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Abstract

This thesis intends to examine a risk measure used for estimating a potential future loss. The risk
measure Value-at-Risk, is widely used throughout the world of financial risk management. We
will examine different approaches to computing Value-at-Risk for two equity portfolios, one
univariate portfolio and one multivariate portfolio. We assume that portfolio losses have a certain
distribution. Even though Value-at-Risk is widely used and accepted within financial
management, Value-at-Risk is not a coherent risk measure. We will therefore include another
risk measure in our thesis, the so-called Expected Shortfall. What we find is that our assumption
considering portfolio losses are not valid for all methods of computing Value-at-Risk. Methods
investigated in this thesis are not suitable for capturing more extreme losses that occur during

periods of market turbulences.
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1. Introduction

In the last thirty or so years the world has seen many crises occur on the financial markets and
managing the risk, of for example an equity portfolio, is therefore of vital importance for
financial institutions such as banks, funds and insurance companies. Large crises have had
substantial impact on financial markets. In just one day the North American market experienced
a large crash and the Dow Jones Industrial Average fell by more than 22 percent, this incident is
called Black Monday, which took place on the 19" of October in 1987. Another example is the
Dot.com Bubble, which took place in 2000, when the financial markets suffered from yet another
blow and during a period of 10 days, the market lost 10 percent of its value. Also, in 2008-2009
the financial markets experienced turmoil in the aftermath of the Lehman Brothers default, due
to the sub-prime mortgage crash. The above-mentioned events surely raise the question of

portfolio risk and the need for efficient measures of these risks.

Risk relates to uncertainties, e.g. the uncertainty of how the value of an asset will change in the
future. Banks and other financial institutions face market risk, i.e. the risk of changes in
components that affect underlying value of a financial asset. Market uncertainties affect assets,
and this kind of uncertainty show the need for a risk measure that financial institutions could use
to decide which amount of funds is needed to withstand a future potential loss. Global financial
markets are connected, and a large loss for one financial institution might affect other institutions
causing a chain reaction. Therefore the kind of market turbulence for example, as described
above, has led to the construction of both rules as well as guidelines for the financial institutions
to prevent large repercussions of market volatility. Large financial crises raise the question of

how to quantify risk and it is the purpose of this thesis.

In this thesis we intend to examine two of the most popular measures of risk, Value-at-Risk
(VaR) and Expected shortfall (ES). We will study different methods to compute VaR and ES for
an equity portfolio consisting of stocks, which is different from estimating VaR and ES for other
kinds of portfolios. VaR attempts to measure the portfolio risk that a financial institution could
be exposed to, and in this paper we will focus on the one day ahead VaR for an equity portfolio.

This measure of risk has gained popularity by expanding previous risk measures to include a



confidence level, which tells us how much the bank could lose in a worst-case scenario with a
certain probability. The popularity is also due to the simplicity of obtaining one value or
percentage, for worst-case losses, which are easy to understand in boardrooms where
complicated reports can be misinterpreted. Within the Basel accords, that provide rules and
guidelines for financial institutions, the VaR measurement has been given an important role and
all banks are required to estimate VaR on their portfolios. Under the Basel accords, banks have
to set aside regulatory capital, a “buffer”, which will absorb potential losses and prevent liquidity

problems for the financial institution (Hull, 2011).

Another risk measure closely related to VaR is ES, which actually is more preferred over VaR to
many risk managers in practice, partly because it is a coherent measure. A coherent risk measure
is a function that satisfies certain properties that we will discuss further in Subsection 2.3, where
we will give a detailed description of the measure’s properties and how to compute ES for an

equity portfolio.

The rest of the thesis is organized as follows: In section 2 we present our methodologies for the
different ways to estimate both VaR and ES. The methods we have chosen are a selection of
many different ways to estimate these risk-measures. There are a vast number of approaches for
estimating VaR and ES, but due to restrictions we will only include a selection of these methods.
The methods chosen are historical VaR, VaR under normal distribution, VaR under student’s t-
distribution, and the Monte Carlo simulation under the assumption that the losses are normally or
t-distributed. We will also include a brief overview of Stressed VaR. In Section 3 we present
results from our VaR and ES estimates on our equity portfolio. In Section 4 we present our

conclusion.



2. Methods for computing Value-at-Risk and Expected Shortfall

In this section we will present some popular methods to evaluate Value-at-Risk for an equity
portfolio. The methods used will be described in more detail in each subsection. It is noteworthy
that it is possible to estimate VaR for a wide range of portfolios including credit portfolios and
options portfolios. We will give a short description of the differences between estimating VaR
for other kinds of portfolios; however, in this thesis we will present results of estimations for an
equity portfolio consisting of one thousand Volvo stocks as well as an equity portfolio consisting
26 stocks drawn from the Stockholm stock exchange OMXS30. We also will give a general
definition of Expected Shortfall and present methods for estimating ES for an equity portfolio.
This section will be organized as follows; in Subsection 2.1, we present a general approach for
computing VaR and we continue to Subsection 2.2, which includes an introduction of the general
approach for computing ES. In Subsection 2.3 we discuss losses for an equity portfolio and when
moving on to Subsection 2.4, we present how to estimate VaR using Historical Simulation.
Within Subsection 2.5 we present how to estimate VaR under normal distribution. For
Subsection 2.6 we will present how to estimate VaR under student’s t-distribution. In Subsection
2.7 we will present how to compute VaR using a Monte Carlo simulation. Later, in Subsection
2.8 we introduce the topic of stressed VaR. Finally, in Subsection 2.9 we will present how to

perform VaR estimations under a multivariate normal setting.

2.1 General approach for estimating Value-at-Risk

In this subsection we will give a brief presentation of the birth of VaR and the meaning of risk,

we will also give a rigorous definition of the general concept of VaR as well as show this method
formally. We give a brief presentation of other kinds of portfolios and the steps taken to estimate
VaR for these portfolios. For the formal presentation in this subsection we will closely follow the

notation of McNeil, Frey & Embrechts (2005).

In 1993, the risk measure VaR became official when G-30 published a seminal report to address
derivatives in a systematic way. However, the idea of having just one simple number to present

before corporate executives was developed during the same time. At J.P.Morgan the chief



executive officer required the staff to daily hand over a one-page short daily summary of the
market risk that the bank was facing. At this time there was a noticeable need for risk
management of derivatives within the banking industry. This gave way for the Value-at-Risk
measure to rise as a market risk measure (McNeil, et al., 2005). “Formally, VaR measures the
worst expected loss over a given horizon under normal market conditions at a given confidence

level” (Jorion, 2001, p. xxii).

Consider an equity portfolio; if we knew the future outcomes of this portfolio we would not have
any risk. Since this is never the case in reality, it must be that the portfolio’s future outcome is
due to randomness and this needs to be quantified if we want to estimate future outcomes.
Consider the above mentioned equity portfolio again; in order to quantify the risks of the future
outcomes we need to define our one-period loss in the portfolio which we denote by L. Thus L is
the potential loss of tomorrow. Since tomorrow’s value is uncertain, we need to assume that L
can take any value from negative infinity to positive infinity. Furthermore most of the modeling
of L concerns with its distribution function, which is the probability of a loss worse than / by the
end of the period, that is P[L < [] where P is a probability measure used in our model and where
[ represents the possible values that L can take. Note that a negative loss of L is a gain, meaning

that when the portfolio yields a positive return, L will be negative (McNeil, et al., 2005).

