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Abstract

In this thesis, we build mathematical and statistical models for a wide variety
of real world applications. The mathematical models include applications
in team sport tactics and optimal portfolio selection, while the statistical
modeling concerns weather and specifically precipitation.

For the sport application, we define an underlying value function for eval-
uating team sport situations in a game theoretic set-up. A consequence of
the adopted setting is that the concept of game intelligence is concretized and
we are able to give optimal strategies in various decision situations. Finally,
we analyze specific examples within ice hockey and team handball and show
that these optimal strategies are not always applied in practice, indicating
sub-optimal player behaviour even by professionals.

Regarding the application for finance, we analyze optimal portfolio selec-
tion when performance is measured in excess of an externally given bench-
mark. This approach to measure performance dominates in the financial in-
dustry. We assume that the assets follow the Barndorff-Nielsen and Shephard
model, and are able to give the optimal value function explicitly in Feynman-
Kac form, as well as the optimal portfolio weights.

For the weather application, we analyze the precipitation process over the
spatial domain of Sweden. We model the precipitation process with the aim
of creating a weather generator ; a stochastic number generator of which syn-
thesized data is similar to the observed process in a weakly sense. In Paper
[C], the precipitation process is modeled as a point-wise product of a zero-one
Markov process, indicating occurrence or the lack of rainfall, and a trans-
formed Gaussian process, giving the intensities. In Paper [D], the process is
modeled as a transformed censored latent Gaussian field. Both models accu-
rately capture significant properties of the modeled quantity. In addition, the
second model also possesses the substantial feature of accurately replicating
the spatial dependence structure.

Keywords: Mathematical modelling; Game theory; Team sport tactics;
Modern portfolio theory; Gaussian fields.
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Introduction

This thesis is based on the four papers:

A Lennartsson, J., Lidström, N., and Lindberg, C., Game intelligence in team
sports (2014).
(Submitted).

B Lennartsson, J. and Lindberg, C., Merton’s problem for an investor with a bench-
mark in a Barndorff-Nielsen and Shephard market (2014).
(Submitted).

C Lennartsson, J., Baxevani, A. and Chen, D., Modelling precipitation in Swe-
den using multiple step Markov chains and a composite model, Journal of
Hydrology (2008), Volume 363, Issue 1-4, Pages 42-59.

D Baxevani, A. and Lennartsson, J., A Spatio-temporal precipitation generator
based on a censored latent Gaussian field (2014).
(Work in progress).

The papers are appended after this introduction. Papers [A] and [B] represent
distinct research topics in mathematical modeling, while Papers [C] and [D] both
concern statistical modeling of precipitation (rain, snow, hail etc.). Here I present
an introductory motivation and a non-technical description of the three topics of
the thesis. The aim is to present a brief survey where I convey the ideas behind
the tools and procedures that underlie the research. Further I which to provide
the reader with an understanding of the key aspects of the utilized mathematical
and statistical modeling techniques in form of principles, concepts, and methods.
Appended after each introduction is also a statement of my personal contributions
to each of the Papers as compared with that of my co-authors.

What is a mathematical model?

Scientific observations are never completely conclusive for real world systems, whether
it is the field of team sports, the stock market, precipitation or any other object
of interest. In order to grasp the complex nature of a subject, models are intro-
duced to describe the observed relationships. A model can in this sense be seen as a
thought experiment, a simplified version of reality, in which exact calculations and
conclusions can be made.

Models are constructed based on empirical observations and general considera-
tions such as simplicity, generality, interpretability and explanatory power. Then,
since exact computations within the defined framework are possible, consequences
of the given model are evaluated in a statistical sense, or a purely logical fashion,
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and conclusions of the underlying system are drawn. Note that any conclusions
extracted from a model are based on the premises of the models applicability and
one should be careful in extrapolating results in directions where the premises may
be placed under question.

A naive perspective on modeling is to ask if the model, in an absolute sense,
represents the real world. But it is rarely the case that a model is true in all aspects
– which does not mean that it is useless. A more sophisticated perspective acknowl-
edges that no model, be it mathematical, statistical, or a model in any other setting,
can take into account all the complex dependence structures of the underlying real-
ity. Further, here we accept that we build models for a reason: To understand and
decide on specific actions and how to deal with the system. While we recognize that
the models represent a necessary simplification of the stunningly complex world, if
we choose them wisely then they will enable us to draw considerable conclusions
about the specific system they describe. Further, we construct models that are good
enough for their designed purposes. In particular, regarding the Papers [C] and [D],
we do not intend to deductively claim that the daily amount of precipitation is gov-
erned in precisely the specific ways that the Papers conjecture. Note also that the
models proposed in these Papers are non-overlapping; i.e., both can not be correct,
in an absolute sense, at the same time. However, both models suit their purposes
– as stochastic weather generators, and there are no apparent differences between
synthetically generated data and actual observations.

