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Abstract 

Proteins are the most versatile macromolecules and they are essentially involved in the 

biological processes throughout all living organisms. The three dimensional structure 

of proteins and their dynamical properties underlie their biological function and 

knowledge about protein structure and dynamics contributes to a detailed 

understanding of biochemical processes.  In this work various structural and dynamical 

methods were applied in the investigation of different protein systems, and in addition 

the stabilization of two membrane proteins for structural studies was explored.  

The first X-ray structure of human S100A4 in complex with a non-muscle myosin IIA 

(NMIIA) fragment was solved to 1.9Å and contributed to our understanding in the 

structural mechanism of S100A4 mediated filament assembly which is believed to 

promote metastasis. The X-ray structure shows that the binding mechanism differs 

from that of other S100 proteins and that S100A4 adapts its conformation to the 

chemical properties of the ligand. Further studies on a C-terminal deletion mutant of 

S100A4 with combined structural high and low resolution methods  unveiled a role of 

the conformational flexible C-terminus in the Ca
2+

-affinity to S100A4.  The results 

suggest that the reduced metastasis properties that were previously observed in C-

terminal deletions mutants of S100A4 might be due to an impaired Ca
2+

-control. 

The nature and the extent of conformational dynamics in photosynthetic reaction 

centers during the electron transport processes are still not well understood. 

Differences in the THz absorption spectra of photosynthetic reaction centre from 

Rhodobacter sphaeroides were measured upon light activation and indicate a change 

in molecular vibrations that occur most probably in LM subunit and are independent of 

the environment. 

Conformational flexible regions influence the formation of protein crystals for 

structural studies negatively and the structural stabilization of proteins is often applied 

in protein crystallization. A library of the polyprenyltransfeases UbiA and MenA with 

rational stabilized, predicted exposed surfaces was produced and eight mutants and the 

wild type proteins were recombinant overexpressed and purified. Homology models 

indicate that the mutations of potent mutants are situated in regions that are involved in 

the formation of crystal contacts. However additional exploration of the buffer 

environment of UbiA and MenA is required in order to stabilize the proteins for 

further studies and crystallization. 
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1. Introduction 

1.1 Protein structural biology 

Proteins perform the majority of vital processes in all living organisms and protein 

dysfunction and missfolding are the direct cause of a number of diseases. Whereas 

biochemical experimental methods can reveal the type of reactions, the role of certain 

proteins in complex processes and interaction partners to proteins amongst others, 

structural information contributes to the understanding in how biological functions are 

accomplished at the molecular level.  Through three dimensional structural protein 

models the fold of the amino acid chain, the relative orientation of various groups, 

exposed or buried surfaces or residues, and information about ligand positions and 

interactions can be identified. This information is highly valuable not only for a deeper 

understanding but also for the rational design of therapeutic agents that allow us to 

control disease and pain. The prediction of the three dimensional protein structure by 

its amino acid sequence is extremely challenging due to the number of geometric 

possible structures that can be adapted. The combination of several computational 

methods based on previous knowledge increases the accuracy of predicted models 

tremendously
1
. However the accuracy and confidence of experimental structure 

determination can still not be replaced by computational methods. Amongst different 

experimental high and low resolution methods that coexist for the structural 

exploration of macromolecules, X-ray crystallography is still the most successful 

method for the determination of high-resolution protein structures.  

1. 2 Protein dynamics 

Proteins are dynamic molecules and their biological function depends often on the 

transition between energetically favorable structural states.  Conformational changes in 

protein molecules include vibrations and side-chain reorientation of amino acids, 

movements of secondary structure elements and the rearrangement of subunits and 

play an important role in enzymatic activity, ligand recognition and interaction and 

protein activation
2
. One of the most dramatic examples of conformational changes 

might be the folding of intrinsically unstructured proteins to gain biological 

functionality
3
. Experimentally different conformational states of proteins are often 

examined by combining high and low resolution and computational methods such as 

X-ray crystallography, NMR, small – and wide angle X-ray solution scattering (SAXS 

and WAXS), Infrared spectroscopy, fluorescence labeling methods and molecular 

dynamics (MD) simulations amongst others. But also X-ray structures obtained from 

crystals under different conditions or various conformationally trapped states may 

reveal information about protein dynamics.  

In addition to the conformational transition that is typically directly linked to protein 

activation and function proteins are subjected to constant internal motions that include 

bond vibrations, side-chain rotamers, hinge bending and loop motions on a timescale 

of  femtoseconds to nanoseconds
4,5

, also referred to as “breathing motions”. In X-ray 
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Figure 1. Conformational changes in S100A4 upon Ca
2+

-binding. The subunits of the dimer 

are depicted in light and dark grey, Ca
2+

-in dark in black and the Ca
2+

-binding motif in cyan 

structures, representing an average of an structure ensemble, atomic motions for 

instance are partly reflected in the mean square atomic displacement or B-factor
6,7

. 

However care has to be taken in the interpretation of B-factors, since they display both 

lattice disorder and thermal motions and are affected by crystal contacts. High 

resolution NMR structures instead consist of an ensemble of models of a subset of 

conformational states indicating the internal protein dynamics of the protein molecule. 

Moreover the methods mentioned above are applied to directly probe internal protein 

motions. The role of the internal protein dynamics for the biological function of 

proteins is  debated
8
  and the question was raised whether these motions are the result 

of biological constraints  or evolutionary optimization
5,9

. 

Apart from that the importance of protein flexibility, is increasingly recognized not at 

least in the design of therapeutic agents
10

.   

1. 3 S100A4 

S100A4 is a member of the S100 protein family, the largest subfamily of Ca
2+

-binding 

proteins of the EF-hand type. S100 proteins are exclusively expressed in vertebrates 

where they are distributed over a wide range of different tissues
11,12

 to regulate 

processes such as cytoskeleton dynamics, cell differentiation, cell proliferation, 

inflammation an cell apoptosis amongst others
11,12,13

. Intracellular, S100 proteins are 

typically forming homodimers of an X-type for helix bundle, with each subunit 

containing two Ca
2+

-binding motives: one high affinity C-terminal canonical EF-hand 

motif and one N-terminal pseudo EF-hand motif. Upon Ca
2+

-binding S100 proteins 

undergo a conformational reorganization that opens up a hydrophobic binding cleft on 

the protein dimer surface (Figure 1) for the interaction with target proteins both 

extracellular and intracellular. Through their interaction with target proteins S100 

proteins modulate the function of effector proteins and this is believed to play an 

important role in the fine regulation of for instance the enzymatic activity, 

transcription factors, signal transduction and protein phosphorylation
13

. The protein 

sequence of the two Ca
2+

-binding motives is highly conserved amongst members from 
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the S100 protein family in contrast to the less conserved N- and C-terminal region and 

the hinge region between helix 2 and 3 that most probably account for the substrate 

specificity amongst S100 proteins
11

. S100 protein expression levels are often altered in 

different forms of cancers and they are severly associated with tumorgenesis and 

tumor progression
12

. 

S100A4 consisting of 101 amino acids is expressed in various human cell types 

including fibroblasts
14

, monocytes
15

, T-lymphocytes
15

 and neutrophilic granulocytes
15

  

where it is found in the nucleus
16

, the cytoplasm and the extracellular space
17

. The 

high resolution structures of S100A4
18

 and its activated, Ca
2+

bound form
19,20,21,22

 

reveal that conformational changes occur mainly in helix 2 and helix 3 when Ca
2+

-is 

bound
20

. Upon Ca
2+

-activation S100A4 interacts with a variety of proteins such as 

p53
23

, annexin A2 (ANAXA2)
24

, F-actin
25

 and non-muscle myosin IIA (NMIIA)
26,27,28

 

to modulate transcription, matrix metalloproteinases and cytoskeleton. S100A4 is 

strongly associated with metastasis and has been shown to induce a metastatic 

phenotype in breast cancer models in rats and mice
29,30

 and increased cell motility and 

invasion in Rama37 and epithelial cell lines
29,30

 and a human prostate cancer cell line 

(CaP)
31

. The interaction of S100A4 with non-muscle myosin IIA (NMIIA) is directly 

correlated with an increased cell motility
32

. NMIIA dimers self-associate to form 

bipolar filaments that interact with actin filaments in a cross-linking manner to form 

actomyosin
33

 and cell adhesion and the formation of protrusions in migrating cells are 

dependent on the assembly and disassembly of actomyosin.  S100A4 is believed to 

interfere with cell migration processes through its interaction with NMIIA that has 

been shown to promote filament dissasembly
27,28,34

 and detailed knowledge about the 

underlying mechanism could contribute to the development of therapeutic agents 

directed against metastasis properties.  

1.4 Photosynthetic reaction centre 

The photosynthetic reaction centre is a membrane bound protein complex that converts 

light energy to chemical energy. Photosynthetic reaction centers are found in green 

plants and some photosynthetic bacteria and the reaction centre from 

Rhodopseudonomas viridis was the first X-ray structure of a membrane protein that 

had been determined
35

. The photosynthetic reaction centre of Rhodobacter 

sphaeroides (R. sphaeroides) consists of three subunits, heavy (M), light (L) and 

medium (M) and a set of supporting cofactors: two bacteriochlorophylls P870 (special 

pair), two accessory bacteriechlorophylls, two bacteriopheophytins, two quinones (QA 

and QB) and one iron. Figure 2 shows the structure of reaction centre with the three 

subunits and the cofactors (A) and the cofactors (B) (QB is absent). The excitation of 

photosynthetic reaction centre leads to the transfer of an electron from the special pair 

(P) to QA through bacteriopheophytin
36

, resulting in the charge separated state, 

P
+
BPheQA

-
 . At this state the electron is further transported to QB and in the natural 

environment P
+
 will gain an electron from a reduced cytochrome c2 in order to prevent 

electron backflow
37

. However if an external electron donator is not present, reaction 
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Figure 2. (A) Structure of the photosynthetic reaction center from R. sphaeroides (PDB ID 2BNP) 

showing the three subunits M (green), L (blue) and H (red) and the cofactors (black). The grey 

region of the picture shows the membrane embedded part of the protein. (B) Cofactors of the 

reaction center, the special pair (P870), bacteriochlorophyll (BChl), bacteriopheophytin (BPhe) and 

bound quinine (QA). The electron transfer pathway through the cofactors that leads to the charge 

separated state, P870
+
QA

-
, is shown by the arrows. (Figure from paper III). 

centre returns to the ground state through charge recombination and heat is released. 

