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Till mina älskade barn, Elias och Ella 

 

Mina barn, ni gillar ju att äta fisk och annat gott från havet? Som ni har hört så pratar mamma 

om att det kanske fiskas för mycket ibland och att det gäller att vi sparar på våra gemensamma 

resurser? Det gäller ju i allt vi gör. Man ska ju t ex inte kasta maten eller åka för mycket bil eller 

flyga, för då slösar vi på våra resurser och skadar miljön mer än vad som behövs. Det ska ju 

finnas fisk att äta även för era barn och barnbarn. Dessutom är ju avgaser från motorer inte så 

bra, det påverkar ju vår miljö. 

Ett av problemet med fiske idag är att de som bestämmer inte har räknat med alla följder från 

besluten. Elias, du har ju sagt att man kanske inte ska fiska för många dagar, till och med bara 

en dag om året om fisken inte räcker till. Det låter ju bra, men det där är lite komplicerat. Det 

finns så många olika människor som tycker olika saker. En del tycker till exempel att man kan 

använda mindre effektiva redskap istället, så att man kan fortsätta fiska bara man inte tar upp för 

mycket av den fisk som det inte finns så mycket kvar av.  

I min bok har jag försökt att räkna på detta i svenskt fiske. Jag har räknat på hur mycket diesel 

fiskebåtarna använder när de fiskar på olika sätt, hur mycket avgaser det blir som påverkar vårt 

klimat, hur mycket av havets botten som påverkas, hur mycket utrotningshotade fiskar man dödar 

och kastar för att fånga det man vill och hur energin i ekosystemen rubbas från den del av 

fångsten som kastas tillbaka död i havet igen. Ett bra sätt att räkna på alla dessa saker samtidigt 

är att använda sig av en metod som heter livscykelanalys, vilket jag har gjort. Då kan man 

samtidigt titta på hur mycket alla dessa saker påverkar vår miljö och hur mycket resurser vi 

använder för till exempel ett kilo fisk.  

Vad som är viktigt att komma ihåg från den här boken är att de som bestämmer över hur man 

fiskar är viktiga för att vår fisk på tallriken inte ska ha onödig resursanvändning och 

miljöpåverkan. Om de använde sig mer av livcykelresultat när de bestämmer, alltså tänka på att 

minska all form av miljöpåverkan och resursförbrukning med sina beslut, så kan vi bättre skapa 

fisken som är bäst för oss alla på alla sätt. Livscykelanalys kan därmed kanske vara ett 

hjälpmedel för att fundera över hur besluten som tas inom fisket förhåller sig till andra saker vi 

har lovat er, som att inte släppa ut för mycket avgaser som påverkar vårt klimat och er framtid. 
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Abstract 

Decisions made by fisheries managers strongly influence the overall resource use and 

environmental impacts associated with the seafood product from capture fisheries. These findings 

come from Life Cycle Assessments (LCA), a method that aims at quantifying all relevant 

resource use and environmental impacts throughout the life cycle of a product. In this way, 

important hot spots or improvement potentials can be found. The integrated systems perspective 

can assist to avoid shifts in impacts between production phases or environmental concerns. LCA 

is at present a well-established tool to assess environmental impacts of products, but there is no 

uptake of LCA-based methods or results in fishing policies.  

Methods for assessing fisheries-specific impacts within the LCA framework are however 

incomplete. One part of the research therefore addressed indicators related to pressures on marine 

ecosystems from discard to be used in seafood LCAs. Swedish fisheries on the west coast were 

evaluated using the trophic indicators mean trophic level (MTL) and primary production required 

(PPR). PPR could to some extent reflect properties of ecosystem resource use as PPR from the 

total catch, including discards, varied considerably between fisheries. Still, it was shown that it is 

difficult to interpret both indicators in relation to what is known about the ecosystems and the 

desired properties of the metrics. Complementing metrics of potential pressures on biodiversity 

are needed. The Swedish IUCN Red List of Threatened Species for fish was evaluated for this 

purpose. The Red List was found to be coherent with other assessments of vulnerability of fish to 

exploitation. Different fishing practices also showed different pressures on threatened fish species 

(aggregated as VEC). VEC together with PPR may thus be used in seafood LCA.  

Another part of the research explored LCA-based approaches as integrated decision support to 

form an overall sustainable fisheries management. Studies comprised of Swedish demersal 

trawling fleets. In the Nephrops fishery, a trade-off was found from promoting species-selective 

trawls. Local protection of depleted fish stocks comes with an increase in seafloor area swept, 

fuel use and associated emissions per landed kilo. Even if the overall fuel efficiency of the 

Swedish demersal trawling fleet has improved between 2002 and 2010, selective trawling 

required higher fuel use per kilo landing than the equivalent of less selective practices. Improved 

fuel efficiency was seen from stock rebuilding of the Eastern Baltic cod. However, in another 

study, the situation of the Eastern Baltic cod fishery was found to have deteriorated in recent 

years. Selection towards larger size classes has resulted in detrimental ecological consequences, 

reverberating into poor fish yield and economy. If overall improvements of the present situation 

are sought for, fisheries management needs to decrease mesh size and effort in the Eastern Baltic 

cod fishery, as well as include more metrics to assess sustainability. 

LCA-based methods can provide integrated decision support to inform various seafood policies, 

and integrate more objectives than is currently done in a fisheries policy context. To foster an 

overall sustainable seafood production, fisheries managers however need to acknowledge their 

role in this development. Altogether, stronger effort cuts and shifts in gear are proposed, while 

stressing the importance to use LCA-based assessments in order to avoid shifting from one 

environmental pressure to another. 
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Populärvetenskaplig sammanfattning 

Jag har studerat resursförbrukning och miljöpåverkan av svenska fisk- och skaldjursprodukter, 

eller mer specifikt vilken roll fiskets förvaltning har i hur stort avtryck produkten gör på miljön. 

Detta leder till många frågor.  Vilken miljöpåverkan innebär fiske – och vilka mått finns det för 

detta? Hur kan man utforma nya mått som kan inkluderas i bredare utvärderingar där både 

kunskapen om miljöpåverkan och tillgängliga mätpunkter idag är bristfälliga? Hur ska 

avvägningen göras mellan olika typer av resursförbrukning och miljöpåverkan, dagens och 

morgondagens? Behövs systemperspektiv av förvaltningen eller räcker det med att fokusera på 

att den målart som fisket riktar in sig på är livskraftigt?  

Ett sätt att räkna på flera miljöaspekter samtidigt är att använda sig av livscykelanalys. 

Livcykelanalys studerar resursförbrukning och miljöpåverkan från en produkt eller process. Med 

denna metodik får man ett brett och integrerat perspektiv, och kan på så sätt undvika att man 

överför miljöpåverkan från en typ till en annan eller mellan olika delar under produktens 

livscykel. För fisk- och skaldjursprodukter kan man t ex sammanlagt titta på hur mycket 

bottenyta, utkastad del av fångsten och bränsle som ett kilo fisk kräver – och hur det kan 

förändras mellan olika förvaltningsbeslut. Metoden saknar dock fortfarande en del mätpunkter för 

miljöpåverkan som är unika för fiske. En del av projektet har därför ägnats åt att hitta relevanta 

ekologiska mätpunkter för den delen av fångsten som kastas (utkast).  

Inom livscykelanalys har man tidigare oftast räknat utkast i kilo och diskuterat 

artsammansättningen. Det är viktigt, men visar inte hur stor skadan är. Ett sätt att räkna på 

miljöpåverkan från att kasta en del av fångsten är att räkna på hur mycket av primärproduktionen 

i haven (i form av kol som fixeras av alger under fotosyntes) som har gått åt för alla de arter som 

kastades, beroende på vilken plats i näringskedjan de har (trofinivå), som ett förfinat mått på 

slöseri av ekosystemets resurser. Det finns två välkända mätpunkter relaterat till trofinivå som 

används för att studera ekosystempåverkan från fiske, medeltrofinivån och 

primärproduktionsbehovet från fångsterna. Syftet med en av mina studier var att studera svenskt 

fiske på västkusten i ett hundraårsperspektiv med hjälp av dessa två indikatorer för att utvärdera 

dem som mätpunkter för uthålligt fiske. Resultaten visade att detta sätt att räkna till viss kan del 

visa på energiflöden i ekosystemet och kan vara ett mått på hur stor del av ekosystemet som 

rubbats från olika utkastmängd och artsammansättning. Detta är dock en grov skattning och säger 

ingenting om t ex de verkliga ekosystemeffekterna eller om det finns gott om de arter som kastas 

(d v s om de är hotade eller inte).  

I nästa studie försökte jag därför hitta ett kompletterande mått för eventuella risker att negativt 

påverka biodiversitet med utkast. Detta gjorde jag genom att först studera den svenska Rödlistan 

från ArtDatabanken, d v s en bedömning av de relativa riskerna för utrotning för olika arter. 

Eftersom Rödlistan visade sig stämma väl överens med andra sätt att bedöma om fiskar är 

känsliga för fisketryck, räknade jag därför sedan också på hur mycket hotade fiskar som man 

måste kasta för att få upp det man vill ha med olika fiskemetoder. Jag hittade då skillnader mellan 
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olika fiskesätt, det var t ex störst mängder hotade fiskar som kastades när man fiskar havskräfta 

med trål, men betydligt mindre med selektiv trålning (som sorterar ut fisk) efter räka. Eventuell 

påverkan på andra känsliga artgrupper inkluderades dock ej på grund av bristfällig data. Trots det 

kan kvantifieringen av hotade arter tillsammans med primärproduktionsbehovet ge ett bättre mått 

på påverkan från utkast än enbart kilo fångst i vikt. 

Jag tittade även med hjälp av livcykelanalys och de nya mätpunkterna för utkast på trålfisket efter 

havskräfta på svenska västkusten. Där förordar förvaltningen ett fortsatt fiske efter kräfta i 

samma omfattning bara man inte fångar torsk samtidigt. Torsken, som fångas tillsammans med 

havskräftorna, är nämligen på historiskt låga nivåer och skyddas av en återhämtningsplan inom 

EU. Svenskt fiske efter havskräfta sker nu alltmer genom att man sätter in ett galler i trålen som 

släpper igenom torsken som tillåter trålfisket efter havskräfta att fortsätta med enbart en nationell 

begränsning. Denna åtgärd skapar visserligen ett mindre fisketryck på exempelvis torsken, men 

det man inte tog hänsyn till i beslutsunderlaget var att om man ser till ett systemperspektiv så 

ökar bränslebehovet och bottenytan som trålas per kilo fångst som fiskarena tar iland.  

En av studierna visade dock en minskande trend för bränsleåtgången per kilo som landas inom 

bottentrålsfisket i Sverige från 2002 till 2010. Avgörande faktorer har till exempel varit högre 

fångster per ansträngning för Östersjötorsken, vilket påverkar bränsleeffektiviteten. Men, studien 

visade även att selektiva trålfisken används alltmer och har en generellt högre bränsleförbrukning 

per kilo fångst som tas iland än mer fångsteffektiva metoder. 

Selektion för att minska utkast kan dock ske på olika sätt. I fisket efter torsk från östra beståndet i 

Östersjön har man kontinuerligt ökat storleken på maskorna i trålarna för att minska utkast av 

småtorsk. Detta har inneburit att de större fiskarna har fått ett alltför högt fisketryck, och de 

mindre ett för lågt. Tillväxtpotentialen för torskarna har därför minskat så att det idag knappt 

finns några stora fiskar kvar. Förvaltningen har ej tagit i beaktan alla mätpunkter för uthålligt 

fiske, eftersom fisket anses vara uthålligt förvaltat och är miljömärkt – samtidigt som avsaknaden 

av de stora fiskarna negativt påverkar ekosystemet och industrins ekonomi. Olika 

förvaltningsscenarier utvärderades därför i ett bredare perspektiv. Resultaten visade att det bästa 

alternativet för att skapa en bättre utveckling vore att man fiskade mindre storlekar i kombination 

med mindre ansträngning, och med ett något lägre satt produktionsmål.  

Resultat från livcykelanalyser har ofta visat att förvaltningen av fisket är viktig för att fisk- och 

skaldjursprodukterna inte ska ha onödig resursanvändning och miljöpåverkan. Tyvärr ser 

beslutsfattarna inte alltid sin roll i optimeringen av produktionen av fisk- och skaldjur från hav till 

bord. Om de använde sig mer av ett livscykelperspektiv, alltså att försöka minska all form av 

miljöpåverkan och resursförbrukning från fisket med sina beslut, så skulle fisket kunna få en 

mycket bättre miljöprestanda – och likaså produkten. Livscykelanalys kan då vara ett hjälpmedel 

för att skapa integrerade beslutsunderlag som utvärderar de bredare konsekvenserna av 

förvaltningsåtgärder i förhållande till andra åtaganden, som bevarande av biologisk mångfald, 

minska växthusgasutsläpp och användningen av fossila bränslen.   
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Some abbreviations and concepts commonly referred to 

By-catch The part of the catch that is not directly targeted. Consisting of two parts: 

one that is utilized (landed); one that is discarded at sea.  

