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ABSTRACT 

This thesis investigates the performance of hedging strategies when the 
underlying asset is governed by Merton (1976)’s jump-diffusion model. We 
hedge a written European call option and analyse the performance through 
simulation of stock prices. We find that delta hedging is costly and poorly 
performing regardless of rebalancing frequency and that the performance is 
improved when an option is used instead of the underlying asset. The 
Gauss-Hermite quadratures strategy is an improvement to the delta hedging 
strategies. It is found to require a wide range of strike prices but that its 
performance is only moderately affected by restrictions on the strikes 
available. The Least squares hedge is the best performing strategy for all 
number of options included and the range of strikes required is relatively 
narrow. We find that this strategy performs equally well with five options as 
the Gauss-Hermite quadratures hedge does with 15 options. Both of the 
latter strategies are treated as static and found to be relatively cheap due to 
the limited number of transactions. 
 
  

                                                 
1 The authors would like to thank supervisor Charles Nadeau for his input that has improved the quality of   
this thesis. 



 
 

Contents 
1. Introduction ..................................................................................................................... 1 
2. Literature Review and Theory ....................................................................................... 4 

2.1 Literature Review......................................................................................................... 4 

2.2 Merton's jump-diffusion .............................................................................................. 6 

2.2.1 Stock price dynamics ............................................................................................ 6 

2.2.2 The Partial Differential Equation .......................................................................... 7 

2.2.3 Option pricing ....................................................................................................... 8 

2.3 Hedging techniques ...................................................................................................... 8 

2.3.1 Hedging using the Greek letters ............................................................................ 9 

2.3.2 Semi-static hedging using Gauss-Hermite Quadratures ...................................... 11 

2.3.3 Least squares minimization of hedging errors .................................................... 13 

3. Data and Methodology .................................................................................................. 15 
3.1 Stock Price Simulation ............................................................................................... 15 

3.2 Calculation of Option Prices ...................................................................................... 16 

3.3 Hedging of the option ................................................................................................ 16 

3.3.1 Delta hedge .......................................................................................................... 17 

3.3.2 Hedging using Gauss-Hermite Quadratures ........................................................ 18 

3.3.3 Hedging using Least Squares .............................................................................. 18 

3.4 Relative Profit and Loss ............................................................................................. 19 

4. Results & Analysis ......................................................................................................... 21 
4.1. Delta hedging using the underlying asset ................................................................. 21 

4.2 Delta hedging with an option ..................................................................................... 24 

4.3 Hedging using Gauss-Hermite Quadratures .............................................................. 27 

4.4 Hedging using Least Squares ..................................................................................... 31 

4.5 Comparison of the semi-static strategies ................................................................... 32 

5. Conclusions..................................................................................................................... 36 
Appendix............................................................................................................................. 39 

A.1 Itô's Lemma & Geometric Brownian Motion ........................................................... 39 

A.2 Derivation of Merton's Jump Diffusion PDE ............................................................ 39 

A.3 Gaussian Quadratures ............................................................................................... 41 

A.4 Derivation of the Least Squares minimization .......................................................... 41 

A.5 Development of hedging error for delta hedging with option .................................. 42 

A.6 Hedging error for delta hedging with an option for large movements in S .............. 43 

A.7 Stock price distribution ............................................................................................. 43 

A.8 Range of Calibrated Strike Prices for the GHQ-strategy .......................................... 44 

References ........................................................................................................................... 45 
 



 

1 
 

1. Introduction 
All over the world practitioners and academics in finance use the Black-Scholes model to 

value European options. The model has had an enormous impact in the world of option 

pricing but some of the underlying assumptions are unrealistic in practice. First, it is 

impossible to trade in continuous time, and even if it were possible it would be tremendously 

expensive because of transaction costs. Second, the assumption about normally distributed 

returns has been proven wrong with evidence from individual stocks, such as Enron and 

Lehman Brothers, as well as whole markets in 1929, 1987 and 2008 when the world’s stock 

markets tumbled. The volatility smile shows that investors and traders are aware of this 

misspecification.  Real world stock prices do clearly not evolve as a purely diffusive process 

(Wilmott, 2006). Instead, they tend to exhibit discontinuities from time to time as new 

information arrives and is priced by the market.  

In 1976, an article written by Robert C. Merton was published in which the implication of 

these violated assumptions is discussed. He claims that the impossibility to trade continuously 

is not of major concern as long as the price evolution has a continuous path. He proceeds by 

claiming that the validity of Black-Schools instead rests upon whether the stock price in a 

short time interval can change by only a small amount or if there is a non-zero probability for 

a larger movement, a “jump”.  As already mentioned, there is empirical evidence that points 

to the latter. For this reason Merton (1976) developed a process that incorporates the 

possibility of discontinuities by adding a jump-term to the traditional geometric Brownian 

motion and a valuation model for options following such a process. 

The model is an extension to the Black-Scholes formula and shares its attributes in terms 

of being relatively easy to apply even though it requires three additional parameters for the 

properties of the jumps, namely their variance, expected amplitude and number of jumps per 

year. However, hedging under a jump-diffusion process is more cumbersome even in the 

absence of transaction costs. As explained by Kennedy et al. (2009), a continuously 

rebalanced delta hedge will not lead to a completely risk-free portfolio. Such a hedge is only 

capable of capturing the diffusive parts of the process and will lead to a loss if a jump occurs 

regardless of the direction of the jump or the rebalancing frequency. 
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There are both dynamic strategies and strategies that are rebalanced on an infrequent basis 

that can handle these jumps more successfully. Such strategies are Gauss-Hermite quadrature 

(GHQ) hedging developed by Carr & Wu (2014) and Least squares hedging developed by He, 

et al. (2006) among others. Both of these aims to replicate the payoff from an option by 

holding a portfolio of instruments that protects against movements in the underlying asset 

regardless of their magnitude. One common factor is that the underlying asset is not solely 

used, but is combined with options or completely excluded.  

Previous work by Hinde (2006) has evaluated the performance of similar strategies and 

finds that the semi-static Least squares strategy weighted by the transition PDF replicates the 

payoff of the target well. However, transaction costs was left outside the analysis and there 

was no optimization regarding rebalancing frequency or the number of options to include. In 

addition, there is limited focus on the impact of restrictions on the available strike prices in 

the market. 

 This thesis aims to compare the performance of the strategies mentioned above with and 

without transaction costs. We use Monte Carlo simulation to construct sample paths for stock 

prices under the jump-diffusion framework. The simulated data is used for application of the 

hedging strategies and the analysis of their performance. The performance is observed for 

different restrictions on the availability of hedging instruments, which is crucial in less liquid 

markets. The delta hedge is applied on a less frequent basis than that of Carr & Wu (2014) 

where intra-daily rebalancing is used. We apply the delta suggested by Merton (1976) and 

compare the outcome from using the underlying and an option respectively. In the Least 

squares strategy, the expectation regarding the distribution of future stock prices is taken into 

account through a uniform weighting function. This weighting function is not theoretically 

optimal, but is more robust to lack of knowledge regarding the process followed by the stock 

price. Finally, the best performing hedging strategy among the studied is found by analysing 

the mean, standard deviation and percentile ranges of the hedging errors.  

The analysis is based on both constant volatility and interest rate. In a framework where 

these are treated as stochastic the result will differ. An advantage of delta hedging with the 

underlying asset is that it can eliminate the delta-risk without altering the risk exposure 

associated with any of the other Greek letters. In the analysis of the strategies including 

options it is therefore important to note that the risks associated with varying volatility and 

interest rates are left outside our work.  
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The thesis is structured as follows. Section 2 outlines previous literature on the topic jump-

diffusion and relevant hedging strategies. Section 3 describes the process of simulating the 

data used for the analysis and how the hedges are set up. It also describes the measures used 

for evaluation. Section 4 presents the results for each strategy and ends with a comparison. 

Finally, the findings are summarized in the concluding section.  
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2. Literature Review and Theory  

2.1 Literature Review 
In 1973, Fisher Black and Myron Scholes derived the well-known Black-Scholes formula for 

valuation of European options. They showed that a continuously rebalanced portfolio 

consisting of the underlying asset and bonds can replicate the payoff from an option. In the 

absence of arbitrage opportunities, the value of an option has to be equal to the cost of 

performing this replication. Because the model does not require any knowledge about 

expected returns or other investor specific beliefs it was quickly adopted by professionals and 

is still widely used. 

The Black-Scholes model assumes that the stock price follows a geometric Brownian 

motion (GBM) process. This process yields a continuous path with constant drift and variance 

resulting in a log-normal distribution of stock prices. One of the critiques to the model is the 

discrepancy between the stock returns produced by a GBM and those observed in the market. 

Hinde (2006) highlights this issue by comparing actual market returns from the DJIA with 

simulated returns from a GBM. It is obvious from the comparison that the GBM produces far 

too few extreme events. This implies that the distribution from actual market returns has fatter 

tails than the Gaussian distribution. The difference between empirical and theoretical returns 

is well known and visible in option markets where it is often referred to as a volatility smile or 

volatility skew, which shows that the volatility used to price an option is varying with its 

moneyness. This phenomenon is consistent with a higher probability of extreme movements, 

i.e. it is more likely that a call option deep out of the money will expire in the money than the 

Black-Scholes model predicts.  

Several researchers, including Merton (1976), Heston (1993) and Kou (2002) have 

developed alternative models to solve the issue regarding the erroneous distribution of returns 

assumed in the Black-Scholes model. Merton modifies the GBM by adding a jump term to the 

diffusive process which allows the stock price to move discontinuously at discrete times to 

replicate the extreme events empirically observed. The jumps are described as abnormal 

vibrations that are due to events or announcements of great importance for the particular stock 

or industry, such as profit warnings or reports not meeting expectations.  

Merton derives a pricing formula for options following this modified GBM, assuming that 

the jump size is log-normally distributed and that the number of jumps occurring during any 

given period follow a Poisson distribution. One interesting aspect is that the Black-Scholes 
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implied volatilities of these option values produces volatility smiles similar to those observed 

in option markets. 

With the modifications of the GBM it is no longer obvious how to hedge the risk-exposure 

associated with an option. Wilmott (2006) highlights the problem of hedging under a jump-

diffusion, stating that even if it were possible to trade in continuous time, it would be 

impossible the delta hedge away the risk of random sized jumps occurring at discrete times. 

This issue makes the use of traditional dynamic hedging strategies questionable since the 

hedger will be exposed through the jump due to the linear payoff from hedging using the 

underlying asset. 

In 2014, Carr & Wu showed that rebalancing on a higher frequency than once per day does 

in increase the performance of a delta hedging strategy. They rebalance their hedge up to ten 

times per day but do not find any improvements in terms of variance in the hedging errors. An 

alternative hedging strategy based on ideas presented in an article by Breeden & Litzenberger 

(1978) is therefore developed. The article demonstrated how the risk associated with a path 

independent option can be eliminated by a combination of options with the same maturity. 

Being limited to only use options with the same maturity has a negative impact on the 

application in reality where the range of options with a certain maturity is limited. Upon this 

finding, Carr & Wu developed a strategy based on the no-arbitrage theorem that an option can 

be perfectly hedged using a continuum of shorter-term options.  The theorem is converted into 

a hedging strategy in which the Gauss-Hermite quadrature rule is used to approximate the 

continuum with a finite number of options. Given the maturity of the hedging options, the 

method calibrates the strike prices of the hedging options and their weight in the hedging 

portfolio. 

Based on the work by Carr & Wu, He, et al. (2006) developed a least squares method that 

aims to minimize the squared difference between the target option and the hedging portfolio 

at some future point in time. In their work, they emphasize that the availability of strike prices 

is limited in reality. The strike prices are therefore not calibrated by the model, but required as 

an input. It enables the hedger to use a weighting function to express the expectation 

regarding the distribution of future stock prices. Similar to the method using the Gauss-

Hermite quadratures, the strategy is semi-static, i.e. rebalanced only infrequently. 

The traditional dynamic delta hedging strategies using the underlying asset is simple to 

implement and does not face any liquidity issues in most situations. On the other hand, it 

involves a large number of transactions which will have a negative impact on the payoff from 
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the strategy in the presence of transaction costs. Thus, it is desirable to find a strategy that 

includes only a few transactions and performs satisfactory. 

Even though the method developed by Carr & Wu solves the problem of only one maturity 

and is rebalanced infrequently, their method might require a wide range of strike prices for the 

hedging options (Balder & Mahayni, 2006), which is unrealistic to find in many markets. It is 

therefore of interest to study how this method performs as strike prices are restricted to a 

limited range. We will compare its performance to that of the Least squares strategy where the 

hedger manually chooses the strike prices. 

2.2 Merton's jump-diffusion 
This section outlines the framework behind Merton’s jump-diffusion process in terms of stock 

price dynamics and option pricing. The theory is presented together with fundamentals of the 

Black-Scholes model, which the Merton model is based upon. 