With currently 67 reported structures from different organisms in the protein databank 

(PDB) reaction centre is amongst the best studied membrane proteins, rendering it 

highly suitable as a model protein.  In addition it is convenient to study photosynthetic 

reaction centre upon activation since the electron transport event can be activated by a 

laser pulse. 

1. 5 Membrane protein purification and crystallization: UbiA and MenA  

Membrane proteins account for 30% of the proteome
38

.  They perform a variety of 

essential functions, such as signal transduction, solute transport and catalytic reactions, 

and their impact in human diseases is not at least reflected in the high number of 

pharmaceutical agents (over 50%) targeting membrane proteins
39

. Nevertheless 

structural information about membrane proteins is still difficult to access and high 

resolution membrane protein structures are highly underrepresented in the protein 

database (PDB) compared to soluble proteins. The main reason is the difficulty to 

handle membrane proteins due to the presence of hydrophobic surfaces, but also a 

higher degree of complexity during their production compared to soluble proteins. 

Membrane proteins are difficult to produce
40

, and the need of detergents to extract 

membrane proteins can influence the protein activity and stability negatively and does 

often induce aggregation
41

. Finally hydrophobic surfaces and the requirement of 

detergents and/or lipids impede the formation of crystal contacts during the 

crystallization process. 



Introduction 

 

5 
 

Figure 3. Schematic illustration of the prenylation of 4-

hydroxybenzoate 

UbiA and Men belong to the 

UbiA superfamily of membrane 

embedded prenyltransferases, a 

group of enzymes that are 

involved in the biosynthesis of 

ubiquinone
42,43

, menaquinone
44

, 

prenylated hemes and 

chlorophylls
45,46

 and Vitamin E
47

. 

UbiA fuses an isoprenoid-

diphosphate to the meta position of 4-hydroxybenzoate, and releases a pyrophosphate
48

 

as shown in Figure 3. Similarly, MenA catalyzes the prenylation of 1,4-dihydroxy-2-

naphtoate in menaquinone biosynthesis
49

 and these reactions are considered as key 

step in the ubiquinone and menaquinone biosynthesis, respectively. Ubiquinone is 

mainly known as electron transporter between complex I or II and complex III in the 

respiratory chain and apart from that, ubiquinone acts as an antioxidant
50,51 

and is 

involved in
 
disulfide bond formation in E. coli protein folding

52,53
. Menaquinone, in 

the form of human Vitamin K is involved in the carboxylation of glutamyl residues an 

important factor in blood coagulation and the dysfunction of the human homolog to 

MenA, UBIAD1 is associated bladder tumor progression
54

, and Schnyder crystalline 

cornea dystrophy. To date the availability of structural information about enzymes 

form the UbiA superfamily is limited to the substrate-bound and apo X-ray structures 

of two different UbiA horologes from archaea
55,56

 and additional structural information 

could increase our understanding of these enzymes in different organisms.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Methodology 

 

6 
 

Figure 4. Flowchart for the 

production of a membrane 

protein sample for 

crystallization  

2. Methodology 

2.1 Protein crystallization  

Well diffracting protein crystals are a prerequisite for the structure determination of 

proteins with x-ray crystallography. The formation of protein crystals involves the 

self-association of protein molecules from a supersaturated protein solution into an 

ordered array in three dimensions and is highly dependent on a variety of parameters 

such as temperature, pH, buffer, protein concentration and 

precipitant amongst others. The conditions that will lead 

to protein crystals are individual for each protein and 

cannot be predicted on the protein sequence alone, and 

especially membrane proteins are difficult to crystallize 

due to hydrophobic surfaces and the need of detergents. 

The protein of interest has to be produced, unless 

obtained from a natural source, in the case of membrane 

proteins extracted from the membrane, and purified 

before subjected to crystallization setups (Figure 4).  

Protein crystallization usually consists of an error –and 

trial approach combined with accumulated knowledge in 

an extensive reiterative screening process that hopefully 

results in crystal leads. Commercial available screens 

covering a wide range of chemical compositions may 

facilitate protein crystallization, but if not successful, 

more rational approaches like the alteration of the protein 

sequence or the crystallization of domains can be 

undertaken.  In this case it has to be considered, that 

alterations may affect the biological function of the 

protein. 

2.1.1 Protein production 

Growing protein crystals requires huge amounts of protein. As the majority of 

membrane proteins are not expressed in sufficient amounts naturally, protein 

production systems such as recombinant protein expression or cell free protein 

expression are usually utilized to supply the need of protein sample for crystallization. 

The choice of a suitable host depends on the demands of the target protein regarding 

translocation and folding machinery, codons, glycosylation and membrane 

composition amongst others and picking a homologous host to the source of the target 

protein will ease optimization. Through strong promoters recombinant protein 

production in E. coli is focused on the target protein which can account for up to about 

50% of the membrane protein production
57,58

. In contrast to soluble proteins, 

membrane proteins have to be directed and inserted into the membrane and the 

recombinant membrane protein production often has to be slowed down in order to 

prevent the machinery from being overloaded
58

. Lowering the temperature in the case 

of CorA, an inner membrane magnesium transporter increased the insertion of the 
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overexpressed protein into the membrane
57

 but also reducing the inducing agent (IPTG 

for promoters under the control of the lac operon) may have positive effects on the 

protein production. Recombinant protein production through autoinduction
59,60

 has 

been successfully optimized for the production of membrane proteins
61

 where the 

induction is adapted to the cell growth through the enzymatical conversion of lactose 

to allolactose by the cells themselves.  

Besides providing high yields of many proteins, another advantage of the recombinant 

protein expression is the possibility to introduce genetical modifications in order to 

design proteins with desired properties.  

2.1.2 Rational protein design 

Amongst all parameters that influence protein crystal formation, the crystallizability of 

the protein plays an important role and it has already been recognized early, that 

variations in the protein sequence in form of homologous proteins influence the 

formation of protein crystals
62

. Nowadays, with advances in recombinant protein 

expression, alterations in the protein sequence can be introduced readily and are more 

common. There are various examples of protein alterations, where sometimes as little 

as a single point mutation, and truncations  leads to the formation of protein crystals 

where wild type protein crystals were not obtained
63

 (and citations within). The 

truncation of flexible, N- or C-termini or the mutation of cysteine to serine in order to 

avoid aggregation by disulfide bridge formation are only two out of many approaches  

to enhance conformational homogeneity and stability in order to facilitate the 

formation of well-diffracting crystals. Rational surface modifications in order to 

reduce surface entropy with the aim to increase the propensity of proteins to form 

crystal contacts have been developed
64,65,66

 and the significance of intrinsic protein 

properties in protein crystallization has been investigated on soluble proteins
67

. In this 

study it was found, that certain amino acid residues (alanine, glycine and 

phenylalanine), the mean side chain entropy and well ordered surface epitopes 

amongst others influence the crystallizability of proteins. 

In addition recombinant expression techniques do not only allow for genetical 

modifications that will influence the protein sequence, but also for modifications that 

facilitate the purification of proteins like a Histidine-tag. Furthermore Histidine-tags 

can also be used as markers in the detection of the recombinant protein by WESTERN 

blotting
68

 at various steps throughout protein production and purification.  

2.1.3 Detergents 

The transfer of membrane proteins from their natural environment, the lipid bilayer, to 

an aqueous solution is an essential step in producing a protein solution suitable for 

crystallization. Once membrane proteins are extracted from the biological membrane, 

their hydrophobic regions must be shielded in order to prevent their hydrophobic 

collapse in the aqueous buffer solution. Detergents, consisting of a hydrophobic tail- 

and a hydrophilic head-group are essential tools for both extracting membrane proteins 
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Figure 5. Solubilization of the membrane and extraction of membrane 

protein. Detergent head groups are represented in green, lipid head groups 

in blue and the membrane protein in purple. a) detergent is taken up by the 

membrane; b) lipid/detergent/protein and lipid/detergent micelles; c) 

protein-detergent-complex, detergent/lipid micelles and detergent micelles.  

and substituting lipids around the hydrophobic parts, keeping membrane proteins 

solubilized. At a certain detergent concentration the critical micelle concentration 

(CMC) detergents enter into a state, where detergent monomers and micelles exist in 

equilibrium in solution. It is at concentrations above the CMC detergents exert their 

effect as solubilizers of membrane components
69

. The extraction of membrane proteins 

is considered to occur in three steps  as depicted in (Figure 5): the uptake of the 

detergent by the membrane (a), the formation of lipid/detergent/protein micelles and 

lipid/detergent micelles (b), and finally the formation of detergent micelles, 

lipid/detergent 

micelles and protein 

detergent complexes 

(PDC) (c)
69,70

,
71

 which 

are the starting point 

for further protein 

purification. The 

success in obtaining 

protein crystals is 

crucial dependant on 

the choice of the right 

detergent in the right 

concentration educing 

PDCs that posses just the optimal conditions for membrane protein crystallization. 

Amongst the overwhelming selection of detergents on the market, LDAO, OG, DM 

and DDM are the ones most frequently found in solved α-helical membrane protein 

structures
72

. However, being suitable for crystallization does not mean that a detergent 

is suitable for the solubilization of a given membrane protein which can lead to the 

application of different detergents in solubilization and crystallization of a single 

membrane protein.  

2.1.4 Chromatographic protein purification and characterization 

The purity and homogeneity of the protein solution is generally considered to be an 

important parameter in protein crystallization, not only because impurities can hamper 

the growth of monocrystals, but also with respect to reproducibility of the experiments. 

