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Abstract

Spin torque oscillators (STOs) are magnetic nano-devices in which strongly
non-linear magnetodynamic phenomena can be excited by current. In this
thesis, we study some of these phenomena by means of micromagnetic sim-
ulations, analytical calculations, and electrical characterization. Three main
subjects are discussed:

1. External perturbations, which can induce synchronization and mod-
ulation. In the former case, STOs are shown to exhibit an under-damped
or non-Adlerian behavior, defining a minimum synchronization time.
For the latter, slow external sources can induce the so-called non-linear
frequency and amplitude modulation, from which the modulation band-
width is defined. Both perturbations can be combined for the techno-
logically relevant case of synchronized and modulated STOs. It is shown
that regimes of resonant and non-resonant unlocking exist.

2. Multi-mode generation of STOs is described by a novel analytical
framework. In particular, the generation linewidth is calculated, and
it is shown to be intrinsically related to the coupling between multi-
ple modes. Mode coexistence is found to be analytically possible and,
further, observed experimentally and numerically. Electrical characteri-
zation of in-house fabricated devices confirms the analytical predictions
and suggests the possibility of fine-tuning and controlling spin wave
propagation at the nanoscale.

3. Topological droplets are numerically shown to exist when the STOs
are patterned into nanowires. The following droplet modes have been
found: a non-topological edge mode that is attracted by the physi-
cal boundaries and increases its footprint to satisfy the damping /
spin torque balance, and a topological (chiral) quasi-one-dimensional
droplet that can be considered as the dynamical counterpart of breath-
ing soliton-soliton pairs.
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1

Introduction

The phenomenon of magnetism has been at the heart of mankind’s techno-
logical development and physical understanding since magnetite was found
thousands of years ago. Although it is difficult to attribute its discovery to a
specific population, the term “magnetism” derives from the name of the Greek
region of Magnesia, which had abundant quantities of magnetite. Since then,
magnetic materials have been part of human life. However, a major leap to-
wards a modern world was taken when the magnetic compass was introduced,
revolutionizing sailing and improving trade and cultural exchange.

From a physical point of view, the understanding of magnetism began in
1820, when Hans Christian Oersted observed the motion of a magnetic needle
close to a conducting wire. The main message behind Oersted’s studies was
that both the electric and the magnetic fields were related to the particles’
charge. This fact lead to the development of electromagnetism, summarized
in the celebrated Maxwell’s equations, and the understanding of physics from
a new perspective.

The physical understanding of magnetism ever since has been intimately
related to some of the most exciting technological developments in the last
century. In the interest of this thesis, we primarily find magnetic materials used
in data storage as we know it today, starting from the 1024 bits magnetic-core
memory introduced in 1950, up to the discovery of the giant magnetoresistance
effect, which marked the beginning of the so-called field of Spintronics [1,
25] and allowed a dramatic miniaturization of hard drives around 1997. In
addition, magnetism finds many more applications, from electric motors in
toys to hydroelectric generators, from magnetic strips in fridge stickers to
credit card security.

The richness of magnetic applications and the relatively recent understand-
ing of magnetism is promising for new and exciting developments in the near
future. One of the approaches that has attracted the interest of the scientific
community in the last two decades is the nanoscopic excitation of magneti-
zation dynamics. In contrast to the well-established logic devices based on
two magnetization states, magnetization dynamics offer a continuum of states
characterized by frequency and phase.

The onset of magnetization dynamics at the nanoscale is possible by the
spin transfer torque (STT) effect predicted by Slonczewski [122] and Berger [6]



in 1996. The STT effect reveals that the spin of electrons can transfer momen-
tum to the magnetization of a magnetic material and thus, at high enough
current densities, induce magnetization dynamics.

The STT effect and the excited dynamics are strongly non-linear. Such
nonlinearities have led to the observation of markedly different dynamical
modes depending on the materials used, nano-patterning geometries, magni-
tude and direction of external fields, and current magnitude and polarization.
This extensive range of magnetodynamics is observed in devices referred to as
spin torque oscillators (STOs).

Generally, steady magnetization dynamics spanning several orders of mag-
nitude can be excited in STOs. For instance, magnetic vortex-based STOs
usually generate in the range of 100 MHz to 1 GHz, magnetic tunnel junc-
tions from 1 GHz to ~ 10 GHz, and metallic STOs from 10 GHz up to 60 GHz.
Due to this wide selection of frequencies, STOs have usually been envisioned
as devices useful for communication applications and as signal generators,
where high frequencies are desired without compromising the miniaturiza-
tion process, and, more recently, as magnonic and neuromorphic building
blocks [11, 78]. However, STOs generally suffer from a very low output power
(approximately three orders of magnitude below the minimum pWatts require-
ments) and a very large linewidth. In order to improve these characteristics, a
significant amount of research has been devoted to understand the origin and
properties of the excited dynamics.

The STO dynamical characteristics can be improved, for instance, by re-
fining the nano-fabrication process and carefully choosing the materials and
structure for the STO. In this thesis, however, we focus on a more fundamen-
tal approach relying on the STO’s interactions and the understanding and
control of strongly non-linear dynamics.

The original work performed in this thesis can be divided into three main
topics:

1. External perturbations: The interaction between the STO and ex-
ternal perturbation leads to technologically relevant effects. Injection
locking and synchronization are features of auto-oscillatory systems that
can potentially lead to both linewidth reduction and power enhancement
and are currently some of the proposed solutions to make STOs tech-
nologically feasible. Modulation is of fundamental importance in com-
munication applications and STOs can potentially reduce the footprint
of transceivers and microwave circuitry. The focus here is on the effect
of strong nonlinearities on these concepts leading to the identification
of figures of merit and limitations, which have been determined using
numerical and analytical methods.

2. Multi-mode generation: The strong nonlinearity of STOs sets them
apart from linear electronic oscillators particularly due to their multi-
mode generation. Although STOs have been considered single-mode os-
cillators, we show here that this is generally not the case. Indeed, multi-
mode generation is responsible for the recently observed mode coexis-
tence. By means of simulations, analytical calculations, and experiments



we have achieved a good understanding of the underlying dynamics,
which allows us to control their characteristics at the nanoscale.

. Topological droplets: These structures have attracted the attention of
scientists in recent years due to the experimental observation of magnetic
dissipative droplets and Skyrmions. In the spirit of nanoscopic applica-
tions, here we study the effect of physical confinement on dissipative
droplets from a numerical and analytical perspective, leading to the de-
scription of novel topological modes that potentially have applications
in the fields of applied and fundamental physics.






2

Magnetism

2.1 Free electron magnetism

Since the discovery of the phenomenon of magnetism, its origin has been ex-
plained by several arguments, usually involving the physical understanding of
the time. The current understanding of magnetism can be linked to quantum
mechanical principles. From this perspective, new effects can be explained, as
in the case of the spin transfer torque effect, which is of fundamental impor-
tance in this thesis. This section offers an overview of the origin of the relevant
magnetic properties covered in this thesis.

2.1.1 The relativistic Hamiltonian

In a quantum mechanical framework, particles are represented by wavefunc-
tions, |¥), obeying Schrodinger’s equation. In the relativistic limit, when the
particles approach the speed of light, Dirac proposed a four-component equa-
tion with a Hamiltonian expressed as

H:ClOéDﬁ+ﬁDmCl2, (21)

where ¢; is the speed of light, p and m are, respectively, the momentum and
mass of the particle, and ap and Bp are 4 x 4 matrices satisfying the identity
matrix relation ap? + Bp? = 1. This Hamiltonian introduced the concept of
a novel particle with negative energy, the positron. Although ground-breaking
for fundamental physics, in this thesis we are interested in the effect of an
electromagnetic field on such particles. Unfortunately, the Dirac Hamiltonian
couples both positive and negative energy particles making a transition to a
non-relativistic limit impossible. A solution to this problem was formulated
by Foldy and Wouthuysen [47], showing that a canonical transformation could
both decouple and represent the Dirac particles with new, average, operators
that are directly equivalent to non-relativistic operators. In particular, they
introduced the concept of mean position and mean velocity, both following
the classical interpretation.

In order to introduce the effect of an electromagnetic field on an electron
of charge e, the Dirac Hamiltonian is expanded with the vector and scalar



potentials, respectively, A and ¢g, reading
H = ciap (5~ |e|A) + Bpme} — |e|¢p. (2.2)

The introduction of the electromagnetic field precludes the use of the
canonical transformation introduced by Foldy and Wouthuysen. However, the
same authors proposed an expansion series of canonical transformations ap-
proaching the exact solution to an order of 1/m. For relatively weak fields (of
the order studied in this thesis) an expansion up to the second order yields
the positive-energy Hamiltonian

1 e -,
2 Lo a2 Helel
H = mq |6|¢E+2m (7'~ le|A) o © H
le] 2o le|n? =
~a® B 1elA) + 5 55V - E, (2.3)

where we have used the definitions of the electric field E = —|e|Ver — A /dt,
the magnetic flux B= ,uoﬁ =V x A satisfying Maxwell’s equations, and the
Pauli matrices o originating from the Dirac matrix ap. The Hamiltonian of
Eq. (2.3) contains the main ingredients to describe the magnetic phenomena
on a free electron. In the following we discuss each term of the right-hand
side (RHS) of Eq. (2.3), neglecting the static contribution of the relativistic
and potential energies, respectively, mcl2 and |e|¢g, which are considered to
be reference levels.
e The third term provides important information on the action of a mag-
netic field on the electron. Under the assumption of a uniform external
field and Coulomb gauge, V - A = 0, this term can be expanded as

L. o D" molelm o malel? a2

(- lelA)’ = =+ B 14 Be (er) L (2.4)
where we have used A = po(H x 7)/2 and 7 x § = I describing the
orbital moment of the electron, where 7 is the radial distance from the
nucleus. This expansion leads to three terms representing, respectively,
the kinetic energy, the paramagnetic interaction between a field H and
the orbital momentum, and the generally weak diamagnetic term.

e The fourth term directly describes the interaction between the field H
and the spin of the electron. This term will eventually lead to one of the
strongest contributions in magnetism, the Zeeman energy.

e The fifth term is more complicated. We assume a stationary field so
that V x E = 0 by virtue of Maxwell’s equations and that the vector
potential has spherical symmetry, as expected from a point charge. It is
then possible to express this term as

e] . le] 10V
CE(—le|A) = — Rl
4m2020 (P lel4) 4m2c2 r Or

o-FXp=—(o0-1 (2.5)

The simple final expression indicates the interaction between the elec-
tron’s spin and orbital momentum, known as the spin-orbit coupling.
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In other words, the spin of the electron is affected by its own motion.
This effect is fundamental in the description of the magnetocrystalline
anisotropy and energy dissipation, as discussed later.

e Lastly, the sixth term is known as the Darwin term and represents the
fluctuation of the electron’s position in the Dirac representation, or zit-
terbewegung. This is caused by the odd operators and hence coupling
to negative energy particles that do not allow an arbitrary precision
of the position operator. The exact canonical transformation proposed
by Foldy and Wouthuysen eliminates this problem by defining the new
mean position operator, where the zitterbewegung is averaged out. In the
following discussion, this term will be neglected.

The above terms can be rewritten in the Hamiltonian of Eq. (2.3) in order

to emphasize the effect of an electromagnetic field on a free electrons as

) 2,2 2
_r _tB . H L
H= 2o =Ll (4 0) - o + oo 1+ B (er) . (2.6)

where we use the Bohr’s magneton pp = |e|h/(2m).

2.1.2 Magnetic moment operator

In order to probe the free electron properties derived in the previous section,
an appropriate operator must be defined as is customary in the quantum
mechanical framework. By use of Maxwell-Faraday’s equation, it can be shown
e.g. Ref. [138], that the work functional is related to the magnetic moment as
6bW = 0F = —ﬁMaﬁ leading to the relation

oE

(i :VSM:—i_,,
129,74 of

(2.7)

where E is energy and we define the magnetization M as the magnetic moment
per unit volume V. In order to relate Eq. (2.7) to a quantum mechanical
framework, it is possible to differentiate Schrodinger’s equation with respect
to field

AR 2.8)
OH

(37{3}3
oH 0H

)|\Il>+(’HE)

Performing the average by adding the bra (V| and rearranging Eq. (2.8),
we obtain
OH oF ov
V| — V) — (V| —=|V)=—V|(H—-—F)|— 2.9
( ‘E)H' ) <|8H|> (W ( )|8H> (2.9)
At this point we note that the energy is not an operator so that (V| f E|U) =
fE, where f is any operator on E. Moreover, due to the fact the the Hamil-
tonian is Hermitian, we can write

OH OF ov *
02wy - 22 - <<aﬁ| (H - B) |\P>) (2.10)
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The second term on the left-hand-side of Eq. (2.10) is ~V,M from
Eq. (2.7). The right-hand side term is simply zero since (H — E)|¥) = 0
by definition. Consequently, we are left with the equality

v = —w) 2% 1wy = —(w M. (2.11)
OH
The magnetic moment operator closes the gap between the quantum
mechanical observable and the macroscopic magnetization obtained from
Maxwell’s equations. Furthermore, it relates the Hamiltonian Eq. (2.6) to
a macroscopic observable suggesting that the spin and angular momenta as
well as the spin-orbit coupling are manifest in a classical framework.

2.2 Magnetism in transition metals

In the previous section, the interaction between a free electron and an electro-
magnetic field was derived from the Dirac’s relativistic Hamiltonian. Further-
more, it became apparent that the same Hamiltonian could be mapped into
a macroscopic variable, the magnetization vector M , by an operator acting
on the wavefunctions in a unit volume. However, a macroscopic unit volume
is composed by a large number of atoms, each of them composed of multiple
electrons. Such is the case of the 3d transition metals of interest in this work:
Fe, Ni, and Co. In the following sections we review the magnetic consequences
of such a complex system both from an atomic and a macroscopic perspective,
which allows us to define an approximate model for the magnetic Hamiltonian.
A complete review on this complex subject can be found in Ref. [127].

2.2.1 Electronic localization

The 3d transition metals have an electronic configuration where shells are
filled up to the 4s shell while the 3d shell is half-filled. By virtue of Pauli’s
exclusion principle, such half-full 3d shell possesses a net magnetic moment,
as the electrons have the same spin and different orbitals in order to reduce
the energy by antisymmetrization of their wavefunctions. Remarkably, the
3d electrons are subjected to an attractive Coulomb potential and a repulsive
kinetic potential leading to a well-defined charge density in the atom, as shown
in Fig. 2.1. In other words, the 3d electrons are localized at a given distance
from the nucleus. A similar situation is found in the rare-earths in which the
4f shell is strongly localized.

2.2.2 Band structure

In a macroscopic solid, the electron structure described above is further per-
turbed by the presence of other atoms. A powerful tool to study the con-
sequences of such inter-atomic interactions is the band theory of solids. In
band theory, the core electrons —the Ar structure for 3d transition metals—
are assumed fixed, while the valence electrons are free to move in momentum

8



[\
(=}
T
[9%]
[=1
T

Charge density
S

s
ot |

1
r(A)

Figure 2.1: Charge density of the 3d, 4s, and excited 4p electrons in a transition
metal atom similar to Fe as a function of the distance from the nucleus 7. The
3d electrons are most likely to be found close the nucleus due to energy balance
between the Coulomb and kinetic potentials (Adapted from Ref. [127]).

and energy space, i.e., to physically move around the solid or be excited to
a higher energy orbital. Metals are solids which happen to have a continuous
band structure in contrast to semi-conductors and insulators whose valence
band lies a few eV below the so-called conduction band, thus defining an en-
ergy band-gap [4, 36]. The continuous band structure of metals precludes a
distinction between valence and conduction band and instead, electrons fill
the available bands up to the Fermi energy, Er. The number of electrons at
any particular energy is visualized and measured as a density of states (DOS).

When the magnetic moment of the atom is taken into account, the DOS of
the 3d transition metals exhibit an energy splitting between the two available
spins, as shown in Fig. 2.2 for Fe, Co, and Ni. This can be attributed to the
atomic bonding for a given lattice structure, as in the case of calculated band
structures based on density functional theory [127]. In 3d transition metals,
such a splitting occurs about Ep, so that the band with lower energy, or
majority band (blue), is more populated than the higher energy, or minority,
band (gray). The majority band hence defines a preferential spin orientation
in the material leading to a ferromagnetic ordering, which is the basis of the
Stoner model [126]. It is noteworthy that the magnetization orientation is
anti-parallel to the majority band by definition, as inferred from Eq. 2.11.
Additionally, 3d electron states in transition metals are not fully occupied
at the Fermi energy, suggesting that these electrons posses a de-localized or
itinerant character in contrast to the localization discussed in the previous
section. For this reason, 3d transition metals are a complex system to study,
where both localized and itinerant electrons must be taken into account in
different scenarios and approximations.

2.2.3 Exchange coupling

The two models described above, atomic and band structure, represent
markedly different limits of the 3d electrons behavior, namely localized or
itinerant. As a common feature, both models describe the ground state of the
system, i.e., at a temperature of 0 K. For a physically relevant picture, tem-
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Figure 2.2: Spin-dependent density of states (DOS) for Fe, Co, and Ni. An
uneven number of electrons are found up to the Fermi energy, Fr, defining a
majority (blue) and minority (gray) band, and consequently the magnetization
M (black arrow). Note that the magnetization is anti-parallel to the major-
ity band spin orientation due to Eq. 2.11. The 4s and 4p bands are equally
populated above FEr, demonstrating that the spin-splitting is due to the 3d
electrons. The band structure also shows that the 3d electrons are itinerant
(Adapted from Ref. [27]).

perature must be taken into account and the magnetic model must correlate
with the experimental observations. The inclusion of temperature in a quan-
tum mechanical picture means that the system has enough additional energy
to allocate electronic excited states. The excitation and decay of such states
together with the fact that electrons are indistinguishable from one another,
leads to an additional term in the Hamiltonian known as exchange. In other
words, such a Hamiltonian denotes the energy needed to exchange an electron
in a quantum mechanical state by another electron in a different quantum me-
chanical state. A noteworthy point is that the spin is only taken into account
as an antisymmetrization argument for the electron’s wavefunction, and thus
exchange is only related to Coulomb forces.

In the itinerant picture of magnetism, the exchange energy promotes an
electron into an excited state. There are two possibilities: either a change in
the orbital quantum number or a change in the spin quantum number. This
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Figure 2.3: Electronic exchange in: (a) the Stoner model of ferromagnetism
where an electron in the majority band is exchanged to the minority band;
(b) the Heisenberg model where the valence electrons are exchanged into the
minority band.

kind of exchange is extremely energy consuming, on the order of 1 eV, as
it involves a single electron of the majority band switching to the minority
band [Fig. 2.3(a)]. This description leads to the conclusion that magnetic
ordering is lost at a temperature Tc = 1 eV/kp &~ 10,000 K, known as the
Curie temperature. However, the Curie temperature estimated in this way is
an order of magnitude above the experimental values for the 3d transition
metals.

The problem with the Stoner-type exchange lies in the fact that the 3d
transition metals are not purely itinerant, and the 3d electrons are mostly
localized close to the atomic nuclei as discussed above. A theory that takes
into account both localized and itinerant electrons has not yet been devel-
oped [127], and an approximate picture is generally used. The localization of
the 3d electrons leads to the definition of spatially localized atomic moments
that interact with each other via Coulomb forces. From this picture, the ex-
change energy describes an atom switching its spin momentum with respect
to the majority band [Fig. 2.3(b)]. This energy turns out to be on the order
of 0.1 eV, which is consistent with the experimentally observed T¢. This kind
of exchange can be represented with a Heisenberg Hamiltonian of the form

Hew = =27 Y _si-8j, (2.12)

where J is the exchange constant and s are atomic spins of neighboring atoms.
Due to the localized character of this picture, only the closest neighbors are
taken into account. The Hamiltonian of Eq. (2.12) is widely used to numeri-
cally study magnetization dynamics, as discussed later, and uncovers the ex-
istence of low temperature (with respect to T¢) collective excitations known
as spin waves and discussed in the next section.

In summary, the origin of ferromagnetism in 3d transition metals can be
understood from the Stoner model of itinerant electrons and spin-split valence
bands while the exchange has a more localized origin, and can be represented
in terms of the Heisenberg Hamiltonian of Eq. (2.12). There are other ex-
change mechanism such as superexchange in 3d transition metal oxides, dou-
ble exchange in materials with differently charged ions e.g. magnetite where
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both Fet? and Fe™? ions are present, and the Ruderman-Kittel-Kasuya- Yosida
(RKKY) interaction taking place between localized yet distant moments e.g.
multilayers or rare-earth doped semiconductors. None of the latter exchange
coupling mechanisms are directly relevant for the materials and effects studied
in this thesis and they will be neglected in the following discussions.

2.2.4 Spin waves

The exchange coupling between neighboring atoms given by Eq. (2.12) pro-
motes parallel (anti-parallel) spin orientations if J is positive (negative). In
other words, the exchange coupling acts as a restoring force between the
atomic spins. If we now suppose that one atomic spin is suddenly tilted by
means of temperature, for instance, the neighboring atomic spins will com-
pensate such motion by tilting in the opposite direction. Such motion can
propagate in the solid similarly to the way atomic vibrations i.e., phonons
do [36]. This collective atomic spin motion is known as spin waves.