One might say that risk measurement is mainly a statistical issue; we base estimations on
historical observations, using a specific model, and a statistical estimate of the change in value of
an asset or a position. Financial risk consists mainly of three types of risk; market risk, credit risk
and operational risk. In this thesis we will only focus on market risk, which is the risk of a
change in the value of a financial position. The managing of risk is essential when facing an
uncertain world. For bankers it means using techniques to create portfolios with minimized risk

while maximizing profits (McNeil, et al., 2005).

With the previously explained concept of loss, and the brief description of Value-at-Risk as an
easy to interpret risk measure, we proceed by explaining how to both estimate and interpret VaR.
To estimate VaR on our portfolio with random loss L we choose a confidence level ¢ € (0,1).
When estimating the VaR of our equity portfolio at our confidence level a, we obtain a number
for our loss L, that is the VaR,,, where the probability of L to exceed VaR,, is smaller or equal

to (1 — a) during a period T. In other words, if we choose @ = 0.95, our estimation of VaR,,



will provide us with a number that represents the potential loss with a certain probability. Our
realized loss will only exceed our estimate with a probability of 0.05, meaning that with a period
of 200 days and @ = 0.95, our realized loss would exceed our estimated VaR in 10 of these 200
days. Typical values for a are 0.95, 0.975, 0.99, and 0.999. The time horizon T for the estimated
VaR of an equity portfolio is usually 1 or 10 days. Note that when estimating VaR for a credit
portfolio the typical time horizon is one year (Hull, 2011).

The above definition can be formalized as follows. For a portfolio with loss L over the period T,

and a given confidence level a, we define VaR,, as

VaR, = inf[l € R:P(L>1) <1—«a] (1)
=inflle Ril1—P(L<D)<1-a]

=inflle RiP(L <) = a]

=inflle R F,(0) = al.

The VaR of the portfolio is thus for a certain a, given by the smallest number /, which is a real
number R, such that the probability that the loss L does not exceed / is larger than a. Note that
VaR, is thus the a-quantile of the loss L.

If L is a continuous random variable, then VaR,, simplifies to
VaR, = F () )

where F; 1(a) is the inverse of the distribution function for the loss L (McNeil, et al., 2005, p.
38).

When estimating VaR on portfolios consisting of for example forward contracts, swaps, options,
and loans, we first need to identify market rates and prices that could affect the value of our
portfolio. In other words, we need to evaluate the market factors and their probability
distributions. Usually one must begin with breaking down the instruments so we can relate them
to basic market risk factors, depending on our position in for example a future we would
potentially need; current spot price, foreign interest rates, domestic interest rates or other factors
affecting our derivative. We use formulas to determine the current mark-to-market value of the

position that affects underlying value of our assets. After that we need to estimate the statistical



distribution of our potential future value of these market factors and determine potential changes
in the future that would change the value of our portfolio. VaR becomes the measure of these

potential future changes in portfolio value (Pearson, 2000).

2.2 General approach for estimating Expected Shortfall

In this subsection we present different methods for the general approach to estimating Expected
Shortfall. When formally describing the method we will closely follow the notation and structure

of McNeil, et.al.,(2005).

The risk measure ES is closely related to VaR and is actually more preferred in practice by many
risk managers, this is due to ES being a coherent risk-measure while VaR is not. The properties
that need to be fulfilled for coherence are monotonicity, sub-additivity, homogeneity, and
translational invariance. Monotonicity implies that if we have two portfolios with losses L, & L,
where one always has greater loss (is more risky), i.e. L; < L,, then it will follow that

VaR,(L1) < VaR,(L,) is always true. Translational invariance means that if we add or subtract
an amount / from a portfolio, and this / is independent of the volatility of this portfolio, then we
have altered the capital requirements by /. Depending on whether / is a loss or profit, / is added
or subtracted accordingly. Homogeneity in this context means that the measure is applicable
whether the portfolio’s underlying assets are one Euro or one thousand Euro, the potential loss is
a percentage of this amount and is not altered unless the volatility changes. For example, if a is a
constant then it follows that VaR,(aL) = aVaR,(L). However, the most important property to
fulfill is sub-additivity, so that when combining two portfolios, the risk is smaller or equal in the
combined portfolio than the risk is for the separate portfolios. This is in accordance with the
principle of diversification for reduction of risk. The VaR measure is not a coherent measure
since it does not fulfill the sub-additivity property,i.c. VaR,(L; + L,) £ VaR,(L,) +
VaR,(L,), and this may create problems when adding two or more VaR estimates, since the

combined VaR may be higher than for the separate measures (McNeil, et al., 2005).



The formal definition of ES is that given a loss L with distribution function F; (x) and a

confidence level a € (0, 1), where u represents the quantile, is

1 1
ESa, = Efa VaRu(L)du
When L is a continuous variable with a distribution F, (x) with the inverse F; *(x), then
ESy = — ['F/l(w)d
« =12), Fi (Wadu

furthermore, when L is a continuous variable we can show that (from McNeil et.al. (2005), pp.

45)
ES,(L) = E[L|L = VaR,(L)]. 3)

From the formal definition in Equation (3) it is clear that ES is the expected loss given that the

loss is larger than or equal to the loss estimated by VaR (McNeil, et al., 2005, pp. 44-45).

2.3 Value-at-Risk using Historical Simulation

When doing the so-called historical simulation of VaR, we use past events to estimate VaR.
Assume a sample size of 500 losses; this would give us 500 possible scenarios for tomorrow’s
return. With @ = 0.99 we order our historical losses from best to worst and then find the fifth
largest historical loss. This method gives us an empirical distribution of the portfolio losses and
when VaR is historically estimated we will only obtain risk estimation on the worst scenarios
from the past, the future could possibly involve larger volatility, and this will not be included in
the forecast. Note that volatility is defined as the standard deviation of losses which is the square

root of the variance of losses (Hull, 2011).
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2.4 Equity portfolio losses

The outline represented in Subsections 2.1-2.3 holds for any type of portfolio and thus any kind
of portfolio loss L. In the rest of this thesis we will focus on an equity portfolio consisting of
only stocks. We closely follow the notation and structure of McNeil et.al. (2005) and
Herbertsson (2013).

Hence, consider a portfolio consisting of d different stocks with a; stocks of company 1, a,
stocks of company 2 etc. Furthermore, we denote the price of the stock from company i at day »

by S, ;. Then the total value of the portfolio at day n, denoted by V},, is defined as
Vo =2 &S, 4)

The loss L,,,; of the portfolio is then given by the change in price of the portfolio between day »
and day n+1 is given by

Ln+1 = _(Z?=1 aiSn+1,i - Zgi:l aiSn,i)- (5)

Equation (4) and Equation (5) are enough to calculate the historical loss for a portfolio, though

sometimes it is necessary to model the portfolio loss L, and this is shown below.