Following solubilization usually two subsequent chromatographic purification steps 

for His-tagged proteins are performed: immobilized metal affinity chromatography 

(IMAC)  where the protein is separated from a crude solubilized membrane extract, 

and size exclusion chromatography (SEC)
73,74,75

 in order to remove remaining 

impurities, aggregates and salts to finally receive a protein solution in a controlled 

buffer environment. In addition to purification the resulting chromatogram of the SEC 

reveals properties like aggregation, oligomeric state, the size and stability of PDCs in a 

given buffer and is therefore a useful tool in screening for suitable buffer components, 

pH and detergents (so called analytical SEC). 

a b c 
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Figure 6. Two dimensional phase diagram (A) and illustration of the vapor diffusion method (B). The 

phase diagram shows the protein solubility with respect to protein and precipitant concentration. When 

an undersaturated protein solution (1) is directed towards supersaturation and enters the nucleation zone 

(2) crystal formation leads to a decrease in protein concentration and the metastable phase can be entered 

where crystal growth occurs (3). The composition of the protein solution is altered through concentration 

differences in reservoir solution and protein droplet,  that cause water to diffuse to the reservoir solution 

until an equilibrium is reached. 

B A 

The combination of buffer ingredients like the buffer itself, salts, detergents, possibly 

additives or cofactors that will yield a protein solution with the desired properties for 

crystallization set-ups is endless and as with the choice of detergents has to be 

established individually for each membrane protein. Statistics over buffer components 

that were most successful in the growth of well-diffracting α-helical membrane protein 

crystals may aid in finding a starting point for further optimization
72

. 

2.1.5 Growing protein crystals 

The basic principle of protein crystallization is to induce a protein solution to slowly 

precipitate in an ordered way through the alteration of the solute composition, as 

described by a phase diagram shown in Figure 6A. The most frequently applied 

method in protein crystallization is the vapor diffusion method, where a protein 

solution close to supersaturation is mixed with precipitant solution and placed in a 

droplet above the precipitant solution as depicted in Figure6B.  

 

 

When tightly sealed, water will diffuse from the droplet, containing a lower precipitant 

concentration to the reservoir solution, causing precipitant and protein concentration in 

the droplet to rise until equilibrium between the two solutions is established. Ideally 

this will create a supersaturated protein solution, as depicted in the phase diagram (1) 

entering the nucleation zone (2), where the formation of nuclei leads to a reduction of 

the protein concentration and thus to the entering of the protein solution into the 

metastable phase (3). The phase diagram is a rather simple illustration, and in practice 

A 
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Figure 7. Illustration of two waves of wavelength λ, 

reflected at the lattice plane that fulfill Bragg’s law. 

Atoms are depicted in read. 

nucleation and crystal growth are far more complex putting high demands on 

precipitant and protein solution. The transformation of the originally undersaturated 

protein solution to a supersaturated protein solution and the formation of ordered 

crystals are dependent on the ability of the medium to solubilize the protein and on the 

attractive interactions between protein molecules themselves. For membrane proteins 

apart from detergent based crystallization different lipidic environments such as the 

lipidic cubic phase
76

, sponge phase
77

 and bicelle method
78

 exist.  

2.2 X-ray crystallography 

Protein molecules are too small to be visualized with a light microscope, since atomic 

radii and bond lengths are usually in the range of 1-3 Å and the resolution limit of the 

radiation used is at least half of its wavelength (about 200 nm for visible light). X-rays 

however, (electromagnetic radiation of wavelengths 0.1-100 Å) fall into the order of 

magnitude of atomic diameters and bond lengths and can be applied to obtain the 

resolution required for molecules and macromolecules. X-rays are diffracted by the 

electrons in atoms, but because unlike visible light, diffracted X-rays cannot be 

recombined by a lens system to an image, this has to be done by mathematical means 

from a diffraction pattern. 

2.2.1 X-ray diffraction by single, macromolecular crystals 

X-rays can basically be diffracted by any atom (or rather electrons in atoms), but it is 

first through the reinforcement of the diffraction by the repeating units of regularly 

arranged atoms in crystals and the subsequent interference of scattered rays that 

distinct diffraction spots, also called reflections are obtained. Through destructive 

interference waves cancel out each other, and it is only if Bragg’s law is fulfilled that 

constructive interference occurs: 

 ndhkl sin2  (Equation 1) 

where n is the order of diffraction, dhkl the interplanar spacing between lattice planes, θ 

the angle between the incoming beam and the lattice plane and α the wavelength of X-

rays (Figure 7). 

 

 

The  
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Bragg reflections in the resulting diffraction pattern represent each a lattice point 

related to the Miller indices (hkl) of the crystal lattice planes. The spatial arrangement 

of the diffraction pattern is reciprocally related to the unit cell dimensions and 

symmetry rather than to the content of the unit cell. Because of measuring at a single 

wavelength, a stationary crystal will only produce a small number of Bragg reflections, 

the crystal is rotated during data collection in order to bring more Bragg reflections 

into the detector plane. Thus a complete data set for structure determination will be a 

collection of frames with diffraction patterns of different crystal orientations. 

The intensity of each reflection measured in turn is related to the atomic arrangement 

and the types of atoms in the unit cell and the electron density in the unit cell in turn 

can be described by the Fourier transform of the structure factor Fhkl as followed: 

 

)(21
),,(

i
hkllzkyhxi

h k l hkl eF
V

zyx
 

     (Equation 2) 

 

Where ρ(x,y,z) is the electron density at a position (x,y,z), V the volume of the unit 

cell, h,k,l the Miller indices, |Fhkl| the absolute value of the  structure factor and α´hkl 

the phase angle. The structure factor Fhkl itself describes a diffracted ray consisting of 

amplitude, frequency and phase. The frequencies are experimentally determined 

through the indices hkl (corresponding to 1/dhkl) and the structure factor amplitudes 

through the measured intensities, where I~|Fhkl|
2
. The phase information however, is 

lost during the diffraction experiment, which is referred to as “the phase problem” in 

X-ray crystallography. 

2.2.2 The phase problem 

The phase contains information about the exact position of a wave with respect to its 

origin and each reflection has its own phase. Unless the phase is 0, the electron density 

giving rise to a measured reflection may not peak at the corresponding crystal lattice 

planes, but somewhere in-between the crystal lattice planes. With the phase 

information lacking the exact position of peaks of electron densities remain unknown 

and the electron density cannot be calculated with equation 2. 

Through experimental phasing methods like MAD (multi-wavelength anomalous 

dispersion), SAD (single wavelength anomalous diffraction), MIR (multiple 

isomorphous replacement) or SIR (single isomorphous replacement)
79,80

 initial phases 

can be estimated de novo. Alternatively the structure factors from a known protein 

structure can be used as initial estimate of phases, if partial structure homology 

between the known protein structure (phasing model) and the new protein can be 

assumed. This method, known as molecular replacement is experimentally less 

elaborate, since additional data collection on crystal derivates does not have to be 

performed.  
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Figure 8. Schematic illustration of a X-ray 

experiment showing the data collection from a 

single crystal.  

2.2.3 Data collection 

Data collection is typically performed at synchrotrons, where electrons circulate at 

relativistic velocities in a storage ring. When forced into a curved motion, X-rays are 

emitted, that are directed through a system of collimators, monochromators and 

focusing mirrors, to produce a parallel, monochromatic X-ray beam. The crystal is 

aligned to the X-ray beam and rotated about 0.1-2 degrees per frame during data 

collection. The diffraction pattern of each frame is recorded on a 2D detector (Figure 

8) which integrates the intensities of the spots. The angular range of data to be 

collected, the oscillation range and the alignment of a certain crystal axis can be 

estimated by the analysis of 3-5 frames recorded prior to data collection. The 

parameters depend on the unit cell dimension, the internal unit cell symmetry and the 

mosaicity of the crystal. Software like MOSFLM
81

 or HKL-3000
82

 amongst others 

assist in finding a data collection strategy that is suitable for the current crystal. 

2.2.4 Cryocrystallography 

The exposure of protein crystals to X-ray radiation reduces the crystal order through 

direct ionization of the protein molecules and indirect through chemical modifications 

by the ionized solute
83

 . This radiation damage has a negative impact on the data 

quality which is observed by the loss of the diffraction intensity, and an increase in the 

temperature factor amongst others. Through cryocooling and data collection at 100 K, 

introduced by Hope
84

 radiation damage is significantly reduced. In order to prevent the 

water present in the protein crystal to disrupt the crystal structure when transformed to 

its crystalline stage, cryoprotectants are added to the protein crystal prior to flash-

cooling it in liquid nitrogen. Low molecular weight polyethylene glycols, glycerol or 

saturated saccharose solution are common examples of cryoprotectants used in protein 

crystallography. 

2.2.5 Data processing 

During data processing the reflections are indexed according to the miller indices, unit 

cell dimensions and space group are determined and the spot intensities are integrated. 

Subsequent scaling includes the correction of the absolute intensities of the measured 

reflections for differences in e.g. the X-ray path through the crystal, variability of 

diffraction powers in different crystals or crystal decay over time, and finally the 

intensities are converted to structure factors. These processes are performed 
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computational with software like MOSFLM
81

 or XDS
85

 and are widely accessible and 

automated at synchrotrons. 

2.2.6 Molecular replacement 

The basic principle of molecular replacement is that phases of a structural similar 

protein (the phasing model) are applied in order to calculate an initial electron density 

map for the new protein model. During the iterative refinement process the initial 

phases are converted to the phases of the new protein. For this purpose the phasing 

model has to be superimposed to the new, unknown target protein in the unit cell. By 

setting all phases to 0, a map of interatomic vectors, independent of the origin and the 

orientation of the molecule in the unit cell can be calculated by the Patterson function
86

 

a variation of equation 2: 

)(221
),,( lwkvhui

h k l hkl eF
V

wvu       (Equation 3) 

The Patterson function can be calculated in the absence of any phasing information to 

obtain peaks at locations corresponding to interatomic vectors. The correlation of the 

Patterson maps between phasing model and target protein guides the superposition of 

the phasing model on the target protein in the unit cell, through a rotation and 

translation search. The computer program Phaser, in the CCP4 program suite
87

 can be 

used for phasing of macromolecular structures.  

2.2.7 Structure refinement 

Structure refinement aims the improvement of the phases on one hand, and thus the 

electron density map and the molecular model on the other hand through a successive 

iterative refinement process, alternating between the real space and the reciprocal 

space. Simplified, in the reciprocal space the electron density map is interpreted and a 

model is build. In the real space the electron density map is improved with the aid of 

the currently build model through automated refinement. If successful, structure 

factors obtained from experimentally measured intensities (Fobs) and structure factors 

calculated from the model (Fcalc) will converge during the refinement process. During 

the refinement process the refined model is compared for its agreement with the data 

by means of the crystallographic R-factor: 

 

 


 


),,(

),,(),,(
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lkhFlkhF
R

obs

calcobs

work   (Equation 4) 

 

 

where |Fobs(h,k,l)| is derived from the measured intensity of the reflections and 

|Fcalc(h,k,l)| the amplitude of the structure factor calculated from the current model. 

