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ABSTRACT 
The goal of this PhD thesis was to define the importance of the interplay 
between reactive oxygen species (ROS) and their activation of the tumor 
suppressor p53 in development and disease. We addressed this question using 
molecular biology and biochemical techniques together with mouse genetics 
and bioinformatics. 

We have made two important discoveries: 

First, we show that antioxidant supplementation accelerates lung cancer 
progression in mice and the growth of human lung cancer cell lines. By 
reducing the levels of ROS and DNA damage, antioxidants deactivate the 
p53 protein and help cancer cells to evade growth arrest. 

Second, we show that the transcription factor zinc finger protein 148 
(Zfp148) is a potent suppressor of p53 activation under oxidative conditions. 
During lung development, suppression of p53 prevents growth arrest of 
pulmonary cells and permits prenatal lung maturation. However, in the 
ApcMin/+ model of colorectal cancer and in the Apoe–/– model of 
atherosclerosis, suppression of p53 promotes tumor development and 
atherosclerosis, respectively. Thus Zfp148 suppression of p53 plays 
important roles in both physiological and pathological contexts. 

We conclude that: 

1) Antioxidant supplementation may stimulate the growth and progression of 
undiagnosed lung tumors and should be used with caution. The risk of 
developing lung cancer in patients with chronic obstructive pulmonary 
disease (COPD) who take the antioxidant acetylcysteine to break down 
mucus should be carefully evaluated. 

2) Therapeutic targeting of Zfp148 may have beneficial effects in cancer and 
atherosclerosis by increasing p53 activity. 

Keywords: ROS, p53, Antioxidants, Zfp148, cancer and atherosclerosis 
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SAMMANFATTNING PÅ SVENSKA 
 
Målet med denna doktors avhandling har vart att definiera betydelsen av 
reaktiva syreföreningar (ROS) och deras samverkan och aktivering av 
tumörsuppressor  p53 i hälsa och ohälsa. Vi adresserar denna fråga med hjälp 
av molekylärbiologiska och biokemiska tekniker tillsammans med mus 
genetik och bioinformatik . 
 
Vi har gjort två viktiga upptäckter : 
 
1) Vi visar att antioxidant tillskott accelererar lungcancer progression hos 
möss och tillväxten av humana lungcancer cellinjer . Genom att sänka 
nivåerna av ROS och DNA-skada , inaktiverar antioxidanter  p53-protein och 
hjälper cancerceller att kringgå tillväxtstopp. 
2)  Vi visar att transkriptionsfaktorn zink finger protein 148 ( Zfp148 ) är en 
potent suppressor av p53 aktivering under oxidativa förhållanden . Vi viasar 
även att denna suppressor aktivitet är betydelse full för häming av kolorektal 
cancer och ateroskleros i mus modeller. För mycket av denna suppressor 
aktivitet leder dock till en lung utvecklings defekt följt av respiratorisk 
distress i samband med födsel av möss. Således har vi visat att Zfp148´s 
hämmning av p53 spelar en viktig roll i både fysiologiska och patologiska 
sammanhang . 
 
Vi drar slutsatserna att : 
 
1 ) Antioxidant tillskott stimulerar tillväxt och utveckling av framför allt 
tidiga icke diagnostiserade tumörer. Därför bör antioxidant tillskott användas 
med försiktighet . Risken att utveckla utvecklings lungcancer hos patienter 
med kronisk obstruktiv lungsjukdom ( KOL ) som tar antioxidanten 
acetylcystein att bryta ner slem bör utvärderas vården noggrant . 
 
2 ) Terapeutisk hämmning av Zfp148 kan ha gynnsamma effekter på 
utveckling av cancer och åderförkalkning genom att ökad p53 –aktivitet.
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ABBREVIATIONS 

ApoE Apolipoprotein E 

APC Adenomatosis polyposis coli 

CMR Chylomicron remnant 

COPD Chronic obstructive pulmonary disease 

CRE Cyclic recombinase 

FAP Familial adenomatous polyposis 

Floxed Flanked by loxP 

FAP Familial adenomatous polyposis 

Floxed Flanked by loxP 

GSH Glutathione 

GT Gene trap 

LDLr Low-density lipoprotein receptor 

LSL Lox stop Lox 

MEF Mouse embryonic fibroblast 

Min Multiple intestinal neoplasia 

NAC N-acetylcystein 

Nrf2 Nuclear factor like 2  also known as NFE2L2 

ROS Reactive oxygen species 
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VLDL Very low-density lipoprotein 

Zfp148 Zinc finger protein 148 

WT Wild-type 

mRNA Messenger Ribonucleic acid 

p53 Protein coded by Trp53 in mice and Tp53 in humans 

P1 Postnatal day 1 

TUNEL Terminal deoxynucleotidyl transferase dUTP nickend 
labeling 
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1 INTRODUCTION  

In this thesis I will explore the impact of targeting reactive oxygen species 

(ROS) and their interplay and activation of p53 (hereafter denoted the ROS-

p53 axis) in cancer, vascular disease and development. To achieve this we 

applied two major strategies. Firstly, we knocked out Zinc finger protein 148 

(Zfp148) in mice, a transcription factor that interacts with p53. Secondly, we 

treated cancer prone mice with ROS scavengers, more widely known as 

antioxidants. In this section, I will introduce and provide a background to the 

major concepts of this thesis including ROS, antioxidants, P53 and Zfp148 as 

well as highlight knowledge gaps coupled to these key factors. 

1.1 Reactive Oxygen Species 
Our present ecosystem is the product of a series of dramatic events. One such 

event, termed the great oxidation, started around 2.4 billons years ago as 

cyanobacteria begun to harness the power of photosynthesis. As a byproduct 

of photosynthesis, our atmosphere became rich in free oxygen (1, 2). This 

process nearly wiped out all life on earth, since it was previously obligate 

anaerobic. As a consequence, the great oxidation sparked the evolutionary 

adaptation of early life to the presence of oxygen. Whether or not high levels 

of oxygen were required for higher animals to evolve remains debated. 

Indeed, recent discoveries of multicellular organisms living their whole lives 

in an oxygen free environment suggest that this might not be the case (3, 4). 