2.2.1 Stock price dynamics 

In 1976, Merton derived an extension to the Black-Scholes model that incorporates the 

possibility of discontinuities in the process followed by the stock price. As in the original 

model there is a diffusive part of the process that captures normal vibrations in the stock price 

on an ordinary day without any extraordinary events occurring. The arrival of extraordinary 

information is assumed to be firm or industry specific and is modelled though a jump-part of 

the process. The model is a modified GBM with a third term that creates these discontinuous 

returns occurring at random, discrete points in time. In a risk neutral environment, the process 

is defined as: 

 𝑑𝑆
𝑆

= (𝑟 − 𝜆𝜅)𝑑𝑡 + 𝜎𝑑𝑍(𝑡) + (𝑌𝑡 − 1)𝑑𝑁𝑡 (2.1) 

 𝑑𝑆 = (𝑟 − 𝜆𝜅)𝑆𝑑𝑡 + 𝜎𝑆𝑑𝑍(𝑡) + (𝑌𝑡 − 1)𝑆𝑑𝑁𝑡 (2.2) 
The variable determining the jump amplitude, 𝑌𝑡, is random and independent of the 

diffusive part of the process. The random jumps are log-normally 

distributed, ln(𝑌)~𝑁(𝜇, 𝛿2). This implies that the jumps cannot result in a negative stock 

price but have the possibility to take on any positive value. Due to the properties of a log-

normal distribution the expected jump size, 𝜅, is: 

 𝐸[(𝑌𝑡 − 1)] = 𝑒𝜇+
1
2𝛿

2
− 1 = 𝜅  

With this in mind it is clear that equation (2.1) becomes a standard GBM if the jump size is 

zero, i.e. the process is identical to that of the Black-Scholes model in the absence of jumps. 

The interpretation of the parameters is (Hinde, 2006): 
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• 𝑆 = Stock price. 

• 𝑟 = Risk-free rate. 

• 𝜎 = Volatility of the diffusion process. 

• 𝜆 = Average number of jumps per year. 

• 𝜅 = Expected jump size. 

• 𝜇 = Mean jump size in terms of ln(𝑆). 

• 𝛿2 = Variance of the jump size in terms of ln(𝑆). 

The probability of a jump occurring during any short time interval 𝑑𝑡 is determined by a 

Poisson process 𝑑𝑁𝑡, with constant intensity 𝜆 (Merton, 1976) (Sideri, 2013):  

Prob. {the event does not occur in time interval 𝑑𝑡} = 1 − 𝜆𝑑𝑡 + 𝑂(𝑑𝑡) 

Prob. {the event occurs once in time interval 𝑑𝑡}= 𝜆𝑑𝑡 + 𝑂(𝑑𝑡) 

Prob. {the event occurs more than once in time interval 𝑑𝑡}= 𝑂(𝑑𝑡) 

As the time steps becomes smaller, the probability of more than one jump 𝑂(𝑑𝑡) during 𝑑𝑡 

approaches zero and in continuous time no more than one jump can occur during any instant. 

2.2.2 The Partial Differential Equation 

One of the main insights provided in the article by Black and Scholes is that if a derivative on 

an asset is dependent on the same process as the asset itself, where the only source of 

uncertainty is a common Wiener process, it is possible to construct a portfolio consisting of a 

long (short) position in the asset and a short (long) position in the derivative that is 

instantaneously risk-free. Conditional on continuous rebalancing, the payoff can be perfectly 

replicated until maturity without any hedging error. Merton used this insight and extended it 

to the jump-diffusion model. Since the jumps are assumed to be firm or industry specific, they 

are uncorrelated with the market. Assuming that the CAPM holds, the risk is diversifiable so 

that there should be no risk-premium reward from them. As shown in appendix A.2, the 

Merton PDE is (Merton, 1976; Sideri, 2013): 

 
−
𝜕𝐹
𝜕𝑡

−
1
2
𝜎2𝑆2

𝜕2𝐹
𝜕𝑆2

− 𝜆𝐸[𝐹(𝑆𝑌𝑡 , 𝑡) − 𝐹(𝑆, 𝑡)] + 𝜆𝐸[𝑌𝑡 − 1]
𝜕𝐹
𝜕𝑆

𝑆 + 𝑟𝐹(𝑆, 𝑡) − 𝑟𝑆
𝜕𝐹
𝜕𝑆

= 0 (2.3) 

The terms involving 𝜆 show that the positions in the option and stock will not change by 

the same amount at the occurrence of a jump. Merton's PDE collapses to the Black-Scholes 

PDE when 𝜆 = 0, i.e. when there are no jumps expected. Applied to hedging, the presence of 

jumps complicates the situation since a position in the underlying cannot hedge away the all 

risk. The market is therefore incomplete and options are non-redundant, i.e. they are non-
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replaceable and can play a key role in hedging. When there is a finite number 𝑁 of possible 

jump amplitudes, it is possible to set up a perfect hedge using 𝑁 + 1 options and the 

underlying. When the jump size is continuous, an infinite number of derivatives on the 

underlying assets would be necessary for a perfect hedge to be possible. Since the number of 

derivatives available is clearly finite and the transaction costs arising from trading would be 

tremendous it is impossible to completely hedge the jump risk under a jump-diffusion 

(Wilmott, 2006).  

2.2.3 Option pricing 

Let 𝑓(𝑆,𝐾,𝜎𝑛, 𝑟𝑛, 𝜏) be the time 𝑡 price of the Black-Scholes option maturing at 𝑇. Given that 

the jump size is log-normally distributed, so that the stock price follows the process outlined 

in section 2.2.1, Merton’s option price of a European option, 𝐹(𝑆, 𝜏), can be calculated as: 

 
𝐹(𝑆, 𝜏) = �

𝑒−𝜆′𝜏(𝜆′𝜏)𝑛

𝑛!

∞

𝑛=0

𝑓(𝑆,𝐾,𝜎𝑛, 𝑟𝑛 , 𝜏) (2.4) 

Each Black-Scholes option is valued assuming that exactly 𝑛 jumps occur during the life of 

the option. Since the number of jumps that will occur is unknown at time 𝑡, but the Poisson 

probability of 𝑛 jumps occurring is known, each option value is weighted with this 

probability. The Black-Scholes price is calculated with a specific risk-free rate and volatility 

that corresponds to 𝑛. Since a jump will increase the volatility of the stock price, the variance 

used to value each option will increase in 𝑛, and is defined as: 

 𝜎𝑛2 ≡ 𝜎2 +
𝑛
𝜏
𝛿2  

Similarly, the risk free rate is adjusted for the return arising from the jumps: 

 𝑟𝑛 ≡ 𝑟 +
𝑛
τ
�𝜇 +

1
2
𝛿2� − 𝜆𝜅  

The Poisson probability of 𝑛 jumps occurring: 

 
ℙ[𝑁(𝑡) = 𝑛] = 𝑒−𝜆′𝜏

(𝜆′𝜏)𝑛

𝑛!
  

where 𝜆′ = 𝜆(1 + 𝜅) is the intensity of the process. 

2.3 Hedging techniques 
The holder or writer of an option carries risks associated with the parameters affecting its 

value. An action taken to reduce this risk exposure is referred to as hedging. The risk can be 

completely eliminated by taking the opposite position in an identical option (Hull, 2012), but 

as has already been mentioned it is impossible to create a perfect hedge under the considered 

jump-diffusion framework in any other way. Writing an option and immediately buying an 

identical might not be possible if the target option is tailor-made for a certain customer. 
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Because of this, there is a need for additional risk management tools. In a complete world a 

derivative such as an option can be replicated using the underlying asset so that the total 

portfolio replicates the payoff from a risk-free investment (Wilmott, 2007). As outlined in 

section 2.2.2, this replication is not possible in a market with jumps, which complicates the 

situation. Other complications in reality are the presence of transaction costs and the 

impossibility of trading continuously which will result in risk exposure.  

Hedging techniques are often divided into static and dynamic strategies. A static hedge is 

not rebalanced during the hedging period, whereas a dynamic hedge can be rebalanced with 

any frequency. Under the Black-Scholes framework, a more frequent rebalanced hedge will 

outperform a less frequent rebalanced in the absence of transaction costs, since the Greeks 

(see section 2.3.1) are not constant and will be outdated after some time. A third way to hedge 

is referred to as semi-static hedging. While a dynamic hedge is rebalanced frequently to 

replicate the payoff from the target option, a semi-static hedge replicates the payoff at some 

specific future time through infrequent trading in a portfolio of options (Carr, 2001). 

Depending on the desired hedging period and the maturities of the options available in the 

market, the hedge may need to be rolled over repeatedly, which makes the strategy semi-static 

(He, et al. 2006). As an example, imagine that we at time 𝑡 write an option with maturity 𝑇 

that we would like to hedge. In the market there are only options available with 

maturity 𝑢, 𝑢 < 𝑇, i.e. we can only use shorter dated options to hedge our longer dated option. 

Because of this limitation, we create a semi-static hedge at time 𝑡 which aims to replicate the 

payoff at time 𝑢. At this time we have the possibility to set up a new hedge or to close the 

position using an identical option, if such an option is now available.  

The hedging approaches considered in this thesis are dynamic and semi-static. All 

techniques are described from the perspective of hedging a short position in an option.  

2.3.1 Hedging using the Greek letters 

The sensitivity of the value of a derivative with respect to a parameter is often referred to as a 

Greek letter. These are the partial derivatives of the value function with respect to any 

parameter of interest. Three of the most common Greeks are delta (Δ), gamma (Γ) and 

theta (Θ). 

Delta (Δ)           = 𝜕𝐹
𝜕𝑆

  

Gamma (Γ)       = 𝜕2𝐹
𝜕𝑆2

  

Theta (Θ)          = 𝜕𝐹
𝜕𝑡
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Delta shows the sensitivity of the option value with respect to changes in the stock price. 

For a long European call it is bound between zero and one. As an option moves deep into the 

money, it becomes unlikely that the option will expire out of the money and the delta of the 

option approaches one. Similarly, a deep out of the money option will have a delta close to 

zero. The delta risk can be eliminated by taking a certain position in the underlying asset or 

any other asset with a non-zero delta. This eliminates the risk associated with small 

movements in the underlying asset for an instant, but since the option delta is a function of all 

the parameters in the valuation formula it is sensitive to a change in any of these. Thus, the 

portfolio has to be rebalanced frequently to minimize hedging errors. In the jump-diffusion 

model, delta is calculated as (Grünewald & Trautman, 1996): 

 
Δ𝐹(𝑆,𝜏) = �

𝑒−𝜆′𝜏(𝜆′𝜏)𝑛

𝑛!

∞

𝑛=0

Δ𝑓(𝑆,𝜏)  

 Δ𝑓(𝑆,𝜏) = 𝑁�
ln �𝑆𝑋� + �𝑟𝑛 + 𝜎𝑛2

2 � 𝜏

𝜎𝑛√𝜏
� = 𝑁(𝑑1)  

Where 𝑁(𝑑1) is the cumulative PDF of a standard normal distribution. Gamma is the 

second order derivative with respect to the stock price and thereby measures the rate of 

change in delta with respect to changes in the stock price. Hedging the gamma risk will 

decrease the curvature of the delta which will result in a more sustainable delta hedge 

conditional on no jump occurring, i.e. the delta position does not have to be rebalanced as 

often. Similarly to delta, gamma is calculated as (Hinde, 2006): 

 
𝛾𝐹(𝑆,𝜏) = �

𝑒−𝜆′𝜏(𝜆′𝜏)𝑛

𝑛!

∞

𝑛=0

�
𝑁′(𝑑1)
𝑆0𝜎𝑛√𝜏

�  

Where 𝑁′(𝑑1) is the probability density function for a standard normal distribution 

function. The value of a European option is decreasing with time which means that, ceteris 

paribus, an option with shorter time to maturity will have a lower value than one with longer 

time to maturity. The rate of change in the option value due to the passage of time is measured 

by theta. 

Hedging using the Greek letters is widely popular but has a major drawback in the jump-

diffusion setting. The Greek letters are only effective to hedge the diffusive part of the process 

and since the hedger is not able to rebalance the portfolio through a jump, the positions in the 

hedging instruments will be erroneous and cause major hedging errors (Wilmott, 2006). 
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2.3.2 Semi-static hedging using Gauss-Hermite Quadratures 

Using Gauss-Hermite Quadratures Carr & Wu (2014) developed a technique to set up a hedge 

that uses options with maturities shorter than that of the target option. Given the maturities 

available in the market this technique calibrates the portfolio of hedging options by finding 

their optimal weights and strike prices. The strategy is developed under the assumptions that 

stock prices are Markov and that there are no arbitrage possibilities. The value of a European 

call option at time 𝑡 with maturity 𝑇 and strike 𝐾 can then be perfectly replicated with a 

portfolio consisting of an infinite number of options with different strike prices 𝒦, weights 

𝑤(𝒦)  and maturity 𝑢 < 𝑇: 

 
𝐹(𝑆, 𝑡;𝐾,𝑇) = � 𝑤(

∞

0
𝒦)𝐹(𝑆, 𝑡;𝒦,𝑢)𝑑𝒦,    𝑢 ∈ [𝑡,𝑇] (2.5) 

Under the risk neutral measure, the weighting function can be expressed as: 

 𝑤(𝒦) =
𝜕2𝐹

𝜕𝒦2 (𝒦,𝑢;𝐾,𝑇)  

This means that the weight of each option with strike 𝒦 is proportional to the gamma of 

the target option at time 𝑢 if the stock price at that time is equal to 𝒦. Because of this 

proportionality, the weighting function will have the same shape as gamma, which is bell 

shaped around the strike price. The most weight will therefore go to the options with the 

strikes 𝒦 closest to 𝐾. As 𝑢 approaches 𝑇, more weight will go to the options with strikes 

𝒦 ≈ 𝐾 so that the target option is hedged using an option that is identical to the target 

as 𝑢 = 𝑇, i.e. the position is closed.  

