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Brain injury occurring during the perinatal period is an important cause of mor-
tality and morbidity with potentially life long consequences. Both preterm and 
asphyxiated full term infants are at high risk of developing such injuries, and in-
trauterine infection has been identified as an independent risk factor. Whilst the 
primary causes of perinatal brain injury may be diverse and often elude diag-
nosis, inflammation is a common feature. We have analysed various aspects of 
inflammation in perinatal models of sterile and infectious insult. Our particular 
interests have been: initiation of central inflammation, central nervous system 
(CNS) recruitment of peripheral immune cells, and inflammation-induced dis-
ruption of CNS homeostasis and physiological processes. 

We demonstrate constitutive expression of all Toll-like receptors (TLRs), a 
sub-family of pathogen recognition receptors, in the neonatal CNS and active 
regulation of TLRs 1, 2, 5, 7 & 8 following, sterile, hypoxic-ischemic (HI) brain 
injury. We provide evidence of diminished lesion size in TLR2-KO mice, a re-
sult strongly implicating TLR2 as an important mediator of lesion development 
following HI. Additionally, we display active and prolonged recruitment of pe-
ripheral immune cells to the injured regions of the CNS following HI, a process 
that occurs in distinct “waves” and continues for up to two weeks. Interesting-
ly, such recruitment was absent in a model of infectious insult, as initiated by 
peripheral administration of lipopolysaccharide (LPS). Here, numerous signs 
of enhanced central inflammation were observed. We detected acute increases 
in microglial proliferation and total number of microglia, changes coupled to 
regulation of several inflammation associated genes in the hippocampus. This 
increased hippocampal inflammatory profile was present for at least two weeks 
after administration of LPS and occurred in parallel to decreases of neuronal 
commitment among hippocampal progenitor cells.   

Together these results indicate involvement of the TLRs in rapid initiation of 
inflammation following HI and display active and prolonged participation of 
peripheral immune cells this inflammatory response. Additionally, we demon-
strate that inflammation initiated outside the CNS is sufficient to upregulate 
cerebral inflammatory responses and transiently disrupt developmental micro-
gliogenesis and neurogenesis.
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INTRODUCTION

Central nervous system development
Human central nervous system (CNS) development is a continuum that 
begins during early gestation and persists far into postnatal life. One of 
the earliest identifiable events of brain development occurs 18 days into 
the 266-288 day (40 week) gestational period as the ectodermal cells over-
laying the notochord differentiate into neuroepithelial stem cells (DeSes-
so et al., 1999). As development proceeds, this small population of cells 
multiplies and differentiates giving rise to the neurons, astrocytes, and 
oligodendrocytes from which nearly the entirety of the adult brain and 
spinal cord will be formed (DeSesso et al., 1999). These complex process-
es of cell genesis, maturation and organization continue well into post-
natal life (Giedd et al., 1999); in humans neurogenesis peaks between gd 
(gestational day) 60 and 90 (Clancy et al., 2007) and continues through 
early postnatal development (Sanai et al., 2011) into adulthood, albeit in 
a limited fashion (Eriksson et al., 1998); gliogenesis occurs through the 
later stages of gestation and early neonatal life (Roessmann and Gambet-
ti, 1986); synaptogenesis begins as early as GW 8 (Molliver et al., 1973) 
with peak synaptic density, roughly 40% higher than present in adults, 
observed 8 months postnatally (Huttenlocher et al., 1982). While these 
processes are ongoing, microglia, a fourth and ontogenetically distinct 
cell type, invade the CNS; animal studies indicate that these cells arise 
from primitive mesodermal progenitors of the embryonic yolk sac and 
colonise the brain during early development (Alliot et al., 1999, Ginhoux 
et al., 2010). In humans primitive microglia can be observed as early as 
GW 4.5 (Verney et al., 2010) although well differentiated microglia are 
not observed until GW 35 (Esiri et al., 1991, Rezaie et al., 2005, Verney 
et al., 2010). The process of myelination follows after neurogenesis and 
concurrent to axonal arborisation, and therefore begins relatively late in 
gestation: Myelin is first detected in the brainstem at GW 29 (Inder and 
Huppi, 2000) and continues to accumulate into the third decade of life 
(Giedd et al., 1999).
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Developmental origins of neurological morbidity
Injury to the perinatal brain is a leading cause of mortality and neuro-
logical morbidity in the newborn with potentially life-long consequences 
(Marlow et al., 2005, Miller et al., 2005, Degos et al., 2010, Perez et al., 
2013). Ultimately, long-term outcome is determined not only by the type 
and severity of primary pathology but also by ensuing effects on the pro-
cesses of cerebral development and maturation (Vannucci and Hagberg, 
2004). A wide variety of CNS disorders can be traced back to disturbanc-
es of foetal and neonatal life. Indeed, strong associations have been dis-
played between such disturbances and numerous early onset cognitive, 
attentional, behavioural and motor disorders including; cerebral palsy 
(CP) (Volpe, 2009), autism (Atladottir et al., 2010, Johnson et al., 2010) 
and schizophrenia (Boksa, 2008, Fatemi and Folsom, 2009). Interestingly, 
a developmental component of the adult onset neurodegenerative dis-
orders Alzheimer’s (Zawia and Basha, 2005) and Parkinson’s (Gardener 
et al., 2010) has been proposed, although the inherent complications of 
lifelong longitudinal studies with limited availability of detailed perinatal 
health records makes these data suggestive rather than conclusive. 

Perinatal brain injury
Both preterm and asphyxiated term infants are at high risk for the de-
velopment of perinatally-acquired brain injury. Epidemiological inves-
tigations into the aetiology of CP have identified intrapartum complica-
tions such as asphyxia and trauma, and perinatal infection, as important 
risk factors for term infants. When considering both term and preterm 
births, prematurity, low birth weight (Johnston and Hoon, 2006) and in-
trauterine infection/inflammation (Dammann and Leviton, 1997), are 
uncovered as additional risk factors. Recent data from the ongoing Swed-
ish CP study (2003-2006) indicates overall prevalence of cerebral palsy 
at approximately 2 per 1000 live births, with prevalence highest among 
extremely preterm neonates (< 28 GW, 71.4 per 1000) and decreasing 
through very preterm (28-31 GW, 39.6 per 1000) and moderately pre-
term (32-36 GW, 6.4 per 1000) to term (>36 GW 1.41 per 100). Despite 
the lower prevalence of CP among term infants, the much greater fre-
quency of term births makes this group by far the highest contributor to 
the overall number of perinatally acquired CP cases (Himmelmann and 
Uvebrant, 2014). Interestingly, the most common risk factors for perina-
tally acquired CP differ in preterm and term born infants; HIE represents 
a more important contributory factor in term infants whilst prenatal ex-
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posure to infectious agents is more common in preterms (Himmelmann 
and Uvebrant, 2014).  

The initial processes of brain injury following cerebral hypoxia-is-
chemia are relatively well defined and follow a course of cerebral ener-
gy failure causing inhibition of cellular functions ultimately leading to 
cell death through a combination of direct and indirect effects (Fatemi 
et al., 2009, Johnston et al., 2011). The presence of infection in preterm 
is hypothesised to cause CP both through direct white matter insult and 
through initiation of preterm labour (an independent risk factor for CP 
development) (Himmelmann and Uvebrant, 2014). Long-term studies as-
sessing pre-adolescent children (mean age 11.2 years) have also revealed 
enhanced risk of intellectual, verbal, and motor deficits in children who 
sustained neonatal HIE without major disability (Perez et al., 2013). In 
the case of mood disorders, prenatal exposure to infectious agents seems 
most prevalent: admission of pregnant mothers to hospital with bacterial 
or viral infection confers significantly higher risk for the development of 
autism spectrum disorders (ASDs) amongst offspring (Atladottir et al., 
2010), and children of mothers exposed to influenza during pregnancy 
appear to be at greater risk of developing schizophrenia (Boksa, 2008).

Although the primary pathologies underlying brain injury in preterm 
and term infants may differ, inflammation is a common feature. Indeed, 
elevated levels of the proinflammatory cytokine IL-6 and chemokine IL-8 
are detected in the cerebrospinal fluid (CSF) of asphyxiated infants and 
these levels correlate with neurological outcome (Savman et al., 1998). 
Similarly, chorioamnionitis (intrauterine infection) is an important cause 
of preterm birth (Dammann and Leviton, 1997, Goldenberg et al., 2000) 
and has been reported as an independent risk factor for: white matter 
injury, intraventricular haemorrhage, and subsequent cerebral palsy in 
preterm infants (Yoon et al., 2000, Hagberg et al., 2002b, Berger et al., 
2009, Leviton et al., 2010). 

Hypoxic-ischemic encephalopathy
The presence of brain injury in term neonates is often detected through 
presentation of symptoms of neonatal encephalopathy (NE) (Shevell, 
2004). This is a clinically defined syndrome of disturbed neurologic func-
tion characterized by delayed onset of respiration, reduced conscious-
ness, altered tone and reflexes, and possible seizures as observed during 
the first week of life (Nelson and Leviton, 1991). Where strong evidence 
indicates intrapartum asphyxia as the underlying cause of NE the syn-



drome may be further classified as hypoxic-ischemic encephalopathy 
(HIE) (MacLennan, 2000, Shevell, 2004, Pin et al., 2009). Diagnosis of 
HIE in preterm neonates may presents more of a problem as clinical signs 
of injury are often subtle or absent (du Plessis and Volpe, 2002). 