Nevertheless, the majority of life forms on earth including all mammals are at 

present totally dependent on oxygen, a highly toxic agent. Once oxygen was 

harnessed by respiration in the final step of the electron transport chain, 

aerobic life became able to generate exponentially more energy molecules 

per nutrient molecule. However, this boost in energy production came with a 
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price in the form of byproducts of oxygen metabolism called reactive oxygen 

species (ROS) which are toxic and cause damage to macromolecules 

including proteins, lipids and DNA (5-8). In order to sustain long life, an 

adaptive response was evolved. Nuclear factor like 2 (Nrf2 or NFE2L2), the 

master transcriptional regulator of the endogenous antioxidant response, 

maintains homeostasis and redox balance in response to oxidative stress 

(increased ROS levels) within each cell (9). Naturally, an adaptive 

antioxidant defense system, which is activated by oxidative stress, will 

always be one step behind. Hence it is not surprising that ROS are implicated 

not only in cancer and cardiovascular disease, but also in physiological aging 

(10). 

1.2 Antioxidants 
Antioxidants are electron donating molecules that neutralize ROS and other 

free radicals that may otherwise cause oxidative damage to DNA, proteins 

and lipids and promote cancer and cardiovascular disease (11, 12). 

Antioxidants are produced endogenously in cells to balance ROS levels. 

During oxidative stress, Nrf2 translocates to the nucleus and induces the 

expression of glutathione (GSH) and other antioxidants (13). Essential 

antioxidants, including vitamins, carotenes and minerals are found naturally 

in food. Sufficient intake of antioxidants from food is important, and is 

underscored by the dramatic symptoms of vitamin deficiency (14-20). 

Additionally, gene targeting experiments of endogenous antioxidants in mice 

have led to a range of disease phenotypes including cardiovascular disease 

and increased susceptibility to cancer development (21-23).  

Consequently, popular wisdom—supported by numerous cellular and 

preclinical studies—holds that antioxidant supplements protect against cancer 

(24-26) and cardiovascular disease (27-31). However, large randomized 
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clinical trials have produced inconsistent results related to the effect of 

supplementation with antioxidants on cancer (32-34) and cardiovascular 

disease (35-38). Importantly, several studies show that antioxidants may even 

increase the risk of developing cancer (39-42) and all-cause mortality (43). 

Nevertheless, there is a big discordance between clinical outcomes on 

antioxidant supplementation and the use of antioxidant supplements in the 

population. Indeed, over 10% of random populations take antioxidant 

supplements on a daily basis (44). One explanation for the misuse of 

antioxidants is the lack of a mechanistic understanding of how antioxidants 

may accelerate cancer progression.  
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1.3 p53 
Endogenous antioxidants are the first line of defense against cancer; however, 

a second more crucial line of defense is kept by tumor suppressors. The 

tumor suppressor p53 is the most frequent mutated gene in cancer (45, 46) 

and may be the most widely studied gene overall with over 73 000 

publications on the topic. P53 induces DNA repair, senescence, or apoptosis 

in response to a wide range of stressors including oxidative stress (46, 47). 

Whether p53 activation leads to DNA repair, senescence or apoptosis 

depends on a complex interplay between co-factors that control p53 stability, 

activation and transcriptional outcome (48). The E3 ubiquitin ligase Mdm2 

negatively regulates p53 by targeting it for degradation. Mdm2 null mice die 

during early embryogenesis in a p53-dependent manner, which demonstrates 

that physiological stress alone triggers p53-dependent senescence or 

apoptosis in the absence of appropriate control mechanisms (49, 50). In a 

similar fashion, mice lacking Mdm4, a structural homologue of Mdm2 that 

lacks ubiquitination activity but binds to the N-terminus of p53 and directly 

represses transcriptional activity, die during embryogenesis in a p53-

dependent manner (51, 52). The interaction between p53 and Mdm2 has been 

conserved across 2.4 billion years of evolution (53, 54), and is traced back to 

the beginning of multicellular life. Interestingly, the evolutionary timing of 

p53 and MDM2 interaction happens to correlate with the early phases of the 

great oxidation, hinting on a possible evolutionary link. 

ROS and p53 have a complex and context dependent relationship, dating 

back to the great oxidation  (55). It is well established that increased levels of 

ROS (oxidative stress) activates p53, and that p53 in turn can increase levels 

of ROS by enhancing the transcription of pro-apoptotic genes (56, 57). 

However, p53 can also reduce levels of ROS by transcriptional induction of 

antioxidant genes and this function may contribute to the tumor suppressor 

8 



Volkan Sayin 

properties of p53 (25). Moreover, p53 itself undergoes redox regulation due 

to redox sensitive cysteine residues (58). There are two clusters of cysteine in 

the DNA binding domain of p53 which are essential to the specific binding of 

p53 to target genes (59). Furthermore, exposing p53 to oxidants causes 

Cysteines-124,141 and 182 on p53 to form disulfide bonds with GSH, 

effectively changing the DNA binding activity of p53 (60, 61). Notably, the 

change in DNA binding of p53 after oxidation can be reversed by 

antioxidants (60, 61). Thus, there is a complex crosstalk between ROS and 

p53. 

When cells are exposed to stressors like increased ROS, the most important 

function of p53 is to regulate expression of downstream target genes. In 

response to DNA damage, p53 represses the expression of cell cycle–related 

genes involved in the G2/M phase transition (62). In tumors lacking 

functional p53, these genes are expressed at high levels and correlate with 

increased malignancy and poor clinical outcome (63). Thus, repression of cell 

cycle–related genes is a crucial tumor suppressor function of p53. The 

mechanisms underlying p53 regulation of cell cycle genes are not fully 

understood but involve both direct binding of p53 to regulatory elements and 

indirect interactions with other transcription factors (63). 
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1.4 Zinc Finger Protein 148 
The transcription factor Zinc finger protein 148 (Zfp148) (also known as: 

ZBP-89, BFCOL, BERF1) contains four krüppel type zinc finger domains 

and binds to GC-rich DNA sequences (64-67). The protein is predominantly 

localized in the nucleus and is expressed ubiquitously in tissues of adult mice 

(65, 67). Zfp148 harbours putative repressor and transactivation domains in 

the N- and C-terminal regions respectively (66, 67), and is capable of 

recruiting co-activators and co-repressors to promoter regions (68-71).  

Zfp148 has been linked to a number of target genes, but there are no obvious 

functional connections between them (65-69, 71-78). However, four 

arguments suggest that Zfp148 plays a role in cell cycle control. First, Zfp148 

interacts physically with p53 (79). Second, overexpressing Zfp148 in cancer 

cell lines increases p53 levels in the nucleus and induces growth arrest or 

apoptosis (76, 79, 80). Third, Ataxia telangiectasia mutated (ATM), one of 

the two central regulators of the DNA damage response (81), phosphorylates 

Zfp148 at the zinc finger domains (82). Moreover, ATM together with 

Zfp148 and p300 binds to the promoter of the cyclin dependent kinase 

inhibitor 1a (p21) (69). And finally, silencing of Zfp148 in the NCI-H460 cell 

line induces senescence through induction of Ink4a (71). Notably, there is 

discordance between the outcomes in the cell cycle related studies; however, 

collectively these studies implicate Zfp148 in cell cycle control.  