For the strategy to be applicable, it is necessary to limit the number of options used to a 

finite number 𝑛 ∈ ℕ  and approximate the integral in (2.5): 

 
𝐹(𝑆, 𝑡;𝐾,𝑇) = � 𝑤(

∞

0
𝒦)𝐹(𝑆, 𝑡;𝒦,𝑢)𝑑𝒦 ≈�𝑊𝑗𝐹�𝑆, 𝑡;𝒦𝑗 ,𝑢�

𝑛

𝑗=1

  

The value of the target option is then approximated as a weighted sum of the values of a 

finite number of options with maturity 𝑢. For the approximation to have a fit as good as 

possible, the hedging options must be chosen carefully in terms of strike prices and weights. 

The method finds these weights and strikes using the Gauss-Hermite quadrature rule. 

Gaussian quadratures are described in appendix A.3, while this section focuses on Gauss-

Hermite quadratures and the application of the hedging strategy. 

Gauss-Hermite quadratures are used for the approximation of infinite integrals of the form 

(Carr & Wu, 2014): 
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� 𝑒−𝑥2𝑓(𝑥)𝑑𝑥 ≈
∞

−∞
�𝑤𝑖𝑓(𝑥𝑖)
𝑛

𝑖=1

  

Here, the abscissas 𝑥𝑖 are given by the roots of the Hermite polynomial 𝐻𝑛(𝑥) which satisfies 

the recursive relation: 

 𝐻𝑛+1(𝑥) = 2𝑥𝐻𝑛 − 𝐻𝑛′ (𝑥)  
where 𝐻0(𝑥) = 1  

The associated weights are given by (Abramowitz & Stegun, 1972): 

 
𝑤𝑖 =

2𝑛−1𝑛!√𝜋
𝑛2[𝐻𝑛−1(𝑥𝑖)]2  

For lower order of 𝑛, the abscissas and weight factors for Hermite integration can be found 

in Abramowitz & Stegun (1972), p 924.  

The quadrature rule is applied to hedging using functions that maps the optimal strikes and 

weights of the hedging options to approximate the integral in (2.5). Carr & Wu (2014) choose 

these strikes as: 

 
𝒦𝑗 = 𝐾𝑒𝑥𝑗𝑣�2(𝑇−𝑢)−�𝑟+𝑣

2

2 �(𝑇−𝑢) (2.6) 

where 𝑥𝑗 is given from the Hermite polynomial and 𝑣 is the annualized standard deviation:  

 𝑣2 = 𝜎2 + 𝜆 ��𝜇𝑗�
2 + 𝜎𝑗2�  

The weight of each option is calculated using: 

 
𝑊𝑗(𝒦) =

𝑤�𝒦𝑗�𝒦𝑗𝑣�2(𝑇 − 𝑡)

𝑒−𝑥𝑗
2 𝑤𝑗  (2.7) 

where 𝑤(𝒦) = 𝑒−𝑟(𝑇−𝑢) � Pr(𝑛) 𝑒(𝑟𝑛)(𝑇−𝑢) 𝑛�𝑑1𝑛(𝒦,𝑢;𝐾,𝑇)�
𝒦𝜎𝑛√𝑇 − 𝑢

∞

𝑛=0

  

As mentioned above, the weight of each option is related to the gamma of the target option. 

Under the jump-diffusion model, 𝑤(𝒦) is therefore motivated by the Merton gamma which is 

calculated in a similar way to the option value by weighting the gamma of the option 

conditional on 𝑛 jumps with the Poisson probability of 𝑛 jumps occurring, Pr(𝑛). The 

hedging portfolio is then set up using options with strikes given by (2.6), each with a unique 

weight from (2.7). 

It is important to note that as the optimal weights are unaffected by the passage of time, the 

weights will remain constant regardless of the movements of the underlying asset until time 𝑢. 

As stated by Carr & Wu (2014), no arbitrage implies that the hedging portfolio will have the 

same value as the target option for all times until 𝑢. Thus, it is theoretically possible to hedge 

away all risk even in the presence of jumps.  
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2.3.3 Least squares minimization of hedging errors 

Based on ideas developed by Carr & Wu (2014) (see section 2.3.2), He, et al. (2006) propose 

a strategy that minimizes the squared change in the portfolio value at some specific time in 

the future. They emphasize that the availability of options with a particular maturity in real 

markets is restricted to a few strikes. Since no other options can be used in the application, the 

strategy minimizes the hedging error using these strikes for a continuum of possible future 

stock prices, each weighted by some PDF. Through the PDF, the hedger has the possibility to 

express the importance of minimizing the hedging error arising for specific values of 𝑌.  

 The minimization problem can be expressed as: 

 min
𝝓,𝑤𝑠

� [Π𝑡+1 − Π𝑡]2𝑊(𝑌)𝑑𝑌
∞

0
 (2.8) 

Where Π𝑡 denotes the time 𝑡 value of the portfolio for the stock price 𝑆𝑡 and 𝑊(𝑌) is the 

weighting function. The difference between the portfolio values is a result from the stock 

price moving from 𝑆𝑡 to 𝑆𝑡+1 = 𝑆𝑡𝑌 over the hedging period. The solution to equation (2.8) 

then yields the optimal weights of the underlying asset and the options in the portfolio given 

the time to maturity and strike price of each option. He, et al. (2006) finds the minimization 

problem as follows:  

At time 0, the value of the replicating portfolio is set up to be equal to the value of the 

target option, 𝐹0: 

 𝐹0 = 𝝓𝟎 ∙ 𝑰𝟎 + 𝑤𝑆0 + 𝐵0  
Where 𝝓 is a vector containing the weights in each available hedging option and vector 𝑰 

contains the values of the corresponding options. The weight in the underlying asset 𝑆 is 

denoted 𝑤 and the amount initially invested in bonds is 𝐵0. The time 𝑡 value of the portfolio 

satisfies the self-financing condition: 

 𝝓𝒕 ∙ 𝑰𝒕 + 𝑒𝑡𝑆𝑡 + 𝐵𝑡 = 𝝓𝒕−𝟏 ∙ 𝑰𝒕 + 𝑤𝑡−1𝑆𝑡 + 𝐵𝑡−1𝑒𝑟∗𝑑𝑡 (2.9) 

The left side of equation (2.9) represents the value of the portfolio an instant after 

rebalancing and the right represents the value an instant before rebalancing. This condition 

states that the change in value of the portfolio completely arises from changes in value of the 

instruments in it. Thus, there is no withdrawal or insertion of money in the portfolio at 

rebalancing. Assuming a short position in the target option, the value of the total portfolio at 

times 𝑡 and 𝑡 + 1 are: 

 Π𝑡 = −𝐹𝑡 + 𝝓𝒕−𝟏 ∙ 𝑰𝒕 + 𝑤𝑡−1𝑆𝑡 + 𝐵𝑡−1𝑒𝑟∗𝑑𝑡 (2.10) 
 Π𝑡+1 = −𝐹𝑡+1 + 𝝓𝒕 ∙ 𝑰𝒕+𝟏 + 𝑤𝑡𝑆𝑡+1 + 𝐵𝑡𝑒𝑟∗𝑑𝑡  (2.11) 
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Manipulating equation (2.11) through substitution of equations (2.9) and (2.10) the 

minimization problem becomes: 

 min
𝝓,𝑤𝑠

𝔼[(𝐹𝑡+1 − 𝐹𝑡𝑒𝑟∗𝑑𝑡 − 𝝓(𝑰𝒕+𝟏 − 𝑰𝒕𝑒𝑟∗𝑑𝑡) − 𝑤𝑠(𝑆𝑡+1 − 𝑆𝑡𝑒𝑟∗𝑑𝑡))2] (2.12) 

Ideally, the difference in values should be zero, which would imply a perfect hedge where 

the target option is exactly replicated. The expectation operator 𝔼 is taken into account 

through the weighting function 𝑊(𝑌) in equation (2.8). The choice of PDF depends on the 

knowledge of the distribution of stock prices and the time over which the option should be 

hedged. Common choices of weighting functions are the PDF of the jump-amplitude and the 

transition PDF. If there is no expectation regarding the distribution of future stock prices it is 

possible to use a uniform distribution.  

A full derivation of equation (2.12) can be found in appendix A.4. 
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3. Data and Methodology 
We use simulations to study and analyse the performance of different hedging techniques 

under Merton’s jump diffusion framework. This section describes the approach used to 

simulate the stock price, how the options and their sensitivities are calculated and how the 

different hedges are set up and evaluated. 

3.1 Stock Price Simulation 
The daily stock returns are simulated using the jump-diffusion model with log-normally 

distributed jumps described by Merton (1976). 

 𝑑𝑆 = (𝑟 − 𝜆𝜅)𝑆𝑑𝑡 + 𝜎𝑆𝑍(𝑡) + (𝑌𝑡 − 1)𝑑𝑁𝑡  
 ln𝑌𝑡~𝑁(𝜇, 𝛿)  

The simulation approach described here can be found in Glasserman (2004). To simplify 

the calculations, the stock price that is to be simulated is converted to the natural 

logarithm, 𝑥 = ln 𝑆. The stock price is simulated on a daily basis for one year. Assuming 256 

trading days per year, we generate a total of 256 draws, 𝑍(𝑡)~𝑁(0,1), from a standard normal 

distribution for the Wiener process. The GBM is then simulated for the entire time period: 

 𝑥𝐺𝐵𝑀 = 𝑥𝑡−1 + �𝑟 −
1
2
𝜎2 − 𝜆𝜅� 𝑑𝑡 + 𝜎𝑍(𝑡)√𝑑𝑡  

At this stage, the simulation of the diffusive part is completed. Since the logarithm of the 

asset price is used, the effect of the jumps are addable and can be simulated separately.  The 

time interval between jump times 𝜏𝑗 and 𝜏𝑗+1 are calculated as: 

 
𝜏𝑗+1 − 𝜏𝑗 = −

ln(𝑈)
𝜆

 
 

Where 𝑈 is a random variable, 𝑈~𝒰(0,1), so that the time between jumps is exponentially 

distributed. With 𝜆 expected jumps per year, the time between every jump will on average be 

1/𝜆 years. For each jump, we generate 𝑍𝑗(𝑡)~𝑁(0,1) and calculate the random jump size as: 

 ln(𝑌𝑗) = 𝜇 + 𝛿𝑍𝑗(𝑡)  
Finally we add the cumulative impact from the jumps to the GBM: 

 𝑥𝑡 = 𝑥𝐺𝐵𝑀 + � ln�𝑌𝑗�

𝑠𝑢𝑝𝑗 𝜏𝑗<𝑡

𝑗=1

  

Where 𝑠𝑢𝑝𝑗   is the supremum of 𝜏𝑗 < 𝑡, i.e. the highest 𝜏𝑗 until time 𝑡. The stock price is 

then converted to its standard form, 𝑆𝑡 = 𝑒𝑥𝑡 . 

The parameters used in the simulations are given by He, et al. (2006) where market data 

from S&P 500 is used to calibrate values for the process. The parameter values are 

summarized in table 3.1. 
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Parameter Value 
𝑟 5% 
𝜎 20% 
𝜆 0.1 
𝜇 -92% 
𝛿 42.5% 
𝑑𝑡 1/256 

Table 3.1 – Parameter values for the jump-diffusion model used for simulation and valuation. 

With these parameters the expected jump size becomes -56.4%. The presence of 

discontinuities is clear in figure 3.1, where a sample of simulated price paths for one year is 

shown.  

 
Figure 3.1 – 100 simulated stock price paths for the parameters in table 3.1. The initial stock price is set to 1 and the time 
period is one year. 

3.2 Calculation of Option Prices 
Formula (3.1) is the Merton valuation formula used under the jump diffusion process: 

 
𝐹(𝑆, 𝜏) = �

𝑒−𝜆′𝜏(𝜆′𝜏)𝑛

𝑛!