Discard The part of the catch in a fishery that is thrown back to sea, most often 

dead, and is often not reported. This could be non-commercial species, but 

also juveniles of target species, quota restricted marketable species or 

marketable species or sizes with lower economic value (high-grading). 

CBD Convention of Biological Diversity; has several specific targets, one 

important being reduce the rate of biodiversity loss by 2010, set in 2002, 

with 168 signatures by governments of the world (www.cbd.int, accessed 

29th of October 2013). 

CFP Common Fisheries Policy 

CPUE Catch Per Unit Effort 

EAF Ecosystem Approach to Fisheries 

FMSY The fishing mortality rate which corresponds to MSY 

GHG Greenhouse Gases 

ICES International Council for the Exploration of the Sea, scientific community 

with participants from all states bordering the North Atlantic including the 

Baltic Sea. Responsible to e.g. scientific advice to setting quotas within the 

European union.  

IUCN International Union for Conservation of Nature. Administrates the IUCN 

Red List of Threatened Species. The overarching goal is to “provide 

information and analyses on the status, trends and threats to species in order 

to inform and catalyse action for biodiversity conservation” (IUCN 2014), 

no legal status. 

Landings 

 

The part of the catch that is brought to market and recorded in logbooks. 

LCA Life Cycle Assessment. Environmental systems analysis tool which 

quantifies resource use and environmental impacts associated to a product 

or process.  

LPUE Landing Per Unit Effort 

MSFD Marine Strategy Framework Directive 

MSY Maximum Sustainable Yield 

MTL/MTI Mean Trophic Level/Marine Trophic Index, indicator to the CBD. 

PPR Primary Production Required (measured in carbon). 

RLI Red List Index, indicator to the CBD. 

TAC Total Allowable Catch, the maximum allowed amount of a certain stock to 

be landed per year. The concept has in the EU been confounding as it has 

not referred to catch, but landing, i.e. not including discards. In the new 

CFP TACs refers to total catches. 

TE Transfer Efficiency 

TL Trophic Level 

VEC Vulnerable, Endangered or Critically Endangered (according to IUCN 

criteria), proposed as an impact category indicator in seafood LCA (paper 

II). 
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“The three main drivers of the modern degradation of the oceans are overexploitation, pollution 

in all its myriad forms and the rise of carbon dioxide owing to the burning of fossil fuels—the 

ultimate mega-pollutant of them all.” 

Extract from The future of the oceans past by Jeremy B. C. Jackson (2010) 
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Introduction 

Global seafood production from capture fisheries could be seen as troublesome. Landings have 

stagnated or declined since the 1990s, meanwhile seafood consumption per capita is increasing 

and is important to human nutrition (FAO 2012). This development could negatively affect 

sustainable use of fish resources if not properly mitigated by fisheries management. On the 

positive side, fishing mortality has in recent years decreased in some areas (Worm et al. 2009, 

Cardinale 2011). This may allow recovery and possibly more fish production, especially from 

improved management of un-assessed fish stocks (Costello et al. 2012). It has thus been argued 

that it is possible to meet the demand for seafood of future generations with better governance of 

capture fisheries in combination with higher contributions from aquaculture practices that are less 

dependent of fish as feed (Merino et al. 2012). However, on the negative side, collapsed stocks 

risk to require long-term recovery periods (Hutchings 2000), and current fishing pressure could 

cause ecosystem overfishing and might therefore require to be considerably decreased (Coll et al. 

2008, Chassot et al. 2010). Altogether, given the constraints of ecosystem capacity to produce 

fish, immediate increase in production from capture fisheries lies at present arguably mainly in 

better utilization of what is caught. This involves improvements in the supply chain and less 

discard. If and when overfished stocks are rebuilt, further fish production may be possible, but in 

terms of when and how much is left unanswered.  

Even if establishing long-term sustainable exploitation levels is top priority, there is still an 

emerging need to include additional environmental aspects of fisheries. This involves mortality 

rates for vulnerable species and habitat alteration (Casey & Myers 1998, Watling & Norse 1998, 

Lewison et al. 2004, Puig et al. 2012). These aspects are addressed in approaches such as an 

Ecosystem Approach to Fisheries (EAF, FAO 2003), a framework that include broader 

ecosystem considerations and is one direction towards sustainable development of fisheries.  

 

There are however some aspects that have so far been paid less attention in fisheries policy and 

advice. In a fossil fuel sparse and high carbon dioxide world, fuel use development and influence 

from management decisions should also be of concern, especially with stagnated landings while 

fishing effort increases (Watson et al. 2012). Fuel use per landings has in fact been shown to 

increase over time in some fisheries (Hospido & Tyedmers 2005, Schau et al. 2009). Managers of 

fisheries do not seem to consider fuel demand to be a problem, as poor profitability caused to 

some extent by high fuel intensity is mitigated by subsidies (Arnason et al. 2008). Even if the 

fishing fleet is not a major player in a global context, with an estimated requirement of 1.2% of 

global oil consumption, differences in fuel intensity are vast between fished species (Tyedmers et 

al. 2005). Fuel use development could also be further exacerbated from the rapid increasing 

contribution of invertebrates to global fisheries, with the predominantly used gears being 

demersal trawls and dredges (Anderson et al. 2011). Besides generally high rates of discard and 

benthic disturbance, trawling for invertebrates is energy intensive (Ziegler & Valentinsson 2008). 

In fact, energy intensity of invertebrate fisheries is extremely high compared to other agricultural 
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and aquacultural food production systems (Pelletier et al. 2011). Due to the short-term highly 

profitable catches, fishermen may not see this development as negative; in the longer run, this 

development may however involve greater ecological as well as socio-economic risk taking 

(Steneck et al. 2011, Howart et al. 2013).  

 

Life Cycle Assessment (LCA) is seen as an important tool for sustainability assessment of 

products (Zagmani et al. 2013). LCA’s of seafood production systems began in the early 2000s 

and have since then attracted increasing interest. Seafood LCAs have repeatedly identified 

management of fisheries as a critical component to overall environmental impacts associated to a 

seafood product: choices of gears, effort, and quotas are important components in the overall 

environmental impact of the end product (Thrane 2004, Ziegler & Valentinsson 2008, Driscoll & 

Tyedmers 2010). Even though managers pay no attention to the fuel efficiency resulting from 

different management regimes, their decisions do affect fuel efficiency of fisheries. In contrast to 

lack of interest in fisheries management, there is an increasing interest in accounting for and 

monitoring greenhouse gas emissions from seafood products, and standards have been initiated in 

Britain (PAS 2050-02) and Norway (NS 9418). 

 

Nevertheless, fuel intensity and resulting emissions, often the main impacts of standard seafood 

LCAs, are only two aspects of environmental impacts from fisheries. Methodological 

development is needed to include more ecological impacts from fishing within the LCA 

framework (Pelletier et al. 2006, Vázquez-Rowe et al. 2012a). This is particularly important in 

order to enable fair LCA based sustainability assessments of food production systems to 

certification, procurement and not the least, the public debate.  As an example, it has been argued 

that protein from capture fisheries does not require pesticides, fertilizers, land- or water use. 

These are all important components to agricultural food production. In fact, fisheries could 

instead represent extremely energy efficient protein production systems, and emit comparatively 

low amounts of greenhouse gases (Hilborn & Hilborn 2012). However, fisheries are completely 

different production systems. They depend on natural ecosystems, and have impacts that are 

unique to fisheries. In order to enable sound product comparisons, there is a need to develop 

common assessment grounds and expand existing integrated tools.  

 

The studies in this thesis address some potential indicators of ecological effects from fishing that 

could be useful to add to the existing framework of LCAs, with focus on impacts related to by-

catch (in particular discards). In parallel, the potential of utilizing life cycle thinking to obtain an 

integrated decision support to form an overall more sustainable fisheries management is explored 

and further discussed.  
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Aim 

There are two overarching aims of the studies in this thesis that are interlinked with each other: 

1. To identify, develop and apply indicators of potential ecological pressures from 

by-catch in fisheries for use in seafood LCA. 

2. To explore how a life cycle based approach could be used as a management tool in 

capture fisheries. 

The studies in the first part thus explore potential indicators that could be useful to quantitatively 

characterize ecosystem pressures from by-catch (paper I, II, III).  

Part two consists of case studies applying life cycle thinking and the influence on fuel use from 

different management measures (paper III, IV, V) and a review  of the role of LCA in relation to 

other sustainability assessments of fisheries (paper VI). 
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Methodological approach 

In short: performing an LCA  

Life Cycle Assessment (LCA) aims at quantifying all relevant resource use and environmental 

impacts linked to the study object, either a product or a process, throughout the life cycle (i.e. 

from extraction of raw materials to waste or re-cycling). In this way, important hot spots or 

improvement potentials can be found. LCA thus enables an integrated systems perspective and 

helps to avoid shifting environmental burdens between production phases or environmental 

concerns.  

LCA consists of four stages, however with an important iterative evaluation of the result from 

choices made in previous stages:  

Goal & scope Definition of e.g. the aim of the study, system boundaries (e.g. 

processes and data to include), the study object (functional unit), 

impacts to be studied and other technical aspects such as allocation 

procedure, i.e. deciding on how to distribute environmental impacts 

between multiple outputs. 

Inventory The most time-consuming task, where data required as defined in 

goal and scope are collected for each step and quantified in relation 

to the functional unit. 

Impact assessment Resource use and emissions are grouped into impact categories and 

weighted together based on their relative potential to contribute to 

impact, called characterization. For example, GHG emissions are 

weighted according to IPCC standards and measured as kg CO2 

equivalents (Fig. 1). 

Interpretation of results The robustness of the results is tested by e.g. sensitivity analysis, 

possibly resulting in changes of choices made earlier. 

Many processes have multiple products. Strategies for distributing the environmental impact and 

resource use between the different products, called co-product allocation, have therefore been 

developed. In fisheries, this applies mainly to two situations: several species being landed 

together, and in processing into various edible products and non-edible parts. Preferably, 

according to the ISO standard (ISO 2006a), allocation should if possible be avoided. This could 

be done by increasing the level of detail (sub-dividing the system) or system expansion (using an 

alternative production system for one of the co-products). Otherwise, co-product allocation can 

be based on e.g. the relative mass, energy or protein content of the co-products, or as the last 

alternative, based on their relative economic value. This order of allocation procedure is not 

accepted by all practitioners, as there are draw-backs to all approaches (Pelletier & Tyedmers 
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2011, Svanes et al. 2011). Altogether, it is important to remember that these choices affect the 

results and complicate comparisons. 

It is also important to consider that while the systems perspective is useful in including a broad 

range of impacts and avoid problem-shifting, it still represents a generalized overview of a 

system and thus involves simplifications. Being an interdisciplinary approach, life cycle impact 

assessments include several sub-components that themselves are their own research areas. The 

synthesis thus provides a new and integrated perspective, without going in depth with the details. 

It is however important that it still provides a relevant perspective for the intended purpose. In 

other words, an LCA practitioner can provide a broad picture, but only to a certain extent be 

aware of each topic in detail. In turn, the LCA practitioner is as a result less aware of 

uncertainties in the modelling procedure, such as potential regional differences in impact 

pathways, synergetic and accumulative effects.  

For further reading on LCA methodology see e.g. Baumann & Tillman (2009). 

A note on impact assessment in LCA 

Life Cycle Impact Assessment involves grouping of category indicators, such as greenhouse gas 

(GHG) emissions, of relevance to an impact category (e.g. global warming potential) based on 

their relative attributes to cause an impact (Fig. 1). These impact categories are called “mid-

points” and are expressed as “potentials” (i.e. addressing environmental pressure, problem-

oriented). This is the most commonly used framework. It should be noted that there are methods 

for grouping these impact potentials further towards “endpoint” categories (i.e. addressing 

environmental impact, damage-oriented). Such an approach involves weighting the different 

environmental impact categories and form one single score (such as impact on Natural 

Environment). 

 

Figure 1. Impact assessment of GHG emissions (midpoint). All emissions causing climate change are 

related to the impact of carbon dioxide, turned into CO2-equivalents and weighted together according to 

their relative radiative forcing into a single score. 