The physical interaction between Zfp148 and p53 suggests a potential role for 

Zfp148 in tumor suppression beyond cell cycle control (79). Binding studies 

have shown that the DNA binding zinc finger domains of Zfp148 are 

required for the binding to p53 (79). Another study shows that mutations in 

the p53 transactivation domains are dispensable for the interaction between 

Zfp148 and p53 (83). However, the same study show that hotspot mutations 
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spanning amino acids 175-281 in the DNA binding domain of p53 abolish the 

binding between p53 and Zfp148 (83). Furthermore, cells with mutant forms 

of p53 evade the apoptotic function of Zfp148 (80, 84). Nevertheless, the 

physiological relevance of the physical interaction between p53 and Zfp148 

remains a knowledge gap. 

The physiological function of Zfp148 remains unclear. Three gene targeting 

experiments on Zfp148 in mice have produced inconsistent results (85-87). In 

the first, Takeuchi et al. showed that Zfp148 heterozygote males suffer from 

sertoli cell-only syndrome, lacking germline cells, making propagation of the 

strain impossible. In the second study, Zfp148 deficient mice died during 

embryogenesis with neural tube defects and anaemia. In the final study, 

Zfp148 exon 4 knockout mice were generated that showed partial postnatal 

lethality and dextran sulphate induced colitis. The inconsistency between the 

gene targeting experiments could be a result of different targeting strategies. 

Nevertheless, the conflicting gene targeting experiments shows that the 

physiological role of Zfp148 remains unclear. 
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"Vision is the art of seeing things invisible." Jonathan Swift 
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2 AIM 

The initial aim of this thesis was to define the impact of Zfp148 deficiency on 
development, health and disease.  

The specific aims of the four papers included in this thesis were: 

I. Zfp148 Deficiency Causes Lung Maturation Defects and 
Lethality in Newborn Mice That Are Rescued by 
Deletion of p53 or Antioxidant Treatment 
The aim of the first study was to generate, validate and 
phenotype Zfp148 deficient mice. 
 

II. Zfp148 deficiency reduces tumor formation in APCMin/+ 

mice in a p53-dependent manner 
The aim of the second study was to breed the Zfp148 
deficient mice on to the APCMin/+ model of intestinal cancer 
to test whether Zfp148 plays a role in colorectal cancer.  
 

III. Antioxidants accelerate lung cancer progression in mice 
The aim of the third study was to define the impact and 
mechanism of antioxidant treatment on lung cancer 
progression.  
 

IV. Loss of one copy of Zfp148 reduces lesional macrophage 
proliferation and atherosclerosis in mice by activating 
p53 
The aim of the final paper of this thesis was to define the 
impact of Zfp148 deficiency on the progression of 
atherosclerosis. 
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"Measure what is measurable, and make measurable what is not so." - 
Galileo 
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3 EXPERIMENTAL STRATEGIES AND 
CONSIDERATIONS 

 

In this section I provide a more general description of the genetic strategies 

and mouse models that are central to the work behind this thesis, why we 

chose to work with them and discuss their limitations. 

Detailed descriptions of methods used in this thesis can be found in the 

materials and methods section of each enclosed paper. 

3.1 The mouse as a model organism 
 

Since experimental research on humans is limited to highly controlled and 

regulated clinical trials, we depend on model organisms, like the mouse, for 

gaining insights into mechanisms of health and disease.  The most important 

advantage of using mice as model organisms is their similarity to humans in 

anatomy, physiology, and genetics.  In fact, more than 95% of the mouse 

genome is similar to our own, making mouse genetic research applicable to 

human biology and disease (88). Mouse models are cost-effective tools that 

speed up research and are crucial to the development and validation of 

targeted drug therapies. Mice are born in large litters, have a small size and a 

short lifespan, keeping the space, time, and costs required to perform research 

at reasonable levels. 
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3.1.1 Transgenic mice 
 

More than 30 years ago the first transgenic mouse was generated. Foreign 

DNA was introduced into the mouse genome, resulting in expression of the 

transgene (89-92). Shortly thereafter, through the use of homologous 

recombination, gain and loss of function experiments on mice became a 

golden standard for mapping gene function (93-98). The generation of knock-

out and knock-in mice is still considered the highest level of evidence when 

validating gene function.  

3.1.2 Modeling human disease in mice 
 

Even though there are striking similarities between men and mice, normal 

wild-type (WT) mice seldom face our most common diseases, including 

cancer and cardiovascular disease. Only after generations of back-crossing of 

laboratory mice into disease prone backgrounds have we been able to 

generate strains of mice where human disease could be studied (99). The 

introduction of transgenic techniques revolutionized the field of genetics and 

opened up for the generation of countless new mouse models of disease (100, 

101).  

Importantly, a lot of human hereditary or spontaneous genetic disorders 

manifest in a similar fashion in mice when the underlying genetic events are 

known and are introduced in the mouse genome (102-105). However, there 

are limitations. Some conditions are poorly mimicked or overly simplified in 

mouse models. (105, 106) 
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3.2 Cre-loxP System 
 

Several of the mouse models used in this thesis utilizes the Cre-loxP System 

for conditional activation or conditional deletion of target genes, hence an 

introduction is warranted.  

Cyclic recombinase (Cre) is an enzyme isolated from the bacteriophage P1 

that recognizes and binds to specific locus of x crossing over (loxP) sites 

(107-109). LoxP sites consist of 34 base pair long DNA elements that include 

two 13 base pair inverted repeats flanking an 8 base pair spacer region. Cre 

cleaves DNA sequences that are flanked by two loxP sites (floxed) oriented 

in the same direction. The cleaved DNA is excised into a circular loop of 

DNA(110). 

The transgenic introduction of loxP sites into mammalian cells (111) enabled 

the conditional targeting of genes in a time and cell type dependent manner. 

The deletion of floxed elements is controlled by the expression of CRE 

recombinase, which is in turn dictated by the experimental setup. The 

expression of CRE can be controlled in two ways.  One way is with the help 

of exogenous insertion of vectors expressing CRE, like plasmids or virus 

particles. Another way is with transgenic insertion of CRE behind tissue 

specific promoters.  

In this thesis, expression of CRE is (In paper III) CRE expression is 

controlled by adenoviral vectors that are delivered to the lung epithelia of 

mice through inhalation of a calcium phosphatase precipitate solution (112).  