Sp,; can also be modelled as S, ; = e?ni where Z,,; is a random variable for each n and i. Now,

let X,,+1,; be the log-returns between day n and n+1/ of the stock price such that

Sn+1,i
Xn+1,i = ln( ;l- 'l> = lnSn+1,i —In Sn,i = Zn+1,i - Zn,i
n,i

from which we get that that
Sn+ 1, — Sn,ieXn+1’i- (6)

To find the loss in the period from n to n+1for the portfolio, we need to follow the steps below

where L, = — (V41 — V3, is given by

d d d d
— — Z i Zni
Lpy1=— (Z A;Snt1,i — z aiSn,i> = - (Z aje”niil — z ae ”")

i=1 i=1 i=1 i=1

11



= — Z?=1 ai(ezn+1,i — eZn,i)_ (7)

So combining Equation (6) with Equation (7) yields

d d

LTL+1 = — Z al. (ezn,an+1,i - eZn,i) = — z aiezn,i (eXn+1,i — 1)

i=1 i=1
From earlier we know that e“ni = S, ; and the portfolio loss is thus given by
Ln+1 = _Z?=1 6}:iSn,i (eXnH'i - 1) (8)

The loss L,,,; in Equation (8) can often be approximated by its linear counterpart. More specific

since e” has the Taylor-expansion (Sydsaeter, 1991) given by
o X" x%  x3  x*
e* = n=0z— 1+X+7+?+Z+”' (9)

so for small x, Equation (9) yields that e* = 1 + x since ’;—T ~ 0 for large n and small x. Thus, if

we combine Equation (8) and Equation (9) we can approximate the portfolio loss L,,,; with the

linearized loss L2 ., by

d
A, = —ZaS Xniii
n+1 — nin+1,10

i=1

By letting X denote the vector X = (xnﬂ’l, s xn+1'd), then the linearized loss can be rewritten

as
A, =-w'X (10)
where W' = (@151, @285 1, -, @;Snq) s a vector of weights for the portfolio.

Also note that if X only contains small changes, we can assume that L3, ~ L,,, and use e.g.

Equation (5) to calculate the loss.

12



2.5 Normally distributed losses

In this subsection we will present an approach to estimating VaR and ES assuming that the loss
is normally distributed with mean u and variance 62 and @ € (0,1). For the formal presentation
of VaR under assumed normal distribution, we will closely follow the notation of McNeil,

et.al.,(2005).

Let L be a stochastic variable with distribution function F; (x), i.e. F(x) = P[L < x], then it
follows from Equation (2) that VaR, (L) = F; (a) since F; (x) is a continuous function because

L is normally distributed. If L ~ N(u, 02), the distribution function F; (x) is given by

F(x) = PI[L <x]=P[=E <K = N (ZF) (11)

g g g

where N(x) is the standard normal distribution. The inverse to F; (x) is defined as the function
F; 1(x) which solves the equation F, (x) = y, i.e x = F; 1(y). Hence, to find F; *(y) we need to

isolate x and express it as a function of y. Hence, we have that

F(x)=y ®x=F ). (12)
From Equation (11) we know that F; (x) = N (%) soF,(x)=ye N (%) = y. It follows
that N (%) =y &N <N (%)) =N1(y) e % =N1y)ex=pu+oN1(y).
Hence, we have that

x=u+oN1(y). (13)

However, if we now combine what we know from Equation (10) and (11) we get F; 1 (y) = u +

oN~1(y). We also know from Equation (2) that VaR, (L) = F; (a), therefore we get that
VaR,(L) = u+oN1(a) (14)

where N~1(y) is the inverse to N(y). To prove this we can show that F, (VaR,) = a since

P(L<VaR,) =P[L<p+oN'(a)] =P (LjT“ < N—l(a)) =N(N"Y(a)) = a.

13



Computing ES when assuming that the loss distribution F; is normally distributed with mean p
and variance o2 and a € (0,1) we get

d(N~(a))

1-a

ES,=u+o (15)

where ¢ is the density of the standard normal distribution and N ~1(«) is the inverse of the
standard normal distribution. To prove this, first note that

ES, =y + 0E (LjT“| RS . (L;”)>

g o

Now it is enough to compute the ES for the standard normal random variable E'S,, (Z) =

(L — w)/o. It then follows that

(ev1(@)

ESa(L) = 7= [y 0Dl = = [0 D]i-10) = (16)

When assuming that losses are normally distributed it is possible to transform a one-day VaR
estimate to a k-day VaR. For example, transforming a one-day VaR to a 10-day VaR is needed
when estimating regulatory capital, and this transformation is done by multiplying the one-day

VaR with the square root of k. The proof for this equation is found in Appendix 2.

VaR, (L) = Vi -VaR, (L5 ). (17)

Hence, under the assumption that the log-returns are i.i.d and normally distributed with zero
mean, we know that we can calculate the k-day VaR by multiplying with the one-day VaR with
the Vk and thus motivates VaR1® ~ vV10VaRL. Where VaR.P represents the 10-day VaR for

our portfolio with a confidence level of a%, and similarly VaRl represents the one day VaR

(Herbertsson, 2013).
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2.6 Value-at-risk under Student’s t-distribution

In this subsection we will present an approach to estimating VaR with the assumption that the
portfolio loss L has a student’s t-distribution. The approach is very similar to the model shown in
Subsection 2.3, however for the student’s t-distribution we need to decide on what degrees of
freedom to use. Again, for the formal presentation of VaR, assuming a student’s t-distribution of

losses, we will closely follow the notation and structure of McNeil, et.al.,(2005).

Let L be our loss and assume that L?Tﬂ is a random variable which has a student’s t-distribution

with v degrees of freedom where 1 is given by E[L] = u and o is a constant. We get that the

variance V' is given by

()= o

g

since L?T“ ~t(v). We also know that IV (L?Tﬂ) = % V(L — p) and since u is a constant we get

ﬁV(L—,u) =%V(L). (19)

Thus, combining Equation (18) and (19) yields
2

VL) = (20)

. .. e e oZv
From Equation (13) we have the standard deviation for the t-distribution ¢ = \/V (L) = /E

where v > 2 (McNeil et.al. 2005). The following equations follow the same steps taken in
Equations (11) to (13),

Fu(x) = PIL <x] =P [ <ZH] =, (ZF) Q1)

o o

where t, (x) is the distribution function for the student’s t-distribution with v degrees of

freedom. Since L is a continuous random variable (L?T“) is student t-distributed then VaR, (L) =

F; (). Thus we need to find F; *(x) when F; (x) is given by (a). Similar calculations as in

Subsection 2.3 together with Equation (18), then this yields that F; *(x) is given by

15



x=p+ot; (y) (22)

If we combine what we know from Equation (4) and (10) we get that F; 1 (y) = u + ot~ 1(y).
We also know from Equation (2) that VaR, (L) = F; *(a), therefore we get that VaR, (L) = u +
ot, 1 (a) where t; 1 (y) is the inverse to t, (y) (McNeil, et al., 2005).

When computing ES for a student’s t-distribution assuming that L is distributed so that

L = (L — u)/o has a standard t distribution with v degrees of freedom, one can easily show that

ES, = pu+ oES,(L).

Therefore when computing ES for t-distribution we use:

ES, (L) = 200 (0) (21 @) (23)

1-a v—1
where t,, is the distribution function to the student’s t-distribution with v degrees of freedom, and

gy 18 the density of the student’s t-distribution (McNeil, et al., 2005).