The LCA method is still young and improving, and methodological development is needed both 

in a general context (Finnveden et al. 2009) and to address all environmental impacts of 

relevance in seafood production (Pelletier et al. 2007). At present, LCAs encompass a wide range 

of impact categories such as eutrophication, toxicity, acidification, ozone layer depletion and 
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global warming potential. For seafood products from capture fisheries, many studies have shown 

dominance of fuel use and derived emissions (Vázquez-Rowe et al. 2012a). As they all correlate 

with the fuel consumption, this suggests that GHG emissions can be used as a proxy for other 

emissions and less attention can be paid to these other traditional impact categories.  

Impact indicators should be quantitative, linked to a functional unit (additive indicator) and fulfil 

the requirements of the ISO-standard (ISO 2006b): 

“the impact categories, category indicators and characterization models should be 

internationally accepted, i.e. based on an international agreement or approved by a competent 

international body” 

Impact assessment in LCA is in particularly complex in terms of assessing impacts that are more 

complex to quantify, such as impacts on biodiversity (Curran et al. 2010). It is impossible in 

seafood LCAs to comprehensively assess the potential ecosystem effects from removing one kilo 

of biomass out of an ecosystem (i.e. fishing). Even so, in order for the methodology to fulfil its 

comprehensive scope, this should in theory be required. Omitting certain environmental aspects, 

such as potential effects on biodiversity, due to lack of methodology may limit the potential 

usefulness of the results. In addition, as impacts are intended to be independent of site and time, 

site-specific or regionalized impacts in the LCA framework has also been limited (Reap et al. 

2008). Methodological development in this area is currently a hot research topic in LCA. These 

local impacts are of great importance to the credibility of LCAs of seafood products, as impacts 

from fishing activities are generally of local concern and most people would say that they are the 

most important effects of fishing. 

Inventoried data may also have a stand-alone importance and could lack methods for assessing 

impact potentials. In such cases, data could also be presented as quantified results related to the 

functional unit. There have also been discussions on the benefits of including descriptive 

indicators (Kruse et al. 2009). Such indicators would be required for many socio-economic 

aspects of sustainability: fair wages, working conditions, etc.  

A lot of research has been done in terms of developing ecological indicators for fishing impacts 

on marine ecosystems outside the context of LCA. Rice (2003) argues that choosing candidate 

indicators objectively is difficult. For example, questions would relate to which biodiversity 

metric could be used that is not affected by multiple stressors (as is often the case in coastal 

zones), not to mention lack of scientific consensus of desired ecosystem status. Rice and Rochet 

(2005) proposed a step-wise procedure in order to as objectively as possible develop indicators 

for fisheries management. They suggested that in the initial step, it is important to define intended 

users and their needs. After that, a suite of candidate indicators can be developed, whereas in the 

next step, their usefulness should be evaluating based on criteria such as public awareness, 

theoretical basis and cost in relation to the intended audience. As for LCA results, they are to be 

communicated to certification, managers, industry as well as the general public. It is therefore 
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most likely that different indices of potential impacts from fisheries are needed for different 

stakeholders depending on intended purpose of decision support.  

LCA has become a regular practice to justify the implementation of environmentally-oriented 

decisions at cooperative and/or political level (Finnveden et al. 2009). Current applications 

involve e.g. product development, changed sourcing strategies and communication such as in 

certification schemes and environmental product declarations (paper VI). Another intended area 

of use is for policy-making, such as to follow up on effects of policies adopted, designing new 

policies or to evaluate the broad environmental effects of alternative future policies.  

It should also be noted that there are several different LCA concepts such as life cycle cost 

(LCC), social life cycle assessment (SLCA), life cycle management (LCM), and life cycle 

thinking (LCT); the common denominator to all is the systems perspective and having an 

interdisciplinary approach (Zagmani et al. 2013).  
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Environmental impacts of fisheries 

Definition of the research topic 

This thesis does not intend to cover all possible ecological impacts from fisheries, nor reviewing 

all indicators related to ecosystem pressures. A lot of research has been done related to the broad 

impacts from fishing on the marine environment by experiments, observations and models. To 

mention the outcome of one study, Fulton et al. (2005), it was found that a suite of indicators is 

required, including four major biological groups: species with fast turnover rates, targeted 

species, habitat defining species and charismatic/sensitive groups in order to detect fishing 

impacts.  

Another strategy to assess potential environmental impacts from fisheries would involve 

indicators relating to (Thrane et al. 2009): 

1) target species or stock (e.g. Hutchings 2000, Jackson et al. 2001) 

2) by-caught species: commercial, non-commercial and/or threatened (e.g. Casey & Myers 

1998, Lewison et al. 2004) 

3) benthic habitats (e.g. Watling & Norse 1998, Puig et al. 2012, van Denderen et al. 2013) 

4) emissions from fuel use and cooling agents on-board fishing vessels and use of anti-

fouling paint (e.g. Ziegler et al. 2003, 2013) 

Several of these impacts are interlinked with each other and associated with broader and more 

indirect pressures that affect ecosystem structure and processes. These comprise of ecosystem 

processes such as potential deficit of food resources to marine mammals and birds (Smith et al. 

2011), effects on benthic species communities from discards (Bergmann et al. 2002a), and 

trophic interactions (Casini et al. 2009).  

The aforementioned four categories of potential environmental impacts from fisheries have been 

addressed in seafood LCAs to various extents. The most obvious pressure from fishing activities 

is the impact on the targeted stocks, being either on abundance, size structure or the range of a 

species. However, seafood LCAs have so far poorly covered this impact (Vázquez-Rowe et al. 

2012a). In terms of potential impacts relating to the availability of these resources to humans, 

there have been suggestions that impacts from harvesting fish and timber could be modelled on 

the basis of production capacity, extraction rate and recovery. To in turn assess potential 

ecosystem damage, making use of the IUCN Red List has been suggested (Lindeijer et al. 2002, 

Pennington et al. 2004 and references therein). No seafood LCA study has however so far 

incorporated these methodological approaches (Vázquez-Rowe et al. 2012a). Instead, Primary 

Production Required (PPR), Mean Trophic Level (MTL) of landings and the Fishing in Balance-

index, all related to trophic interactions, have been applied in one attempt to discuss impacts on 

targeted stocks (Ramos et al. 2011). Emanuelsson et al. (in press) most recently tried to quantify 
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the distance to optimal exploitation level according to the Maximum Sustainable Yield (MSY) 

framework as a way to quantify overfishing of target stocks.  

As for seafloor impacts, Nilsson and Ziegler (2006) developed a model for seafloor area swept 

per effort hour deployed and further discussed these results in terms of aggregation of effort, 

frequency and habitat sensitivity to disturbance. This assessment is data intensive, but the study 

found that some areas were in a permanently disturbed state due to trawling effort while others 

were less affected. In paper III and V, seafloor area swept was included merely as a function of 

fishing effort in trawl hours. This is a crude measure of impact, both in terms of estimates of the 

actual area impacted by the gear and the potential disturbance. The approach in paper III and V 

does not consider important factors such as aggregation of fishing effort relative to trawl free 

zones, frequency or recovery time. Such figures on seafloor area impacted are thus difficult to 

interpret, as the impact from the first time a trawl passes is substantial (Cook et al. 2013), 

whereas the expected impacts in the longer perspective are harder to predict (van Denderen et al. 

2013). Ellingsen and Aanondson (2006), however, used merely area based metrics to compare 

production systems for chicken, farmed salmon and wild-caught cod. In this sense, simple land 

use metrics can provide some interesting insights such as land or sea use requirements from 

different sources of protein. 

The main focus of studies done in this thesis in terms of methodological advancement of LCA 

has been to find and make use of potential indicators for further refinement of impacts related to 

by-catch. By-catch has before been regularly quantified in terms of discard ratios in mass, and 

qualitatively discussed in terms of potential effect on target species (e.g. Ziegler et al. 2003, 

Ziegler & Valentinsson 2008). The selection of potential indicators to study was guided by the 

scientific literature and has primarily focused on operational indices to be applied in an LCA 

context, as recommended by the ISO standard (ISO 2006b). As the project progressed, the 

research area was further narrowed down to study, in particular, discard of fish and commercial 

invertebrates, mainly due to availability of data.  

On by-catch and discard in capture fisheries 

By-catch could be defined as the non-targeted part of the catch which could either be landed or 

discarded at sea (Kelleher 2005). Important to note is that discards could also consist of juveniles 

of target species, species of less commercial value and quota restricted target species. By-catch is 

thus not a straightforward sub-set component. Davies et al. (2009) coined another definition of 

by-catch, “un-used or un-managed”. By this definition, roughly 40% of global catches were 

classified as by-catch. In this sense, by-catch could be seen as less regulated landings. 

The part of the catch that is not landed, discards, varies considerably between different fishing 

practices. The estimated global weighted average is that 8 % of the catch is discarded at sea, 

however, the range could be 0-98 % of the catch between different fisheries (Kelleher 2005). 

Reasons behind discards in fisheries are numerous, e.g economic, social, institutional (see e.g. 
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Feekings et al. 2012). It should also be noted that the survival potential of discarded animals 

varies greatly depending on species, depth, trawl time, water temperature, deck time and more 

(Suuronen 2005), but is in general low.  

By-catch that is discarded could in a sense be separated into two areas of concern: (a) waste of 

resources, it could depending on extent affect the sustainability of the fishery in terms of use of 

ecosystem production capacity (Coll et al. 2008) and (b) as a potential biodiversity threat of 

vulnerable species (Casey & Myers 1998, Hutchings 2000, Lewison et al. 2004). This dual 

approach was in paper I and II adopted to find indicators of by-catch impacts within the LCA 

framework.  

The resource use perspective: trophic indicators and trophic interactions  

Humans have dramatically affected food webs on land, in freshwater and marine ecosystems 

(Estes et al. 2011). Due to a continuous increase in human appropriation of the available primary 

production of the planet, it has been suggested that policies are needed to slow down this 

development (Imhoff et al. 2004).  

Primary Production Required (PPR) is a metric which addresses ecosystem energy flows. It 

represents an estimate of the amount of carbon required from photosynthesis to produce one kilo 

of biomass of a species at a certain trophic level (Ryther 1969, Pauly & Christensen 1995). 

Species at higher trophic levels thus imply higher ecosystem costs. In this sense, PPR could be 

seen as the currency relative to the total available primary production of an ecosystem, i.e. the 

carrying capacity (ICES 2005, Swartz et al. 2010). The total amount of PPR of fisheries has also 

been shown to globally exceed levels of sustainable exploitation (Coll et al. 2008, Chassot et al. 

2010, Watson et al. 2013).  

In terms of by-catch being of concern to resource use, method development thus benefits from 

being discussed from a trophodynamic perspective. From acknowledging ecosystem energy flows 

and production related to transfer efficiencies (TE) and trophic levels (TL) of species, ecosystem 

properties and function are better addressed than from discard ratios in kilos or species count that 

has been done before in LCA (e.g. Ziegler et al. 2003, Ziegler & Valentinsson 2008). PPR has 

also been used in LCA before to address impacts related to target stocks in capture fisheries 

(Ramos et al. 2011) and in the form of Biotic Resource Use (BRU) on land or in aquaculture 

systems (e.g. Pelletier et al. 2009, Papatryphon et al. 2003).  

PPR of landings, together with MTL, are the most common trophic indicators in use. MTL was 

presented in a study by Pauly et al. (1998) that concluded that the MTL of global landings was 

decreasing. They suggested that this was an indication of a sequential depletion of top predators 

by overexploitation, and that fisheries increasingly had to shift towards lower trophic level 

species. This metric is addressed in the form of the Marine Trophic Index (MTI) as an indicator 

within the Convention of Biological Diversity (CBD, 2010 Biodiversity Indicators Partnership).  
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However, both PPR and MTL have been heavily debated in the scientific community; in 

particular the MTL concept (see e.g. Baumann 1995, Caddy et al. 1998, Branch et al. 2010). It 

should also be noted that several other trophodynamic indicators have been suggested and 

evaluated in terms of addressing ecosystem impacts of fishing. One problem is that they have in 

general have been found to be conservative, and respond slowly to changes in fishing pressure 

(Cury et al. 2005). 

The aim of paper I was to study the trends in PPR and MTL of landings, survey data and total 

catch data in a well-studied fishing area and in a long historical perspective. This was done in 

order to analyse the pros and cons of using PPR and MTL for various purposes, one being as an 

indicator of resource use from discards in LCA. In our study, values for PPR and MTL for 

landings showed initially an increasing trend, until a breakpoint in the regression identified a 

decline in MTL commencing before the 1930s, while PPR has declined since the 1990s 

respectively. The trends correlated poorly with survey data. 