The Cre-loxP system is a powerful tool for conditional gene modifications in 

animals and has achieved widespread acceptance over the last decade. 
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However, there are four limitations to consider when interpreting the results 

from Cre-loxP experiments.  

First, endogenous expression of CRE is dependent on the promoter region of 

the inserted transgene which dictates the tissue specificity and temporal 

control of the CRE expression (113). Even though tissue specific promoters 

are supposed to be fairly specific, depending on the nature of the promoter, it 

can have leaky expression or just naturally be expressed elsewhere in a 

developmental stage or context dependent fashion (114-118)  

Second, loxP sites have no functionality in mammalian genomes and should 

therefore not be present. However; a recent genome wide study identified 

frequent cryptic loxP sites that can promote illegitimate DNA recombination 

and cause damage in cells and tissues that express CRE (119). For example, 

this is a problem in heart tissue where CRE expression alone causes fibrosis 

(120) and dilated cardiomyopathy (121). 

The third potential problem with the Cre-loxP approach is partial 

recombination, i.e. that some floxed alleles are left undeleted. This becomes 

evident when more than one floxed allele is targeted for simultaneous 

deletion, especially if the CRE expression is transient (122, 123).  

And finally, on rare occasions, the targeted gene may still be expressed from 

the excided circular DNA fragment. In high proliferative tissues like 

intestinal epithelium and tumor cells the circular DNA fragment would be 

diluted over time. However, in non-dividing cells like neurons the presence 

of this extra chromosomal DNA fragment has been a problem. (124) 

  

18 



Volkan Sayin 

3.3 Zfp148 deficient mice 
 

The generation and validation of Zfp148 deficient mouse is well described 

(paper I) and will be further described in the Results section. The Zfp148 

deficient mice were generated with the help of gene-trapping technique. The 

gene-trap (gt) vector is designed as a false exon with a splice acceptor and a 

transcriptional stop. Integrating the gt vector between exon 4 and 5 in Zfp148 

renders the major part of the translated region (exon 4 to 9) un-transcribed 

(exon 5 to 9). Instead a fusion protein containing exon 4 and the gt vecor is 

obtained containing a reporter element (bgal) and a neomycin resistance 

element. Of note, the Zfp148 gt allele is not a null allele but rather a 

hypomorph. The transcriptional machinery occasionally makes mistakes 

which results in a small degree of leakage of WT transcripts.   
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3.4 Mouse models of cancer 
 

Cancer is a complex genetic disease, where gain of function mutations of 

oncogenes and loss of function mutations of tumor suppressor genes result in 

the transformation of a normal cell into a malignant proliferative tissue, a 

tumor. The tumor is like an overhealing wound that eventually evolves in to a 

metastasizing disease. If left unchecked or unsuccessfully treated, the cancer 

leads to major organ failure and subsequent death (125). In Sweden the 

number of deaths from cancer related causes was 22 904 in 2012 and in the 

United States, 585 720 cancer deaths are projected in 2014 (126).  

Mouse models have contributed significantly to our understanding of the 

origin, pathogenesis and biology of cancer. The most common mutations 

found in tumors from human patients, when introduced into the mouse, 

indeed led to initiation and progression of cancer. However, the genetically 

altered mouse models are challenged with being overly simplified, lacking 

passenger mutations and having a less complex mutational landscape, in 

some aspects casting doubt over the translational potential between cancer in 

genetic mouse models and patients. (127-129) 

 

3.4.1 p53 knockout mouse  
There are numerous p53-deficient or mutant mouse models. The p53 

knockout model used in this thesis was generated in Tyler Jacks laboratory 

(130). All mice on a p53 knockout background succumb to spontaneous 

tumors and become moribund on average around 20 weeks of age. The tumor 

spectrum consists predominantly of lymphomas (>70%), but sarcomas and 

carcinomas are also common (130). 
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More relevant for human disease, mice heterozygous for p53 totally 

recapitulate the Li-Fraumeni syndrome, a hereditary disease where the 

patients are prone to develop cancers (sarcomas in particular). Similar to the 

p53 heterozygote mice, Li-Fraumeni patients lack one functional allele of p53 

(98, 131, 132). The p53 heterozygote mice are prone to develop cancers 

(sarcomas in particular) with an average onset of disease around the age of 60 

weeks (130, 133, 134). These mice are also more sensitive and prone to 

develop carcinogen and radiation induced tumors (135-139).  

In papers I, II and IV the p53 knockout allele is used for genetic interaction 

studies, to test if our conclusions that the downstream effects of losing 

Zfp148 are dependent on p53 activation. Notably, we don’t allow them to age 

to the point where they develop spontaneous tumors.  

3.4.2 APCmin/+ mouse model 
 The Apcmin/+ mouse used in paper II is an intestinal cancer model generated 

through a forward genetic screen with an inactivating point mutation in the 

tumor suppressor gene APC (adenomatosis polyposis coli) (140, 141). It was 

found that the multiple intestinal neoplasia (min) phenotype in these mice co-

segregated with a mutation in the Apc gene, which had been found mutated in 

patients with colorectal cancer and in familial adenomatous polyposis (FAP) 

(142). Studies on the Apcmin/+ model stand as part of the foundation to the 

Vogelstein model (143), depicting cancer as a disease with linear progression 

that evolves and becomes progressively more invasive as clones with new 

mutations emerge within the tumor. Briefly, a transformed cell grows to 

become a small neoplasia, evolving into an adenoma, which mutates into an 

adenocarcinoma and finally becomes an invasive metastatic cancer. In this 

model, loss of the gene APC is an initiating event, mutation of RAS an early 

event, and loss of p53 a later event (143, 144) (Figure 1). 

21 



Pathophysiological impact of targeting the ROS-p53 axis 

 

 

 

One distinct difference between humans and mice concerning the role of Apc 

is that humans with mutant APC primarily develop tumors in the colon 

whereas mice develop tumors in the small intestine.(145) 

 

3.4.3 KrasLSL-G12D mice 
 The KrasLSL-G12D mouse was generated by the Tyler Jacks laboratory. This 

mouse carries a latent point-mutant allele, G12D, immediately preceded by a 

LoxP flanked STOP cassette resulting in a null mutation that renders the 

mouse heterozygous for Kras. Cre-mediated recombination leads to deletion 

of the lox-stop-lox (LSL) sequence and expression of the constituently active 

oncogenic protein K-RasG12D. In lung epithelial cells the expression of K-

RasG12D leads to transformation and initiation of lung tumorigenesis (146). 

The transformed lung cells proliferate and progress to atypical adenomatous 

hyperplasia (AAH), which progress to adenomas that in turn progress to 

invasive adenocarcinomas (147).  CRE-mediated recombination of KrasLSL-

G12D in cells in vitro leads to increased proliferation and loss of contact 

inhibition, which are hallmarks of transformation and cancer (148-150). 

