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Abstract 

Aging is characterized by a build-up of damage in organisms ranging from protists to multi-
cellular species. This damage adversely affects core components such as DNA and proteins 
which are necessary to sustain life. Remarkably, as an old yeast cell divides, its daughter cell 
is fully rejuvenated suggesting that age-related damage can be asymmetrically inherited 
and/or completely ameliorated. This thesis approaches the central question of how cells 
combat such damage to allow longevity.  

Specific interest was directed towards the deubiquitinating enzyme Ubp3 which had already 
been shown to be tightly linked to regulation of transcription and proteome surveillance, both 
of which are essential in cells adaptation to stress. In this thesis, I show that cells lacking 
Ubp3 are short-lived despite displaying decreased unequal recombination at rDNA and 
increased silencing at all three heterochromatic regions in S. cerevisiae subjected to 
transcriptional silencing. These findings are at odds with existing aging-models in yeast, 
highlighting that increased silencing at rDNA is associated with long lifespan. Instead, our 
data suggest that premature aging in cells devoid of UBP3 is caused by a pathway other than 
rDNA recombination/silencing. Indeed, I found that Ubp3 has an important dual role in 
protein quality control by saving or destroying aberrant protein species depending on the stage 
at which the damaged protein is committed for proteasomal destruction. Furthermore, in 
virgin and young cells lacking UBP3, aggregated proteins accumulated prematurely at a juxta-
nuclear position whereas wild-type cells showed no indication of protein damage. In middle-
aged and older cells in the same mutant, more aggregates accumulated at a peripheral 
location. This accumulation of peripheral aggregates correlated, in time, with a decline in 
mutant cell survival.    

Similar to Ubp3, the well-characterized silencing-factor Sir2 is known to regulate other aging-
processes unlinked to silencing. We show that Sir2-deficient cells display increased daughter 
cell inheritance of stress and age-induced misfolded proteins deposited in aggregates and 
inclusion bodies. This asymmetric inheritance has been argued to take place in a passive 
manner due to slow and random diffusion of aggregates. We present evidence that this is not a 
plausible scenario. The control of damage inheritance is more likely mediated by Sir2-
dependent regulation of the chaperonin CCT which is required for folding actin and feeding 
the polarisome with properly folded substrates. We discuss data underlying these conflicting 
models and seek to understand which model best explains how damage asymmetry is 
achieved.   

 

Keywords: Aging, protein damage, segregation, transcriptional silencing, rDNA, UBP3, SIR2, 
protein aggregates 
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1. Introduction  
1.1 Background 
 

A consequence of modern medicine is that the quality and length of life has 

improved. One result of this is that there is a shift in the number of aged 

individuals in our population. A positive trend indeed, but this benefit comes 

with a cost as the primary source for many illnesses and diseases is old age. It is 

therefore of importance to understand the underlying mechanisms of aging in 

general, and age-related disorders in particular so that we can enjoy a full and 

healthy life.  

 

1.2 Theories of aging 
 

Aging is often defined as an organism's time-dependent loss of tissue and 

cellular function accompanied with decreased fertility and increased mortality 

(Kirkwood & Austad, 2000). However, there are organisms that do not follow 

the conventional pattern of changes in mortality and fertility usually 

accompanied by old age. One example is the mute swan (Cygnus olor) that 

shows, contrary to humans, an increase in fertility and near constant mortality 

rate during its lifespan (Jones et al, 2014). Such examples aside, there are 

several theories describing the aging process, none of which are mutually 

exclusive and should be viewed as complementary. However, most theories 

adopt well to the declaration by Dobzhansky, that "nothing in biology makes 

sense except in the light of evolution" (Ayala, 1977). 

 Weismann's theory of programmed death was one of the first aging 

hypotheses based on Darwinian evolutionary theory (Weismann, 1882). The 
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concept of programmed death implies that natural selection inheritably programs 

death to occur in order to limit the lifespan of an individual. As a consequence, 

old and new generations will not compete for the same resources and this will 

benefit the whole population (not only the individual). Other similar and more 

contemporary "evolvability" theories of aging have been proposed, highlighting 

that a programmed death aids a population by allocating resources to the 

younger members (Goldsmith, 2008; Skulachev, 2011). However, it should be 

noted that Weismann later discarded his theory in favor for the "germ-plasm" 

theory stating that the immortal "germ-line" transfers the hereditary material 

whereas the soma (somatoplasm) "ages" (Weismann, 1891). In this theory, aging 

of the soma occurs due to resource allocation to the maintenance of the germ-

line. 

 Starting around 1950, the classical theories of aging arose as a 

response to the theory of "programmed death". The forerunners were Haldane, 

Medawar and Williams. Haldane studied the prevalence of Huntington's disease 

and was stunned by its frequency found in the English population. He suggested 

that the high frequency of this dominant, deadly neurological disease was due to 

the late onset of symptoms and that it therefore escaped natural selection. 

Medawar elaborated this idea in the theory of "mutation accumulation" 

(Medawar, 1952). As the name implies, it stipulates that detrimental mutations 

accumulate with old age. According to this theory, these mutations would not be 

under pressure of natural selection as it is rare to find old individuals in "the 

wild" due to predation and disease. Indeed, in 1966, Hamilton presented 

mathematical evidence coined "Hamilton's forces of natural selection" that 

supported the idea that natural selection declined with age (Hamilton, 1966).  

 Williams formed the first theory, coined antagonistic pleitropy, that 

implied certain "aging genes" (Williams, 1957). The name suggests that certain 

genes are beneficial early in life but at post-reproductive age, they may become 
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detrimental. Later, in 1977, Kirkwood presented a theory that was less based in 

population genetics than previous ideas. His idea of aging sought answers in the 

physiology of the body and reproduction. The theory, coined the "disposable 

soma" envisions the body as disposable and the germ-line as non-disposable 

(Kirkwood, 1977). According to this theory, the maintenance of cellular (soma) 

damage competes for energy with the reproductive system (germ-line). A 

prediction of this theory is that the soma will gradually deteriorate as energy is 

allocated from the soma to keep the germ-line intact.  

 The classical theories of aging has generated three major predictions. 

First, it is not likely that specific genes have been selected to promote aging. 

Second, aging is not programmed but rather a consequence of the accumulated 

somatic damage generated due to limited investments in maintenance and repair. 

Finally, there are genes whose actions may be adverse at old age (Kirkwood & 

Austad, 2000; Williams, 1957). These genes may simply have escaped natural 

selection (Huntington's disease), or they are pleiotropic in the sense that the 

organism enjoys positive effects of the allele at a young age but adverse effects 

at older age. More evidence and clear cut examples in support of the latter 

scenario is still pending. However, the target of rapamycin (TOR) drives growth 

and protein synthesis whereas its inhibition promotes aging. It has been 

suggested that these features make the TOR-encoding genes fall in to the 

category of antagonistic pleitropy (Blagosklonny, 2010). In this context it is 

interesting to note that most pathways regulating longevity are in some manner 

accompanied by an increased stress tolerance.  
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1.3 Yeast as a model system for studying aging 
 

Research in mammalian cell systems is ideal to gather experimental evidence 

and draw conclusions relevant for humans. However, there is one big problem; 

their long lifespans. Rats and mice live 3-5 years and primates up to 40 years 

(Steinkraus et al, 2008). Nevertheless, research done in rodents has contributed 

greatly to our understanding of aging pathways. At the cellular level, human or 

mouse fibroblasts have traditionally been the preferred cell model as they have a 

limited proliferative capacity before they reach senescence - the Hayflick limit 

(Hayflick, 1965). 

 Invertebrate organisms have proven to be invaluable for aging-

research because of their short lifespans and that they are easily manipulated 

genetically and environmentally. The most common invertebrate model systems 

are fruit flies (Drosophila melanogaster), worms (Caenorhabditis elegans) and 

yeast (Saccharomyces cerevisiae) with lifespans ranging from months to weeks, 

down to days. Yeast, in fact, may serve as a unicellular model to study both 

antagonistic pleiotropy and the disposable soma theory of aging since, like old 

animals, old yeast cells are rare in a population. 

 Yeast provides an exceptional model system when studying aging in 

general and cellular segregation in particular. Yeast divide asymmetrically by 

budding, leaving the larger mother with a bud scar (Seichertova et al, 1975) and 

a larger cell volume (Hartwell & Unger, 1977). Utilizing these characteristics of 

yeast, Robert Mortimer was the first to perform a replicative lifespan (RLS) 

analysis already in the late 1950s (Mortimer & Johnston, 1959). He did not, 

however, attempt to link replicative aging in yeast to higher multi-cellular 

organisms. 

 Is it feasible to utilize a single cell yeast species such as 

Saccharomyces cerevisiae to predict cellular mechanisms in multi-cellular 
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organisms? Yes, one hypothesis proposes that yeast can be used to predict 

replicative aging for mitotic or stem cell populations in complex organisms 

(Longo et al, 2012). Yeast has also been used extensively to study chronological 

aging which is thought to share features with non-dividing or post-mitotic 

mammalian cells (Longo et al, 2012). In addition, many pathways known to 

regulate aging such as calorie restriction is conserved in yeast, worms, flies and 

many more organisms (Masoro, 2005). Yeast has also been utilized to study 

SGS1, the yeast homologue of the human WRN gene which is implicated in 

Werner’s syndrome, a rare genetic disorder characterized by premature aging in 

young adults (Yamagata et al, 1998). Another well characterized and conserved 

gerontogene is the silent information regulator SIR2, which together with 

ribosomal DNA (rDNA) was recently confirmed to be a major determinant of 

RLS (Kwan et al, 2013). This protein deacetylase is implicated in various aging 

pathways, a number of which are discussed in the subsequent chapters.   
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2. Aging factors and their inheritance 
 

A yeast mother cell produces a finite number of daughter cells before it reaches 

a state of senescence. Remarkably, each daughter cell has a full replicative 

potential and may divide 20-30 times even when generated from an old mother 

cell. This implies that there are one or more senescence factors that are retained 

in the mother cell (Egilmez & Jazwinski, 1989; Henderson & Gottschling, 

2008). There are at least four criteria that need to be met in order to classify as 

an "aging factor". First, the senescence factor should be more abundant in old 

cells. Second, introducing such factors in young cells should accelerate their 

aging. Third, reducing the progressive accumulation of a putative senescence 

factor should extend the lifespan. Last, the senescence factor should be retained 

in the mother cell during cytokinesis (Henderson & Gottschling, 2008). The last 

criteria of asymmetric segregation of aging factors may be viewed as the 

mother's sacrifice so that her progeny can start out in life free of damage. In 

yeast, at least four such factors have been characterized: malfunctioning 

mitochondria, vacuolar acidity, extrachromosomal ribosomal DNA circles 

(ERCs) and damaged proteins. The latter two are given special emphasis in this 

thesis. 