10

𝑛=0

𝑓(𝑆,𝐾,𝜎𝑛 , 𝑟𝑛 , 𝜏) (3.1) 

An issue with the Merton valuation formula is that it theoretically requires an infinite 

number of Black-Scholes values and Poisson probabilities. Similar to Sideri (2013) we 

truncate the calculation at 𝑁 = 10, which is reasonable considering that the probability for 10 

jumps to occur when 𝜆 = 0.1 is negligible. 

3.3 Hedging of the option 
For all hedging strategies we hedge a written European call option from a banks perspective. 

Imagine that a customer wants to buy a call option with maturity 𝑇 whereas the market 

consists of shorter dated options only. As suggested by Carr & Wu (2014) this might be an 

attractive situation for the bank where they have the possibility of selling this longer term 
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option at a relatively high premium. The bank then has to hedge the option until the time 

𝑢 ≤ 𝑇 when an identical option is available and it is possible to close the position.  

The target option is assumed to have a maturity of two years and the time at which the 

position can be closed, 𝑢 is set to one year. The semi-static strategies are not rolled over, 

which means that they will be applied as static in our analysis. At the time when the option is 

written the proceeds from the sale are used to finance the hedging portfolio. We also assume 

that it is possible to take long and short positions in the risk-free asset for purposes of 

financing the hedging portfolio. As in He, et al. (2006) we assume that the options in the 

market have strike prices available in 0.05𝑆0  intervals, all with maturity 𝑢. The transaction 

cost for stocks 𝑇𝐶𝑠 is set to 1% as proposed by Zakamouline (2006) and Clewlow & Hodges 

(1997) while the transaction cost for options 𝑇𝐶𝑜 is set to 2%, consistent with a range between 

1% and 4% used by Choi, et al. (2004). 

3.3.1 Delta hedge 

The hedge is applied in two ways, one where the underlying asset is used and one where an 

option is used. When using the underlying asset, a position is immediately taken when the 

target option is sold. The number of shares bought is:  

 𝑤0 =
𝑑𝐹(𝑆, 𝜏)
𝑑𝑆

= Δ𝐹(𝑆,𝜏)  

Thus, the number of shares in the hedge portfolio is equal to the delta of a long position in 

the written option. At this time the total portfolio is instantaneously immune to diffusive 

movements in 𝑆, but as time passes the delta will evolve which will result in a hedging error. 

To once again achieve delta-neutrality the hedge portfolio has to be rebalanced. The number 

of days between each rebalancing considered is 𝑛 = {1, 4, 16, 64,  128,  256}. At each 

rebalancing time 𝑖 ∈ �1, 256
𝑛
�, the position is adjusted with the change in delta: 

 𝑑𝑤𝑖 = Δ𝐹(𝑆𝑖,𝜏𝑖) − Δ𝐹(𝑆𝑖−1,𝜏𝑖−1)  

At any time 𝑖 the value of the total portfolio is: 

 Π𝑖 = 𝐵𝑖 + 𝑤𝑖𝑆𝑖 − 𝐹(𝑆𝑖 , 𝜏𝑖)  

Where 𝑤𝑖𝑆𝑖 is the value of the stock position, 𝐹(𝑆𝑖, 𝜏𝑖) is the value of the target option and 

𝐵𝑖 is the amount invested in bonds to finance the hedge portfolio and transaction costs 

including continuously compounded interest. 

 𝐵𝑖 = 𝐵𝑖−1𝑒𝑟(𝜏𝑖−𝜏𝑖−1) − (𝑑𝑤𝑖 + 𝑇𝐶𝑠|𝑑𝑤𝑖|)𝑆𝑖  
 𝐵0 = 𝐹(𝑆0,𝑇) − (𝑤0 + 𝑇𝐶𝑠|𝑤0|)𝑆0  
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When an option is used for the delta hedge, the size of the option position that makes the 

portfolio delta-neutral is the ratio of the target option delta Δ𝐹(𝑆𝑖,𝜏𝑖) to the hedging option 

delta Δ𝐻(𝑆𝑖,𝜏𝑖): 

 𝑤𝑖 =
Δ𝐹(𝑆𝑖,𝜏𝑖)

Δ𝐻(𝑆𝑖,𝜏𝑖)
  

The portfolio is then set up in the same way as when the underlying is used. When half of 

the hedging period has passed, the hedging instrument is replaced with a new option. The 

initial hedging option has a strike equal to 𝑆0, and the second a strike that is as close to the 

current stock price as possible. The reason for this rebalancing is that as an option approaches 

maturity, its delta becomes unstable and improper for hedging purposes.  

3.3.2 Hedging using Gauss-Hermite Quadratures 

To set up the hedge, we start by collecting the Gauss-Hermite quadrature abscissas, 𝑥𝑖 and 

weights, 𝑤𝑖 for the desired number of hedging options. The strike price, 𝒦𝑗 for each option is 

calculated using formula (2.6) and the parameters specified in section 3.1. Using these strike 

prices we calculate the corresponding weights 𝑊𝑗(𝒦) for the options using formula (2.7). 

Each strike price is rounded to the closest available in the universe outlined in section 3.3. 

The weights are not adjusted for these rounded strike prices. Finally, the value of each 

hedging option 𝐼𝑗(𝑆0,𝑢) is calculated and the amount invested in each option is then: 

 𝑊𝑗(𝒦)𝐼𝑗(𝑆0,𝑢)  
The amount that is invested in bonds to finance the hedge, 𝐵0, is the difference between the 

proceeds from writing the option and the value of the hedge position: 

 
𝐵0 = 𝐹(𝑆0,𝑇) − ��𝑊𝑗𝐼𝑗(𝑆0,𝑢

𝑁

𝑗=1

)� (1 + 𝑇𝐶𝑜) 
 

And the value of the portfolio at the end of the period, time 𝑢, is equal to: 

 
Π𝑢 = 𝐵0𝑒𝑟𝑢 − 𝐹(𝑆𝑢 ,𝑇 − 𝑢) + �𝑊𝑗𝐼𝑗(𝑆𝑢 , 0

𝑁

𝑗=1

) 
 

The number of options considered is in the range 3 to 20. 

3.3.3 Hedging using Least Squares 

The integral in equation (2.8) requires an infinite number of stock prices at time 𝑢 for the 

minimization problem. Similar to Hinde (2006) we approximate this integral by discretising it 

to a finite number of nodes. In our analysis the nodes consists of possible stock prices in the 

range 0.01𝑆0 − 3𝑆0, which captures the most likely realizations for the given parameters. The 

range is justified by the negative expected jump, which makes it essential to cover very small 
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values of 𝑆𝑢. We divide the range into 0.005𝑆0 intervals, i.e. there is 298 possible values of 

𝑆𝑢 in the optimization. Except for these limits, the hedge is set up without any subjective 

believes about the future stock price distribution using a uniform PDF as weighting function. 

The strikes are chosen so that the first option used has a strike equal to that of the target 

option. As the number of options in the portfolio is increased, it will cover a broader range up 

to 0.5𝑆0 − 1.5𝑆0. For the first 11 options the strike prices are chosen in 0.1𝑆0 intervals and for 

more options the gaps are filled up with 0.05𝑆0 strikes. 

Using the desired number of hedging options we find the optimal weights by solving the 

least squares minimization problem (2.12) without any constraints. We consider hedging 

portfolios consisting of 1 to 20 options. At the end of the hedging period, the value of the 

portfolio is: 

Π𝑢 = −𝐹𝑢 + 𝝓𝟎 ∙ 𝑰𝒖 + 𝑤0𝑆𝑢 + 𝐵0𝑒𝑟𝑢 

𝐵0 = 𝐹(𝑆0,𝑇) − (𝑤0 + 𝑇𝐶𝑠|𝑤0|)𝑆0 − (𝝓𝟎 + 𝑇𝐶𝑜|𝝓𝟎|) ∙ 𝑰𝒖 

3.4 Relative Profit and Loss 
For each simulation the performance of the hedge is measured by the relative profit and loss 

as suggested by He, et al. (2006). 

 Relative P&𝐿 = 𝑒−𝑟𝑢
Π𝑢

𝐹(𝑆0,𝑇)
  

The expected relative P&L for any hedging strategy is zero in the absence of transaction 

costs. To systematically achieve a perfect hedge in an incomplete market is impossible which 

means that there will be deviations from this expectation. The deviations will be of varying 

magnitudes depending on the applied hedging technique. In order to evaluate the performance 

of the considered strategies we simulate 20 000 stock price paths. This results in a smooth 

distribution of yearly hedging errors from which we calculate the risk and mean of any given 

strategy.  

As in He, et al. (2006) we calculate percentiles for the tails of the distribution. We choose 

to use the 1st, 10th, 90th and 99th percentiles. The 1st and 99th percentiles capture the ability of 

any hedging strategy to handle the extreme events that occur under a jump-diffusion, while 

the 10th and 90th percentiles capture the diffusive and less extreme realizations. Kennedy, et 

al. (2009) focus mainly on the mean and standard deviation when deciding on which of the 

techniques to use in the presence of transaction costs. We follow a similar approach but also 

keep focus on the percentiles.  
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When comparing the different strategies we calculate the ratio of the inter-percentile 

ranges for the hedged to the unhedged portfolios to create a normalized measure: 

 
𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒 𝑟𝑎𝑛𝑔𝑒 =

[𝑃𝑟𝑐𝑡𝑈 − 𝑃𝑟𝑐𝑡𝐿]𝐻𝑒𝑑𝑔𝑒𝑑
[𝑃𝑟𝑐𝑡𝑈 − 𝑃𝑟𝑐𝑡𝐿]𝑈𝑛ℎ𝑒𝑑𝑔𝑒𝑑

 (3.2) 

Where 𝑃𝑟𝑐𝑡𝑈 and 𝑃𝑟𝑐𝑡𝐿 are the upper and lower percentiles respectively. We calculate a 

similar measure for the standard deviations: 

 𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 =
𝜎𝐻𝑒𝑑𝑔𝑒𝑑
𝜎𝑈𝑛ℎ𝑒𝑑𝑔𝑒𝑑

 (3.3) 

For the unhedged position, equations (3.2) and (3.3) will take on the value 100% and can 

be expected to decrease for a hedged position, with a lower limit of 0%. 
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4. Results & Analysis 
In this section we present and analyse the performance of the hedging strategies. We show the 

performance of each strategy with and without transaction costs. Further we compare the 

strategies in order to find the best performing strategy and hedging frequency for the given 

conditions. 

4.1. Delta hedging using the underlying asset 
The distributions of the relative P&L from a delta hedge using the underlying asset with and 

without transaction costs are shown in figures 4.1 and 4.2. The performance in the absence of 

transaction costs is consistent with findings from previous work by Carr & Wu (2014), who  

analyse varying intraday rebalancing frequencies. They find that the standard deviation is 

unchanged regardless of the hedging frequency, and from table 4.1 it is evident that this 

finding extends to less frequent rebalancing.   

 
Figure 4.1 - Relative P&L distribution of a delta hedge using the underlying asset for one year in the absence of transaction 
costs. 𝑵 is the number of days between rebalancing. 
 

   Percentiles 
Frequency (N) Mean Std. dev. 1st 10th 50th 90th 99th 

1 0.2% 41.0% -192.1% 5.7% 12.1% 13.6% 14.4% 
4 0.2% 41.0% -190.5% 4.3% 12.0% 14.3% 15.8% 
16 0.1% 41.1% -190.7% 0.5% 11.9% 16.0% 18.4% 
64 0.1% 41.4% -191.4% -9.8% 12.2% 19.2% 21.9% 

128 0.2% 41.3% -185.1% -17.7% 12.9% 21.3% 22.7% 
256 0.1% 42.4% -187.3% -29.9% 15.3% 22.6% 22.8% 

No hedging -0.7% 86.2% -268.6% -118.2% 18.0% 95.0% 100% 
Table 4.1 - Descriptive statistics of the relative P&L distribution of a delta hedge using the underlying asset in the 
absence of transaction costs. The statistics corresponds to figure 4.1. 
 

0 0.05 0.1 0.15 0.2 0.25
0

5

10

15

20

25

30

Relative P&L

P
D

F

 

 
N=1
N=4
N=16
N=64
N=128
N=256



 

22 
 

From the descriptive statistics it is clear that the P&L distributions are skewed with a long 

left tail similiarly to findings by Xiao (2010) and Kennedy, et al. (2009). The 1st percentiles 

are of extreme magnitudes compared to the 99th, which are relatively close to the median and 

highlights the skewness. The largest losses occur at jump times regardless of the direction of 

the jump since the hedge position underestimates the effect on the option value for large 

movements in the underlying asset. Consistent losses are also seen in work by He, et al. 