To be able to estimate VaR with a student’s t-distribution we need to know the degrees of
freedom of the distribution. The t-distribution is different from the normal distribution in the
sense that the tails are fatter, as displayed in Figure 1. We see that for small degrees of freedom
the area in the tail is much greater than for the normal distribution but already at 15 degrees of
freedom we barely see a difference between the normal and t-distribution. There is a
convergence of the t-distribution towards the normal distribution as the degrees of freedom
increases. In Figure 2 we illustrate how a VaR estimate, assuming t-distributed losses, converges

towards the normal distribution as the degrees of freedom approaches infinity.

16
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Figure 1. Density function of the t-distribution for v = 5 and v = 15 degrees of freedom and a normal distribution.
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Figure 2. Convergence, when increasing degrees of freedom, of the t-distributed VaR estimate with & = 0.95
towards the normally distributed VaR with @ = 0.95 estimate based on the first 250 days.

2.7 Monte Carlo Simulation
In this subsection we will present the Monte Carlo simulation as a method for estimating VaR of
our equity portfolio. We will closely follow the notation and structure of McNeil, et.al.,(2005).

When performing a Monte Carlo simulation we choose a distribution that we believe represents
the changes in market factors that would affect the portfolio. A random number generator is used

to generate hypothetical changes in the chosen market factors. These hypothetical changes are

17



then used to create thousands of different (theoretical) losses for each stock in the portfolio, and
then the simulated losses are ordered from smallest loss to largest loss. Using this order of
hypothetical profits and losses it is possible to estimate VaR at the preferred confidence level a
using the empirical distribution function for any simulated loss data. When constructing VaR
estimations using normal- or t-distributions, the distributions are given. The freedom to choose a
distribution that one sees fit for the available historical data is an advantage with the Monte Carlo

method (Pearson, 2000).

Since we will perform a Monte Carlo Simulation on a well-diversified equity portfolio, our

market factors will consist of the general market risk.

Firstly, one needs to choose a model and estimate the model to historical data. Then, let a

random number-generator generate m changes of the risk-factors for a future time period, which

are denoted by X.,..... ™. A loss function is obtained and then applied to the simulated
vectors to obtain simulated realizations of the loss, where the value Z(tl+)1 gives the loss when the

t+1° t+1 t+1

simulated change is X% Thus, IY, = (t] ()? © ) where I, is the so-called loss function

(McNeil et.al., 2005, pp )

When performing a Monte Carlo (MC) simulation with an 1.i.d sample with a random variable X,
the Law of large numbers (LLN) implies that MC estimates will converge towards the
corresponding estimates for expected value E (X), which in our case are for the normal and the
student’s t-distributions. Due to the Law of Large numbers (LLN), as n increases one can expect
to get a convergence of the MC estimates and the corresponding estimates for the normal and t-

distribution.

2.8 Stressed Value-at-Risk

In this subsection we will give a brief presentation of the Basel Accords and introduce Stressed-
VaR. Estimation of stressed VaR is beyond the scope of this thesis but we will present the

purpose and use of this method to inform the reader of its existence and future importance.
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When talking about regulations for banks and financial institutes, and with the mention of the
Basel accords, we want to give a brief presentation of these regulations. The Basel Accords are
written by the Basel Committee of Banking, and their purpose is to give recommendations on
banking regulations. The first Basel accord was introduced 1988 and was focused on credit risk,
i.e the risk that arises from lending. The second Basel accord was first presented in year 2001,
and the focus was on credit risk and operational risk, this version was published in year 2004. In
the light of the most recent financial crises, the Basel Committee on Banking Supervision has
agreed upon a revised version of the Basel II. In the new Basel III we see a change toward
stricter capital requirements and tighter regulations concerning the methods used when
measuring risk. Since we are examining the differences between several methods of estimating
VaR, a discussion about the new banking regulations regarding these tests are relevant. Within
Basel I1I, the Stressed VaR measurement will become a requirement. This measure is used to
replicate a VaR measure if market factors are experiencing periods of stress. Full implementation
of Basel III is not estimated to occur until 2023, but parts of the new regulation will be

introduced earlier (Latham & Watkins, 2011).

The purpose of general stress-testing is to see how the portfolio would endure large losses due to
crises, and to evaluate weaknesses. When performing a Stress-test one estimates how well a
portfolio would have performed during financial crises and during periods of relevant stress.
Stress-testing is performed by various financial institutions and companies as a complement to
estimating VaR, however, the Stressed VaR is its own measure. Even though the estimated

probabilities would tell us that large financial crises are rare, we see that large crises arise every

5 to 10 years (Hull, 2011).

The Stressed VaR is used to simulate effects on current portfolios when different market factors
are under stress, meaning when markets are affected by events that cause increased volatility.
Banks are required to estimate a Stressed VaR using previous events that have led to crises in the
past, such as the subprime crash of 2007/2008, Black Monday of 1987 and many more. Since
crises are difficult to predict, there is a need to test how well the financial institution would
handle large losses and to determine how to improve the financial institution’s ability to handle a

financial crisis (Latham & Watkins, 2011).
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2.9 Multivariate setting

In this section we will give a very brief introduction to the multivariate normal setting. When
computing VaR for a portfolio with multiple assets we cannot use the univariate setting
introduced in the previous subsections. We will demonstrate the how to compute VaR when
assuming multivariate normally distributed losses. Other multivariate distributions, such as the

multivariate student’s t-distribution is outside the scope of this thesis.

Remember from Subsection 2.1, Equation (10) that we defined the loss for the portfolio as
Loy =-w'X

where W' = (;Sp1, @2Sn1, ) @iSna) and X = (Xpy11) s Xns1.a)-

The vector X is multivariate normally distributed. By properties of the multivariate normal
random variable the one-dimensional random variable w’ X will also be a one-dimensional
normal random variable with mean w! u and variance w’ Zw, that is w X ~ N(w” u, w' Zw)
where w is the vector of weights defined above. Calculating the mean and variance of the
portfolio is more complex than for a single stock. One needs to know how the stocks are
weighted in the portfolio in order to estimate both the mean and variance correctly. When
calculating the variance, one needs to know the weights of the stocks in the portfolio as well as
keep track of how the stocks are correlated with each other. Larger correlations between stocks

increase the risk of the portfolio.

By using the historical values in X we find the point estimates to create the mean vector fi and
covariance matrix £ to X. We can now use the fact that wTX ~ N(w”u, wT Zw) and combine

this with Equation (12) which is VaR,(L) = u + oN~1(a) to get

VaR,(L) = —wTii + VWTEZwN "1 (a). (24)
. . C _ o(N"L(a)) .
If we combine Equation (15) whichis ES, = u+ o ——, assuming that
wliX ~ NwTu, wTZw), we get
. -1
ES,(L) = —w'fi + VwTZw 28— (25)
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where ¢ (x) is the density for a standard normal random variable (McNeil, et al., 2005).

x2

x1
Figure 3. An illustration of a multivariate normal distribution.
For illustration purposes, we display the density of a multivariate (two dimensional) normal
distribution in Figure 3. This in order to get a sense of the difference between a univariate

distribution and a multivariate distribution, where more dimensions are added.
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3. Empirical investigation of measures

In this section we will present the results of our Value-at-Risk and expected shortfall estimates.
We have performed estimations for two different portfolios, a univariate portfolio and a
multivariate that portfolio, and we will present a data description for both of these portfolios in

Subsection 3.1.