The interpretation of the PPR and MTL trends found in paper I are however complicated. It was 

shown that the introduction of a species-selective grid in recent years contributes to low MTL of 

landings while protecting depleted fish stocks from fishing pressure. In this case, low MTL is the 

result of an important conservation measure. If a decline in MTL is to be interpreted as a negative 

signal and a pressure on biodiversity, using total catch data is therefore of vital importance in 

order to not draw any erroneous conclusions. At the same time, low MTL reflects a change in 

abundance of top predators induced from overexploitation. Formerly commercially important top 

predators have dramatically declined in these waters (e.g. Svedäng & Bardon 2003, Cardinale & 

Svedäng 2004, Cardinale et al. 2014). From the trends seen in MTL in paper I, it could thus be 

appropriate to consider the initial increase seen in MTL of landings to be a “pressure” indicator, 

i.e. increased targeting of higher trophic level species, whereas the decline in MTL of landings 

with the onset of industrialized fisheries could more be characterized as a “state” indicator, i.e. 

less predatory fish are available due to sequential depletion. At the end of the time series, low 

MTL is more of a “response” indicator, as species-selective grids are in place to protect top 

predators from fishing pressure.  

Maybe, this is where the core of the difficulties in interpretation of the MTL trends lies. 

Depending on data used, it can be an indicator of pressure, response or state. In this sense, 

Stergiou and Tsikliras (2011) made a point regarding the major challenge to utilize MTL. The 

“fishing down” theory, i.e. that overexploitation of top predators causes sequential depletion and 

leaves ecosystem structure altered in shape, could in reality only be falsified if an ecosystem 

subjected to intense fishing exhibited an increase in biomass and mean length of large predators. 

This situation is difficult to imagine. However, there is no doubt that a declining trend in the 

MTL metric will not be detected due to limitations in what could be interpreted from the data 

used. The importance of not over-aggregating geographical area and use total catch data was also 

underpinned in Pauly and Palomares (2005), and leads back to how the signal can be interpreted 

in paper I in relation to how the global trend in MTL is interpreted by the CBD.  
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MTL may however capture ecosystem structure changes as it is. In a study from the Celtic Sea by 

Pinnegar et al. (2002), an initial decline in MTL of landings was shown. This was followed by a 

decline in survey data, suggesting that there had been changes in the ecosystem structure, not 

only in fisheries targeting pattern.  

Still, for both MTL and PPR, there is a lack of objectives in policy. It is not as obvious what are 

negative trends in the metrics; it is more straightforward to interpret trends in greenhouse gas 

emissions. Most likely, ecosystem structure and function were completely different before 

industrialized fisheries began (see e.g. Jennings & Blanchard 2004). This raises the question: 

What is the optimum state of PPR by fisheries and MTL of an ecosystem to strive for? 

In paper I it was also clearly shown that PPR of landings need to pay more attention to fishery-

to-fishery specific discards. The proportion of PPR attributed to the landed part varied 

considerably, 22-88 % of total catch, depending on the targeting pattern. This could strongly 

affect results of global analyses such as those of Swartz et al. (2010) and Coll et al. (2008). It 

could however be argued that as discards are returned to the ecosystem, they could not be 

considered as resource use by fisheries. The ecosystem can still benefit from the resource in 

terms of e.g. benthic scavengers (Bergmann et al. 2002a). Still, PPR of discard does represents a 

metric for disturbed energy flow. Discards are of unknown fate and effect (Evans et al. 1994), 

and benefits are not to all species, but could instead induce species community changes such as 

are seen for birds (Bugoni et al. 2010). It should also be noted that attributing PPR to discards 

was in fact independently suggested by another LCA research group during this project 

(Vázquez-Rowe et al. 2012b).  

There are also major challenges with PPR in terms of understanding and defining the impact 

pathway: Could primary production consistently be seen as limited? Pauly and Christensen 

(1995) estimated that a range between 20-85% of primary production was required by fisheries in 

non-tropical shelves. In Chassot et al. (2007), a 30% PPR from fisheries was considered to be 

high. Merely the Swedish landings have required 20-25% of the total primary production in some 

years (paper I), but the additional Danish landings from the same area have been much greater 

and would significantly add to these figures (Nielsen & Richardson 1996). Meanwhile, increased 

nutrient loads cause dead zones (Richardson & Heilmann 1995, Diaz & Rosenberg 2008). There 

have been major changes in fish communities in the Kattegat (Pihl 1994) and overfishing 

exacerbates the deterioration by eutrophication of important nurseries of seagrass habitats (Baden 

et al. 2012). It could then be speculated that fishing in combination with eutrophication has 

disturbed the energy flow in the system to the point of multi-functional disturbance. Could the 

trophic linkages have been affected so that energy is not any longer sufficiently assimilated by 

available biomass or is too slow to respond? A low PPR in recent years, which from the intended 

use of the metric should be interpreted as a positive signal, could therefore be confusing, as there 

is obviously a need to restore the balance and function of the ecosystem.  
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When modelling PPR and MTL, uncertainty of several parameters highly affects the robustness 

of the results. There are great uncertainties associated to the trophic level of a certain species, as 

this is affected by e.g. ontogenetic shifts, area and season. There could also be shifts in the diet in 

longer perspectives induced by fishing and changes in climate (Heath 2005, Christensen & 

Richardson 2008). Thus, as diet data are not available for each species on a regular basis, 

assumptions must be made regarding TL of species. This makes it difficult to grasp the “true” 

ecosystem effect on MTL in species communities and PPR from fisheries in longer time series. 

One example of problems with trophic level estimates was shown by Jennings et al. (2002). They 

suggested that changes in size structure was a better predictor of fishing effects than changes in 

TL as the declining trend found in MTL of demersal fish communities in the North Sea was weak 

and highly affected by which data were used. In addition, transfer efficiency, i.e. the assumed 

proportion of prey production taken by predators, is derived from ecosystem modelling and has 

been found to be affected by a range of factors, such as fishing intensity, size and depth of the 

ecosystem (Heymans et al. 2012). It may also not be suitable to assume constant TE along the 

food chain. Higher trophic level species have to invest more energy to find food which decrease 

efficiency, and TE decrease with increasing number of feeding links in the food web (Ryther 

1969, Iverson 1990, Baumann 1995). Assuming constant conversion ratios of carbon to wet 

weight independent of age and TL is not correct either, as higher trophic levels and older ages are 

characterized by greater respiratory losses (Lindeman 1942).  

As a result, shorter food chains (e.g. upwelling zones) have also more robust PPR values than 

longer food chains (e.g. temperate shelves) due to the modelling procedure. The small 

uncertainties in TE or TL propagate in the PPR model in longer food chains and have a major 

effect on uncertainties in the PPR result. Higher trophic levels do not only imply greater PPR 

values, but also greater uncertainties (Fig. 2). The influence of differences in TE between 

ecosystems could also call for using different TE values for species caught in different 

ecosystems, which is not presently done in PPR estimates in LCA.  

 

 

 

 

Figure 2. The effect of TE and TL uncertainty on a) hake (Merluccius merluccius) and b) sardine 

(Sardina pilchardus). Higher TL, as in the hake case, does not only imply higher PPR values, but 

also higher uncertainties compared to the sardine case with a lower TL. Data on TL from 

FishBase, TE from Coll et al. (2008). 
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In terms of applicability of PPR in LCA, consistent assessments are complicated. This includes 

both comparisons between fisheries from different ecosystems as well as in relation to estimates 

of terrestrial PPR from crops and livestock. As an impact category in LCA (in the form of Biotic 

Resource Use), higher values imply greater impact. PPR should thus be low in fisheries. A low 

PPR from a fishery could however also imply low MTL, which is interpreted as a negative signal 

in other assessments of fisheries (2010 Biodiversity Indicators Partnership). It is also tempting to 

use PPR to compare different seafood production systems. The PPR of farmed salmon has been 

found to have a weighted average (depending on feed composition) of 89 kg C/kg live-weight 

salmon (Pelletier et al. 2009). A large Atlantic cod in a natural ecosystem can have the equivalent 

of 279 kg C/kg live weight (at TL 4.4 and TE 10%). The question is: Could farmed salmon and a 

cod from capture fisheries be compared in this sense? One aspect to consider is the great 

implications of different TE values for the PPR of cod. For the farmed salmon, variability in PPR 

from different feed formula could also induce shifts in environmental impacts, such as impacts 

related to land use if agricultural products are utilized instead. It is also important to acknowledge 

the total biomass removal from fisheries in relation to available production beyond the specific 

fishery studied. This varies considerably between different ecosystems (Coll et al. 2008). In 

addition, fisheries are to a greater extent dependent on local natural production, which can be 

exceeded and impaired. Agriculture and aquaculture are man-made systems with external inputs 

such as feed, fertilizers and pesticides. Altogether, the applicability of PPR is restricted due 

difficulties in what could be interpreted from the values. 

It should also be noted that the preferred human diet from marine fisheries is most often at 

incomparably higher trophic levels than those on land. Intermediate trophic level species in the 

marine ecosystem such as herring is the equivalent of bears in terrestrial ecosystems, while tuna 

has no terrestrial counterpart (Duarte et al. 2009). Marine ecosystems can also be different from 

terrestrial and freshwater systems, as species has been found to be more highly connected in the 

marine food web than could be expected (Link 2002). In fact, the connectivity between low 

trophic level species and other components in the food web has been found to be an important 

predictor of ecosystem impacts from fishing at various trophic levels (Smith et al. 2011). This is 

not accounted for in PPR. 

Altogether, comparing merely PPR values between different marine ecosystems, as well as 

between terrestrial and marine ones, still leaves many questions to be answered related to the full 

impact of disturbed flows. 

Biodiversity threats: extinction risks and threatened fish species 

The perception of that fish resources are inexhaustible (Huxley 1883), mainly because of the high 

fecundity of many fish species relative to other taxa, have been changed as extinction risks for 

fish have been further understood (Reynolds et al. 2005). Other life history traits than high 

fecundity make fish vulnerable to overexploitation (Sadovy & Cheung 2003), such as late age at 

maturity (Jennings et al. 1998). There is also still much to learn about stock recovery rates. Few 
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depleted fish populations recover rapidly. In a study of 230 stocks by Hutchings and Reynolds 

(2004) it was found that 15 years after collapse, most stocks exhibited little or no change in 

abundance, despite reduction of fishing mortality. In fact, it has recently been suggested that 

recovery rates are (on average) in the same range of that of many terrestrial species (Hutchings et 

al. 2012). This is an important finding, as the perception in fisheries has predominantly been that 

fish species, based on the fecundity metric, are at low risk of extinction – even when declines of 

over 80% have been shown for some species (Reynolds et al. 2005).  

The IUCN Red List Categories and Criteria is considered to be the most widely accepted system 

for classifying extinction risks of species (IUCN 2014), and the IUCN Red List Index (RLI) is 

adopted as an indicator within the CBD (Butchart et al. 2004, 2010 Biodiversity Indicators 

Partnership). It is however not straightforward to set universal extinction risks across species and 

ecosystems. Estimating threat status for commercially exploited fish species has in particular 

been very hard to reach consensus for, as they are under a management regime that affects their 

abundance (Mace et al. 2008). Still, even if addressing species extinction risks is of importance, 

ecosystem services, such as production, may diminish faster than species loss and it could be 

argued that local extirpation should be of greater concern (Schindler et al. 2010). In this sense, 

utilizing the IUCN framework could be seen as a measure which potentially underestimates the 

impact on biodiversity. Even so, in spite of many fish having been listed as threatened with 

extinction, there has been no record of a complete extinction of a fish species (Roberts & 

Hawkins 1999). Threat status could also fail to be valid if the Red List is not satisfactory updated, 

and concern has been expressed over the credibility of the IUCN Red List if greater efforts are 

not put in (Rondini et al. 2013).   

Even though there are several methods to assess extinction risks, decline rate has been the most 

commonly used criteria for fish (Dulvy et al. 2004). Decline rate can be troublesome. According 

to species abundance distribution, ecosystems are generally composed of a few very abundant 

species, whereas most of the species are very rare. This results in that it is easier to detect 

declines of more abundant species than for those that are rarer, as it takes longer time before 

survey data have the power to detect a true decline (Maxwell & Jennings 2005). Also, historical 

depletion not accounted in data, makes it likely that the extent of decline is underestimated 

(Hutchings & Baum 2005). If a species has declined to a stable but historically low level of 

abundance, the decline rate criteria could also result in a species not being seen as threatened any 

longer.  