However Rwork can be artificially reduced through the introduction of too many 
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parameters, and therefore Rfree was introduced for statistical cross validation. In 

principal Rfree is calculated in the same way as Rwork, with the exception that a small 

subset of reflections is used, set aside during the refinement (usually 5%). 

Rwork should not deviate highly from Rfree. 

Computer programs like COOT
88

 facilitate the map interpretation (both manual and 

automated model building) and an example of a computer program that can be used for 

structure refinement is PHENIX
89

. 

2.2.8 Data quality and validation 

With increasing resolution the diffraction intensity decreases and reflections beyond a 

certain resolution limit that cannot be distinguished from noise have to be excluded 

from the data set in order to maintain a good model quality. Traditionally RSym
90

 a 

measure for the agreement between unique reflections with more than one observation, 

together with the signal-to-noise ratio (<I/σ(I)>) are used as criteria for data binning. 

Due to the dependence of Rmerge on the redundancy, an alternative form, Rmeas was 

suggested as a criterion instead
91

 where the multiplicity of reflections is taken into 

account. However the correlation of these parameters with the final model quality was 

questioned and a correlation coefficient upon the division of the data in two parts CC1/2 

was suggested instead
92

.  

Finally the models root-mean-square (rms) deviations of bond-lengths and bond-

angles from an accepted set of values, and the backbone conformational angles Φ and 

Ψ in accordance with the Ramachandran plot
93

 are monitored for physico-chemical 

reasonable conformations. 

2.3 Small angle X-ray scattering  

Biological small angle X-ray scattering (SAXS) is a low resolution technique (50-

10Å) to investigate macromolecules in solution. The information content that can be 

extracted from the resulting scattering curve of SAXS experiments includes folding, 

aggregation, shape, assembly and conformation of macromolecules in solution. 

Combined with high resolution structures like X-ray crystallography where models 

often are limited to certain trapped conformational states, the crystal lattice or 

incomplete complexes, or NMR that faces size limitations, SAXS provides 

complement biological relevant information. The following sections will focus on 

proteins, but the principles of biological SAXS can be applied to other biological 

macromolecules as well. 

2.3.1 Scattering by molecules in solution 

In contrast to the distinct Bragg reflections obtained in X-ray crystallography, the 

diffraction of macromolecules in solution is isotropic due to the randomly orientated 

distribution of particles. The magnitude of the resulting vector q between the incident 

and the scattered X-ray beam at 2θ (see Figure 9) can be deduced to: 



 sin4
q   (Equation 5) 
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Figure 9. Schematic illustration of X-ray 

scattering by molecules in solution. The 

incident X-ray beam is scattered at 2θ of the 

incident beam in a radial symmetric manner, 

resulting in the scattering vector q. 

with λ being the wavelength of the incident beam.  

 

 

X-ray scattering by proteins in solution can be considered as the scattering by 

assemblies of electrons. The total scattered amplitude is accordingly described by the 

sum of the scattered waves from all atom pairs in the ensemble: 







N

i

riq

i
iebqA

1

)(
)(   (Equation 6) 

Where q is the scattering vector, ri is the position and bi the scattering factor of atom i.  

In order to access the scattering from the protein in solution, the scattering pattern of 

the solvent is subtracted from the one of the protein solution. For this purpose the 

scattering length density distribution of the protein solution ρ(r) and the solvent ρs are 

described as the scattering amplitude per volume and the difference Δ ρ(r)= ρ(r)- ρs is 

the excess scattering length density which is related to the scattering amplitude as 

follows: 


V

iqr drerqA )()()(   (Equation 7) 

where V is the particle volume and r interatomic distances. The measured intensity is 

the product of the amplitude and its complex conjugate, I(q)=A(q)A(q)* or 

<I(q)>Ω=<A(q)A(q)*>Ω averaged over all orientations. For monodisperse protein 

solutions following solvent subtraction <I(q)>Ω is proportional to the scattering of a 

single particle averaged over all orientations. 

2.3.2 Data collection and reduction 

As with for X-ray crystallography, SAXS data is commonly collected at synchrotrons. 

Foremost the scattering of an empty cell and a standard protein of known 

concentration (most commonly BSA) are recorded. During the data collection 10 

frames of buffer solution and 10 frames of protein solution (~1-10 mg/ml) are 

alternately collected under continuous flow in order to minimize radiation damage, as 

the exposure time that varies from 1-10s. The frames are averaged and noise 
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subtracted (solvent empty cell, background) and finally the scattering of the buffer is 

subtracted from the scattering of the protein solution. The resulting 2-dimensional data 

array is circularly averaged and reduced to a one dimensional plot of I(q) vs q. At the 

SAXS beamline at the ESRF sample uptake, data collection and data reduction are 

automatically performed in BsxCube. 

2.3.3 Instant Sample characterization 

Several overall shape parameters for the target protein can be extracted directly from 

the scattering curve like the radius of gyration (Rg) or the maximum particle diameter 

(Dmax). The radius of gyration is the root-mean square of the distances of all electrons 

from their centre of gravity and thus a measure for the spatial extension of the protein. 

For an ideal protein the radius of gyration of the protein can be readily extracted from 

the forward scattering intensity at q=0, I(0) by means of the Guinier approximation
94

 : 

)
3

1
( 22

)0()(
qRg

eIqI


   (Equation 8) 

I(0) can be obtained by the intercept of the y-axis of the linear region of the Guinier 

plot, where lnI(q) is plotted vs q
2
. Because of the linear dependence of lnI(q) on q

2
  

that is not valid at higher q-ranges, the q-range for the estimation of the Rg  in 

biological SAXS should not exceed 1.3/Rg.  

Dmax can be estimated from the distance distribution function which is a Fourier 

transformation of the scattering intensity: 
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with r being the interatomic distances. However the computation of ρ(r) is not straight 

forward, due to the limited range of I(q) available through measurements. Instead an 

indirect Fourier transformation is applied assuming that ρ(r)=0 for r=0 and r>Dmax as 

proposed by Glatter
95

, where the ρ(r) function is approximated by a linear combination 

of a finite number of functions. The ρ(r) function and the Rg are automatically 

determined by the programs AUTOGNOM and AUTORG
96

 implemented in Primus
97

 

a program in the ATSAS program package. 

2.3.4 Theoretical calculated scattering curves from high resolution models 

The calculation of theoretical scattering curves of high resolution protein structures 

and the subsequent comparison to the experimental scattering curve of the 

corresponding protein in solution is a powerful tool to elucidate divergences between 

high and low resolution structures. The program CRYSOL
98

, part of the ATSAS 

program package calculates the theoretical scattering curve of high resolution 

structures with spherical harmonics approximations of the molecular envelope by 
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taking the scattering of the hydration shell into account. This is of importance, since 

the solvent scattering differs from the scattering of the hydration shell thus leading to 

an increase in the protein envelope
99,100

. The agreement between the theoretical 

calculated and the experimental scattering curve is evaluated through the normalized 

discrepancy function χ
2
: 
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where Np is the number of experimental data points, I(qi)exp and I(qi)calc the 

experimental, respectively calculated I(qi) scattering curve at q=i, c a scaling factor 

and σ(qi) the experimental error. A χ
2
-value of 1 indicates that the theoretical and the 

calculated scattering curves do not differ. 

2.3.5 Modeling with SAXS data 

The amount of information that can be extracted from a SAXS experiment is 

insufficient to directly generate protein models. However in a process of reverse 

modeling different approaches are applied to reconstitute low resolution shapes with 

the aid of partial or complete high resolution structures or ab initio
101

 (and references 

within). Structural flexible proteins that exist in several conformations in solution can 

be modeled through the ensemble optimization method (EOM)
102,103

 which is 

implemented in the ATSAS program package.  The principle of this method is that a 

pool of protein structures is generated based upon sequence and/ or structural 

information. From this pool ensembles of models with different conformations are 

optimized against the experimental SAXS scattering curve. The theoretical calculated 

scattering curve of the final model ensemble will have the least discrepancy to the 

experimental scattering curve, indicated by χ
2
, similar to equation 9. 

2.3.6 Data quality and validation 

Since no universal quality criteria for SAXS raw data exists, it is of great importance 

to guarantee high sample quality during measurements. Because the excessive 

scattering length is obtained through solvent subtraction, the solvent must perfectly 

match the solvent of the protein solution in order to minimize experimental errors. 

This is achieved through the dialysis of the protein solution against the solvent. 

Furthermore the sample has to be monodisperse and sample aggregation has to be 

excluded through for instance filtering the sample prior to measurements. Sample 

aggregation can be validated with the Guinier plot, where positive or negative 

deviations from the linear region indicate molecular attraction or repulsion 

respectively. Furthermore scattering curves have to be investigated for possible 

radiation damage. Experimentally determined Rg and Dmax values obtained from the 

Guinier approximation and the indirect ρ(r) function are most reliable for globular, 

inflexible proteins in solution.   
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Figure 11. Schematic illustration of the 

THz absorption data collection. Every 

second absorption spectrum is recorded 

under simultaneous laser activation of the 

protein sample in a nitrogen purged 

chamber. 

 

Figure 10. Spectrum of electromagnetic radiation. THz radiation is located in the spectral region      

within frequencies of 0.1-10 THz 
149

 

2.4. Terahertz radiation 

Terahertz (THz) radiation ranges from frequencies of 0.1 to 10 THz, thus lying at the 

interface between electronics (microwaves) and photonics (infrared) (Figure 10), and  

 

 

until for about two decades ago it was technically difficult to generate reliable, stable 

THz radiation at sufficient energies or to detect THz radiation which is generally 

referred to as the “Terahertz gap”.  Because THz radiation lies within the frequencies 

of low frequency internal protein motions
104

 it is attractive to explore its application in 

structural biology.  