As for phonons, it is possible to treat spin waves in a quasi-particle fashion
by making use of second quantization formalism i.e., using creation and anni-
hilation operators for a given ground state [138]. The resulting quasi-particle
is known as magnon and obeys Bose-Einstein’s statistics i.e., it has an integer
spin which releases it from the Pauli exclusion principle. The interaction of
magnons of different k vectors leads to 2-, 3-, and 4-component scattering pro-
cesses that re-distribute the energy in the ensemble and to the lattice (and thus
phonons) by virtue of the spin-orbit coupling [128, 65]. This picture is similar
to the Caldeira-Legget model [22] which converts a purely conservative sys-
tem into a Langevin equation with the only assumption of random events, in
agreement with the fluctuation - dissipation theorem [109, 134]. Consequently,
the existence and interactions of magnons is fundamental to understand the
low-temperature dynamics of magnetic materials and validates the Heisenberg
exchange Hamiltonian.

2.2.5 Perpendicular magnetic anisotropy

Until this point, the discussion of magnetism has taken into account macro-
scopic materials in the sense that their dimensions are infinite with respect to
quantum mechanical length scales. Consequently, magnetism from this per-
spective is completely isotropic. However, it was mentioned earlier that the
spin-orbit coupling obtained from the expansion of the Dirac Hamiltonian,
Eq. (2.1), could induce magnetic anisotropy. In solids, the atomic lattice pro-
vides the spatial basis for the orbital moments of electrons due to atomic
bonding [127]. Thus, for each electron, the spin-orbit coupling defines a pref-
erential spin orientation according to the atomic lattice, referred to as mag-
netocrystalline anisotropy. It is instructive to study the case of a purely two-
dimensional lattice, or monolayer [Fig. 2.4(a)]. From ligand theory [127], the
neighboring atoms’ ligand electrons create a Coulomb potential landscape in
the monolayer plane. Consequently, the electron orbit is weakly perturbed in
the out-of-plane direction (blue) and so the spin tends to be oriented along
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Figure 2.4: (a) Ferromagnetic monolayer where the electron orbit (blue) is
less perturbed in the Z direction and thus an in-plane anisotropy is preferred.
(b) When the monolayer is sandwiched between heavier metals (gray), the
electron orbit is less perturbed in the monolayer’s plane, usually leading to a
large perpendicular anisotropy.

the lattice. This effect is very weak and usually neglected for the materials of
interest here. However, magnetocrystalline anisotropy is measurable and, in
agreement with ligand theory, its strength depends on the atomic lattice [51].

The same mechanism described above can be used to model, in a very sim-
plified way, the behavior of a monolayer sandwiched between metallic layers.
If heavier metals are used (gray) the electron’s orbit becomes less perturbed in
the monolayer’s plane [Fig. 2.4(b)] thus promoting an out-of-plane magnetic
moment, as shown for Co/Pd multilayers [23] and Au/Co/Au trilayers [20].
Furthermore, Daalderop et al. [32] predicted a similar effect in 3d transition
metal multilayers based on the induced magnetic polarization of non-magnetic
metals. These materials are of interest in the present thesis, particularly Co/Ni
multilayers as studied in Ref. [32].

2.3 Electronic transport in magnetic materials

The electronic transport in magnetic materials is of fundamental importance
for technological applications and the results presented in this thesis. As dis-
cussed above, 3d transition metals have an itinerant character as the 3d, 4s,
and 4p electrons are available at the Fermi energy according to the band
structure and are responsible for the transport properties. The fact that the
material is magnetic leads to fundamental differences compared to the trans-
port of non-magnetic metals and to the existence of the spin transfer torque
effect discussed below.

2.3.1 Two-current model

Transport in metals can be described in terms of the displacement of the
Fermi surface due to an external voltage [Fig. 2.5(a)]. The displacement of
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Figure 2.5: (a) Schematic representation of a Fermi surface (gray) and its
non-equilibrium distribution (blue) when a voltage is applied. The finite dis-
placement of the Fermi surface leads to a k vector or motion of the electrons.
(b) Two-current model for electronic conduction in magnetic materials, with
resistances for the majority (R;) and minority (R¢) bands satisfying R| > Ry.

the Fermi surface (gray) leads to a non-equilibrium distribution of electronic
states (blue) eventually developing a k vector and hence flow through the
metal. The displacement of electrons have been commonly understood from
two equivalent schools of thought: the diffusive and the ballistic models. In
the diffusive model, the non-equilibrium dynamics of the electron are repre-
sented by a Boltzmann equation under the customary approximation of long
equilibration time, leading to the Drude model of conductivity. Alternatively,
the ballistic model assumes an electron that is only perturbed by elastic scat-
tering giving rise to reflection and transmission probabilities in the Landauer-
Biittiker formalism [21]. Both understandings of electron transport in metals
are equivalent, by virtue of Einstein’s relation.

For 3d transition metals, electronic transport acquires a new degree of
freedom due to the 3d band splitting at the Fermi energy. As discussed be-
fore, the 3d band splitting defines majority and minority electrons and thus
a preferential magnetic moment. It follows that the majority band has less
available states than the minority band just above the Fermi energy [Fig. 2.2].
Assuming that transport can be understood as in non-magnetic metals, the
electrons will acquire a k vector when a voltage is applied. However, the fact
that the bands are unevenly filled leads to a different k vector depending on
the spin orientation. Consequently, the electronic transport can be assumed to
take place independently in each band. Such an assumption is valid since the
probability of a scattering event between the majority and minority bands, or
spin-flip, is very low [127] although necessary to satisfy thermodynamic equi-
librium on a much longer time scale. This is the so-called two-current model
of transport in metallic ferromagnets.

One immediate consequence of the two-current model is that the conduc-
tivity o, and hence resistivity, depends on the electron’s spin. In particular,
for 3d transition metals, the 3d and 4s electrons close to the Fermi energy
Ep are responsible for the conduction [see Fig. 2.1]. However, from their band
structure, the 4s electrons have generally a lower effective mass than the 3d
electrons. Consequently, the conductivity of each spin channel is limited by
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Figure 2.6: Variation of the chemical potential close to the transition between
a FMg and a NM metal from Ref. [135]. The exponential transition is charac-
terized by the spin-diffusion length in the FMg and NM metal.

the scattering events between the fast 4s electrons and the slow 3d electrons.
It follows that the scattering is higher for the minority band as many more
states are available at Er and, by virtue of Matthiessen’s rule [4], the total
conductivity of 3d transition metal will be dictated by the majority band.
The two-current model is thus equivalent to a circuit of two spin-dependent
resistors in parallel [Fig. 2.5(b)]. Considering spin-orbit coupling, this model
is the basis for the anisotropic magnetoresistance (AMR) effect where the re-
sistance of the material is dependent on the relative direction of the metal’s
magnetization with respect to the current path.

2.3.2 Spin accumulation

The two-current model treats the magnetic metal as a stand-alone material.
However, in any realistic application, it is possible to apply a potential by
contacting the magnetic metal. By virtue of their high conductivity, the ma-
terials of choice for electric conduction are usually Cu and Au. Consequently,
it is interesting to study the effect of an interface between a ferromagnetic
(FMg) and a non-magnetic (NM) metal.

Clearly, such an interface presents the problem of different conduction
channels at the (new) Fermi energy resulting in a discontinuity i.e. the con-
duction in NM metal, where the spins are randomly distributed, and the FMg
metal where a preferential spin orientation is established. A solution is found
by invoking a smooth transition or continuity relations.

By casting the spin-dependent transport equations in the diffusive approx-
imation [135], it is possible to obtain such a smooth transition. The result-
ing effect is known as spin-accumulation and describes the splitting of the
spin-dependent electro-chemical potential, py | satisfying Vuy, = —|e|j/o,
as a function of distance from the interface [Fig. 2.6]. Qualitatively, the spin-
accumulation effect predicts:

e The electrons have a definite spin or are spin-polarized in the NM metal

close to the interface.

e There is a potential drop at the interface due to the generally different
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Figure 2.7: (a) Spin valves consisting of two FMg metals separated by a NM
spacer. The conduction is schematically shown as electrons scatter into ma-
jority (blue) and minority (gray) available states for the case when the mag-
netization (black arrows) are parallel (top panel) and anti-parallel (bottom
panel). The corresponding two-current model circuits are shown in (b).

average electro-chemical potentials in the NM metal (1) and the FMg
metal.

e The intrinsic electro-chemical potentials of the NM and FMg metals are
exponentially approached from the interface by a characteristic length
A, or spin-diffusion length.

2.3.3 Spin valves and giant magnetoresistance effect

The two-current model and the effect of spin-accumulation can be combined
in a more complex structure of technological importance. A spin valve is a
trilayered structure consisting of two FMg metals separated by a NM metal
or spacer [Fig. 2.7(a)]. In the relevant case where current flows perpendicular
to the structure plane, or CPP (yellow arrows), the NM metal has to be suffi-
ciently thick in order to decouple the magnetic moments of the FMg metals,
but thin enough to conserve spin-polarization i.e., its thickness is limited by
A.

The electronic transport in a spin valve is then fully determined by the
two-current model in each FMg metal. One of the FMg metals, say FMgl,
spin-polarizes the incoming electrons due to the band spin splitting. From
this perspective, a FMg metal acts as a spin filter. In this process, the scat-
tering events in the majority (blue) and minority (gray) bands determines the
conductivity in FMgl. After flowing through the spacer without losing their
spin-polarization, the electrons face scattering from the second FMg metal,
FMg2. If the magnetizations of both FMgl and FMg2 are parallel [top panel
in Fig. 2.7(a)], the majority and minority spins experience a similar scatter-
ing as in the FMgl so that the majority spins conductivity is maximal. On
the contrary, if the FMg metals have an anti-parallel magnetization [bottom
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panel in Fig. 2.7(a)], the incoming majority (minority) spins experience a
higher (lower) scattering leading to a low conductivity. This effect is known
as giant magnetoresistance (GMR) [3] used for read-heads in modern hard
drives and for which Albert Fert and Peter Griinberg received the Nobel prize
in physics in 2007. The word giant is included in the name because GMR is
approximately an order of magnitude higher than the AMR. As in the two-
current model, one can visualize GMR in terms of an equivalent passive circuit
where the total resistance is strongly biased by the lower resistance conduction
channel [Fig. 2.7(b)] by Kirchoff Laws.

2.3.4 Spin transfer torque

In a spin valve, spin-polarized electrons impinge on a FMg metal and their
scattering determines the magnetoresistance (MR) of the structure. In the
case where the relative direction of the ferromagnets’ magnetization is non-
collinear, one has to consider the scattering effect of the perpendicular compo-
nent of the spin. Such a scattering effect can be represented, in a oversimpli-
fied manner, as a spin-dependent electron wavefunction crossing a potential,
as schematically shown in Fig. 2.8(a). Such a quantum mechanical problem
leads to reflection and transmission probabilities, even if the energy of the elec-
tron is well above the potential [54]. Taking into account the spin degree of
freedom, a non-collinear electron is scattered according to the spinor transfor-
mation. By imposing momentum conservation, it becomes apparent that the
perpendicular component of the incident wavefunction is not conserved but
absorbed by the FMg metal. This effect was described by Slonczewski [122]
and Berger [6] in 1996, and it is known as the spin transfer torque (STT)
effect.

The description of STT, as in the case of electronic transport, can be
approached in a rigorous way from different perspectives [125, 104, 56]. How-
ever, a consensus has not yet been established and each approach currently
has advantages and disadvantages. A detailed theoretical study of the STT
effect is outside the scope of this thesis but the understanding of its main
features is of fundamental importance. Consequently, and for the sake of clar-
ity, we will briefly discuss the continuous random matrix theory (CRMT)
approach [137, 16, 96].

The CRMT approach is largely based on the ballistic conduction of elec-
trons in a Landauer-Biittiker formalism [21] and is particularly useful to de-
scribe spin valves where multiple reflection processes take place in the NM
spacer. Furthermore, it has been recently shown [96] that CRMT is a gener-
alization, upon appropriate limits, of the diffusive Valet-Fert transport the-
ory [133] and the generalized circuit theory [5].

The basic idea of CRMT is to extend the Landauer-Biittiker formalism to
include spin-dependent transport. This is done by defining 4 x 4 reflection and
transmission matrices that incorporate charge and spin transport as well as
spin-flip events. This matrix then enters in a generalized scattering matrix §
describing a ballistic electron in a vanishingly thin FMg metal. It can be shown
that S can be generalized for a FMg metal of arbitrary thickness [16]. As for
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Figure 2.8: (a) Simplified schematic of an electron impinging on a non-collinear
FMg metal. As is also the case in quantum mechanics, there is a finite proba-
bility for transmitted (t) and reflected (r) wave components. In particular, the
perpendicular spin component can be either reflected or absorbed, and it is
this component that provides SST. (b) Spin valve as envisioned by the CRMT
for spin torque, where the FMg metals are scatterers. The spin currents J_;J
and j;71, define the strength and direction of the torque.

microwave circuits [99], the scattering matrix completely describes the two-
terminal problem, i.e., incident and outgoing electrons from the FMg metal
are fully described by S. 1t is then natural to describe a spin valve in a similar
fashion, where a 4 component wave P describes the electrons’ charge and spin.
The relevant observables can be expressed in terms of the electro-chemical
potential (not shown here) and the spin current density (in units of energy
per unit area) as

- 2h1,

J, = R (2.13)
where I, = P —P_ is the spin current using the sign convention of Fig. 2.8(b)
and Rgp, ~ 0.5 fQ2-m? is the Sharvin resistance for unit surface. Following the
CRMT formalism, the torque arising in a spin valve is simply defined by the
absorbed spin current i.e., the difference between the spin currents impinging
on and transmitted through one layer

- -

T=Jds1— Js,2, (2.14)

s

where the torque here must be understood as the amount of spins deposited
on the FMg metal per unit area. This definition, although far from trivial,
provides a simple picture of the STT effect as the FMg metal absorbs spin
momentum from the non-collinear incoming electrons. Due to the fact that
magnetism itself originates from the itinerant electrons close to Er, such an
absorption of momentum can lead to a macroscopic change in the FMg metal
magnetization. Furthermore, from Fig. 2.8(b), it can be inferred that the STT
is mutual in spin valves i.e., both FMg metals are subjected to STT due
to the finite probability of electron reflection. Remarkably, the torque from
reflected electrons acquires a negative sign by virtue of the convention of
Eq. (2.14). This fact is of fundamental importance for the experimental results
discussed in this thesis. Other torque components also arise from CRMT [96],
however only the so-called in-plane torque discussed above achieves a relevant
magnitude in purely metallic spin valves.
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2.4 Semi-classical magnetization dynamics

The previous sections described the origin of ferromagnetism and electronic
transport from quantum mechanical principles and microscopic approxima-
tions. However, magnetism is a macroscopic phenomenon and as such, a semi-
classical description is desired. A first step towards this goal was outlined in
section 2.1.2, where the magnetic moment operator could be linked to the
macroscopic magnetization per unit volume. In this section, we make use of
this relation to obtain a semi-classical expression for the magnetization dy-
namics.

2.4.1 Landau-Lifshitz equation

The dynamics of the magnetization can be obtained directly from the defini-
tion of magnetization in terms of the quantum mechanical magnetic moment
operator, Eq. (2.11). The time-dependent expression of the magnetic moment
operator in a Heisenberg representation is obtained by Ehrenfest’s relation

d 1 oM
— (M) = (M, H]) + (—-)- 2.15
SM) = (M H]) + (555 (215)

To proceed, we shall assume that the average magnetic moment opera-
tor is static, so that the last term in Eq. (2.15) vanishes. A static magnetic
moment operator means that the magnetization per unit volume is constant,
which is a good approximation only at low temperatures with respect to T¢.
Furthermore, we also assume that the Hamiltonian can be represented only
by a Zeeman term of the form

_HBY 3 3

Hy = === (+0) polesr = =M o Hosr, (2.16)

where the effective magnetic field, ﬁeff, includes all the energy contributions
of Eq. (2.1) and the exchange coupling of Eq. (2.12), and we have included
the g-factor to take into account the total angular momentum of a transition
metal which is dependent on the 3d band population at the Fermi energy. This
representation is extremely useful for an analytical and numerical treatment,
as discussed below.

The remaining task is to evaluate the commutator of Eq. (2.15). Using the
Zeeman Hamiltonian Eq. (2.16) and recalling the commutator relations of the
total angular momentum, we obtain

(M, Hzl) = —([M Mo |) = =ity (M x iy Hes), (2.17)

where we define the gyromagnetic ratio v = ppg/h. Finally, by simple av-
eraging over a unit volume, we use the relation of Eq. (2.11) to obtain the
Landau-Lifshitz (LL) equation

—

M B .
— = —yM X poHes. (2.18)
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The LL equation, as a semi-classical approximation, can be obtained by
simpler means by considering the electron as a spinning top. However, the
inclusion of all relevant terms in an effective field hides the underlying physics
behind phenomenological parameters. A prime example is that the LL equa-
tion is purely conservative, eliminating the possibility of magnon scattering
and thus thermodynamical convergence to a ground state.

2.4.2 Landau-Lifshitz-Gilbert equation

The Landau-Lifshitz equation as derived in the previous section is completely
conservative, i.e., it is described by a Hamiltonian which preserves energy
by definition. However, realistic materials dissipate energy by processes only
described by non-conservative terms. Such processes involve direct energy loss
due to lattice vibrations (phonons) and conduction electrons, and indirect
energy loss via magnon scattering that eventually transmits energy to the
lattice by means of spin-orbit coupling [128]. In order to include these effects
while maintaining a semi-classical approach, a phenomenological term was
proposed by Gilbert [52] as an additional viscous force. The so-called Landau-
Lifshitz-Gilbert (LLG) equation takes the form

% = —YM X poHeg + agM x %,
where ag is the Gilbert damping dimensionless coefficient. Consequently,
when M x ,uoH # 0, Eq. (2.19) predicts that M converges to Hin a spi-
raling motion i.e., the magnetization eventually relaxes to a direction parallel
to the field.

A numerically useful form of the LLG equation is the normalized version,
where the magnetization is expressed in terms of a unit vector m. The nor-
malization is achieved by dividing the LLG equation by the modulus of the
magnetization vector, or saturation magnetization M; = |]\2 |. An additional
simplification is found by cross multiplying Eq. (2.19) by M. By cross prod-
ucts properties and 1 X m X dim/dt = —dm/dt, one can cast the normalized
LLG equation as

(2.19)

dm 1
— = ) ——— 1 X poHeg +

ag
o Tta ——5m X M X MOHQH, (2.20)

1+ag
This form of the LLG equation is a simple ordinary differential equation
(ODE) that can be easily solved by many numerical algorithms.

The Gilbert approach has been very successful in describing the effective
damping of magnetic materials and it is a standard characterization procedure
performed e.g. in FMR measurements. For this reason, we will assume it is a
valid model for the materials used in this thesis.

2.4.3 The effective field

In the derivation of the LL equation, Eq. (2.18), it was assumed that the
different contributions to the Dirac Hamiltonian Eq. (2.1) could be mapped
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as magnetic fields. Here, we describe each of the relevant terms in such an
effective field:

e Zeeman: The true Zeeman component is only due to an external field.
We shall denote such a field as ﬁa.

e Shape anisotropy: This contribution is important for real samples
with physical boundaries and thus depends on the actual shape of the
material. Such boundaries must obey Maxwell’s equations, in particular
V-B =V (Hg+ M) =0.In this context, the net flux at the magnet’s
boundary must be zero precluding the existence of monopoles. In this
thesis, the relevant geometry is the thin film approximation, where the
lateral boundaries can be assumed to be infinitely far. Consequently, we
shall use the equivalent demagnetizing field

Hy=—M -2, (2.21)

following the convention that the Z coordinate is the out-of-plane direc-
tion.

e Magnetocrystalline anisotropy: As discussed before, this effect is
closely related to the spin-orbit coupling between the magnetic system
and the crystal lattice. In this thesis, we will be interested only in the
uniaxial anisotropy [51, 124] expressed as

- 2K
HK = Mf»

(2.22)

where Ky is the magnetic anisotropy energy per unit volume. This term
is uniaxial in the sense that the direction of Hy defines a preferential or
easy axis for the magnetization orientation. This term is particularly im-
portant in materials with high PMA, in which case H || 2, as discussed
before.

e Exchange: The Heisenberg exchange Hamiltonian can be mapped into
an effective field by considering the interaction to take place between
nearest neighbors, by virtue of the localization of the 3d electrons. For
non-collinear neighboring moments, it can be written as a function of
the Laplacian operator V2 [117, 124]

Hep = X2, V2M, (2.23)

where Aep = \/2A/1,M?2 is the so-called exchange length as a function
of the exchange stiffness A = 2752 /a, expressed as a function of the
Heisenberg Hamiltonian exchange constant J, the relative direction of
the neighboring spins s, and the atomic lattice spacing a.

e Thermal field: Temperature plays a fundamental role in the excitation
of magnetic dynamics. One can understand the action of temperature as
to randomly tilt a magnetic moment which eventually propagates as a
spin wave due to exchange coupling, as discussed in section 2.2.4. These
thermal magnons are intrinsically related to the ferromagnetic ordering
loss as a function of temperature. As discussed later, thermal magnons
also contain energy needed to excite STT-induced magnetic solitonic
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modes. In the semi-classical approximation, temperature is included as
a Gaussian random field in the three spatial coordinates by appropriately
scaling its magnitude to satisfy the fluctuation - dissipation theorem [19].
The magnitude of such a time-dependent random field can be expressed
by its second moment [139, 35]

- - 2a6kgT
(he (e () = 570 = ¢), (2:24)

where §(t) is the Dirac delta function.

2.4.4 Magnetic domains and domain walls

The ground state of a macroscopic magnetic material is found from the balance
between the components of the effective field when ﬁa = 0. As is the case for
any ground state, energy minimization dictates its convergence. For a magnetic
system, the energy is given by Eq. (2.7) and it is thus limited by M, which
was assumed constant in the LL approximation (section 2.4.1). However, the
exchange term in the effective field suggests that a macroscopic material must
be interpreted as a set of LLG equations smoothly coupled by the Laplacian.
Minimization of such a system leads to the formation of ferromagnetic regions,
or magnetic domains, whose directions average to zero.