Cerebral energy failure in neonatal HI
The CNS injury which underlies the clinical manifestation of HIE results 
primarily from impaired cerebral blood flow and reduced oxygen deliv-
ery to the brain (Cotten and Shankaran, 2010). This injury should not 
be considered a single pathological event, but rather an evolving array 
of pathophysiologic responses, the earliest of which have been charac-
terised both clinically and experimentally. Magnetic resonance imag-
ing (MRI) studies conducted on full term neonates with global cerebral 
hypoxic-ischemic injury display progressive lesion development during 
the first four days of life: small lesions are first detected via diffusion 
weighted MRI in the putamen and thalami with injury later evolving to 
include more extensive areas of the brain (Takeoka et al., 2002). Likewise 
assessment of cerebral energy metabolism by magnetic resonance spec-
troscopy (MRS), which permits measurement of intracellular pH and 
concentration of phosphorous metabolites including: adenosine triphos-
phate [ATP], phosphocreatine [PCr] and inorganic phosphate [Pi], in as-
phyxiated newborn infants indicates normal metabolism on the first day 
of life with abnormalities developing over the following days (Wyatt et 
al., 1989). Whilst practicalities prevent MRS based assessment in acutely 
injured infants, studies on newborn lambs have shown an acute pattern 
of metabolic dysfunction similar to that observed in older infants with 
decreased [PCr] and increased [Pi] (overall reduction in [PCr/Pi], and 
decreased [ATP] and intracellular pH (Hope et al., 1987). Notably, acute 
changes in pH and phosphorous metabolite concentrations may be nor-
malised within roughly one hour of the hypoxic-ischemic episode (Hope 
et al., 1987, Hope et al., 1988) whilst the later changes of phosphorous 
metabolites evolve over a longer time period (Wyatt et al., 1989). The 
consensus on such data is that hypoxic-ischemic brain injury leads to 
a rapid yet transient disruption of cerebral energy metabolism, termed 
“primary energy failure”, which initiates a cascade of events leading to a 
delayed metabolic disruption, referred to as “secondary energy failure” 
(Wyatt et al., 1989, Shalak and Perlman, 2004, Cotten and Shankaran, 
2010, Allen and Brandon, 2011). 

4
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Mechanisms of hypoxic-ischemic brain injury
The decreased availability of cerebral ATP following HI ultimately in-
hibits mechanisms acting to maintain cellular homeostasis, particularly 
the sodium/potassium (Na/K) pump and mechanisms which maintain 
low intracellular calcium, resulting in initiation of excitotoxicity and cell 
death (Choi, 1988, McDonald and Johnston, 1990, Delivoria-Papado-
poulos and Mishra, 1998, Johnston, 2001, 2005, Fatemi et al., 2009, Allen 
and Brandon, 2011, Hagberg et al., 2014). 

Two distinct components of excitatory amino acid (EAA) mediated 
neurotoxicity have been proposed: Primarily, acute disruptions of cel-
lular energy inhibit the Na/K pump leading to Na+ influx followed by 
passive Cl- and H2O influx, which collectively cause cell oedema (Choi, 
1988); massive neuronal depolarization occurs in response to increased 
intracellular accumulation of Na+ and glutamate is released from neu-
ronal synapses.  The second component involves inhibition of glutamate 
reuptake and excessive stimulation of the ionotropic and metabotropic 
glutamate receptors. Under normal conditions glutamate present in the 
synaptic cleft is rapidly cleared via energy dependent glutamate trans-
porters present on astrocytes. Inside astrocytes this glutamate is convert-
ed to glutamine before being shuttled back to the presynaptic neuron to 
be recycled. Inhibition of the energy dependent uptake processes leads 
to glutamate accumulation in the extracellular space (Magistretti et al., 
1999, Johnston, 2005), a phenomenon which has been observed in HI 
(Hagberg et al., 1987, Puka-Sundvall et al., 1997). High extracellular glu-
tamate concentration enhances stimulation of glutamate, particularly the 
N-methyl-D-aspartate (NMDA), receptors; this combined with ener-
gy depletion mediated membrane depolarization precipitates sustained 
opening of the NMDA receptor ion channel which floods cells with Ca2+ 

(McDonald and Johnston, 1990). 
At high intracellular concentrations calcium becomes toxic initiating 

numerous mechanisms that mediate cell death. Ca2+ sensitive proteas-
es and lipases become activated and degrade structural and membrane 
components of the cell liberating arachidonic acid and xanthine, re-
spectively substrates for oxygen and superoxide free radical production 
(Choi, 1988, McDonald and Johnston, 1990, Delivoria-Papadopoulos 
and Mishra, 1998). In the case of severe hypoxic-ischemic insult total 
mitochondrial failure may occur; triggering rapid cell death through ne-
crosis, a process characterised by cell swelling, disruption of cytoplas-
mic organelles, loss of membrane integrity and cell lysis (Gilland et al., 
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1998a, Gilland et al., 1998b, Johnston et al., 2001, Shalak and Perlman, 
2004, Hagberg et al., 2014). Milder occurrences of HI are more common-
ly associated with apoptosis, the process of programmed cell death. The 
pathways leading to apoptosis can be categorised as either intrinsic or 
extrinsic. One activator of the intrinsic cell death pathway is oxidative 
stress, which encourages the transfer of factors including cytochrome c 
(Perez-Pinzon et al., 1999) and apoptosis inducing factor (AIF) (Cregan 
et al., 2004) from the mitochondria to the cytosol. In the cytoplasm, cy-
tochrome c interacts with APAF-1, ADP, and pro-caspase-9 forming the 
apoptosome; subsequent cleavage of caspase-9 and proteolytic activation 
of caspase-3 ultimately initiates cell death through apoptotic DNA frag-
mentation (Hagberg, 2004, Johnston et al., 2011). Following transference 
to the cytosol AIF subsequently migrates to the nucleus where it initiates 
cell death in a caspase independent manner potentially through interac-
tion with the DNA repair enzyme poly-ADP-ribose polymerase (PARP) 
1 (Hagberg, 2004, Johnston et al., 2011). Additionally, high cytosolic 
concentrations of Ca2+ may directly activate caspase-3 through effects on 
calpain. Apoptosis as triggered through the extrinsic cell death pathway 
involves the cell surface associated Fas death receptor and subsequent 
activation of caspase-8 and caspase-2 (Johnston et al., 2011).

Neuroinflammation
Inflammation, although not necessarily a causative factor, is a common 
feature of diverse central nervous system pathologies and is increasingly 
considered to play a contributory role in the processes of pathogenesis 
and where appropriate, repair  (Degos et al., 2010, van Noort and Amor, 
2011, Hagberg et al., 2012). In the context of neonatal hypoxic-ischemic 
injury, inflammation, along with excitotoxicity and apoptosis, is thought 
to contribute to delayed cell death (Inder and Volpe, 2000) and involve-
ment of both the innate and adaptive arms of the immune system have 
been documented (McRae et al., 1995, Hudome et al., 1997, Bona et al., 
1999, Hedtjärn et al., 2004, Nijboer et al., 2008, Jin et al., 2009, Winerdal 
et al., 2012, Albertsson et al., 2014). As this thesis is primarily concerned 
with innate immunity, the contribution of adaptive immunity will not be 
further discussed. 

CNS immune specialization
From an evolutionary perspective the occurrence of inflammation in the 
CNS is unfavourable for several reasons. Anatomically the CNS is en-
cased in bone and inflammation induced swelling may lead to dangerous 
6
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levels of pressure on nervous tissue (Callahan and Ransohoff, 2004). Ad-
ditionally, the activity- and experience-driven nature of CNS neuronal 
circuitry development, coupled with a limited capacity for regeneration 
(Hua and Smith, 2004, Schafer et al., 2012) leaves the CNS particular-
ly vulnerable to the ravages of inflammation: to this end, physiological 
central immunity is relatively downregulated when compared to that of 
the periphery, a characteristic once attributed to its relative isolation or 
“immune privilege” (Carson et al., 2006). Recent research however, re-
veals extensive but tightly regulated peripheral to central immune signal-
ling (Carson et al., 2006); the blood-brain barrier (BBB) regulates solute 
and ion influx, whilst astrocytes, microglia, and neurons all contribute 
to the CNS immune suppressive environment (Carson et al., 2006, Gao 
and Hong, 2008). Additionally, ingression of peripheral immune cells is 
actively limited under physiological conditions (Hickey, 1999, Callahan 
and Ransohoff, 2004). This CNS immune privilege is however far from 
all-encompassing, being rapidly degraded under pathological conditions 
with both central and peripheral immune stimulation leading to CNS in-
flammation and active attraction of peripheral leukocytes (Vallieres and 
Rivest, 1997, Turrin et al., 2001, Eklind et al., 2006, Galea et al., 2007, 
Bland et al., 2010, Schwarz and Bilbo, 2011, Hagberg et al., 2012).  