2.4.1 Terahertz absorption spectroscopy 

Terahertz absorption spectroscopy aims to probe vibrational modes of proteins. THz 

radiation covering a certain wavelength range can be generated at synchrotrons and 

detected with a bolometer, a thermal detector that senses impinging radiation through 

temperature dependant electrical resistances. THz radiation is strongly absorbed by 

water and order to minimize THz absorption by water vapor THz measurements are 

performed in a water free environment, as for instance a nitrogen purged chamber. 

Biomolecules absorb less THz radiation compared to water and consequently THz 

absorption of protein solutions decrease with increasing protein concentration, as 

shown for BSA and Lysozyme
105,106

. Nevertheless an excess THz absorption can be 

observed, if the contribution of water to the THz absorption in the buffer solution is 

considered
105,106

. Light activated proteins such as the photosynthetic reaction centre 

from R. sphaeroides can be activated upon laser illumination facilitating the 

measurement on activated protein as depicted in Figure 11. By alternating 

measurements of laser activated (on) and not activated protein (off), two different data 

sets that differ exclusively in the protein conformation itself can be recorded.  
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THz absorbance of THz radiation underlies Lambert- Beer law
104,106

 and the according 

difference absorbance is accordingly: 

dark

light

I

I
A log    (Equation 10) 

Where A is the absorbance, Ilight is the transmitted THz radiation of the illuminated 

protein sample and Idark the transmitted THz radiation of the resting protein sample.  
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3. Results and Discussion 

3.1 High resolution structure of S100A4 in complex with a non-muscle myosin  

      IIA fragment (Paper I) 

The underlying mechanism for metastasis involves a variety of cellular processes that 

are still not well understood. Understanding the molecular basis of these processes is a 

prerequisite for the design of therapeutic agents to control metastasis in affected cancer 

patients. A number of methods allow us to study molecular events, but it is often the 

structural information that adds the missing link to complete the whole picture. 

S100A4 is strongly associated with metastatic processes. In previous studies it had 

been shown that S100A4 interacts with the C-terminal region of non-muscle myosin 

IIA (NMIIA) rods in a Ca
2+

-dependant manner
107,27

 and that NMIIA filament 

formation was negatively affected in vitro by this interaction
27,28,34

.  Furthermore the 

interaction between S100A4 and NMIIA could directly be linked to increased cell 

motility in S100A4 expressing cells
32

. The structural mechanism underlying filament 

disassembly however was not known.  

Despite several efforts to map the binding sequence and the binding stoichiometry of 

NMIIA to S100A4 a clear solution was not found. Minimal binding sequences, affinity 

constants and estimated binding stoichiometries differed amongst studies mainly due 

to the application of various methods with distinct sensitivities
27,26,108,28,109,110

.  Even 

the Ca
2+

-activated S100A4 X-ray structures
19,20,21

 where the hydrophobic pockets 

between helix3 and helix4 are in the exposed mode, offer no obvious description of the 

minimal binding sequence of NMIIA and its binding stoichiometry. 

3.1.1 Crystallization of the S100A4 complex 

From several crystallization set ups with various S100A4 mutants and the wild type, 

crystals were only obtained from the quadruple mutant (C3S, C81S, C86S, F45W) in 

our hands. The cysteine to serine mutations were initially designed in order to prevent 

disulfide-bridge mediated oligomerization, however when working with S100A4 

TCEP was always present in the buffer solution. The binding affinity to MPT was 

lower in the quadruple mutant, but not in the F45W mutant, and the lower binding 

affinity can most probably be attributed to the C81S mutation, since C81 has been 

shown to be critical for S100A4 binding
111

. Interestingly crystal contacts are observed 

between loop 2 and the MPT of an adjacent molecule in the close vicinity to the C81S 

mutation. This indicates, that the C81S mutation might provoke a conformational state 

of the MPT, possibly due to a less tight interaction reflected by the decreased binding 

affinity, that promote crystal contact formation in this region.  Even though the 

binding affinity of the cysteine to serine mutant was reduced, the binding 

stoichiometry was found to be equally to the wild type, suggesting that the binding 

mode is similar. This could later be confirmed by a wild type NMR structure 

complexed to a non-muscle myosin fragment shortly after our structure was 

published
22

.  

 

 



Results and Discussion (Paper I) 

 

21 
 

 

Figure 12. Overview of S100A4 in complex with 

the 45-residue-long NMIIA tail fragment along 

the twofold symmetry axis of the dimer. S100A4 

subunit A and B are shown in green and blue 

respectively, while NMIIA peptide in yellow 

(residues 1893-1913) and orange (residues 1914-

1935), and Ca
2+

-ions are gray. The main 

secondary structural elements are indicated. 

(Figure from Paper I) 

Figure 13. Schematic illustration of the assembly of NMIIA coiled-coils into filaments. Negatively 

charged residues (Glu1722-asn1756) (red) interact with positvely charged residues (Ala1868-Lys1895) 

(blue) also called the assembly competent domain (ACD). 

3.1.2 Binding modes in the S100 protein family 

The crystal structure of the Ca
2+

-activated S100A4 mutant (F45W, C3S, C81S, C86S) 

in complex with the NMIIA fragment MPT was solved to 1.9 Å by molecular 

replacement. The high resolution structure shows that one NMIIA fragment spans one 

S100A4 dimer as seen in Figure 12, revealing a complete novel binding mode within 

the S100 protein family. Until this finding structures of related S100 proteins with 

ligands including α-helical binding motifs were known to bind in a 1:1 stoichiometry 

with one α-helical motif interacting with a single monomeric subunit of the S100 

protein
112,113,114,115

. The resulting interaction network involving 36 amino acids (1893-

1929) and overall 44 interactions between S100A4 and its ligand (calculated with the 

protein interaction server
116

) is considerably more extensive compared to the shorter, 

up to 23 amino acid long interaction sequence in related S100 protein 

complexes
112,113,114,115

. This may account for the increased binding affinity of S100A4 

to one MPT, compared to binding affinities determined in the μM range for other S100 

proteins and their ligands
114,117

.  Whether this binding mode is unique for the 

interaction of S100A4 with MPT or whether binding to other targets such as p53 

differs is not clear, yet.  

3.1.3 Binding sequence and dynamical adaption to the ligand 

NMIIA coiled-coils assemble into filaments through the interaction of negatively 

charged (glutamine 1722-asparagine 1756) with positively charged regions 

(alanine1868-lysine 1895)
118,119

 as depicted in Figure 13, with the assembly competent 

domain (ACD, in blue in Figure13) being crucial for the formation of filaments
118,119

. 

Overall observed interactions between S100A4 and residues 1893-1929 of the NMIIA 
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Figure 15. Key interactions within the S100A4-NMIIA MPT complex. (A) Polar interactions at the 

interface of the N-terminal part of the MPT with subunit A. (B) Interactions of MPT with subunit B are 

dominated by hydrophobic interactions, where Met 1910, Val1914, Leu1917 and Leu1921 (a and d 

positions in the coiled-coil) face inward. Phe1928 is located in a hydrophobic cavity formed by loop 2 

(residues 41-51) and helix 3, while Arg 1933 forms ionic interaction with Asp10 of subunit A wrapping 

around the dimer. The overview in the middle is shown in an orientation perpendicular to the twofold 

symmetry axis of the S100A4 dimer. (Figure from PaperI). 

Figure 14. Ribbon representation of 

the least squares superposition of 

subunit A (green) and subunit B (blue) 

based on the rigid regions of subunit A 

and B as defined by ESCET
120

.(Figure 

from PaperI). 

fragment identify the binding sequence of 

S100A4 to non-muscle myosin to be part of the 

ACD and the random coil, resulting in a polar 

binding sequence with a higher portion of 

charged residues towards the N-terminus. From 

the architecture of S100A4 and the polar NMIIA 

fragment it might be expected that interactions 

of activated S100A4 are preferably established 

between hydrophobic regions of the MPT and 

the hydrophobic cleft, but instead the dimeric 

S100A4 adapts each subunit to the nature of its 

ligand, mainly through conformational 

flexibility of loop 2 and helix 3 as seen by the 

superposition of subunit A and subunit B after 

the calculated distance difference matrix (DDM) 

by ESCET
120

 in Figure 14. This in turn allows 

each subunit to establish distinct interactions to 

the MPT and as a result hydrophilic interactions 

are mainly accumulated between one subunit of 

S100A4 and the N-terminus of the MPT (Figure 15A and left panel), and hydrophobic 

interactions to the other subunit S100A4 subunit close to the C-terminus of the MPT, 

as shown in Figure15B and right panel. This is a remarkable example of how identical 

subunits are able to form distinct characteristic interactions through conformational 

flexibility and could be the reason for the broad substrate specificity of S100A4. 

However the overall conformation of the Ca
2+

-activated
 
peptide-bound S100A4 is very 

similar to the Ca
2+

-activated peptide-less S100A4 and the main conformational 

changes occur upon Ca
2+

-activation. 
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3.1.4 Structural mechanism for filament disassembly 

Thermostability measurements on filament forming NMIIA fragments (Ser1712-

Glu1960 and Gln1795-Gln1960) in the absence and presence of S100A4 show that 

two S100A4 bound to one filament might unwind the coiled-coil to a certain extent. 

Together with the observation that the ACD and the unstructured region are part of the 

binding sequence of NMIIA to S100A4 it can be assumed that the disruption of the 

ACD by S100A4 is mainly responsible for the disassembly of filaments. This could be 

in combination with bound S100A4 being a spatial hindrance for NMIIA coils to 

approach each other. 