By-caught species in multi-species fisheries are at increased threat to be driven towards 

extinction (Dulvy et al. 2003). Discard mortality of threatened fish species is potentially 

unaccounted for in fisheries data, unless it is a targeted species with discards included in stock 

assessment. This aspect, together with a prior suggestion of utilizing the IUCN framework to 

address biodiversity loss in LCA (Lindeijer et al. 2002), were behind the aims of paper II. The 

aims were to evaluate the validity of the IUCN categorization and to explore the possibilities of 

utilizing the amount of threatened fish in discards (i.e. vulnerable, endangered and critically 
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endangered species, abbreviated as VEC) as indicators for the seafood product’s impact on 

sensitive and overexploited fish species. The focus was on fish and not on other species, mainly 

due to data availability, but also as fish can be useful proxies for ecosystem status due to 

availability of data (Dulvy et al. 2006). It should be noted that MTL is also categorized as a 

‘biodiversity’ indicator to the CBD. Still, due to short-comings of interpretation of trends in both 

PPR and MTL (paper I), there is a need to include an additional metric related to depletion of 

stocks in sustainability assessments of fisheries.  

In terms of robustness of the IUCN Red List Categories and Criteria, paper II showed little 

discrepancies between the scientific advice in fisheries, provided by the International Council for 

the Exploration of the Sea (ICES), and the Swedish Red List of Threatened Species. Other studies 

comparing ICES reference points to IUCN criteria have been both positive and negative. Positive, 

in terms of that it was unlikely that there would be any false alarms from a species being listed as 

threatened while being considered to within ‘safe biological limits’ by ICES (Dulvy et al. 2005; 

ICES 2008). Negative, in term of that dynamics of stocks can easily lead to false alarms 

according to the IUCN criteria while also having a significant risk of overlooking signals which 

indicate real danger (ICES 2009a,b). There are thus both potentials and drawbacks with applying 

the IUCN Criteria and Categories. Criteria based on numbers of individuals and geographic range 

appear to be consistent between IUCN criteria and stock assessments, whereas interpreting the 

extent of population decline by the different frameworks clash (Rice & Legacè 2007). Results 

from paper II also showed some inconsistency of the Swedish Red List in terms of species status 

in relation to the status of separate stocks. This emphasizes the drawback of using species rather 

than stocks as assessment units. One stock can be on the verge to extinction while the species is 

not threatened on a global scale. 

It was also found that the Swedish Red List showed somewhat higher threat status than the global 

Red List. This finding is not surprising, as there has been no documented global extinction of a 

marine fish species (Roberts & Hawkins 1999), but several local extirpations, such as the pivotal 

finding of the disappearance of the common skate (Dipturus batis) from the Irish Sea (Brander 

1981). Thus, it seems preferable to utilize regional Red Lists when assessing species at threat in 

LCA.  

As for applicability of VEC, there are also limitations. In the studied area of paper II (Kattegat 

and Skagerrak), screening discards for threatened fish species was possible as there were data of 

species composition, abundance as well as IUCN assessments of all fish species in the Swedish 

Red List by the Swedish Species Initiative, updated every five years (Gärdenfors 2010). 

However, in terms of global applicability, data on discard for specific fisheries is limited, and the 

global assessment of fish by the IUCN Red List is far from complete, even though progress is 

being made (Collette et al. 2013).  

Aggregating vulnerable, endangered and critically endangered species into a composite indicator 

(VEC), as suggested in paper II, has both advantages and drawbacks. Different fishing practices 
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exhibit different pressures on threatened fish species. For example, the mixed trawl fishery for 

Norway lobster (Nephrops norvegicus) was found to have the greatest VEC value per landing 

(paper II). In this sense, VEC distinguish different pressures between fishing practices. Still, it 

does not say anything about the potential effects on an ecosystem scale. Threatened fish in 

discards could be low per landed volume, but could be great in terms of overall pressure on a 

particularly vulnerable species. The VEC approach does in addition not distinguish between 

different degrees of threat status between the species. For communication purposes, several other 

composite indicators relating to threat status are however suggested, such as the Red List Index 

(RLI) in the Convention on Biological Diversity (2010 Biodiversity Indicators Partnership).  

The interpretation of the VEC indicator is also complicated by the fact that some of the species 

categorized as VEC could also be target species, and the discarded amount of some species could 

hence be accounted for in their specific stock assessments. It could thus be argued that if these 

discards are accounted for in stock assessments, this impact would also be more of an impact on 

target species. However, as paper II showed great coherence between assessments done by 

fisheries scientists and conservation biologists, great amounts of threatened fish in the discard can 

doubtfully be seen as negligible. A situation could occur when a threatened species would 

increase in biomass, which would be a sign of positive development, but would result in greater 

values for VEC, which is a negative signal. However, even if there is a successful recruitment of 

a species, a mixed fishery risks catching and subsequently discarding them due to e.g. being 

below landing size. This would cause great impediment for rebuilding of depleted stocks 

(Hutchings 2000).  

In paper II, there was a lack of biological reference points to robustly determine an appropriate 

fishing mortality for many of the species landed. In this sense, VEC could also be used in LCA to 

categorize impacts from the landed part of the by-catch (sensu Davis et al. 2009) “un-managed”, 

i.e. species caught in mixed fisheries that has no directed fishery and lacks biological reference 

points). In this case, a hierarchical impact assessment could be done, which would then be 

considered to assessing the broader concept of by-catch instead of merely discards. If there are 

sufficient biological reference points for a landed species to be sustainably managed, it may be 

considered as target stock and be omitted from the VEC-assessment. If reference points are 

insufficient, a screening of VEC-species in the remaining part of the landings could be done, 

which then would be considered as by-catch.  

Building bridges between conservation and fisheries management 

The IUCN Red List Categories and Criteria are intended to identify species at risk of extinction, 

not assessing conservation priority (Mace et al. 2008). However, only a fraction of the threatened 

fish species in Sweden has direct conservation policies (Table 1). Some species have extra 

protection in fisheries not seen in the table, such as seasonal bans (for e.g. Atlantic cod, haddock 

and Pollack). Some of the shark species are protected within the EU. Screening for threatened 

species (paper II) has the potential to identify hot-spots where conservation action may be 
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needed, and could be used to inform and quantitatively follow up on progress related to 

commitments following the Aichi Biodiversity targets set within the CBD
1
. It could also be of 

use in certification schemes to overall pave the road towards rebuilding of depleted species and 

halt biodiversity loss.  

Table 1. Swedish Red List status for marine fish in 2005 and 2010, global Red List status and 

conservation policies (
1
National protection; 

2
CITES B; 

3
Bonn convention I; 

4
Bonn convention II) in place. 

New species categorized as threatened in 2010 with no threat status in 2005: Anarhichas lupus and 

Merlangius merlangus. Species categorized as threatened in 2005, but not in 2010: Psetta maxima, 

Scyliorhinus canicula and Lesueurigobius friesii. 

Scientific name Common name Swedish IUCN 

Red List status 

(2005) 

Swedish IUCN 

Red List status 

(2010) 

Conservation 

Policies (2010) 

Stock status 

(ICES Advice 

2009) 

Dipturus batis  

 

Blue skate CR RE 1 Unknown, no 

targeted fishery 

and limit by-

catch. 

Acipenser 

oxyrinchus  

 

Atlantic sturgeon RE RE 1,2,3 No advice. 

Lamna nasus  

 

Porbeagle CR CR 1,3 Depleted, no 

targeted fishery. 

Cetorhinus 

maximus  

Basking shark EN CR 1,2 TAC set at zero. 

Squalus 

acanthias  

 

Picked dogfish EN CR 4 Depleted, in 

danger of 

collapse. 

Anguilla 

anguilla  

 

European eel CR CR 2 Decline at 

alarming rate, 

zero impact. 

Pollachius 

pollachius  

Pollack EN CR  No advice. 

 

                                                           
1
 The applicability involves several targets set within mainly the Strategic Goal A, “Address the underlying causes of 

biodiversity loss by mainstreaming biodiversity across government and society” and Strategic Goal B, “Reduce the 

direct pressures on biodiversity and promote sustainable use”. 
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Table 1. continued 

Scientific name Common 

name 

Swedish IUCN 

Red List status 

(2005) 

Swedish IUCN 

Red List status 

(2010) 

Conservation 

Policies 

(2010) 

Stock status 

(ICES Advice 

2009) 

Chimaera 

monstrosa  

 

Rabbit fish VU EN  No advice. 

Raja clavata  

 

Thornback 

ray 

VU EN 1 Unknown, no 

targeted catches. 

Coryphaenoides 

rupestris 

 

Roundnose 

grenadier 

VU EN  Constrain catches. 

Molva molva  

 

Ling VU EN  CPUE reduced, 

constrain catches. 

Gadus morhua  

 

Atlantic cod EN EN  4 stocks (SSBpa: 2 

reduced; 1 

increased risk; 1 

undefined) 

Melanogrammus 

aeglefinus  

 

Haddock NT EN  Full reproductive 

capacity (IIIaN). 

Anarhichas lupus  

 

Atlantic 

wolffish 

- EN  No advice. 

Hippoglossus 

hippoglossus  

 

Atlantic 

halibut 

EN EN  No advice. 

Galeorhinus galeus  

 

Tope shark VU VU  Unknown, no 

targeted fishery. 

Somniosus 

microcephalus  

Greenland 

shark 

DD VU  No advice. 

Etmopterus spinax 

 

Velvet belly VU VU  No advice. 

Merlangius 

merlangus  

Whiting - VU  No advice. 



32 
 

Fuel intensity as a sustainability indicator 

It has been suggested before that energy intensity could act as an indicator for other 

environmental impacts in LCA (Thrane 2006). This correlation is confirmed in e.g. a study by 

Ziegler and Valentinsson (2008) on Nephrops caught with creels or demersal trawls. Fisheries-

specific impacts relatively new to LCA (seafloor area impacted and discard amount) were in line 

with the fuel use found to be considerably higher for trawled Nephrops compared to creel caught 

ones. Demersal trawling has generally higher discard rates and causes more impact on benthic 

communities than other fishing methods for the same species, besides being relatively fuel 

intensive. Passive gears are commonly promoted as Low Impact Fuel Efficient (LIFE) methods 

(Suuronen et al. 2012). An already fuel-intensive gear will also be extra sensitive to poor stock 

status: a depleted stock needs more fuel per kilo per landing due to lower landing per unit effort 

(paper IV). 

There is however a considerable risk of missing out in providing the comprehensive 

environmental perspective intended with the LCA methodology by not including additional 

indicators such as VEC. Promoting passive gears as LIFE methods could be nuanced by case-to-

case examples of non-universal correlates of lower fuel consumption of passive gears in 

comparison to demersal trawling (paper VI). There could also be substantial by-catches of e.g. 

marine megafauna in gill-net fisheries (e.g. Lewison et al. 2004). In paper III, a clear trade-off 

was identified from using selective grids in the Nephrops fishery on the west coast of Sweden: 

fuel intensity and seafloor area swept is higher while locally depleted fish stocks are protected. 

Without differentiating impacts on vulnerable fish species imposed from discards as suggested in 

paper II, conventional trawling would have been superior to selective trawling as the fuel 

intensity and total discard ratio were lower per kilo of landing.  

Yet another twist is the fuel intensity of deploying Fish Aggregating Devices (FAD). Using 

FADs in tuna fisheries has been shown to be more fuel efficient (Tyedmers & Parker 2012). 

However, FADs also attract and entangle vast amounts of vulnerable species. Entanglement 

mortality of silky sharks (Carcharhinus falciformis) in FADs associated to the purse-seine tuna 

fleet of the Indian Ocean has been estimated to be 5-10 times higher than that of the known by-

catch mortality of the fleet and is of major implication to global mortality estimates of this Near 

Threatened species (Filmalter et al. 2013). It would also be difficult to consider a fuel-efficient 

tuna fishery as sustainable without acknowledging target stock status. Clearly, this advocates for 

including energy requirement as one important aspect in an integrated assessment of the 

sustainability of a fishery.   
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Fisheries: what is the catch? 

Only including fish and commercial invertebrates as discard indicators (paper II) is the result of 

data availability. Even if other discard components could be included in the methodological 

approach (se discussion below), the metrics used in paper I and II would still be limited by the 

availability of total catch data in other fisheries. Merely including any kind of assessment of 

discard impact on vulnerable species is thus an important inventory task for LCA practitioners to 

perform.  