PRRs, PAMPs & DAMPs
The rapid onset of inflammation following sterile or infectious CNS insult 
occurs partly through activation of the innate immune system via stimu-
lation of pathogen recognition receptors (PRRs). These “danger sensors” 
are stimulated by the presence of pathogen-associated molecular patterns 
(PAMPs) on microbes, such as lipopolysaccharide (LPS), bacterial DNA, 
and double stranded RNA (Uematsu & Akira 2006); and endogenous 
molecules expressed or released upon tissue injury, which are commonly 
referred to as damage-associated molecular patterns (DAMPs) (Miyake 
and Yamasaki, 2012). Of the PRRs the Toll-like receptor (TLR) subfamily 
has been most widely characterised in the brain and has been implicat-
ed in recognition of both PAMPs and DAMPs following ischemia in the 
adult brain (Cao et al., 2007, Caso et al., 2007, Lehnardt et al., 2007, Tang 
et al., 2007, Ziegler et al., 2007). In total 13 TLRs have been identified in 
the human and mouse, TLRs 1-10 are present in humans and all but TLR 
10 are present in mice (Mallard, 2012). Presence of the majority of these 
receptors has been convincingly displayed in both the human and mouse 
brain, or cells derived thereof (Bsibsi et al., 2002, Olson and Miller, 2004, 
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Jack et al., 2005, Mishra et al., 2006). Microglia possess the widest reper-
toire of TLRs with members 1-9 constitutively expressed in mice (Olson 
and Miller, 2004, Mishra et al., 2006) and in humans (Bsibsi et al., 2002, 
Jack et al., 2005). Astrocytes also appear to be endowed with several TLRs 
although discrepancies exist between studies (Bsibsi et al., 2002, Jack et 
al., 2005). 

The TLRs are transmembrane receptors consisting of an extracellular, 
transmembrane, and intracellular domain. TLRs 1, 2, 4, and 5 are located 
on the outer cell membrane, while TLRs 3, 7, 8, and 9 are localised on the 
membranes of endosomes and lysosomes within the cell (Mallard, 2012). 
The subcellular compartments to which these receptors are localised 
gives some indication of their function; TLRs 3, 7, 8 and 9 recognize viral 
PAMPs, most commonly nucleic acids released from pathogens under-
going degradation within lysosomes or endosomes (Blasius and Beutler, 
2010). 

Signalling through TLRs involves a group of adaptor proteins which 
share a common Toll/interleukin-1 (IL-1) receptor (TIR) domain, these 
adaptors bind specific protein kinases activating transcription factors 
such as nuclear factor-κB (NF-κB) and members of the interferon (IF-
N)-regulatory factor (IRF) family, which results in the transcription of 
an array of immune response genes including numerous cytokines and 
chemokines (O’Neill et al., 2003, Uematsu and Akira, 2006, O’Neill 
and Bowie, 2007). To date this family includes five adaptor molecules; 
MyD88, MAL (also known as TIRAP), TRIF (also known as TICAM1), 
TRAM (also known as TICAM2), and SARM (O’Neill and Bowie, 2007). 
Central to the TLR signalling process is the TIR domain which is found 
on the intracellular, or intra-endosomal, domain of each TLR receptor 
and each of the adaptors. Upon stimulation TLRs form hetero- or ho-
modimers (Ozinsky et al., 2000, Mallard, 2012) likely through interac-
tion of the two receptor’s TIR domains with the resultant conformational 
change enabling recruitment of the TIR domain containing adaptor pro-
teins (O’Neill et al., 2003).

CNS inflammatory cells: The Microglia
Microglia are the primary immune competent and phagocytic cells in the 
brain and constitute 12-15% of the CNS cellular population (Kreutzberg, 
1996, Kim and de Vellis, 2005, Block et al., 2007, Gao and Hong, 2008). 
Analysis of microglial distribution has revealed a variation of approxi-
mately five-fold between specific regions, with more microglia present 
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in the grey matter than white, and particular enrichment observed in the 
hippocampus, olfactory telencephalon, basal ganglia and substantia nigra 
(SN) (Lawson et al., 1990). In contrast to the brain’s astro- and oligoden-
droglial populations, microglia are of myeloid origin, being derived from 
a subset of primitive macrophages that invade the CNS during embryo-
genesis (Ginhoux, Greter et al. 2010). These amoeboid microglial precur-
sors proliferate extensively through the late embryonic to early neonatal 
period giving rise to microglia which gradually develop numerous fine, 
highly motile processes: a characteristic of mature surveying microglia 
(Alliot, Godin et al. 1999, Davalos, Grutzendler et al. 2005, Nimmerjahn, 
Kirchhoff et al. 2005). In rodents postnatal proliferative potential declines 
rapidly, all but ceasing by the end of the second postnatal week (Alliot, 
Godin et al. 1999). Microglial turnover is extremely limited in juvenile 
and adult animals, and replacement by peripheral monocytes is almost 
non-existent under physiological conditions (Ransohoff 2011, Hagberg, 
Gressens et al. 2012). Collectively these observations highlight another 

Surveying
microglia

Retraction of
processes

Cytokine release

PAMPs
MiDM

MDM

M1:
Host defence

NO

M2:
Tissuerepair

ECMreconstruction
*Synaptic

maintenance

*NPC
maintenance

*Trophic
  Support:
  IGF-1
  NGF
  BDNF

Periphery

CNS

Development/Homeostasis Activation

DAMPS

Intermediate
Phenotypes

Monocyte

Fig.1. Roles of microglia and macrophages in the intact and inflamed CNS: Under physiologi-
cal conditions microglia exist in a “surveying” state, constantly remodelling their processes and 
sampling the CNS parenchyma. Physiological roles include providing trophic support, removing 
excess synapses, and clearance of apoptotic neurons from the neurogenic niches. In response to 
pathological stimuli their processes retract and numerous cytokines and chemokines are upreg-
ulated. Under conditions of severe or prolonged inflammation, these cells adopt an amoeboid 
macrophage phenotype and monocyte derived macrophages from the periphery may be actively 
recruited from the periphery to participate in the ongoing inflammatory response. Macrophages 
may exhibit pro-, anti-, or and intermediate- inflammatory phenotypes. 
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interesting property of microglia, namely that they are long-lived, po-
tentially surviving throughout the lifespan of the organism (Ransohoff 
2011). 

Although well characterised, and often considered, in the context of 
their immune functions during CNS pathology (Block et al., 2007, Amor 
et al., 2010, Ransohoff and Cardona, 2010), microglia are increasing-
ly understood as cells with a wide repertoire of developmentally and 
physiologically important functions (Hanisch and Kettenmann, 2007, 
Pont-Lezica et al., 2011, Kettenmann et al., 2013, Miyamoto et al., 2013). 
In addition to their role as potential effector or sentinel cells of the CNS 
(Amor et al., 2010), they are actively involved in CNS development and 
maintenance of CNS homeostasis. Developmentally, microglia have been 
shown to phagocytose neural precursor cells in the cortical proliferative 
zones as cortical neurogenesis nears completion (Cunningham et al., 
2013) and partake in activity dependent synaptic refinement (Paolicelli 
et al., 2011, Schafer et al., 2012); both of these functions extend into later 
life with microglia observed to interact with synaptic boutons in an ac-
tivity driven fashion in juvenile mice (Tremblay et al., 2010) and actively 
survey the adult hippocampal stem cell niche, where they phagocytose 
apoptotic newborn cells (Sierra et al., 2010).

In response to pathological alterations of the CNS microenvironment, 
microglia rapidly adopt an upregulated or activated phenotype. Expres-
sion of cell-surface antigens and synthesis of both cytokines and chemok-
ines are altered (Hanisch, 2002) and simultaneous characteristic altera-
tions in cell morphology occur; microglial processes retract and thicken 
as each cell transitions towards an amoeboid macrophage morphology 
(Kreutzberg 1996, Davalos, Grutzendler et al. 2005, Nimmerjahn, Kirch-
hoff et al. 2005). Two key signalling mechanisms govern the reactivity of 
microglia: The first of these is related to the presentation of factors that 
are not usually present such as bacterial or viral PAMPs, or as is the case 
with DAMPs; factors not commonly present at critical concentrations or 
in specific conformations, for example intracellular components or pro-
tein aggregates (Nakamura, 2002, Block et al., 2007, Hanisch and Ketten-
mann, 2007). The presentation of such factors would be recognised by 
microglia-expressed specific PRRs, such as the Toll-like receptors, result-
ing in microglial reactivity being controlled by receptor signalling (Olson 
and Miller, 2004, Hanisch and Kettenmann, 2007). The second involves 
constituent tonic inhibition of microglial activity through ligand-recep-
tor pairs including; CD200-CD200R (Hoek et al., 2000), CX3CL1- CX-
10
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3CR1 (Cardona et al., 2006) and SIRPα-CD47 (Chavarria and Cardenas, 
2013), all of these ligands have been detected on neurons illustrating di-
rect neuron-immune signalling. This latter pathway provides a mecha-
nism for microglia to respond to loss of neuronal integrity in response to 
an unrecognised threat (Hanisch and Kettenmann, 2007). 

The potential changes in microglial functionality induced by signalling 
through these mechanisms are diverse: depending on context microglia 
may participate in cytotoxic responses, immune regulation, and injury 
resolution (Chhor et al., 2013); although it is important to bear in mind 
the full diversity microglial activation phenotypes may not be reflected 
by altered morphology or expression of limited panels of cell surface an-
tigens (Perry et al., 2010). Much of the present conceptual understanding 
of microglial activation has been built upon in vitro studies of monocytes 
activated to adopt macrophage phenotypes through exogenous applica-
tion of “prototypical” factors such as LPS or Interleukin (IL)-4 adopting 
classical (M1) cytotoxic or alternative (M2) anti-inflammatory pheno-
types respectively (Gordon and Taylor, 2005, Mosser and Edwards, 2008, 
Chhor et al., 2013). Importantly, microglia display a high degree of phe-
notypic plasticity and may exhibit numerous functionally distinct pheno-
types which lie at any point on the spectrum between surveying, or M1 
and M2 activated (Mosser and Edwards, 2008, Perry et al., 2010). 