3.1.5 Summary  

The structure of the S100A4 mutant (F45W, C3S, C81S, C86S) in complex with a 

NMIIA fragment was the first reported high resolution structure of a S100A4 protein 

with a bound peptide derived from a natural interaction partner. Its binding mode is 

clearly distinct from that shown for other S100 protein family members so far 

considering the binding stoichiometry and the unusual asymmetric distribution of 

hydrophobic and hydrophilic between different dimer subunits. The binding region of 

S100A4 to NMIIA can be assigned to residue 1893-1929, partly coinciding with 

residues of the ACD of NMIIA that are unwound to a certain extent through the 

interaction, leading to the disassembly of filaments.  The high resolution structure of 

S100A4 in complex with MPT contributed to our understanding of the binding 

mechanism to NMIIA and shows the importance of conformational flexibility in the 

adaption of S100A4 to distinct ligand properties. The conformational flexibility of 

loop 2 and helix 3 might be the key for the diversity of binding partners to S100A4, 

but it is not known, yet if the binding mechanism to other ligands resembles the one 

detected between S100A4 and the NMIIA fragment, or if other ligands bind in a 

distinct way. 
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3.2 The role of the C-terminal region of S100A4 (Paper II) 

Amongst the S100 protein family loop 2 (situated between helix 2 and helix 3), the N-

terminus and especially the C-terminus are sequentially the least conserved regions. A 

role of the C-terminus of S100A4, that had been shown to become flexible upon Ca
2+

-

binding
121,122

 as dynamic surface for target interaction was proposed upon the 

observation that the helical content at the proximal part of the C-terminus 

increased
121,122,18

. Zhang et al
123

 and Ismail et al
124

 investigated S100A4 C-terminal 

deletion mutants and found that the C-terminal region was important for the metastatic 

properties in animal models and migration and invasion in cell lines. By investigation 

several C-terminal deleted S100A4 mutants it was concluded that it might be the 

lysine residues 100 and 101 at the tip of the C-terminus that are mainly contributing to 

the metastatic promoting properties of S100A4. A high resolution structure of a Ca
2+

-

activated S100A4 with the last 8 C-terminal residues removed was reported
125

 , but 

until our, work structural studies have not been performed on a S100A4 deletion 

mutant with the last 13 C-terminal residues removed in complex to the NMIIA 

fragment MPT.
 

3.2.1 Crystallization of the C-terminal deletion S100A4 mutant (Δ13, C3S, C81S,  

         C86S) in complex with a non-muscle myosin IIA fragment 

As for the full length construct, no protein crystals of the C-terminal deletion S100A4 

mutant in complex with MPT were obtained, but for a triple mutant (C3S, C81S, 

C86S), which will be denoted Δ13Ser. Δ13Ser crystallized in the space group P1, 

which requires data collection over an oscillation range of 180°, and in order to obtain 

a complete data set in our case data from 3 crystals had to be merged. The structure of 

the Δ13Ser mutant could be solved to 1.4 Å and in addition a further X-ray structure of 

the S100A4 mutant (F45W, C3S, C81S, C86S) could be solved to 1.4 Å (Figure16), 

which will be denoted F45WSer. F45WSer crystallized in the same space group as 

before (Paper I), but under different crystallization conditions. 

3.2.2 Comparison of the Δ13Ser and the F45WSer -MPT complexes 

Figure 16A and B show overviews of the Δ13Ser and the F45WSer complexes. The 

overall architecture of the Δ13Ser complex is similar to the one of the F45WSer 

complex and in addition no interactions can be detected in the C-terminal region of the 

F45WSer complex to the NMIIA fragment beyond residue 84 as calculated by the 

protein interaction server
116

. The least square superposition of Subunit A, Subunit B 

and the MPT as calculated by ESCET
120

 reveal that conformational differences 

between this structures are mainly found in loop 2, helix 3 and the tip of the C-

terminus, as the distance difference plot and the superposition of the subunits in 

Figure16 C-G reveal. Parts of the N-terminus and the C-terminus of the bound MPT 

are not well defined in the X-ray structure and in addition the conformation of helix 3 

does not differ significantly in between the two subunits, as observed in the F45WSer-

MPT complex. In addition affinity measurements with the MPT and filament 

disassembly assays with a dimeric NMIIA rod fragment (1712Q-1960E) did not reveal 

substantial binding differences or impaired ability to disassemble filaments between 
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Figure 16. Structure comparison of the D13Ser and the F45WSer in complex with MPT. Three dimensional 

structure of the Ca
2+

-activated, MPT-bound Δ13Ser (A) and F45WSer (B) S100A4. Subunit A is shown in 

green, subunit B in blue and the bound MPT in yellow. Helices (H) and the N-and C-terminus (N, C) of the 

bound peptide are indicated. Distance differences in chain A and B (C) and the bound MPT (D) between the 

Δ3Ser and the F45WSer complex and superposition of the subunits A, B and the MPT in (E), (F) and (G), with 

the subunits of the Δ13Ser shown in yellow and the F45Wser shown in red. (Figures from Paper II). 

the Δ13 and the wild type. These results suggest that the Δ13Ser-MPT complex 

represents an alternative conformation that might arise due to the C-terminal 

truncation and crystal contact differences. For instance helix 3 is involved in the 

formation of crystal contacts to the central part of the bound MPT in the Δ13Ser 

complex, and this might influence its conformation. 

 

 

 

 

 

 

 

 

 

 

3.2.3 Conformational changes in the low resolution solution structure of S100A4     

          Wild type upon Ca
2+

-binding 

From SAXS measurements of wild type and Δ13 S100A4 in complex with MPT we 

were not able to assign a role to the C-terminus, since differences in the SAXS curves 

were rather diffuse. However changes in the SAXS scattering curve in the wild type at 

0.15-0.25 reciprocal Ångström could be observed upon Ca
2+

 -binding, that were not 

present in the Δ13 mutant, as seen in Figure 17A and B. SAXS is a low resolution 

method and changes in the SAXS region indicate some form of shape remodeling, but 

changes in the size of wild type S100A4 upon Ca
2+

-binding were initially difficult to 

assign. The reason was that on one hand the flexible C-terminus hampered trials to 

identify the maximum distance within molecules (Dmax) confidently with the ρ(r) 

function (see section 2.3.3) and the radius of gyration (Rg) on the other hand differed 

only slightly. The Rg represents the root-mean-square distance of the centre of mass 

and may be applied for the size-estimation of globular proteins but it is a poor measure 

of the average size of elongated proteins. In addition by the instant determination of 
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Figure 17. Scattering curves and low resolution models of Ca
2+

-

free and Ca
2+

-bound S100A4. Differences in the WT (cyan) and 

Ca
2+

-bound WT (red) are mainly observed at 0.15 Å
-1

-0.25Å
-

1
(A). The scattering profile of the Δ13 mutant (purple) changes 

less upon Ca
2+

-binding (orange) (B). Typical examples of 

EOM
101

 extended (C) and compact (D) S100A4 models. 

(Figures from PaperII). 

the Rg from SAXS scattering 

curves the nonlinear data at 

higher scattering angles is 

excluded and Rg values might 

be inaccurate. Therefore the 

hydrodynamic radius (Rh) was 

determined by Diffusion NMR 

and a significant change of the 

Rh in the wild type upon Ca
2+

- 

binding was found (from 

25.6±0.4Å to 33.1±1.6Å) but 

not in the Δ13 mutant. This 

indicates that the average 

radius of wild type but not 

Δ13 S100A4 increases upon 

Ca
2+

-binding. Affinity 

measurements in the presence 

and absence of Ca
2+

 on MPT 

binding by wild type and the 

Δ13 mutant confirm that the 

conformational change in the 

core of S100A4 to open up a 

hydrophobic cleft
19,126

 is most 

probably intact in the Δ13 

mutant, as binding to MPT is only observed in the presence of available Ca
2+

.  This 

means that size changes in the wild type may relate to the C-terminus. A pool of 

models generated with EOM
102,103

 with constant S100A4 core regions and flexible C-

termini optimized against the SAXS scattering curves demonstrates clearly that the 

overall structure of the Ca
2+

-less wt is rather compact whereas the C-terminus adopts 

an extremely extended conformation in the Ca
2+

-bound form as shown in Figure 17C 

and D. At this stage the cause of the distinct conformations was not obvious.   

3.2.3 MD simulations reveal the cause for the distinct C-terminus conformations 

From high resolution structures of S100A4
18

 and its Ca
2+

-activated form
20,19,21

 

different C-terminal conformations could be observed, but the C-terminus is generally 

not well defined and an explanation for the distinct conformations could not be derived 

from these structures. In addition, the only high resolution structure of a Ca
2+

-bound 

S100A4 with a well defined C-terminus is a NMR structure of a S100A4 complexed to 

a NMIIA fragment
22

. From SAXS measurements it was observed that the C-terminus 

adapts an elongated conformation in the presence of Ca
2+

 but the role of this elongated 

conformation in metastasis promoting properties of S100A4 was still unclear. In order 

to gain insights in the dynamics of S100A4 molecular dynamics (MD) simulations 

were performed. MD simulations from energy minimized Ca
2+

-free and Ca
2+

-bound 

S100A4 over 100ns in time steps of 2fs confirmed the observation, that the C-terminus 

of wild type S100A4 becomes extremely elongated in the presence of Ca
2+

, whereas in 

the Ca
2+

-less form the C-terminus is close to the core region, as depicted in Figure 18A 
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Figure 18. MD simulations of Ca
2+

-bound and Ca
2+

-free S100A4. The C-terminus of Ca
2+

-bound S100A4 

becomes elongated (A), whereas Ca
2+

-free S100A4 is more compact (B). The C-terminal residues are depicted 

in red and the negatively charged EF-hands in cyan. The calculated Rg of Ca
2+

-free WT (black) and AAA 

construct (red) (A) and the same constructs in the Ca
2+

-bound form (B) during the MD simulation. (Figures 

from Paper II). 

and B. In addition the MD simulations reveal that the positively charged tip of the C-

terminus interacts with the negatively charged Ca
2+

-binding site (in cyan in Figure 18). 

