"/> 
    <data ID="dialogue" expr="0"/> 
    <data ID="persons"> 
       [{name:'Paul', gen:'m'}, {name:'Susan', gen:'f'},  
        {name:'Jimmy', gen:'m'}, {name:'Elaine', gen:'f'}] 
    </data> 
    <data ID="topics"> 
       [{init:'I am glad Paul is moving out', 
         provideE:["he is just always giving me the creeps.  
         Haven\'t you noticed?", "He has this dark thing  
         going on", "There is something about him that  
         feels malignant"], 
         wrapUp:'that being said, I do love what he has  
                done with the lawn'}, 
        {init:'I hate Susan Mayer. Everytime I see those  
         big doe eyes of hers. I swear to God, I just wanna  
         go out and shoot a deer', 
         provideE:['She is throwing herself at Mike Delfino.  
         Again.', 'She has been lusting after him ever        
         since he moved in'], 
         wrapUp:'Got to go. Bye!'}] 
    </data> 
  </datamodel> 
  <parallel id="npc"> 
    <state id="presentationLayer"> 
      <invoke ID="conversation"  
              targettype="x-vxml-interpreter"> 
        <content> 
          <vxml version="2.0"  
                xmlns="http://www.w3.org/2001/vxml"> 
            <form id="gossip"> 
              <grammar version="1.0" root="start"> 



 222 

                <rule id="start"> 
                  <one-of> 
                    <item><ruleref uri="#yn"/></item> 
                    <item> <ruleref uri="#seekE"/>  
                    </item> 
                  </one-of> 
                  <tag>out.ca=ca</tag> 
                </rule> 
                <rule id="yn"> 
                  <one-of> 
                    <item> yes <tag>  
                           ca='agree'</tag></item> 
                    <item>  yeah <tag>  
                             ca='agree'</tag></item> 
                    <item> I totally agree <tag>    
                               ca='agree'</tag></item> 
                    <item> me too <tag>  
                               ca='agree'</tag></item> 
                    <item> absolutely <tag>  
                               ca='agree'</tag></item> 
                    <item> no <tag>  
                               ca='disAgree'</tag></item> 
                    <item> I do not agree <tag>  
                               ca='disAgree'</tag></item> 
                    <item> I do not think so <tag>  
                               ca='disAgree'</tag></item> 
                  </one-of> 
                </rule> 
                <rule id="seekE">  
                  <one-of> 
                    <item>ok<tag>  
                            ca='reqEvidence'</tag></item> 
                    <item>really<tag>  
                            ca='reqEvidence'</tag></item> 
                    <item> why <tag>  
                            ca='reqEvidence' </tag></item> 
                    <item> why do you say that <tag>  
                            ca='reqEvidence' </tag></item> 
                    <item> how so <tag>  
                             ca='reqEvidence'</tag></item> 
                    <item> how come <tag>  
                             ca='reqEvidence'</tag></item> 
                    <item> tell me more <tag>  
                             ca='reqEvidence'</tag></item> 
                  </one-of> 
                </rule> 
              </grammar> 
              <initial name="topics"/> 
              <field name="ca"/> 
              <field name="garbage"/>    
              <nomatch count="1"> 
                <prompt> Sorry? </prompt> 
              </nomatch> 
              <nomatch count="2"> 



 223 

                <prompt> What did you say?</prompt>    
              </nomatch>  
              <nomatch count="3"> 
                <prompt> Well well</prompt> 
              </nomatch> 
              <nomatch count="3"> 
                <prompt> ok </prompt> 
              </nomatch> 
            </form> 
          </vxml> 
        </content> 
      </invoke> 
      <transition event="utterance"> 
        <forward target="'conversation'"/> 
      </transition> 
      <transition event="recognize"> 
        <forward target="'parser'"/> 
      </transition> 
      <transition event="recResult"> 
        <forward target="'conversation'"/> 
      </transition> 
      <transition event="prompt"> 
        <send target="'agent'" event="sayText"> 
        {"txt":dm.event.data,"voice":1,"lang":1,"engine":2} 
        </send> 
      </transition> 
      <transition event="filled"> 
        <log expr="dm.event.data.result"/> 
      </transition> 
    </state> 
    <state id="dialogueManager"> 
      <initial> 
        <transition target="Idle"/> 
      </initial> 
      <state id="Idle"> 
        <transition target="Initiate"/> 
      </state> 
      <state id="Initiate"> 
        <initial> 
          <transition target="Opinion"/> 
        </initial> 
        <state id="Opinion"> 
          <onentry> 
            <assign name="dm.utterance"  
                   expr="eval('dm.topics[' +  
                               dm.dialogue + '].init')"/> 
            <send target="'agent'"  
                 event="sayText"> 
         {"txt":dm.utterance,"voice":1,"lang":1,"engine":2} 
            </send> 
          </onentry> 
          <transition event="filled"  
                  cond="dm.event.data.result.ca=='disAgree'  
                  &amp;&amp; dm.threat>4" target="WrapUp"/> 



 224 

          <transition event="filled"  
                   cond="dm.event.data.result.ca=='agree'"  
                   target="WrapUp"/> 
          <transition event="filled"  
               cond="dm.event.data.result.ca=='reqEvidence'  
                  || dm.event.data.result.ca=='disAgree'"  
               target="ProvideEvidence"> 
            <assign name="dm.numofE"  
                   expr="eval('dm.topics[' + dm.dialogue +  
                         '].provideE.length')"/> 
          </transition> 
        </state> 
        <state id="ProvideEvidence" timeout="'5s'"> 
          <onentry> 
            <if cond="dm.iterations &lt;= dm.numofE"> 
              <assign name="dm.utterance"  
                    expr="eval('dm.topics[' + dm.dialogue +  
                    '].provideE[' + dm.iterations + ']')"/> 
              <send target="'agent'"  
                    event="sayText"> 
         {"txt":dm.utterance,"voice":1,"lang":1,"engine":2} 
              </send> 
            </if> 
          </onentry> 
          <transition cond="dm.iterations &gt; dm.numofE"  
                      target="WrapUp"/> 
          <transition event="filled"  
            cond="dm.event.data.result.ca=='reqEvidence' ||  
                  dm.event.data.result.ca=='disAgree'"  
            target="ProvideEvidence"/> 
          <transition event="filled"  
                    cond="dm.event.data.result.ca=='agree'"  
                    target="WrapUp"/> 
          <transition event="ProvideEvidence.timeout"  
                      target="ProvideEvidence"/> 
          <onexit> 
            <assign name="dm.iterations"  
                    expr="dm.iterations + 1"/> 
          </onexit> 
        </state> 
        <state id="WrapUp"> 
          <onentry> 
            <assign name="dm.utterance"  
                    expr="eval('dm.topics[' +  
                          dm.dialogue + '].wrapUp')"/> 
            <send target="'agent'" event="sayText">                              
         {"txt":dm.utterance,"voice":1,"lang":1,"engine":2} 
            </send> 
          </onentry> 
          <transition event="promptEnded" target="Idle"/> 
          <onexit> 
            <if cond="dm.dialogue &gt; dm.topics.length"> 
              <assign name="dm.dialogue" expr="0"/> 
            <else/> 



 225 

              <assign name="dm.dialogue"  
                      expr="dm.dialogue + 1"/> 
              <assign name="dm.iterations"  
                      expr="0"/> 
            </if> 
          </onexit> 
        </state> 
      </state> 
    </state> 
  </parallel> 
</scxml> 

 