Immune to brain communication: Leukocyte Trafficking
As previously mentioned, CNS immune privilege is greatly undermined 
under inflammatory conditions and circulating leukocytes, including 
monocyte derived macrophages (MDMs), neutrophils, mast cells, and 
NK cells may be actively recruited to participate in CNS inflammatory re-
sponses (Bona et al., 1995, McRae et al., 1995, Hudome et al., 1997, Bona 
et al., 1999, Nijboer et al., 2008, Jin et al., 2009). Accurate identification 
of MDMs in the CNS has traditionally proved difficult due to their simi-
larities with microglia derived macrophages (MiDMs) (Perry et al., 1985, 
Sedgwick et al., 1991) (Kreutzberg, 1996). This problem is further con-
founded by the presence of functionally distinct blood monocyte subsets 
with both “resident” and “inflammatory” subtypes distinguishable based 
on Ly6C expression (Geissmann et al., 2010). Leukocyte attraction is me-
diated by expression of chemokines, a family of small, structurally similar 
proteins best known for their roles in leukocyte trafficking (Callahan & 
Ransohoff 2004). The chemokine family comprises four subfamilies (C, 
CC, CXC, & CXXXC), each categorised by the number of cysteine resi-
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dues or number of amino acids located between the first two cysteine res-
idues. The effects of chemokine molecules are mediated by corresponding 
families of chemokine receptors named CR, CCR, CXCR and CXXXCR 
(Callahan and Ransohoff, 2004). Indeed, in the context of neonatal HI 
enhanced expression of numerous chemoattractant molecules including 
CCL2 & CCL7, CCR1 & CCR5, and CXCL1 have been observed (Hedt-
järn et al., 2004). These ligand groups are respectively known for their 
roles in emigration of Ly6Chi “inflammatory“ monocytes from the bone 
marrow, recruitment of monocytes into inflamed tissue (Shi & Pamer 
2011) and neutrophil recruitment (Hedtjärn et al 2004).

Neurogenesis
The majority of neurons residing within the adult central nervous system 
are developmentally generated, post-mitotic, and terminally differenti-
ated. As such, these neurons represent a stable population with, almost, 
no turnover. As development proceeds, neurogenic potential becomes 
gradually restricted to the subventricular zone (SVZ) of the lateral ven-
tricles and the subgranular zone (SGZ) of the hippocampus where it is 
maintained throughout adult life (Eriksson et al., 1998, Gage et al., 1998, 
Curtis et al., 2007). Such continuous addition of new neurons suggests 
that the adult hippocampal network is an architecturally dynamic struc-
ture comprised of a heterogeneous population of neurons at various stag-
es of maturation, a property likely essential to the correct function of 
the hippocampal network. Indeed, factors known to have positive effects 
on neurogenesis, such as enriched environment and physical exercise, 
improve certain aspects of learning and memory (Fabel et al., 2009, van 
Praag, 2009). Conversely aging, stress and inflammation are negative for 
both memory and neurogenesis (Warner-Schmidt and Duman, 2006, 
Jessberger and Gage, 2008, Schoenfeld and Gould, 2011).

Inflammatory control of adult neurogenesis
Inflammation occurring in the germinal regions of the adult CNS can 
negatively regulate the differentiation and survival of newly born neu-
rons (Ekdahl et al., 2003, Monje et al., 2003). Practically, these inflamma-
tory mediated effects likely result from cross talk between several known 
inflammatory and neurogenic pathways. In response to stimulation, mi-
croglia can become activated and produce a number of proinflammato-
ry cytokines such as TNF-α, IL-1β, IL-6 and INF-γ (Monje et al., 2003, 
Leem et al., 2011). Of these, both TNF-α and IL-6 are sufficient to reduce 
in vitro neurogenesis, whilst addition of a neutralizing anti-IL-6 antibody 
12
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to conditioned media from activated microglia is sufficient to restore 
neurogenesis to control levels (Monje et al., 2003). These results implicate 
IL-6 as a key player in inflammation induced regulation of neurogenesis. 
Mechanistically IL-6 is known to signal via the IL-6R co-receptor gp130 
(Nakashima and Taga, 2002, Chojnacki et al., 2003) activating the Janus 
tyrosine kinase/signal transducer and activator of transcription (JAK/
STAT) pathway and leading to nuclear signal propagation. Signalling via 
this pathway can directly affect gliogenesis in two ways: STAT3 can bind 
the GFAP promoter leading to enhanced transcription in neural precursor 
cells (Nakashima and Taga, 2002), and signalling via gp130 can stimulate 
the notch1 pathway (Chojnacki et al., 2003) leading to increased Hes1 ex-
pression and antagonism of the proneural Mash1, thereby pushing neural 
progenitor cells (NPCs) towards a glial fate (Ishibashi et al., 1994, Ishiba-
shi et al., 1995, Castella et al., 1999, Nakamura et al., 2000). Interestingly, 
in cultured NPCs Mash1 can also be regulated in a redox sensitive fash-
ion by the class III NAD+ dependent histone deacetylase (HDAC) Sirt1; 
increased oxidative stress occurring within the intracellular environment 
can cause Sirt1 upregulation whilst simultaneously initiating formation 
of a Sirt1-Hes1 complex which binds to, and deacetylates, histones at the 
Mash1 promoter. This leads to repression of Mash1, inhibiting neurogen-
esis and enhancing gliogenesis (Prozorovski et al., 2008). Sirt1 expression 
has also been positively correlated with hippocampal cell proliferation, 
an observation partially explained by the ability of Sirt1 to regulate tran-
scription of presenilin1 (PSEN1), a part of the PSEN1/γ-secretase com-
plex required for ligand induced cleavage of the notch intracellular do-
main (NICD) (Torres et al., 2011). Additionally, both TLR2 and TLR4 
are present on NPCs of the adult SVZ and SGZ and have been shown to 
play important roles in the regulation of NPC self-renewal and cell fate 
decision, providing a direct link between CNS immunity and adult brain 
function (Rolls et al., 2007).
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Aims

The general aim of this thesis has been to investigate aspects of the cere-
bral inflammatory response following perinatal injury of both sterile and 
infectious origin. Our particular focus has been peripheral to central im-
mune interaction. 

Specifically, we aimed to investigate: 

•	 The expression and regulation of the Toll-like receptors in the neo-
natal brain both under physiological conditions and in response to 
experimental hypoxic-ischemic brain injury.

•	 Acute and chronic effects of LPS-mediated peripheral immune stim-
ulation on microgliogenesis, inflammation associated gene expres-
sion, and the ongoing processes of neurogenesis in the developing 
hippocampus. 

•	 To investigate recruitment of macrophages and neutrophils into the 
inflamed central nervous system in response to hypoxic-ischemic 
brain injury. 
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Methological Considera-
tions

Mouse models for the study of human pathology
Mice represent an important model system in modern biomedical re-
search. Of primary importance is their genetic, anatomical and physio-
logical similarity to humans; similarities which permit valuable extrapo-
lation of results between species. Secondary considerations include their 
small size, short generation time and accelerated life spans; factors collec-
tively making them time and cost effective models and reducing ethical 
considerations by comparison to larger mammalian models or non-hu-
man primates. Disadvantages of mouse models include gross anatomical 
differences of brain structure; unlike humans their brains are lissence-
phalic as opposed to gyrencephalic (Hagberg et al., 1997, Hagberg et al., 
2002a). Additionally, their small size prevents procedures such as cathe-
terisation which would allow repeated blood sampling and recording of 
basic physiological parameters such as mean arterial pressure (MAP) and 
heart rate (HR). Notably, many of the qualities that make mice so readily 
useful for experimental research also make them particularly amenable 
to genetic manipulation.

Colony maintenance
Today’s research commonly utilises mouse strains that have been inbred 
(brother x sister and/or parent offspring) for a minimum of 20 genera-
tions. This process creates mice with a high degree of genetic similarity 
which standardises responses to experimental manipulation and hence 
reduces the number of animals required for the study biological phenom-
enon. 

By definition, a substrain arises when 20 generations of separation occur 
between a parental colony and subcolony: Following routines designed to 
limit such genetic drift is essential for maintaining reproducible results 
through generations and between laboratories. At the simplest level sub-
strain emergence can be avoided by replacing subcolony breeding pairs 
with mice from the parental colony every 5-10 generations. Where trans-
genic mice are involved, and repeated purchase of founders is prohibi-
tively expensive, a more relevant strategy is to periodically backcross the 
genetically modified mice from the sub-colony onto their background 
strain. Backcrossing involves selectively breeding offspring which exhibit 
the desired mutation with a member of their background strain originat-
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ing from the parental colony for 10 generations (Hedrich and Bullock, 
2004, Crawley, 2007).

Strains used and specific considerations 
The research presented herein has utilised five strains of inbred mice: 

1-2.	 Wild type mice of the C57BL/6J and C57BL/6 strains.
3-4.	 TLR1 (Takeuchi et al., 2002) (Oriental Bioservice, Tokyo, Japan) 

and TLR2 (Wooten et al., 2002) (B6.129-Tlr2tm1Kir/J, Jackson Labo-
ratory, US) knock-out (KO) mice, both on C57BL/6J background, 
in which TLR1 and TLR2 respectively have been functionally inac-
tivated by genetic targeting.