From this observation it was concluded, that the interaction of the C-terminus might 

interfere with the Ca
2+

-binding, and this is indeed the case as confirmed by ITC 

measurements that show that the Ca
2+

-affinity of the high-affinity Ca
2+

-binding site is 

40 times increased in the Δ13 mutant compared to the wild type. Ismail et al
124

 

emphasized the importance of the last basic amino acids of the C-terminus in the role 

of the metastasis promoting properties of S100A4 and the binding affinity to a NMIIA 

fragment (the last 149 C-terminal residues) but at this time point the role could not be 

specified. In MD simulations were the last 3 residues of the C-terminal tip are mutated 

to alanines, the calculated Rg of S100A4 in the absence of Ca
2+

 (Figure 18C) is more 

dynamic than in the presence of Ca
2+

 (Figure 18D) and it seems that the C-terminus is 

interacting with the hydrophobic cleft in the Ca
2+

-bound S100A4. A rational 

explanation for the decreased binding affinity of the NMIIA fragment to S100A4 in 

the absence of the last basic C-terminal residues is that its interaction with the 

hydrophobic cleft interferes with the binding of the NMIIA fragment in a similar way, 

as the positively charged residues interfere with the Ca
2+

-binding in the full length 

wild type, to reduce the affinity for the ligand. 
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3.2.4 Summary 

In previous studies it was observed that the C-terminal region had an impact on 

NMIIA binding and the metastatic promoting properties of S100A4, however no 

biochemical or structural description of the mechanism had been provided. The C-

terminus had been observed to become elongated upon Ca
2+

-binding amongst others 

by NMR studies and it was proposed that the C-terminal conformation might interact 

with the ligand binding. This work shows how the combination of different high – and 

low resolution and computational methods were gradually guiding us towards the 

hypothesis, that the C-terminus does not interfere with the ligand, but rather with the 

Ca
2+

-binding. And as a result we can propose that the impaired function of C-terminus 

deleted (Δ13) S100A4 in metastasis might be related to the disruption of its Ca
2+

-

dependant regulation due to increased Ca
2+

-affinity. In addition it is concluded that the 

charged residues at the C-terminal tip might prevent the C-terminus to bind to the 

hydrophobic cleft to cause autoinhibition.  Whether the direct interactions between the 

C-terminus and its natural full length NMIIA ligand or other interaction partners 

influence metastatic properties or interferes with other regulatory processes as for 

instance phosphorylation events has to be investigated further.  
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3.3 THz absorption spectroscopy (Paper III) 

Occurring within a time frame of ~200ps, the forward transport of electrons in 

photosynthetic reaction centre from the light activated special pair (P
*
) to form the 

charge separated state P
+
QA via P

+
BPhe

-127
 is much faster than the back reaction to the 

ground state P that lies within a time-scale of ~100ms
128

. Based on theoretical 

calculations it was hypothesized that energetically both the forward and the back 

reaction are supposed to occur on a faster time-scale, and that the reaction rates in the 

primary charge separation process might be influenced by conformational changes in 

photosynthetic reaction centre
36

. Further studies on the temperature dependence of the 

electron transport also suggest conformational dynamics in the electron transport
129

 

and in addition conformational changes in subunit H could be observed upon light 

activation of photosynthetic reaction centre
130

. Finally low frequency modes, of 15  

cm
-1

 and 77 cm
-1

 in reaction centre of Rhodobacter capsulatus were associated with 

the charge separated state
131

. However photosynthetic reaction centre dynamics during 

the electron transport is still not well understood. In this study it was explored whether 

changes in the vibrational dynamics of photosynthetic reaction centre are induced 

upon light activation and if so, whether they can be monitored by THz absorption 

spectroscopy, in the 0-4THz range.  

3.3.1 Difference absorption spectroscopy 

Because THz radiation is highly absorbed by water, THz absorption spectroscopy  

measurements of proteins were initially performed on protein films
132,133

. In the first 

THZ absorption spectroscopy measurements of BSA and lysozyme that were 

performed in aqueous solution
105,106

 a solvent baseline was calculated through the 

estimation of the water amount in the protein sample. However this method might 

introduce uncertainties in the results. Photosynthetic reaction centre can be reversibly 

activated by laser pulses and this has the advantage that the activated and the resting 

state can be investigated on a single protein sample and subtraction of the two states 

yield a difference spectrum. In the difference spectrum solvent effects that are not 

directly related to the protein activation will be subtracted out. This concept has been 

successfully applied in THz absorption spectroscopy of photoactive yellow protein
134

. 

3.3.2 Influence of the environment in the activation of photosynthetic reaction  

         centre 

THz absorption on photosynthetic reaction centre of R. sphaeroides was measured in 

detergent containing buffer (Figure 19A) and lipidic sponge phase (Figure 19B).  The 

difference absorption spectra for photosynthetic reaction centre measured at different 

concentrations in detergent containing buffer shows an overall increase in the 20-

130cm
-1 

range
 
with an extended peak in the 90-100cm

-1
 range as seen in Figure 19A 

(two upper lines). A similar difference absorption spectrum is obtained for reaction 

centre in lipidic sponge phase, as shown in Figure 19B (upper line), and upon scaling 

and superposition of the absorption spectrum measured in lipidic sponge phase to the 

one measured in detergent no significant differences can be observed. This might 

indicate that the vibrations observed could be independent of the environment, and for 
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Figure 19. Difference in THz absorption (αilluminated- αground) of 

RCsph and LMsph in detergent (A) and sponge phase (B) 

illuminated with laser intensity 7.7 kW m
-2

. The error bars are 

representing the standard error ( / N ). In panel A the two 

upper spectra are recorded from two different concentrations 

of RCsph, 1.1 mM (dashed line), an average of 86 different 

absorbance spectra and 0.76 mM (dash-dot line), an average 

of 90 difference absorbance spectra. The spectrum 

represented as the dotted line shows the difference absorption 

of the LMsph complex collected from two different samples 

with a concentration of 0.71 mM, in total 87 difference 

absorbance spectra. The spectrum represented by a solid line 

shows the difference absorbance for detergent based buffer, 

an average of 59 difference absorbance spectra. In pane B the 

two upper spectra show the difference absorbance for RCsph 

(0.76 mM) mixed 1:1 with sponge phase, the spectrum 

represented as a dash dot line is collected from a sample 

mixed directly prior to measurement (average of 114 spectra) 

while the spectrum represented as a dotted line is collected 

from a sample that was incubated for 14 days in RT (an 

average of 92 spectra). The spectrum represented as a solid 

line is collected from pure sponge phase, an average of 42 

difference absorbance spectra. 

instance include the reorganization of bondings that are not solvent slaved
135

. However 

this has still to be proven, since the solvent dynamics of detergent based solutions or 

lipidic sponge phase have not been investigated by THz absorption, yet.  

3.3.3 Localization of vibrational changes to the LM subunit 

In order to investigate whether vibrational changes can be attributed to the cytosolic 

H- subunit or the intramembrane L and M units (LM) THz difference absorption of 

LM (here designated RCLM) upon light activation was recorded. The difference 

absorption spectrum of RCLM in detergent based bufferis shown in Figure 19A. Again, 

the difference absorption spectrum rises steadily and peaks at 90-100cm
-1

, in 

accordance with the difference spectra of the photosynthetic reaction centre measured 

in detergent buffer and lipidic sponge phase. The equivalent absorbance difference 

spectra indicate that vibrational changes observed in the THz range measured are 

located to the LM subunit. The LM unit is highly conserved, and hosts the cofactors. 

Therefore it is not unlikely that molecular vibrations upon the excitation of 

photosynthetic reaction centre are concentrated o the LM subunit. It has been 

previously shown that the charge separation in isolated LM subunits was not reduced 

compared to the intact reaction centre
136

, however binding to ubiquinone was weaker, 

and the rate of the back reaction slower
136

.  

Computational normal modes derived from a crystal structure of reaction centre (PDB 

code 2BNP) with different force constants indicate a similar normal mode distribution 

as the experimental difference absorption spectra. But it was not possible to assign the 

measured absorption differences to detailed molecular features. 
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Figure 20. The difference absorption between spectra 

measured at sample temperatures of 25°C and 26°C (solid 

line). 10 spectra were used from each temperature when 

calculating the difference absorbance and the sample used 

was 0.76 mM RCsph in detergent. This 1°C temperature 

difference is about ten times higher than the estimated 

temperature increase upon laser illumination. The difference 

absorbance spectra for the 0.76 mM RCsph sample illuminated 

with a 7.7 kW m
-2

 laser is shown as a dotted line for 

comparison. The error bars are representing the standard error 

( / N ). 

3.3.4 Temperature effects 

The activation of reaction centre with a laser during the data acquisition will rise the 

sample temperature slightly. Therefore datasets were recorded at different 

temperatures (25° and 26°). The difference absorption of the temperature profile is 

distinct from the difference profile of the activated protein as seen in Figure 20, both in  

 

intensity and shape, This indicates that the difference absorption spectrum of reaction 

centre upon light activation includes non-thermally derived vibrational modes. 

3.3.5 Summary 

With this experiment it was proven, that non-thermally induced changes in the 

vibration modes of reaction centre upon light activation can be detected in the 0-4 THz 

region. The similarity between the reaction centre and the LM difference spectra 

indicate that vibrational changes might mainly occur in the LM subunit. Furthermore 

the vibrational changes are most probably not dependant on the solvent environment.  

However the featureless shape of the difference spectrum arises from a number of 

changes in different vibrational modes and it is still difficult to extract key motions.  

Interestingly THz absorption spectra of different proteins could be measured and are 

sensitive to the environment and protein species as several measurements 

show
132,105,106,133,134,137

 and therefore this technique could potentially be explored for 

the ability to provide more detailed information in combination with computational 

methods. 
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3.4. Surface engineering and purification of UbiA and MenA from E. coli for   

       crystallization (Manuscript) 

When this project was started, no experimental structural information of any member 

of the UbiA superfamily was available and functional studies had only been performed 

on extracted membranes containing these proteins
138,44

.  The deduction of structural 

information based on previous knowledge from related proteins was difficult because 

the functional related soluble aromatic prenylating enzymes differ sequentially and 

structurally from the intramembrane prenyltransferases of the UbiA superfamily
139

. 

Furthermore the sequence identity to the closest sequentially related proteins, 5-Epi-

aristolochene synthase  (Nicotiana tabacum), Geranyl-geranyltransferase (Rattus 

Norvegicus) and photosynthetic reaction centre (Rhodopseudomonas viridis) is less 

than 25%
140

.  On the basis of two recently solved apo and substrate bound X-ray 

structures of UbiA homologues from hyperthermophilic organisms
55,56

, the position of 

interacting active site residues could be identified and a reaction mechanism was 

proposed, where the prenylation of 1,2-dihydroxy-2-naphtoate is accomplished by an 

ionization-condensation-elimination mechanism, through the interaction of a charged 

amino acid side chain (here lysine) to the ionized oxygen of the pyrophosphate group 

of the isoprenoiddiphosphate
56

. However in one organism (A. pernix) the active site 

residues were not directly enzymatically determined, but derived from experimentally 

determined E. coli UbiA active site residues through conserved residues in sequence 

alignments
55

 and in the second organism (A. fulgidus) the X-ray structures are lacking 

the quinone substrate
56

. In addition the natural substrates of these UbiA homologues 

are not known, and might differ from the natural substrates of UbiA and MenA.  