The presentation of our empirical investigation will be presented within Subsection 3.2 through
Subsection 3.5. In Subsection 3.1we give a description of our data. When moving on to
Subsection 3.2 we show our findings for the univariate portfolio assuming both a normal and a
student’s t-distribution. For Subsection 3.3 we present the findings for the multivariate portfolio
assuming normal distribution. Subsection 3.4 includes the Monte Carlo simulation for the
multivariate portfolio. Finally, in Subsection 3.5 we will display a historically simulated VaR for

a multivariate portfolio.

In the Subsections we will show results from backtesting, which we use when we investigate
how well our VaR estimates performed. This is done by counting how often losses exceed the
estimated VaR and then divide the total amount of exceedances by the length of the period. We
expect to see 1 — a percent exceedances (McNeil, 2005, pg. 55).

3.1 Data description

The data used when estimating a univariate VaR i.e. the one-stock portfolio, consists of a
portfolio with one thousand shares of Volvo stock, thus d = 1, where x; = 1000. The choice of
stock and the number of shares is an arbitrary amount and selection. We want to show how the
models are applied when using a univariate portfolio. The data used when estimating the
multivariate VaR is a 26-stock portfolio that consists of daily prices for 26 stocks listed on the
Stockholm Stock Exchange, and all of them are included in the OMXS30 index. Again, the
stocks chosen are an arbitrary selection and the portfolio is constructed for the purpose of testing

the models. In Table A3 in the Appendix we have a list of stocks included in the multivariate
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portfolio. For the purpose of estimating multivariate VaR we have chosen to hold one share of

each stock in the portfolio, so that @, = a, =.., = ay.

The data for both portfolios is sampled daily and it has been divided into two periods, a normal-
and a crisis period. The crisis period will consist of data from 2006-01-01 to 2009-12-31 and the
less volatile period will consist of data from 2010-01-01 to 2013-12-31. The first period is
referred to as Period 1 and the second period is referred to as Period 2. The large crisis included
Period 1 is the 2007/2008 sub-prime crisis. We have divided the data into two periods since it is
of interest to investigate whether VaR performs better in periods of less volatility. Throughout

this report all estimations, graphs, and tables have been done with MATLAB and Excel.

In Table 1 we present some descriptive statistics for the portfolio with one thousand Volvo
shares, during both periods. The period Jan-06 to Dec-09 consists of 1003 days and the period
Jan-10 to Dec-13 consists of 1005 days. In Jan-06 to Dec-09 we notice that the standard
deviation (which is the square root of the variance) of the daily losses is larger than in Jan-10 to
Dec-13. We also observe that the range between losses is greater in the first period. The change
in the value of the portfolio is the relative difference in portfolio value between the first and last
day of each period. The initial value of the portfolio was 75200kr in Period 1 and 63150kr in
Period 2.

Descriptive statistics for daily losses for the one-stock

portfolio
Jan06-Dec09 Jan10-Decl3
Total change in value -18,28% 33,73%
Std.dev 2 043 kr 1 800 kr
Min loss -13 000 kr -8 250 kr
Max loss 13 000 kr 7 700 kr
Days in period 1003 1005

Initial value of portfolio 75 200 kr 63 150 kr

Table 1. Descriptive statistics for the losses for the one-stock portfolio in Period 1 and Period 2.

Figure 4 shows the development of the value of the one-stock portfolio during the period Jan-06
through Dec-13. We observe a substantial decrease in value of the one-stock portfolio which

begun in June 2007 and the value kept decreasing until late 2008. This decrease was due to the

sub-prime crash of 2007/2008.
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Figure 4. Value of one-stock portfolio during Jan-06 through Dec-09.

|

Figure 5 shows the value of the one-stock portfolio during the period Jan-10 through Dec-13. We
see a sudden decrease in value of the one-stock portfolio during the summer of 2011, which was

due to the Greek debt crisis. We observe an increase in value of the one-stock portfolio towards
the end of 2011.
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Figure 5. Value of one-stock portfolio during Jan-10 through Dec-13.

Note that Figures 6 and Figure 7 will be displayed with losses. Note that a negative loss is a
profit.
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Figure 6. Losses for one-stock portfolio during Jan-06 through Dec-09.
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Figure 7. Losses for one-stock portfolio during Jan-10 through Dec-13.

Figure 6 and 7 displays the losses for Jan-06 to Dec-09 and Jan-10 to Dec-13. We observe larger
market volatility in Period 1 which is displayed in Figure 6. The spread between losses increase
right before the sub-prime crash, compare with graph in Figure 4 for reference. In Figure 7,
which displays losses for Period 2, we observe less market volatility. Note the large losses

between April-11 and October-11 when the Greek debt crises shook the market.

In Table 2 we present the data used for the multivariate 26-stock portfolio. Notice that our
portfolio increased in value in both periods. When measuring the relative difference between the

start and end of the period, we see an increase by 6 percent in Period 1 and by 28 percent in

Period 2.
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Descriptive statistics for daily losses for the 26-stock

portfolio
Jan06-Dec09 Jan10-Decl3
Total change 5.81 % 28.27 %
Std.dev 51,67 kr 45,24 kr
Min loss -219.01 kr ~ -201.03 kr
Max loss 202.58 kr 231.17 kr
Days in period 1003 1005
Initial value of portfolio 3 164 kr 3392 kr

Table 2. Descriptive statistics for the losses for the 26-stock portfolio during both periods.

The standard deviation of daily losses for the portfolio was slightly higher in Jan-06 to Dec-09,
meanwhile the spread between portfolio losses, which is calculated using Equation (2) on p.7, is
larger in Jan-10 to Dec-13. The initial value of the portfolio was 3164kr in Period 1 and 3392kr

in Period 2.

We have chosen to display the correlation matrices, for the first 250 days in both periods in
Tables Al and A2 in the Appendix. Since all stocks are chosen from the same stock index, there
are plenty of stocks with high correlations and the highest correlations are found between SKF,
Sandvik, and Atlas Copco. This follows from the fact that they are active within the same

industries.

In Figure 8 and Figure 9 we will display the value of the 26-stock portfolio for period Jan-06 to
Dec-09 and period Jan-10 to Dec-13.
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Figure 8. The value of the multivariate portfolio for Jan-06 through Dec-09.
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As we can see from Figure 8, our portfolio value decreased during the sub-prime crash that
occurred during fall 2007. Towards the end of 2008 the economy picked up and our portfolio

value started to increase.
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Figure 9. The value of the multivariate portfolio for Jan-10 through Dec-13.

In Figure 9 we see the development of our portfolio value. When the Greek debt crisis occurred,
the portfolio rapidly decreased in value. Portfolio value started to increase around October 2011

and continued to increase, with minor dips, throughout the period.

Note that the rest of the figures throughout Section 3 will be presented with losses and that a

negative loss is a profit.
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Figure 10. Losses for the multivariate portfolio Jan-06 through Dec-09.
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Figure 11. Losses for the multivariate portfolio Jan-10 through Dec-13.

Between Jan-06 and Dec-09 there seems to be more volatility than between Jan-10 and Dec-13,
and both periods have clusters of volatility where the markets exhibits more volatility compared
to the rest of the period. Period 2 has only a few clusters of high volatility while they are more
frequent in Period 1. Since these figures resemble Figure 3 and Figure 4, we will not discuss

these in more detail.