(2006). With the parameters employed a jump will occur once every tenth year on average 

and as long as there is no jump in the underlying, the delta hedge performs similiarly to a 

delta hedge in the Black-Scholes framework with the exeption of not being centered around 

zero. In contrast to what could be the impression from figure 4.1, the mean relative P&L is 

close to zero for all strategies and the deviations are only a result of  the randomness in the 

simulation. The skewness is due to that the written option is priced with a premium to 

compensate for the negative jumps which means that when the stock price does not jump 

during the hedging period, a small profit is recevived on average. Since the hedge portfolio 

remains static through the jump regardless of the hedging frequency, the strategy is unable to 

capture the effect of a jump. As a result of this, the performance at jump times is poor. A 

more frequent rebalancing provides a higher peak with more of the hedging errors in a smaller 

range, but the first percentile does not change. The percentiles in table 4.1 show that in 80% 

of the observations the relative P&L for a the daily rebalacing lies in the range 5.7%-13.6%. 

As the relancing frequency decreases this range increases consistently.  

Once the transaction cost are imposed for trading in the underlying asset the situation 

changes drastically. Even though the standard deviations are almost unchanged, the shape of 

the distributions have changed. Due to the transaction costs there is a negative shift for all 

mean payoffs. Since more frequent rebalancing involves more transactions the shift is larger 

for these strategies. The platykurtic distribution of the P&L for daily rebalancing implies that 

the payoff is hard to predict and it does not seem to exist any benefits as the mean changes 

considerably while the performance is close to unchanged. This finding stands in sharp 

contrast to the other frequencies where the peaks are still present, although considerably 

lower. Considering the reduction in risk, it seems beneficial to hedge on a less frequent basis. 
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Figure 4.2 - Relative P&L distribution of a delta hedge using the underlying asset for one year in the presence of transaction 
costs. 𝑵 is the number of days between rebalancing. 

 

   Percentiles 
Frequency (N) Mean Std. dev. 1st 10th 50th 90th 99th 

1 -14.7% 40.1% -201.4% -12.3% -4.1% 2.4% 4.5% 
4 -9.2% 40.7% -198.0% -6.9% 2.5% 6.3% 8.1% 

16 -6.4% 41.1% -196.8% -7.8% 5.5% 10.0% 12.9% 
64 -5.1% 41.6% -197.2% -16.2% 7.0% 14.6% 17.8% 

128 -4.6% 41.5% -189.7% -23.4% 8.1% 17.2% 18.9% 
256 -3.6% 42.4% -190.9% -33.5% 11.7% 18.9% 19.2% 

No hedging -0.7% 86.2% -268.6% -118.2% 18.0% 95.0% 100% 
Table 4.2 - Descriptive statistics of the relative P&L distribution of a delta hedge using the underlying asset in the 
presence of transaction costs. The statistics corresponds to figure 4.2. 

The performance of this strategy illustrates the impact of violating the continuous path 

assumption in the Black-Scholes model. As stock prices in real markets do exhibit 

discontinuities, a delta hedge might not be the most attractive alternative since it does not 

offer sufficient protection at jump times. Figure 4.3 illustrates that the hedging errors to a 

large extent arise not from the discretization of time, but from the discontinuity of the stock 

price. It shows the development of the relative P&L during the hedging period for 200 

simulations assuming no transaction costs and it is clear that the major deviations arise when 

there is a jump in the underlying. 
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Figure 4.3 - Development of relative P&L under a delta hedging strategy using the underlying for 200 simulations 
assuming    no transaction costs.  

4.2 Delta hedging with an option 
As shown in section 4.1 the delta hedging strategy using only the underlying asset performs 

satisfactory as long as the underlying asset price does not jump. At jump times, the major 

hedging error occurs due to the linear payoff from the hedging portfolio in contrast to the non-

linear payoff from the written option. Even though it is impossible to eliminate the jump risk 

using only one hedging option that is different from the target, it is possible to reduce it since 

both the target option and the hedging portfolio will have a non-linear payoff. Figure 4.4 

shows the performance of a strategy that is identical to 4.1 except that an option is used to 

impose delta neutrality at each rebalancing time.   

 
Figure 4.4 - Relative P&L distribution of a delta hedge using an option for one year in the absence of transaction costs. 𝑵 is 
the number of days between rebalancing.  
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   Percentiles 
Frequency (N) Mean Std. dev. 1st 10th 50th 90th 99th 

1 -0.1% 12.9% -11.6% -6.7% -2.6% 2.0% 49.8% 
4 -0.1% 13.0% -12.7% -7.2% -2.7% 3.5% 49.7% 

16 -0.1% 13.5% -15.1% -8.6% -3.0% 7.4% 51.8% 
64 0.0% 14.8% -16.2% -11.2% -3.8% 14.1% 54.8% 

128 0.0% 15.7% -14.2% -12.4% -4.5% 18.5% 56.0% 
256 0.0% 16.9% -26.6% -21.1% -2.2% 28.3% 32.6% 

No hedging -0.7% 86.2% -268.6% -118.2% 18.0% 95.0% 100% 
Table 4.3 - Descriptive statistics of the relative P&L distribution of a delta hedge with an option in the absence of 
transaction costs. The statistics corresponds to figure 4.4. 
 

The results presented in table 4.3 are considerably different from those in table 4.1. The 

standard deviations for the different frequencies are lower compared to when using the 

underlying asset. It is worth noting that instead of large losses occurring on an infrequent 

basis, there are often profits at jump times. These gains are offset by a small loss occurring on 

average when there is no jump. 

The positive payoffs at jump times are related to the non-zero gamma of the hedging 

instrument, which is in contrast to the zero gamma of the underlying asset. Given that the 

hedging instrument has the same (or a similar) strike price as the target option but a shorter 

maturity, its value function will exhibit a higher curvature around the strike price. For large 

movements in the underlying asset, the gamma of the hedging instrument will converge to 

zero faster than that of the target option. As the stock jumps to a lower price, the negative 

payoff from the hedge portfolio is therefore smaller than the positive payoff from the short 

position in the target option. In a similar way, the value of hedging portfolio will increase 

more rapidly when there is a positive jump. This is the opposite scenario to hedging with the 

underlying and leads to a positive payoff regardless of the direction of the jump. When the 

properties of the hedging instrument is different this finding might not hold. An option with a 

lower strike price or a longer time to maturity will behave more similar to the underlying 

asset. An extreme example is an option with a strike price equal to zero, which will behave 

identical to the underlying asset with a constant delta of one and therefore yield losses at jump 

times. With the parameters in our setting and 20 000 simulations, we only observe a few 

number of negative jumps in the hedged position. The impact of these are very limited, with 

the hedging error equivalent to an error that can arise from a year without jumps (see 

appendix A.5). This minor impact is due to that the hedging option has to be replaced with an 

option with a lower strike to open the possibility for large, negative payoffs. If this has 

happened, the position in the option that imposes delta neutrality will be relatively small and 
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only yield small losses at the occurrence of a negative jump. Losses of greater magnitude 

might occur on the upside, but a positive jump is a relatively rare event as well. The two 

events that has to coincide to yield a large, negative payoff are therefore rare in combination. 

Appendix A.6 shows examples of the hedging errors arising from discontinuities of varying 

magnitudes. 

Even though there is a negative shift in the relative P&L once the transaction costs are 

imposed, the distributions remain similar. The peak in the daily hedging frequency remains in 

contrast to hedging with the underlying and the differences between the distributions of 

hedging errors for rebalancing frequencies 1, 4 and 16 are trivial. 

   Percentiles 
Frequency (N) Mean Std. dev. 1st 10th 50th 90th 99th 

1 -7.8% 14.0% -25.3% -17.5% -9.7% -4.0% 42.6% 
4 -5.9% 13.7% -22.4% -15.2% -8.1% -1.3% 43.8% 

16 -5.0% 14.0% -23.3% -14.8% -7.5% 2.9% 46.1% 
64 -4.4% 15.1% -23.3% -16.4% -7.8% 9.8% 49.3% 

128 -4.3% 15.8% -19.6% -17.6% -8.7% 14.4% 49.6% 
256 -1.4% 16.9% -28.0% -22.4% -3.6% 26.9% 31.2% 

No hedging -0.7% 86.2% -268.6% -118.2% 18.0% 95.0% 100% 
Table 4.4 - Descriptive statistics of the relative P&L distribution of a delta hedge an option in the presence of transaction 
costs. The statistics corresponds to figure 4.5. 

 
Figure 4.5 - Relative P&L distribution of a delta hedge using an option for one year in the presence of transaction costs. 𝑵 is 
the number of days between rebalancing. 

Considering the mean P&L to be the cost of hedging, the static hedge strategy (𝑁 = 256) 

offers substantial reduction in standard deviation relative to the cost. Since the portfolio is not 

rebalanced it is not delta neutral at all times, but the strike price of the target and the hedging 

option will be the same throughout the hedging period. This is of great importance since the 

impact of a jump is greater when the parameters differ between the target and the hedging 
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option. However, as the rebalancing frequency is increased the range between the 10th and 

90th percentiles is decreasing, indicating a more predictable P&L.  

To sum up, delta hedging performs poorly under jump diffusion. Strategies as these cannot 

handle discontinuities of the underlying asset and at jump times there are significant hedging 

errors. Using an option improves the performance both in terms of standard deviation and cost 

even though the technique is in no way claimed to be optimal. A different way of replacing 

the option and choosing strike price might improve the performance further in terms of both 

cost and risk. The lower cost is partly a result of the value of the option position being only a 

fraction of that required in the underlying. The smaller shift in the relative P&L for the daily 

rebalancing indicates that this result holds even though the transaction costs for options are 

higher. In addition, the range between the percentiles decreases remarkably so that the hedger 

is not as exposed to jump risk.  

4.3 Hedging using Gauss-Hermite Quadratures 
In this section we analyse the Gauss-Hermite strategy in three different settings in order to 

evaluate its performance in markets with varying liquidity. In the first setting, there is no 

restriction on the available strike prices in the market. This setting can be expected to yield 

the smallest hedging errors, but does not take the limited number of options available in the 

market into account. It might require strike prices that are very different from the initial stock 

price and thus may be impossible to implement. In the second setting the strike prices are 

restricted to 0.5S0-1.5S0 with equally spaced 0.05S0 intervals. The third setting further 

restricts the strikes to values between 0.75S0 and 1.25S0. The performance for each setting 

with and without transaction costs can be found in tables 4.5-4.10. 

The hedging performance of the unrestricted GHQ-strategy is different from the dynamic 

strategies in several ways. In contrast to the delta hedging strategies where it is of limited use 

to rebalance on a more frequent basis, the performance improves as the number of hedging 

options is increased. The marginal risk reduction from including more options is decreasing 

so that the optimal number of options to include will be subject to the transaction costs. With 

proportional transaction costs they have a minor impact since all transactions take place the 

first day and the total value of the hedging portfolio is close or equal to that of the target 

option, with a small error arising from approximating the infinite integral (2.5), as mentioned 

in Carr & Wu (2014). The GHQ-strategy does not include short positions for any number of 

options included. This is due to that the portfolio weight is a function of the strike price, the 

option gamma and the weight obtained from the solution of the Hermite polynomial.  Neither 
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of these can be negative and thus the portfolio weights will be positive. Because of this, there 

is an immediate negative shift in the mean P&L and the percentiles that converges to the 

proportional transaction cost as more options are included and the approximation error 

vanishes.  

Including more options in the portfolio results in a wider spread of the calibrated strike 

prices. A strategy with 3 options require strikes in the interval of 0.46𝑆0-1.70𝑆0, while the 

corresponding range for 20 options is 0.05𝑆0-15.75𝑆0. Obviously, the latter strategy is 

impossible to implement and as described in section 2.3.2 and shown in appendix A.8, the 

range is to a large extent a result of the maturity gap between the target option and the 

hedging options. 

In setting 2 the strikes are narrowed to 0.5𝑆0 − 1.5𝑆0. This is done by rounding the strikes 

outside this interval to the closest boundary, keeping the optimal weights unchanged as in 

Carr & Wu (2014). This restriction will reduce the actual number of options used, since 

several options will be rounded to the same strike, that is, to the same option. As an example, 

the strategy where the strikes and weights are calculated for 20 options, 16 of these will be 

rounded to the boundaries. Hinde (2006) claims that rounding the calibrated strike prices will 

have a negative effect on the hedging performance but does not investigate this further. As 

shown in tables 4.7 and 4.8, the performance is only moderately affected by this restriction. 

Since the calibrated strike prices for a few number of options are less spread out than those for 

a higher number of options, the impact of the restriction is greater for higher 𝑁. The reason to 

the small deterioration can be found through an analysis of the calibrated weights. Since each 

portfolio weight is proportional to the gamma that the target option will have when the 

hedging option expires, if the underlying asset price at that time is equal to the calibrated 

strike price, the weights on options with extreme strike prices are trivial. The result is indeed 

encouraging in terms of real world application, since it at least in liquid markets might be 

possible to implement a strategy using strikes in the range considered. However, even strikes 

in a range as wide as this is an optimistic assumption in less liquid markets, which makes it 

interesting to study the performance of the model when the strikes are restricted further. 