 

2.1 Malfunctioning mitochondria 
 

Damaged or faulty mitochondria is one putative senescence factor that 

accumulate with replicative age in yeast cells (Erjavec et al, 2013; Higuchi et al, 

2013; Klinger et al, 2010; Scheckhuber et al, 2007; Veatch et al, 2009). It has 

been shown that mutations that reduce age-related mitochondrial fragmentation 

and dysfunction can extend the RLS of mother cells (Scheckhuber et al, 2007). 

Interestingly, mitochondria are segregated asymmetrically, with the healthier 
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mitochondria being primarily inherited by the daughter cell (Klinger et al, 2010; 

McFaline-Figueroa et al, 2011). Such a filtering process is intriguing and calls 

for a short summary of how mitochondria are currently thought to be inherited. 

Several reports suggest that mitochondria are transferred to the daughter cell via 

actin cables and the myosin V-type protein Myo2 (Vevea et al, 2014). Myo2 

moves towards the daughter cell by its own motor-force, but against the actin 

cable flow. This is because actin monomers are inserted at the polarisome, a site 

at the tip of the daughter cell, which causes a flow backwards to the mother cell. 

This implies that factors entering the bud need, by necessity, to move faster than 

the backward cable flow. Evidently, cells utilize this feature to transport reduced 

and healthy mitochondria (to the daughter) which move faster against the flow 

than oxidized and malfunctioning mitochondria (Higuchi et al, 2013). 

Furthermore, manipulation of the cable counter-flow by mutations in the MYO1 

gene (reduced flow) resulted in more faulty mitochondria reaching the daughter 

cell whereas a TPM2 mutation (enhanced flow) resulted in increased inheritance 

of healthy mitochondria. Importantly, increasing the inheritance of healthy 

mitochondria by enhancing the flow, prolonged the lifespan. 

       Segregation of mitochondria is also regulated by Sir2. This protein 

deacetylase is implicated in actin cable abundance and cytoskeletal functions - a  

process which is further addressed in paper III. Removal of SIR2 decreases the 

flow of actin cables and retrograde movement of mitochondria thereby allowing 

defect mitochondria to enter the daughter cell. Over-expression of SIR2, on the 

other hand, had the opposite effect on cable flow and mitochondrial  inheritance 

(Higuchi et al, 2013). Intriguingly, deletion of SOV1, a member of the yeast 

mitochondrial translation module (MTC), increases Sir2 activity (Paper V). It 

has been speculated that such boost in activity, similar to Sir2 over-expression, 

provides an assurance mechanism whereby daughters receive the best 
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mitochondria as the mother cell ages and mitochondrial quality decline 

(Nystrom & Liu, 2014).  

 

2.2 Vacuolar acidity  
 

The sequence of events that occur during yeast aging is a topic of intensive 

research and has recently been traced back to an early functional decline of the 

vacuole. Gottschling and colleagues observed that mitochondrial inner-

membrane potential was reduced by this functional decline manifested as an 

increase in vacuolar pH of the mother cell (Hughes & Gottschling, 2012). The 

mitochondrial membrane potential itself leads to further age associated problems 

such as genomic maintenance and loss of heterozygosity (Veatch et al, 2009). 

Vacuoles, like mitochondria, are transferred to the daughter as Myo2-cargo 

transported on actin cables (Hill et al, 1996). Intriguingly, the vacuole found in a 

mother cell displays erroneous pH control whereas the vacuole in a daughter cell 

regains its acidic pH (Hughes & Gottschling, 2012). This type of segregation 

control differs from the filtering of functional/dysfunctional mitochondria as it is 

the daughter specific environment that is important for a fully functional vacuole 

(Hughes & Gottschling, 2012).  

 The link between vacuole function and mitochondrial deficiency was 

proposed to be due to the reduced storage capacity for neutral amino acids 

which require proper acidification of the vacuole (Hughes & Gottschling, 2012). 

The authors speculated that, since mitochondria catabolize neutral amino acids, 

the excess of leaked amino acids in the cytoplasm could potentially interfere 

with proton-dependent mitochondrial carrier processes with subsequent failure 

to maintain the membrane potential. It is still obscure why vacuolar pH control 

initially fails and how daughter cells rejuvenate this control.  
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2.3 ERCs and transcriptional control  
 

Another example of aging factors are ERCs (Sinclair & Guarente, 1997). In S. 

cerevisiae, rDNA consists of 100 to 200 tandem repeats (Fig. 1) and the ERCs 

may be formed by excision from these repeats. Subsequently, they can replicate 

via an autonomously replicating sequence (rARS) embedded in the sequence 

(Fig. 1). Formation of ERCs is tightly linked to transcriptional silencing and 

recombination frequency at the rDNA loci and has been observed to 

dramatically influence cellular aging (Sinclair & Guarente, 1997). In effect, 

silencing may be described as regions of poorly transcribed chromatin. In 

Saccharomyces cerevisiae, in addition to rDNA, silenced chromatin is found at 

the sub-telomeric regions and at the HMR and HML - cryptic mating type loci 

(Aparicio et al, 1991; Rusche et al, 2003). The Sir-complex establishes, 

maintains and spreads silent chromatin across these heterochromatin domains 

(Strahl-Bolsinger et al, 1997). In order to understand how ERCs are linked to 

silencing, it is important to understand the fundamental organization and 

structure of chromatin and rDNA. 

 

2.3.1 Chromatin organization 
 

DNA does not exist as a "naked" linear double-stranded helix but is instead 

organized in a complex of proteins and DNA which may be visualized as beads 

on a string. Each "bead" on the string represents a functional unit called a 

nucleosome. In yeast, this protein complex is represented by two copies each of 

the four core histones: H2A, H2B, H3 and H4 around which the DNA is 

wrapped. This compaction of DNA is called chromatin and is the constituent of 

chromosomes. The condensation enables the DNA to fit inside the nucleus, 

provides strengthening during mitosis and prevents DNA damage. 
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 Furthermore, the condensation of chromatin is highly influential on 

transcription as it may facilitate or hinder access to genes by RNA polymerase 

and transcription factors. A region where chromatin is condensed is called 

heterochromatin. In contrast, a region where DNA is less condensed is called 

euchromatin. In order for genes to be accessed and transcription initiated, the 

chromatin needs to be "opened", or remodeled. The chromatin environment is 

determined by the joint actions of DNA methylation, ATP driven remodeling, 

incorporation of a histone variant (H2A.Z) and post transcriptional 

modifications (e.g. methylation, acetylation, phosphorylation and ubiquitination 

of histones) (Chen & Dent, 2014). Consequently, such modifications change the 

binding-affinity between histones and DNA (loosened/tightened) but can also 

promote recruitment of transcription factors. Thus, repositioning, modification 

or expelling of histones/nucleosomes is key in transcriptional, replicational and 

recombinatorial regulation (Rando & Winston, 2012).     

 

2.3.2 Mating type loci 
 

Yeast has the ability to switch sex (mating type) depending on what allele 

(MATa or MATα) is present at the MAT locus. This is possible because yeast has 

additional silent copies of each allele: HMR (hidden mating type right) and HML 

(hidden mating type left). The mechanism for establishing silent mating type at 

the HML/HMR loci relies on the Sir-complex which is recruited to flanking 

domains called E and I silencers. The silencer domains contain unique binding 

sites for DNA-binding proteins (Rap1 and Abf1) and origin recognition complex 

(ORC). Together these factors recruit the Sir-multi-protein-complex consisting 

of Sir1, Sir2, Sir3 and Sir4 (Ghidelli et al, 2001; Moretti et al, 1994). 

Subsequent to Sir-complex recruitment, Sir2 deacetylates a H3 and H4 tail 

residing on an adjacent nucleosome. The Sir-complex (except Sir1) then 
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proceeds to spread in between silencer domains to establish silent chromatin 

(Wierman & Smith, 2013).  

 

2.3.3 Telomeres 
 

Telomeric silencing is regulated by Sir2 and Sir4 in complex. This complex is 

recruited via Rap1 associated with certain terminal telomeric sequences. Bound 

Sir2/Sir4 pursues with histone deacetylation together with Sir3 at subtelomeric 

regions (Hecht et al, 1996; Hoppe et al, 2002; Tanny & Moazed, 2001). The H4 

tail lysine K16 is particularly important since it has a dual role in silencing. 

Acetylated H4K16 recruits Sir2/Sir4 and repels Sir3, whereas deacetylation of 

H4K16 mediated by Sir2 promotes binding of the Sir-holocomplex (Sir2/3/4) 

(Oppikofer et al, 2011). This implies that acetylation/deacetylation of H4K16 

mediates sequential binding of Sir-proteins to establish silent chromatin. 

 In higher eukaryotes it is well established that telomere length plays 

a key role in cellular senescence (Harley, 1991). Dividing cells not expressing 

telomerase, an  enzyme able to "repair" shortened telomeres, will eventually 

reach a critical telomere length which is linked to the Hayflick limit. 

Consequently, cells reach senescence, or occasionally, restore length via a 

recombination event (Draskovic & Londono Vallejo, 2013). In yeast (S. 

cerevisiae) telomerase is constitutively expressed resulting in perpetual 

maintenance of telomere length in both mother and daughter cells (D'Mello & 

Jazwinski, 1991). However, mutations causing shortening of telomeres, do 

shorten RLS (Lundblad & Szostak, 1989).      
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2.3.4 rDNA 
 

The mechanism of silencing at rDNA is different from that of telomeres and 

MAT since the deacetylase Sir2 is the only Sir-protein occupying this region. 