 

Figure 1. Vogelstein model depicting linear progression in colorectal 
cancer 
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3.4.4 Braf CA-V600E mice 
The BrafCA-V600E mouse, generated in the Martin McMahon laboratory, carries, 

similar to the KrasLSL-G12D mouse, a latent point mutation that after CRE 

mediated recombination leads to expression of oncogenic B-RafV600E. In 

contrast to the KrasLSL-G12D allele the BrafCA-V600E allele expresses WT B-Raf 

levels before CRE recombinase mediated conditional activation. Expression 

of oncogenic B-RafV600E leads to similar transformation of lung cells in 

vivo and cells in vitro as expression of K-RasG12D. However, one important 

difference in the progression of disease is that B-RafV600E induced lung 

tumors do not progress to adenocarcinomas, due to oncogene induced 

senescence (151).  

 

3.4.5 p53 flox/flox mice 
This mouse carries a conditional knockout allele for p53 and was generated 

by the Tyler Jacks laboratory (152). The conditional allele makes it possible 

with the help of the Cre-loxP system to knock out p53 in a temporal and 

spatial manner. We have combined this allele with the Braf and the Kras 

oncogenic alleles to generate p53flox/flox;KrasLSL-G12D and p53flox/flox; BrafCA-V600E 

mice. These mice combine constitutively activating mutations in Kras or Braf 

with the loss of two alleles of p53 after inhalation of CRE adenovirus, which 

result in a more aggressive lung tumor model that eventually develops 

invasive metastasis (153). We used these four lung cancer models described 

above in paper III. 
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3.5 Mouse models of atherosclerosis 
 

Atherosclerosis is a complex disease of the vascular wall where cellular 

changes progress for decades before they manifest in acute cardiovascular 

events, such as stroke or acute myocardial infarction. Defining the 

pathogenesis and mechanisms of atherosclerosis in humans is challenging for 

several reasons including the complexity of the disease, the slow progression 

in each individual patient, and the lack of noninvasive detection techniques. 

Hence, we depend on animal models of atherosclerosis to define mechanistic 

pathways. Over the last two decades mouse models have come to dominate 

the field of experimental atherosclerosis, providing a tool to uncover the 

pathogenesis and molecular mechanisms of atherosclerosis. 

 

3.5.1 C57BL/6 strain 
As a species the mouse is highly resistant to atherosclerosis. Therefore, 

normal WT mice, irrespective of diet, do not spontaneously develop 

atherosclerosis. However, some inbred strains, especially the C57BL/6 mice, 

can develop atherosclerotic lesions when fed a high-fat and cholesterol rich 

diet that promotes hyperlipidemia (154). Nevertheless, the atherosclerotic 

lesions in C57BL/6 mice remain small and confined to the aortic roots and do 

not progress beyond the earliest phases of the disease, even after prolonged 

periods on high-fat diet and cholesterol rich diet (155, 156). 

3.5.2 Apolipoprotein-E and Low-density 
lipoprotein receptor knockout mice 

To better recapitulate human atherosclerotic development, several mouse 

models targeting lipoprotein metabolism have been backcrossed into the 

C57BL/6 genetic background (157). The most well established and widely 

24 



Volkan Sayin 

used models are the Apolipoprotein E (Apoe E) knockout model (158, 159) 

and the low-density lipoprotein receptor (LDLr) knockout model (160). In 

this thesis we choose to work with the ApoE knockout mice on a C57BL/6 N 

background, even though the LDLr knockout mice has a more human like 

lipoprotein profile. The ApoE knockout mouse is a more flexible model that 

progresses faster and also has an inflammatory component (161).  

ApoE knockout mice develop spontaneous hypercholesterolemia which 

subsequently leads to the development of atherosclerosis independent of diet 

(159). Atherosclerotic lesions are formed throughout the whole aorta but are 

most profound in the aortic root and the aortic arch. The progression of 

atherosclerosis in the ApoE knockout mice can be accelerated with the use of 

high-fat and cholesterol rich diet. The use of high-fat diet shortens the time to 

develop advanced lesions to around 20 weeks, in contrast to a year on normal 

chow diet. In ApoE knockout mice, plasma cholesterol is packaged in 

chylomicron remnant (CMR) particles and very low-density lipoproteins 

(VLDL), in contrast to LDLr knockout mice and humans in which the 

cholesterol is  packaged in LDL particles (156). However, there are humans 

with familial ApoE deficiency (162), and their lipid profiles are similar to the 

profile in ApoE knockout mice. 

3.5.3 Bone-marrow transplantations 
We used bone-marrow repopulation experiments in paper IV to narrow down 

the effector cells that caused the atherosclerosis phenotype in Zfp148 gt/+ mice 

on ApoE knockout background (paper IV). Lethal irradiation followed by 

bone-marrow transplantation leads to a repopulation of the host (recipient) 

hematopoietic stem cell pool from the graft (donor) (163). If the transplanted 

bone marrow cells are from a transgenic background and the recipient is a 

WT, the recipient after successful engraftment will be a WT mouse with a 
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transgenic bone-marrow with all the hematopoietic derived cells including 

macrophages and t-cells becoming transgenic. Bone marrow transplantation 

is a widely used method to study the role of hematopoietic cells in 

atherosclerosis. (164) 

 

3.6 Ethical considerations 
All animal experiments were approved by the Research Animal Ethics 

Committee in Gothenburg. The principle of 3R, reduce, replace & refine has 

been part of the experimental planning. 

 

 

 

 

 

 

 

 

 

 

 

 

"Nothing is particularly hard if you divide it into small jobs." –Henry Ford 
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4 RESULTS & DISCUSSION 

In this section I will summarize and discuss some of the key findings in each 

enclosed paper.  

Paper I: Zfp148 Deficiency Causes Lung Maturation Defects and 

Lethality in Newborn Mice That Are Rescued by Deletion of p53 

or Antioxidant Treatment 
Our original rationale for knocking out Zfp148 was based on a bioinformatics 

screen for new transcriptional regulators of the vascular wall (165). However, 

the biology that unfolded took us elsewhere into cell cycle control, tumor 

suppression and oxidative stress. 

Generation and validation of Zfp148 deficient mice  

Zfp148-deficient mice were generated from a gene-trap (gt) ES-cell clone. 