The existence of magnetic domains is a direct consequence of the compe-
tition between anisotropies and exchange fields. Qualitatively, the anisotropy
fields promote moments to be aligned with an axis or plane so that a vanishing
magnetization is obtained by anti-parallel (or anti-ferromagnetic) ordering. In
contrast, the exchange field aims to keep neighboring moments ferromagneti-
cally ordered and so the transition between anti-parallel moments is favorable
at an infinite length. From energy minimization, a balance between these com-
peting energies is established and magnetic domains are separated by tran-
sition regions known as domain walls. For the materials of interest here, the
domain wall size is on the order of 100 nm. An important consequence is that
magnetic particles smaller than the domain wall size exhibit a single domain
and the dynamics are largely coherent, as discussed by the macrospin model
in section 3.1.

The type of domain walls established in the magnetic sample depends on its
magnetic properties and physical dimension and shape [17]. Two relevant types
of domain walls in this thesis are those separating anti-parallel domains in thin
films [51]. Materials with low perpendicular anisotropy (Hx < Hy) tend to
exhibit Néel walls, where the spins rotate in the (easy) plane [Fig. 2.9(a)]. On
the other hand, materials with strong perpendicular anisotropy favor Bloch
walls, where the spins rotate in the out-of-plane direction [Fig. 2.9(b)]. The
size of these domain walls can be estimated by asymptotic methods. The Bloch
wall width is given by Ap ~ 7my/A/Ky and it is generally smaller than the
Néel wall whose width is given by Ay ~ 7/2A/Ky.

Additionally to the aforementioned domain walls, there is a magnetic tex-
ture in thin films shaped as disks for a given range of aspect ratios. Such a tex-
ture is known as a vortez [100, 42]. The vortex minimizes energy in thin films
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Figure 2.9: Schematic of (a) Néel and (b) Bloch domain walls emphasizing the
rotation planes (Adapted from Ref. [51]).

with weak PMA by curling the in-plane magnetization around a nanoscopic,
out-of-plane vortex core. This structure can be classified as a half-Skyrmion
(discussed in section 2.6) and it is a remarkably stable ground state. In this
thesis we will find vortex configurations only as an undesired ground state in
micromagnetic simulations, discussed in chapter 3.

2.4.5 Ferromagnetic resonance

As discussed in section 2.4.2, the LLG equation predicts that the magnetiza-
tion becomes parallel to the effective field after a finite time. For ferromagnetic
thin films, the Zeeman and anisotropic contributions dominate the effective
field and it is possible to magnetize the ferromagnet. In other words, the
magnetic domains are destroyed and a macroscopic ferromagnetic ordering is
achieved. The magnetized state represents the macroscopic manifestation of
the ideal homogeneous ferromagnetic ordering expected from the band model
of magnetism. As such, it provides a means to study the collective dynamics
of spin waves.

The controlled excitation of spin waves is usually achieved experimentally
by magnetizing the ferromagnet and subsequently applying a small alternating
field. The relative orientations of these fields with respect to the sample shape
excites different types of spin waves [124] whose details are beyond the scope
of this thesis. However, it is important to understand the small amplitude
collective excitation or ferromagnetic resonance (FMR).

Consider a thin film magnetized out-of-plane, so that the effective field can
be approximated by Heog = (ﬁa — ﬁd) - 2. Assuming that M is non-collinear
with ﬁeg, the LL equation predicts an oscillatory motion at a specific or
eigen-frequency w,. Such an eigen-frequency thus represents the FMR fre-
quency, that is, the collective and homogeneous (wave vector k = 0) motion
of exchange-coupled spins. Qualitatively, the FMR frequency indicates the
cut-off for propagating spin waves with higher wave vector, similar to electro-
magnetic waves in waveguides. In other words, any excitation below the FMR
frequency will have an evanescent character, experiencing a strong damping.
On the other hand, excitations above the FMR frequency are allowed to prop-
agate distances on the order of microns, limited by the spin wave dispersion of
the material [79, 124]. Additionally, dipolar fields can dominate the spin wave
dispersion at very short wave vectors leading to frequencies below FMR, in
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Figure 2.10: Schematic of the magnetization dynamics expected from the (a)
LLG equation and (b) the LLGS equation with a suitable current polarity so
that the STT opposes the damping.

such a regime [40, 64]. Such lower frequencies can be linked to the excitation
of solitonic waves in magnetic materials.

2.4.6 Semi-classical spin transfer torque

The STT effect can be included in the semi-classical approximation as an
additional term of the form given in Ref. [122]. In the case of a spin valve,
where the electrons are polarized by a ferromagnetic layer, or polarizer, with
normalized magnetization p, the in-plane torque incident on m can be written
as

T = —YoT,€Mm X M X P, (2.25)

where o, = Rl P/pu,M;|e|Vs is the spin torque coefficient, I is a charge current,
P is the spin polarization, and € = A/[A 4+ 1+ (XA — 1) - p| is the spin torque
asymmetry factor as a function of the spin asymmetry .

The torque of Eq. (2.25) can be argued to be a crude approximation of the
more detailed theory described in section 2.3.4. However, it correctly describes
the effect of the in-pane torque deposited in the ferromagnet, which can either
oppose or enhance the Gilbert damping as a function of the current polarity.
The action of the STT and damping is schematically shown in Fig. 2.10(a-b).
In particular, the dynamics expected from the LLG equation follow a spiral
trajectory until the magnetization aligns with the effective field [Fig. 2.10(a)].
On the other hand, STT can balance the damping and, in principle, the dy-
namics are given by the conservative LL equation. The simplicity of Eq. (2.25)
makes it extremely useful for numerical and analytical studies. In the follow-
ing, we will refer to the LLG equation expanded with the Slonczewski in-plane
torque as the LLGS equation.

2.4.7 Single-mode Hamiltonian formalism

The LLGS equation can be directly used numerically in order to obtain a
highly accurate description of experimental observations. However, a tractable
analytical description is not generally achieved even in the simple case of a
single LLGS equation, or a macrospin approximation discussed in chapter 3.
A solution to this limitation was found in the Hamiltonian formalism pro-
posed by Slavin and Tiberkevich [119, 117, 118]. The general idea of this
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approach is to treat the Gilbert damping, STT, and external sources as per-
turbations while mapping the LL equation into a Hamilton equation of motion.
By performing a Holstein-Primakoff transformation and further diagonaliza-
tion following a Bogoliubov canonical transformation, the LLGS equation is
approximately mapped into the non-linear auto-oscillator equation

% +iw(lel*)e+ (T (|e[*) =T (|¢[*)) e =0, (2.26)

where c is a complex amplitude describing the small-amplitude magnetization
dynamics. Equation (2.26) has the simple interpretation that auto-oscillations
are achieved above a threshold current, I;;, when the real terms cancel each
other. In more detail, the terms of the auto-oscillator equations are:

e w(|c|?) = w, + N|c|? is the non-linear generation frequency, where w,
is the FMR frequency, N = 2w, is a nonlinearity factor that couples
frequency and power, and wy; = yu,Ms. This term explicitly shows that
the generation frequency of a STO is coupled to its generated power
p =l

o ' = T'g(1+Q|c|?) is the positive damping term, where ' = aw, is
the Gilbert damping term and @ = (¢ — 1)/(1 + |¢|?) is a non-linear
proportionality factor related to the supercriticality & = Ij./Ip and Iy,
is the applied dc bias current.

o I'_ =(Tg(1 — |c¢f?) is the negative damping or STT term.

The advantage of the auto-oscillator equation lies in its relative simplic-
ity while still capturing the strong nonlinearities of perturbed magnetic sys-
tems. Although simplistic, the auto-oscillator equation has been successful in
the prediction of a wide variety of experimental observations including field
angle and current dependencies [121, 50, 31, 13], modulation [101, 90, 30],
injection locking [107, 103, 34], mutual locking [63, 55, 130], and generation
linewidth [67, 69, 68]. We will mainly rely on the auto-oscillator framework to
perform the analytical calculations in this thesis.

In the following chapters, it will be also customary to study strongly non-
linear dynamics by linearizing Eq. (2.26) about an operating point. In general
terms, the complex amplitude is expanded as

c=\/po+20p-e? (2.27)

where p, = (£ — 1)/(£ + Q) is the free-running normalized power, dp < p,
is a power perturbation, and ¢ is the instantaneous phase. In such linearized
equations (derived for each case in the relevant section below), the dynamics
are intimately related to the total restoration rate I') = agw,({ — 1) and the
dimensionless nonlinearity coefficient v = p,N/T',.

2.5 Non-linear magnetization dynamics

The LLGS equation of motion and its mapping into the auto-oscillator equa-
tion admits a wealth of dynamical solutions depending on external factors and
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intrinsic properties of the ferromagnet. In this section, we will review the rel-
evant spin valve geometries explored in this thesis and the dynamical modes
excited in them. From here on, the term non-linear will be exclusively used to
denote the coupling between phase (or frequency) and power, in light of the
non-linear parameter N of the auto-oscillator framework.

2.5.1 Spin torque oscillators

Magnetization dynamics induced by STT can only be achieved with relatively
high current densities, on the order of 102A/m?. A practical solution is to
confine the electron flow through the spin valve in a nanoscopic region. To
date, two main geometries have been proposed to this end:

e Nanopillars: the spin valve is physically etched down to a generally el-
liptical area [71], where the axes are on the order of 100 nm [Fig. 2.11(a)].
This kind of geometry ensures the flow of electrons through the structure
(current perpendicular to plane or CPP) and maximizes the STT ef-
fect. However, the confinement introduces several modes that can either
transition or mode-hop [70, 113, 74, 143, 88]. Nowadays, this geometry
is mainly used for magnetic tunnel junctions (MTJs) [142, 37] where the
current must be forced through an insulating spacer and the electronic
transport gives rise to the so-called tunneling magnetoresistance [62].

e Nanocontact (NC): the high current densities are achieved by pat-
terning a metallic, nanosized contact of radius R, on top of a physically
extended spin valve [Fig. 2.11(b)]. In this case, the current is confined in
the top of the structure but then spreads as it flows through the stack. In
order to ensure an almost ideal CPP flow [95], a relatively thick bottom
Cu layer is usually deposited on top of a very thick oxide buffer. However,
it must be acknowledged that some of the electrons are spread in the Cu
spacer due to its reduced resistance. These devices offer additional free-
dom for the generated dynamics and will be the main subject of study
in this thesis. The relevant dynamics will be described in the following
sections. We will refer to this geometry with the acronym NC-STO.

As illustrated in Fig. 2.11, we shall consider pseudo spin valves in this
thesis. It is customary to denote the thinner layer as the “free” layer since
it is primarily subjected to STT, whereas the thicker layer primarily spin-
polarizes the electrons and is referred to as the “fixed” layer. Notably, both
layers exert STT on each other as discussed in section 2.3.4. However, the
large volume and M, of the fixed layer makes it largely insensitive to STT
and it is generally a good approximation to consider it truly static.

A novel geometry providing STT has been recently developed based on
the spin Hall effect. Such devices are known as spin-Hall nano-oscillators
(SHNOs) [39, 38, 76, 131] where the electron flow through a heavy metal
e.g. Pt, generates a perpendicular spin current due to spin-orbit coupling.
As described by the CRMT in section 2.3.4, spin currents are responsible for
the STT effect. In order to achieve a significant spin current, the current is
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Figure 2.11: Schematic structure of (a) nanopillar and (b) nanocontact spin
torque oscillator geometries based on pseudo spin valves. The magnetic (non-
magnetic) layers are shown in white (gray) The yellow arrows describe the
electron path through each structure. The alternative spin-Hall geometry is
shown schematically in (c), both in a side and top view. The current flowing
through the non-magnet (black) establishes a pure spin current (red arrow)
due to spin-orbit coupling.
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confined in SHNO by patterning Au “needles” on top of the Pt layer. Fig-
ure 2.11(c) shows both the lateral and top view schematics, where the spin
current is represented by a red arrow and the Pt layer is colored in black.
The main advantage of these devices is to provide optical access to the mag-
netic layer and thus determine the dynamics experimentally [39]. However,
as mentioned before, in this thesis we will only study the magnetodynamics
generated in pseudo spin valve based geometries.

2.5.2 Spin-wave propagating mode

The first mode derived for NC-STOs was predicted by Slonczewski [123]
shortly after the STT effect was described. In this case, it is assumed that
a soft free layer e.g., NiFe, is perpendicularly magnetized by a strong external
field. At currents above threshold, magnetization dynamics are established
below the NC. A first important observation is that such magnetization dy-
namics have a larger cone angle than FMR. Consequently, the internal field
is higher in magnitude, leading to a generation frequency above FMR. It is
noteworthy that the auto-oscillator framework predicts this effect from the
positive value of the nonlinearity coefficient N [118].

A second key observation follows from the fact that the free layer is ex-
tended, and so the magnetization dynamics are coupled to the surrounding
spins via exchange. Slonczewski [123] showed that the STT generated dynam-
ics follow a Bessel function whereas they propagate radially away from the NC
as a Hankel function [Fig. 2.12(a)]. This behavior was later observed experi-
mentally [79] by means of an optical technique called micro-focused Brillouin
light scattering (u-BLS) where the photon - magnon interaction also provides
information about the amplitude of the k vector of the propagating wave.

2.5.3 Solitonic bullet mode

In the previous section, we briefly mentioned that the auto-oscillator theory
correctly predicted the generation frequency of the propagating mode due to
the sign of the nonlinearity coefficient. However, when the external field is
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Figure 2.12: Spatial profiles for the (a) propagating and (b) solitonic bullet
spin-wave modes. The spatial coordinates are normalized to R..

directed in-plane, the nonlinearity coefficient is negative. Slavin and Tiberke-
vich [121] studied this regime in detail. A negative nonlinearity coefficient
leads to a generation frequency below FMR indicating the spatial localization
of the mode. Indeed, the auto-oscillator equation can be cast in this case as
a non-linear Schrodinger equation, which admits known solitonic solutions.
Such dynamics have been recently observed with p-BLS [40, 39] in modified
NC-STO geometries.

The solitonic bullet mode can be visualized as an envelope for the mag-
netization dynamics [Fig. 2.12(b)] and comes about as the available energy
of the system reaches a minimum. For this reason, the bullet mode has a
lower current threshold than the propagating mode for the same conditions.
Invoking the stabilization of the mode with minimal current density i.e., sin-
gle mode generation [119, 106], this mode is expected to be dominant for
an external field applied in-plane. However, numerical simulations failed to
reproduce the bullet mode until it was acknowledged the importance of per-
turbations in the magnetic system. Indeed, Consolo et al. [31] showed that
the bullet mode could be only reproduced by reducing the current from an
already excited propagating mode. The numerical inclusion of temperature
also facilitates this process by the creation of thermal magnons [28], although
longer simulations are required.

2.5.4 Magnetic dissipative droplets

Magnon drops are localized modes that were theoretically predicted in con-
servative (dissipationless) materials exhibiting PMA. The magnons excited
in such materials experience an attractive force that leads to a conden-
sate [73, 72]. As discussed before, magnons are bosons so that Bose-Einstein
statistics permit the formation of such a condensate. The magnon density
eventually reaches a maximum where it becomes energetically favorable to re-
verse the magnetization, forming a family of solitonic objects called magnon
drops [Fig. 2.13(a)].

In a real material with dissipation, STT offers a possibility to compensate
the damping and hence attract thermal magnons. Such a mechanism was
theoretically proposed by Hoefer et al. [58], where STT causes a modulational
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Figure 2.13: Profile of the (a) magnetic dissipative droplet and (b) Skyrmion.
The arrow representation emphasizes on the different in-plane orientation (yel-
low shades) of the magnetization at the boundary between the perpendicular
domains (red and blue).

instability i.e., the magnon density increases exponentially. The formation
of such a solitonic object receives the general term of magnetic dissipative
droplet. In the following, we will refer to them simply as droplets. The STT -
damping balance ensures that a particular droplet solution is stabilized from
the available family of magnon drops, thus defining its profile, frequency, and
spatial extent. The detailed derivation of the parameter interdependence can
be found in Ref. [58].

Droplets were first observed experimentally by Mohseni et al. [84] in NC-
STOs as a sharp frequency drop in the current and field dependent spectra,
accompanied by a dramatic increase of resistance. The experimental evidence
supported the theoretical predictions in which:

e The increase of resistance indicates the magnetization reversal below the
nanocontact and thus the nucleation of a droplet.

e The current tunability is negligible as the critical magnon density is
already reached.

e The dramatic increase of the RF power indicates that the dynamics oc-
cur at the boundary of the droplet. Such large amplitude magnetization
dynamics maximizes the GMR in the current-probed region.

e Self-modulation was observed as a consequence of the combined action
of drift instability [58] caused by the in-plane component of the external
field, and the restoring force of the STT on the droplet [15].

The experimental observation of droplets opened up the possibility of
studying magnon condensation and large-amplitude dynamics and corrobo-
rate some of the theoretically and numerically predicted effects such as field
controlled motion [59], modulation [15], and interactions [80]. Notably, the
nucleation mechanism of the droplets preclude its analytical treatment from
the LLGS equation, except for the modulational instability conditions. For
this reason, the auto-oscillator framework is not directly applicable to study
droplets and instead numerical simulations are required.
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2.6 Topology and Skyrmions

The magnetic states described in this chapter can be mathematically classified
within the concept of topology [18]. By means of topology, one is able to dis-
tinguish different magnetization states and group them according to certain
properties. An important prediction is that a threshold energy is required to
transition between magnetic states belonging to different topological groups.
In simple terms, a topological group is established by any continuous defor-
mation of the magnetization texture. For example, local Zeeman energy can
create spin waves as a continuous deformation of an homogeneously magne-
tized thin nanowire and thus conserve the topological group. However, a larger
Zeeman energy can change the topological group by forming a domain wall
and preclude the relaxation to a homogeneous state. Following the same logic,
only a large Zeeman energy will be able to destroy the domain wall and recover
the homogeneous state.

Topology can be described quantitatively by a number or topological in-
variant. In recent years, it has become customary in magnetism to use the
Skyrmion number [86, 18], A/, as a topological invariant for two-dimensional
thin films. It is defined as

N = % //d:z:dy(&'yﬁl X Opm) - 1, (2.28)

where both partial derivatives and the integration are performed in the plane.
Qualitatively, Eq. (2.28) counts how many times the unit sphere is completely
filled by the total magnetization. From this point of view, a homogeneously
magnetized state corresponds to the group where N/ = 0 and it is referred
to as the topologically trivial group. The magnetization dynamics described
in section 2.5 belong to this group implying that, as observed experimentally,
the magnetization relaxes to its original state when it is not excited by STT.

Recently, it has been possible to numerically [46, 111] and experimen-
tally [87, 141, 110] create magnetization states belonging to the N' = 1 group,
or Skyrmions. These structures e.g., Fig. 2.13(b), can be excited in materials
with helical ordering or when the so-called Dzyaloshinskii-Moriya Interaction
(DMI) [45, 85] becomes relevant. To date, such materials are usually thin
non-centrosymmetric magnets [91, 141, 140] and ultra-thin ferromagnetic lay-
ers grown on top of materials with very high spin-orbit coupling, usually heavy
metals [110, 111]. In this thesis we shall not consider such materials and inter-
actions, however the concept of topology is important in order to understand
the nature of the studied magnetic dynamics, particularly in chapter 6.
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3
Methods

3.1 Macrospin simulations

The so-called macrospin approximation is based on a nanostructure whose
size is below the minimum magnetic domain wall size. In such a scenario,
it is not energetically favorable to create domains and thus the nanostruc-
ture behaves as a single macroscopic magnet or macrospin. Consequently, this
approximation is strictly valid only for nanopillar STOs of diameter below
100 nm [9]. However, as the auto-oscillator framework is a mapping of the
LLGS equation, macrospin simulations can also be used, in some cases, as
relatively simple numerical tests for such a framework.

Numerically, a macrospin simulation consists of solving a single LLGS
equation, neglecting exchange. The simplest way to solve the LLGS equation
is to map it into spherical coordinates (pg, ds,0s), where ps = || = 1.
Consequently, the LLGS equation is decomposed into a system of two coupled
equations [139, 145, 61]

dag 1+ Oé?; - dHR 1 dHR
s T
it~ M\ e o © Snds dos

. dPR_ oG dPR
I dgs sin 05 d¢s

— (agD1 + D3)sinfg, (3.1a)
dps1+0% || (dHg o L dHg
dt ~ T sinfg \ dfg G sin Os dos

(6%} dPR 1 dPR
—= ag + —

sin fg dfs  sinfg dog
+D1 — agDs. (3.1b)

where Hg = - h, P = m-p, h = H,/M,, Dy = D, cosfgcos®ps +
D, cosfs sin® ¢g — D, cosfg, Dy = cos ¢ g sin ¢s(Dy — D), and D, D, and
D, are the normalized demagnetizing fields calculated for elliptically shaped
nanopillar cross sections [92]. A noteworthy point is that for a circular pillar,
such elliptical integrals diverge and the thin film approximation for H, is
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a good approximation. Furthermore, the thermal field can be also included,
converting the problem into a stochastic differential equation (SDE) [35].

In order to solve such coupled SDEs, a high order integration method is
required. In this thesis, we use the approach by Milshtein [82] that extends the
first order Euler algorithm to account for a random field. A critical benefit of
this approach, is that the same algorithm reduces to a simple Euler integration
method when temperature is not included. However, the choice of the time
step is also critical for a correct description of the dynamics.