5.	 Lys-EGFP-ki (Faust et al., 2000) (Lyz2tmiGraf, obtained directly from 
Dr. Tomas Graf, Autonomous University of Barcelona, Spain) re-
porter mice on a mixed 129x1/SvJ x 129S1/Sv genetic background, 
which express the jellyfish derived (Morise et al., 1974, Prasher et 
al., 1992, Chalfie et al., 1994) enhanced green fluorescent protein 
(EGFP) (Cormack et al., 1996) under control of the Lyz2 gene pro-
moter region allowing visualization of the active Lyz2 promoter in 
live and post-mortem tissue.      

 
In paper I we used both TLR1 and TLR2 deficient mice. These animals 

were purchased specifically for these experiments and were not used be-
yond generation 3. Control C57BL/6J mice were purchased directly from 
the supplier. 

The targeting vector used to create the Lys-EGFP-ki mouse was designed 
in such a way as to ensure that the Lys gene would no longer be tran-
scribed or translated. Therefore homozygous Lys-EGFP-ki mice should 
be considered as LysM functional knockouts. These mice display no ob-
vious phenotype (Faust et al., 2000) and display no significant differences 
in proportion of monocytes, neutrophils or lymphocytes in the blood, 
bone marrow and spleen when compared to C57BL/6 mice (Mawhinney 
et al., 2012). Lys-EGFP-ki mice display EGFP expression in neutrophils, 
monocytes and macrophages (Faust et al., 2000) and have been success-
fully employed to differentiate between microglia derived macrophages 
and monocyte derived macrophages in the injured CNS (Kim et al., 2009, 
Mawhinney et al., 2012, Thawer et al., 2013).
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Comparing milestones of rodent and human CNS develop-
ment
Comparing CNS maturational age between species is widely accepted as 
challenging (Hagberg et al., 1997, Hagberg et al., 2002a). Some of the ear-
liest work addressing this issue was based on measurement of post-mor-
tem brain weights and comparison of the temporal occurrence of the 
“brain growth spurt”, a phenomenon which occurs at term in humans 
but is delayed into the early postnatal period in rats (Dobbing and Sands, 
1979).  In adapting the Levine model of adult anoxic-ischemic brain in-
jury (Levine, 1960) to model neonatal HIE (Rice et al., 1981), Rice and 
colleagues selected the P7 rat pup as “the germinal matrix was small and 
cortical layering was complete in all 6 layers, making the brain of the P7 
rat pup most similar to the 34- to 35-week human infant, with the P10 rat 
approximating the human infant at term” (Hagberg et al., 2002a). As data 
from human and rodent neonates has accumulated, more comprehensive 
comparisons of various developmental milestones have been facilitated; 
in the early 90’s Romijn et al reviewed human and rat data on numerical 
synapse formation, GAD and ChAT enzyme activity and developmen-
tal pattern of cortical electrical activity concluding that a rat P12-13 rat 
brain is approximately at the same stage of development as a term human 
(Romijn et al., 1991). Hagberg et al later summarised available data on 
growth/proliferation, presence of the periventricular germinal matrix, 
neurochemical and metabolic data, EEG pattern, synapse formation and 
patency of the blood-brain barrier concluding that the brain of a P7-14 
rat corresponds to that of a term human (Hagberg et al., 1997). A re-
cent and comprehensive review by Semple and co-workers taking into 
account factors including; oligodendrocyte maturation, immune system 
development, establishment of the BBB, peak gliogenesis, brain growth 
spurt, and axonal and dendritic density equates a 23-32 week human pre-
term brain with a P1-3 rodent, and a 36-40 week term human brain with 
the P7-10 rodent.  

With the now burgeoning information on developmental events in 
different species, integration starts to present an issue. An ongoing col-
laborative project from the University of Central Arkansas and Cornell 
University attempts to address this by incorporating available data into a 
predictive model of 271 developmental events in 9 species (www.trans-
latingtime.org) (Workman et al., 2013). Using this tool to translate the 
age of mice used in this thesis, based on comparative whole brain my-
elination, we obtain the following results: P5 mouse = P6 rat = GW 30 
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(preterm) human; P9 mouse = P10 rat = GW 40 (term) human.
In summary, translating brain maturity across species is difficult, whilst 

a general consensus exists over approximate timings, discrepancy over 
exact figures remains (Dobbing and Sands, 1979, Romijn et al., 1991, 
Hagberg et al., 1997, Hagberg et al., 2002a, Semple et al., 2013, Workman 
et al., 2013) and may well be borne of differential characteristics of indi-
vidual developmental processes between species. Our decision to use P5 
and P9 mice to model preterm and term injury respectively is well sup-
ported by the available literature.  

Injury Models
P5 LPS (Paper II)
LPS was administered at a dose of 1mg/kg i.p. (intraperitoneal) to P5 
mice with the aim of modelling aspects of neonatal infection in preterm 
infants. At P5 the general level of CNS maturity in the mouse is broadly 
comparable to that of a preterm human and the processes of develop-
mental hippocampal neurogenesis (Bayer, 1980) and microglial precur-
sor proliferation are highly active (Alliot et al., 1999). In experimental 
systems i.p. administration of LPS, an outer membrane component of 
gram-negative bacteria, induces systemic inflammation and leads to in-
creased expression of proinflammatory cytokines, enhanced microglial 
activation and inhibited neurogenesis in the CNS (Vallieres and Rivest, 
1997, Turrin et al., 2001, Monje et al., 2003, Eklind et al., 2006, Wu et al., 
2007, Fujioka and Akema, 2010). We selected the dose 1mg/kg (1mg/kg) 
and administration route (i.p.) based on studies displaying LPS mediated 
effects on hippocampal neurogenesis in adult animals (Monje et al., 2003, 
Wu et al., 2007, Fujioka and Akema, 2010).

Experimental HI (Papers I and III)
The experimental model of neonatal HI used in papers I and III origi-
nates from the Levine adult rat anoxia-ischemia model (Levine, 1960), 
which combined unilateral carotid artery ligation with hypoxia to pro-
duce conditions of combined “anoxic-anoxia” (oxygen deprivation) and 
ischemic-anoxia (deficiencies in oxygen, glucose and other substrates) 
(Levine, 1960). In searching for an appropriate model of neonatal HIE 
Rice et al adapted this model to the P7 rat, creating the Rice-Vannucci 
model (Rice et al., 1981), which has since been adapted for mice (Ditel-
berg et al., 1996) and with minor variations of age and technique remains 
one of the most widely used systems for studying HI (Yager and Ashwal, 
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2009). 
The procedure follows a general protocol of anaesthesia followed by 

permanent unilateral common carotid artery occlusion and exposure to 
a variable degree of hypoxia for a varying length of time; in our experi-
ments we have used 10% O2 for 50 minutes respectively.  

In rats hypoxemia and hypocapnia are observed during hypoxia (Van-
nucci et al., 1995) and cerebral blood flow (CBF) is reduced 40-60% of 
control rate in the ipsilateral hemisphere, an effect that is normalised im-
mediately upon return to normoxic conditions (Vannucci et al., 1988). 
Similarly data from our lab displays greatly decreased CBF in the ipsi-
lateral hemisphere of P9 C57BL/6 mice during hypoxia, with values re-
turning to their physiological range between 2-6 hours after following 
to normoxic conditions (Ek et al., 2014). Histopathological examination 
reveals reproducible damage to the ipsilateral cerebral cortex, striatum, 
hippocampus and white matter (Rice et al., 1981, Silverstein et al., 1986, 
Towfighi et al., 1991, Bona et al., 1995, Vannucci and Hagberg, 2004), 
which is rarely observed in the contralateral hemisphere and is not pres-
ent in pups subjected only to hypoxia (Towfighi et al., 1995, Vannucci 
and Hagberg, 2004). Thus this model displays similar neuropathological 
lesions to those commonly observed following severe asphyxia in human 
term neonates. However, other brain regions, such as the brain stem and 
cerebellum that may be affected in clinical HI are poorly modelled in this 
rodent system (Hagberg et al., 1997, Volpe, 2008). Other disadvantages 
of this model are the lack of multi organ involvement, as observed in 
cases of severe clinical asphyxia (Hagberg et al., 1997) and the inherent 
variability of lesion size (Grafe, 1994, Hagberg et al., 1997), which results 
in greater numbers of animals being required for experiments; this effect 
is counteracted to some degree by the predominantly unilateral nature of 
the lesion, which depending on experimental context, allows use of the 
contralateral hemisphere as an internal control.

Histology (Papers I-III)
Histological preparations
Good histological preparations result from four main processes: Fixa-
tion, embedding, sectioning and staining. There are numerous possible 
variations, and permutations, of these steps which should be carefully 
considered and correctly applied for specific applications. 

Fixation prevents tissue autolysis and preserves morphologic and mo-
lecular characteristics. It is therefore desirable for fixation to occur either 
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before, or immediately after, removal of tissue from the organism. Here 
fixation has been performed with either 4% paraformaldehyde (PFA) or 
Histofix, the latter being a commercially available formulation of 6% par-
aformaldehyde.  Exposure of tissue to paraformaldehyde leads to protein 
“cross-linking”, the net result of which is preserved cellular and ultimately 
tissue structure. Here, PFA has been applied via transcardial perfusion of 
the terminally anaesthetized animal. A process proceeded by a brief flush 
with isotonic saline which clears residual blood cells from the vascula-
ture. Following dissection, brains were post-fixed for a further 24 hours 
to facilitate more complete cross-linking. 