Instead, the scaffold for Sir2 recruitment constitutes the nucleolar protein Net1 

and the phosphatase Cdc14, the so called RENT complex (Regulator of 

Nucleolar Silencing and Telophase exit) (Huang & Moazed, 2003). RENT 

localizes to two distinct regions in the rDNA locus (Fig. 1). First, RENT may be 

recruited near the 35S promoter. Divergently, RENT is also recruited to a place 

in the intragenic spacer region 1 (IGS1) where it mediates silencing of the 

RNAPII-dependent promoter E-pro. The recruitment of RENT to IGS1 is 

facilitated by Fob1 binding to the replication fork block (RFB, Fig. 1). In this 

process, Fob1 acts synergistically with a cohibin complex (Lrs4 and Csm1) to 

suppress rDNA recombination between rDNA repeats (Huang et al, 2006).  

 

 

 

Figure 1. Schematic representation of chromosome XII and the rDNA repeats. Each 

repeat encodes a RNAPI-dependent 35S precursor rRNA and a 5S RNAPIII transcribed 5S 

rRNA. Each unit also contains two intragenic spacer regions (IGS1, 2). Other significant sites 

are the RFB , the autonomously replicating sequence-rARS  and the bidirectional, RNAPII-

dependent E-pro.  
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Maintenance of silencing of the highly repetitive rDNA is crucial for cell 

viability. Fob1 is primarily known for blocking replication at RFB in rDNA 

(Brewer & Fangman, 1988). Consequently, binding of Fob1 may cause double 

strand breaks (DSBs) of the DNA at stalled replication forks, which in turn 

could lead to unequal sister chromatid recombination. This mechanism is an 

important control mechanism for regulating rDNA copy number and variation. 

In agreement with this, in a fob1∆ mutant, unequal sister chromatid 

recombination is reduced and rDNA copy number is stabilized (Kobayashi et al, 

1998). Another layer of rDNA copy number control is provided by Sir2 that 

silences an RNAPII-dependent promoter (E-Pro) at rDNA (Fig. 1). The 

transcriptional activity at E-Pro is thought to dissociate cohesin complexes 

responsible for binding sister chromatids together (Kobayashi & Ganley, 2005). 

Subsequently, a broken sister chromatid-end may recombine unequally during 

DSB repair thereby regulating copy number change, loss of genetic material, 

and ERC formation (Huang & Moazed, 2006; Kobayashi & Ganley, 2005). 

Consistent with this, a sir2∆ mutation prevents cohesin association thereby 

promoting unequal recombination and increased rDNA copy number. Taken 

together, Sir2 and Fob1 are key regulators of transcriptional silencing, 

recombination frequency, and stability at rDNA. These processes are further 

addressed in paper I.  

 

2.3.5 Segregation of ERCs 
 

ERCs accumulate in aging cells and are distributed asymmetrically in a mother-

cell biased manner (Sinclair & Guarente, 1997). One reason for this bias is that 

ERCs do not contain a centromeric sequence which is a prerequisite for equal 

distribution between mother and daughter cell (Murray & Szostak, 1983). 

Recently, two mechanisms further explaining this distribution have been 
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proposed: the tethering model and the diffusion model. The tethering model is 

explained by the attachment of ERCs to nuclear pore complexes (NPCs) which 

are themselves retained in the mother via a septin-dependent diffusion barrier 

(Shcheprova et al, 2008). The diffusion model, on the other hand, is founded on 

data showing that the NPCs are not blocked from moving into the daughter 

nucleus. Instead, the mother-biased segregation of ERCs is achieved by the 

geometry of the bud neck together with the short time of mitosis (Gehlen et al, 

2011) which, would not allow diffusion of ERCs into daughters. To this end, it 

is noteworthy that the latter model does not exclude the possibility that ERCs 

are attached to NPCs.  

 

2.4 Damaged proteins and protein quality control 
 

Damaged and aggregated proteins have recently emerged as bona fide aging 

factors in yeast and the levels of these factors increase in aging mother cells 

(Aguilaniu et al, 2003; Erjavec et al, 2007; Hill et al, 2014). To understand how 

protein aggregates might lead to aging it is important to highlight the protein 

quality control (PQC) system aimed at avoiding the occurrence of such protein 

damage. 

 

2.4.1 Protein misfolding and aggregation 
 

PQC is a complex surveillance system evolved to combat proteomic aberrancies. 

Protein damage may be induced by exogenous or endogenous errors and stress 

causing misfolding. For instance, protein misfolding can occur as proteins are de 

novo synthesized, or more rarely, due to mutations. Misfolded or aberrant 

proteins are either refolded by molecular chaperones or cleared by proteolytic 
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degradation. Either way, these actions prevent proteins from aggregating. 

Understanding protein aggregation and its underlying mechanism is medically 

important since certain neurodegenerative diseases are associated with this 

feature.  

 Aggregation of a protein may occur when it is in an intermediate or 

misfolded state where it exposes hydrophobic residues. These residues are 

normally buried when the protein is in its native conformation. However, if 

exposed, they trigger aggregation (Hartl & Hayer-Hartl, 2009). Another cause of 

aggregate formation is mutations causing a protein to consistently misfold. 

Neurodegenerative diseases such as Huntington's, Parkinson's and Alzheimer's 

are represented by this type of inherent misfolding and subsequent aggregation 

(Chiti & Dobson, 2006; Powers et al, 2009; Ross & Poirier, 2004). Other, more 

frequent occurring aggregating scenarios include mis-incorporation of amino 

acids during translation or faulty assembly of protein complexes (Drummond & 

Wilke, 2008). Aggregation is also induced by environmental stressors such as 

heat and oxidative stress. Heat stress tends to cause widespread but reversible 

misfolding of proteins whereas oxidative stress is associated with both reversible 

and irreversible protein modifications (Parsell et al, 1994). Reactive oxygen 

species (ROS), may also induce widespread protein damage and misfolding by 

replacement of certain native side-chains of amino acids by carbonyl groups 

(Stadtman & Levine, 2000). These protein-modifications can lead to cross-

linking with other proteins and subsequent aggregation. 

 Protein aggregation also occurs during aging. This is presumably a 

slower process than, for example heat shock, and the cause and effect of such 

aggregation is a topic of intensive research. It has been shown that oxidatively 

damaged and aggregated carbonylated proteins accumulate in cytoplasmic foci 

as a yeast cell age (Erjavec et al, 2007). We found support for a general and 

gradual decline in protein quality control as we observed a correlation with 
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certain types of cytoplasmic aggregates with replicative age (Paper II). These 

findings indicate that aged cells are less able to remove aberrant proteins and 

sequester them into specific inclusion bodies. Similarly, it has been suggested 

that such general decline in PQC is one reason for the late age onset of the 

aforementioned neuro-degenerative diseases (Tyedmers et al, 2010).   

 The term "protein aggregate" is a convenient terminology used to 

envision a state of accumulated misfolded proteins but perhaps too generic to 

describe the true nature of the complex conformation of misfolded proteins 

found in these structures. This complexity is exemplified by the observation that 

the same protein can yield different aggregate morphology depending on the 

type of denaturing agent used to induce misfolding (Wang et al, 2010). 

Nevertheless, aggregates may simplistically be divided into amorphous or 

amyloid-like. These both aggregate classes contain -sheets to a varying degree 

and organization (Alberti et al, 2010). Most amorphous aggregates are extremely 

diverse in their structure, but it has been suggested that they consist of misfolded 

and aggregated proteins that are quite similar to their native conformation in 

solution (Qin et al, 2007). Amyloid fibrils, on the other hand, are represented by 

a higher amount of -sheet content which form a densely packed core made up 

of a continuous sheet of  -strands arranged perpendicularly to the fibrillar axis 

(Kirschner et al, 1986). Amyloids grow at the fibrillar ends by incorporation of 

polypeptides with a similar primary sequence resulting in a homogenous 

aggregate composition. Moreover, the amyloid-like aggregates are considered as 

less soluble than amorphous aggregates based on their resilience to chemical 

perturbations that affect protein structure. The formation of this class of 

aggregates may be preceded by a form of prefibrillar aggregates which is highly 

reactive and toxic to the organism (Glabe, 2008). These prefibrillar aggregates 

as well as amyloid fibrils are associated with age-induced maladies such as 

Alzheimer's, Huntington's and Parkinson's disease. Whether age-induced 
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aggregates of non-disease proteins are amorphous or amyloid-like, or perhaps a 

mixture of both, is still an unresolved issue.   

 

2.4.2 Chaperones and disaggregation  
 

The first and most effective means for the cell to maintain proteostasis is to 

prevent proteins from misfolding. Molecular chaperones belong to a family of 

multi-domain proteins governing a wide array of tasks such as: protein folding, 

refolding/unfolding and protein remodeling. Chaperones in yeast are to a large 

extent represented by heat shock proteins (Hsp) including small Hsps, Hsp40s 

and Hsp70s. The core components of this machinery are the Hsp60s and Hsp70s 

which prevent the accumulation of misfolded proteins via ATP-dependent 

refolding (Hartl & Hayer-Hartl, 2009). Misfolded proteins which fail to refold to 

its native state are degraded by proteasomes or transported to vacuoles for 

degradation by acidic hydrolases (Goldberg, 2003; Kirkin et al, 2009). Failure in 

handling of corrupt proteins by any of these components results in protein 

aggregation.  

 Disaggregation or resolution of a protein aggregate requires a fine-

tuned co-operation between several types of chaperones. Aggregate resolution 

by the oligomeric ring-forming AAA+ ATPase Hsp104 was first demonstrated 

in yeast (Parsell et al, 1994). However, Hsp104 alone has little effect on 

aggregate resolution but together with the Hsp40s and Hsp70s e.g. Ydj1 and 

Ssa1 respectively, it achieves its full potential as a disaggregase (Glover & 

Lindquist, 1998). The same is true for the Hsp40s and Hsp70s alone as they also 

show limited disaggregation capacity without each other. 