Models enable us to give a simplified description of the relationships between
several (possibly a large number) of variables, based on the fact that many of the
variables are caused by intermediate relationships. In Papers [B] and [D], we con-
jecture the existence of an underlying unobserved variable, which is related to each
of the stochastic quantities modeled, and from which a dependence structure is
induced. For example in Paper [B], the very idea is to introduce the latent (unob-
served) variables of news processes, in order to model shifts in the volatility matrix.
However, two aspects need to be clearly stated here; first, the actual value of the
latent variable will never be observed. It actually is an unobservable quantity in
terms that no-one explicitly will be able to calculate other than in situation-based
estimates of it. Secondly, empirical observations of asset price processes show a
strong tendency to react to the same background information. Further, as contra-
dicting as it may sound, eventhough the news processes are unobservable and only
exist in books, is it a intelligible quantity for most investors.

Data

For the statistical part of this thesis, Papers [C] and [D], the data is of significant
importance. The data we use is measurements of the amount of daily precipitation
at specific locations. The data utilized in Paper [C] is recordings at 20 weather
stations distributed all over Sweden where each station features 44 years of data. In
Paper [D] we had access to the daily recordings for 51 years and 14 specific weather
stations distributed in a more dense area of Sweden, i.e., the northern portion of
the region of Götaland.

In general, as the complexity of a model increases, so does its goodness of fit to
the available sample, – however the goodness of fit to other samples drawn from the
same distribution may deteriorate. If a model is too elaborate, it may represent the
observed sample very well indeed – but will fail to explain the underlying process. A
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model that is too simple on the other hand risks missing out on potential key aspects
of the system. The aim of statistical modeling is to generalize from the sample, i.e.,
to accurately model the underlying process, in contrast to just modeling the sample.
In order to deal with these issues, the principle of cross validation is utilized. Cross
validation is a computationally intensive approach, where the available sample is
divided into two sets: a design set, and a validation set. The model is then trained
on the design set, where point estimation is performed for the model parameters.
In principle, a model with parameters estimated from the design set, from which
synthesized data retains a high degree of similarity with observations of validation
set, is the most accurate and desired model. Models that meet this criteria feature
an appropriate level of complexity.

When utilizing data to build models one has to consider how appropriate and
accurate the samples are, whether the samples represent the quantity modeled, and
whether they are clean or soiled with noise. Here the entity measured (the daily
amount of precipitation) is fairly accessible and all statistical analysis is based on
the assumption that the data is not soiled with noise. However, data for individual
weather stations is partially missing for long periods of time, which obviously re-
duces the representativeness of the sample. In Papers [C] and [D], we assume that
the data is missing completely at random. That means that events that lead any
particular station and/or specific time to feature incomplete data are independent
of the precipitation process. Note in particular that the extreme value analysis may
severely suffer from missing data since the data set of extremes is typically small
even for samples without missing observations. In addition, the possibility of ex-
treme weather affecting the devices of measurement in such a way that a malfunction
is caused, which then, in turn, induces missing data, is not extremely small, but in
these Papers is completely disregarded.
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Motivation for Paper [A]

The concepts and ideas applied in Paper [A] originates from game theory. Game
theory is a branch of mathematics devoted to the logic of decision making and has
been widely applied in research areas such as psychology, economy, evolution and
biology. We extend this list to also include the field of decision making in team
sports.

We are particularly interested in zero-sum two-player games which are defined
by a structure consisting of three objects:

� two decision makers, here called team A and team B,

� multiple ways of acting, called strategies, for each team such that the outcome
of the game depends upon the strategy choices,

� well defined preferences among the possible outcomes quantified by a utility
function, u, such that the utility, or payoff, for team B is the negative of the
payoff for team A.