3.2 Micromagnetic simulations

The micromagnetic approximation is one of the best numerical methods to
study the dynamics of magnetic materials. In contrast to macrospin, the mi-
cromagnetic approximation aims to solve a set of LLGS equations coupled by
the exchange interaction. Consequently, this technique can be illustrated as a
coupled array of macrospins or cells [Fig. 3.1], whose individual size is below
the exchange length, A.,. Furthermore, micromagnetic simulations are ideal
to study spin waves and magnetic domains, as discussed in Ref. [60].

In the micromagnetic approximation, every cell has a well-defined spatial
location corresponding to the real structure. These kind of problems can be
approached either by finite difference (FD) or finite elements (FE). In FD,
the cells are usually cubic so that every cell is equidistant, as in Fig. 3.1. In
FE, however, the cells are tetrahedra with generally different distances from
one another. In this work, we will mainly use FD approach, particularly the
open-source code Mumax2 [136]. The shape limitations imposed by the cubic
cells are overcome by the massive parallelization of graphic processing units
(GPUs) that allows one to solve very large problems in a short time. The
simulation results presented in this thesis were performed on NVIDIA’s GTX
580 (512 cores) and GTX 690 (2 x 1536 cores) architectures.

Micromagnetic simulations are of fundamental importance in the NC-STO
modeling. However, the simulation of a realistic device is not possible since
its size limits the maximum allocatable cells in commercial GPUs or makes
the simulation time extremely long. For this reason, NC-STO simulations are
performed by approximating the extended free layer by a disk with a diameter
of 1 to 1.5 um, well below the physical dimension of the samples but large
enough to capture the relevant magnetodynamics. There are two detrimental

I I I |

Figure 3.1: Schematic of the micromagnetic simulations, where a large array
of macrospin cells (cubes) with a well-defined magnetization (black arrow) are
coupled by exchange (red arrows). The size of the cells must not exceed Ae;
for each coordinate.
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(b) Bias-T
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Figure 3.2: (a) Scanning electron microscopy (SEM) pictures of the fabricated
NC-STOs showing, from top to bottom, a ~ 100 nm NC, the NC-STO layout
with two ground contacts at the sides, and the collinear waveguide pads [SEM
pictures courtesy of P. Diirrenfeld] (b) The STOs are characterized electrically
by a dc current and subsequent amplification and spectral measurement of
the generated ac signal. A bias-T is regularly used to filter the dc and ac
components relevant for each section of the circuit.

consequences of this approximated geometry that must be taken into account
in order to obtain physically realistic results:

e The aspect ratio of the disk promotes a vortex as the magnetic ground
state due to its shape anisotropy [51]. To prevent the formation of a vor-
tex state, the magnetization is always initialized along its hard direction
and then relaxed to equilibrium in the presence of an external magnetic
field and an artificially large Gilbert damping to improve convergence.

e Creation and reflection of spin waves is possible at the boundaries of
the simulation area after the relaxation has been achieved i.e., when the
Gilbert damping term is restored to a physically realistic value. A known
solution has been the use of absorbing boundary conditions [8, 29] where
the artificially large Gilbert damping is conserved close to the simulation
boundary. In this thesis, we implement a linear increase of the damping
up to a factor 100ag ~ 1.

3.3 Electrical characterization

The NC-STOs are electrically characterized in order to probe the magnetiza-
tion dynamics. This approach is based on the assumption that the fixed layer
is mostly static, and the precession of the free layer can be simply probed
by GMR. The NC-STO devices used here have the structure Co(8 nm)/Cu(8
nm)/NiFe(4.5 nm), where the NiFe is the free layer. The spin valve is pat-
terned into a rectangular mesa that is 8 pm x 16 pum in size. Cu NCs of
different sizes and two ground contacts are lithographically patterned on top
of the free layer of each device. The whole structure is then contacted by gold
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pads shaped as coplanar waveguides [Fig. 3.1(a)] in order to provide means to
probe the generated ac voltage.

The devices are characterized in a probe station, utilizing a non-magnetic
probe. An external field is set by rotatable Halbach arrays of permanent mag-
nets creating fixed fields of 0.9 T and 0.965 T. In order to characterize the
dynamics, the RF circuit of Fig. 3.2(b) is used. The dc current source is a Keth-
ley 6221 dc and ac current source while the voltage is sensed by a Kethley
2182A nanovoltmeter. The STO-generated ac wave is then separated utilizing
a bias-T of bandwidth 500 MHz to 40 GHz, and studied in the frequency
domain by a R&S FSV40 spectrum analyzer (SA).

This characterization technique suffers from impedance mismatch between
the RF environment (50 Q) and the NC-STO (~ 10 Q). Consequently, the dc
current is not fully delivered to the STO leading to markedly different current
tunabilities due to the impedance sample-to-sample variation. As mentioned
in chapter 1, the power generated by STOs is low and microwave amplifiers
are used to observe signals on the order of 10 to 20 dBm above the SA noise
floor. From the measured spectra, one strives to obtain a good estimate of the
frequency of the excited dynamics and its linewidth. Throughout this thesis,
linewidth will refer to the full width at half maximum, which is generally
in the order of MHz for STOs. In order to quantify these parameters from
the experimental spectrum, a fitting procedure was developed in MATLAB
including multiple Lorentzian fits, minimum-error procedures to find the best
fit, subsequent removal of bad fits, and similarity-based grouping.
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4

External perturbations

The STT-induced dynamics in STOs can be subjected to perturbations from
the environment. Of particular technological interest are pure tones which, de-
pending on their frequency, can induce synchronization or modulation. Owing
to their strong nonlinearity, STOs exhibit novel responses to these perturba-
tions, leading to fundamental considerations to be taken in the design of any
realistic device. In this chapter, we study the synchronization and modula-
tion phenomena analytically, by means of the auto-oscillator framework, and
numerically utilizing the simplified macrospin approximation.

4.1 Synchronization

One of the most remarkable features of auto-oscillators is their ability to adjust
to an external source of a similar frequency, or synchronize. It is possible to
discern between two cases of synchronization:

e Injection locking occurs when the oscillator is subjected to or entrained
by an external perturbation i.e., the coupling is unidirectional. A classi-
cal example is the use of low-linewidth quartz oscillators to synchronize
more powerful but broad-linewidth positive-feedback circuits [114].

e Mutual synchronization occurs when both the oscillator and the external
perturbation influence each other i.e., the coupling is bidirectional. An
example is the synchronization of an ensemble of oscillators such as
fireflies [97].

Injection locking [107, 49, 75, 132, 44, 103] has been experimentally ob-
served in various STO geometries including nanopillars, MTJs, and NC-STOs.
In contrast, mutual synchronization [63, 81, 102, 112] has been only observed
in NC-STOs where the perturbation or coupling mechanism is provided by
the propagating spin wave mode [102]. In both cases, the technological im-
pact of the synchronization phenomena is the increase of the STO’s generated
power, approaching the minimum requirements of state-of-the-art electronic
circuitry.
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Figure 4.1: Relative oscillation frequency according to Adler’s equation as a
function of frequency mismatch. As the frequency mismatch approaches the
value of F' (red lines), the frequency converges towards the external frequency.
In the range Aw < |F| the oscillator is phase-locked and its relative frequency
is identical to the external source.

4.1.1 Adlerian synchronization

The analytical formulation for synchronization was first introduced by Adler [2]
for linear electronic oscillators. By solving the general resonant RLC circuit
with an energy source, it is possible to obtain the ODE

% = —Aw — Fsinv, (4.1)
where ¥ and Aw are, respectively, the phase difference and frequency mis-
match between the oscillator and the source, while F' is a coupling factor
related to the oscillator’s quality factor. Equation (4.1) is linear from the
point of view that the only variable is the phase difference . Adler’s equa-
tion predicts synchronization when a steady state is obtained. This is possible
if F > Aw in which case the so-called phase-locked regime is established
[Fig. 4.1]. Furthermore, Adler’s equation predicts a monotonic approach to
the phase-locked regime whose synchronization time is inversely proportional
to F i.e., it is a purely over-damped system.

This approach was used to explain initial experimental observations [107,
49, 132] as well as to provide analytical insight into the STO synchroniza-
tion [120, 117]. In particular, it was analytically [117] and numerically [94, 146]
predicted that the strong nonlinearity of STOs would lead to an enhanced
synchronization range, or phase locking bandwidth Aw,, and a hysteretic in-
jection locking behavior [115, 14]. However, there was a clear discrepancy be-
tween the predictions and the experiments. In particular, the pioneering sim-
ulations [55, 130] and predictions [48] of mutual synchronization of nanopillar
STOs by means of a feedback circuits were never accomplished experimentally.

4.1.2 Non-Adlerian injection locking

The analysis of the transient dynamics in the synchronization process [147,
33, 34] uncovered that the STO would approach the phase-locked state in an
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underdamped or non-Adlerian fashion. Such a behavior is possible in STOs due
to the strong power and phase coupling that leads to an effective second order
ODE. In terms of the auto-oscillator framework, an underdamped response
implies the following;:

1. Both the power and the phase difference transients are described by the
same slow-time dynamics.

2. There is a minimum synchronization time parameterized by the time
constant 75 = I'; I originating from the real part of the transient re-
sponse.

3. An intrinsic “ringing” frequency Q = I',\/F/F,. — 1 is excited, where
F,, is a critical coupling factor required for non-Adlerian dynamics. This
frequency originates from the imaginary part of the transient response.

4.1.3 Non-Adlerian mutual synchronization

The non-Adlerian dynamics of STOs provides new insights to study the mutual
synchronization of electrically connected nanopillars as well as to understand
its limitations. In particular, in this section we study serially connected STOs
whose coupling signal comes from a passive, yet resonant, inductor (L) and
capacitor (C) feedback circuit [Fig. 4.2]. Similarly to Ref. [130], the resonant
(bandpass) feedback circuit provides both a self-consistent ac coupling signal
or mean field in the Kuramoto limit [97] and an additional phase that can be
tuned to lag or delay the coupling signal. In the auto-oscillator framework,
section 2.4.7, the general equation can be written as

% +iw(|ef)e + T (je)?)e = T-(le[*)e = Fy(t, ) e, (4.2)
where Fy is a feedback function of time and the sum of each STO complex
amplitude. As briefly mentioned earlier, the feedback circuit is resonant and
thus adds a phase /3 to the coupling signal. Notably, due to Kirchoff Laws [114],
such a simple feedback circuit has a 3 = 180 deg delay at resonance, w(|c|?) =
1/+/LC. Consequently, even in the simple case of a resistive feedback [55], the
STOs will be subjected to a mean field that is delayed by 180 deg. We shall
discuss which are the implications of the delay 3. In the simplified case of two
STOs connected in series we can write

Frlt, 3 ci) = f (leale™ O 4 feg |10 e, (43)

where f is the normalized coupling strength and we explicitly write the com-
plex amplitude in its phasor form. The coupling strength for an electrically
perturbed STO was derived in Ref. [118] and here we extend it to the general
case of N, serially connected STOs

B Eogwo tan o finj

fra= 272 N,
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Figure 4.2: Resonant feedback circuit where an ac, I, is established by the
impedance of the capacitor (C) and inductor (L). From this definition, the
injection current on the STOs has a delay 5 = 180 deg at perfect resonance.

where ¢; = |c1]+ |ea|, Yo is the relative phase between the free and fixed layer,
and pin; = Ioe/Iqc is the injection locking strength providing a dimensionless
measure of the ac perturbation with respect to the dc bias. Equation (4.4)
bounds the magnitude of f as N, — oo so that the total coupling vanishes at
the thermodynamical limit.

As discussed in section 2.4.7, we study the perturbed dynamics of the auto-
oscillator equation. Assuming similar STOs, |c1| = |cz2|, we obtain the power
and phase equations

% = Aw+20I',Ap —2f cosSsin, (4.5a)
A
dditp = —2I',Ap—2fsinfsin, (4.5b)

where ¥ = ¢o — ¢1 and Ap = Ips — dp1. It can be verified that a linear
oscillator, v = 0, reduces Eq. (4.5a) to an Adlerian ODE. However, when
v # 0, the system of Eq. (4.5) contains trigonometric functions so that an
exact solution cannot be obtained. Consequently, we linearize the equations
about the steady phase and power differences

Aw
o = i ) 4.
Y arcsin Ao, (4.6a)
fsinf Aw
A = 4.
Pe I, Aw,’ (4.6b)

obtained directly from Eq. (4.5), where Aw, = 2 f|cos(B — arctanv)| and
f = fv/1+ 2. The linearized system of equations reads

% = 2T Ap —2f cos B cos o1, (4.7a)
d%p = —2I',Ap —2fsin B cos o1, (4.7b)

which can be easily solved by linear algebra, leading to the characteristic
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exponent

Ae=—(I7) £ \/(I‘T)2 — 4l"pfcos 1, cos( — arctan(v)), (4.8)

where I'y =T, + f cos 3 cos .

Equation (4.8) reveals that serially connected STOs can also exhibit an
underdamped response when \. becomes imaginary. Interestingly, and in con-
trast to the non-Adlerian injection locking, this system can also exhibit insta-
bility if I, becomes negative. Both features can be expressed as

/T2 +4Aw?
(4.9a)

i >
Jring 2 4v cos(f — arctan v)’

;b = T+ fcosBcost,. (4.9b)

From the conditions of Eq. (4.9), it is possible to uncover important qual-
itative information that is lost in a steady state analysis:

1. Satisfying the condition of Eq. (4.9a) leads to a non-Adlerian approach
to synchronization and hence establishes the minimum time constant of
Eq. (4.9b). In contrast to injection locking, 8 has a critical influence on
Ts. Indeed, the time constant is reduced by keeping the phase delay in
the range 5 < |90| deg and its minimum value occurs at 5 = 0 deg.

2. In the range § > |90| deg, the transient becomes slower and even un-
stable if the sign of 7, changes, i.e., if the ratio I'y/fcos Bcosv, < 1.
Noticing from Eq. (4.4) that f is proportional to &/c; o« £/4/€ — 1 and
thus a decreasing function of £, the instability can be avoided by strongly
biasing the STO at the price of losing coupling strength.

3. The condition for non-Adlerian solutions [Eq. (4.9a)] has a minimum
value at § = arctan v ~ 90 deg whereas it tends to infinity at 5 = 0 deg.
In the serial circuit considered here, the operation regime lies in the
range 8 > |90| deg so that the optimal operation point to both reduce
the time constant and avoid instability is found at 5 — 90 deg.

4.1.4 Unstable dynamics

The analytical predictions of the previous section can be numerically tested
by means of macrospin simulations. We assume a circular nanopillar with
parameters for the free layer pugM, = 0.8 T, V, ~ 3.7 x 10> nm>, P = 0.35,
and A = 1. A high field uoﬁa = 1.5 T is applied out-of-plane leading to
the fixed layer tilt angle v, ~ 60 deg from the surface normal. Under these
conditions, auto-oscillations are found above I;;, = 2.82 mA.

The magnitude and phase of the coupling current are obtained from Kir-
choff Laws. To proceed, we assume that the STOs have parallel and antiparallel
resistances Ry = 10 2 and R, = 11 €, respectively, and the angular depen-
dence is defined as R = ((Ro+ Rz) — (Rx — Ro)m - p)/2. The resonator is then
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Figure 4.3: (a) Inverse minimum synchronization time, 77!, as a function
of 8 determined from macrospin simulations. The synchronization dynamics
are stable for & (triangles) while instability is possible for & (circles). The
analytical estimates for both cases are shown by solid and dashed lines. Inset:
ratioI',/ f as a function of £ in common logarithmic scale when /f('oﬁa =15T.
Time trace of ¥ as it evolves from stable (b-c) to unstable (d-e) dynamics.
The dashed lines mark ¢ = +180 deg.

tuned about the STO oscillation frequency, so that L ~ 1 nH and C' =~ 2 pF.
The exact values depend on the operation point and desired phase delay.

From the above parameters, it is possible to analytically estimate the limit
for stable dynamics as a function of £. As shown in the inset of Fig. 4.3(a),
the ratio I',/f = 1 is achieved when & ~ 1.08. Consequently, we perform
simulations at two representative supercriticalities for stable (§; = 1.23) and
unstable ({2 = 1.03) dynamics.

The transient responses of the phase difference v as a function of the delay
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100 < B < 180 degrees are fitted with an exponentially decaying sinusoidal
function from which 75 can be obtained. An excellent agreement is shown in
Fig. 4.3(a) between the simulated results, represented by symbols, and the
analytical predictions, represented by solid lines, indicating that Eq. (4.9)
correctly estimates the onset of phase instability.

It is important to notice that instability in this context predicts an ex-
ponential increase of ¢ in the linearized system of Eq. (4.7). However, the
nonlinearities of the full system bound the phase difference. It is instructive
to observe such transitions directly in the time domain. Figure 4.3(b-e) shows
the phase difference for selected values of 8 when the system is biased at
&5. The time constant clearly increases in panel (c) compared to panel (b),
in agreement with Eq. (4.9b). Panel (d) shows the case when 7,1 ~ 0 s7!
and, as a result, the coupled system stabilizes into an oscillatory regime. Such
oscillations in % indicate that the STOs are continuously adjusting their fre-
quencies while never attaining a steady state. Such dynamics can be related
to the pulling regime [105] where oscillators are only locked for a fraction of
time. When £ is further increased into the unstable regime, panel (e) shows
that the dynamics are still oscillatory as expected from the saturation effect
of non-linear systems.

4.1.5 Sample variation effect

The versatility of macrospin simulation allows one to study the dynamics
of nominally different STOs, where the approximation ¢; &~ ¢ used in the
analytical derivation does not strictly hold. However, an important prediction
can be made from Eq. (4.9). In particular, as the frequency mismatch increases
due to device variability, Eq. (4.9a) approaches Aw < 2v fying sin f ~ Aw, and
only non-Adlerian synchronization takes place.

This situation is indeed observed in Fig. 4.4(a) for several values of the
frequency mismatch obtained from nominally different STO cross sections
biased at &;. In this case, the pulling regime is clearly observed when Aw/2m =
115 MHz. Similarly, instability is observed when the oscillators are biased
at & and S = 150 deg, as illustrated in Fig. 4.4(b). Notably, the different
intrinsic frequencies of the STOs lead to what seems to be a period doubling,
as illustrated by the different periods 77 =~ 50 ns and T & 41 ns in the same
figure.

4.2 Modulation

We now turn our attention to the interaction between a STO and an external
source of a very low frequency, on the order of MHz. As shown in the pio-
neering paper of Pufall et al. [101], the current tunability of STOs provides a
unique scenario in which the external source directly causes an instantaneous
frequency variation. Such a frequency variation is known as frequency mod-
ulation (FM) [24] and is widely used for analog communication technologies.
From this perspective, the STO offers the immediate advantage of a much
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Figure 4.4: (a) Phase difference between STOs with several frequency mis-
matches. When Aw = 115 MHz, the STOs enter a pulling regime. (b) The
finite value of Aw leads to a period doubling in the phase difference with two
clear periods: T and Ts.

simpler circuit for generation and detection of frequency modulated spectra,
in contrast to more complex super-heterodyne detection circuits.

The current tunability leading to the simple FM in STOs is a direct con-
sequence of their nonlinearity. From the same argument, one would expect a
similar power or amplitude modulation (AM). The combined action of the AM
and FM was mathematically approached by Consolo et al. [30] and termed
non-linear frequency and amplitude modulation (NFAM). Such a model was
applied in the experimental NC-STO measurements performed by Muduli et
al. [90] to fit intriguing observations such as the STO (carrier) frequency shift
and asymmetric sideband power. However, the NFAM model was not related
to the intrinsic STO parameters, for which reason it was not possible to un-
derstand the underlying physics.

4.2.1 Non-linear frequency and amplitude modulation

In order to physically understand the non-linear modulation of STOs, we
analytically solve the auto-oscillator equation in the presence of a slow mod-
ulation current. The different time scales, on the order of 103 s, suggests that
the modulation current can be accounted for in the bias component of the
auto-oscillator framework, T'_ (I(t), |c|?), reading

I(t) = Igc (1 + fm COS wmt) s (410)

where i, is the modulation strength, and w,, is the modulation frequency.
Again linearizing the auto-oscillator equation according to the power fluctua-
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tion approximation, the power and phase equations take the form

a%p = UmCicoswpt + (mCacoswpt —T') 2dp, (4.11a)
Cfo = w+ 2wl,dp, (4.11b)
where we define the constants
Gro= T-(m), (4.12a)
Co = <F—(p0) + drgp(p ) popo) . (4.12b)

The system of Eq. (4.11) is a coupled ODE with variable coefficients with
the additional difficulty that such coefficients are not linear. Since we expect
a periodic solution consistent with modulation, we propose a Fourier series
with coefficients A,, and B,, as a trial solution:

o0
op = Ao+ Z A, sin nw,,t + B,, cos nwy,t. (4.13)
n=1
Introducing Eq. (4.13) into Eq. (4.11) leads to an infinite system of equa-
tions. It can be shown [appendix A.1] that it is possible to truncate the series
and obtain a recursive solution for the coefficients with good accuracy. After
some algebraic manipulation, we obtain

Ao + Z VB2 + A2 cos(nwmt — 1y,), (4.14a)
n=1

¢ = (wH+2TpA)t
+ Z %\/B% + A2 sin(nwmt — y), (4.14b)
Wy,
n=1

The notation of Eq. (4.14) explicitly shows a harmonic-dependent phase
Y = arctan(A,/B,) = arg(X,), where X,, is a complex variable. To relate
Eq. (4.14) to experimental observables, we compute its power spectral density
(PSD). By Taylor expansion [appendix A.2], the PSD can be expressed as a
series of convolutions

op

PSD = podxc(w + 20T, Ag) * [(1 + A9)dx(0)
+ Z %(5K(nwm) + %(M(—nwm)}
n=1
o TLn(a00(0) + 3 H0 (X1 (nin)
n=1 j=1 n

+ (1) X0k (—njwm))

, (4.15)

where the bar denotes complex conjugates, (3, (defined below) is the harmonic-
dependent modulation index, and the notation dx (zg) = dx(x — xp) is used
for brevity where dx (x) is the Kronecker delta function.
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Figure 4.5: (a) Carrier frequency shift as a function of the normalized fre-
quency. The white line is obtained from Eq. (4.16). The different curvatures
of each OP result in a different magnitude of Cy. (b) Asymmetric sidebands as
a function of the first-order modulation index f; and at w,,/27 = 100 MHz.
The asymmetry is more pronounced for the OP where the curvature is higher.