The discard ratios in Nephrops trawling found in paper III were based on a snap-shot of data and 

could be contrasted with other studies of Nephrops fisheries. In Kelleher (2005), the estimated 

weighted discard rate of trawl fisheries targeting Nephrops was 43% of the total catch. The report 

also notes that much of the by-catch is landed, and in the EU some fisheries would not even be 

economically viable unless other species are landed. Discard rates are also highly variable during 

a year. In the Nephrops fishery on the British north-east coast, it was shown that the discard rate 

was 52% higher on sunny days than on cloudy days (Catchpole et al. 2005). A large variability of 

discard ratios has also been confirmed for the Swedish Nephrops fishery (Feekings et al. 2012). 

Discard ratios at batch level – between boats, fishing trips, seasons or years – are thus highly 

variable. 

Future work should however be done in terms of addressing the discard of non-commercial 

invertebrates. This part of the catch can be substantial (Bergmann et al. 2002b), and has been 

found to vary in composition in terms of threatened species between different demersal trawling 

segments in the studied area of paper III (Ottoson 2008). These data were however not readily 

available from observer protocols. Catch of non-commercial invertebrates may however also 

benefit from being discussed from a benthic disturbance perspective, i.e. a seafloor impact. 

Benthic impact could be observed from by-catch data, as discarded invertebrates could act as 

indicators of benthic community disturbance from monitoring species known to be sensitive. In 

this case, the approach of quantifying VEC (paper II) could be extended to cover non-

commercial invertebrates and thus function as a proxy of impact on sensitive habitats. Still, for 

now, monitoring effort regarding discard of non-commercial invertebrates are insufficient, and 

coverage of the IUCN Red List on marine invertebrates is limited.  

Efforts should also be made to include by-catch impacts on other marine animals than fish, such 

as marine reptiles, birds and mammals (e.g. Lewison et al. 2004). In this sense, it could be useful 

to study what risk-based approaches (e.g. Zhou et al. 2012) could bring to seafood LCA. One 

possibility could be to have separate categories for species complexes in terms of by-catch impact 

on threatened species, as argued in paper II, and link this to the landed volume of the fishery. In 

either case, future effort would also need to acknowledge the difference between impact on 

threatened species per landed kilo (which would arguably be low in e.g. pelagic fisheries) in 

relation to the potential effect on the whole population (which could be substantial). This of 

course also applies to other LCA impact categories, such as transports being of less concern than 
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the fishing phase to the total outcome for the seafood product, while the transport sector is still of 

high importance to energy requirements and emissions in society. 

Further efforts are also needed to collect and make better use of data on fuel use in fisheries. It is 

striking that anonymous records on landings per trip in the form of logbooks are available to 

researchers, and also total catch from observer data, whereas figures on merely the total fuel 

consumption per year for a vessel are much more restricted. Fuel data are routinely collected 

within the EU, as a part of the Data Collection Framework, and should in theory be available. 

However, due to confidentiality, these data are not readily available for research on a boat-to-boat 

basis. Therefore, an attempt was made in paper IV to make use of the aggregated fleet-based 

data on fuel use provided by the Joint Research Commission (JRC 2014) and study the fuel 

efficiency of the Swedish demersal trawling fleet between 2002 and 2010. The modelling 

approach, based on landing per unit effort of a certain gear and vessel size and the total fuel use 

of vessel size structured fishing segment, was coherent with other estimates of fuel use in the 

fisheries examined. Results implied an overall improvement of fuel efficiency of the Swedish 

demersal trawling fleet. Important improvements in fuel efficiency were seen following stock 

rebuilding of the Eastern Baltic cod. However, species-selective trawls were increasingly utilized, 

and these were more fuel inefficient than their less selective counterparts.  

The modelling procedure in paper IV is rather time consuming and it is impossible to estimate 

uncertainties and possible biases. There are important improvement potentials on a boat-to-boat 

basis such as vessel design (Basurko et al. 2013) that will not be accounted for in this modelling 

approach. Engine age and condition also affect fuel intensity and emissions (Ziegler & Hansson 

2003). Skipper effects on fuel intensity have also been observed in purse seine fisheries (Ruttan 

& Tyedmers 2007). As active trawling and steaming are the most energy intensive phases, simply 

reducing speed brings fuel savings (Sala et al. 2011). Still, there could be trade-offs in terms of 

potential loss of landings (Bastardie et al. 2010). Simply phrased, there are several technological 

and behavioural factors of importance to fuel intensity that is not seen in fleet data. However, 

stock status, target species and gear use may arguably be the most important factors to overall 

fuel efficiency of a fishery at fleet level (Driscoll & Tyedmers 2010, paper IV, V & VI).  
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Applying life cycle thinking in a fisheries management context  

Managers of fisheries have tended to focus on single objectives, such as status of the targeted 

stock. As a result, ad-hoc technical solutions, lacking integrated perspectives, are often in place 

(Degnbol et al. 2006). This section discusses how applying a systems perspective, such as life 

cycle thinking, could bring an advisory role to seafood management and assessment, with focus 

on European policy. 

The intention is not to provide a detailed account for how fisheries management are organised in 

Sweden and Europe. Instead, this section aims at integrating the perspectives of fisheries 

management, product policies and stakeholders in the seafood value chain.  

Stakeholders and policies addressing impacts of fishing  

Scientists 

The main role of science in a fisheries management context may be to provide and refine robust 

models for advising on appropriate fishing mortality. From an increasing knowledge base and 

evolving objectives concerning harvesting rate, there has been progress towards more sustainable 

use of fish stocks (Lassen et al. 2014). The focus is still mainly on commercial species. Even so, 

proper stock assessments are at present data intensive, and less than 20 % of the world’s fish 

landings come from fisheries with formal assessments (Costello et al. 2012). A TAC could be 

seen as a single-score index, including some extent of uncertainty, but is still influenced by a 

range of other unforeseen or not included uncertainties. In the EU, the TAC has as an example 

mainly referred to landings, not to total catch (i.e. including possible influence from discards). 

Also, less attention has been paid to interactions between species. The development of Ecological 

Risk Assessment (ERA) in Australian fisheries (Hobday et al. 2011), however, represents one 

further progress towards broader ecosystem considerations.  

At present, besides advances within natural science research, such as determining extinction risks 

of marine species (Reynolds et al. 2005) and acknowledging trophic complexity (Casini et al. 

2009), fisheries are intensively studied by several scientific disciplines. One important aspect of 

management success could be identifying factors that are important for fishermen compliance to 

rules set by managers (Jagers et al. 2012), which requires more interdisciplinary approaches to 

find sustainable solutions to fisheries. Degnbol et al. (2006) argue that disciplinary boundaries 

tend to narrow the perspectives of fisheries management, creating a tunnel vision, and therefore 

more integrated perspectives are needed. According to Brander (2010), scientists have a 

responsibility to clarify the trade-offs between different objectives to policy makers, which then 

need to be communicated clearly, as well as explore how they may best be satisfied 

simultaneously. This approach asks for scientist to shift from “what can be said” to “what can be 

done”. This is difficult, as “complex and unpredictable” are the words of scientists, whereas 

“simple and reliable” are what policymakers require. 
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Indicators are important in the science-policy interface; however, they can be intensive in terms 

of data needs. As a result, many indicators are based on general data derived from fishing 

activities, either landing or survey data. Utilizing data on landings enables studies on different 

aspects on global scales (such as Pauly et al. 1998; Pauly & Christensen 1995). Yet, this 

approach has also drawbacks such as regional differences on how abundance trends and pressures 

on biodiversity can be interpreted based on merely data on landings (paper I, Pauly et al. 2013).  

To inform policy, there have been major efforts in testing which indicators that are the most 

robust to address potential environmental impacts from fisheries, while not being influenced by 

other factors (see e.g. Rochet & Trenkel 2003, Piet & Jennings 2005, Greenstreet et al. 2011). In 

general, indicators in an Ecosystem Approach to Fisheries (EAF) could be described as 

“pressures” (technical or ecological, e.g. fishing mortality, discard rate, fleet size), as “response” 

(technical or institutional, e.g. management actions), and as “state” (ecological, e.g. abundance, 

size spectra). Most indicator development has been focused on state, but indices of both pressure 

and response are needed for management (Jennings 2005). The general conclusion has 

unsurprisingly been that there is a need for a broad range of indicators to fully address ecosystem 

impacts of fishing activities. This arguably calls for a systems perspective in order to avoid risks 

to shift environmental problems from one potential environmental impact to another.  

Policy makers 

Fish resources were for long perceived to be inexhaustible and little regulations were in place. 

There were however early signs of risks of overexploitation. A petition to the British Parliament 

was made already in 1376 with concerns expressed regarding the destructiveness of demersal 

trawling (referenced in Roberts 2007). Policies were gradually introduced, such as in the case of 

the North Atlantic: restrictions on minimum landing size (MLS) in the 1950s and total allowable 

catch (TAC) in the 1970s (Halliday & Pinhorn 2002).  

Today, it is a time-consuming task to cover all policies that address environmental impacts from 

fishing. However, they can be grouped into different categories depending on scope and 

enforcement. The most direct fishing policies are those regulating fishing opportunities, such as 

the EU Common Fisheries Policy (CFP). The prior regulation from 2002 (EC 2002) stated that it 

shall ensure: 

“exploitation of living aquatic resources that provides sustainable economic, environmental and 

social conditions” 

This was not accomplished since 88% of EU stocks were considered to be overexploited in 2009 

(COM 2009), even if the situation has somewhat improved since then (Cardinale 2011). There 

were also direct references made in the former CFP to adopt an ecosystem approach, thus 

echoing the commitments set by the CBD (CBD 2000) and the guidelines for Ecosystem 

Approach to Fisheries (EAF; FAO 2003). The interpretation of what ecosystem approaches 

implies however varies between stakeholders, as it could to some stakeholders refer to creating 
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Marine Protected Areas (MPA) or use of selective gears (Hilborn & Hilborn 2012). From this 

interpretation, some progress has been initiated in different areas, such as establishments of trawl 

free zones and by-catch mitigation of vulnerable species.  

With the newly reformed CFP (EU 2013), all fishing opportunities shall be set in accordance with 

Maximum Sustainable Yield (MSY), which is generally seen as great progress from the prior 

policy. This is however a theoretical approach in terms of sustainability as it is based on a single 

stock perspective whereas fisheries operate in multi-species systems, and may not be the overall 

most risk-averting strategy (Smith et al. 2011).  

In the reformed CFP, there are also linkages to the Marine Strategy Framework Directive 

(MSFD), a new directive aiming at creating a Good Environmental Status (GES) of coastal 

waters by 2020, with several descriptors and associated indicators related to fishing activities. 

Marine strategies should (EC 2008b):  

“protect and preserve the marine environment, prevent its deterioration or, where practicable, 

restore marine ecosystems in areas where they have been adversely affected” 

 

There are several other regional commitments and conventions related to fishing policy that focus 

more on single topics, such as The Bird’s Directive and The Habitats Directive. Besides these 

regional objectives, several global commitments and guidelines with broader scopes are in place 

such as: UNCLOS Law of the Sea, UN Fish Stocks Agreement, FAO Code of Conduct, Deep Sea 

Fisheries Guidelines, and more.  

Outside the context of more direct fishing policy, several global policies and frameworks aim at 

addressing the general protection of biodiversity from pressures, such as fisheries, and release of 

greenhouse gas emissions in order to avoid adverse environmental effects and promote 

sustainable development. Examples of these are: the IUCN Red List of Threatened Species, the 

Convention on Biological Diversity (CBD), the Convention on International Trade in Endangered 

Species of Wild Fauna and Flora (CITES) and the Kyoto Protocol.  

To fulfil all objectives set, one must ask: where does the threshold lie for an ecosystem to be 

defined as deteriorated, restored or adversely affected? If an ecosystem is affected, what are the 

prioritizations and line of action? And most importantly, what is included in the decision support 

for managers to be aware of the potential trade-offs – and what are acceptable trade-offs? 

In fisheries, a narrow focus by managers can be seen in the current conservation status of many 

marine species (Dulvy et al. 2013) and increasing vulnerability of fishing operations due to fossil 

fuel dependence (Abernethy et al. 2010). Instead, as argued by Salomon et al. (2011), objectives 

need to be clear, integrated policy tools need to be developed and operational to measure trade-

offs among all objectives. Butchart et al. (2010) also advocate strengthening and integrating 

impacts on biodiversity loss in policymaking.  
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It could thus be argued that as there is a broad range of policy commitments in place, it would be 

utterly important to include existing indicators from a conclusive set of policy objectives in an 

integrated tool that could inform all policies that have the potential to affect them. Evaluating 

their operational strengths and weaknesses (e.g. paper I and II) should therefore be a top priority 

in order to be cost effective in terms of monitoring needs, not to mention the cost of establishing 

policy objectives that are not addressed or not even relevant in practice. This could be the case 

for MTL and RLI. It might be so that as long as enforcement of policy is weak, no objectives are 

set on desired targets, and there are no operational and integrated tools to address all stressors, 

policies are but merely ambitious paperwork.  