A significant property of game theory models is that each participant only has partial
control over the outcome. The principal objective is to determine what strategies the
teams ought to choose in order to pursue their own interests rationally. Equivalently,
it can be seen purely as an instrument for avoiding inconsistency in decision making.
Given that an outcome for team A features higher expected payoff conditional on
a specific strategy, then the rational decision for them is to stick with this strategy.
Any other choice would be inconsistent with the predefined preferences defined by
the utility function.

In order to find solutions that are stable in some sense, alternative approaches
have been published. The standard such solution is the Nash equilibrium, which
is the pair of strategies, such that any one-sided deviation will not increase the
expected payoff for the deviator. It can also be shown that the Nash equilibrium in
a zero-sum two-player game is the strategy that replicates the mini-max of expected
utility for team A and correspondingly the negative of maxi-min of expected utility
for team B. In other words, the optimal strategies are the ones that minimize the
expected payoff of the best alternative for the opposing team.

In Paper [A], we analyze general situational tactics in team sports. More pre-
cisely the subset of team sports where two opposing teams each have a goal to
defend, and the team that scores the most points win. In games like these, there is
an almost magical aura surrounding game intelligence. Some players, that repeat-
edly pick the winning strategies, are considered blessed by it as a natural ability,
while less prosperous players struggle to learn the ability to pick winning strategies
over the course of their entire careers. Usually, the only unifying factor regarding
game intelligence is accredited to experience, where there is no clear definition of
what kind of experience is alluded to. In general, we mean that a player’s overall
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ability can be categorized into two conceptually different parts. First, the ability to
decide on a strategy, which is in some sense, optimal in each encountered game sit-
uation. Secondly, the ability to carry out the chosen strategy. The second category
is decided upon by the player’s skill set - technique, strength, agility, endurance,
etc., while the first category is what defines the game intelligence of the player. In
Paper [A], we focus on analyzing the first category.

In order to analyze specific game situations, we define a natural utility for the
outcomes – the potential. The potential is the probability that team A will score
next, minus the probability that the next goal will be scored by team B. Further,
we analyze how players should act based on formal reasoning alone in order to
be consistent regarding potential. This reasoning gives a strategic advantage in
competitive interactions and hence it is closely related to game intelligence. In this
setting, we need to recognize the fact that one can never know which choice would
have resulted in the best outcome in each particular instance. However, we show
that we can find strategies which are optimal in the mean. As a result, we claim
that the optimal strategies correspond to game-intelligent strategies. Hence game
intelligence is an acquired skill, and in particular consistent behavior according to
the potential is equivalent to high game intelligence.

Description

We set up a game theoretical framework to analyze a wide range of situations from
team sports. By using the potential as utility function, we model specific game
situations, and solve these using standard game theoretic methods. The first part
of the Paper gives the theoretical foundation underlying our analysis, including
the concept of potential fields, and derives some results with applications to game
intelligence. The following sections focus on game situations where the players
make decisions based on a given set of strategies. Here, we apply principles from
game theory to determine which decisions are optimal. A main consequence of our
problem set-up is that the optimal defensive strategy is to make the best offensive
choice, in terms of potential, as low as possible. Further, the optimal strategy for
the offense is to distribute shots between the players so that all players take all shot
opportunities that have a potential larger than a certain threshold. This threshold
is the same for all players. It is important to note that the optimal strategy does
not guarantee a successful outcome on each occasion. Rather, the optimal strategy
for a specific situation gives the best outcome in terms of potential. We develop
categorical as well as continuous models, and obtain optimal strategies for both
offense and defense.

My contribution

My co-advisor – Carl Lindberg – was very convincing when proposing the idea of
scientifically investigating decision making within sports. In particular, he meant
that the former ice hockey player Nicklas Lidström played according to a different
algorithm compared to other players. By reversed engineering, when analyzing his
strategies we found that he solved the problem of maximizing utility in terms of the
potential, a fact that he confirmed when questioned personally about his strategies.
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Together we worked on unfolding the nature of winning strategies in a mathematical
setting and ended up with Paper [A].

Due my background as a professional athlete, I have a profound understanding
of key aspects in team sports. Even so, I was surprised to gain several new insights
concerning fundamental game intelligence, altering my previous comprehension of
the game. Old ”truths”, that had gone unchallenged during my career, suddenly
appeared completely irrational.
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Motivation for Paper [B]

A portfolio is a grouping of financial assets such as stocks, bonds and cash equiv-
alents. By allocating the investments within a portfolio an investor may maximize
the momentary return, minimize the risk of loss of wealth over a day or month, or
optimize according to any other criteria. In general, the fundamental concepts of
high return and low risks are conflicting, and there exists no perceptionless optimal
portfolio.