Paraffin embedding and sectioning were performed in paper I, and 
cryo-embedding and sectioning in papers I-III. Paraffin embedding has 
the advantage of facilitating collection of extremely fine sections, com-
monly 7µm, and greatly preserving gross anatomical structure. The par-
affin embedding process involves a standardised process of sequential 
dehydration through an increasingly concentrated series of alcohols fol-
lowed by xylene clearance and finally paraffin infiltration. Cryoembed-
ding methodologies generally preserve antigenicity to a greater degree 
than paraffin processing but at the cost of gross tissue morphology; this 
is to some degree counteracted by cutting thicker sections, typically 20-
60µm depending on age of animal. When preparing tissue for cryosec-
tioning the greatest potential problem is formation of large ice crystals. 
This process leads to abnormal vacuolisation of tissue, potentially ren-
dering it useless for further analysis, the so-called “Swiss-cheese” effect. 
Ice crystal formation is facilitated by slow freezing and slow thawing; 
rapid freezing leads to the formation of smaller crystals, which do not 
disrupt cellular membranes and tissue structure, slow thawing facilitates 
the aggregation of smaller crystals into larger crystals: this effect becomes 
significant above -300C and especially problematic above -200C. We com-
bated these issues in several ways, the first of which is through fixation, 
which has previously been mentioned. Following fixation, tissue is sub-
mersed in 30% sucrose for a minimum of 24 hours, a process which facil-
itates tissue water displacement and sucrose infiltration. Samples are then 
frozen on liquid nitrogen, to ensure rapid freezing, and cut on a Leica 
CM3050 S cryostat (Leica, Sweden) at ≈ -220C to avoid thawing artefacts. 
Once cut, sections are transferred to a solution of 25% ethylene glycol 
and 25% glycerine in 0.1M phosphate buffer (a cryoprotectant solution) 
and stored at -200C until immunohistochemistry. (Asahina et al., 1970, 
Rosene et al., 1986, Johnstone and Turner, 1997).
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Immunohistochemistry
Immunohistochemistry is widely employed in both biological research 
and diagnostic histopathology. In essence the procedure relies on detec-
tion of an endogenous antigen through application of an exogenously 
derived (primary) antibody, which may be unconjugated or directly con-
jugated to a label which allows visualisation. In the case of unconjugated 
primary antibodies, a secondary conjugated antibody that reacts to the 
primary is required for successful visualisation. Antibodies may be con-
jugated to enzymes or fluorescent molecules; enzyme based labels, such 
as horseradish peroxidase, can be activated in the presence of hydrogen 
peroxide causing oxidisation of a substrate (for example: Diaminobenzi-
dine or DAB), and visualisation of the bound antigen-antibody complex. 
Stained tissue can later be analysed on a brightfield microscope. Con-
jugation of fluorescent molecules allows direct visualisation on micro-
scopes configured for this application. A great advantage of visualisation 
based on fluorescence is that it allows the detection of multiple antigens 
simultaneously, a property useful for microscopy and essential for other 
antibody based applications such as flow cytometry. Primary antibodies 
may be polyclonal or monoclonal, and it is important to be aware of the 
specific clonality for correct experimental design. When selecting combi-
nations of fluorescence conjugated antibodies for multi-labelling experi-
ments, one should consider the configuration of the microscope that will 
be used for downstream analysis and the emission and excitation spectra 
of the fluorescent labels: a well selected panel of antibodies will guard 
against overlap of emission spectra and consequent incorrect identifica-
tion of antigen-antibody complexes.  

All immunohistochemical staining procedures used in this thesis fol-
low a general protocol of pretreatment (where required), blocking and 
application of primary followed by secondary antibodies. Antigen re-
trieval pretreatment steps are generally considered obligatory for suc-
cessful immunohistochemical staining of paraffin sections, but poten-
tially dispensable for successful staining of cryosections: Following PFA 
fixation, the cross-links made between protein molecules may make the 
targeted antigen unavailable for antibody binding; antigen retrieval steps 
aim to “unmask” antigens by breaking the cross-links formed during fix-
ation and leaving the antigen available for binding. Antigen retrieval was 
performed on paraffin- (Paper I) and cryo- (Papers II & III but not I) sec-
tions by 10 minute incubation with 10mM sodium citrate buffer (pH6) 
at 95-100OC. Blocking is performed to inhibit assumed non-specific an-
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tibody binding due to hydrophobic interactions and reactions between 
the Fc portions of antibodies and Fc-receptors. We performed this step 
through 30 minute incubation (room temperature) in TBS, or TBS plus 
0.1% triton-x-100, containing 3% normal serum. Here, incubation with 
normal serum inhibits Fc-FcR interactions while the inclusion of a deter-
gent counteracts unspecific binding through hydrophobic forces. (John-
stone and Turner, 1997, Buchwalow et al., 2011).        

Microscopy
Various microscope systems and stereological analysis techniques have 
been used in this thesis, below follows information about these systems 
and their application herein.

Brightfield and epifluorescence
Brightfield microscopes consist of three main elements: a light source 
(commonly a halogen lamp), condenser, objective and ocular. The light 
path runs through source to condenser, specimen, objective and final-
ly ocular lens or detector. This is a trans-illumination technique with 
stained structures observed as darker areas on a bright background. 
This technique is most commonly used for visualization of histologically 
stained tissue or chromogen based immunohistochemical/immunocyto-
chemical preparations (Papers I&II). 

Epifluorescence microscopy systems are commonly built on brightfield 
systems. Their main elements are: lamp (commonly halogen or mercury 
and increasingly LED), excitation filter, dichroic mirror, objective, emis-
sion filter ocular and detector. Key to understanding this type of system is 
a basic knowledge of the behavior of fluorophores: when these molecules 
are excited by light of a particular wavelength they emit light of a longer 
wavelength (referred to as a fluorophore’s excitation and emission spectra 
respectively). This allows the system to be built to both transmit light to 
the sample, and receive reflected light, via the objective lens. Here, the 
light path will run from the source to the excitation filter, dichroic mirror, 
objective specimen, objective, and finally to the ocular and/or detector. 
The dichroic mirror reflects light of shorter wavelengths whilst transmit-
ting that of longer, which means that the shorter wavelength light from 
the lamp will be reflected by the dichroic mirror towards the specimen 
via the objective, whilst returning longer wavelength light will be trans-
mitted through the dichroic mirror to the ocular lens or detector. The 
presence of emission filters (located between the dichroic mirror and oc-
ular/detector) limits returning light to one particular region of the spec-
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trum (usually correlating to the emission spectra of a related group of 
fluorophores). The use of several filters and sequential imaging therefore 
facilitates multi-channel fluorescence microscopy. A common filter con-
figuration would be three filters allowing visualization of fluorophores 
with emission spectra of approximately 405nm, 488nm and 555nm.  A 
major limitation of epifluorescence systems is the undesired detection of 
light from outside the focal plane. Practically this limits resolution of fine 
cellular and intracellular structure, a problem which increases in sever-
ity with greater magnification. Several systems have been developed to 
counter this and improve resolution, two of which are discussed below. 

Confocal laser scanning microscopy (CLSM)
CSLM builds on the principles of epifluorescence microscopy with several 
important modifications designed to facilitate acquisition of focused im-
ages from selected depths within thick biological specimens, a technique 
referred to as “optical sectioning”. Sampling of multiple optical sections 
throughout the height (axial- or Z-plane) of a specimen and subsequent 
computer-based reconstruction, allows generation of high magnification, 
in focus photomicrographs and three-dimensional (3D) reconstructions 
of cells and cellular structures (Papers I-III). The concept of the confocal 
microscope was patented in 1957, essentially describing a standard flu-
orescence microscope with the addition of a “pinhole” to the light path. 
Theoretically, this pinhole could eliminate the return of light originating 
from outside the focal plane to the detector. However, technological solu-
tions to the problems associated with this design (limited light from only 
a tiny point in the specimen returning to the detector) would not become 
available until the 1980s.

A modern confocal microscope is in essence a modified epifluores-
cence system. The ability to perform confocal laser scanning microscopy 
comes from the presence of laser illumination sources and the scan head. 
The scan head comprises of the laser inputs, raster scanning mechanism, 
beam splitters, filter sets and the detectors, which are commonly photo-
multiplier tubes (PMTs). Typically, a confocal system will have three to 
four lasers, which may be gas lasers (e.g. Argon 488nm or Helium Neon 
(HeNe) 543nm and 633 nm), solid-state lasers (e.g. Ti:S 700 – 1000nm), 
dye lasers (e.g. Rhodamine 6G 580nm) or semiconductor (diode) lasers 
(e.g. blue 405nm). The point source lasers used by CLSM systems allow 
high intensity light to be focused on extremely small areas of the speci-
men, ensuring sufficient light is transmitted via the pinhole to the detec-
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tor: although this laser illuminates only a small point in the specimen it 
still produces a 3D diffraction pattern, meaning that the final resolution is 
controlled by the pinhole diameter. If the pinhole is set to 1 airy unit (the 
theoretical pinhole diameter at which the maximum amount of focused 
light is collected) only the first order of the diffraction pattern is collected 
by the detector; this gives the highest possible resolution at the cost of 
signal intensity. In practice, this may be too conservative, especially in the 
case of low signal-to-noise ratio, and the pinhole diameter may have to 
be widened and resolution will be sacrificed in favour of signal intensity. 
Other means to compensate for poor signal-to-noise ratio: include scan-
ning the same Z-plane multiple times and compiling images, increasing 
the sensitivity of the photo-detectors or increasing the intensity of the 
laser. An issue with the latter of these options is that it greatly increases 
the risk of photo bleaching and/or damaging the specimen. (Hibbs, 2004, 
Pawley, 2006).