 This chaperone system works mechanistically by an initial binding 

of the Hsp70s together with J-proteins. The binding of these components is 
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assumed to prevent access of proteases to the aggregated protein (Zietkiewicz et 

al, 2004). The Hsp70-protein complex is then believed to present and mediate 

transfer of the complex to Hsp104 via its M-domain (Haslberger et al, 2007). 

Subsequently, Hsp104 is proposed to execute an ATP-dependent threading 

action leading to extraction of a misfolded protein from the aggregate (Lum et 

al, 2004). However, another model has also been proposed where Hsp104 acts 

as a molecular crowbar where an ATP-dependent conformational change in 

Hsp104 rips the aggregate open leading to disaggregation (Glover & Lindquist, 

1998). Disaggregation is crucial for both proteasomal degradation or chaperone 

mediated refolding  

 

2.4.3 The ubiquitin proteasome system  
 

The ubiquitin proteasome system (UPS) is the principal pathway for degrading 

aberrant proteins in eukaryotic cells (Hershko et al, 2000). The degradation of a 

protein is specific and is conferred by the ubiquitin system, whereas the 

proteasome itself serves as a non-specific protease. The ubiquitination of a 

protein is governed by an enzymatic cascade tagging the protein with ubiquitin 

(Ub) which then serves as a signal for destruction by the proteasome. The 

degradation of most proteins is dependent on ATP-fueled proteases which was 

first described in the late 1970s (Etlinger & Goldberg, 1977). Prior to 

degradation, proteins are unfolded and prepared by AAA-ATPase complexes of 

homo- or heterohexameric ring structures for transport to the inner proteolytic 

compartment of the proteasome (Sauer & Baker, 2011). Degradation-products 

are by necessity transported inside the proteasome since the active sites are 

localized there (Lupas et al, 1997). The proteasome localizes to both the nucleus 

and cytoplasm (Tanaka, 2009).  
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 The components of this degradation-complex consists of a cylinder-

shaped proteolytic core, the 20S particle which is bound at one or both ends by 

the 19S regulatory particle (Lupas et al, 1993) (Fig. 2). These two subcomplexes 

together constitute the 26S proteasome (Fig. 2). The AAA-ATPase part of the 

26S proteasome is represented by the subunits Rpt1-Rpt6 forming a 

heterohexamer which is proposed to have non-redundant functions (Bar-Nun & 

Glickman, 2012; Wollenberg & Swaffield, 2001). Other constituents of the 26S 

proteasome are the 13 Rpn-proteins which are not part of the ATPase family. 

The structure of the full 26S proteasome has remained elusive until recently 

when electron microscopy imaging shed a new light on the proteasomal 

composition (Lander et al, 2012; Lasker et al, 2012). 

 The proteasome cannot degrade aggregated proteins in vitro (Gregori 

et al, 1995). Furthermore, it has been shown that aggregates reduce proteasomal 

activity in vivo (Andersson et al, 2013; Bence et al, 2001; Verhoef et al, 2002). 

In addition, data also suggest that genetically manipulating proteasome levels 

can influence yeast replicative lifespan as boosting proteasome levels increased 

the lifespan whereas reducing proteasome levels shortened the lifespan (Kruegel 

et al, 2011). Kruegel and colleagues also observed a correlation with proteasome 

levels and aggregate management in young cells. Interestingly, a recent study 

found that over-expressing the yeast metacaspase Mca1, counter-acted 

accumulation of unfolded proteins/aggregates and prolonged lifespan. The 

lifespan extension was shown to be dependent on both Hsp104 and normal 

proteasome levels indicating that protein aggregates/inclusions are true aging 

factors in the yeast model system (Hill et al, 2014). 
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Figure 2. Schematic representation of the proteasomal subunits. The 19S can bind to one 

or both ends of the 20S subunit. Together they constitute the full, 2.5 MDa protease complex 

which is the 26S proteasome. 

 

2.4.3.1 Ubiquitination 
 

Ubiquitin is a small, ubiquitously expressed and highly conserved protein 

throughout the eukaryotic kingdom (Hershko & Ciechanover, 1998). Ubiquitin 

conjugated to a target protein can direct the substrate to a specific cellular 

location, trafficking route, modify the activity, recruit binding partners or 

present it to the 26S proteasome for destruction (Komander & Rape, 2012). 

Ubiquitination has also been shown to direct proteins to specific protein quality 

control compartments (Kaganovich et al, 2008). The ubiquitination of a protein 

requires three enzymes: E1 - the ubiquitin activating enzyme; E2 - the ubiquitin 

conjugating enzyme and E3 -  the ubiquitin ligase (Pickart & Eddins, 2004). 

Efficient proteasomal targeting and degradation sometimes also requires a 

fourth, additional conjugation factor - E4, which facilitates multi-ubiquitination 

(Koegl et al, 1999). An additional level of regulation involves the usage of 

lysine residues on ubiquitin where the most common ones are K48 or K63 

linkage-specific ubiquitination. A Ub-chain on K48 is sufficient to target a 

protein to the proteasome whereas a K63 chain has been associated with 

targeting membrane proteins for vacuolar degradation (Galan & Haguenauer-

Tsapis, 1997; Springael et al, 1999). Moreover, these linkages of Ub may be 

branched differently although the function of these branches is still elusive. 
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 The ubiquitination process is initiated by Ub-activation (E1) which 

is ATP-dependent (Fig. 3-1). The reaction involves the C-terminal domain of Ub 

(Gly76) attached via a thioester bond to a cysteine residue in the active center of 

the E1 (Sun et al, 2006). Next, in an intermediate step the activated Ub is 

transferred by the E1 to a ubiquitin- conjugating enzyme (E2) (Fig. 3-2). This 

step also requires the C-terminal domain of Ub (Gly76) which is attached to a 

cysteine residue of the E2 with a thioester bond. The last step is the transfer of 

Ub to the substrate mediated by an E3 enzyme (Fig. 3-3). The substrate protein 

itself is bound to the specific E3 as well as the Ub-charged E2. The substrate-

ubiquitination can take place in two fashions: Ub may be transferred directly 

from the E2 to the substrate protein (RING E3); or from E2 to E3 and then 

subsequently from E3 to the substrate protein (HECT E3) (Hochstrasser, 2006). 

Subsequent rounds of ubiquitination may be facilitated by an E4 elongation 

factor (Fig. 3-4). 

 

 

Figure 3. Ubiquitination. 1) ATP-dependent activation of Ub carried out by an E1. 2) Ub is 

transferred via an E2 Ub-carrier protein. 3) If the E3 is a RING domain ligase, the E2-Ub 

complex binds to the E3 carrying the substrate protein and transfers the activated Ub directly 

to the subsrate. If the E3 is a HECT domain ligase, Ub is transferred from the E2-Ub complex 

to an E3 and then to the substrate. 4) Polyubiquitin chain-elongation may be facilitated by E4 

ligases.    
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Only one ubiquitin activating enzymes (E1) exist in yeast (Uba1) whereas E2s 

are more numerous (eleven enzymes) and most abundant is the E3 family where 

42 ligases have been fully characterized so far (Lee et al, 2008) (database 

updated 2014). Ubiquitin ligases confer specificity to the ubiquitin proteasome 

system. Some ligases like Ubr1, Hul5 and Ltn1 act in the cytoplasm to clear 

aberrant proteins whereas others, Hrd1 and Doa10 act proximally to the ER to 

clear membrane proteins or substrates targeted for secretion (Theodoraki et al, 

2012; Vembar & Brodsky, 2008). In addition, San1 a ligase acting as a nuclear 

PQC component has been reported to mediate destruction of misfolded proteins 

that are translocated to the nucleus (Gardner et al, 2005; Heck et al, 2010; 

Prasad et al, 2010). There is considerable redundancy in the PQC network of 

ligases although it has been shown specifically that Ubr1 promotes clearance of 

protein aggregates, particularly when the autophagic system is deactivated 

(Theodoraki et al, 2012).  

 

2.4.3.2 Deubiquitination 
 

Ubiquitin is long-lived and recycled which may seem surprising due to its 

attachment to substrates destined for degradation (Swaminathan et al, 1999). 

This is due to the action of deubiquitinating enzymes which cleave ubiquitin-

protein bonds between Gly76 on ubiquitin and a Lys residue of the substrate 

protein or preceding ubiquitin. Deubiquitinating enzymes (DUBs) fall into a 

large family of cysteine proteases with four main subfamilies in yeast: the larger 

UBP family with 16 genes (ubiquitin-specific proteases) and the smaller Otu, 

Uch, and JAMM families containing one to two genes each. The Ubp enzymes 

vary in size, homology and structural complexity except for the conserved core 

catalytic domain which enables them to cleave ubiquitin from a wide range of 

substrates. 
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 There are many major ubiquitin-controlled pathways in the cell such 

as cell-cycle control, DNA repair and vesicle trafficking (Kim et al, 2003). 

DUBs provide an extra layer of regulation by modifying the ubiquitin status of 

proteins involved in these pathways. DUBs act by executing various different 

actions. First, DUBs have the ability to process ubiquitin precursors. This 

biosynthetic processing is important because three of the four ubiquitin encoding 

genes UBI1 - UBI4 are translated as N-terminal fusions to ribosomal proteins 

(Finley et al, 1989). Ubiquitin is also translated as multiple linear Ub-fusions 

(UBI4). DUBs are responsible for the processing of these fusions to release and 

unblock the C-termini of ubiquitin (Fig. 4-1). Second, DUBs may edit a non-

degradative Ub-signal by trimming the Ub-chain length (Fig. 4-2). This 

processing of the Ub-chain gives rise to a type of regulation where the Ub-

linkage may be changed and thereby alter the fate of the ubiquitinated protein. 