Analysis confirmed that the gt vector was incorporated between exon 4 and 5 

of Zfp148, thereby disrupting nearly 90% of the coding sequence including 

all four zinc finger domains. ES-cells were injected into C57Bl/6 blastocysts 

to achieve germline transmission of the Zfp148gt-allele. Analysis of mRNA 

levels from tissues of Zfp148gt/gt mice revealed that Zfp148gt/gt mice are 

hypomorphic, even though the protein is undetectable on western blots. 

Importantly, we have now established viable Zfp148-deficient mice, opening 

up for studies on the in vivo and cellular importance of endogenous Zfp148.  

 Zfp148gt/gt Mouse embryo fibroblasts (MEF) exhibited increased sensitivity 

to oxidative stress and slower proliferation at early passages and 

subsequently senesced prematurely. The sensitivity of Zfp148gt/gt MEFs to 

oxidative stress was coupled to increased activation of p53 independent of 

DNA damage. Importantly, reducing oxidative stress by the addition of the 
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antioxidant n-acetylcystein (NAC) or reducing oxygen pressure to 

physiological levels (3%) prevented the Zfp148gt/gt MEFs from entering 

premature senescence and reduced the activation of p53. Furthermore, the 

premature senescence did not manifest in Zfp148gt/gt MEFs if one or two 

alleles of p53 were deleted. As an important control, adding back Zfp148 

exogenously with viral vectors to Zfp148gt/gt MEF made them escape 

premature senescence, confirming that phenotypes observed in Zfp148gt/gt 

MEFs and mice are not caused by off-target effects of the initial gene 

targeting approach (Figure 2).  

 

 

 

 

Zfp148gt/gt mice that were conceived through heterozygous intercrosses, 

develop normally and are found according to the expected Mendelian ratio 

throughout development. However, the observed ratio was halved postnatal 

day1 (P1), indicating that half of the Zfp148gt/gt mice died shortly after birth. 

Figure 2. Ad back of Zfp148 rescues Zfp148 deficient MEF 
cells from premature senescence.  

(A) MEF cell growth curve. (B) Protein levels of Zfp148 in 
MEF cells from (A). 
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A closer examination of the P1 Zfp148gt/gt mouse revealed a lung maturation 

defect, suggesting that Zfp148gt/gt mice at P1 die of respiratory distress. A 

closer phenotypic analysis of the embryonic and P1 lungs of Zfp148gt/gt mice 

showed that Zfp148-deficency disrupts cell proliferation at the saccular stage 

of lung development. Strikingly, loss of one allele of p53 in Zfp148gt/gt mice 

restored cell proliferation in the developing lung and prevented respiratory 

distress and neonatal lethality. Furthermore, NAC treatment of pregnant 

females also prevented respiratory distress and neonatal lethality in Zfp148gt/gt 

mice, strongly suggesting that the phenotype is triggered by oxidative stress 

(Figure 3). 

 

Figure 3. Deletion of one copy of p53 or antioxidant 
treatment rescue lung maturation defect in Zfp148-
deficient mice.  

(A) Proliferation defect in E.19.5 lungs is restored in 
Zfp148-deficent mice after loss of p53. (B, C) Lung 
maturation defects (B) and postnatal day 1 lethality (C) is 
prevented by antioxidant treatment in Zfp148gt/gt  mice. 

29 



Pathophysiological impact of targeting the ROS-p53 axis 

 

30 



Volkan Sayin 

The results from paper I clear up some of the discrepancies that emerged 

from earlier gene-targeting attempts of Zfp148. Takeuchi et al suggested that 

Zfp148 heterozygous mice developed a phenotype similar to the sertoli only-

cell syndrome (87). However, this phenotype was not reproduced in our 

study or in any of the three other studies that inactive Zfp148 in mice (not 

counting conditional inactivation in specific tissues) (85, 86, 166). Moreover, 

there has been no follow up since the original publication dating 11 years 

back (87). Altogether, this suggests that the phenotype observed by Takeuchi 

et al. was not caused by deletion of Zfp148. 

Another publication is in direct conflict with our findings. Woo et al. showed 

that Zfp148-deficiency caused death at embryonic day 8.5-10.5 with unclosed 

neural tubes and anemia (86). Interestingly, these Zfp148-deficient mice were 

generated by the same gene-trap ES-cell clone as we used to generate our 

Zfp148-deficient mice. Importantly, we observed the same phenotype 

(unclosed neural tubes and anemia) in embryos of the first generation (F1) 

intercrosses. However, we showed that this phenotype was caused by a 

second gene-trap that was inserted in another locus. After the second gene-

trap was bred out in subsequent intercrosses, the embryonic lethal phenotype 

with unclosed neural tubes in Zfp148gt/gt mice disappeared. Thus, the early 

embryonic death was not caused by Zfp148 deficiency (Figure 4).  
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Figure 4. Integration of second gene-trap caused unclosed neural 
tubes and lethality in embryos from the F1 generation  

(A) Dissection of 21 E9.5 embryos of F1 generation intercrosses 
identified a proportion of embryos with unclosed neural tubes. 
Importantly, these mice had at least one intact Zfp148 allele. 
Moreover, the gene-trap vector was propagated to 79% of the brown 
offspring (F1 mice) of crosses between chimeric mice and C57Bl/6 
mice, which is consistent with the presence of two gene-trap alleles 
in the injected ES-cells. (B, C) Dorsal view of E9.5 embryos 
exhibiting unclosed neural tubes (arrows). 
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Paper II: Zfp148 deficiency reduces tumor formation in ApcMin/+ 

mice in a p53-dependent manner  
In paper II, we show that Zfp148-deficiency reduces tumor formation in 

ApcMin/+ mice. We hypothesized that Zfp148-deficiency would increase p53 

activation and thus reduce intestinal tumor development. Indeed, the loss of 

either one or two alleles of Zfp148 reduced the numbers of tumors in ApcMin/+ 

mice. Additionally, Zfp148-deficient mice survived markedly longer in 

ApcMin/+ background compared to ApcMin/+ controls (Figure 5).  

Mechanistically, we were able to show that the reduced tumor formation in 

Zfp148gt/+ ApcMin/+ mice depended on p53. However, we did not observe any 

differences in proliferation or apoptosis in tumors from Zfp148gt/+ ApcMin/+ 

mice compared to ApcMin/+ controls, suggesting that the tumor protective 

effect of losing Zfp148 occurs during tumor initiation and not during tumor 

progression. In support of this argument, tumors from Zfp148gt/+; 

ApcMin/+mice were equally invasive and showed similar histopathological 

grade at the moribund stage as tumors from ApcMin/+ controls. 
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Figure 5. : Zfp148 deficiency reduces tumor formation in ApcMin/+ 
mice  

(A) Tumor counts (B) Two year survival study. (C, D) Intestinal 
tumor stained for Zfp148 from (C) Zfp148+/+ ApcMin/+ mice and (D) 
Zfp148gt/gt ApcMin/+ mice 
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Paper III: Antioxidants accelerate lung cancer progression in mice 

This study was initiated serendipitously. In a natural continuation of Paper I, 

where the role of Zfp148 was studied in lung cancer progression, the 

antioxidant NAC was given with the hope that it might lower tumor 

progression or rather have no effect. To our great surprise we saw an 

acceleration of tumor progression.  