Tables 4.9 and 4.10 shows that the performance in setting 3 is still satisfactory, especially 

when compared to the dynamic strategies. The strikes for the strategy with 20 options are 

rounded so that only four different options are used with strikes 0.75𝑆0, 0.8𝑆0,  1𝑆0 

and 1.25𝑆0, where nine options are rounded to each boundary. The standard deviation is 

larger for all number of options compared to setting 2 and there are more observations outside 
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the 10th-90th percentile range, but the changes are trivial in comparison to the large restriction 

on strikes. 

 

 
Figure 4.6 – The range between the 1st and 99th percentile for the three different settings.  

Figure 4.6 shows the range between the 1st and 99th percentiles of the relative P&L for the 

different settings. It is clear that the ability to reduce the range suffers clearly when setting 3 

is applied compared to the ability in the first two settings.  

When the GHQ-method was developed by Carr & Wu (2014) they analysed its 

performance and found that a strategy using five options outperforms any delta hedge and 

mention that the performance can be enhanced further by including more options. Focusing 

on the unrestricted setting, our results support those of Carr & Wu (2014), but also indicate 

that there is a significant increase in performance when the strategy is expanded to eight 

options. This number of options provides a relatively good protection from large losses which 

is persistent throughout the restrictions as well. The standard deviation compared to five 

options is considerably lower and there is only small improvements beyond this point. 

 

 

 

 

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Number of options

R
an

ge

 

 
No restrictions
Restricted 0.5S - 1.5S
Restricted 0.75S - 1.25S



 

30 
 

No transaction costs Transaction costs, Ts=1%, To=2% 
 

   Percentiles   Percentiles 
Options Mean Std. dev. 1st 10th 50th 90th 99th Mean Std. dev. 1st 10th 50th 90th 99th 

3 0.3% 32.0% -48.0% -38.3% -3.5% 43.6% 82.8% -2.2% 32.0% -50.4% -40.7% -5.9% 41.2% 80.3% 
5 0.1% 13.6% -27.1% -19.4% 0.7% 16.4% 28.9% -2.0% 13.6% -29.2% -21.5% -1.5% 14.2% 26.7% 
8 0.0% 5.2% -7.4% -5.6% -2.6% 8.8% 9.7% -2.0% 5.2% -9.4% -7.6% -4.6% 6.8% 7.7% 
10 0.0% 3.5% -6.5% -4.4% -0.5% 6.1% 6.9% -2.0% 3.5% -8.5% -6.3% -2.5% 4.1% 4.9% 
15 0.0% 2.0% -6.4% -2.3% 0.0% 2.6% 2.8% -2.0% 2.0% -8.4% -4.3% -2.0% 0.6% 0.8% 
20 0.0% 1.5% -4.0% -2.3% 0.0% 1.8% 2.7% -2.0% 1.5% -6.0% -4.3% -2.0% -0.2% 0.7% 
Table 4.5 –Unrestricted strikes                           Table 4.6 - Unrestricted strikes 

 
   Percentiles   Percentiles 

Options Mean Std. dev. 1st 10th 50th 90th 99th Mean Std. dev. 1st 10th 50th 90th 99th 
3 0.3% 30.5% -45.1% -36.2% -5.4% 41.7% 83.7% -2.0% 30.5% -47.5% -38.5% -7.7% 39.4% 81.4% 
5 0.1% 12.5% -25.2% -18.2% -0.6% 14.8% 28.7% -1.9% 12.5% -27.3% -20.2% -2.6% 12.8% 26.7% 
8 0.0% 6.2% -7.9% -6.1% -3.3% 10.5% 11.4% -2.1% 6.2% -9.9% -8.1% -5.3% 8.5% 9.3% 
10 0.0% 2.9% -6.5% -4.2% 0.4% 4.2% 5.1% -2.0% 2.9% -8.4% -6.2% -1.6% 2.3% 3.1% 
15 0.0% 2.2% -5.5% -2.7% 0.0% 2.4% 4.8% -1.9% 2.2% -7.4% -4.7% -2.0% 0.5% 2.8% 
20 0.0% 1.8% -4.8% -2.7% 0.3% 2.6% 3.5% -1.9% 1.8% -6.8% -4.7% -1.6% 0.7% 1.6% 
Table 4.7 – Strikes 𝟎.𝟓𝐒𝟎 − 𝟏.𝟓𝐒𝟎                           Table 4.8 - Strikes 𝟎.𝟓𝐒𝟎 − 𝟏.𝟓𝐒𝟎 
 
   Percentiles   Percentiles 

Options Mean Std. dev. 1st 10th 50th 90th 99th Mean Std. dev. 1st 10th 50th 90th 99th 
3 0.3% 31.2% -45.6% -36.7% -5.9% 43.2% 86.7% -2.0% 31.2% -47.9% -39.0% -8.2% 40.9% 84.4% 
5 0.1% 14.0% -26.5% -19.5% 1.3% 18.2% 35.3% -1.8% 14.0% -28.5% -21.4% -0.7% 16.2% 33.4% 
8 0.0% 6.4% -9.6% -7.8% -1.8% 8.8% 9.7% -1.9% 6.4% -11.4% -9.6% -3.6% 6.9% 7.8% 
10 0.0% 3.4% -7.3% -5.0% 0.3% 4.1% 6.8% -2.0% 3.4% -9.2% -7.0% -1.7% 2.2% 4.9% 
15 0.0% 4.1% -6.9% -4.1% -0.5% 6.2% 10.6% -1.8% 4.1% -8.7% -5.9% -2.3% 4.4% 8.8% 
20 0.0% 3.4% -6.1% -4.0% -0.5% 6.1% 7.5% -1.9% 3.4% -7.9% -5.9% -2.3% 4.3% 5.7% 
Table 4.9 – Strikes 𝟎.𝟕𝟓𝐒𝟎 − 𝟏.𝟐𝟓𝐒𝟎                          Table 4.10 - Strikes 𝟎.𝟕𝟓𝐒𝟎 − 𝟏.𝟐𝟓𝐒𝟎  
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4.4 Hedging using Least Squares 
Table 4.11 and 4.12 shows the performance of the Least squares hedge for different number 

of options combined with the underlying. Similar to the GHQ-strategy, the Least squares 

hedge shows a major increase in performance as more options are used. By including only 

one option in the portfolio, the standard deviation drops by 77% compared to an unhedged 

position.  

   Percentiles 
Options Mean Std. dev. 1st 10th 50th 90th 99th 

No hedging -0.7% 86.2% -268.6% -118.2% 18.0% 95.0% 100% 
1 0.0% 9.2% -15.4% -11.4% -0.8% 15.6% 21.6% 
3 0.1% 5.3% -14.6% -6.3% 0.6% 7.1% 10.6% 
5 0.0% 2.2% -6.5% -3.2% 0.5% 2.4% 2.9% 
8 0.0% 0.9% -2.6% -1.5% 0.2% 0.8% 1.0% 

10 0.0% 0.5% -1.9% -0.7% 0.1% 0.5% 0.6% 
15 0.0% 0.3% -1.4% -0.2% 0.1% 0.2% 0.4% 
20 0.0% 0.3% -1.4% -0.1% 0.1% 0.1% 0.5% 

Table 4.11 – Descriptive statistics of the relative P&L from the Least squares hedging strategy for one year. 𝑵 is the 
number of options used in combination with the underlying asset. 

As more options are included, the standard deviation is constantly decreasing all the way to 

0.3%, although the marginal reduction in risk from including more options is sharply 

decreasing. The practically minded reader must keep in mind that it can be unrealistic to find 

all the options in this model in reality. It is therefore encouraging to see that the inability to 

use a large number of options would not be of major concern. The fact that the performance 

increases for up to 10 options stands in contrast to findings by Hinde (2006), where the 

improvement in performance is limited beyond five options. Apart from that Hinde uses the 

transition PDF as a weighting function, the maturities considered are shorter. Since an option 

with a shorter maturity has a smaller gamma for high and low moneyness, it comes naturally 

that including options with strikes in a wider spread does not contribute to the performance. 

As the maturities considered in our analysis are longer, there is a need to cover a wider range. 

Because of this, it is possible to get a very good fit using the Least squares approach when 

hedging a longer dated option, even though the performance when using a low number of 

options might be worse than when the target option has a shorter maturity. 

The strategy is allowed to include both long and short positions in the hedging instruments, 

which implies that even though the total value of the hedging portfolio is equal to the value of 

the target option, it is not necessarily the case that the transaction costs incurred from 

constructing the portfolio is proportional to the target option. As three options are used, the 
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strategy suggested large positions in both directions which results in major transaction costs, 

visible through the mean of -4.1%. We note that as more options are included, less short 

positions need to be taken. Hinde (2006) claims that as the number of options approaches 

infinity, all consistent strategies should converge to a unique combination of options that 

perfectly replicates the target option. According to Carr & Wu (2014), each weight in this 

continuum is proportional to the gamma of the target option for a specific price of the 

underlying asset. Thus, as more options are included in the portfolio, all weights will become 

positive. This has several advantages; first, the total transaction costs are known to be directly 

proportional to the value of the target option. Second, the cost of hedging is relatively low, 

although the proportional transaction cost for options are assumed to be higher than that of 

stocks. 

   Percentiles 
Options Mean Std. dev. 1st 10th 50th 90th 99th 

No hedging -0.7% 86.2% -268.6% -118.2% 18.0% 95.0% 100% 
1 -2.4% 9.2% -17.7% -13.8% -3.1% 13.2% 19.2% 
3 -4.1% 5.3% -18.7% -10.4% -3.5% 3.0% 6.4% 
5 -2.4% 2.2% -8.9% -5.6% -1.9% 0.0% 0.5% 
8 -2.1% 0.9% -4.7% -3.6% -1.8% -1.3% -1.1% 

10 -2.0% 0.5% -3.9% -2.7% -1.9% -1.5% -1.5% 
15 -2.0% 0.3% -3.4% -2.2% -1.9% -1.8% -1.6% 
20 -2.0% 0.3% -3.4% -2.1% -2.0% -1.9% -1.6% 

Table 4.12 - Descriptive statistics of the relative P&L from the Least squares hedging strategy for one year. 𝑵 is the 
number of options used in combination with the underlying asset. 

Table 4.12 is constructed from the assumption that the proportional transaction costs are 

constant without penalizing more options in the portfolio. In reality, the transaction costs 

might vary with the number of options in the portfolio. If it becomes more expensive to trade 

in a variety of options, the mean P&L will be lower as more options are used. It is however 

clear from table 4.12 that the transaction cost would have to increase severely for the strategy 

to be more expensive than the dynamic strategies and would still outperform them in terms of 

risk. This claim is in line with Kennedy et al. (2009) where a dynamic strategy including 

several hedging options is used to hedge a European straddle. A higher number of hedging 

options is penalized by a larger bid-ask spread but as more options are included in the 

portfolio, the mean payoff is decreasing only slightly. 

4.5 Comparison of the semi-static strategies 
The findings in the previous sections show that the traditional dynamic strategies are not only 

performing poorly in the presence of jumps, but also that a higher rebalancing frequency is 
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notoriously cost ineffective. This is not true for the static strategies. In this section we 

therefore exclude the dynamic strategies and focus on the semi-static. To generalize the 

comparison and minimize the sensitivity to our assumptions about the availability of options 

in the market, the GHQ-strategy is presented without restrictions. 

 Least squares GHQ (Unrestricted) 
 

N 
Rel.  
1-99 

Rel.  
10-90 

Rel.  
Std. Mean Rel.  

1-99 
Rel. 

10-90 
Rel.  
Std. Mean 

1 10,0% 12,6% 10,7% -2.4% - - - - 
3 6.8% 6.3% 6.2% -4.1% 35.5% 38.4% 37.1% -2.2% 
5 2.5% 2.6% 2.5% -2.4% 15.2% 16.8% 15.8% -2.0% 
8 1.0% 1.1% 1.0% -2.1% 4.6% 6.8% 6.0% -2.0% 

10 0.7% 0.5% 0.6% -2.0% 3.6% 4.9% 4.1% -2.0% 
15 0.5% 0.2% 0.3% -2.0% 2.5% 2.3% 2.4% -2.0% 
20 0.5% 0.1% 0.3% -2.0% 1.8% 1.9% 1.7% -2.0% 

     Table 4.13 – Relative performance of the static strategies outlined in the previous sections in the presence 
     of transaction costs. 𝑵 is the number of options included. 

When analysing the relative performance measures in table 4.13, the reader must keep in 

mind that the underlying asset is included in the Least squares hedge for all 𝑁. Thus, there is a 

payoff from the hedge portfolio at time 𝑢 for all 𝑆 > 0. It turns out that as 𝑁 increases and a 

wider range of strikes is included, the weight in the underlying approaches zero. In the GHQ-

strategy where no underlying asset is included, the hedge portfolio will have a zero payoff for 

all values of 𝑆 that are smaller than the lowest calibrated strike price. The fact that the target 

option has a non-zero value for all 𝑆𝑢 is an intuitive explanation to why the GHQ-strategy 

calibrates strikes in a wide range with small weights in the tails.  