4.2.2 Numerical evaluation

The derived PSD uncovers the main features of NFAM in STOs and relates
them to intrinsic variables. Consequently, it is possible to numerically evaluate
the PSD in order to verify the experimental observations. We choose material
parameters consistent with NiFe: p,Ms = 0.8 T and ag = 0.01. The external
field ,uof_j'a = 1 T is applied out-of-plane. We choose three operating points
(OP1, OP2, OP3) at different supercriticalities so that I',/27m = 11.2, 44.8,
and 156.8 MHz. As will be shown below, I';, is the most relevant parameter in
relation to the modulation characteristics of STOs.

Analyzing the PSD of Eq. (4.15), the following characteristics can be de-
scribed:

1. The PSD in Eq. (4.15) consists of a carrier frequency convoluting with
an AM term and a series of generally asymmetric FM terms (first to
third terms in the RHS).

2. The carrier frequency is shifted by the quantity 2vI', Ag, which can be
also expressed as
_ M VO2 Bl

o f, =
wf 5

(4.16)

44



<

- =0.1%/ decade

—
(==
=}
T

<

| ——1I,/2m =11.2 MHz
—— T, /27 = 44.8 MHz
—1I', /27 = 156.8 MHz

107 108 10° 1010
Modulation frequency, w,, /27 (Hz)

2 A f Jwx 100%

Figure 4.6: Normalized peak frequency deviation Af as a function of the
modulation frequency. The solid lines are calculated using only 3 while the
circles are calculated numerically. The vertical dashed lines represent the cut-
off frequency 2I',, for each OP. The dot-dashed line is a guide for the eye.

proportional to the modulation strength and the STO nonlinearity con-
stant Cy. This is in complete agreement with the experimental observa-
tions and the numerical evaluation of the simple auto-oscillator frame-
work where Cy has a well-defined sign [Fig. 4.5(a)].

3. Generally asymmetric sidebands are obtained from the convolution be-
tween the AM and FM terms. Although a meaningful analytical ex-
pression cannot be found, it is clear that the asymmetry arises from
the influence of higher order harmonics and the imaginary component
of complex variable X,,. In particular, X; = B1(1 + iw,,/2I",) so that
the increase of the modulation frequency should lead to an increased
asymmetry. Such asymmetries are shown from the Bessel-like carrier
and sideband amplitudes in Fig. 4.5(b) at wy, /27 = 100 MHz. Again,
this is in qualitative agreement with the experimental observations.

The NFAM obtained from the auto-oscillator framework further uncovers
the form of the modulation index, defined as

Iy X, 20T, 1 2rAf
= X - .
NWin NWin, \/(nwm)Q + (2Tp)? Wm

B (4.17)

From the modulation index, it is possible to define the modulation band-
width (MBW). This figure-of-merit gives a measure of the frequency range in
which an oscillator has optimal modulation properties. A common criterion is
to find the linearity degradation of the modulation index, defined as the 3 dB
power attenuation of an expected carrier or sideband power. In our frame-
work, such estimation can be performed analytically by considering a van-
ishing modulation frequency and an arbitrary p,,, so that the first-harmonic
modulation index is §;. By maintaining the ratio t, /w,, constant while look-
ing for By = Bi/\/2, the MBW of an STO is found to be 2I'p. This result
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implies that the MBW depends on the operation point of the STO. It is possi-
ble to represent such a deviation from linearity with the factor A f normalized
to the STO frequency shown numerically and analytically in Fig. 4.6. One
can understand this figure as a transfer function for STOs under modulation
where a characteristic low-pass filter behavior is observed, with a linear rolloff
after the cutoff frequency 2I',, (dashed vertical lines).

4.3 Modulation of phase-locked STOs

The previous two sections demonstrated that the STO nonlinearities are re-
sponsible for the non-Adlerian synchronization and the NFAM. In this section,
we are interested in the combined action of synchronization and modulation.
There are two main motivations behind this study:

1. It is technologically relevant to study the modulation of mutually syn-
chronized STOs where power is enhanced to the level required for com-
mercial applications. An experimental study performed by Pogoryelov et
al. [98] showed the possibility of modulating synchronized STOs, how-
ever their study left unanswered questions regarding the combined dy-
namics.

2. The transient ringing frequency in the non-Adlerian synchronization was
shown to manifest as sidebands [147, 33], similar to those observed by
AM. However, such sidebands are not observed in the PSD due to their
transient character. From this perspective, modulation is an alternative
to continuously excite this intrinsic resonance under synchronization and
bring such features above the experimental noise floor.

From a qualitative point of view, synchronization and modulation have
opposite effects on the STO instantaneous phase. The effect of synchronization
is to maintain the phase fixed while the effect of modulation is to continuously
vary the phase. These different regimes suggest a rich phase space and it
is difficult to predict the dynamical outcome a priori. In the following, we
demonstrate that there are two main outcomes as a function of pu,,, where the
synchronization regime is either perturbed or destroyed. We consider the case
of injection locking for the sake of clarity. However, the analytical results can
be extended to a mutual synchronization regime.

4.3.1 Dynamical equations

As in the previous sections, we start by setting the auto-oscillator equation, in
this case combining the modulating term with an external source of injection
power f = aquw, tan fyo,u,;nj/Q\/i and frequency w,

9 Fiwe+ (D (1) T (1(0), e ))e = feie . (4.18)
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Assuming a phase-locked initial state, the linearization of Eq. (4.18) leads
to a coupled set of equations as a function of dp and ¢ given by

fl—]; = Kjcoswpt — Ko — [K3 + K4 coswnt] dp, (4.19a)
0¢
o = Ksdp+ Koo, (4.19b)

where the coefficients are given by

K1 = el = po)im, (4.20a)
Ky = fsingo/\/po, (4.20b)
K3 = 2T, — fcosdo/+\/Po, (4.20c)
Ky = 20¢(2po — 1)pm, (4.20d)
K5 = 2T, — fsind,/ /s, (4.20e)
K¢ = —fcosdo/\/Do- (4.201)

Clearly, the set of Eq. (4.19) are similar the modulated set of Eq. (4.11).
Consequently, we seek a Fourier series solution that can be truncated in order
to find a recursive generation of the coefficients as in appendix A.1.

4.3.2 Ringing frequency excitation

An analytical solution of Eq. (4.19) can be obtained in the low modulation
regime, where the condition K4 < I'j, is fulfilled. In other words, this regime
implies that the modulation-induced fluctuations are strongly damped by
the STO restoration rate. Further assuming a vanishing frequency mismatch
(Aw — 0), it is possible to obtain a closed relation for the first-harmonic
maximum power

Klwm

6pma:1: - .
2
V(@2 — KoKs)? + K3,

(4.21)

The form of Eq. (4.21) is resonant only as a function of w,,. The maximum
power is thus excited at a frequency wymqq, given by

Wmas = Tpy |, (4.22)

fier

where pier = 2F\/2p,(§—1) /T, tan -, is the critical strength for non-Adlerian
dynamics and F,, =T',/(2vsin¢,) as derived in Ref. [147]. Equation (4.22)
is the asymptotic approximation to the ringing frequency (section 4.1.2).

In order to test this analytical solution, we perform macrospin simulations
with the same parameters as in section 4.1.4. Since a synchronized STO was
assumed as the starting point, the simulations are performed according to the
following protocol:
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Figure 4.7: (a) Maximum sideband power as a function of the modulation
frequency p, for several values of 1, ;. Resonance is observed as the maximum
Wmaz Of the sideband power. Collecting wy,q, as a function of p;y,; allows
us to construct (b), showing good agreement with the analytical estimates.
However, it is shown that p., depends on p,,, indicating non-linear effects
that are neglected in the analytical approximation.

1. The STO is driven to stable oscillations by biasing it at Iz, = 3.5 mA
(& = 1.23) for 20 ns. For this choice of parameters, the STO oscillates
at w/2m = 24.27 GHz.

2. An injection current, loe = ftin;l4c coswet is added to the dc bias at the
same STO free-running frequency, i.e., we = w. This regime is sustained
for 100 ns to ensure proper convergence to a phase-locked state.

3. The modulation current is added to the bias and injection currents.
The modulation frequency, w,, /2w, is swept between 20 and 1000 MHz
in steps of 20 MHz. For each w,,/27 value, the simulation is run for
100 ns.

4. The resulting time trace is transformed to a series of spectra by per-
forming fast Fourier transforms (FFT) using a Hann window and zero
padding to achieve a frequency resolution of 9.5 MHz.

From the various FFT's, it is possible to extract the power of the modula-
tion sidebands as a function of wy, /27, as shown by the blue line in Fig. 4.7(a),
in the case where p,,, = 0.005. As expected from Eq. (4.21), the power exhibits
resonance and wy,., can be extracted.

Repeating the simulation protocol and the above procedure for different
values of (i, ;, We obtain wpq, as a function of p;,;, as represented by empty
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symbols in Fig. 4.7(b). Comparison with the analytical estimate of Eq. (4.22)
(solid line) corroborates that we obtain an asymptotic approximation to the
ringing frequency. In addition, comparison with the ringing frequency obtained
in Ref. [147], shows that ., is not recovered from the modulation excitation.
On the contrary, it appears to exhibit a dependence on pi,. This is an indi-
cation of the strongly non-linear dynamics occurring in this system. However,
the same results prove that the ringing frequency is indeed resonantly excited
by the modulation source in the limit of low pi,,.

4.3.3 Non-linear resonance and unlocking

The asymptotic approximation derived in the previous section breaks down
as iy, increases. A quantitative limit for the maximum modulation, u,, can
be estimated from the condition dp,ne: = po at the maximum frequency
_ o & Him
5pmax(w = wmaﬂc) ~ Po = fj(l - po)?- (423)
There are two important observations that can be made from the condition
Eq. (4.23):

1. The low modulation condition monotonically increases as a function of
the supercriticality. However, the auto-oscillator frequency, conceived as
a small amplitude perturbation, does not strictly work at high super-
criticalities.

2. The breakdown of the low-modulation condition precludes an accurate
resonant excitation of the ringing frequency.

Due the above observations, and the lack of a large amplitude magnetiza-
tion precession theory including modulation, we perform macrospin simulation
to study the effects of high modulation strengths.

A similar simulation protocol as described in section 4.3.2 is performed
with the difference that we now sweep p,, while maintaining a fixed fn;.
Notably, the frequency is swept back and forth, however, no signs of hysteresis
were found. In order to unambiguously study the non-linear dynamics, in this
section we determine the maximum phase deviation between the STO and the
injection source, parameterized by Ay = |max(¢(t)) — min(t(¢))|, where (t)
is the instantaneous phase difference. This method is sensitive to the sampling
time used in the simulation, here set to 2 ps, which introduces a maximum
error of ~ 10 deg. The use of A is justified by the strong power and phase
coupling in STO. Additionally, this quantity is convenient to describe both
the resonant features of the power and the state of the STO. In particular, we
define that the STO is unlocked if A is not bounded between 0 and 360 deg.

The first indication of the non-linear dynamics induced by p,, can be
observed in Fig. 4.8(a). Indeed, the modulation induced resonance at about
840 MHz for ji;,; = 0.2812 (blue line) acquires the aspect of non-linear reso-
nance as [, increases. Such asymmetric resonances, or foldover, is well known
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Figure 4.8: (a) Non-linear resonance excited by the modulation source ob-
served by the phase deviation At. This mechanism leads to the resonant
unlocking indicated by white dashed lines in the A colormap as a function
of wy, and p, at pin; = 0.2812 (b). When the injection strength is reduced
down to pin; = 0.01, (c) the modulation is strong enough to non-resonantly
unlock the STOs as shown for p,, > 0.3 in (b) and dominating the colormap
in (c).

for non-linear processes such as spin-wave excitations in thin films [124] and
the carrier frequency shift discussed in section 4.2.3. Further increasing i,
leads to an unbounded increase of A suggesting that modulation can break
the phase-locking regime.

It is instructive to explore the u,, vs w,, space, shown as a color map in
Fig. 4.8(b). From this figure, we can identify two different mechanisms for
modulation-mediated unlocking:

1. Resonant unlocking: In the region spanning 0.1 < pu,, < 0.3, un-
locking occurs when the resonance peak of Ay surpasses the bounded
condition, while it is otherwise locked. In other words, the injection
source provides an intrinsic frequency that resonates strongly with the
modulation source so that phase slips occur. This regime is highlighted
with white dashed lines.

2. Nonresonant unlocking: In the region u,, > 0.3, the STO is always
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unlocked at low frequencies. This can be understood from the fact that
modulation dominates the dynamics and the injection source does not
have the time or the bandwidth to fix the phase. This observation is in
agreement with the NFAM bandwidth (section 4.2.3), which predicts an
ideal STO modulation at low frequencies.

The above mechanisms are also observed at lower injection strengths
[Fig. 4.8(c)]. In particular, it is observed that the nonresonant unlocking
regime dominates for low w;y;, in agreement with the qualitative description
provided above.

Finally, we stress that the dynamics described in this section are also
observed when temperature is taken into account, suggesting the use of com-
bined injection and modulation as a plausible means to study the effect of the
non-linear transient dynamics in STOs.
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5)

Multi-mode generation
dynamics

The Hamiltonian formalism reviewed in section 2.4.7 makes it possible to
map the LLGS equation into an approximated complex ODE. In order to
derive the auto-oscillator equation, single-mode and small-amplitude magne-
tization dynamics are assumed. Despite this arguably limiting assumption, the
auto-oscillator equation has been successful in explaining experimental results
reasonably far from its validity range.

However, some experiments have shown multi-mode generation in a va-
riety of geometries [70, 113, 143], revealing unambiguous evidence of mode-
hopping [74, 88, 89] and periodic mode transitions [13, 12]. The origin of
mode transitions in nanopillar STOs can be attributed to physical confine-
ment. However, in NC-STOs, the origin of mode transitions is not well under-
stood and is generally attributed to structural defects and roughness of the
magnetic layer.

Regardless of the physical origin, multi-mode generation is routinely ob-
served accompanied by a linewidth broadening. This can be simply under-
stood from the fact that mode transitions lead to shorter correlation lengths.
However, this effect has not been included in a theoretical framework. In the
following, we show that it is possible to derive a multi-mode theory from a
similar Hamiltonian formalism. Such a multi-mode theory makes it possible
to model a wide range of dynamical scenarios including the recently observed
mode coexistence. In particular, coexistence provides unequivocal proof that
STOs are generally multi-mode generators. Finally, we perform experiments in
a modified NC-STO geometry in order to test both the analytical predictions
and the physical mechanism governing the dynamics.

5.1 Multi-mode Hamiltonian formalism

The multi-mode Hamiltonian formalism was recently proposed as an extension
of the auto-oscillator equation, in light of the dramatic linewidth broadening
close to a mode transition observed in MTJs [88] and NC-STOs [89]. Recently,
a rigorous derivation was presented by Heinonen et al. [57] by mapping the
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micromagnetic LLGS equations into an approximate Hamiltonian system. The
main idea behind the derivation is to consider an orthonormal set of magnon
states supported by their Bose-Einstein distribution [section 2.2.4]. Consider-
ing two main generation modes, it can be shown that the thermally populated
states act as coupling channels between the modes. Such interactions are both
conservative and non-conservative, and lead to a generalization of the auto-
oscillator equation including off-diagonal damping and STT terms as well as
a linear coupling coefficient. Notably, due to the average balance between
damping and STT, the total power of the main modes remains constant.

In terms of the auto-oscillator framework, it is possible to write the coupled
equations for the two-mode oscillator as

de .
dTl + iw(ler]?, [eaP)er + [T (leal?s lez?) = T (Jer]?, e2])] e
= K1 2602 ¢y + fi, (5.1a)
de .
dTQ + iw(|eal?, ea]?)ez + [Di(le2l?s |ea]?) = T—(leal?, 1 )] 2

= Ky 1€e'®ee + fo. (5.1b)

In Eq. (5.1), the off-diagonal terms are included in the non-linear frequency
and damping terms while the linear coupling terms are written in a phasor
form with strength K and phase ¢.. The set of Eq. (5.1) is general [57], so
that the explicit form of each term will be provided below for the particular
cases studied in this thesis. Furthermore, the thermal fluctuations for each
mode, f , are also explicitly considered.

5.2 Multi-mode dynamics

In this chapter, we aim to describe a NC-STO with the multi-mode equations.
In particular we assume two modes of generally different frequencies, w; and
wo, and we express the coefficients as:

e w(|c1]?) = wy + Nlc1|?, where the different frequencies are enforced only
by the different complex amplitudes.

o Iy (|e1]?]e2l?) = Ta(1+Q1|c1]?>+Qole2)?), where @ and Qg are general
diagonal and off-diagonal damping coefficients.

o I'_(|c1]?,|cal?) = €T q(1— Py|c1|? — Pyleal?), where Py and Py are general
diagonal and off-diagonal STT coefficients.

Enforcing total power conservation, it is convenient to express Eq. (5.1) as
a function of the phase difference ¢ and the modal energy mapped by the vari-
able —7/2 < 0 < /2 satisfying p = p; cos? (/2 + 7 /4) + pasin® (0/2 + 7/4).
Performing some algebra, the differential equations can be written as [ap-
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pendix B.1]

smé? [Q1— Qo+ &(P — Py)]

1 0
—;TSI;[szQ0+5(P2*PO)]

+K(1 —sin 0)\/Z7jcos (pe — )
~K(1+ sm@)\/:COS (Pc +9)
2

pNy 1—51n9 B 1+siné
2 w1 w2

+K1—sm9 /ﬂSin((ﬁc—w)
cos 0 w1
1
_Ki—’_sme,/—sin((bc—i—w)
cos wa

+\/> cos §(f3 — fi) —sin §(f3 + f1)
p

cosf
where the Gaussian thermal fluctuation term is separated in complex parts
f=f%+if" and its second moment (f(t), f(t')) = pAwd(t — t') is given in
terms of the linear oscillator linewidth Aw; derived from the auto-oscillator
framework [67, 69, 68, 129, 118].

The set of Eq. (5.2) describe a two-dimensional phase space supporting
different dynamical scenarios. The richness of the possible outcomes stems
from the nonlinearity of the equations. Neglecting the thermal fluctuations,
linear stability can be used in order to study limiting cases [appendix B.2].
Two main dynamical states are found:

6 = Cosefgp

—cosOl'gp

: (5.2b)

1. Single mode: In the limit K — 0, a stable solution is obtained
for § = 4m/2 so that all the available energy is taken by a single
mode. Clearly, Eq. (5.2b) diverges in this regime i.e., a phase differ-
ence cannot be established, and the phase space is described by verti-
cal lines [Fig. 5.1(a)]. The linear stability analysis demonstrates that
the modes can be independently stable by satisfying the condition
Qi +&P; < Qo + &P

2. Coexistence and periodic energy transfer: In the limit of large
coupling, linear stability analysis shows that the determinant of the Ja-
cobian matrix allows real (fixed points) and imaginary (limit cycles)
solutions as a function of the coupling phase ¢. [Fig. 5.1(c)]. Fixed
points occur at § = 0 so that both modes coexist and equally share
the power. Limit cycles denote a periodic energy transfer between near-
single modes.
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Figure 5.1: Phase spaces spanned by 6 and ¢ for (a) K = 0: single mode; (b)
K = 0.2: near-single modes and coexistence; and (¢) K = 1: coexistence and
periodic energy transfer. For the case K = 0.2, the basins of attraction are
shown for (d) ¢. = 0 and (e) ¢. = 7/2. In the latter, the spiral feature is
reminiscent of a particle with friction in a double potential well.

Between both limiting cases, an analytical solution can be found by Tay-
lor expansion. However, the large coefficients limit the usefulness and insight
obtained by such an expression. Instead, it is possible to numerically inte-
grate Eq. (5.2) to obtain an intermediate solution. It has been found that
the generation dynamics are generally coexistent or exhibit near-single modes
[Fig. 5.1(b)]. The stable state selection process has also been found to depend
on ¢, and the initial conditions in 1) and 6, mapped as basins of attraction in
Fig. 5.1(d-e).

The near-single modes and their equivalent basin of attraction [Fig. 5.1(e)],
suggest that the energy landscape is similar to a particle with friction in
a double potential well [93]. From an experimental perspective, this sug-
gests that the model equations can describe the observed mode-hopping in
STOs [74, 88, 89]. Furthermore, a periodic energy transfer was argued to de-
scribe the dynamics in NC-STOs exhibiting both a propagating and a bullet
spin wave mode [12, 13]. Consequently, the multi-mode model equations con-
tain, in principle, the necessary physics to describe such complicated dynamics
in relatively simple terms.