3.2 Value-at-Risk and Expected Shortfall computed for the univariate portfolio

In this subsection we will present the numerical Var and ES computations for a one-stock equity
portfolio. The portfolio consists of a thousand Volvo shares and we will display our results
assuming both normally and student’s t-distributed losses. We begin by showing rolling VaR and
ES estimates based on the previous 250 days. Rolling VaR and ES means that estimates are
based on previous observations and this is repeated day-by-day for a moving window of
historical observations, which allows us to plot VaR and ES and illustrate when and where
exceedances occur. Since the first 250 days of each period are used to estimate the first VaR and

ES, all figures will depict VaR, ES, and losses from the 251% day and forward.

28



10‘1
x
1.5 T T T T T

————_

Losses
——VaR
—— ES

1.5 1 1 I 1 |
Nov06 Jun07 Dec07 Julos Jan09 Augl9 MarlO

Figure 12. VaR(bold) and ES(dotted line) estimates with @ = 0.99, assuming normal distribution, based on
previous 250 days plotted against losses during Jan-07 through Dec-09.

In Figure 12 we have plotted VaR and ES with @ = 0.99 under normal distribution for Jan-06 to
Dec-09. We observe a substantial amount of exceedances during the sub-prime crash of
2007/2008. Since estimates of 4 and o (see subsection 2.5) are based on past data consisting of
250 days, we observe that it takes some time for VaR and ES estimates to react to the crisis. For
a faster reaction one can use fewer observations in the estimation. The largest VaR and ES
estimates are observed in February of 2008, even though the crisis struck during the summer of
2007. As we recall from Equation 8, the ES estimate is always larger than or equal to the VaR

estimate.
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Figure 13. VaR(bold) and ES(dotted line) estimates with a = 0.99, assuming normal distribution, based on
previous 250 days plotted against losses during Jan-11 through Dec-13.

In Figure 13 we display VaR and ES with ¢ = 0.99 under normal distribution for Jan-11 and
Dec-13. We observe few exceedances during this period. The exceedances observed are due to

the Greek debt crisis, which affected our portfolio during summer of 2011. Again VaR and ES
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display a lagged reaction to market volatility, this is due to the 250 days needed for estimating
the daily VaR and ES here.

_%\Tgv()é J'unIO7 Dec07 J'ulIOS J'arlAOQ Au;OQ MarlO
Figure 14. VaR(bold) and ES(dotted line) estimates with a = 0.99, assuming t-distribution, based on previous 250
days plotted against losses during Jan-07 through Dec-09.

In Figure 14 and Figure 15 we show VaR and ES with ¢ = 0.99 and v=20 degrees of freedom
under student’s t-distribution, based on the previous 250 days. Since these figures are very much
alike the ones for VaR and ES under normal distribution there is no need for further comments
beyond that here the VaR and ES are slightly higher than the VaR and ES under normal
distribution. This is due to the fatter tails of the t-distribution where we have a larger area under

the tails and therefore obtain larger values as shown in Figure 1 and Figure 2.
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Figure 15. VaR(bold) and ES(dotted line) estimates with a = 0.99, t-distribution, based on previous 250 days
plotted against losses during Jan-11 through Dec-13.
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In Table 3 we present two estimates for VaR during Jan-06 and Dec-09 and Jan-10 and Dec-13.
These estimates show the first observed VaR for the corresponding period as well as the largest
observed estimate in each period. VaR estimates show us how much we are expecting to lose
during the following day, therefore the computed VaR for January 2™ is presented on January
1*'. This number can be converted to a percentage of our portfolio value and is valid if we should
increase investment in the portfolio, provided we use the same weights as before. The percentage
of losses on the portfolio would only change if volatility would change due to a shift in portfolio
weights or a general shift in market volatility, as described in the discussion of homogeneity in

Subsection 2.3.

Univariate VaR,
Jan-06 through Dec-09 Jan-10 through Dec-13

Jan 2" -07 Apr 11" -08 Dec 28™ -10 Nov 23" -11
a

095  1942kr (2,1%) 4990kr (5,1%) |2 646kr (2,3%) 4 085 kr (5,9%)
0.975  2328kr (2,5%) 5922kr (6,1%) |3 194 kr (2,7%) 4 842kr (7,0%)
099  2778kr (2,9%) 7006kr (7,2%) |3831kr (3,3%) 5722kr (8,2%)
0.999  3715kr (3,9%) 9266kr (9,6%) |5159kr (4,4%) 7557 kr (10,9%)

Table 3. One-day VaR, for normal distribution and its value in percent of the portfolio value for different a.

In Table 4 we present two estimates for ES during Jan-06 to Dec-09 and Jan-10 to Dec-13. These
estimates show the first observed ES and the highest value for the period at different confidence

levels, as well as the percentage of the portfolio value.

ES,
Jan-06 through Dec-09 Jan-10 through Dec-13
Jan 2" -07 Apr 11™-08 Dec 28™ -10 Nov 23" -11

(¢4
0.95 2454 kr (2,6%) 6226 kr (6,4%) 3373 kr (2,9%) 5089kr (7,3%)
0.975 2792kr (2,9%) 7040kr (7,3%) 3851kr (3,3%) 5749kr (8,3%)
0.99 3193 kr (3,4%) 8009 kr (8,3%) 4420 kr (3,8%) 6536 kr (9,4%)
0.999 4 054 kr (4,3%) 10085 kr (10,4%) |5640kr (4,8%) 8223 kr (11,8%)

Table 4. ES,, for normal distribution and its value in percent of the portfolio value for different a.
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In Table 5 we present two estimates for VaR with v=20 degrees of freedom for Jan-06 through
Dec-09 and Jan-10 through Dec-13. The first estimate is for the 251 day of each period and the
second estimate is the largest observed estimate for the period. When comparing these estimates
with the Var estimates under normal distribution we find that the student’s t-distribution provides
us with larger VaR estimates. This is due to the fatter tails of the t-distribution where different

alphas cover a larger area in the tails, i.e. the values become larger.

Univariate VaR,,
Jan-06 through Dec-09 Jan-10 through Dec-13

Jan 2" -07 Apr 11™-08 Dec 28™ -10 Nov 23" -11
a

095  2154kr (2,3%) 5502kr (5,7%) |2947 kr (2,5%) 4 501kr (6,5%)
0.975 2621kr (2,8%) 6629kr (6,8%) |3609kr (3,1%) 5415 kr (7,8%)
099  3193kr (3,4%) 8007kr (8,3%) |4419kr (3,8%) 6535kr (9,4%)
0.999  4517kr (4,8%) 11200kr (11,5%) |6295kr (5,4%) 9 128 kr (13,1%)

Table 5. VaR,, for student’s t-distribution with v=20 degrees of freedom, and its value in percent of the portfolio
value for different a.

In Table 6 we present ES for student’s t-distribution with v=20 degrees of freedom. Recall that
the ES estimate is always larger or equal to the VaR, therefore we find that our values are larger.
This table follows the same form as previous tables, with the first estimate being the 251% day

and the second being the largest observed during the period.