Classical portfolio optimization was founded by Markowitz (1952) where the
conflicting fundamental concepts were quantified. Markowitz operated in a one-
period discretized setting and his optimal portfolio is also known as the mean-
variance portfolio since it is based on the means and covariances of the various
assets. Since then, the field has been generalized and sophisticated stock market
models have been proposed where stock prices are modeled as random processes,
i.e., time dependent random variables. A particularly successful stock market model
is the Black Scholes model, where stock prices are given by a geometric Brownian
motion, i.e., the continuous time version of an exponential random walk. If Wt is a
Brownian motion and St is the price of the stock at time t, then the dynamics of a
stock in the Black Scholes market is defined by the stochastic differential equation

dSt = St(µdt+ σdWt), (1)

where in particular the volatility, σ is constant. In a continuous time setting, also
continuous re-allocation of the portfolio may be performed and we need the concept
of self-financing strategies; any investment strategy that only invests the specific
value of the portfolio at each time point is called a self-financing strategy. In this
setting, Merton (1969) introduced the concept of utility to be able to solve the
problem of optimal re-allocation strategies. The utility function assigns the experi-
enced profit by an extra token (monetary unit). Most investors assign more profit
to the first won token and assign less profit to each extra token than to the one
that went before. This behavior is called ”risk averse”. In particular, the opti-
mal continuously rebalanced self-financing portfolio given by applying the negative
exponential utility function in a Black Scholes market is equivalent to Markowitz
mean-variance portfolio re-allocated in continuum. This means that investing in the
mean-variance portfolio over short time horizons is actually equivalent to the long
term investment strategy defined by the optimal allocation according to the utility
function of negative exponential.

There are many upsides for the widely applied Black Scholes model but there
are also some limitations. For example, by the market dynamics (1), the log-returns

log
St − St−1

St−1

are independent and identically normally distributed, a property that generally
fits poorly with observations of true markets. Typically, log-returns of the mar-
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ket feature heavy tails and large observations, either positive or negative, tend to
group. In order to form a general model, that incorporates the properties men-
tioned, Barndorf-Nielsen and Shephard (B-NS) introduced a stochastic volatility
market, see Barndorff-Nielsen and Shephard (2001), where specifically the volatil-
ity, σ, is driven by a non-Gaussian Ornstein-Uhlenbeck process. In this model the
log-returns are time dependent, such that large observations, positive or negative,
have higher probability to occur in groups. Further, the tails of the marginal distri-
bution of the log-return in B-NS model are heavier than in the corresponding Black
Scholes model. In Lindberg (2006) the optimal allocation problem for a portfolio
was solved for a multi-stock B-NS market.

A benchmark is any item used to mark a point as an elevation reference. In
the financial industry, a benchmark is the performance of a predetermined set of
securities, used for comparison purposes. The dominating approach in the industry
is to measure performance in excess of an externally given benchmark index, the
so called alpha, at a deterministic future time. Classical portfolio optimization
literature, see e.g., the aforementioned Merton (1969) and Lindberg (2006), focus
on the problem of maximizing expected utility of wealth, called beta. While the
classical concept of measuring results in beta may be an intuitive problem setting
it is not put into practice in the real world. Measuring performance in alpha better
captures the skill of the individual investor. A single investor hardly dictates the
performance of the entire market and absolute wealth depends directly on overall
market fluctuations. Instead relative wealth, i.e., the difference of wealth between
the portfolio and the benchmark index, is the interesting unit of measure for industry
practitioners. It gives an isolated measure of the investor’s performance which does
not depend on the underlying market. In order for relative wealth to be independent
of the benchmark, it is necessary that the benchmark is continuously rebalanced.
The level of wealth of the benchmark is set to be equal to that of the personal
investor. This could, in principle, be done as often as every day, but for practical
reasons it is often done when the wealth between the personal investor and the
wealth of the benchmark has crossed some predetermined upper or lower level.
The adaptation of the benchmark wealth is made to avoid the situation where the
investor’s performance will be affected by the so called beta effect. The term beta
effect is used to describe the situation when the performance of the investor, in
terms of alpha, starts to be affected notably by the absolute performance of the
benchmark. This happens if the investor’s capital is considerably larger, or smaller,
than the capital held in the benchmark. Further, this implies that we are evaluating
performance in excess of a non-self-financing portfolio. It sums over the difference
between the investor’s daily profit minus the daily profit of the current benchmark.
Hence, the concept of relative wealth is merely an abstraction, but nevertheless an
industry ubiquity.