Therefore additional structural information will contribute to a better understanding of 

these enzymes. 

3.4.1 Rational approach in the stabilization of entropic surfaces 

The importance of the intrinsic protein properties in successful crystallization has long 

been recognized and various methods like homology screening, directed mutations or 

the construction of fusion proteins are frequently applied in membrane protein 

crystallization
141,142

. In this work a library of rational designed E. coli UbiA and MenA 

clones was constructed with the aim to stabilize structurally flexible regions to 

promote the formation of crystal contacts. In addition UbiA had been shown to 

oligomerize in a DTT-dependant manner and in an attempt to abolish cysteine-

mediated oligomerization by disulfide bridge formation, cysteine residues were 

mutated to serine, a strategy that has been successfully applied in the crystallization of 

the S100A4 complex. The theoretical analysis of the mutation sites by means of the 

corresponding homology models indicate that the stabilized regions are predicted to be 

situated on exposed loops that are indeed involved in the crystal contact formation in 

the crystal structures of the two UbiA homologues from hyperthermophilic 

organisms
55,56

, which raises the probability of the mutations to interfere with the 

formation of crystal contacts.   
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3.4.2 Conformational flexibility in membrane proteins 

In their natural environment membrane proteins are surrounded by often specific lipids 

that stabilize the protein structure through lateral pressure and hydrophobic head 

groups
143

.  Upon the displacement of the lipid bilayer by detergents in the protein 

extraction process, membrane proteins gain more conformational freedom because the 

lateral pressure is released and stabilizing lipids are often removed and this may result 

in temporary unfolding processes and heterogeneous interactions
144

. In addition poor 

protein detergent complexes may interact with micelles resulting in increased 

heterodispersity
144

. Conformationally, membrane proteins can be stabilized by certain 

detergents, buffers and additives, and the stability in a given condition can be 

monitored by SEC or through thermostability assays
145

.  For this reason in addition to 

stabilizing exposed surfaces, suitable buffer conditions and additives have to be 

explored in order to keep the membrane protein itself conformational stable. 

3.4.3 Recombinant overexpression and IMAC purification 

Although both UbiA and MenA are members of the same protein family and were 

homologous overexpressed differences in the yield and the behavior during the 

recombinant overexpression were observed. For UbiA an autoinduction protocol could 

be established yielding high amounts of protein. In contrast MenA was only 

successfully overexpressed upon IPTG induction and cells had to be harvested shortly 

after the induction in order to obtain protein, although both proteins are classified as 

stable in E. coli in vivo
146

. However it is not clear whether the cell growth was 

inhibited due to the accumulation of missfolded protein, since recombinant expressed 

protein was found in the membrane. MenA might compete with substrates for 

ubiquinone biosynthesis and thus influence the viability of the cells by causing 

ubiquinone deficiency. Similar variations in the recombinant overexpression of various 

mutants did not arise within one protein species. Differences were also observed in the 

behavior upon IMAC purification and the detergents needed for the extraction of the 

proteins. MenA was co-purified with impurities and showed a tendency to aggregate in 

contrast to UbiA that had a higher degree of purity upon IMAC purification. This 

indicates that MenA is more instable in the purification buffer than UbiA. 

3.4.4 Size exclusion chromatography profiles 

The SEC profiles of four UbiA mutants and two MenA mutants were similar to the 

wild type SEC profiles under equally buffer conditions, as shown for UbiA in Figure 

21A-C and MenA in Figure 21D, except for two mutants that were highly polydisperse 

as seen by the appearance of several protein peeks in Figure 21D. This indicates that 

the proteins are conformational unstable under the buffer condition tested and 

aggregation and heterogeneous association occurs. The success in crystallization is 

negatively influenced by polydispersity
67

 and in addition the protein might not 

preferably exist in a functional conformation. For this reason different detergent and 

buffer conditions were tested for their ability to improve the quality of the protein 

solution.  The stability of UbiA could be improved in Na-phosphate and FC-12 as the 

decreased aggregation peak in the SEC profile in Figure 21E indicates. Similar results 
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Figure 21. SEC profiles of UbiA and MenA WT and mutants. (A) UbiA in Hepes buffer and the 

detergentsFC-12 (magenta), OM (blue) and LDAO (green). (B) Mutated UbiA, C169S (magenta) 

and C64S (blue) in Hepes. (C) Mutated UbiA, (P87A, S88L, A90T) (cyan) and (P87A, S88T, 

A90V) (orange) . (D) MenA WT (black) and mutated, (K87A, E222A, E284A) (cyan), (K213A) 

(orange), (K75A, E273A, E284A) (purple) and (E210A) (red). (E) UbiA WT in Na-phosphate 

buffer and FC-12. (F) MenA WT in LDAO and  Hepes (orange), Tris (cyan) and Mes (purple). 

were obtained for the wild type MenA in Mes buffer and LDAO as shown in Figure 

21F. These results suggest that the mutants can be stabilized in different buffer 

conditions similar to the wild type. The detergent LDAO is statistically well 

represented in successfully solved X-ray structures of membrane proteins
147

 in contrast 

to FC-12, that is a harsh detergent that might even have denaturing effects on some 

proteins. In our hands no enzymatic activity could be detected of UbiA upon the 

purification in Hepes and Tris buffer in FC-12. This could be due to the buffer or 

detergent conditions, but it cannot be excluded that the secondary structure is 

disrupted. Therefore the presence of secondary structure should be monitored by for 

instance circular dichroism (CD).  Furthermore the reconstitution into lipids for 

activity measurements and crystallization methods such as cubic phase
76

,  lipidic 
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sponge phase
77

, or bicelle
78

 crystallization  might reduce the influence of the detergent 

on the protein. 

3.4.5 Summary 

In this work a library of seven UbiA mutants and nine MenA mutants that were 

designed for reduced exposed surface entropy properties and cysteine mediated 

oligomerization was successfully cloned. From this library four mutants each could be 

recombinant overexpressed and purified by IMAC and SEC.  However polydispersity 

observed in all mutants under the purification condition tested suggests that the 

proteins and the corresponding mutants have to be stabilized additional by different 

buffer, detergents and additives. An improvement of the protein stability could already 

be achieved for the wild type proteins by testing different buffers and detergents, and 

this indicates that the stability of the mutants could be improved similarly.   
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4. Conclusions 

The conception of proteins being rigid molecules with a predefined structure that 

recognizes ligands according to the lock and key concept as initially proposed by 

Fisher has dramatically changed over the last decades and instead the idea that proteins 

exist in conformational substates in a dynamic energy landscape
5,148

 is increasingly 

gaining attention. Even if structural information is important for the understanding of 

the protein function, a single three dimensional structure does not provide sufficient 

information about the protein function and therefore the information of different 

structures and methods has to be combined in order to gain a full description of a 

protein.  

The high resolution structure of S100A4 in complex with a NMIIA fragment 

emphasizes the importance of structural information for the understanding of the 

protein function. Due to a distinct binding mechanism, compared to closely related 

S100 proteins and the dynamical adaption to its ligand the interaction of S100A4 to 

NMIIA could not be confidently derived, despite extensive biochemical studies on 

S100A4. In addition the work on S100A4 also reflects the importance of applying 

different structures and methods in the understanding of the protein function. Where 

high resolution structures alone could not deliver an explanation for the role of the C-

terminus, the combination with low resolution and computational methods finally 

guided us towards the role in the Ca
2+

-binding properties of S100A4. In addition to the 

role of conformational changes upon Ca
2+

-binding that serve to activate S100A4 we 

could identify the importance of the C-terminus dynamics in Ca
2+

-binding and 

dynamics of loop 2 and helix 3 in ligand binding, that rather represent conformational 

isomers of the Ca
2+

-activated S100A4. The structural and dynamical studies on 

S100A4 and its interaction with a peptide derived from NMIIA contributed 

significantly to the basic understanding of the mechanism of S100A4 mediated NMIIA 

filament disassembly. Nevertheless structural studies of the interaction of S100A4 

with NMIIA were performed on a peptide derived from NMIIA, which differs 

significantly from the full length natural NMIIA, and therefore the interaction with the 

natural substrate might be more complex. In addition S100A4-mediated filament 

disassembly might be accompanied with regulatory processes that are not reflected in 

our structural studies.  

The role and nature of conformational changes in the electron transport in 

photosynthetic reaction centre has been investigated with different structural and 

biochemical methods, and there is evidence for conformational flexibility. However it 

is still difficult to probe vibrational modes experimentally and there is a need for 

additional methods that will facilitate dynamical investigation of proteins and the role 

and the nature of dynamics in the electron transport in photosynthetic reaction centre 

are still discussed. The application of THz absorption spectroscopy to proteins is a 

relative new technique that aims to display vibrational modes that occur on the ps time 

scale. With the aid of THz absorption spectroscopy it could be shown in this work, that 

molecular vibrations change upon photoactivation of photosynthetic reaction centre 

from R. sphaeroides and that these changes most probably are independent of the 

solvent environment. However difficulties in interpreting the often featureless 
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absorption spectra do still prevent the extraction of key motions or the assignment of 

vibrations in the protein structure and this suggests that the method has to be 

developed further to be able to provide more detailed information of vibrations. 

As important conformational flexibility is for the protein function, it is a hinder in the 

production of well diffracting protein crystals for X-ray crystallographic studies, and 

the purification, especially regarding membrane proteins. Highly entropic surfaces 

reduce the success in the formation of ordered crystal lattices, and modifications are 

frequently applied in protein crystallography in order to enhance their conformational 

stability. In addition to the conformational flexibility of exposed surfaces membrane 

proteins exhibit often an overall structural enhanced flexibility upon the extraction 

from their natural environment and challenges in membrane protein purification and 

stabilization are the main reason for the lack of structural information of membrane 

proteins. The membrane proteins UbiA and MenA could be overexpressed and 

purified on IMAC, but both proteins need to be stabilized to obtain protein samples for 

further investigations.   
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