Structured illumination microscopy (SIM)
Structured illumination technology represents an alternate and compara-
tively inexpensive way to improve upon the limitations of epifluorescence 
microscopy and obtain optical sectioning capabilities. The SIM system is, 
like the CLSM, built upon a standard epifluorescence base unit but rep-
resents a comparatively cost effective and low complexity solution which 
requires little more than the addition of a relatively small SIM module 
and suitable control software. The SIM module imposes a movable grid 
system in the light path, thereby “structuring” the transmitted light. Dis-
crepancies in modulation of fluorescence signal along the structure allow 
discrimination of light emitted from structures within and outside the 
focal plane. Comparison of several images acquired with the grid posi-
tioned in different planes relative to the sample facilitates computational 
reconstruction of focused optical sections of the specimen (Langhorst et 
al., 2009).  Although CSLM generally, but not exclusively, provides better 
quality imaging than SIM, the low complexity of the latter solution com-
bined with its high-throughput capabilities confer advantages in certain 
applications. We have used this system extensively (Papers II&III) to rap-
idly generate multi-channel tiled Z-stacks of large brain structures, such 
as the hippocampus and cortex: a technique that has been particularly 
useful when employed in conjunction with stereological cell sampling 
techniques.
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Stereology
Design based stereology is a core technique of this thesis which has 
been used to quantify neuropathological changes (infarct size, Paper I) 
and size of various cellular populations (Paper II) based on histological 
preparations.

Paper I
In paper I we estimated MAPII positive volume in ipsilateral and con-
tralateral hemispheres in accordance with the Cavalieri principle. MAPII-
DAB positive area was measured in every 40th section throughout the 
brain (section thickness = 10µm) on a standard brightfield microscope. 

  
Volume was calculated as:  

   			 
	 V = ∑α ∙ (1/ssf) ∙ t
 

Where V is total volume (µm3),   ∑α is the sum of the measured areas, 
ssf is section sampling fraction and t is the section thickness.

   Paper II
In Paper II we used design based stereology to estimate absolute num-
ber and/or density of numerous cellular populations.  Various techniques 
were applied depending on characteristics of the population quantified.

Quantification of absolute number of BrdU, PhH3 and DCX positive 
cells was performed through exhaustive counting of single labelled cells in 
serially cut sections spanning the hippocampus. Here, antibody-antigen 
complexes were visualised through horseradish peroxidase/DAB chro-
mogen reaction allowing examination and quantification on a standard 
brightfield microscope. In this application exhaustive counting is both 
feasible and relevant, as the cells of interest occupy a small anatomical 
region (the hippocampal sub granular zone) and are present in relatively 
small numbers. In situations where the cellular population of interest is 
not uniformly distributed throughout a wide area, unbiased sampling in 
the lateral plane may be irrelevant and introduce error. Exhaustive count-
ing is therefore appropriate as it eliminates sampling bias. 
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Absolute number of cells was calculated as:  				  
										        
	 N = ∑Q ∙ ssf
 

Where N represents the absolute cell number of, ∑Q represents the sum 
of the counted cells and ssf is the sampling fraction.

We used the Fractionator technique for quantification of Iba1-DAB 
positive microglia as these cells are uniformly spread throughout the re-
gion of interest. This technique facilitates unbiased sampling of a defined 
two-dimensional region of interest and is used to sample populations 
considered too large for exhaustive counting. 

	
Absolute cell number was calculated in accordance with the Fractiona-

tor methodology: 
  
	 N = ∑Q ∙ (1/asf) ∙ (1/ssf)  

	
Where asf represents area sampling factor.
	  								      
Estimates of cells per unit volume (cell density) were made using a 

modified Optical Fractionator methodology:           				  
	
	 N = ∑Q ∙ t ∙ (1/asf) ∙ (1/ssf)  	

Analysis of marker co-expression in the hippocampal granular cell 
layer and subgranular zone was performed on Z-stacks captured on the 
CLSM system. In this application the use of stacked optical sections is 
necessary to avoid misidentifying cells as co-expressing the markers of 
interest when they are located in the same xy-plane but at different levels 
within the z-plane. Here, a minimum of 100 BrdU positive cells were 
analysed for co-expression. 

		   
Estimates of absolute number of co-expressing cells calculated as:    

	 P = N ∙ (ccl/ce)
 

Where N represents absolute number of BrdU positive cells assessed 
through exhaustive counting (discussed previously), ce represents total 
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number of cells examined for co-immunoreactivity and ccl represents 
number of co-labelled cells. 

Proliferation of Iba1 positive microglia (Iba1/BrdU co-labelled) was as-
sessed on tiled z-stacks of the entire hippocampal formation as captured 
on the SIM system. As microglial cells are spread relatively uniformly 
throughout the region of interest we employed a random sampling tech-
nique. 100 Iba1 positive cells were examined for co-expression of BrdU 
and data were presented as percent of total sampled cells that were co-la-
belled.

Flow cytometry
The majority of analyses included in Paper III were performed using flow 
cytometry. This technique involves individual analysis of cells contained 
in a single cell suspension as it flows through an optical-electronic detec-
tion system. Basic physical characteristics, such as size (forward scatter 
or FSC), granularity (side scatter or SSC), and fluorescence intensity are 
registered for each particle passing through the detector. Combined with 
fluorescence conjugated antibody-mediated labelling of target antigens, 
this becomes a powerful tool for characterising populations of cells.  

As this is an optical based analysis system, many of the components 
will be familiar from the prior discussion of fluorescence microscopes. A 
standard configuration for a flow cytometer may include two lasers and 
two photomultiplier tube (PMT) based detection arrays. These detection 
arrays may have up to eight PMTs coupled with a series of dichroic mir-
rors and band-pass filters: this allows light of desired wavelengths to be 
transmitted to the desired PMT whilst non-desired wavelengths will be 
directed to the next dichroic mirror to be further split in a similar fash-
ion. These mechanisms facilitate simultaneous collection of data regard-
ing multiple fluorophores, and hence antigens. Flow cytometry is consid-
ered a high throughput technique, with information being recorded for 
many thousands of cells per minute.

Magnetic activated cell sorting (MACS)
In paper II we used MACS techniques to isolate cells from microdissect-
ed hippocampi of P21 mice. Like a flow cytometer a MACS system is 
a microfluidics device that relies on antibody based technologies. This 
system, however, has no optical analysis component; being only able to 
sort cells based on expression of single cell surface antigen. The sorting 
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method requires creation of a single cell suspension from a living sample 
or organ of interest and labelling the cells with magnetic bead conjugat-
ed antibody. The suspension is then taken up by the MACS system and 
passed through a magnetic column which facilitates the sorting process.

A major drawback for this system is that it is designed with analysis of 
large (Human) samples in mind: a situation in which material is abun-
dant. We found this methodology to be poorly specified for isolation of 
CD11b positive cells from the microdissected P21 mouse hippocampus 
where starting material is extremely limited: recovery of the isolated tar-
get population was greatly limited and highly variable, which pushed our 
downstream analysis techniques to their absolute limit. Indeed, our at-
tempts to analyse isolated cells from P7 hippocampi failed. A potential 
solution to such problems would be to pool material from several ani-
mals into each sample.    

RT-qPCR
In papers I & II, we analysed gene expression by Real Time quantitative 
Polymerase Chain Reaction (RT-qPCR). This technique allows quantifi-
cation of mRNA transcripts isolated from cells or tissue. Depending on 
quantification strategy this technique provides data indicative of either 
relative change in gene expression (∆∆CT-method) or absolute gene ex-
pression (standard curve method).  The general principle follows a course 
of mRNA isolation, reverse transcription to cDNA followed by RT-qPCR 
reaction. 

An important consideration when employing this technique is the cor-
rect choice of reference genes, which provide an important control for 
differences in reverse transcription reaction efficiency. We have found 
that several genes which are assumed to be constitutively expressed vary 
greatly with age and experimental manipulation in the early neonatal pe-
riod. When setting up new assays we normally test a panel of housekeep-
ing genes on samples spanning the full range of ages and treatments we 
intend to analyse and select the two which exhibit the most stable expres-
sion for normalization purposes.

Statistics
In paper I we used one-way analysis of variance (ANOVA) followed 
by Dunnett’s multiple comparison to contrast total infarct volume be-
tween genotypes or between brain level. In paper II we have exclusive-
ly performed comparisons by Student’s t test. In paper III, analysis of 



comparisons were made by student’s t test between ipsilateral and con-
tralateral hemispheres at each time point and comparisons of changes 
in composition of the recruited cell population were made by one-way 
ANOVA followed by Holm-Sidak’s multiple comparison tests for selected 
pairs of time points. Data in paper I were presented as mean ± stand-
ard deviation (SD) and data in papers II & III were presented as mean ± 
standard error of the mean (SEM).
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Results & Discussion

A plethora of neurological disorders have their origins in disturbances 
of perinatal life. For some of these, particularly those leading to injuries 
easily detected by neuroimaging, causality, mechanisms of injury, and 
patterns of damage are gradually becoming well characterised and un-
derstood. For others, where cause and outcome seem distant and neuro-
pathology is allusive as with schizophrenia, ASDs and maternal infection, 
understanding remains poor. Neuroinflammation is increasingly consid-
ered an important mediator of outcome following neonatal HI and would 
appear to provide a link to the less characterised pathologies of neonatal 
origin. The work presented herein aims to investigate unexplored aspects 
of the neonatal inflammatory response to both sterile and (simulated) 
infectious insult. 