We show that, supplementing the diet with the antioxidants NAC and vitamin 

E markedly increases tumor progression and reduces survival in mouse 

models of B-RAF– and K-RAS–induced lung cancer (Figure 7). Moreover, 

the increase in tumor burden after antioxidant treatment was dose dependent 

(Figure 7). Extensive mechanistic analysis revealed that antioxidants reduced 

levels of ROS, DNA damage and p53 activation in both mouse and human 

tumor cells resulting in increased tumor cell proliferation and progression of 

disease. Additionally, the presence of WT p53 was required for the pro-

tumorigenic effect of antioxidants. Because p53 inactivation occurs late in 

tumor progression, antioxidants may accelerate the growth of early tumors or 

precancerous lesions. 

 

 

 

 

Figure 7. : Antioxidants accelerate lung cancer progression in mice 

NAC and vitamin E increase tumor growth (A–E; size, number, and 
stage) and reduce survival (F) in mice with K-RASG12D- and B-
RAFV600E-induced lung cancer 
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One important question is if the doses administered to the mice are relevant 

for humans. It is well established that extrapolation of doses used in mice to a 

human equivalent dose by a simple conversion based on body weight is not 

accurate (167). We calculated the appropriate NAC dose for our mouse study 

with the help of body surface area conversion (167) so it would match 

prescription to chronic obstructive pulmonary disease (COPD) patients. For 

our vitamin E studies, we adjusted the dose in our mice studies to match the 

relative fold increase found in vitamin supplements compared to 

recommended daily intake (RDI). The standard vitamin E supplement 

exceeds RDI 20 times and can range up to 80 times RDI. Our vitamin E 

doses were adjusted to be 5 (low dose) and 50 (high dose) times higher than 

RDI for mice found in normal laboratory mouse chow. Hence, doses used in 

our study are relevant in a human context. 

 

Another important question is whether the effects of NAC and vitamin E on 

lung cancer progression can be generalized to other antioxidants? NAC and 

Vitamin E have distinct molecular properties. Vitamin E is fat-soluble, 

regulates enzymatic activities, and is used as a dietary supplement, whereas 

NAC is water-soluble, participates in glutathione metabolism, and is used as 

a mucolytic agent (168, 169). Despite distinct molecular properties, unbiased 

whole-transcriptome sequencing of K-RASG12D tumors revealed that the 

transcriptional changes induced by NAC and vitamin E were highly 

coordinated, indicating that they have a common mechanism of action. 

Moreover, the mechanism we propose is coupled to the drugs antioxidant 

properties. By lowering the levels of ROS and DNA damage, the extra 

antioxidants help cancer cells evade p53 activation. Collectively, these 

arguments indicate that antioxidants in general accelerate lung cancer 

progression. 
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Recent genomic analyses of cancers show a high frequency of gain of 

function mutations in the antioxidant master regulator Nrf2 (170-173), 

suggesting that decreasing levels of ROS promotes tumor growth. Consistent 

with this notion, targeting Nrf2 signaling and subsequently lowering 

endogenous antioxidants inhibits tumor progression (174-176). Furthermore, 

a recently published study shows that overexpression of Peroxiredoxin 6, an 

endogenous antioxidant enzyme, accelerates the progression of pre-existing 

skin tumors through reduction of ROS (177).  In addition to confirming our 

data, this study shows that the pro-tumorigenic effects of antioxidants are not 

confined to lung tumors. Collectively, these studies are in line with our, 

showing that tumors thrive in the presence of increased antioxidants.  

Antioxidants accelerate tumor progression. Our findings from Paper III 

published earlier this year have sparked a worldwide debate among scientists 

and physicians (178-182) about whether it can still be claimed that there is no 

harm in use of antioxidant supplements. A recent review  in the New England 

Journal of Medicine (183) translates our findings to the clinical setting, 

highlighting it to primary care physicians.  

Collectively, our data suggests that antioxidants may stimulate the growth 

and progression of undiagnosed lung tumors and should be used with caution, 

especially in individuals with increased risk of developing lung cancer 

including smokers and COPD patients. 
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Paper IV: Loss of one copy of Zfp148 reduces lesional macrophage 

proliferation and atherosclerosis in mice by activating p53 

It has been previously established that loss of p53 and other tumor 

suppressors accelerates the progression of atherosclerosis (184-186). 

However, whether increased activation of p53 can protect against 

atherosclerosis remains unknown. Here we test the hypothesis that targeting 

Zfp148 would reduce the progression of atherosclerosis in mice by activating 

p53. 

 We show that loss of one copy of Zfp148 reduces atherosclerosis in ApoE-

deficient mice independent of diet and without any apparent effects on lipid 

metabolism.  With bone marrow transplantation experiments, we could pin 

down the effector cell responsible for reduced atherosclerosis in Zfp148gt/+ 

ApoE–/– mice to the hematopoietic system. Mechanistic experiments show 

that lesional macrophages from Zfp148gt/+ ApoE–/–  mice exhibited reduced 

proliferation compared to controls, and that plaques from Zfp148gt/+ ApoE–/–  

mice had less proliferating cells, increased apoptosis and increased p53 

activation compared to controls. Importantly, there was no difference in 

atherosclerosis between Zfp148gt/+ ApoE–/– mice and controls on a p53 

heterozygote background, and there was no difference in p53 activity or cell 

proliferation. These results show that loss of Zfp148 reduces atherosclerosis 

through p53 activation (Figure 8) 

Whether the reduced atherosclerosis in Zfp148-deficient mice is mediated by 

oxidative stress is currently unknown. Interestingly, two studies revealed that 

deleting Nrf2, the master regulator of the endogenous antioxidant response, 

in ApoE–/– mice reduced atherosclerosis (187, 188). As shown in paper I and 

III, increased ROS levels can activate p53. It is therefore possible that 

increased p53 activity and decreased macrophage proliferation are part of the 
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underlying mechanism in the Nrf2 studies, suggesting a potential link to our 

study.  