 Another process carried out by DUBs is to detach protein-ubiquitin 

chains for substrates committed for proteasomal degradation (Fig. 4-3). Targets 

bound for proteasomal degradation may not enter correctly if the ubiquitin chain 

is still attached. Moreover, degradation of ubiquitin itself is energetically 

unfavorable. Last, DUBs can determine the fate of a protein by removing 

mono/poly-Ub chains. Moreover, these unattached Ub-chains are disassembled 

by DUBs which is important for the recycling of Ub (Fig. 4-3 and 4-4). This 

process prohibits abnormal accumulation of Ub-chains which have been shown 

to interfere with proteasomal degradation (Amerik et al, 1997). 
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Figure 4. DUB functions. 1) DUBs cleave Ub-ribosomal hybrid fusions or polyubiquitin to 

generate free Ub. 2) A non-degradative Ub-chain may be edited by DUBs to change the Ub-

signal. 3) Proteasomal degradation is associated with recycling of Ub which ensures 

homeostasis of the Ub-pool. 4) The reversal of ubiquitination determines the stability/fate of a 

protein. Moreover, DUBs disassemble Ub-chains to generate free Ub.    

 

2.4.4 Spatial quality control  
 

Chaperones have also been shown to be paramount for the spatial sequestration 

of misfolded proteins and aggregates into distinct "compartments". Several 

quality control compartments have been defined in yeast and organization of 

aggregates into these compartments depends on the type of protein species that 

was initially misfolded as well as protein damaging agent used. Spatial quality 

control and its terminology is a young field and these following sections aim at 

summarizing what is currently known about various aggregates and their 

compartmentalization. 
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2.4.4.1 Q-bodies/stress-foci/peripheral aggregates 

 
An early stress responsive sequestration of ER-associated aggregates has 

recently been observed and was coined "Q-bodies" (Escusa-Toret et al, 2013). 

These Q-bodies form puncta that move and coalesce into larger structures which 

are speculated to be a transient stage prior to formation of other types of 

aggregates (Fig. 5) (Escusa-Toret et al, 2013). Similar to Q-bodies, there are 

reports that describe other transient aggregates such as "stress foci" and 

"peripheral aggregates" (Specht et al, 2011; Spokoini et al, 2012). These three 

"types" of small aggregates share many characteristics and may turn out to be 

the same. For example, all of them form upon heat-stress, associate with Hsp104 

and are precursors for larger inclusion-body formation. Q-bodies, apparently 

also require ATP, sHSPs like Hsp42 and the cortical ER for maturation or 

formation (Sontag et al, 2014). Similarly, Hsp42 and the actin cytoskeleton are 

required for formation of peripheral aggregates (Specht et al, 2011). A recent 

study utilized the disease-associated protein Htt103Q which also form small 

Hsp104-associated foci similar to stress foci/Q-bodies/peripheral aggregates 

(Song et al, 2014). Intriguingly, the study found that Hsp42 is required for heat-

induced Hsp104-associated foci but not for Htt103Q foci suggesting that the 

routes employed for foci formation are not identical (Song et al, 2014). We are 

only beginning to understand these PQC pathways and further experiments 

should provide insight into the requirements for these aggregation pathways. 

 

2.4.4.2 JUNQ and IPOD 
 

Soluble but misfolded proteins appear to accumulate in a juxta nuclear quality 

control compartment coined JUNQ - where proteasomes are concentrated (Fig. 

5) (Kaganovich et al, 2008). Another compartment called IPOD, insoluble 
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protein deposit, sequesters less soluble proteins and is localized to the periphery 

of the cell in the proximity to the vacuole (Fig. 5) (Spokoini et al, 2012). These 

two compartments vary in what cellular components they require for formation 

and resolution. 

 

 

Figure 5. Model for management of misfolded proteins. Non-native proteins which are not 

refolded by chaperones are ubiquitinated and directed to proteasomes for destruction in the 

JUNQ compartment. Simultaneously (or prior to), misfolded proteins localize to cytosolic 

stress foci/Q-bodies/peripheral aggregates. These smaller aggregates are either cleared or may 

coalesce to larger inclusion bodies like JUNQ or IPOD.  

 

Proteins destined to JUNQ co-localizes frequently with chaperones from the 

Hsp70 family, but less frequently with Hsp104 suggesting a more prominent 

role for Hsp70s in JUNQ management (paper II) (Malinovska et al, 2012; 

Weisberg et al, 2012). The formation of JUNQ requires the action of the 

ubiquitin conjugating enzymes Ubc4/Ubc5 (Kaganovich et al, 2008). The 

functional role of the JUNQ compartment has been suggested to be a storage 

depot for misfolded proteins keeping them in a folding-competent state for 

either refolding or destruction by the proteasome. 
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 Proteins compartmentalized in the IPOD are represented by 

terminally misfolded proteins and amyloid-forming species such as prions or 

polyglutamine expanded Huntingtin. Factors co-localizing with the IPOD are 

Hsp104 and the autophagy marker Atg8 (Kaganovich et al, 2008). Autophagy is 

the vacuolar-dependent degradation of cellular material ranging from organelles 

and even protein aggregates (Lamark & Johansen, 2012). This process is usually 

mediated by a membrane-enclosed vesicle (autophagosome), which 

subsequently fuses with the vacuole (Reggiori & Klionsky, 2013). However, the 

precise role for Atg8 and autophagy in managing IPOD is still obscure. Hsp104 

on the other hand, has been shown to be required for the maturation of smaller 

aggregates into both JUNQ and IPOD (Spokoini et al, 2012). 

 On a functional level, the IPOD is thought of as a compartment that 

provides suppression of cytotoxicity caused by aggregation-prone proteins 

(Kaganovich et al, 2008). In support of this notion, a toxic misfolded protein 

generated from a point mutation - SOD1G93A, accumulates in JUNQ, but 

directing it away from JUNQ to IPOD reduces the harmful effects on human cell 

viability (Weisberg et al, 2012). The toxicity of the Sod1-mutant was speculated 

to be due to sequestration of Hsp70s which thereby prevented the delivery of 

misfolded proteins to proteasomes (Weisberg et al, 2012).  

 Other quality control factors that regulate aggregate sorting during 

stress are the Hook family proteins Btn2 and Cur1. They physically interact with 

chaperones to provide a sorting pathway for misfolded proteins in the cytosol. It 

has been suggested that Btn2 together with Hsp42 promotes the accumulation of 

non-amyloid proteins to IPOD (Malinovska et al, 2012). In the same study, the 

authors also showed that Btn2 bound to the Hsp40 chaperone Sis1 promotes 

targeting of misfolded proteins to JUNQ. This duality in protein sorting is 

achieved via Cur1 which governs the sorting of Sis1 to the nucleus. Thus, 
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cytosolic concentration of chaperones determine the sorting of misfolded 

proteins. 

 

2.4.4.3 Other quality control compartments 
 

The earliest defined mammalian quality control compartment is ERQC - ER-

derived quality control compartment, which is localized near the centriole and 

acts as a deposition-site for misfolded ER-derived secretory proteins (Kamhi-

Nesher et al, 2001). The subsequent degradation of these proteins by the 

proteasome is called ERAD (ER-associated degradation). In yeast, prior to 

ERAD, proteins accumulate in a membrane bound deposition site termed ERAC 

(ER-associated compartment) (Huyer et al, 2004). Proteins can also be cleared 

from the ER by an autophagy pathway. 

 Mammalian cells and yeast show many similarities in spatial quality 

control as they both display JUNQ and IPOD-like compartments (Kaganovich et 

al, 2008). However, the utilization of cell components varies between the 

species. One striking example is the mammalian aggresome which share some 

features with the yeast IPOD. The mammalian aggresome is located at the 

microtubuli organizing centre and is encompassed by a vimentin cage as 

opposed to the yeast IPOD (Johnston et al, 1998). Targeting of proteins to the 

aggresome is directed by ubiquitin (in most cases), histone deacetylase 6 and 

dynein coupled with microtubuli (Kawaguchi et al, 2003). Furthermore, the 

aggresome has also been implicated in terminal sequestration of misfolded 

proteins, protein folding, clearance and aggregate retention (Sontag et al, 2014). 

Recent data also suggest that the mammalian JUNQ is surrounded by a vimentin 

cage, a finding which sheds new light on the definitions of PQC-compartments 

as well as serving as an example of how the same compartments may utilize 

different factors in different cell types (Ogrodnik et al, 2014).  
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2.4.5 Segregation of aggregates 
 

Mother-cell biased segregation of damaged and aggregated proteins employ 

several cellular components so that the daughter cell may enjoy a damage free 

proteome. The disaggregase Hsp104 and Sir2 are required for this asymmetric 

segregation as well as components regulating the actin cytoskeleton (paper III 

and IV) (Erjavec et al, 2007; Song et al, 2014; Tessarz et al, 2009). Aggregates 

containing Hsp104 may be tethered to the actin cytoskeleton and thereby 

retained in the mother during budding (Fig. 6). A role for Sir2 in segregation 

appears to involve folding of actin mediated by the chaperonin CCT. The 

importance of the cytoskeletal network in aggregate segregation is evident also 

by the requirement of the polarisome, the formin Bni1, the myosin motor protein 

Myo2 and the actin organization protein calmodulin - Cmd1 (paper III and IV) 

(Song et al, 2014). By utilizing tropomyosin and formin-dependent actin 

nucleation at the polarisome, daughter cells can also clear themselves of 

aggregates by a retrograde flow back into the mother cell (paper III). An 

alternative idea is that aggregates are segregated due to slow diffusion rather 

than actin-dependent retention in the mother cell (Zhou et al, 2011). The models 

explaining how aggregate asymmetry is achieved is further addressed in the 

discussion of  paper III and IV 

 Segregation of aggregates and sequestration of proteins to quality 

control compartments are tightly linked. A yeast study showed that deleting 

Hsp104, or inhibiting its disaggregase activity, traps aggregates in small "stress 

foci" and a large portion of these aggregates were passed on to the daughter cell 

(Spokoini et al, 2012). However, if aggregates are allowed to mature into either 

JUNQ or IPOD, they are retained in the mother cell (Spokoini et al, 2012). 