In practice, the financial industry standard procedure is to rebalance one-period
mean variance portfolios over short consecutive time horizons. It has been unknown
to what extent this ”local” optimization approach actually yields good results even
in the long run. Recently Korn and Lindberg (2013) solved the problem in a Black
Scholes market. In Paper [B] we consider the corresponding problem in the B-NS
market. We show that the optimal portfolio in terms of exponential utility of rela-
tive wealth in a B-NS market replicates the optimal portfolio of the corresponding
Markowitz mean-variance problem in continuum. That is, by continuously rebalanc-
ing one-period benchmark relative mean-variance solutions one replicates the opti-
mal portfolio for an investor maximizing expected utility of terminal wealth. This
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is actually completely analogous to Merton (1969), and the differences between his
Paper and Paper [B] are small (aside from the fact that we use a stochastic volatil-
ity model). Mainly, the difference is that Merton aims at finding an optimal beta
portfolio while in Paper [B] we consider an optimal alpha portfolio. Merton con-
siders strategies as being fractions of wealth and his optimal strategy - the local
mean-variance strategy the investor should apply continuously - has the constraint
that the sum of all portfolio weights should be equal to one. We, on the other
hand, view the strategies in terms of capital, and use the constraint that the sum
of all portfolio weights should equal zero, i.e., that the net exposure relative to the
benchmark should be zero. With Merton’s problem, the optimal strategy amounts
to solving the stochastic control problem of maximizing expected utility of terminal
wealth. Analogously, for our problem the optimal strategy amounts to maximizing
the expected utility of terminal wealth in excess of the benchmark.

By solely considering relative wealth, it is natural to ask whether we have almost
sure non-negativity of the investor’s total wealth. The answer to this question is
affirmative, since one is able to choose the bounds on the portfolio weights in such
a way that the investor’s total portfolio holdings remain positive. In practice, this
constraint is often active for stocks that have small index weights.

Description

In order to deduct the results of Paper [B], we mimic standard literature and set
up the market specific stochastic control problem by the Hamilton-Jacobi-Bellman
(HJB) equation. Further, the technical part of the Paper consists of proving that
the optimal value function is well defined. Then we proceed by setting up a tailor-
made verification theorem that shows the uniqueness of the solution, given that it is
well defined. Furthermore, we suggest an explicit optimal value function, a solution
to the optimization problem, and devote considerable effort showing that it is well
defined and actually solves the HJB equation. The presented optimal value function
is then represented as a conditional expected value in Feynman-Kac form.

My contribution

My co-advisor, Carl Lindberg, proposed the problem of finding an optimal alpha
portfolio in a Barndorf-Nielsen and Shephard market. I formatted the notation, and
created the proofs, with the close supervision of Carl which resulted in Paper [B].
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Motivation for Papers [C] and [D]

The distribution of precipitation is a key research area on both a national and an
international level. For example, it is clear that the effects of drought or anomalously
wet weather conditions may have devastating consequences on agriculture. However,
the entire distribution of rainfall is also of great interest and therefore, realistic
sequences of meteorological variables such as precipitation are key inputs in many
hydrologic, ecologic and agricultural models.

The physical principles that govern climate, and in particular precipitation, are
well studied. These principles may be represented in mathematical language as dif-
ferential equations see e.g., Das et al. (2014). In meteorology, where only a short
time span is considered, these differential equations are used to predict precipita-
tion. However, the equations feature high complexity which has the consequence
that solutions deteriorate over time. This, in turn, results in the situation where
variability and uncertainty for predicting or modeling precipitation during longer
time periods, e.g., over a month or a year, grows to an unmanageable extent. In
order to model precipitation for longer time spans or when historical records are of
insufficient duration or inadequate spatial and/or temporal coverage, the precipi-
tation process is usually considered a stochastic process. In these cases, synthetic
sequences may be used to fill in gaps in historical records, to extend the historical
record, or to generate realizations of weather that are stochastically similar to the
historical record. Whereby, here the actual physical processes that are influencing
the climate are of less importance than what they accomplish, that is, the daily
amount of precipitation.