ES,
Jan-06 through Dec-09 Jan-10 through Dec-13

Jan 2" -07 Apr 11™-08 Dec 28™ -10 Nov 23" -11
a

0.95 2797kr (3,06) 7052kr (7,3%) 3858 kr (3,3%) 5760 kr (8,3%)
0.975 3230kr (3,4%) 8096 kr (8,3%) 4471 kr (3,8%) 6607 kr (9,5%)
0.99 3773 kr (4,0%) 9407 kr (9,7%) 5241 kr (4,5%) 7672kr (11,0%)
0.999 5072 kr (5,4%) 12540kr (12,9%) |7 082 kr (6,1%) 10 216 kr (14,7%)

Table 6. ES, for student’s t-distribution with v=20 degrees of freedom, and its value in percent of the portfolio
value for different a.

In Table 7 we present backtesting of VaR under normal distribution. The values are the
percentage of the number of exceedances of our VaR estimates, meaning when losses are larger

than the computed VaR for the corresponding day. These exceedances are divided by the length
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of the period. We are expecting (1 — @)100 exceedances, therefore we have included the
expected percentage in the rightmost column in the tables. As we can see, the exceedances are
substantially larger than expected when computing VaR with @ = 0.99 and a = 0.999. The
estimated VaR is more accurate with lower alpha values, which shows that the model is not fully
applicable for larger values of alpha. This suggests that assuming normally distributed losses is

not a valid assumption.

Backtesting of univariate VaR,
a Jan06 - Dec09  Janl0 - Decl3  Expected %

0.95 4,77% 4,89% 5%
0.975 3,05% 3,17% 2.5%
0.99 1,99% 1,72% 1%
0.999 0,66% 0,40% 0.1%

Table 7. Backtesting of one-day VaR,for normal distribution.

In Table 8 we present backtesting of our computed VaR with v degrees of freedom under
stundet’s t-distribution during Jan-06 to Dec-09. As mentioned earlier in Subsection 2.6, the t-
distribution converges towards the normal distribution as the degrees of freedom approaches
infinity. When analyzing results we find that there are fewer exceedances with smaller degrees of
freedom. Even though there are few exceedances we must remember that if the financial
institution consequently keeps a larger buffer than needed, potential investment opportunities

could be lost due to a pessimistic VaR.

Backtesting of t-distributed VaR, Jan-07 to Dec-09

a v=T7 v=9 v=11 v=20 v=40 v=300 Expected %
0.95 1,99% 2,52% 3,05% 3,45% 3,98% 4,77% 5%
0.975 0,93% 1,33% 1,72% 1,99% 2,52% 3,05% 2.5%
0.99 0,66% 0,66% 0,80% 1,33% 1,59% 1,99% 1%
0.999 0,13% 0,27% 0,27% 0,53% 0,66% 0,66% 0.1%

Table 8. Backtesting of t-distributed one-day VaR, with v degrees of freedom.

In Table 9 we present backtesting of our estimated VaR with v degrees of freedom under
student’s t-distribution during Jan-10 to Dec-13. We observe that with &« = 0.95 there are more
exceedances than during Jan-06 to Dec-13, though with higher values of alpha the exceedances

are smaller than in the first period.
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Backtesting of t-distributed VaR, Jan-11 to Dec-13

a v=7 v=9 v=11 v=20 v=40 v=300 Expected %
0.95 1,98% 2,25% 3,17% 3,57% 4,50% 4,89% 5%
0.975 0,66% 1,32% 1,59% 1,98% 2,38% 3,17% 2.5%
0.99 0,26% 0,40% 0,40% 0,93% 1,59% 1,72% 1%
0.999 0,00% 0,13% 0,13% 0,13% 0,40% 0,40% 0.1%

Table 9. Backtesting of t-distributed one-day VaR,, with v degrees of freedom.

3.3 Value-at-Risk and Expected Shortfall computed for the multivariate portfolio

In this subsection we will present the numerical Var and ES computations for a multivariate
equity portfolio consisting of 26 stocks from the OMXS30. We will display our findings
assuming that the losses are normally distributed. In Figure 16 and Figure 17 we show a rolling

VaR and ES estimates based on the previous 250 days.
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Figure 16. VaR(bold) and ES(dotted line) plotted against losses for the portfolio at « = 0.99 under normal
distribution for Jan-07 to Dec-09.

In Figure 16 we present VaR and ES with at @ = 0.99 under normal distribution for Jan-06 to

Dec-09. Due to the substantial market volatility during this period we observe exceedances

during the sub-prime crash of 2007/2008.
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Figure 17. VaR(bold) and ES(dotted line) plotted against losses for the portfolio at @ = 0.99 under normal

distribution for Jan-11 to Dec-13.

In Figure 17 we present VaR and ES with ¢ = 0.99 under normal distribution for Jan-10 to Dec-
13. With less market volatility than in the first period, we observe a smaller amount of

exceedances.

In Table 10 we present estimates for VaR for two days in both periods. The first estimate is the
VaR for the 251" day in each period and the second estimate is the largest observed estimate in

each period.

Multivariate VaR,,

a Jan2"-07  Aug26™-09 | Dec28™-10 Mar20™-12

0.95 83kr (2.1%) 139kr (4.5%) | 80kr (1.9%)  113kr (3.2%)
0.975 100kr (2.5%) 166kr (5.3%) | 96kr (2.3%)  134kr (3.8%)
0.99 120kr (3.0%) 197kr (6.3%) | 115kr (2.8%) 160kr (4.5%)
0.999 160kr (4.0%) 262kr (8.4%) | 154kr (3.7%) 212kr (6.0%)

Table 10. One-day VaR,for the multivariate portfolio under normal distribution and its value in percent of the
portfolio value for different a.

In Table 11 we present estimates for ES for two days in both periods. The first estimate is the ES
for the 251* day in each period and the second estimate is the largest observed estimate in each

period. Again, these estimates are larger than the VaR estimates for corresponding days.
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ES,

a Jan2"-07  Aug26™-09 | Dec28™-10 Mar20™-12

0.95 106kr (2.7%) 174kr (5.6%) | 101kr (2.4%) 141kr (4.0%)
0.975 120kr (3.0%)  198kr (6.4%) | 115kr (2.8%)  160kr (4.5%)
0.99 138kr (3.5%) 226kr (7.3%) | 132kr (3.2%)  183kr (5.1%)
0.999 175kr (4.5%)  285kr (9.1%) | 168kr (4.1%)  230kr (6.5%)

Table 11. One-day ES, for the multivariate portfolio under normal distribution and its value in percent of the
portfolio value for different ..

In Table 12 we present backtesting of VaR for both periods. We observe exceedances above the
expected amount for all values of alpha except for VaR with ¢ = 0.95 in Jan-10 to Dec-13.

Again, this shows that the model is not applicable for these values.

Backtesting of multivariate VaR,
a Jan06 - Dec09 Janl0 - Dec13  Expected %

0.95 6,10% 4,63% 5%
0.975 4,38% 3,57% 2.5%
0.99 2,92% 2,38% 1%
0.999 1,06% 0,79% 0.1%

Table 12. Backtesting of one-day VaR,, for the multivariate portfolio under normal distribution.

3.4 Monte Carlo simulation

In Table 13, we present the multivariate, Monte Carlo simulated, VaR estimate. We assume that
the risk factor changes are multivariate normally distributed X~N (u, 2) where the mean y and

covariance matrix X are estimated using the previous 250 days.