Using VHL, a model misfolding and aggregating protein, it was suggested that 

JUNQ is attached to the nuclear surface whereas the IPOD is attached to the 
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vacuole (Kaganovich et al, 2008; Spokoini et al, 2012). The authors concluded 

that the confinement of aggregates to the surface of organelles exclude them 

from transfer into the daughter cell. 

 The formation and segregation of peripheral aggregates both require 

the actin cytoskeleton highlighting the importance of this system in 

asymmetrical inheritance. Interestingly, the disease protein Htt103Q which does 

not form either IPOD or JUNQ but rather smaller disperse aggregates 

reminiscent of Q-bodies, stress-foci and peripheral aggregates, also display 

polarity-dependent retention in the mother cell (paper IV). This evidence 

further strengthens the observation that smaller Hsp104-dependent aggregates as 

well as inclusion bodies are subjected to segregation quality control (Fig. 6) 

(Song et al, 2014). 
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Figure 6. Model depicting segregation of protein aggregates.  Various factors establish 

asymmetric segregation of protein aggregates in yeast. The polarisome, the actin cytoskeleton 

and Hsp104 are required for the retention of aggregates in the mother cell. In addition, 

mother-biased segregation is also mediated via sequestration of aggregates into JUNQ and 

IPOD. These compartments are themselves subjected to mother biased segregation due to 

their attachment to the nucleus and vacuole respectively.  
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3. Aim, results and discussion 
 

The aim of this thesis was to elucidate the role of the deubiquitinating enzyme 

Ubp3 in aging. Specifically, I focused on heterochromatic silencing and protein 

quality control since Ubp3 had previously been identified as being linked to 

these processes. 

 

3.1 Role of Ubp3 in genomic silencing 
 

Ubp3 is a deubiquitinating enzyme with a human orthologue in Usp10. UBP3 

encodes a 101,9 kDa DUB which together with its cofactor Bre5, is involved in 

a number of cellular processes, some of which regulate transcription (non-

transcription-related processes targeted by Ubp3 are discussed in paper II). For 

example, it has been shown that Ubp3 positively activates osmoresponsive 

genes and is required for proper induction of PHO5 (Kvint et al, 2008; Sole et 

al, 2011). In addition, Ubp3 interacts physically with key factors of the 

transcription machinery such as TFIID, TATA-binding protein (Tbp1) and 

RNAPII (Auty et al, 2004; Chew et al, 2010; Kvint et al, 2008). Moreover, the 

stability/function of both Tbp1 and RNAPII are regulated by Ubp3 (Chew et al, 

2010; Kvint et al, 2008). Interestingly, loss of Ubp3 results in increased 

silencing at both mating-type loci and telomeres (Moazed & Johnson, 1996). 

Also, the authors found evidence for a physical interaction between Sir4 and 

Ubp3 suggesting that Ubp3 inhibits silencing via Sir4 or the Sir-complex 

(Moazed & Johnson, 1996). However, precisely how this works is not known. 

 In an attempt to understand how Ubp3 affects transcription in 

heterochromatic regions we discovered that, in addition to mating-type loci and 

telomeres, Ubp3 also acts as an anti-silencing factor at rDNA. There are many 

factors implicated in silencing but an exact explanation of the mechanism of 
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how RNAPII-dependent transcription is obstructed is still pending. One 

hypothesis is that the dense structure of heterochromatin prevents accessibility 

of the transcription machinery. However, one study presented data showing that 

general transcription factors (TF) such as TBP and RNAPII assembled at HMR 

without subsequent initiation (Sekinger & Gross, 2001). In addition, the same 

group found that TFIIH and a serine5-phosphorylated RNAPII could be detected 

at silent promoters strongly suggesting that Sir-mediated silencing suppresses 

transcription at a later step (Gao & Gross, 2008). However, conflicting data 

from another group suggested that neither TFIIB, TFIIE nor RNAPII were 

localized at silenced promoters but instead, an activator (Ppr1) was present 

(Chen & Widom, 2005). Our data supports those of Gross and colleagues as we 

observed that increased silencing by loss of UBP3 correlated with lower levels 

of RNAPII at all silent loci in yeast suggesting that RNAPII is indeed active in 

wild-type cells in these regions (paper I). 

 In addition, in ubp3∆ mutants, relative Net1/RENT-occupancy at 

rDNA and Sir2/3 at MAT-loci respectively, is generally higher, suggesting that 

silent chromatin is not fully saturated with silencing factors in wild-type cells. 

Taken together, RNAPII seems to be present and active in heterochromatic 

regions in wild-type cells and this presence is dependent on Ubp3. However, the 

precise mechanism how Ubp3 alters silencing is still pending. In this context, it 

should be addressed whether congregation of silencing factors (i.e. denseness of 

chromatin), presence of general TFs or recruitment/modification of RNAPII is 

altered in Ubp3-deficient cells. It should also be noted that relative levels of 

H4K16ac/H4K16 and Sir2 occupancy differ between the three heterochromatic 

regions in ubp3∆ mutants (paper I). Thus, distinct mechanisms may operate to 

silence DNA at different regions.  

 Silencing and transcriptional regulation at the rDNA loci is 

intimately linked with replicative aging. One such link is ERCs which, when 
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they were first discovered, were believed to prevent cell division by titrating 

important factors for DNA replication and maintenance (Kaeberlein et al, 1999; 

Kwan et al, 2013). However, new data puts ERC formation secondary to rDNA 

stability as an aging factor as limited RLS has been observed regardless of the 

absolute number of ERCs (Ganley et al, 2009; Kwan et al, 2013). Ganley and 

colleagues presented evidence that a strain with reduced replication activity and 

low ERC-levels had a reduced lifespan due to compromised rDNA stability. No 

explanation for this instability was presented but the authors speculated that that 

non-functional DNA repair proteins are retained in the mother cell leading to 

accumulation of mother-specific rDNA damage. It was speculated that one 

possible outcome of this rDNA damage could be manifested as poor ribosome 

quality (Ganley et al, 2009).  

 The RNAPII and Sir2-dependent regulation of E-pro (driving 

expression of non-coding transcripts) is an integral part of the rDNA theory of 

aging as activity of this promoter directly affects stability at the rDNA via 

displacement of cohesin (Kobayashi, 2011). In support of this model, it was 

recently shown that Sir2's effect on lifespan is predominantly mediated by its 

action at the rDNA E-pro and it was suggested that the resulting rDNA 

instability is causative for aging rather than being a byproduct of it (Saka et al, 

2013). We found that a ubp3∆ mutant, which has increased silencing (i.e. down-

regulates E-pro activity) at rDNA, has a reduced RLS (paper I). In addition, 

cells lacking Ubp3 have very little unequal recombination at rDNA suggesting 

that rDNA instability is not a prerequisite for aging (in  ubp3∆ mutants).  

However, SIR2 is epistatic to UBP3 with regard to unequal recombination at 

rDNA, whereas loss of Sir2 requires Ubp3 for full de-repression of a URA3 

allele at rDNA (paper I). These findings suggest that recombination is not 

directly proportional to levels of transcriptional activity at rDNA, as was 

previously proposed by Kobayashi and colleagues (Kobayashi & Ganley, 2005). 
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However, it is possible that Sir2 may have additional roles in inhibiting 

recombination that is partly independent of its role in silencing, but this has to 

be further studied. 

 We found evidence that the role of Ubp3 in aging may be unlinked 

to silencing/unequal rDNA recombination by combining mutations of UBP3 

with mutations in SIR2 and FOB1. Deletion of FOB1 somewhat suppressed the 

short lifespan of a ubp3∆ mutant, indicating that Fob1 either reduces 

recombination further, resulting in lifespan extension, or that Fob1 affects RLS 

extension via another pathway than rDNA recombination. Deleting SIR2 in a 

ubp3∆ mutant reduced lifespan to that of a sir2∆ single mutant, suggesting that a 

short lifespan correlates with a high recombination frequency. Deletion of UBP3 

in the sir2∆ fob1∆ (same as wild-type lifespan) shortened the lifespan to that of 

a ubp3∆ single mutant, again suggesting a role for Ubp3 in RLS that is 

independent of silencing or unequal recombination in rDNA (Öling and Kvint, 

unpublished data). Similarly, the lifespan of sir2∆ fob1∆ double mutant calls for 

extra attention since deleting FOB1 does not fully suppress the short lifespan of 

a sir2∆ mutant while fully suppressing ERC accumulation (Kaeberlein et al, 

1999). These data, suggests that both Sir2 and Ubp3 are implicated in other 

functions related to aging that are distinct from transcription control at rDNA. 

For instance, proper clearance of protein aggregates have been shown in a 

number of studies to be associated with premature aging (Erjavec et al, 2007; 

Heeren et al, 2004; Hill et al, 2014; Kruegel et al, 2011). Such roles for both 

Ubp3 and Sir2 are discussed further in paper II, III and IV.  
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3.2 Role of Ubp3 in protein quality control and aging 
 

As described above, Ubp3 is involved in transcriptional regulation and silencing 

but there is also mounting evidence that this DUB is important for PQC. For 

example, nutrient signaling and protein quality control is mediated in part by 

Ubp3-dependent degradation of mature 60S ribosomes (ribophagy) during 

nitrogen starvation (Kraft et al, 2008). The E3 ligase Ltn1 was recently proposed 

to act as an antagonizer of Ubp3 in this process (Ossareh-Nazari et al, 2014). 

Furthermore, Ubp3 has been shown to regulate Ras/PKA signaling by 

interacting with Ira2 and regulating its activity, and level of ubiquitination (Li & 

Wang, 2013). These findings suggest that Ubp3 is controlling both the quantity 

and quality of diverse proteins. 