A weather generator is a stochastic numerical model that generates a daily
weather series with the same statistical properties as observed in a real world weather
series. In this setting, an appropriate stochastic generator is one in which the syn-
thesized data replicates the observations in a weak sense, by the distributions of
different precipitation measures e.g., probability of precipitation on a specific day
of the year or correlation in the amount of precipitation between locations, etc.
In contrast to meteorology, which focuses on short term weather systems, interest
lies in unfolding the structure of the underlying process. When watching the news,
one is usually more interested in knowledge about the opposite – the prediction of
precipitation in the very near future.

However, even if the measured information of interest (i.e., the amount of pre-
cipitation) is a fairly accessible entity, the actual building of a weather generator
is made difficult by the long time periods and the complex processes that govern
it. From a statistical point of view, modeling of precipitation is complicated by the
semi-continuous nature of the process. Distribution of daily amounts of rainfall have
a mass at zero, indicating a dry day with no precipitation, and a continuous distri-
bution for wet days, i.e., days with a positive amount of rainfall. These properties
make the, otherwise standard, normal assumption, inappropriate. In addition, rare
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events of extreme precipitation have a tremendous impact on the community. Fur-
ther, any model attempting to properly represent the precipitation process needs to
replicate the dry/wet day behavior and the extreme amounts of daily precipitation.
Throughout both these Papers emphasis is put on these fundamental features of the
process.

Description

The aim is to create a weather generator that can produce realistic sequences of
daily precipitation for sites in Sweden. Here, ”realistic” is set into the statistical
framework in the sense that the artifical data should replicate different measures
of precipitation such as mean intensity, monthly maximum and length of number
of consecutive dry or wet days, etc. In order to quantitatively measure weather,
the Expert Team of World Meteorological Organization/Climate Variability and
Predictability, see Peterson et al. (2001) and Karl et al. (1999), have defined a
standardized set of specific weather indices. These indices make a comparison of
extreme weather conditions possible across regions. The models proposed in these
Papers are also validated by their performance in regard to these weather indices.

A common feature for both Papers is that the dependence structure is separated
from the marginal distributions. For the marginal distributions, and in particular
for the extremeal part, there exists a well-developed theory. In both Papers, we
adopt a peak over threshold approach to model the extreme amounts of rainfall. By
the extremal theorem, see e.g., Coles (2001) (Theorem 4.1), there is only one pos-
sible parametric distribution modeling the conditional probability for the excesses
over a high enough threshold. This is a very useful property, but note that it is
only applicable above some inexplicit threshold. This implies that we may have an
elementary decision to accurately pick a suitable model, but meanwhile the data
to design the parameters may be sparse which hampers the certitude of the point
estimation.

The dependence structure of the precipitation process and field (Paper [D]) is
potentially a very complex mathematical object. In both Papers we model this by
a Gaussian structure. By adopting this structure we derive a model that is both
simple and general, producing very good results in terms of weak measures.

Paper [C]

In Paper [C] the temporal variability of the precipitation process is the pivotal
point. The applied statistical model is a chain-dependent model which consists of
two conceptually separated parts. The first part is a model for the dichotomous
sequence of wet or dry days, for which we employ a multiple order Markov chain.
The second part of the model gives the intensity of precipitation given there is
a wet day. The intensities are modeled by a composite model for the marginal
distribution that incorporates the empirical distribution together with an extreme
value distribution for high amounts of rainfall. Further, for the temporal dependence
of the intensities we introduce a Gaussian copula, implicitly modeling the process
as a one-step auto-regressive process.

Here, the mathematical part revolves, in large part, around Markov processes.
Briefly put, a Markov process is a process that features the property of amnesia: The
evolution of the process is independent of the past conditioned on the present state.
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A multiple m-step Markov chain is a process with the memory property strength-
ened. Conditional on the m last steps the evolution of the process is independent
of the history, excluded the m last steps, of observations. The Markov property is
very useful in terms of explicitly finding the risk or chance of interesting events such
as drought, consecutive dry days, and anomalously wet weather.

The temporal dependence structure of intensity of precipitation is modeled by
a Gaussian copula. Where, instead of estimating the parameter for the copula
directly from the data (a computationally very hard assignment) we sidestep poten-
tial numerical issues by means of using the underlying empirical ranks. Under the
assumption that the Gaussian copula governs the temporal dependence, by trans-
forming the empirical ranks to their corresponding standard normal quantile the
transformed bivariate random variables of consecutive amount precipitation in wet
days are bivariate normally distributed. Estimating the parameter for the Gaus-
sian copula is then reduced to the elementary task of estimating the correlation
coefficient of a sample of bivariate (normally distributed) random variables.