 

Drug therapies against atherosclerosis in clinical use or in late-stage clinical 

trials target inflammation or lipid metabolism. However, despite the success 

of cholesterol lowering drugs, disease progression is seen in many patients, 

emphasizing the need for alternative therapies that target other pathways 

(189). Paper IV suggests that therapeutic targeting of macrophage 

proliferation through the actions of Zfp148 and p53 might be one such 

alternative approach. Since Zfp148 reduced atherosclerosis independently of 

lipid metabolism, drugs targeting Zfp148 could have synergistic effects with 

lipid lowering drugs. 

 

 

Figure 8. :  Activation of p53 
reduces atherosclerosis and 
lesional cell proliferation in 
Zfp148gt/+ ApoE–/– mice. 

A, Quantification of 
subendothelial lipid accumulation 
in aorta as percentage of Sudan 
IV–stained area per total area. (B 
to E) Quantification at the level of 
the aortic root for subendothelial 
lipid accumulation (B), p-p53Ser18 
positive area/lesion area (C), 
proliferating Ki67-positive 
cells/lesion area (D), and terminal 
deoxynucleotidyl transferase 
dUTP nickend labeling (TUNEL) 
positive cells/lesion area (E).  
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"The ancient Oracle said that I was the wisest of all the Greeks. It is because 
I alone, of all the Greeks, know that I know nothing." – Socrates 

 

 

41 



Pathophysiological impact of targeting the ROS-p53 axis 

5 CONCLUSIONS 

We conclude that: 

Paper I 

• Zfp148 is required for structural maturation of the prenatal lung by 

preventing oxidative stress–dependent p53 activity during the 

saccular stage of lung development. The result demonstrates for the 

first time that Zfp148 plays a critical role for cell cycle progression in 

vivo, and establishes Zfp148 as a novel factor in mammalian lung 

development. 

Paper II 

• Zfp148 is a modifier of the APC locus and that Zfp148 deficiency 

protects against intestinal adenomas by unleashing p53 activity. The 

results raise the possibility that therapeutic targeting of Zfp148 may 

protect against colorectal cancer by increasing p53 activity. 

Paper III 

• Antioxidants NAC and vitamin E markedly increase tumors and 

reduce survival in mouse models of B-RAF- and K-RAS-induced 

lung cancer. NAC and vitamin E, which are structurally unrelated, 

produce highly coordinated changes in tumor transcriptome profiles, 

and increase cell proliferation by reducing ROS, DNA damage, and 

p53 expression in mouse and human lung tumor cells. Inactivation of 

p53 increases tumor growth to a similar degree as antioxidants and 

abolishes the antioxidant effect. Thus, antioxidants accelerate tumor 

growth by inactivating the ROS-p53 axis. 
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Paper IV 

 Zfp148 deficiency reduces atherosclerosis in the Apoe–/– model 

without affecting lipid metabolism. We further show that the effector 

cell is of hematopoietic origin and that Zfp148deficiency confers 

protection against atherosclerosis by increasing p53 activation, thus 

reducing proliferation of lesional macrophages. 
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6 GENERAL DISCUSSION  

Here I will discuss general findings that span beyond the individual papers.  

As we have seen throughout the thesis (paper I-IV), adjustments of the ROS-

p53 axis can have major impact on both physiological and pathological 

processes. In some contexts, the adjustments of the ROS-p53 axis can be 

beneficial to the host organism (paper II + IV) and in others it can be harmful 

(paper I and III). There is a huge body of preclinical evidence which suggests 

that targeting the ROS-p53 axis can have beneficial effects on disease 

progression. However, it remains to be seen if we will be able to 

therapeutically manipulate the ROS-p53 axis to successfully treat human 

malignancies, including cancer and atherosclerosis.     

In this thesis we establish Zfp148 as a potential target for increasing p53 

activity. 

Zfp148-deficent MEFs, lung cells and macrophages display a lowered 

threshold to p53 activation in response to oxidative stress. Although indirect 

mechanisms might be underlying the activation of p53, three lines of 

evidence support the possibility that Zfp148 primarily regulates p53. Firstly, 

there is a physical interaction between Zfp148 and p53,  which is dependent 

on the zinc finger domains of Zfp148 and the C terminal parts of the DNA 

binding domain of p53  (79, 83). Secondly, in response to oxidative stress, 

Zfp148 deficient cells display increased p53 activation independent of DNA 

damage (paper I and IV). Finally, there is clear evidence of genetic 

interaction between Zfp148 and p53 (paper I, II and IV). However, to 

confirm the proposed mechanism of regulation, further biochemical analysis 

of Zfp148 is required. 
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Briefly, our data suggests that targeting Zfp148 and its downstream network 

might be beneficial in preventing intestinal cancer and atherosclerosis 

through activation of the ROS-p53 axis. However, our data also show that 

excessive activation of the ROS-p53 axis can lead to defects in lung 

development and shorten lifespan. Finally, we show that decreasing the ROS-

p53 axis through antioxidant supplements can lead to increased tumor 

progression.    

A graphical abstract depicting the ROS-p53 axis (blue boxes) and the 

consequences of our interventions throughout the thesis (grey boxes) is 

provided (Figure 9).  

 

 

ROS Antioxidants

DNA 
damage

p53 Zfp148

Senescence

Apoptosis

Cell cycle
progression

Figure 9. Graphical abstract of ROS-p53 axis, summerizing our 
findings from papers I-IV.  
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"I never think about the future - it comes soon enough." –Albert Einstein 
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7 FUTURE PERSPECTIVES 

We are following up our findings in the papers included in this thesis. 

I. Loss of Zfp148 activates p53 and causes a lung maturation 

defect. We are identifying the downstream targets of Zfp148 

by combining genome-wide expression analysis and with 

genome-wide transcription factor occupancy analysis. We 

are also genetically dissecting the molecular pathways 

causing the lung defect in Zfp148-deficient mice. 

 

II.  Zfp148-deficiency reduces tumor formation in ApcMin/+ mice. We are 

cross breeding the Zfp148-deficent mice into several tumor models, 

including lymphoma, sarcoma and lung cancer models. We will 

evaluate if targeting Zfp148 in other tumor models will have similar 

effects as in ApcMin/+ mice. 

 
III. We are evaluating the effect of Antioxidants on several cancer 

models, including colorectal cancer, melanoma and leukaemia. Also 

we are studying the effect of NAC on lung cancer incidence in 

COPD patients in a Swedish COPD registry with 7209 patients. 

 
IV. Experiments on LDLr knockout mice are ongoing to validate our 

findings in the ApoE knockout model. We are also working on 

translating our findings to the clinic by analysing Zfp148 in the 

Biobank of Karolinska Endarterectomies (BiKE) containing more 

than 800 human atherosclerotic plaques and plasma samples along 

with clinical data from individual patients.  
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