 Many additional processes are regulated by Ubp3 and its co-factor 

Bre5 during non-starvation conditions. Ubp3 regulates the degradation of Sec23, 

a component of the ER-Golgi transport related COPII vesicle (Cohen et al, 

2003). It was later shown that the specific Sec23 degradation is regulated also by 

the AAA-ATPase Cdc48 and Rsp5, a ubiquitin ligase (Ossareh-Nazari et al, 

2010). Ubp3 also reverses the ubiquitination of Atg19, a CVT pathway 

(cytoplasm to vacuole trafficking) receptor protein implicated in the vacuolar 

delivery of two enzymes, aminopeptidase I and alfa-mannosidase (Baxter et al, 

2005). Two other seemingly unrelated processes regulated by Ubp3 include the 

microtubuli-system (Stu1) and DNA repair (Rad4) (Brew & Huffaker, 2002; 

Mao & Smerdon, 2010). The latter study showed that Ubp3 interacts physically 

with the 26S proteasome to facilitate destruction of Rad4. These studies point to 

a dual role for Ubp3 where it facilitates destruction of some proteins whereas it 

rescues others. This duality is addressed in paper II. 

 To answer why cells lacking Ubp3 are short-lived even though they 

show increased silencing and decreased rDNA recombination, we hypothesized 
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that this might be linked to a role of Ubp3 in PQC. Craig and colleagues isolated 

Ubp3 as a high copy suppressor of a temperature sensitive strain deleted for the 

two major cytoplasmic yeast chaperones SSA1/SSA2 (Baxter & Craig, 1998). 

The authors proposed a model where Ubp3 over-production rescued the double 

mutant by reversing ubiquitination of temporarily misfolded proteins, thereby 

preventing proteasomal degradation and allowing some residual activity of these 

proteins. However, no experimental evidence for this idea was provided. The 

chaperones Ssa1/Ssa2 belong to a subfamily of yeast Hsp70s which also include 

Ssa3 and Ssa4. SSA1 and SSA2 display roughly 98% sequence homology and are 

functionally redundant in many cellular processes whereas SSA3 and SSA4 are 

less (~80%) similar to SSA1 or SSA2. There is little data on Ssa3 function and 

only slightly more on Ssa4. Though, one study showed that a ssa1∆ ssa2∆ 

mutant is synthetically dead if SSA4 also is deleted (Werner-Washburne et al, 

1987). The same study also showed that deletion of SSA1/SSA2 induced 

expression of SSA4. Therefore, we speculated that the Ubp3-dependent 

suppression was achieved by up-regulating SSA4 or possibly SSA3. However, 

this was not the case (paper II).  

 We next asked whether elevated Ubp3 levels provided enhanced 

folding capacity in the ssa1∆ ssa2∆ strain. Utilizing a luciferase refolding assay 

we observed no enhanced refolding activity by Ubp3 over-expression. Instead, 

we speculated that the suppression may be mediated by enhanced clearance of 

already misfolded and aggregated proteins. To address this question we used the 

well-characterized protein aggregate-reporter Hsp104-GFP, which is intimately 

connected with protein quality control and aggregate clearance (Glover & 

Lindquist, 1998). Hsp104 is dependent on Ssa1 or Ssa2 to find aggregates and 

over-production of Ubp3 did not suppress such requirement, suggesting that 

Ubp3-dependent suppression is mediated independently of Hsp104 (Winkler et 

al, 2012). 
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 In the model proposed by Craig and colleagues, the loss of 

Ssa1/Ssa2-dependent folding activity is argued to be particularly detrimental at 

elevated temperatures as many proteins with residual activity are degraded 

rather than refolded (Baxter & Craig, 1998). Ubp3, in this model, removes 

ubiquitin-tags from the partly active proteins, rescues them from proteasomal 

degradation, and thereby allows better growth at high temperatures. We found 

experimental support for this model: first, we observed a Ubp3-dosage 

dependent suppression of Ssa1/Ssa2-deficiency where the highest levels of 

Ubp3 correlated with growth even at 37°C. Second, the misfolded model protein 

ΔssCPY* was stabilized by Ubp3-dependent deubiquitination in the absence of 

SSA1/SSA2. Last, we genetically altered proteasome levels by deleting RPN4 

(lower levels) and UBR2 (higher levels) and crossed these mutants with a ssa1∆ 

ssa2∆ strain. In line with the proposed model, lowering proteasome levels in the 

ssa1∆ ssa2∆ allowed for better growth at high temperatures, whereas boosting 

proteasome levels (ubr2∆) was detrimental for viability. Intriguingly, over 

producing Ubp3 in ssa1∆ ssa2∆ ubr2∆ restored viability (paper II).  

 Next, we also investigated whether the same mechanism held true 

for cells experiencing another kind of stress - aging. Loss of Ubp3 resulted in a 

shorter lifespan as did loss of SSA1/SSA2. However, over-expression of Ubp3 

rescued the short lifespan of ssa1∆ ssa2∆. In contrast to heat tolerance, this 

suppression was dependent on normal proteasome levels as seen by deleting 

RPN4 in the Hsp70-deficient strain. In line with this, we also found that 

enhancing proteasome levels by deleting UBR2 in a ubp3∆ mutant restored the 

lifespan back to wild-type levels (unpublished data). One interpretation of such 

results is that inefficient deubiquitination by Ubp3 can partially be overcome by 

boosting the end point of this pathway - proteasomal destruction. These 

observations point to an "aging related role" for Ubp3 mediating proteasomal 

destruction of proteins. Thus, we conclude that the Craig model explains the role 
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of Ubp3 in certain genetic and environmental contexts such as heat stress and 

Hsp70 deficiency, but fails to explain the role of Ubp3 in old cells. 

 Enhancing proteasome capacity extends lifespan and this extension 

has been suggested to be associated with reduced accumulation of aggregates 

(Kruegel et al, 2011). Similarly, aging is associated with a progressive decline in 

26S proteasome activity, which could potentially redistribute misfolded proteins 

to specific protein aggregate compartments (Andersson et al, 2013; Kaganovich 

et al, 2008; Kruegel et al, 2011). Moreover, it was recently shown that the meta-

caspase Mca1 acts as lifespan extending gene and that the extension required 

both Hsp104-dependent disaggregase activity and fully functional proteasomes 

which links this lifespan control to the removal of damaged and aggregated 

proteins (Hill et al, 2014). To this end, we sought to investigate a possible link 

between Ubp3, aggregate compartmentalization, and aging. To detect such a 

link we utilized the mother enrichment strain (Lindstrom & Gottschling, 2009) 

modified to C-terminally tag GFP on the endogenous Ssa2. Using this construct, 

we observed a premature JUNQ accumulation associated with loss of UBP3 as 

compared to wild-type cells. In addition, formation of peripheral aggregates was 

drastically accelerated in the same mutant. We suggest that this phenotype is 

associated with the reduced capacity of ubp3∆ mutant cells to properly 

deubiquitinate proteasome substrates and allow entry to the 26S proteasome. It 

is possible that inefficient proteasome destruction of aberrant proteins could 

"overwhelm" the JUNQ compartment resulting in subsequent redistribution of 

aberrant proteins to peripheral sites in aging cells. Consistent with this, reducing 

proteasome levels by RPN4 deletion displayed a similar phenotype as the ubp3∆ 

mutant (unpublished data). As the accumulation of peripheral aggregates 

coincides with accelerated aging in the absence of UBP3, it is tempting to 

speculate that these specific aggregates are indeed true aging factors.  
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 Ubp3 can both stabilize and destabilize proteins according to our 

data. Rad4 has previously been shown to require Ubp3 for proper degradation 

(Mao & Smerdon, 2010). In contrast, Rpb1 is stabilized by Ubp3 (Kvint et al, 

2008). These findings, together with data from this study on Ubc9ts and 

ΔssCPY* raises the question of how a DUB mechanistically can execute these 

two diametrically different actions on proteins. We envision deubiquitination to 

act at different stages towards destruction of proteins and that the timing 

determines the outcome. This notion is supported by the finding that ΔssCPY* 

was deubiquitinated and stabilized by Ubp3 over-production. This is consistent 

with deubiquitination occurring at a stage prior to proteasomal "commitment". 

In contrast, Ubp3-assisted proteasomal destruction of a substrate would not be 

detectable in a strain over-producing Ubp3 as this would rapidly degrade the 

substrate and escape analysis. However, loss of UBP3, we speculated, would 

result in increased ubiquitination and stabilization of such a substrate. Consistent 

with this, Ubc9ts exemplified this latter scenario (paper II). In conclusion, the 

data presented for ΔssCPY* and Ubc9ts are consistent with a scenario where 

Ubp3-dependent deubiquitination occurs at different stages toward commitment 

to proteasomal degradation (Fig. 7). 
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Figure 7. Schematic drawing of Ubp3-dependent deubiquitination. The salvage pathway 

(top half) depicts how a protein is rescued from destruction. The degradation pathway (lower 

part) depicts how a protein is committed to the proteasome for degradation. 

 

3.3 Asymmetric inheritance of damaged proteins 
 

Sir2 has been implicated as a regulator of aging and age-related maladies in a 

wide variety of organisms including yeast, worms, flies, fish and mammals 

(Galan & Haguenauer-Tsapis, 1997; Lindstrom & Gottschling, 2009; Masoro, 

2005; Springael et al, 1999). As discussed previously, the yeast Sir2 

accomplishes this regulation, in part, by histone-deacetylation resulting in 

increased silencing and decreased formation of ERCs (Kaeberlein et al, 1999). 

Just like ERCs, damaged and aggregated proteins accumulate in mother cells 

and are subjected to a mother-cell biased segregation (Aguilaniu et al, 2003; 

Erjavec et al, 2007). This damage asymmetry is dependent on Hsp104 and Sir2 

where the latter is linked to actin cable-dependent processes and the polarisome 

(paper III). 

 The role of actin cables in damage retention has been suggested to be 

the result of the association of aggregates (including prions) to the actin 
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cytoskeleton thereby preventing their free diffusion into the daughter cell 

(Chernova et al, 2011; Tessarz et al, 2009). Sir2 deficiency reduces actin cable 

abundance and the velocity of retrograde actin flow from the polarisome 

(Erjavec & Nystrom, 2007; Higuchi et al, 2013). Apparently, in strains devoid of 

HSP104, specialized "compartments" such as IPOD and JUNQ are not properly 

maturing and aggregates are "trapped" in stress foci (Spokoini et al, 2012). 