Carr & Wu (2014) notes that the performance of this strategy suffers as the maturity gap 

increases when applied to real world data. This deterioration is interpreted as a sign of other 

factors, such as stochastic volatility, affecting the value of the options. Since our analysis does 

not include stochastic volatility, we claim that the dispersion of calibrated strikes is a 

contributing factor to this finding. As the maturity gap increases, the calibrated strikes will be 

in an even wider range which makes it necessary to include more options to make the 

performance persistent. For a small number of options, it therefore fails to capture the range 

of the value function where the most curvature is and places the strikes at stock prices of 

minor importance. However, the performance does improve as more options are used, but we 

not that for 20 options, the most extreme strike price calibrated is 15.75𝑆0 and that eight of 

them are greater than 1.7𝑆0. With this spread in mind it is interesting to see that when five 

options are included the GHQ-hedge outperforms any delta hedge in terms of standard 

deviation and performance in extreme events.  



 

34 
 

 
Figure 4.7 – Difference between the value of the hedge portfolio with N options and the target option at time 𝒖 for a range of 
stock prices. The value of the target option at time 0 is 0.2089. 

Since neither of the strategies is path dependent it is possible to analyse the performance at 

time 𝑢 for different stock prices. Figure 4.7 shows that both strategies improves significantly 

as the number of options included is increased from five to ten. It also shows that for 𝑁 = 5, 

the Least squares strategy performs worse than GHQ for stock prices in the lower range. This 

result is because of the previously mentioned position in the underlying asset, which yields a 

linear payoff for all values of 𝑆. Unfortunately for the Least squares strategy using 𝑁 = 5 

there are major hedging errors in the lower range where the stock price is likely to close when 

there is a jump during the hedging period (see appendix A.5). These errors are probably a 

result of using a uniform weighting function that does not take the distributional properties of 

the simulated stock price into account and therefore puts equal effort into minimizing hedging 

errors at stock prices of minor importance than those more likely to occur. Our results are in 

contrast to those of Hinde (2006) who uses the transition PDF as weighting function which 

has the same shape as the figure in appendix A.7. The transition PDF is shown to yield very 

small hedging errors for the lower values of 𝑆 when 𝑁 = 5. In fact, in this lower range the 

GHQ strategy performs best regardless of the number of options included. For the same 

number of options and higher values of 𝑆, the P&L for the GHQ strategy is large and exceeds 

the axis by far, while Least squares performs relatively well.  

When comparing the strategies using table 4.13 and figure 4.7 it is clear that the Least 

squares method is best performing regardless of the number of options included. The 

satisfying performance of this strategy has also been shown in He, el al. (2006) and Kennedy, 

et al. (2009) and through our analysis it is clear that the performance is persistent when using 
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a uniform weighting function as well. Having the possibility of choosing strike prices in the 

areas with the most curvature is an advantage to the Least squares method over GHQ. 

Theoretically it is without doubt preferable to include as many options as possible, but 

when it comes to suggesting one particular number that is realistic to use it is important to 

consider that a strategy including more options might be difficult or impossible to set up due 

to liquidity restrictions in the market. Hence we suggest the Least squares strategy with five to 

eight options depending on the availability of strikes and the cost incurred from trading 

options that are deep in and out of the money. The strategy offers substantial risk reduction 

and the cost effectiveness is robust to lack of knowledge regarding the underlying stock price 

dynamics. Even though the GHQ method has been outperformed in our analysis it has the 

attractive feature of calibrating the strike prices used for hedging and it is likely to perform 

better when the maturity gap is not very wide. It might also be an attractive alternative when 

hedging complex derivatives such as barrier options. 
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5. Conclusions 
This thesis investigates the performance of hedging strategies when the underlying asset 

follows Merton’s jump-diffusion process. The hedging strategies applied are delta hedging 

using the underlying asset, delta hedging using an option, Gauss-Hermite Quadratures (GHQ) 

hedging and Least squares hedging. The first two of these are dynamic strategies which aims 

to replicate the payoff of the target option through frequent rebalancing, while the latter two 

are semi-static that are rebalanced infrequently. The GHQ-strategy is based on a spanning 

relation, stating that the value of an option at any time can be replicated by a continuum of 

shorter dated options. By approximating the continuum with a finite number of options, it 

calibrates the optimal strikes and weights in the hedging portfolio. In contrast, the Least 

squares hedging takes liquidity constraints into account by taking the strikes as given and 

calibrates the weights to minimize the squared hedging error at a future point in time. The 

data for the analysis is generated through simulation of the underlying asset path. For all 

strategies, we hedge a short European call option with two years to maturity during one year, 

assuming that it is possible to close the position at that time. We also assume that the options 

available for hedging purposes have a maturity of one year.  

We find that delta hedging using the underlying asset performs poorly at jump times. 

Similar to Kennedy, et al. (2009) the payoff is found to be negative regardless of the direction 

of the jump. We do not find any improvements in terms of standard deviation for higher 

rebalancing frequencies, consistent with findings by Carr & Wu (2014) and Hinde (2006). We 

do however find decreasing hedging error ranges for the 10th to 90th percentiles as the 

rebalancing frequency is increased, implying that the performance is only increased for times 

when there is no jump. Further, we find that the strategy suffers greatly once transaction costs 

are imposed due to the large positions and high number of transactions. With more frequent 

rebalancing, the strategy becomes more costly with close to a non-existent risk reduction 

compared to a static delta hedge. Out of the four strategies analysed this strategy is clearly the 

least attractive.  

The results from delta hedging using an option highlight the importance of using non-

linear instruments in the hedging portfolio when there is jump risk. We find that the standard 

deviation for all frequencies are remarkably lower compared to hedging using the underlying. 

However, we do not find any dramatic improvements as frequency is increased. It is worth 

noting that due to the non-linearity and shorter maturity of the hedging option considered, the 

impact of extreme events is not as severe and that the hedger will receive a profit when a 
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jump occurs conditional on the options having similar strike prices. This profit is offset by a 

small negative payoff occurring on average when the underlying does not jump, yielding a 

zero mean payoff. Due to the smaller value of the hedging portfolio, the strategy is not as 

costly as the standard delta hedge even though the proportional transaction costs are higher. In 

addition, we find that the distributions of the hedging errors are similar with and without 

transaction costs, which makes it different from the spot hedge. 

Delta hedging under a jump-diffusion has been proven cumbersome in previous work. In 

addition to the poor performance in the presence of jumps, this thesis highlights the sensitivity 

to imposing transaction costs. Delta hedging in this setting is indeed costly, which can be 

generalized to the standard Black-Scholes framework as well. 

The semi-static strategies are clear improvements from the dynamic strategies considered. 

Our findings support those of Carr & Wu (2014), claiming that a GHQ-hedge with five 

options is preferred to any standard delta hedge. The results are strengthened further when 

transaction costs are imposed. The fact that the GHQ-strategy is financed with the proceeds of 

the written option makes it less expensive than the delta hedge. In addition, the transaction 

costs have only a minor impact on the distribution of hedging errors since all transactions take 

place at the first day. We find that the GHQ-strategy requires a wide range of strikes due to 

the difference in maturities between the target and the hedging options. To increase the 

applicability in reality, we restrict the strikes to certain intervals and values. The calibrated 

strikes are then rounded to the closest available value without altering the weights. Hinde 

(2006) claims that such a restriction would have an unfavourable effect on the performance of 

the strategy, but we find only marginal support for this. Regardless of the restriction, the 

standard deviation is decreasing as the calibration is done for a higher number of options.  

The Least squares hedge is the best performing strategy examined. We use a uniform 

weighting function and find that the strategy has the smallest standard deviations and 

percentile ranges for all number of options used in the hedging portfolio. He, et al (2006) also 

finds the hedging strategy to be very successful in the presence of jumps, even though 

different weighting functions are applied. The superior performance of this strategy compared 

to GHQ is also found in Hinde (2006), where the maturities are shorter and the transition PDF 

is used as a weighting function. Similarly to the GHQ-strategy, the Least squares hedge is 

cheap compared to the dynamic strategies and quickly reduces risk with a few number of 

options. We find that the Least squares hedge performs equally well with five options 

combined with the underlying as the unrestricted GHQ hedge does with 15 options. Based on 
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the performance measures, we favour a Least squares hedge with five to eight options since it 

is both feasible regarding the range of strike prices and the improvement in performance 

beyond this point is limited. 

The effect of transaction costs included in our work is intuitive and easy to implement. 

Using proportional transaction costs for stocks might be a valid approximation of reality. On 

the contrary, it does not penalize the number of options used in the hedging portfolio, only the 

absolute value of the options. Possible areas of future research might focus on more 

sophisticated ways to incorporate transaction costs. Such ways can be option pricing in the 

presence of transaction costs that has been developed by Leland (1985) and extended to 

Merton’s jump diffusion by Mocioalca (2007). Another alternative is to use a bid/ask spread 

and let them vary with the moneyness of the options as in Kennedy, et al. (2009). This will 

lead to higher transaction costs for options that are out of the money, thereby increasing the 

realism regarding varying liquidity. Another area that could be analysed is the impact on 

performance when the volatility is stochastic since it would lead to varying optimal weights in 

the hedge portfolios calibrated by the semi-static strategies. The research could also be 

extended to real world data instead of simulated. 
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Appendix 

A.1 Itô's Lemma & Geometric Brownian Motion 
An Itô process is an extension of a generalized Wiener process where the drift and variance 

rates are functions of the underlying variable 𝑆 and time, 𝑡.   

 𝑑𝑆 = 𝑎(𝑆, 𝑡)𝑑𝑡 + 𝑏(𝑆, 𝑡)𝑑𝑍(𝑡) (A.1) 

If 𝑆 is the price of a stock, then (A.1) generates the path followed by 𝑆. One of the most 

common processes in financial literature is the geometric Brownian motion, which is an 

extension to the Itô process: 

 𝑑𝑆
𝑆

= 𝜇𝑑𝑡 + 𝜎𝑑𝑍 (A.2) 

Let 𝐹 be the price of a financial derivative on the underlying stock, then via Itô's lemma it is 

possible to derive the value function of that derivative. Using a Taylor series expansion, Itô 

showed that a function 𝐹 of the same variables 𝑆 and 𝑡 will follow a process that has a 

deterministic and a stochastic part: 

 
𝑑𝐹 = �

𝛿𝐹
𝛿𝑆

𝑎 +
𝛿𝐹
𝛿𝑡

+
1
2

 
𝛿2𝐹
𝛿𝑆2

𝑏2� 𝑑𝑡 +
𝛿𝐹
𝛿𝑆

𝑏𝑑𝑍 (A.3) 

Where 𝑑𝑍 is the same Wiener process as in (A.1).  

Using Ito's lemma it is possible to find the expected stock price at the end of any period. 

Substituting 𝑎 and 𝑏 in equation (A.3) for 𝜇𝑆 and 𝜎𝑆 gives the GBM version of Itô's lemma:  

 𝑑𝐹 = �
𝛿𝐹
𝛿𝑆

𝜇𝑆 +
𝛿𝐹
𝛿𝑡

+
1
2

 
𝛿2𝐹
𝛿𝑆2

𝜎2𝑆2� 𝑑𝑡 +
𝛿𝐹
𝛿𝑆

𝜎𝑆𝑑𝑍 (A.4) 

Defining a function 𝐹 to be the natural logarithm of the stock price and integrating with 

respect to time, it can be shown that the stock price at time 𝑇 is: 

 𝑆𝑇 = 𝑆0𝑒
�𝜇−12𝜎

2�𝑇+𝜎𝑍(𝑇)  

Thus, the stock price has a lognormal distribution. 