5.3 Generation linewidth of NC-STOs

The multi-mode dynamical equations of section 5.1.2 offer the possibility of
exploring a large phase space of possible generation dynamics. In the following,
we restrict ourselves to the study of the generation linewidths of experimen-
tally relevant modes in NC-STOs. Analytically, this is achieved by deriving

56



the auto-correlation function, IC, for two modes
K= ([e1(t) + c2(O)] [e1(¥') + 5 ()])- (5.3)

As shown below and suggested in Ref. [118], such an autocorrelation is
generally related to power and phase fluctuations. In particular, the autocor-
relation of the two-mode system is always proportional to the phase fluctua-
tion’s second moment [appendix B.3]. Consequently, it is sufficient to study
the phase fluctuations via linearization of Eq. (5.2)

6p = Cppop + Cpypdt) + f, (5.4a)
5’(/1 = C¢p(5p + wa(S’l/J + fdn (54b)

where the coefficients are given in appendix B.4.

5.3.1 Continuous mode transitions

Current-dependent experiments on the spin wave propagating mode (section
2.5.2) usually exhibit a stairway-like behavior for the frequency tunability, in
contrast to the auto-oscillator theory prediction. The behavior close to the
“steps” has been attributed to mode transitions between propagating modes
with similar frequencies. From this point of view, the linewidth broadening can
be attributed to the reduction of the correlation length when mode-hopping
events occur. However, the single-mode theory was also able to reproduce the
linewidth broadening by considering a current dependency on the nonlinearity
coefficient [89]. These opposing ideas compromise the understanding of the
underlying physics behind the linewidth broadening. In order to clarify this
matter, we assume that such a broadening is indeed due to mode-hopping
between similar modes in the context of the multi-mode framework.

The assumption of similar modes is enforced in the multi-mode framework
by symmetrical equations with average energies +(6,). The existence of two
average energies for analytically identical modes is possible by virtue of the
independent stability conditions for single modes (section 5.1.2). Further as-
suming that ¢. — /2, means that the phase space is characterized by two
energy minima separated by an unstable saddle point at 8 = 0 [Fig. 5.1(b)
and (e)].

The aforementioned phase space can be verified numerically by solving
Eq. 5.2. We choose parameters consistent with the NC-STO used in Ref. [89].
Such a device consists of a 4.5 nm thick NiFe free layer with saturation mag-
netization p,Ms ~ 0.88 T, exchange length A\.; = 5 nm, and ag = 0.01. An
external field uoﬁa = 1 T is applied at 80 deg with respect to the NiFe
film plane. Whereas the NC in Ref. [89] was a 50 nm x 150 nm ellipse,
we assume here, for simplicity, a circular NC of radius R. = 40 nm that
has a similar effective current-carrying area and an assumed supercriticality
£ ~ 1.1. In the two-mode oscillator framework, such parameters are mapped
to w,/2m = 11.94 GHz, p ~ 0.017, Q =~ 4.6w, P ~ w, ['¢/27 ~ 120 MHz,
N/27mw =~ 68 GHz, w/2m ~ 13.13 GHz, and Aw/27 = 0.6 MHz. These param-
eters agree fairly well with the near-threshold generation of the real device.
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Figure 5.2: (a) Time trace of 6 exhibiting mode-hopping events between +(6,,)
(red dashed lines). The section in the black box is detailed in (b), where the
underlying relaxation frequency is observed. The inset shows the exponential
distribution of the time difference between mode-hopping events, in agreement
with a Poisson process. (¢) Phase space of the time trace (a) showing that the
stable modes (fixed points indicated by black circles) are thermally driven to
mode-hop via saddle points (black crosses).

In order to complete the analytical description, we assume parameters for the
off-diagonal terms Q¢ = 2Q and Py = 2P, providing stability for both modes.
For K = 0.3, the numerical integration of Eq. 5.2 returns the expected mode-
hopping time trace [blue lines Fig. 5.2(a)] between the stable states +(0,) (red
dashed lines). A zoom of a particular mode-hopping transition (black box) is
shown in Fig. 5.2(b), where the intrinsic relaxation frequency is apparent, and
related to the strong nonlinearity coefficient N. The mode-hopping time-trace
can be also visualized in its phase space, where the maxima and saddle points
are indicated, respectively, by black circles and crosses. A similar behavior is
observed for ring lasers [7, 41] where the master equations resembles Eq. 5.2.

The generation linewidth in this mode-hopping regime arises from two
vastly different time-scales:

1. The perturbation introduced by thermal fluctuations has a short time-
scale and, assuming the the perturbation is small, it can be related to the
phase difference second moment obtained from the linearized Eq. (5.4)
by the method of variation of parameters [appendix B.5]. Performing
Taylor expansion to second order and expressing || = |¢' — t|, the self-
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and cross-correlated second moments are given by

<¢i(t)wi(t/)> = 7L,ii|7l|+'YG,ii|Tl|2, (5.5&)
W Yl ml + 6205171 (5.5b)

where the coefficients v;, and v are mode dependent and are generally
functions of the coefficients of Eq. (5.4) [appendix B.5].

2. Mode-hopping events occur as sharp phase jumps on a longer time-scale
[Fig. 5.2(a)] and cannot be analytically obtained from Eq. (5.2). Conse-
quently, we incorporate such events as an additional phase parametrized
by a series of sudden jumps, separated by random, long time intervals.
This description is proper for a Poisson process [116] which is only de-
scribed by its rate, Ap. Indeed, the distribution of the relative time
between mode-hopping events is numerically found to agree with an ex-
ponential distribution, as shown in the inset of Fig. 5.2(b). Finally, it is
known that the second moment of such a process is simply Ap, so the
phase difference is enhanced by a factor —Ap|7|.

With these ingredients, the autocorrelation of mode-hopping dynamics
take the approximate yet insightful form

W (1 — <in <90>>e—’YL,mTzIe—’yc,nln\ze—AP\TH
+(1 —sin (90>)6_7L»M‘Tl|e—7G7jj|Tz|ze_’\P|”‘
+ cos <90>(€—’YL,U|7'L|e—’YG,1:j|7'z\2)COS (00) g=ApITi

+ cos (0,) (e 1PailTl g 1G5 Ycos (o) o= Ap Tl (5.6)

From Eq. (5.6), it is observed that a cross-over to the temporal decay of the
correlation dominated by decoherence occurs as Ap increases. The resulting
lineshape is obtained by the Fourier transform of the autocorrelation Eq. (5.6),
from which the linewidth can be extracted. Each term of the RHS has a simi-
lar form which, after performing the Fourier transform, leads to a Lorentzian
lineshape with a linewidth given by 7 ; + Ap, convoluted by a Gaussian
lineshape with a linewidth given by 44/7¢ i;1n2. Such a convolution is defined
as a Voigt lineshape. Consequently, the general lineshape obtained from the
Fourier transform of Eq. (5.6) is expected to be a sum of Voigt functions. A
noteworthy point is that Ap enhances the linewidth of the Lorentzian com-
ponents, contributing to spectral broadening as observed experimentally [89].
The Gaussian contribution here arises from the response of Eq. (5.4) which is
found to relax to zero [appendix B.5], i.e., the autocorrelation is lost after a
finite time, leading to statistically independent modes and thus uncorrelated
mode-hopping events. This mechanism has a different physical origin than
the Gaussian lineshape that arises from a high temperature limit [118] or 1/f
noise [66].

Numerically, the lineshape predicted from Eq. (5.6) can be obtained from
the autocorrelation of di(¢) multiplied by the Poisson factor with a mode-
hopping rate Ap estimated from the time trace of Eq. (5.2a). Such a lineshape
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Figure 5.3: (a) Fourier transform of the autocorrelation calculated from the
numerical integration of Eq. (5.4) (black). Mode-hopping events are included
as a Poisson process with a mode-hopping rate calculated from the numerical
solution of Eq. (5.2) (red). The best Voigt fit is shown in blue. (b) Voigt
linewidth as a function of the coupling strength K, obtained from the best
fit of the autocorrelation (black) and including mode-hopping events (blue).
The analytical estimate is shown by red squares. The mode-hopping events
dominate the linewidth when K > 0.3. (¢) Experimentally measured linewidth
(red circles) and linewidth obtained from Eq. (5.7) (blue line) with AE =
52 meV extracted from a single experimental data point at 303 K. This simple
fit shows a remarkably good agreement with the experimental data trend as
well as its magnitude.

is shown in Fig. 5.3(a) by the red line for the parameters given earlier. We
find the best Voigt fit following the approach of Ref. [77], as shown in the
same figure by the blue line. For the chosen STO parameters, a single Voigt
fit provides a good estimate of Eq. (5.6). The fitting procedure can be re-
peated as a function of K from which we obtain the Voigt linewidths, shown
in Fig. 5.3(b) by blue circles. These numerical results can be quantitatively
compared with the analytical estimates from Eq. (5.6) and Eq. (5.5). For the
chosen parameters, we obtain vg ; — 0 so that vz, ;; provides a good estimate
for the linewidth, shown in Fig. 5.3(b) by red squares. Clearly, the Voigt fit
agrees well with the Lorentzian estimates when K < 0.3 suggesting that the
linewidth is otherwise dominated by mode-hopping, i.e., the linewidth tends
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to Ap. We find that these linewidths quantitatively agree with the reference
experiment [88] without any fitting parameters, suggesting that mode-hopping
is the physical mechanism behind the observed linewidth broadening.

To further test the analytical estimates, we fit the spectrum of the phase
difference autocorrelation shown by black lines in Fig. 5.3(a). Multiple Voigt
functions can be identified in this case, in agreement with Eq. (5.6). In partic-
ular, there is a narrow peak consistent with vz, 21 =~ vg,21 — 0. The sidebands
corresponding to the oscillatory relaxation of the system are observed at about
+80 MHz (indicated by an arrow) which, together with the large fluctuations,
allows us to reliably fit only two Voigt functions. In spite of these difficulties,
the wider Voigt linewidth [black marks in Fig. 5.3(b)] is observed to follow the
analytical trend, further confirming that the linewidth enhancement is due to
mode-hopping events.

The fact that the dynamics are dominated by mode-hopping events indi-
cates that the linewidth provides a direct measure of Ap. Assuming an Ar-
rhenius distribution for the mode-hopping rate, as it is a thermally-induced
process, allows us to relate the linewidth to temperature in the form

AE = kyTlog % (5.7)

where we assume that the attempt frequency f, = 160 MHz corresponds to
twice the intrinsic relaxation frequency since the phase-space is 7/2-periodic
in 0. Equation (5.7) reveals that an exponential linewidth broadening is ex-
pected as a function of 7! near a mode-transition, in contrast to single-mode
predictions [118]. Indeed, such a broadening was also observed in the refer-
ence experiment and a simple analytical estimate is found to agree fairly well
[Fig. 5.3] by estimating AE = 52 meV from a single experimental data point
at 303 K [appendix B.6].

5.3.2 Spin-wave mode transitions

Field angle-dependent experiments on NC-STOs have shown the existence
of both a spin wave propagating mode and a solitonic bullet mode (sections
2.5.2 and 2.5.3). In particular, the experiments performed by Bonetti et al. [13]
showed that the modes would hop leading to an enhanced linewidth that could
not be explained by single-mode theory alone. On the contrary, those results
were compatible with the energy transfer regime identified in Fig. 5.1(c).

Additionally, measurements in NC-STOs with larger NCs exhibited evi-
dence of mode coexistence [43] in strong contrast to previous observations.
These novel results could be confirmed by micromagnetic simulations where
the mechanism behind coexistence was attributed to the spatial localization
of both modes. In other words, the propagating mode acquires a localized
character below the field angle 6. As expected, this occurs exactly when the
generation frequency is below the FMR, as shown in the experimental and
simulated spectra of Fig. 5.4(a-b).

The experimental and simulation results obtained by Dumas, Tacocca,
et al. [43] were performed with a rotatable applied field of fixed magnitude
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Figure 5.4: Experiments and simulations of angle dependent (a-b) and current
dependent (c-d) scans. The angle scans exhibit coexistence, mode-hopping,
and single mode generation as A increases from 0 to 90 deg. The coexis-
tence is further demonstrated in the current scans at p = 30 deg as a clear
intermodulation peak. Both experiments and simulations agree remarkably.

—

poHy = 0.965 T (as described in section 3.3) and assuming standard parame-
ters for NiFe thin films, namely p,M; = 0.88 T, ag = 0.01, and A\, = 5 nm.
The results exhibit, in a single device, most of the possible dynamical regimes
predicted in section 5.2.

1. Single mode oscillation is observed at field angles 0 > 6. in Fig. 5.4(a-
b), where 0 is the field angle with respect to the film’s plane and 0, is
a critical angle at which two modes start to be observed.

2. Mode-hopping is observed in the range ; < 0p < 0. as evidenced by
the low frequency components in Fig. 5.4(a-b) identified as telegraphic
hopping between the modes. As predicted in section 5.3.1, the linewidth
in this regime is greatly enhanced.

3. Coexistence between the bullet and a high-frequency localized mode is

62



observed when 0 < 0. Furthermore,the current-dependent experimen-
tal and simulated results at O = 30 deg [Fig. 5.4(c-d)] exhibit a well
defined intermodulation peak both indicating that the modes are gen-
erating with a significant power and are strongly coupled.

In order to derive an analytical prediction for the generation linewidth
of these cases, the results of sections 5.3.1 must be generalized for different
frequencies. In the case of coexistence, Galilean invariance can be invoked to
derive [appendix B.3] the autocorrelation function as

K = peiwlt (COS2 <X>+ Sm(22<X>)) e—<w(t)w(t’))/2 (58)

+ pe'! (sin2 (0 + Sm(22<x>)> e~ (WHVEN/2,

Interestingly, the autocorrelation for both modes depends only on the
phase difference (under Galilean invariance) leading to the prediction that
both modes should exhibit identical linewidths. However, this result is only
valid for strict coexistence i.e., (§) = 0 and deviations from this trend are
expected from experiments.

The solution of the phase difference second moments leads to the closed-
form relation

(W(Ep(t) = — BB (

Cyy

2
pr
2 2
Opp B Cdﬂl}

+ 1) eCuvlnl (5.9)

which also leads to Lorentzian and Gaussian components under Taylor ex-
pansion, as in Eq. (5.5). Evaluating the coefficients [appendix B.4] indicates
that the linewidth asymptotically decreases to p2Aw;/4 as a function of K.
Of course, this trend is valid only when coexistence is established. Another
interesting limit is found for very strong K, in which case the linewidth fur-
ther depends on the factor \/wiwz/(w + w2) which tends to zero as wy # ws.
Consequently, the minimum value p2Aw;/4 is approached as the frequencies
are further apart.

5.4 Fine-tuning the generation dynamics

The generation dynamics discussed in the last two sections are intimately
dependent on the linear coupling strength K. In particular, K determines the
relative energy of the excited modes which, when similar enough, leads to
ideally identical linewidths for modes with generally different frequencies.

In the context of NC-STOs and the excited modes discussed in section
5.3.2, the analytical predictions are limited since the auto-oscillator equations
are strictly derived for the propagating mode. Consequently, a quantitative
agreement is not expected without adjusting the expressions for the power-
dependent frequency and positive and negative damping terms. However, due
to the generality of the multi-mode model equations, we expect a qualitative
agreement with experimental observations.
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Figure 5.5: Mode energy distribution for the bullet (a) and high-frequency (b)
modes in a NC-STO as a function of current. The current-induced Oersted
field (dashed yellow line) localizes the bullet (high-frequency) mode at the local
field minimum (maximum), where the in-plane external field component, H,
is indicated in white. (c) Fitting the experiment shown in Fig. 5.4(c), returns
the frequency and linewidth for the bullet (blue) and high-frequency (red)
modes. The linewidth increases with inter-mode spatial separation due to the
reduced mode coupling.

The physical origin of the coupling strength K is of particular relevance
in the following sections. From the analytical considerations of sections 5.3.1
and 5.3.2, we expect K to be closely related to the bias current by means
of the creation of spin wave coupling channels in the thermal bath [57]. This
mechanism leads to the linewidth reduction as a function of K, and thus bias
current, discussed in section 5.3.2. However, recent measurements in circular
NC-STOs [43] uncovered that the bias current induces an inter-mode spatial
separation due to the Oersted-induced energy landscape, as shown by the mi-
cromagnetic mode energy distributions of both the high-frequency and bullet
modes [Fig. 5.5(a-b)]. Such an inter-mode separation reduces the coupling be-
tween these modes, hence leading to a linewidth enhancement, as shown in
Fig. 5.5(c) for the same spectra shown in Fig. 5.4(c).

To test the validity of these mode coupling mechanisms, NC-STOs with
elliptical NCs were fabricated, where the ellipses had an aspect ratio of 1.5
and were tilted by an angle Oy¢c with respect to the in-plane applied field
component. The elliptical NCs provide means to tune the coupling strength
K both by inter-mode spatial separation and bias-current magnitude.

5.4.1 Mode localization and coupling

The magnetization dynamics excited by elliptical NC are similar to those
excited by circular NC. In fact, it is difficult to define a perfect circle both
lithographically and in FD simulations, where the cells are perfect cubes. This
assumption is verified by micromagnetic simulations of elliptical NC of minor
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Figure 5.6: Mode energy distribution for the bullet (a-c) and high-frequency
(d-f) modes for NC-STO with elliptical NC tilted Oy¢ = 0, 45, and 90 deg.
In panel (d), the relative orientations of the current-induced Oersted (yellow)
and in-plane field component (white) are indicated.

axis d,, = 70 nm.

Of particular interest is the mode energy distribution. The direction of
the current-induced Oersted field is represented in Fig. 5.6(d) by a dashed
yellow line, while the in-plane field component, H)|, is indicated by a white
arrow. In agreement with Fig. 5.5, the bullet mode is localized at the local
field minimum [Fig. 5.6(a-c)], while the high-frequency mode is localized at
the local field maximum [Fig. 5.6(d-f)]. Interestingly, the modes acquire the
shape of the NC and are preferentially excited at the boundary.

As for the case of circular NC-STOs, both the high-frequency and bullet
mode interact by means of the exchange coupling between spins. However,
such an interaction is of an evanescent character since their frequencies lie
below FMR. Nonetheless, there exists a finite mode volume for such evanescent
modes which, combined with the small dimensions of the NC, provides a
physical mechanism for mode coupling. This is exactly the same mechanism
proposed by the multi-mode theory.

5.4.2 Experimental measurements

Electrical characterization is performed in the setup described in section 3.3
and section 5.3.2. As we are mainly interested in the linewidth of the coexistent
modes, we limit our study by using a uoﬁa = 0.9 T Halbach array rotated in
the range 10 < O < 45 deg and a frequency scan between 20 and 35 GHz. A
low-noise RF amplifier of gain 32 dB and bandwidth 18 — 40 GHz was used.
The obtained spectra were averaged 10 times and the resulting features were
fitted in frequency, linewidth, and integrated power by an in-house developed
MATLAB fitting and sorting procedure.

As expected from coexistent modes, the powers of both modes were similar

for the six measured devices, regardless of the ellipse tilt, field angle, and bias
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Figure 5.7: Average generated power of NC-STOs as a function of field angle
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averages are performed in each case for two different devices measured at
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Figure 5.8: Generation linewidth of three devices at NC ellipse tilt angles
Onc = 0, 45, and 90 deg. The linewidth of the high-frequency mode (a) be-
comes increasingly broader as the modes are spatially more separated. How-
ever, for the bullet mode (b) such a dependency is not observed. The critical
angle for localization 6, is shown by dashed lines.
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Figure 5.9: High-frequency mode generation linewidth of two devices at NC
ellipse tilt angles Ox¢c = 0, 45, and 90 deg (dots and crosses) as a function of
bias current. For all devices, the current threshold is approximately —15 mA
(dashed lines), below which the linewidth follows the expected behavior of sub-
threshold generation [118]. From the multi-mode theory, it can be interpreted
that (a) the current and spatial separation are mostly balanced, (b) the current
increases coupling in the range 20 to —25 mA while spatial separation is
dominant in the range —20 to —25 mA, and (c) the current increases the
coupling while the mode separation is negligible.

current. This is clear from the average generation power shown in Fig. 5.7
for each ellipse tilt. As the field angle increases towards 6, (black dashed
lines), the power of the high-frequency mode generally increases indicating
a preferential energy share and the onset of mode-hopping dynamics. This
feature is further confirmed by the linewidth, where an exponential divergence
is observed in Ref. [43], consistent with the mode-hopping regime discussed
in section 5.3.1. However, the different powers indicate that the condition of
identical linewidths predicted by Eq. (5.9) is not strictly satisfied.

The linewidth estimation returns a wealth of results that can be inter-
preted from the analytical considerations of section 5.3.2. The first trend that
can be observed is the increase in the high-frequency mode’s linewidth for el-
liptical contacts tilted towards 90 deg, as shown in Fig. 5.8(a) for three devices
biased at —20 mA. This is consistent with the expected trend in which spa-
tially close modes (O = 0) couple strongly and favor a minimal linewidth.
However, the bullet mode [Fig. 5.8(b)] appears to be rather insensitive to this
mechanism, indicating that there are intrinsic effects neglected in the analyt-
ical model. Indeed, as briefly stated above, the auto-oscillator framework is
not directly applicable to localized modes, and the form of the damping terms
must be revisited in order to agree with a more careful numerical solution of
the resulting non-linear Schréodinger equation [121].
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The experimental results of Fig. 5.8 emphasize that the inter-mode spa-
tial separation [Fig. 5.6] is the main physical mechanism behind the linewidth
broadening of the high-frequency mode. However, the analytical framework of
section 5.3.2 predicts a significant reduction of such a linewidth as a function
of the bias current, both due to the creation of coupling channels and the
enhancement of the frequency mismatch between modes. Initial experiments
suggest that this is indeed the case, as shown in Fig. 5.9. For the six measured
devices (dots and crosses) the current threshold is approximately —15 mA, as
indicated by black dashed lines. In all cases, the linewidth decreases as the
current approaches the threshold due to the transition from a partially bal-
anced damping scenario to an auto-oscillator regime [118]. For ¢ = 0 deg
[Fig. 5.9(a)], where the modes are spatially close, the high-frequency mode
linewidth of two devices only slightly increases above threshold (~ 30 MHz),
indicating that the opposing actions of the current-induced coupling and spa-
tial separation are mostly balanced. On the contrary, a dramatic decrease in
linewidth is observed for Oy = 90 deg [Fig. 5.9(c)], indicating that the current
significantly enhances the inter-mode coupling via creation of coupling chan-
nels. The negligible effect of the current-induced inter-mode spatial separation
in this regime also confirms their evanescent mode volume. An intermediate
state can be observed for ¢ = 45 deg [Fig. 5.9(b)] where the behavior of
the linewidth can be understood from a first increase of coupling channels
[—20 to —25 mA] and a later inter-mode spatial separation [—25 to —28 mA].
However, more statistics are required to validate these observations.