Consumers and certification 

From a seafood product perspective, certification as a measure of sustainability has gained great 

attention in recent years (FAO 2012). The most widely used label, the Marine Stewardship 

Council (MSC), has now certified around nine per cent of the global landings (Agnew et al. 

2014). Certification conveys a message that besides stock status, wider ecosystem considerations 

have been taken regarding the product and management in place (Gutiérrez et al. 2012). Even so, 

there will always be discussions on which and how criteria have been used (e.g. Jacquet et al. 

2010). Certification schemes are broader than traditional single-stock based approaches in 

fisheries, yet, there are still missing metrics. Fuel intensity and GHG emissions are not addressed 

by seafood certification (Thrane et al. 2009, besides the Swedish organic certifier KRAV 

(www.krav.se) and the newly established Aquaculture Stewardship Council (ASC; www.asc-

aqua.org). In any case, one important aspect of certification is the improved traceability and 

assurance. Seafood products have often been found to be mislabelled (Miller & Mariani 2010), 

whereas certification has proved to have a much higher compliance (MSC 2013). 

Consumer demand can be influenced by increased awareness of short-comings of seafood 

production; it could however also contribute to less sustainable fishing practices being viable due 

to high market demand, such as the extremely high prices seen for the few remaining Atlantic 

Bluefin tuna. Levin et al. (2010) found that the MTL of seafood recipes increased over time, 

arguing that the societal preference in relation to sustainable use of the sea must be increasingly 

addressed. Apostolidis and Stergiou (2012) then argued that, based on the sustainability of on-

line recipes, it would be cost-effective to target and educate chefs in order to increase 

sustainability of consumer patterns. Retailers are also increasingly taking greater responsibility 

for what they market, with initiatives from several larger companies around the world to source 

only sustainably produced seafood; the criteria used however vary. There could also be negative 

sales figures in retail from increasing the information on the sustainability of seafood products. A 

study using a traffic-light plot at retailers, which indicated green-yellow-red seafood products, 

showed that overall less seafood was bought (Hallstein & Villas-Boas 2013). There were 

however no changes in purchase of green or red products, only a decrease in yellow seafood 

products sold. 
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If overall sustainable seafood production is sought for, there is also a need to create stronger links 

between different stakeholders in seafood production chain. From using an LCA perspective, i.e. 

minimizing resource use in all production phases, important overall improvements including the 

industry perspective may be achieved.  Post-landing aspects, such as filleting yields and product 

losses, are also important for the sustainability of seafood products as this involves loss of limited 

resources (paper VI). This aspect is not included in certification and is paid relatively little 

attention to, even if societal interest in sustainable seafood production is on the rise. The 

decisions taken by fisheries managers are also important from a product perspective, and fishing 

policy could be influenced from raised awareness of consumers, chefs and retail. However, there 

will always be a market for less sustainable options as long as there is demand and if they are 

available, which calls for effective communication. Altogether, LCA results could bring insights 

to all stakeholders in the product chain and contribute to improvements. 

The role of LCA 

The unique feature of LCA is that it focuses on products in a life cycle perspective (Finnveden et 

al. 2009). By this scope, and due to the intended comprehensiveness related to use of resources 

and environmental impacts, it is a useful tool to avoid problem-shifting (e.g. from one type of 

environmental impact to another or from one production phase to another) which certainly 

applies to fisheries (paper VI).  

Addressing policy makers and scientists 

The studied indicators (paper I, II) are simple and thus have limitations in terms of applicability. 

A composite indicator such as VEC may be limited in terms of usefulness for managers of 

fisheries or conservation biologists. For management purposes, use of trophic indicators could 

instead provide a paradigm shift in fisheries, and they are already implemented to some extent in 

some fisheries (Longo et al. under revision). There are also objectives set within the MSFD 

related to the food web structure component of Good Environmental Status (GES) (EC 2008b). 

Still, it is not clear how trophic interactions can be understood in relation to ecosystem 

functioning and productivity, and how these relationships could be utilized on a quota setting 

basis. One example could be, as suggested by Smith et al. (2011), to set lower reference points to 

MSY of lower trophic level species in order to allow for higher abundances left in the ecosystem, 

as they are important prey items to higher trophic level species such as birds.  

Navigating trade-offs between multiple objectives in policy is not straightforward, and life cycle 

thinking could in this sense build bridges. In comparison with more risk based assessments, LCA 

has the advantage of being a quantitative tool. This makes it easier for managers and politicians 

to set objectives and measure progress towards the desired state. However, one drawback is 

coverage of LCA methods of relevance to fisheries in terms of potential ecosystem effects that 

could be applied in a consistent manner. It might even turn out to be impossible to develop such 

indicators. Still, from applying a systems perspective on fisheries, results could be used as an 
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integrated decision support. In this sense, LCA based methods can quantify trade-offs between 

different priority settings of objectives within a policy framework, potentially using metrics 

proposed within other policies such as the MSFD. Capture fisheries would also benefit from fuel 

use being taken into consideration in an early step, e.g. when allocating effort and quotas. This is 

not only beneficial to the environmental profile of the fishery, but could also involve economic 

benefits to the fishery (Abernethy et al. 2010).  

The Maximum Sustainable Yield (MSY) concept is strongly influencing European fisheries 

management, but a strict focus on FMSY might divert the attention from the true sustainability of 

the fishery. The Nephrops stock is as an example fished at FMSY according to the latest ICES 

advice (ICES 2013), despite the trade-offs shown in paper III. Also, the Eastern Baltic cod 

fishery is fished as FMSY according to ICES. However, Svedäng and Hornborg (in review) 

showed that the combination of fishing effort (F) and size selection (Lc) in place for the Eastern 

Baltic cod fishery have had dire consequences for both ecosystem functioning and the industry, 

as it has induced density dependent growth and lower individual growth potential. By 

acknowledging the present situation in a broader perspective, beyond the FMSY target, such as 

including seafloor impact, fuel use, greenhouse gas emissions and size structure of the stock, it 

was found that setting a lower objective of yields and promoting stronger effort cuts and less 

selectivity would be more economically beneficial to the fishing fleet while being more 

ecologically risk-averting (paper V). Also, major overall improvement potentials could be shown 

with little compromises in yield. This is arguable a more sustainable development of the fishery, 

and indicative of that more metrics than FMSY is needed to address sustainability of a fishery. 

Even if there are policies covering all environmental impacts of fisheries, no one is at present 

arguably comprehensive, integrated and strong enough in its enforcement or objective to result in 

overall sustainable development of fisheries, at least in a European context. In order for different 

policy decisions to be better integrated, and making broader assessments of fisheries a standard 

procedure, clearly defined management objectives in a broader perspective than covered by the 

current framework is needed. So far, fuel use in fisheries has as an example not been considered 

by fisheries managers. Following the G-20 agreement in Pittsburgh in 2009, to “phase out and 

rationalize over the medium term inefficient fossil fuel subsidies”, this has however started the 

OECD to initiate further studies of fuel use and the influence of management in fisheries (Martini 

2012). In the newly reformed CFP, fuel use considerations are in fact mentioned on several 

occasions (EU 2013), but it is yet to be seen how this could be incorporated in management. 

From the upcoming obligation to land all catches, selective fishing practices of both size and 

species are additionally incentivized, and these management measures would benefit from 

applying life cycle thinking (paper III, IV and V). In addition, transparency of management 

decisions in fisheries has also been identified as a “sustainability bottle-neck” of effective 

management in order to not be sensitive to e.g. harmful subsidies (Mora et al. 2009). LCA in this 

sense represents a tool that is both transparent and integrated, thus allowing decision support 
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identifying trade-offs between e.g. fishing opportunities, local conservation priorities and GHG 

emissions and could integrate different policies into one framework.  

Addressing consumers, retail and certification 

There are several applications of LCA as a decision support tool in industry and policy (paper 

VI). For example, LCAs form the basis for eco-labels type III, Environmental Product 

Declaration (EPD; ISO 2006c). This format conveys non-aggregated information concerning all 

studied impact categories and is less directed towards consumers. In comparison, eco-labels type 

I such as MSC, weight all impacts considered into a single metric, i.e. if it can be certified or not, 

and is in general not based on LCA. However, it may be useful also for certifiers of eco-labels of 

type I to consider LCA results as a quantitative or qualitative option to follow up their results. 

This is to some extent done by the Swedish label KRAV (Thane et al. 2009). 

It has been argued that as threats to biodiversity are facilitated due to complex trade routes, the 

biodiversity threat of certain products needs to be better integrated into sustainable supply chain 

certifications and consumer labelling (Lenzen et al. 2012). In the LCA related UNEP/SETAC 

initiative, there is also a call for a consensus regarding the use of environmental impact category 

indicators in global supply chains, however, not necessarily state-of-the art LCA (Valdivia et al. 

2013). Altogether, this results in pros and cons of using VEC in seafood LCA. As an impact 

category in LCA, VEC is not as straightforward as global warming potential, but is still highly 

relevant. It is therefore yet to be seen how and if VEC could be consistently applied. In theory, 

VEC could be utilized as information on a single attribute of environmental objectives, such as 

“dolphin-safe” (Thane et al. 2009). In this case, VEC could be utilized as a label “no threatened 

species caught”, given that data are available both in terms of discards as well as threat status. In 

the case of PPR, trophodynamics is not straightforward in terms of what is a positive or negative 

trend and is of less relevance to consumer information. 

Building bridges between product policies and fisheries management 

The European Commission considers Life Cycle Assessments to provide the best currently 

available framework for assessing the potential environmental impacts of products (EC 2003, EC 

2014a). In Europe, there are therefore several initiatives to address sustainability of different 

products with strong links to LCA methodology, such as the Product Environmental Footprint 

(PEF) (EC 2014c) and the Integrated Product Policy (IPP) from 2003 (COM 2003). There has 

also been a policy decision within the EU to decrease environmental impacts of consumption, 

with LCAs forming the base for evaluation (EC 2008a). LCA is also seen as an important tool to 

address the implementation of the EU Thematic Strategy on the Sustainable Use of Natural 

Resources (EC 2014b).  

Still, all these policy discussions do seem to apply to all kinds of products except for seafood, 

since they could be seen to operate apart from the Common Fisheries Policy (CFP). No initiatives 

have been taken by fisheries managers to apply a life cycle approach to fishing activities and 
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seafood supply chains. It is most peculiar that these two areas are seen as separate entities, given 

the fact that fisheries management has a strong influence on the overall resource use and impacts 

of the seafood products (paper VI). Acknowledgment of LCA results in fisheries management 

objectives could therefore be an important link to existing product policies. 

Thus, even if LCA based evaluations of fisheries management have shown some important 

improvement potentials (paper VI), LCA in a fisheries management context must still be seen to 

be at a research level. Its application as a tool for the science–policy interface is yet to be 

implemented. The synthesis of existing and additional data enables a new perspective. From 

adding new data, or existing data not formerly included, in combination with new, or borrowed, 

indicators, life cycle thinking in fisheries may have a potential to contribute to a new and 

improved management regime. As fisheries make use of both renewable and finite resources, i.e. 

fossil fuel and fish resources, it could be argued that there is a need for co-management. This is 

where a systems perspective might prove to be useful.  

Promoting the best available technology in the broader perspective 

It could be argued that if managers of fisheries would succeed in maintaining stocks at high 

abundance, this would also result in higher LPUE and thus fuel efficiency. Still, as many stocks 

are under rebuilding, the path chosen towards stock recovery also influences fuel efficiency, and 

using different gears for the same species also offers improvement potentials. Identifying trade-

offs in the broader perspective, such as fuel inefficiency in the Swedish trawl fisheries for 

Nephrops (paper III), is an example of when a life cycle perspective can quantitatively illustrate 

problem shifting originating from different prioritizations of objectives. Fuel inefficiency could 

as an example imply biodiversity threats in distant areas from extraction of fossil fuel resources 

(Butt et al. 2013), not to mention increased contribution to climate change which among other 

effects feedbacks into the seafood production itself (Branch et al. 2013).  