Monte Carlo simulated multivariate VaR,

a Jan 2" -07 Dec 28" -10
0.95 83 kr (2.1%) 80kr (1.9%)
0.975 100kr (2.5%) 96kr (2.3%)
0.99 120kr (3.0%) 115kr (2.8%)
0.999 160kr (4.0%) 154kr (3.7%)

Table 13. Simulated one-day multivariate VaR, with 10"6 simulations for normal distribution and its value in
percent of the portfolio value for different a.
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The VaR estimates obtained from the Monte Carlo simulation are almost identical (due to the

law of large numbers) to the estimates for the 251% day for both Period 1 and Period 2, as

presented in Table 10. Monte Carlo simulation is a useful tool when one does not have an

analytical expression to compute VaR. For the multivariate normal distribution we do have a

closed form expression to compute VaR presented in Equation (24). There are distributions

where it is not possible to get a closed form expression for the VaR computations and one must

therefore rely on Monte Carlo simulations to compute VaR.
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Figure 18. Scatter plot between ABB and Astra Zeneca. Actual values are displayed on the left and simulated values

to the right. Risk factor changes are the daily log-returns.

In Figure 18 we display two scatter plots for risk factor changes, which is the daily log-return,

for Astra Zeneca and ABB. We can see that the values are scattered with a low correlation. We

want to show that the correlation structure is the same in the simulation. In Figure 19 we display

two scatter plots for risk factor changes for Sandvik and Atlas Copco. We can see that they are

highly correlated.
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Figure 19. Scatter plot between Sandvik and Atlas Copco. Observed log-returns are displayed on the left and

simulated values to the right.

3.5 Historical Simulation

We have plotted a rolling historically simulated VaR and these are displayed in Figure 18 and in
Figure 19. The historically estimated VaR only takes into account historical observations and
does not assume any distribution. From looking at Figure 20 and Figure 21, we can see that the
Historically simulated VaR reacts relatively fast to clusters of volatility. When the financial crisis
strikes it only takes a few large losses until the VaR estimate has adjusted to the current market
conditions. However, this method of estimating VaR is also relatively slow to adjust to less
volatile market conditions after a period of high volatility and we in Figure 20 we observe only

one exceedance after January 2009.
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Figure 20. Rolling Var using Historical simulation for @ = 0.99 for Period 1.

As we can see in Figure 21, we find that VaR responds similarly to the estimated VaR values in
Figure 20. In this period we observe a smaller amount of exceedances due to the relatively
smaller amount of volatility.
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Figure 21. Rolling Var using Historical simulation for @ = 0.99 for Period 2.

39



4. Conclusion

In this thesis we have examined how different methods of VaR and ES estimates. We divided
our time series into two periods and created two fictive portfolios, one consisting of one

thousand Volvo stocks and one consisting 26 stocks chosen from the OMXS30 index.

By using backtesting we have examined the accuracy of VaR estimates for our portfolios. What
we have found is that, during periods of relatively low volatility on the market, VaR estimations
will in general provide a more accurate forecast of future losses. Our results indicate that, for the
models we have used, there are difficulties in producing reliable estimates for high levels of
alpha. For the normal distribution, backtesting displays that for &« > 0.99 the VaR estimates are
exceeded far more often than expected. Regarding the student’s t-distribution, we find that the

accuracy of the VaR estimates depend heavily on chosen degrees of freedom.

The methods presented in Subsections 2.5 and 2.6 assume symmetrically distributed losses,
however, during periods of substantial volatility the losses are most likely not symmetrically
distributed. Even if the losses were symmetrically distributed, the models tested were not able to
capture the extreme losses and this issue proves the need for a method to estimate more extreme

values.

Issues that arise from less accurate VaR forecasts are that financial institutions will have a buffer
that is not large enough to withstand large losses during periods of significant volatility. Also,
issues arise when financial institutions set aside buffers that are too large during periods of more

stable markets, since these funds could be used to make further investments.
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Stocks in the multivariate 26-stock portfolio

ABB

Atlas Copco A
Astra Zeneca
Electrolux B
Getinge B
Investor B
Nordea

SCAB

SEB A
Skanska B
SSAB
Swedish Match

Telia Sonera

Table A3. The stock selection included in the 26-stock portfolio. All stocks selected from the OMXS30.

Assa Abloy B
Atlas Copco B
Boliden
Ericsson B
H&M B

MTG B
Sandvik
Scania B
Handelsbanken
SKF B
Swedbank A
Tele2

Volvo B

44



Appendix 2

Mathematical derivations

First, let us assume a simple portfolio of one stock. The stock price at time t,, is given by

Sp41 = S,e*n+1 where X,, . is a random variable and S,, > 0 and « is the number of units of the

stock. We know that

Ln+1 = _(Sn+1 - Sn) (Bl)

since a negative loss is a profit and note that this is a special case of L, ; given in Equation (5).

So, the loss of the portfolio is given by
Lpyq = —aSy(e*n+1 — 1)

and the linearized loss L5, , is given by
L%H = —aSpXns1 = aSy ' (—Xn41)

since e¥ ~ 1+ x for small x. We also assume that L,.; =~ L5.; so that VaR,(L,41) =

VaR, (L?Hl). By linearity of VaR (see Subsection 2.3), and also imposing a > 0 we get that
VaRa(Lewl) = aSnvaRa(_Xn+1)-

Remember that S, .; = S,,e*n+1, and for any time t,,, we will for any integer k have that

jeXn+k Xntk-1+Xntk = ... = § eXn+1t+Xnik

Sn+k = Sn+k— = Sn+k—ze
that is

Sn+k = SneXn+1+"'+Xn+k’
it then follows that the linearized loss over the period of t,, to t,, 4 is given by
L?Hk = aS, (D) (Xpg1 + -+ Xny)-

Note that we assume that L, =~ L4, so that VaR, (L) = VaR, (Lel+ k), we then get that

VaRa(Lewk) = aSnvaRa(_ Z?=1Xn+i)'
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. S . oy .
Next we assume that our log-returns, i.e. In (';—“)=Xn for each n are independent with identical
n

distribution (i.i.d.), and if we assume that X,,~N (0,52) for eachn = 1,2, ...

If X;41, oo, Xpik are ii.d where X;~N (0, 0?) for each i then we can define W, as W), = X,, 1 +
co++ X, 4 satisfies W, ~N (0, ka?). We also know that a normal random variable Z with mean 0
is symmetric, meaning that the distribution for Z and —Z is the same. Hence, if —X,,,; has the

same distribution as X,,, it follows that —IW/}, has the same distribution as W,,.
Given that the distribution is the same, it follows that
VaR,(—=Xy+1) = VaRg(Xn+1)
and
VaR,(— Xis1 Xn+i) = VaRa(Zi1 Xnvi) = VaRa (Wy).
Since a normally distributed random variable is a continuous random variable we know that
VaR,(Xni1) = Fgl, (@) = oN =} (a) (B2)
and since W;,~N (0, ka?)
VaR,(Wy) = Fyl(a) = VkaN"(a). (B3)

since,

— —pl|¥e <X |- (X
Fi () = PIW, < 2] = P|ZE < 2| = N (&)
implying Equation (16). Finally, comparing Equation (B2) and Equation (B3) we conclude that
VaR,(W,) = VkoN~1(a) = VkVaR,(X,11)

So, combining Equation (B2) and (B3) we get

VaR, (L) = Vi -VaR,(L5,1). (B4)
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