These smaller foci are increasingly inherited by the daughter cell as opposed to 

IPOD and JUNQ which are sequestered by the mother cell. In addition, other 

small, stress foci-like aggregates such as those formed by Htt103Q are also 

asymmetrically inherited as shown in paper IV. Taken together, these findings 

strongly suggest a model where asymmetric segregation of damaged proteins is 

dependent on various factors such as a functional actin cytoskeleton, as well as 

tethering of aggregates to organelles. 

 This model was challenged by Li and colleagues which suggested 

that asymmetric inheritance is a purely passive process due to the geometry of 

yeast cells and a slow random diffusion of aggregates (Zhou et al, 2011). This 

model views aggregate inheritance as regulated by the size of the bud neck and 

how long this channel is open for diffusion of aggregates. However, in this 

study, some aggregates appeared stationary whereas others where more mobile 

(Zhou et al, 2011). This diversity in aggregate population may not best be 

modeled by employing an average diffusion coefficient. In fact, this model was 

challenged in the Spokoini study due to the observation that the larger of these 

aggregates were IPOD or JUNQ inclusions. By definition, these aggregates 

cannot diffuse freely as they are attached to the vacuole and nuclear membrane 

respectively (Spokoini et al, 2012). 

 A recent study tested whether the passive diffusion model or the 

factor-dependent tethering model was more relevant to explain how 

asymmetrical inheritance of aggregates is achieved (Song et al, 2014). The 
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authors argued that increasing the time for completing cytokinesis would 

enhance aggregate inheritance of such aggregates moved by passive diffusion. 

However, this was not the case. Furthermore, mutants with increased daughter 

cell inheritance of aggregates did not show a larger bud-neck diameter, longer 

generation time or increased number of aggregates. If aggregates are segregated 

by random diffusion, these traits would be expected by mutants displaying 

increased inheritance. However, neither the sir2∆ mutant nor any of the other 

identified mutants displayed any of the aforementioned traits. Importantly, this 

study identified additional factors as essential for establishing damage 

asymmetry. These factors include the actin-associated proteins Cmd1 and Myo2 

as well as ER- Golgi transport components. Moreover, both Huntingtin 103Q 

and heat-induced, Hsp104-associated stress-foci were found to co-localize with 

Cmd1- and Myo2-enriched structures and super-resolution 3-D microscopy 

showed that these aggregates co-localize with the actin cytoskeleton. 
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4. Concluding remarks  

 

Faulty mitochondria, defective vacuoles, ERCs and/or rDNA instability, and 

damaged proteins all seem to be factors present in old yeast cells. The crucial 

question is: are the same factors dysfunctional in aged metazoans (animals) and 

can we transfer the lessons learned from yeast to therapeutically combat age-

related disorders? Accumulating evidence suggest that we can answer cautiously 

with a "yes" to both parts of this question. For example, enrichment of 

dysfunctional mitochondria are causative for aging also in metazoans (Bratic & 

Larsson, 2013). One reason for this dysfunctionality in mice are mutations of the 

maternally originated mtDNA which, when transferred to the progeny, cause 

clonal expansion of these errors during development (Ross et al, 2013). Another 

mechanism, as described earlier, is dysfunctional mitochondria preceded by a 

collapse in vacuolar pH-control (Hughes & Gottschling, 2012). Whatever the 

cause for unhealthy mitochondria, keeping these organelles in good shape 

appears pivotal for a full lifespan. Lysosomes, similar to yeast vacuoles, are 

indispensable for autophagy and inhibiting this machinery triggers cellular 

degeneration (Rubinsztein et al, 2011). Importantly, reduced autophagic 

capacity is often accompanied by aging and such cellular degeneration. 

Therefore, targeting macro-autophagy seems like an interesting possibility for 

age-related therapeutic purposes. 

 Unlike ERCs in yeast, extra chromosomal circular DNA (eccDNA) 

in metazoans do not seem to be causative for aging but elevated levels of 

eccDNA have been observed in patients suffering from Werner's syndrome 

(described earlier) (Kunisada et al, 1985). However, the sirtuins, which are 

known to regulate ERC formation and rDNA stability, may still be targeted 

therapeutically as the mammalian sirtuins have been shown to play a key role in 

age-related diseases (Guarente, 2013). The fourth, and perhaps most intensely 
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studied aging factor in this thesis is damaged proteins and there is an increasing 

body of evidence suggesting that aberrant and aggregated protein-species affect 

also the rate of metazoan aging as well as trigger age-related neurological 

disease (Taylor & Dillin, 2011). For example, in Caenorohabditis elegans, 

protein-amyloids have been chemically targeted and this resulted in an extended 

lifespan suggesting that such targeting may prove useful for therapeutic 

purposes (Alavez et al, 2011).  

 Transcription control at the rDNA loci, which links aging to both 

rDNA instability and ERC formation, is influenced by UBP3 in a manner that 

suggests that deletion of this gene should display an extended lifespan. 

However, we did not observe such extension of RLS, instead defects in PQC 

and proteasomal degradation with subsequent accumulation of aberrant proteins 

seems a more likely explanation to cause premature aging in the absence of 

UBP3. However, our data does not exclude the possibility that transcriptional 

regulation by Ubp3 is causing premature aging related to alterations of the 

proteome. Ubp3 was shown to divergently determine the fate of two model 

proteins but we know little of the native substrates regulated by Ubp3. It would 

therefore be interesting to compare the proteome of old and young cells in both a 

wild-type and ubp3∆ mutant. This is particularly interesting in light of the 

finding that levels of certain chaperones, such as Hsp70, decline with age in rats 

(Heydari et al, 1993). Whether or not UBP3 (or USP10 in mammals) is a good 

target for therapeutic purposes related to age-related disorders is too early to 

predict and more research on this subject is needed. To this end, it is interesting 

to note that USP10 is required for efficient p53 activation in response to DNA 

damage and it suppresses tumor cell growth in RCC cells (Yuan et al, 2010). 

Moreover, several studies demonstrate that over-expression of UBP3 is able to 

suppress the toxicity mediated by aggregation of the Parkinson's-related protein 

alfa-synuclein (Cooper et al, 2006; Tenreiro et al, 2014). The suppression of this 
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toxicity was suggested to be due to an Ubp3-dependent increase of forward ER-

Golgi trafficking mediated via Sec23 stabilization and subsequent promotion of 

vesicle exit from the ER.     

  Recent insight of intracellular PQC-pathways has triggered my 

curiosity for the Hsp70-specific biochemical interaction enabling either Ssa1 or 

Ssa2 to present a substrate to Hsp104 for disaggregation. Further research 

should benefit from utilizing the ssa1∆ ssa2∆ mutant to create a cellular context 

where Hsp104 is largely absent from aggregates. In this environment it should 

be possible to screen for other factors that are important for Hsp104 in aggregate 

recognition. Initially, a plasmid collection containing sequences encoding the 

various domains of the Ssa-proteins should be generated to further study the 

Hsp70-Hsp104 interaction. These plasmids could also be utilized to study the 

effect of PQC in aging where Hsp104 is either present or absent from age-

induced aggregates. The Hsp70-Hsp104 system is particularly interesting since 

it has been suggested to be required for formation of smaller aggregates such as 

stress foci, Q-bodies and peripheral aggregates. In addition, these aggregates 

have been speculated to be a transient stage to other types of larger 

aggregates/inclusion bodies (i.e. IPOD and JUNQ) (Escusa-Toret et al, 2013; 

Song et al, 2014; Spokoini et al, 2012). The smaller aggregates seemingly differ 

slightly in their nature. For example, Ubc9ts which is has been shown to form Q-

bodies, move in an actin-independent (but energy-dependent) manner whereas 

peripheral aggregates and Htt103Q associate with actin cables (Escusa-Toret et 

al, 2013; Song et al, 2014; Specht et al, 2011). This discrepancy is interesting 

and may suggest that different proteins are directed to different spatial locations. 

However, another explanation is that different experimental protocols yield 

different results. This is exemplified by the fact that Htt103Q forms aggregates 

upon production whereas Ubc9ts misfold by elevated temperature, a procedure 

known to disrupt actin cables. In addition, some protocols utilize proteasome 
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inhibitors whereas others do not. This is important, especially as the JUNQ 

compartment readily forms upon inhibition of proteasomes (Kaganovich et al, 

2008). Data from our group, and others, add to the complexity of this machinery 

since it implicates Ssa1 or Ssa2 as paramount for Hsp104 to find aggregates and 

perform any disaggregating activity (paper II) (Winkler et al, 2012). Yet, large 

IPOD like inclusions (GFP-Ubc9ts) are frequently observed in the absence of 

these major Hsp70s (Escusa-Toret et al, 2013), indicating that at least IPOD can 

form regardless of Hsp70s and presumably also Hsp104. In addition, we also 

observed that ΔssCPY*-GFP localizes to both IPOD and JUNQ in the absence 

of SSA1/SSA2 (unpublished data). However, we do not yet know if Hsp104 is 

present in these inclusions in this genetic context. It should also be noted that 

SSA4 is highly induced in the absence of SSA1 and SSA2 which may aid a small 

fraction of Hsp104 to localize to (or form) IPOD. A further characterization of 

all these aggregate-types should benefit future research in the PQC-field. 

 PQC also encompasses asymmetrical segregation of protein 

aggregates. This phenomenon is analogous to the separation of germ-cell and 

somatic cell types in higher organisms (Guarente, 2010). Recently, it was shown 

that oxidatively damaged proteins segregate asymmetrically during cytokinesis 

of various types of stem-cells (Bufalino et al, 2013). Interestingly, these stem-

cells employ different bias on the segregation of damaged components. 

Specifically, the cell-line that was on the receiving end of damaged proteins had 

in-fact always a shorter lifespan. Similar to yeast, this segregation was 

dependent on various factors (Ogrodnik et al, 2014). Finally, a deeper 

understanding of the underlying mechanisms of PQC will certainly help our 

understanding of why some proteins associated with neurological disorders and 

aging cause cytotoxicity, and how these may be therapeutically targeted.      
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