The extra seafloor area impacted per kilo landing found in paper III is more complex to 

evaluate. The effort is highly aggregated to certain areas and it is difficult to draw any 

conclusions on a possible additional benthic community effect. If enough entirely trawl-free 

zones were established, and knowledge on where exactly fishing takes place and the distribution 

of benthic habitats, seafloor impact could arguably be compared to land use in agriculture, as 

agriculture also transforms habitats in order to produce food. Otherwise, comparing farming 

systems and seafloor disturbance is problematic, as man-made and natural ecosystems are 

completely different entities. In this particular case study (paper III), the species-selective grid 

fishery is allowed in areas intended to be trawl-free zones. Thus, some of the extra area impacted 

due to grid trawling would thus not have occurred, if the grid had not been introduced, as the 

effort restrictions from the EU cod recovery plan would not have allowed continued non-selective 

trawling. This decision would have diminished overall fuel use and associated emission, besides 

the seafloor area swept, however with risks of not catching the allocated quota for Nephrops. 
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Instead, all Swedish trawl fisheries targeting Nephrops are now obliged to use the species-

selective grid. It could however be argued whether a slightly modified business as usual 

management, i.e. forming a single-species fishery with sustained trawling effort for Nephrops, 

could be part of a sustainable development of Swedish fisheries for the future. There are 

ecological and socio-economic risks with leaving fishermen dependent on a single species or 

stock, in ecosystems altered from depletion of fish stocks (Howarth et al. 2013). There is as an 

example a viable creel fishery for Nephrops in the area, with less overall impacts compared to 

demersal trawling (Ziegler & Valentinsson 2008). It would thus be appropriate to investigate to 

which extent the Nephrops quota could be allocated to this fishery instead. Such a transition 

would however benefit from applying an LCA perspective in order to avoid problem-shifting.  

There may also be some interesting hybrids between stock assessment procedures and the broader 

framework of applying a systems perspective, enabling an integrated assessment of sustainable 

development in the broader context of a fishery as illustrated in the study of the Eastern Baltic 

cod fishery (paper V). LCA could in this sense be seen as a complement to stock assessments: 

once a fishing opportunity is discussed, applying a systems perspective could complement with 

information regarding broader effects beyond target stocks, such as fuel use, seafloor area 

impacted and quantitative by-catch conflicts.   

However, this calls in general for data from fisheries being made more available for researchers, 

such as trawl effort and fuel use of individual fishing boats (Hinz et al. 2013, paper IV). With 

the integrated perspective, effort and quotas could tentatively be distributed to the fishermen that 

fish in the most overall resource efficient and environmentally responsible manner. This data 

collection could be of use in post-landing chain perspectives, in the form of a quantified 

environmental performance to monitor and follow up by certification and seafood suppliers. 

A brief note on selectivity 

The rationale behind allowing small fish to escape to spawn has been questioned, but is a 

paradigm in fisheries management to avoid recruitment overfishing.  Halliday and Pinhorn (2002) 

argue that regulation related to selectivity and setting thresholds for minimum landing size (MLS) 

is more of an ancillary measure that aims to affect exploitation pattern, not rate. Too often 

regulation to reduce capture of small fish is used as an insufficient substitute instead of the 

necessary effort cuts. This is clearly shown in paper V, when stronger effort cuts and lower 

selectivity is needed to restore the Eastern Baltic cod productivity that is currently hampered by 

the selectivity induced density dependent growth (Svedäng & Hornborg in review). This would 

also be a beneficial development in the broader perspective. 

It has been argued that selective targeting of species, stocks or sizes could be detrimental to 

ecosystem structure and function (Garcia et al. 2012). Also, as demersal fisheries most often 

catch a range of species, the optimal mesh size will inevitable vary between species caught in the 

same haul. As making demersal trawls less effective has trade-offs in terms of fuel efficiency per 



44 
 

landing (paper III), it may be argued that selective demersal trawls are merely a short-sighted 

disguise of overcapacity. From an LCA perspective, stronger effort cuts with a catch-all-land-all-

principle would be more beneficial. 

Governance towards sustainable development of fisheries: what is it about?  

No food production comes without any impact. Important questions related to the sustainability 

of different food items would relate to what characterizes an impact, how it can be measured and 

what should be considered by the management system. One important objective that is most often 

lacking for seafood production from capture fisheries is what the desired state of marine 

ecosystems is? It has been argued that the simplified ecosystems induced from fishing could be 

compared to agriculture on land and are necessary to keep up with demand; however, several 

case studies have clearly shown that these altered marine ecosystems are far more vulnerable, and 

rather threatening than promoting food security (reviewed in Howarth et al. 2013). Instead, in 

relation to other food production systems, if sustainable development in a broader context is 

sought for, questions should relate to what an acceptable level of disturbance is in fisheries 

compared to agriculture – and defining which effects are irreversible.  

 

LCA could synthesize and make more use of already collected data to provide an integrated 

decision support and link fishing policy with broader objectives, such as halting biodiversity loss 

and reduce greenhouse gas emissions. Many of the formerly common commercial species in 

Swedish waters are as an example now considered to be threatened with extinction by the 

Swedish Red List (paper II). Protecting biodiversity one species by another should therefore not 

be seen as isolated problems, but important tasks for the structure and function of whole 

ecosystems. However, according to Hilborn and Hilborn (2012), threat status for marine fish is 

linked to high and continued fishing pressure. They argue that if stocks were protected by 

managers from depletion, concerns related to biodiversity would be less for fisheries compared to 

mono-cultures on land. Still, there is an obvious conflict between use of natural resources and 

impact on threatened species which may require conservation efforts, as illustrated in paper II by 

threatened fish species being discarded. Also, just because a stock is fished in relation to a 

preferred biological reference point, it does not imply that threats to ecosystem structure and 

function are non-existing, as illustrated in the Eastern Baltic cod fisheries (paper V).  

Management will always involve prioritizations of different objectives. Pauly et al. (2002) tested 

future scenarios for fisheries based on different plausible prioritizations of objectives: markets, 

security, policy, sustainability. They found that many of the investigated fisheries at that time 

optimized nothing of benefit to society, and it was questioned how long they would be around. 

Hilborn (2007) however argued that it is therefore mainly a matter of political will, as we have 

the tools to bring overfishing under control. Progress has also been made in many regions in 

recent years towards decreasing fishing mortality and rebuilding of stocks (Worm et al. 2009).  
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This also brings on a great debate, where fisheries have split society and scientists into two 

camps: protectionists on one side and advocates of need for food and employment on the other 

side. Simply phrased, different stakeholders could arguably be seen to have different priority 

settings:  

 Fisheries biologists focus mainly on fishing mortality of single stocks of commercial 

species, most often from data rich models.  

 Conservation biologists focus on protection of biodiversity, most often under data-limited 

circumstances.  

 Managers of fisheries may put an additional emphasis on profitability of the sector and 

employment opportunities besides ecological implications.  

 To the fishing industry, long-term economy and stable conditions for production is a pre-

requisite to the sector; however, quotas are set on a year-to-year basis and conflicts are 

prevailing between single fishermen perspectives versus the fishing community as a 

whole. 

 Certification schemes have an emphasis on broader ecological aspects of a certain fishery 

than the single stock advice, but not all impacts are covered.  

 Non-governmental organizations (NGOs) address environmental impacts of fisheries, 

trying to influence policy and human behaviour using methods such as producing 

consumer guides, lobbying, direct action and more. 

 Consumers and retailers may want to know more about how their products were produced 

and desire assurance of what is claimed, price is also important. 

If better governance of fisheries is sought for, establishing common grounds should therefore be 

seen as important. In this sense, seafood LCA could build bridges between different stakeholders 

by providing a scientifically based, standardized and quantified basis for comparison. Carbon 

footprints of seafood, i.e. a simplified LCA based assessment focusing specifically on greenhouse 

gas emissions, are not currently addressed by managers of fisheries. It could then be argued that 

managers consider their role to be outside of the seafood production perspective, in spite of the 

important outcome of the product based on their decisions. In fact, LCA may not be adopted in a 

fisheries management context until managers of fisheries acknowledge their role in creating an 

overall sustainable development of the capture fisheries sector and subsequent seafood supply 

chains.  
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Conclusions 

The work done in thesis has advanced the methodological framework of seafood LCAs by 

presenting indicators that could be useful to add to the existing framework of seafood LCAs. 

More specifically, ecosystem pressures from discards in terms of resource waste (PPR) and 

biodiversity threat (VEC) have been studied. Still, there is further work to be done to refine the 

metrics suggested, as well as methodological development to address other areas of fishing 

impacts such as seafloor disturbance. There is still much to learn about ecosystem properties and 

function and how to find suitable metrics related to imposed pressures while they are still 

meaningful for their intended purpose. Even so, for research to be operational in a policy context, 

simple indices are needed.  

Life cycle thinking as an integrated decision support to form an overall sustainable fisheries 

management has been tested in Nephrops trawling on the west coast and demersal trawling for 

Eastern Baltic cod. Trade-offs were identified in the broader perspectives for both, advocating for 

using more metrics than fishing mortality on the targeted stock to assess the sustainability of the 

fishery. In the Eastern Baltic cod fishery, there were environmental and economic benefits of 

setting a lower objective of yield. Even if overall fuel efficiency in Swedish demersal trawl 

fisheries has improved in parallel to stock rebuilding, species-selective demersal trawls are 

increasingly promoted and are more fuel inefficient per landing due to lower catches. Sorting 

grids in crustacean trawling may be important for protecting vulnerable fish species. Even so, due 

to trade-offs in the broader perspective, some grid trawling practices could be seen as short-

sighted measures to mask over-capacity. From an LCA perspective, stronger effort restrictions 

and a catch-all-land-all principle, or change of gears, represents improvement potentials.  

 

The benefit of life cycle approaches in comparison to risk based methods is that it is a 

quantitative tool and applies a systems perspective. Drawbacks involve data intensity and lack of 

comprehensive assessment methods within the framework. Even so, from a policy perspective, 

there are several interesting gaps where the integrated perspective may prove to be a valuable 

link. This could be in the form of hybridization with other assessment methods or from further 

methodological development within LCA.  

 

Given the importance of fisheries management to the total resource use of the seafood product 

under its life cycle, improving the fisheries’ performance would provide great improvement 

potentials. Seafood LCA as a fisheries management tool is however still more at a conceptual 

than operational level. Even if LCA is seen as an important tool from a product perspective, no 

fisheries management system has yet applied this perspective. It could however be used to 

evaluate a quota or a total fleet effort, depending on which questions that are asked by managers. 

This thus requires, among others, that managers of fisheries acknowledge their role in seafood 

production.  
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If overall sustainable development of the seafood sector is desired, integration of various 

environmental objectives also needs to improve. Researchers from various disciplines are at 

present convincingly well describing the path towards collapse with different lines of reasoning, 

and there is no lack of policies to address every aspect in isolation. We do have the capacity to 

overfish, and there are undoubtedly still short-sighted visions allowing biodiversity loss and fuel 

inefficiencies over production loss. However, managing a broad range of impacts, as well as 

acknowledging a broader range of policies which address them, involves an integrated decision 

support. Life cycle thinking could in this sense be useful in order to foster an overall sustainable 

seafood production.  

 

Altogether, there is a need for management action in order to minimize trade-offs from seafood 

production, and promote overall sustainable development. This requires, among others, using 

integrated perspectives on how to promote sustainable use of resources in the broader 

perspective. Maybe, a new concept that could be called Ecosystem and Life Cycle Approach to 

Fisheries (ELCAF)! 

 

Future outlook 

The most important future work involves more direct collaboration with policy makers in order to 

identify how LCA best could be operational as a policy tool. 

In terms of methodology, further development of the PPR concept is needed and may also 

involve testing new approaches to trophodynamic indices. This work could include utilizing size 

based metrics, as these have been shown to better capture fisheries-induced changes in 

community structures than changes in trophic levels. Doing so, the impact on target species 

would also be assessed in a broader sense. It would also be most interesting to follow the 

development on how trophic indicators could be applied in a management context and how they 

could be used for optimizing and mitigating effects of seafood production from capture fisheries.  

It would also be interesting to include comparisons with farmed seafood, given the importance to 

global seafood production. It would be most interesting to apply the systems perspective to study 

the trade-offs and shifts of environmental impacts from requiring different amounts of PPR, land- 

or seafloor use, toxicity from antifouling, etc. 

Another interesting research topic to follow up on is if and how LCA methodology could link to 

ecological risk assessments of fisheries (Hobday et al. 2011). In this sense, it would be interesting 

to develop indicators for encompassing incidental catch of other marine animals, such as 

mammals and birds, and possibly refinements of seafloor impacts in seafood LCA.  
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