A.2 Derivation of Merton's Jump Diffusion PDE 
Let 𝐹(𝑆, 𝑡) be the time 𝑡 value of a derivative. Consider a portfolio Π consisting of one short 

option and a long position of  𝜕𝐹 𝜕𝑆⁄  shares of the underlying stock: 

 
Π = −𝐹(𝑆, 𝑡) +

𝜕𝐹
𝜕𝑆

𝑆 (A.5) 

As time moves from 𝑡 to (𝑡 + Δ𝑡), the value of the portfolio changes by: 

 
ΔΠ = −Δ𝐹(𝑆, 𝑡) +

𝜕𝐹
𝜕𝑆

Δ𝑆 (A.6) 

Transforming (A.2) and (A.4) to discrete form and substitute into (A.6) gives: 
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ΔΠ = −�

𝜕𝐹
𝜕𝑡

+
1
2
𝜎2𝑆2

𝜕2𝐹
𝜕𝑆2

� Δ𝑡 (A.7) 

In (A.7) the Wiener process has cancelled out and thus the uncertainty of the portfolio has 

vanished. The portfolio is now risk-free, and any risk-free portfolio should yield the risk-free 

rate for no arbitrage opportunities to exist. Thus, 

 𝑟ΠΔ𝑡 = ΔΠ (A.8) 

Substituting (A.5) and (A.7) into (A.8) and simplifying results in the Black-Scholes PDE: 

 𝜕𝐹
𝜕𝑡

+
1
2
𝜎2𝑆2

𝜕2𝐹
𝜕𝑆2

+ 𝑟𝑆
𝜕𝐹
𝜕𝑆

− 𝑟𝐹(𝑆, 𝑡) = 0  

Merton shows that by applying Itô's lemma for the diffusion part of the process in equation 

(A.3) and an analogous lemma for the jump part, the relationship becomes (Merton, 1976; 

Sideri, 2013): 

   𝑑𝐹(𝑆, 𝑡) = �(𝑟 − 𝜆𝜅)𝑆 𝜕𝐹
𝜕𝑆

+ 𝜕𝐹
𝜕𝑡

+ 1
2
𝜎2𝑆2 𝜕

2𝐹
𝜕𝑆2

� 𝑑𝑡 + 𝜎𝑆 𝜕𝐹
𝜕𝑆
𝑑𝑍𝑡 + [𝐹(𝑆𝑌𝑡 , 𝑡) − 𝐹(𝑆, 𝑡)]𝑑𝑁𝑡     (A.9) 

Substituting the dynamics of the jump-diffusion process (A.2 & A.9) into the delta-neutral 

portfolio we get: 

 dΠ = −𝑑𝐹 +
𝜕𝐹
𝜕𝑆

𝑑𝑆  

  

dΠ = −��(𝑟 − 𝜆𝜅)𝑆
𝜕𝐹
𝜕𝑆

+
𝜕𝐹
𝜕𝑡

+
1
2
𝜎2𝑆2

𝜕2𝐹
𝜕𝑆2

� 𝑑𝑡 + 𝜎𝑆
𝜕𝐹
𝜕𝑆

𝑑𝑍(𝑡) + [𝐹(𝑆𝑌𝑡 , 𝑡) − 𝐹(𝑆, 𝑡)]𝑑𝑁𝑡�

+
𝜕𝐹
𝜕𝑆

�(𝑟 − 𝜆𝜅)𝑆𝑑𝑡 + 𝜎𝑆𝑑𝑍(𝑡) + (𝑌𝑡 − 1)𝑆𝑑𝑁𝑡� 

 

  

𝑑Π = −�
𝜕𝐹
𝜕𝑡

+
1
2
𝜎2𝑆2

𝜕2𝐹
𝜕𝑆2

�𝑑𝑡 − �𝐹(𝑆𝑌𝑡 , 𝑡) − 𝐹(𝑆, 𝑡) − (𝑌𝑡 − 1)
𝜕𝐹
𝜕𝑆

𝑆�  𝑑𝑁𝑡 
(A.10) 

Since the jumps are diversifiable, we can still argue that the hedged portfolio will grow at the 

risk free rate, so that: 

 𝐸[𝑑Π𝑡] = 𝑟Π𝑡𝑑𝑡  

Substituting 𝑑Π𝑡 for equation A.10 and Π𝑡 for A.5 gives: 

𝐸 �−�
𝜕𝐹
𝜕𝑡

+
1
2
𝜎2𝑆2

𝜕2𝐹
𝜕𝑆2

�𝑑𝑡 − �𝐹(𝑆𝑌𝑡 , 𝑡) − 𝐹(𝑆, 𝑡) − (𝑌𝑡 − 1)
𝜕𝐹
𝜕𝑆

𝑆�  𝑑𝑁𝑡� = 𝑟 �−𝐹(𝑆, 𝑡) +
𝜕𝐹
𝜕𝑆

𝑆� 𝑑𝑡  

Substituting 𝐸[𝑑𝑁𝑡] = 𝜆𝑑𝑡 and rearranging yields: 

 
−�

𝜕𝐹
𝜕𝑡

+
1
2
𝜎2𝑆2

𝜕2𝐹
𝜕𝑆2

� 𝑑𝑡 − 𝐸 �𝐹(𝑆𝑌𝑡 , 𝑡) − 𝐹(𝑆, 𝑡) − (𝑌𝑡 − 1)
𝜕𝐹
𝜕𝑆

𝑆�  𝜆𝑑𝑡 = 𝑟 �−𝐹(𝑆, 𝑡) +
𝜕𝐹
𝜕𝑆

𝑆� 𝑑𝑡  

 

Dividing by 𝑑𝑡: 
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We arrive at the PDE under Merton's jump diffusion: 

 
−
𝜕𝐹
𝜕𝑡

−
1
2
𝜎2𝑆2

𝜕2𝐹
𝜕𝑆2

− 𝜆𝐸[𝐹(𝑆𝑌𝑡 , 𝑡) − 𝐹(𝑆, 𝑡)] + 𝜆𝐸[𝑌𝑡 − 1]
𝜕𝐹
𝜕𝑆

𝑆 + 𝑟𝐹(𝑆, 𝑡) − 𝑟𝑆
𝜕𝐹
𝜕𝑆

= 0  

   

A.3 Gaussian Quadratures 
Gaussian quadrature is a numerical method to estimate the value of a finite integral from 

values -1 to 1. The estimation is done by dividing the integral into 𝑛 segments and calculating 

the area of each of the segments. The approximate value of the integral is then the weighted 

sum of these areas. The method can be generalized to approximate any finite integral from 𝑎 

to 𝑏 by manipulating the integral to satisfy the conditions of the Gaussian quadrature rule: 
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�

𝑛
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where 𝑥𝑖 are the abscissas given by the ith root of the Legendre polynomial 𝑃𝑛(𝑥) and the 

weights  𝑤𝑖 are given by (Abramowitz & Stegun, 1972): 

 𝑤𝑖 =
2

(1 − 𝑥𝑖2)[𝑃𝑛′(𝑥𝑖)]2  

As 𝑛 increases the error of the approximation diminishes quickly. For lower order of 𝑛, the 

weights and abscissas can be found in Abramowitz & Stegun (1972), p 916.  

A.4 Derivation of the Least Squares minimization 
For 𝑡 = 1, the self-financing condition becomes: 

 𝝓𝟏 ∙ 𝑰𝟏 + 𝑤1𝑆1 + 𝐵1 = 𝝓𝟎 ∙ 𝑰𝟏 + 𝑤0𝑆1 + 𝐵0𝑒𝑟∗𝑑𝑡 (A.11) 

The value of the total portfolio at 𝑡 = 1 before rebalancing is: 

 Π1 = −𝐹1 + 𝝓𝟎 ∙ 𝑰𝟏 + 𝑤0𝑆1 + 𝐵0𝑒𝑟∗𝑑𝑡 (A.12) 

Similarly, at 𝑡 = 2: 

 Π2 = −𝐹2 + 𝝓𝟏 ∙ 𝑰𝟐 + 𝑤1𝑆2 + 𝐵1𝑒𝑟∗𝑑𝑡 (A.13) 

From equation (A.11), we have: 

 𝐵1 = 𝝓𝟎 ∙ 𝑰𝟏 + 𝑤𝑆1 + 𝐵0𝑒𝑟∗𝑑𝑡 − 𝝓𝟏 ∙ 𝑰𝟏 − 𝑤1𝑆1  

Substitute this into equation (A.13): 

 Π2 = −𝐹2 + 𝝓𝟏 ∙ 𝑰𝟐 + 𝑤1𝑆2 + [𝝓𝟎 ∙ 𝑰𝟏 + 𝑒0𝑆1 + 𝐵0𝑒𝑟∗𝑑𝑡 − 𝝓𝟏 ∙ 𝑰𝟏 − 𝑤𝑆1]𝑒𝑟∗𝑑𝑡   

From equation (A.12), we have: 

 𝐵0𝑒𝑒∗𝑑𝑡 = Π1 + 𝐹1 − 𝝓𝟎 ∙ 𝑰𝟏 − 𝑤0𝑆1  
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Substitute this into the recently found expression for Π2: 

 Π2 = −𝐹2 + 𝝓𝟏 ∙ 𝑰𝟐 + 𝑤1𝑆2 + [𝝓𝟎 ∙ 𝑰𝟏 + 𝑤0𝑆1 + Π1 + 𝐹1 − 𝝓𝟎 ∙ 𝑰𝟏 − 𝑤0𝑆1 − 𝝓𝟏 ∙ 𝑰𝟏 − 𝑤1𝑆1]𝑒𝑟∗𝑑𝑡  

 → Π2 = −𝐹2 + 𝝓𝟏 ∙ 𝑰𝟐 + 𝑤1𝑆2 + [Π1 + 𝐹1 − 𝝓𝟏 ∙ 𝑰𝟏 − 𝑤1𝑆1]𝑒𝑟∗𝑑𝑡  

Rearranging: 

 Π2 = −(𝐹2 − 𝐹1) + 𝝓𝟏 ∙ (𝑰𝟐 − 𝑰𝟏) + 𝑤1(𝑆2 − 𝑆1) + (𝐹1 − 𝝓𝟏 ∙ 𝑰𝟏 − 𝑤1𝑆1)(𝑒𝑟∗𝑑𝑡 − 1) + Π1𝑒𝑟∗𝑑𝑡  

We want to minimize the difference between the portfolios at times 1 and 2: 

 (Π2 − Π1𝑒𝑟∗𝑑𝑡) 
= −(𝐹2 − 𝐹1) + 𝝓𝟏 ∙ (𝑰𝟐 − 𝑰𝟏) + 𝑤1(𝑆2 − 𝑆1) + (𝐹1 − 𝝓𝟏 ∙ 𝑰𝟏 − 𝑤1𝑆1)(𝑒𝑟∗𝑑𝑡 − 1) + Π1𝑒𝑟∗𝑑𝑡 − Π1𝑒𝑟∗𝑑𝑡 

= −(𝐹2 − 𝐹1) + 𝝓𝟏 ∙ (𝑰𝟐 − 𝑰𝟏) + 𝑤1(𝑆2 − 𝑆1) + (𝐹1 − 𝝓𝟏 ∙ 𝑰𝟏 − 𝑤1𝑆1)(𝑒𝑟∗𝑑𝑡 − 1) 

 

 = −𝐹2 + 𝝓𝟏 ∙ 𝑰𝟐 + 𝑤1𝑆2 + (𝐹1 − 𝝓𝟏 ∙ 𝑰𝟏 − 𝑤1𝑆1)(𝑒𝑟∗𝑑𝑡)  
By rearranging and squaring we arrive at the minimization problem:  

 min
𝜙,𝑤

[(Π2 − Π1𝑒𝑟∗𝑑𝑡)2] = min
𝜙,𝑤

��−(𝐹2 − 𝐹1𝑒𝑟∗𝑑𝑡) + 𝝓𝟏 ∙ (𝑰𝟐 − 𝑰𝟏𝑒𝑟∗𝑑𝑡) + 𝑤1(𝑆2 − 𝑆1𝑒𝑟∗𝑑𝑡)�
2�   

A.5 Development of hedging error for delta hedging with option 

 
Figure A.1 – Development of hedging errors for a delta hedging using an option. 

The figure shows that the majority of the jumps in the value of the hedging portfolio are 

positive and that no negative jumps occur prior to the rebalancing when the strike prices of 

the options becomes different.  
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A.6 Hedging error for delta hedging with an option for large movements in S 

 
Figure A.2 - The hedging error arising from an instantaneous movement in the underlying asset. The initial stock price is 
set to 1, the strike of the target option is 1 and the time to maturity is set to 2 years. 𝒖 is the time to maturity of the 
hedging option and 𝑲 is the strike price. 
 

From figure A.2 it is clear that the hedging error increases as the maturity of the hedging 

options becomes more different than that of the target option. The result is similar when 

altering the time to maturity of the hedging option. 

A.7 Stock price distribution 

 
Figure A.3 – The stock price distribution at T=1 for 𝑺𝟎 = 𝟏. 

The figure A.3 shows the realized stock prices for 200.000 simulations at 𝑇 = 1 and 𝑆0 = 1. 

Because of the jumps there are two peaks in the distribution, one for the drift and one for the 

expected jump. 
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A.8 Range of Calibrated Strike Prices for the GHQ-strategy 

 Number of options 
Maturity Gap 3 5 10 15 20 

1 0.46 - 1.70 0.30 - 2.61 0.16 - 5.55 0.08 - 9.80 0.05 - 15.75 
0.75 0.52 - 1.61 0.36 - 2.32 0.19 - 4.48 0.11 - 7.32 0.08 - 11.04 
0.5 0.59 - 1.49 0.44 - 2.02 0.26 - 3.45 0.17 - 5.15 0.12 - 7.20 
0.25 0.70 - 1.35 0.57 - 1.66 0.39 - 2.43 0.29 - 3.23 0.23 - 4.09 

Table A.1 – Range of calibrated strike prices for different maturity gaps (𝑻 − 𝒖). 𝑻 = 𝟐 and the strike price of the target 
options equals 𝟏. The parameters used for calibration are given in table 3.1. 
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