In summary, the presented measurements are in qualitative agreement with
the multi-mode oscillator theory predictions. From this point of view, it is
possible to interpret a much wider set of data and predict the overall dynamical
scenario. We stress that the presented results are taken from several devices
in which sample-to-sample variation is inevitable. However, the consistency of
these initial experiments is promising for more detailed studies in experimental
setups where the field can be rotated in three dimensions and a larger data
set can be acquired.
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6

Confined magnetic
dissipative droplet

The recent observation of magnetic dissipative droplets (droplets from here
on) in NC-STOs [84] has opened up a new branch of research in which magnon
condensates and the theory of dynamic magnetic solitons can be experimen-
tally studied. From an applied perspective, such solitons are of particular
interest as novel storage units.

Droplets have been theoretically predicted and experimentally observed
only in two-dimensional thin films in which the physical boundaries have lit-
tle impact in the nucleation process and dynamics. In light of the pursuit
of nanoscopic excitations, we address in the following section the effect of
physical confinement on a droplet, as the thin film is reduced to a nanowire.
This problem is approached mainly numerically by micromagnetic simulations,
however, asymptotic methods can be also analytically employed under certain
approximations.

6.1 Physical confinement

The nucleation of droplets in NC-STO is achieved in free layers with strong
PMA, such as Co/Ni multilayers [83, 84]. According to the dissipative droplet
theory [58], droplets are successfully stabilized above a critical current where
the number of magnons in the condensate increases exponentially. From this
perspective, the nucleation of droplets in confined geometries should not be
hindered. Additionally, the resulting dynamics are expected to be affected by
the increased shape anisotropy in the free layer’s plane.

In order to systematically study such effects, we perform micromagnetic
simulations of NC-STO nanowires with a fixed length of 1 ym and a variable
width between 300 and 50 nm. We choose material parameters consistent with
the experiments performed on Co/Ni multilayers in Ref. [83] namely: thickness
5 nm, o = 0.05, K, = 447 kJ/m3, M, = 716.2 kA/m, and A = 30 pJ/m —
similar to Co —. The Co polarizer is assumed to provide a torque with a full spin
polarization P = 1 for simplicity, and a spin asymmetry A = 1.1. This choice
of polarization leads to an underestimation of the current-induced Oersted
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Figure 6.1: Threshold current for droplet nucleation for nanowires of varying
width and NC diameter of (a) d; = 50 nm and (b) da = 90 nm. The frequencies
obtained at threshold are shown in (c) and (d) for the corresponding NC
diameters. Three modes are identified: dissipative (M1), edge (M2), and quasi-
1D (M3) droplet. The FMR and Zeeman frequencies are shown in black dashed
lines. The analytically calculated frequencies for d; = 50 nm are shown in solid
red lines in (c).

field. However, it can be shown that its effect is negligible [appendix C.1]. In
all cases, the NC is placed in the geometrical center of the free layer.

6.1.1 Droplet nucleation

In order to nucleate a droplet, an out-of-plane external field of ,uoﬁa =04Tis
applied. The current-dependent droplet nucleation is determined by sweeping
the current in steps of 1 mA while seeking the satisfaction of the numerical
condition {m, (¢t > 10 ns))yc < 0, where (-) ¢ indicates the average under
the NC. This condition is motivated by the fact that 2D droplets always
contain a significant portion of the magnetization pointing to the southern
hemisphere, as indicated in Ref. [58]. From such simulations, we obtain the
threshold currents of Fig. 6.1(a-b) for two NC diameters, namely d; = 50 nm
and do = 90 nm. Even though the general trend is an increase of current
with nanowire width, current maxima can be observed as indicated by arrows.
These features are related to standing spin-waves across the nanowire’s perfect
geometry, which preclude the onset of the modulational instability that gives
rise to droplets [appendix C.2].

The frequency of the stable dynamics are determined from 200 ns time-
traces sampled at ~ 10 ps. Three different modes can be identified a priori
from Fig. 6.1(c-d). The frequencies of M1 and M2 lie between the FMR fre-
quency, w,/2m = *y,uo(ﬁa +Hyg - DZMS), and the Zeeman frequency, v,uoﬁa,
both shown as black dashed lines. These frequency bounds coincide with those
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for 2D droplets in extended thin films [58]. Contrarily, M3 exhibits a sub-
Zeeman frequency which suggests a change in magnetic texture. This argu-
ment is based on the fact that the Zeeman and FMR conditions are defined
for homogeneously magnetized textures so that a sub-Zeeman or “negative”
frequency indicates that such an assumption is not strictly correct anymore.

In the following sections, we study the characteristics of the three iden-
tified modes from a spatial and topological perspective. The NC diameter
d; = 50 nm is chosen as a representative case. However, the results presented
here still hold and the dynamical modes still exist even when temperature is
included [appendix C.3].

6.1.2 Non-topological droplet and edge modes

The spatial profiles of M1 and M2 are shown in Fig. 6.2(a-d) as contour plots
for the m, component and surface plots for the m, component for the selected
nanowires widths of 300 nm (M1) and 140 nm (M2). Clearly, M1 is the droplet
discussed for 2D thin films, including its Oersted-induced asymmetric location
with respect to the NC (white lines). Indeed, the simulated frequency agrees
very well with the analytical estimate [red line in Fig. 6.1(c)]. In contrast, M2
exhibits a much larger footprint and “sticks” to the side of the nanowire. The
in-plane magnetization components, represented by arrows in Fig. 6.2(a) and
(¢), also show that the magnetic texture of M2 is more complicated than for
the droplet.

In order to elucidate the consequences of the different textures, the
Skyrmion number is calculated according to Eq. (2.28). The discretization
of the micromagnetic simulations introduces a finite error that precludes an
integer Skyrmion number. However, by comparing with simulations using a
finer mesh, it is verified that the Skyrmion number for both M1 and M2 is
N = 0. In other words, these structures are topologically trivial and we can
justify an analytical treatment based on the dissipative droplet theory [58].

To analytically describe M2, the symmetry breaking Oersted and long-
range demagnetizing fields can be neglected. The task is to solve the LLGS
equation by considering free boundary conditions Om/0n = 0 where 7 is
an outward pointing normal. Starting from the assumption that the droplet
is azimuthally symmetric, i.e. Maroplet = Mdroplet(Pc), We observe that
OMaroplet/0Y|y=0 = 0 along the droplet centerline. In other words, the so-
lution of a half-plane also describes a droplet and, based on the droplet’s
exponential localization, can describe M2 for sufficiently wide nanowires [ap-
pendix C.4]. This is consistent with the picture of half droplets in analogy to
previously studied conservative three-dimensional surface droplets. We thus
refer to M2 as a droplet edge mode.

The asymptotic analysis presented in Ref. [58] can be used to derive the
sustaining current, o(I), for which zero total energy loss (gain - loss balance)
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Figure 6.2: Spatial profile of the non-topological M1 (droplet) and M2 (edge
mode) in nanowires of 300 nm and 140 nm, respectively. (a) and (c) are contour
plots where the color scale represents the m, component while the in-plane
magnetization is represented by black arrows. (b) and (d) are surface plots of
the m, component.

is enforced, as required by all dissipative solitons

D) (B M~ !+ /M)
fy, -0 sin? O(#)d’

/ sin? @(f’)ﬁ df,’
1+ vcosO(F)

(6.1)

’ 2
2 _w'ya_d
2 +(y’ 2] )< )
where it is convenient to use primed, nondimensional coordinates with lengths

scaled by /\ew/\/ﬁK/Ms — 1 and frequencies scaled by vquf/(ﬁK — My).
The droplet profile © = O(py) and shifted frequency 0 < w’ < 1 corre-
spond to the ground state of the conservative 2D droplet equation w’sin © =
—0" — ©'/p + %sin20 [73]. Equation (6.1) gives the relationship between
the sustaining current and frequency. The key difference between the edge
mode and a 2D droplet is the denominator in Eq. (6.1) where the integral of
the droplet is taken over the NC that is offset from the droplet centerline.
Increasing the nanowire width w’ while keeping the NC centered corresponds
to a shift of the NC further away from the footprint of the edge mode. There-
fore, to maintain a fixed sustaining current, a wider nanowire requires a larger
droplet footprint, precisely what is observed in Fig. 6.2(b). Furthermore, it is
known that wider droplets exhibit lower frequencies [58], explaining the fre-
quency jump at the transition from M1 to the edge mode [Fig. 6.1(c)]. Since
the threshold current is not an intrinsic property of the resulting mode, as
evidenced by the 3.5% current variation at the M1-M2 transition [Fig. 6.1(a)],
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we are justified in evaluating Eq. (6.1) and its 2D droplet counterpart [58] for
the fixed current Iy, = —5.7 mA which provides quantitative agreement in
frequency with the simulation results [solid red line in Fig. 6.1(c)].

As is the case for to 2D droplets, the existence of the edge mode is limited
by a maximum sustaining current (recall that I < 0). Assuming negligible con-
finement effects, we theoretically determine the maximum sustaining current
for the edge mode to fall below —5.7 mA for nanowires wider than 166 nm,
almost precisely the width at which the M1 - M2 transition occurs [Fig. 6.1(a)
and (c)]. However, theory also predicts a higher, width-independent maximum
sustaining current for M1 (—3.3 mA) so that mode selection is not completely
explained by this argument. Such a limitation suggests that a stability analysis
is required to understand the selection condition between M1 and M2.

6.1.3 Topological quasi-one-dimensional mode

The spatial profile of M3 is shown in Fig. 6.3(a-b) for a nanowire of width
50 nm. In contrast to M1 and M2, magnetic boundaries are only established
along the nanowire’s length. Furthermore, it is observed that the in-plane
component of the magnetization has opposite directions at any given time. In
other words, the magnetization performs a 360 deg rotation as the texture is
traversed longitudinally.

Topologically, it is clear that the Skrymion number of such a texture is
zero as the magnetization would cover a unit circle instead of a sphere. This
is expected, however, from one-dimensional textures as the definition of the
Skyrmion number requires non-zero spatial derivatives in the plane. A fitting
topological invariant in this case is the vector chirality [18], defined as

C= l/ Az’ (1h X yrii). (6.2)

T J -0

Performing the integration of Eq. (6.2), leads to a time-dependent vector
chirality with magnitude |C_] = 2, indicating that the magnetization indeed
covers the unit circle. This topological invariant indicates that M3 is a dy-
namical version of a soliton-soliton pair, which is a known soliton solution for
integrable biaxial ferromagnets i.e., when the damping, STT, and symmetry
breaking terms are neglected. Here, the biaxial character of the ferromag-
net can be attributed to the in-plane demagnetizing factor arising from the
nanowire’s low dimensionality. Moreover, it can be understood that its pre-
cession below the Zeeman frequency is related to the development of chirality.
We refer to this mode as the quasi-1D droplet.

To gain further insight into the properties of the quasi-1D droplet, we
perform field-dependent simulations at Iz, = —3.5 mA. First of all, we find
that the quasi-1D mode always exhibits a sub-Zeeman frequency with a field
tunability of ~ 27 GHz/T [Fig. 6.3(c)]. Below puoH, = 0.02 T, the quasi-1D
droplet is nucleated but its oscillation frequency eventually relaxes to zero.

An additional feature is observed as a function of field, namely, the spa-
tial extent of the quasi-1D droplet varies periodically in time at its preces-
sional frequency. As an example, Fig. 6.3(d) shows the averaged-in-y position
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Figure 6.3: (a-b) Spatial profile of the topological M3 (quasi-1D droplet) in
a nanowire of 50 nm. The contour plot (a) shows the m, component in color
scale while the in-plane magnetization is represented by black arrows. The
surface plot of the m, component is shown in (b). The quasi-1D droplet is
stable down to 0.02 T and its frequency is linearly dependent on H, (c). At
0.02 T, the position of the magnetic boundaries periodically moves in “anti-
phase” (d) leading to a variation of its spatial extent or breathing (e). The
precessional frequency originating from the magnetic boundaries is consistent
with the likewise periodic in-plane chirality vectors (f).

—

of the domain boundaries in time when u,H, = 0.02 T, determined when
(m(t))w = 0, where (-),, denotes averaging across the nanowire. The bound-
aries oscillate in “anti-phase”, leading to a temporal variation, or breathing,
of the quasi-1D droplet size [Fig. 6.3(e)]. Such a breathing solution is con-
sistent with integrable soliton-soliton pairs in the zero field regime [73, 18]
where breathing is described in terms of two bounded solitons in a periodic
motion. In addition, the quasi-1D droplet exhibits a precessional motion of the
magnetic boundaries, which is shown by the periodic form of the vector chi-
rality [Fig. 6.3(f)]. Indeed, the relative phase between the & and § components
denote a periodic transition between Néel- and Bloch-like configurations.

The aforementioned similarities between the quasi-1D droplet and the inte-
grable soliton solution are attributed to the increased in-plane demagnetizing
factor, which promotes an effective biaxial anisotropy in the nanowire. For
this reason, qualitative agreement such as the observed chirality and breath-
ing is expected. However, the inclusion of STT, damping, and field break the
integrability of the LL equation. As a consequence, the breathing solution is
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only achieved by including a finite perpendicular field. Furthermore, the ex-
act soliton solution breathes at twice the precessional frequency, in contrast
with the simulated results. Consequently, an analytical treatment based on
breather modes where damping is compensated by STT and a finite field is
taken into account is required to quantitatively reproduce these results.

(0]
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7

Conclusions

Current-induced magnetodynamics in STOs are strongly non-linear owing to
the large precession angles excited. Strictly speaking, such non-linear dynam-
ics are not possible to represent analytically due to the initial assumption of
small-amplitude precession, and the research must be performed either by nu-
merical methods or experimentally. However, the analytical framework is able
to provide predictions that aid in the understanding and interpretation of the
real data. In this thesis, we studied three strongly non-linear magnetodynam-
ics scenarios from an analytical perspective and related them to numerical
simulations and experiments.

7.1 External perturbations

In the context of communication applications, STOs must be able both to
synchronize in order to achieve enough output power and to be modulated in
order to act as nanosized transceivers. The results of chapter 4 uncovered the
particular limitations of these phenomena and, additionally, the possibility of
modulation-mediated unlocking of phase-locked STOs. Such an unlocking is a
consequence of the compromise between the non-Adlerian minimum synchro-
nization time and the modulation bandwidth of the STO. Consequently, the
presented results provide design guidelines for synchronized STOs in commu-
nication applications.

In the case of mutual synchronization, multiple NC-STOs sharing the same
free layer are preferred over the electrically connected nanopillar STOs due to
the fact that the delay can be tuned for stable and in-phase synchronization.
Indeed, electrical synchronization has not been observed in feedback circuits
experimentally due to their intrinsic instability. However, the power generated
from such multiple NC-STOs is largely shunted by impedance mismatch as
pointed out by Sani et al. [112], and such limitations have yet to be over-
come experimentally. Apart from these considerations, the analytical theory
describing modulation of NC-STO arrays can be simply extended by adding
coupled equations. However, the solution rapidly escalates in difficulty and the
condition for synchronization for more than two oscillators is not well defined
leading to additional regimes of clustering and frustration [53, 26].
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From a more fundamental point of view, the results of chapter 4 sug-
gest a possible experimental setting to directly determine the non-Adlerian
character of STOs. Recently, Rippard et al. [108] proposed an experimen-
tal procedure to measure the synchronization time of STOs and found that
the non-Adlerian regime was not achieved under the experimental conditions.
However, by the mechanism of resonant and non-resonant unlocking it would
be possible to quantitatively determine the relevant auto-oscillator parameter
I', which is intrinsically related to the modulation bandwidth and minimum
synchronization time, and thus provide unambiguous proof of non-Adlerian
synchronization in these devices.

7.2 Multi-mode generation

The results of chapter 5 described the dynamical regimes that are possible
to excite in STOs. In contrast to single mode theories, it was shown that
STOs are generally multi-mode generators and the observation of a single
mode is usually related to a dominant power share. From this point of view,
it is completely natural to describe the experimentally observed phenomena
of mode-hopping, coexistence, and periodic energy transfer.

In order to relate the theory with an experimental observable, the gen-
eration linewidth was derived, which is a quantity routinely measured ex-
perimentally. Our results quantitatively agree with experiments performed
on NC-STOs exhibiting mode-hopping. Furthermore, we analytically revealed
that the linewidth is related to temperature by means of the Arrhenius distri-
bution of the mode-hopping events. This is not possible to derive from single
mode theories as mode-hopping between energy minima is a required condition
to physically explain such an effect.

In the case of coexistence, the multi-mode equations predict novel depen-
dencies on the linewidth of the mostly-localized modes. Experimental mea-
surements were performed on NC-STOs with elliptically shaped NCs in order
to shed light onto such analytical predictions. It was found that the general
trends follow the analytical predictions, such as the proportionality between
current and K and the linewidth decrease as a function of K. However, these
observations are indirect and more careful measurements are required in order
to uncover the details and establish the limitations of the simplified multi-
mode equations.

7.3 Topological droplets

The analytical prediction and experimental observation of dissipative droplets
has opened up a new field of research for magnetic solitons and magnon con-
densates. In chapter 6 we studied the effect of physical confinement on the
droplet, uncovering two novel modes: a non-topological edge mode and a topo-
logical quasi-1D droplet. The existence of the edge mode could be understood
as a half droplet with the same nucleation condition as a regular droplet. Re-
cent results [80] show that the droplet is attracted to free magnetic boundaries
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while it is repelled from magnetically fixed boundaries. At the same time, the
STT attracts the droplet [15], thus establishing a compromise that defined
the transition width at which the edge mode is favored over a droplet. These
mechanisms are relevant to control the edge mode and make experimental
confirmation feasible.

The quasi-1D droplet demonstrates that the droplet could be a transient
state towards a topological structure. This is a possibility because the con-
dition for droplet nucleation involves the exponential increase in magnons
thus leading to a nanoscopic increase in energy. Consequently, it is possible
to smoothly surpass the energy protection of topological structures and fall
into a new potential minimum. Along this line of thought, novel modes are
expected also as a function of current for the edge mode. However, we argue
that an additional symmetry-breaking field source is required to observe topo-
logical structures, such as strong demagnetizing factors in the plane, RKKY
interaction, and even DMI [144].
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8
Future Work

8.1 External perturbations

Synchronization of STOs is still a subject of active research and, consequently,
the determination of intrinsic parameters related to the analytical framework
is desirable. Among the interesting experiments that could be performed and
related to the analytical results, we can suggest:

e Resonant excitation of phase-locked STOs to determine the possibility
of modulation and the prediction of unlocking.

e Synchronization to noisy sources.

e Synchronization and modulation of NC-STOs arrays which must be de-
veloped in order to achieve enough generation power for any realistic
application.

e Electrical synchronization of nanopillar STOs by a resonant feedback
circuit, which has remained experimentally elusive in the last decade.

8.2 Multi-mode generation

Multi-mode generation offers a new perspective from which it is possible to
study and interpret STOs. These ideas were recently introduced, leading to
multiple improvements and research, such as:

e Improving the analytical framework to treat the temperature depen-
dence of the fixed points position and the coupling factors.

e The fitting procedure can also be improved to fit Voigt functions and
provide the ratio between the Lorentzian and Gaussian components.

e Uncover the relation between the coupling phase and the intrinsic STO
parameters and how they are influenced by the different dynamical
modes and STO geometries.

e In the case of coexistence, further measurements are required in order
to test the analytical predictions, such as measurements of the low fre-
quency components related to the coupling strength and injection lock-
ing experiments, where the linewidths should be identical in the case of
strong coupling.
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e The localization and shape of the modes must be understood better.
This can be done numerically by studying the time dependence of the
energy localization and its relation to the NC shape.

8.3 Topological droplets

The numerical prediction of confined topological droplets suggests novel struc-
tures that can be useful both for applications and fundamental research. How-
ever, the experimental confirmation of such droplets modes is of primary rel-
evance. In particular, some experiments under development include:

e Droplet nucleation as a function of nanowire width in order to observe
the numerical mode transitions. Such experiments must be accompanied
by numerical simulations including temperature, surface roughness, and
imperfections of the fabrication process.

e Control of the edge mode based on the competing attraction exerted by
the free boundary conditions and the STT. A numerical study must be
performed first to quantify the feasibility of different control methods.

e The nucleation of topological structures mediated by droplets is of high
interest and impact. Consequently, the experimental observation of the
quasi-1D droplet as well as its topological features is desired.

e The recent development of ultra-thin films on heavy metals exhibiting
interfacial DMI suggests the study of STT-induced topological struc-
tures. Recent results by Zhou et al. [144] indicate that it is possible to
nucleate a so-called droplet skyrmion, combining the dynamic proper-
ties of the droplet with the topological properties of the skyrmion. A
detailed study of such an object is highly relevant for the development
of the emerging field of spin-orbitronics [46].
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A

Manipulation with variable
coefficients

A.1 Fourier series truncation

The Fourier series solution proposed in Eq. (4.13) is introduced into Eq. (4.11a).
The term with the variable coefficient can be expanded using trigonometric
identities:

cos(wmt)op = Agcos(wnt) (A1)

£ 3 A sinwn (1 + m)t) — sin(wn(1 - n)0)]

n=

=

+ &[cos(wm(l + n)t) 4+ cos(wm (1 — n)t)].