The validation part is performed by a Monte Carlo approach. Artificial precipi-
tation is simulated, which is the element-wise product of the dichotomous Markov
chain and the transformed Gaussian auto-regressive temporal process, and distribu-
tions of the weather indices are computed. The stochastic generator replicates the
observed indices at a satisfactory level.

The upside of the proposed model, besides that it replicates weather indices at
a satisfactory level, is that we both accurately and easily can model the risks of
long dry- and wet spells. The drawbacks of the model is that additional features
such as the intermittence effect (smooth transitions of intensity of precipitation
between wet and dry days and that given there is anomalously wet weather then
the risk of an excess of precipitation is higher than during longer periods of dry
days) are not represented at all. The model proposed in the Paper also implicitly
constrains the model to be of an auto-regressive form, implying that the dependence
of intensity decays quickly with the time lag. In addition, the substantially most
considerable limitation of the model is that it features no venture to extend into a
spatial dependence structure.

Paper [D]

In Paper [D] the entire spatio-temporal variability of the precipitation process is in-
vestigated. The aim is, as in Paper [C], to build a stochastic number generator that
replicates synthesized data with corresponding dependence structure and appropri-
ate marginal distributions. Note here that by introducing spatial dependency, the
level of complexity is many times doubled. For example, in contrast to time domain,
there is no natural spatial ordering and two neighboring sites may influence a third
neighbor differently at various times.

The model is constructed of a transformed Gaussian field, which models both
the dry/wet behavior and the intensities of the precipitation. The observation of
a negative value of the field at a location in a specific day corresponds to a dry
day at the specific point in space. For positive values of the field, the intensity of
precipitation is given by the location specific transformation of the field value at
the location. The key intention of the model was to extend the successful copula
approach from Paper [C] to cover the entire process, not just the intensity part. By
this approach we also take the intermittence effect into account (the property of
higher probability of large amount of precipitation given that close points in space
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and/or time feature wet weather). Further, by a model like this we can replicate
the property of the precipitation field’s smooth transitions between shifts of weather
regimes in terms of start and ending of time periods or spatial domains with drought
or anomalous wet weather, which is a frequently occurring feature of weather data.

We model the location specific marginal distributions as a composite model of a
gamma distribution, with temporal dependent parameters, and a generalized Pareto
distribution, with stepwise constant parameters, for the excesses of a high thresh-
old. Mean intensities, qq-plots and weather indices concerning extreme amounts
illustrates a very good fit of the model.

We use empirical transforms of the marginals to find observations of the censored
latent field. Then we estimate the covariance structure pointwise, a task that is
computationally demanding since the field is censored. In order to perform this
estimation we introduce new methodology to estimate the underlying covariance of
censored Gaussian variables. Then we model the dependence structure by a non-
separable parametric model. A non-separable covariance structure implies that the
dependence of temporal lag and spatial lag cannot be separated – a property the
data gave clear indications of.

Model validation is based on cross-validation, where simulations show that the
model replicates historical data well, by means of statistical test with respect to
fundamental measures and the established weather indices. Hence, the dependence
structure of the precipitation process is modeled with a satisfactory level of similarity
with observed data.

My contribution

The problem of creating a weather generator, together with suggestions for suitable
data sets, was proposed to me by environmentalist Deliang Chen. Regarding Pa-
per [C], my head advisor, Patrik Albin, got me started by suggesting dividing the
precipitation process into two parts and specifically modeling the dry/wet behavior
part as a multiple step Markov chain and the intensity as a combination of empirical
distribution and an appropriate extreme value distribution. By the fruitful tutoring
of my second co-advisor, Anastassia Baxevani, we moved the problem forward and
ended up with Paper [C] at hand. Except for the above mentioned crucial advisory
contributions, everything in this thesis has been done by myself, the undersigned.

Regarding Paper [D], Anastassia proposed the problem and has consistently
steered me in the direction of our final destination. Her contribution is highly ap-
preciated in terms of forcing me to find suitable framework and scientific foundations
to the proposed ideas. However, the idea of modeling the precipitation as driven
by a censored Gaussian variable as well as the programming and building of the
mathematical model were done by myself.
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