Expanding the summation and rearranging for equal harmonics yields

cos(wmt)dp = (Ag+ %) (A.2)
+ %[(232140) cos(wmt) — Ag sin(wp,t)]
1 & .
+ 3 ;(Anﬂ — A1) sin(nwmt)

1 — .
+ 5 Z(Bn,l + Bpt1) sin(nwpt).

n=2

This expression treats the harmonics separately, so that Eq. (4.11a) can
be solved by collecting harmonic terms. The resulting system of equations for
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the harmonic dependent coefficients is

C.

0 = M%Bl + 20, Ao, (A.3a)
(JJmAl = M(Cl - CQAO - %Bg) - QPPBl, (A?)b)
WmBl = 2FpA1 - /J/%AQ, (ASC)

0 = ) 20,B, + nwmAy (A.3d)

n=2
C
+M72(Bn71 - Bn+1)u
(oo}

0 = Y 2TyA, — nwnBny (A.3e)

n=2

C
ﬂt?z(An—l = Ans1).

This system of equations can be solved by truncating the Fourier series.
Numerically, the problem reduces to simple matrix algebra which is easily
solved by commercial packages, such as MATLAB. The convergence rate for
two modulation frequencies is shown in Fig. A.1(a), where it is assumed that
20 harmonics represent the true solution. It is observed that 5 harmonics
return an error below 1075 %.

Based on such a rapid convergence, an analytical solution can be obtained
by further assuming that the coefficients decrease rapidly in amplitude. Con-
sequently, it is possible to express the coefficients as a recursive function given
by

I (po)wm
_ A4
A] megl+(2rp)27 (A a)
I'_(p,)2T,
B = pm—m———t—s, A.4b
LT Mg,y (A4D)
A, = ~&(HpdnotnenBao) (A.4c)
2 (nwm)? + (2T))?
CQ TLOJmAn_l + 2Fan_1
B, = —= A.4d
2 ( (nwm)? + (21p)? > ( )

The evaluation of Eq. (A.4) returns a good convergence for 5 harmonics
[Fig. A.1(b-c)]. However, as 31 is swept, the error increases towards the mini-
mum of the first sideband (indicated by a dashed line). It is noteworthy that
the maximum error in Fig. A.1(c) is slightly shifted due to the absence of the
higher harmonics in the recursive generation function. In spite of these limi-
tations, this approach is convenient to treat different problems analytically.
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Figure A.1: (a) Total error as a function of the number of harmonics N, in
the series, calculated from the linear equations Eq. (A.3). For N, > 5, the
error is assumed to be negligible. Two modulation frequencies are shown as
limiting cases. For intermediate frequencies, the error lies in the shaded area.
(b-c) Error between the linear set of equations and the recursive method as
a function of the modulation index ;. The modulation frequencies for each
case are 40 and 400 MHz. The error introduced by the recursive method is
generally small, but diverges close to the minimum of the sideband, which is
indicated by vertical dashed lines.

A.2 NFAM power spectral density

The power spectral density (PSD) of the proposed solution is obtained from
Eq. (4.14), which defines both time-dependent power and phase variations.
The PSD is defined as

PSD = po+ | F(1+ 6cp) * fleos(6))], (A.5)

where f is the Fourier transform. Below, we perform each Fourier transform
separately, and express the result as a convolution. The first term on the RHS
has the form of non-linear amplitude modulation. The phase introduced by the
sinusoidal functions allows us to define the complex variable X,, = B,, +i4,,
so that

f(L+6xp) = (1+ A9)dk(0) (A.6)

+ E > O (nwm,) + > S (—nwnm ),
n=1

where the notation 0 (x9) = dx (x —20) is used and 0k is the Kronecker delta
function.
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The second term on the RHS of Eq. (A.5) is calculated by using Euler’s
formulae, and subsequently expanding in Taylor series. We obtain

_jw 0O 00 o ko
COS(¢) _ € 5 H (Z (bn k';:’ﬂ) eznk:wmt

n=1 k=0
: Z(q)k%emkw) +ee, (A7)
=0 :

where a,, = 20T, Ay, /(N ), by, = 20T, By, /(nwy, ), and c.c is the complex con-
jugate. The two summations can be multiplied by expanding and rearranging
the terms. Defining 2z,, = b,, +ia,,, it is possible to rewrite the product terms
as

ao Eﬁ“”’“mﬁi? (A.8)
' ;;(—l)km [(@ne)’ + (—ane™)].

From this expression, we can identify the summations on k£ as Bessel func-
tions of order j and argument f3,, = 2/x,%, (upon renormalization of the
coefficients by 3,,/2). The product takes the form

() = Jo(Bn)
n=1
+ Y 2P [0y 4 (et (2.9)

The Fourier transform of Eq. (A.9) is easily performed by expressing the
result as a product of convolutions Eq. (4.15).
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B

Multi-mode theory and
generation linewidth

B.1 Derivation of the coupled equations from
auto-oscillator theory

The auto-oscillator equation [118] taking into account thermal fluctuations
and a coupling term to another oscillator, can be written as

éi +iwi(lei*)ei + [T (eil®) = T-(leil*)] e = f(t) + ¢; Ke'e, (B.1)

where the subscripts ¢ and j identify each oscillator, ¢ is the mode’s complex
amplitude, and ¢ the mode’s phase. The perturbation term f (t) represents
thermal fluctuations while the coupling term to the j-th mode is parameterized
by a strength K and phase ¢.. For the multi-modal model equations the
transformation Q? = w;|c;|? is performed under the assumption of conserved
total power p = p; +p2 [88]. Separating real and imaginary parts of Eq. (B.1),
four coupled equations are obtained

Qi = Qil'g(§-1)

-Q,l'c [MQf + MQ?
Wi wj
+Q K\ [ 2 cos (6 + 65 — 60) + fF, (B.2a)
J
9271' ) + NQZ
Wi
Q; [wi . I
+KQZ\/; sin (¢c + 65 — 1) + fi. (B.2b)

Furthermore, energy can be mapped into the variable |§] < 7/2 by per-
forming the mode-dependent transformations @, = /pcos (/2 + 7/4) and
Q2 = /psin (0/2 + m/4). Scaling Eq. (B.2a) by sin @ and cos @ for each mode,
we add Eq. (B.2a) to obtain a differential equation for 6§, whereas we sub-
tract Eq. (B.2b) to obtain a differential equation for the phase difference,
V=2 — ¢1.
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B.2 Linear stability analysis

For the linear stability analysis, the Jacobian of the model equations Eq. (5.2)
is calculated. Consequently, the fixed point’s stability is provided by s < 1,
where the determinant is

_ o0+ Iu(¥)
2 ) 1/2
N <J@(9>2Jw(¢>> +Jw(0)J9(1/1)] . (B.3)

For the limit K — 0, Eq. (Bi’z) simply reduces to the mode-independent
stability conditions Q; + £P; < Qo + £Py. On the other hand, when K > 0
the fixed points are given by 8 = nm and ¥ = mnx for n,m = 0,1,2,.... The
determinant for this case can be written as

Vi — (=1)"m2K B
2

S

Y12 272
+ s K255 — (—1)"tmY, K By, (B.4)

where we use Y1 = I'gp/2 [Xlwfl — nggl], X = Qi — Qo + &P — Py),
Yo = pNy/2 [wl_l +w2_1}, B = (a’1 + a) Cos Pc, By = (a’l + a) sin ¢., and
a = y/w1 /wa. In general, the stable state is observed to be closely related to the
coupling phase, ¢.. We can further look into two limiting cases. If ¢. = 7/2,
B1 =0, and By # 0, the determinant of Eq. (B.4) can be both imaginary or
real for even or odd values of n+m. Consequently, this case demonstrates the
possibility of limit cycles. On the other hand, if ¢, = Im (where l =0,1,2,...),
B = (—1) (a_l + a), and B2 = 0, the solutions are always real. Consequently,
coexistent states are stable (unstable) if n +m + [ is even (odd).

B.3 Derivation of the autocorrelation function

The autocorrelation function K = ([e1(t) + c2(¢)] [cf (t') + ¢5(t')]) can be ex-
panded by mapping the complex amplitudes into the variables 6 and 1. Noting
that ¢; = \/p;e™* and introducing the variables ¥ = ¢ +¢2 and x = 0/2+7/4,
we can expand the complex amplitudes to ¢; = ,/p cos [x(t)]e!?®=¥®)/2 and
co = /psin[x(£)]eYO+¥®I/2 Here, we explicitly write the time dependen-
cies of the variables. It is assumed that the average energy of each mode can be
parametrized by £(6,) so that {(cos[x(t)]) = cos (x) and (sin [x(¢)]) = sin {x).
Consequently, the autocorrelation can be expressed as
K = peos? (x)e/? (e ®-v(1/2y
psin? (y)e! /2 () —P()]/2)

g sin2(x)e'¥/2 (e= v O+v(¢)1/2y

gsm2<X>ew/2<ei[¢<t>+w<t’>1/2>. (B.5)
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Expanding the exponential functions then leads to the known property for
stochastic functions

(D) = =B/, (B.6)

Without loss of generality, one can assume t' = 0 so that ((t')?) =
(¥(t'))2. Consequently, the averages contribute as an additional proportion-
ality constant whereas the lineshape originates from the form of the second
moment (1(¢)?). The latter provides the relevant information on the lineshape
and linewidth and we neglect the proportionality factors for the analytical dis-
cussion of chapter 5.

For the case of generally different frequencies, we apply Galilean invariance,
so that ¥ = 20t + ¥, and ¢ = Aw + tb,, where Q = (p3 + ¢1)/2 is the
average frequency. With the assumption that U — Ot is large, we can write
1 = Aw + 1, + 07 for the phase fluctuations. Consequently, the frequencies in
the autocorrelation remain separated and we obtain Eq. (5.8), restated here
for clarity

. in(2 ,
K = peirt (Cosz <X>+Sm(2<><>)) o (BOB(E))/2 (B.7)

+ pet?t (Sin2 ) + Sm(22<x>)> e~ (vE))/2,

B.4 Derivation of the coupled perturbed model
equations

The short time-scale fluctuations can be obtained by linearizing Eq. (5.2).
This can be achieved directly from Eq. (B.2) by expanding the power and
phase as p = p, + dp and ¢ = ¥, + ¥, where p, and 1, are average operating
points. Keeping only the perturbation terms leads to

6p = Cppop + Cpypdt) + f, (B.8a)
o Cypop + Cypp0t + fu. (B.8b)

where the coefficients are given by
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Do, (Q1+EP1)
2lg(§-1) - ?FGT
—&F (Qz +§p2)

2 ¢ w2

(1 —sin (,))” (B.9a)
(1 +sin (6,))°

Bera @+ er) (o o) (1-sin? 6)

+K cos (6,) [a cos (¢e + ) + %COS (P — 1/0} )

poK cos (6,) [a sin (¢ + ) — ésin (¢pe — w)} , (B.9b)

Ners [< W + £ +sin (22 (£ - fﬁ)}, (B.9¢)

_% [1 +s;1; (o) 1- S:: <90>} ’ (B.9d)
e [ = smgo) Leos (6 — )] (B.9e)
Cosf§90> [(1+ sin (6,)) @ cos (g + (1)),

p% l008<2°>(f2 féf 3s_<eii;<5>(f2 + 1) (B.9f)

Note that Eq. (B.9¢) and Eq. (B.9f) diverge if cos (§,) = 7/2. Such a diver-
gence is understandable due to the fact that a purely single mode oscillation
leads to an ill-defined phase difference.

B.5 General solution of the coupled perturbed

model equations

The coupled set of Eq. (5.4) can be generally solved by the method of variation
of parameters. By matrix algebra, one can find the eigenvalues Ay ; and the
eigenvector matrix elements 7; with inverse matrix components n, for each
mode and solution. Consequently, we can write the temporal solution for v (¢)

as

Yi(t)

Yo (B.10)

~

Ni2,ie ! / M i€7A+’itlfp(t/) + 77/21,i€7)\+’it/fw(t/)dt/

)

o
-~
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From Eq. (5.4) it is possible to obtain the self- and cross-correlation phase
difference second moments by simple integration. Noting that

(b)) = 4p*Awi(t 1), (B.11a)
4Aw
Ofyp(t)) = —=0t—t B.11b
BORO) = b=, (B11D)
(B.11c)
we obtain the second moments as a function of |7| = |¢/ — ]
Al B,
) (! e L WY | o I (PR W L
<wl(t)wl(t )> 2)\—‘,-77;6 + QA_,ie
e_A—,ilT‘ _|_ e_A+,77|T‘
Ci; , B.12
+ Mt ( a)
GO Ay . B
COS <90> A_;'_J' + )\_;'_J' )\_71' + )\_7]'
C’ije_A*JlT‘ + Cjie_/\*ilﬂ
, B.12b
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where the coefficients are given by

! / 7
o T21,"21,5

Aij = 4Awnmzimo,; _ﬁh,ﬁh,ﬂ) + i) sk (B.13a)
[ N2.iM2.5 |
2 ;i'122,
Bij = 4Awninee _7712_,7;77/12417 + o2 (0. <eo;_ , (B.13b)
[ M1.iM2.; |
2 ;i'112,
Ci; = 4Awmaine,; _77I11,i77/12’jp + o2 (0 <00;_ . (B.13c¢)

The exponential function of Eq. (B.12) can be further expanded to second
order in |7|, from which we obtain the Lorentzian and Gaussian coefficients
Aidey o BijA
AfitAr At Ao
Cih—j +Ciidg;
Abi T A
2 2
AijAy Bij A
)\+,i + )‘+,j >\7,i + )\,’j
Ci])‘%,j + Cji)\?hi
ApitA,

2V =

, (B.14a)

—4ya,i5

(B.14b)

B.6 Estimate of the energy barrier from exper-
imental data

In this section we refer to the experimental results obtained in Ref. [89] for
a nanocontact STO. The same reference experiment was used throughout
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section 5.3.1 for the analytical and numerical calculations. For our analytical
estimate, we assume that the linewidth close to a mode transition can be fully
described by the mode-hopping rate. Such an assumption implies that the
linewidth “floor” obtained from a single-mode autocorrelation [black marks
in Fig. 5.3(b)] is negligible in the temperature range of the fit [Fig. 5.3(c)].

In the reference experiment, the linewidth was determined as a function
of temperature at a bias current, close to a mode transition, of 28.4 mA.
For this particular bias current, a linewidth of 22.2 MHz was experimentally
measured at 303 K. From this single data point, we attempt to estimate the
temperature dependence of the linewidth. Assuming the numerically obtained
attempt frequency, f, = 160 MHz, it is possible to estimate the energy barrier
AFE =~ 52 meV at 303 K, using Eq. (5.7). The same equation can be used to
estimate the temperature dependence of the linewidth, shown in Fig. 5.3(c).

The performed estimate describes semi-quantitatively the experimental re-
sults and the agreement is remarkably good for such a simple estimation. We
stress that the estimate described above implicitly assumes that the energy
barrier is constant as a function of temperature, which can be an oversimplifi-
cation. Indeed, we observe from experiments that the energy barrier deviates
by up to 30% as a function of temperature. Consequently, careful measure-
ments are needed in order to reliably extract AE and .
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C

Droplet confinement

C.1 Effect of the current-induced Oersted field

The Oersted field has a negligible impact on droplet nucleation and dynamics
in confined geometries. Since the existence of the quasi-1D droplet is one of
the main results in this geometry, we perform simulations that include (blue)
and neglect (red) the Oersted field in such a regime. The effect of the Oersted
field for 2D droplets has been already studied in detail by Hoefer et al. [58].

First, we perform simulations at the threshold current and out-of-plane
applied field uoﬁa = 0.4 T. In this case, the quasi-1D droplet nucleates and
the Oersted field slightly shifts the frequency by Af; = 10 MHz, as observed
in the spectra of Fig. C.1(a). A similar simulation is performed at an applied
field of uoﬁa = 0.02 T. The results also show a frequency shift induced by
the Oersted field, Afy = 40 MHz [Fig. C.1(b)]. One can also observe a re-
duction of the linewidth, as expected for a symmetric excitation. However,
the most interesting result is that the quasi-1D droplet nucleates regardless of
the inhomogeneity introduced by the Oersted field, even when its peak value
(~0.028 T at the NC boundary) is higher than the applied field.
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Figure C.1: Spectra of the quasi-1D droplets at (a) threshold and 0.4 T, (b)
threshold and 0.02 T, and (c) well above threshold (—5 mA) and 0.02 T. Each
panel shows the results with (blue) and without (red) the current-induced
Oersted field. In all cases, the Oersted field is found to produce a frequency
shift, Afy.
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Figure C.2: Standing waves on a 230 nm wide nanowire as a function of cur-
rent, parameterized by (m.(t))./Ms, where {-). is the time average on each
cell of the centerline. The black dashed lines indicate the edges of the NC.

Lastly, we compare simulations including and neglecting the Oersted field
when the applied field is ,uoﬁa = 0.02 T and the current is above threshold
(=5 mA). In this case, the Oersted field is significantly stronger (~ 0.04 T)
than the applied field. However, the induced frequency shift is similar to the
case at threshold as shown in Fig. C.1(c), Af; = 50 MHz. Again, the quasi-
1D droplet nucleation is not hindered by the Oersted field, showing that its

impact is negligible on the observed results discussed in the main text.

C.2 Resonant spin-waves

A dissipative droplet is nucleated when the condition of modulational insta-
bility is achieved, i.e., when the growth of the spin wave amplitude is un-
bounded [58]. In the case of nanowires, the lateral confinement introduces re-
flections across its width, effectively leading to standing waves that prevent its
unbounded growth. This can be clearly observed by the average (m.(t))./Mj
across the nanowire as a function of current, where (-).. is time average on each
cell of the centerline. We select a nanowire of width 230 nm and a NC diameter
d = 50 nm, where a current threshold maximum was observed [Fig. 6.1(a)].

Below threshold (I4. > —7.3), standing waves are established across the
nanowire [Fig. C.2]. By increasing the current, the wavelength of the spin
waves changes due to the dispersion relation of the media until the standing
wave condition breaks at threshold. In Fig. C.2 the blue lines are obtained
for Iy. = —6.8 and —7 mA. The standing wave is centered with respect to
the nanowire width and the NC (black dashed lines). For I;. = —7.1 mA the
standing wave starts to distort as shown by the red curve. These standing
wave conditions are expected to be smoothed out or simply vanish in real
samples, where both temperature and roughness play important roles.
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Figure C.3: (a) Resonant M3 observed for a nanowire width of 120 nm and NC
diameter of 50 nm when no thermal fluctuations are taken into account. (b)
Including thermal fluctuations stabilizes the expected edge mode indicating
that the resonant M3 mode is a numerical artifact.
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Figure C.4: Contour plots of the m,, component of the edge mode on a 140 nm
wide nanowire and a 2D droplet on an extended thin film. The NC circumfer-
ence for each case are shown by white lines. The lower panel only shows half
of the simulation area for comparison. Clearly, both independent simulations
are complementary, confirming that the edge mode can be pictured as half a
2D droplet.

C.3 Effect of temperature

The fluctuations caused by temperature must be taken into account when
striving to obtain a realistic representation from a numerical framework. In the
case of droplets, however, temperature has only a limited influence due to the
strongly non-linear character of these structures and the strong anisotropies
required to support them. However, we emphasize that a resonant type of
the quasi-1D droplet was obtained for a nanowire width of 120 nm and a NC
diameter of 50 nm in the absence of temperature. The contour plot of such
a mode is shown in Fig. C.3(a) where a clear similitude with the quasi-1D
droplet in Fig. 6.3(a) is observed. By including a random thermal field [19]
equivalent to 300 K, the expected edge mode is observed [Fig. C.3(b)]. We
argue that roughness along the nanowire edge would also nucleate an edge
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mode. Consequently, only the modes discussed in chapter 6 are expected to
be experimentally observable.

C.4 Half-droplet solution

The edge mode is considered to be half a 2D droplet, based on previous studies
on conservative three-dimensional surface droplets [10]. Here, we show such
a comparison based on the edge mode shown in Fig. 6.2(c) for a nanowire
of thickness 140 nm and a NC of diameter 50 nm. The magnetic boundary
of such edge mode is approximately a semicircle of diameter 172 nm. Conse-
quently, we perform a simulation of a 2D droplet with diameter 172 nm and a
simulation area of 1000 x 1000 nm. A first sign of agreement is found between
the oscillation frequency of the 2D droplet ~ 12.24 GHz and the oscillation
frequency of the edge mode 12.47 GHz. Additionally, contour plots of the m,,
component are shown in Fig. C.4, where the upper panel is the nanowire of
thickness 140 nm while the lower panel shows half of the simulated 2D droplet.
Clearly, both panels complement each other, confirming the half droplet pic-
ture of Ref. [10]. Note however, that due to the frequency difference and the
fact that we simulate a perturbed droplet, the magnetic boundary exhibits
phase slips that are not expected from the conservative droplet perspective.
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