TLR expression in the neonatal brain (Paper I)
Toll-like receptors are suggested to sense tissue damage following is-
chemia in the adult brain and potentially contribute to the rapid onset 
of inflammation (Cao et al., 2007, Caso et al., 2007, Lehnardt et al., 2007, 
Tang et al., 2007, Ziegler et al., 2007). Although expression of the major-
ity of the TLRs has been demonstrated in numerous cell types derived 
from both the human and mouse brain (Bsibsi et al., 2002, Olson and 
Miller, 2004, Jack et al., 2005, Mishra et al., 2006), limited data has been 
available regarding their expression and functionality in neonates. We in-
vestigated the presence of Toll-like receptors in the neonatal mouse brain 
under physiological conditions and in response to experimental hypox-
ia-ischemia. Assessment of mRNA transcript expression with TLR di-
rected Rt2-PCR profiler arrays indicated constitutive expression of TLRs 
1-9 with significant regulation of TLRs 1, 2, 5, 7 & 8 being observed at 
either 30 minutes, 6 hours or 24 hours following cessation of hypoxia 
(Paper I, Table.1.). Our observations of constitutive TLR expression mir-
ror several recent studies which have displayed presence of TLRs 1-9 in 
both 6-8 week mouse brains (Mishra et al., 2006) and cultured microglia 
isolated from P1-3 mouse brains (Olson and Miller, 2004). Similarly ex-
pression of TLRs 1-9 have been observed in cultured human microglia 
(Bsibsi et al., 2002, Jack et al., 2005); Jack and co-workers also demon-
strated expression of TLRs 1-7 & 9, 10 in human astrocytes whilst Bsibsi 
et al found only TLRs 2 & 3. Collectively these data provide convincing 
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evidence of constitutive TLR expression in neural tissue or cells across 
several time points and in at least two species. Discrepancies of expres-
sion in cultured astrocytes may well be related to differential origin of 
tissue samples and ages of donors: The Bsibsi study utilised post-mor-
tem tissue from individuals aged between 87 and 96 while the Jack study 
used that from young adults undergoing partial temporal lobe resection 
for non-tumour/non-infection related intractable epilepsy (Bsibsi et al., 
2002, Mishra et al., 2006).   

Our observations of TLR 1, 2, 5, 6 & 8 regulation following neonatal HI 
are partially supported by studies of focal cerebral ischemia as induced 
by mid-cerebral arterial occlusion (MCAO) in adult rodents where en-
hanced expression of TLR 2 (Lehnardt et al., 2007), TLR 2 & 4 (Barakat et 
al., 2014) or TLR 2, 4 & 9 (Ziegler et al., 2007) have been displayed. The 
obvious discrepancies here relate to TLRs 4 & 9 and may be indicative of 
an immature response to cerebral ischemia in the neonate. We observed 
the most robust changes, in terms of magnitude and temporal consisten-
cy, in TLR1 and TLR2 expression; TLR1 was acutely downregulated (30 
min, FC = -1.92, p < 0.01) and then progressively upregulated through 
6 (FC = 2.39, p < 0.001) and 24 (FC = 3.36, p < 0.001) hours. TLR2 dis-
played the second most robust regulation with expression transitioning 
from baseline at 30 minutes (FC = 1.23, p = n.s.) to significantly upregu-
lated at 6 (FC = 1.63, p < 0.01) and 24 (FC = 2.27, p < 0.01) hours (Paper 
I).  

We next assessed gross anatomical localisation and cell specific expres-
sion of TLRs 1 & 2 at 24 hours after HI. General localisation was assessed 
via DAB staining and widefield microscopy (Paper I, Figure.2.) and cellu-
lar localisation was assessed through multi-immunofluorescence staining 
with markers for neurons (NeuN, HuC/D), astrocytes (GFAP), microglia 
(Iba1) and oligodendrocytes (Olig2) by confocal microscopy (Paper I, 
Figure.3 & 4.). TLR1 was upregulated in the ipsilateral hemisphere and 
predominantly expressed by neurons of the hippocampus, striatum and 
thalamus (Paper I, Figure.2a, 3.); all known sites of injury in this mod-
el (Rice et al., 1981, Silverstein et al., 1986, Towfighi et al., 1991, Bona 
et al., 1995, Vannucci and Hagberg, 2004). TLR2 by contrast, displayed 
consistent expression across ipsilateral and contralateral hemispheres 
with staining found in the hippocampus, sub-cortical white matter, stria 
terminalis and paraventricular nucleus (PVN) (Paper 1, Figure.2b-d.). 
Further, TLR2 was found to be expressed by astrocytes and a popula-
tion of neurons located in PVN of the hypothalamus (Paper I, Figure.4.). 
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Expression of TLR2 in both neurons (Tang et al., 2007) and astrocytes 
(Mishra et al., 2006) have been previously documented. Our observa-
tions of TLR2 expression in the uninjured stria terminalis, PVN and su-
praoptic nucleus closely resemble results from in situ hybridisations in 
adult animals (Laflamme et al., 2001).

Signalling through TLR2 but not TLR1 potentiates injury in HI
We next asked whether signalling through TLRs1 & 2 might affect out-
come after HI. We subjected P9 TLR1 and TLR2 deficient mice to HI and 
assessed gross neuropathology 5 days later (Paper I, Figure.5.). Genetic 
ablation of TLR1 had no effect on injury size, suggesting that while reg-
ulated in response to HI, it plays no significant role in the injurious pro-
cess. Genetic deletion of TLR2 by contrast was significantly neuropro-
tective, leading to reduced loss of MAPII expression after HI, and hence 
improved neuropathological outcome (Paper I, Figure.5.), a finding con-
sistent with several studies of adult focal cerebral ischemia (Lehnardt et 
al., 2007, Tang et al., 2007, Ziegler et al., 2007).

Central response to peripheral immune stimulation (Paper 
II)
Microglia are widely accepted to originate from yolk-sac derived myeloid 
precursors that invade the murine CNS during prenatal development 
(Ginhoux et al., 2010, Prinz and Mildner, 2011, Ransohoff, 2011). These 
primitive microglial precursor cells are amoeboid in shape and prolif-
erate extensively through the latter stages of development progressively 
populating the microglial compartment (Alliot et al., 1999, Zusso et al., 
2012). During the first two weeks of postnatal life microglial prolifera-
tion is rapidly restricted and microglia gradually assume their mature 
ramified morphology (Alliot et al., 1999, Zusso et al., 2012). Turnover 
of microglia in the mature organism is extremely limited (Lawson et al., 
1992) and replacement by peripheral monocytes is scarce under physio-
logical conditions (Ajami et al., 2007, Ransohoff, 2011). Our experiments 
indicate that peripheral immune stimulation with LPS acutely increases 
microglial number, and density, in the developing hippocampus (Paper 
II. Figure.1.), results supported by previous studies of peripheral immune 
stimulation with E.coli in neonatal (Bland et al., 2010) and LPS in juve-
nile and adult rodents (Monje et al., 2003, Wu et al., 2007, Diz-Chaves et 
al., 2012). These increases in the absolute number of hippocampal mi-
croglia were solely due to enhanced proliferation with a total absence of 
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peripheral myeloid cell recruitment (Paper II, Figure.2.). Of particular 
interest, analysis of microglial density, a parameter that unlike absolute 
microglial number takes account of the rapid growth of the hippocampus 
during the early neonatal period, revealed an interesting phenomenon: 
LPS administration at P5 prematurely boosts the density of microglia in 
the hippocampus to the relatively stable levels observed from P21 on-
wards (regardless of treatment). With these data in mind it is tempting to 
hypothesise over the existence of a target, or maximum, CNS microglial 
density. Such a parameter could potentially be controlled through juxta-
crine mediated control of microglial proliferation. Indeed, microglia are 
endowed with the Notch-1 receptor and its ligands Jagged-1 and Delta-1 
(Cao et al., 2008) and signalling through this receptor induces expres-
sion of the Runx1 (Runt-related) transcription factor (Burns et al., 2005) 
which has been shown to inhibit amoeboid microglial precursor prolif-
eration and facilitate the transition from amoeboid precursor to ramified 
microglia (Zusso et al., 2012).

Systemic LPS administration alters hippocampal inflammatory 
status in the neonate (Paper II)
In response to pathological stimulation microglia assume an upregulated 
immune phenotype (Hanisch, 2002) which facilitates their participation 
in processes aimed at maintaining tissue homeostasis. However, under 
certain circumstances activation may endow microglia with neurotoxic 
properties (Hanisch and Kettenmann, 2007, Chhor et al., 2013) and the 
potential to inhibit adult neurogenesis (Ekdahl et al., 2003, Monje et al., 
2003). Indeed, cell culture studies have indicated that LPS-activated mi-
croglia (M1) reduce neurogenesis whereas Il4-activated microglia (M2) 
enhance it (Butovsky et al., 2006).  

We employed qRT-PCR to investigate hippocampal expression of a pan-
el of eight microglia associated genes known for their pro- or anti-in-
flammatory properties. Our data displayed regulation of both M1 and 
M2 associated genes at 48 hours progressing to M1 only at 2 weeks (Pa-
per II, Figure.3.). Further analysis of gene expression in MACS isolat-
ed hippocampal microglia 2 weeks after LPS administration proved less 
conclusive (Paper II, Figure.3.), potentially due to the inherent technical 
difficulties of isolating and analysing such a small population of cells. 

Although these results do not conclusively prove microglial activation 
in this model, they are strongly suggestive of it. Moreover, they clearly 
indicate upregulated immune activity in the hippocampus following pe-
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ripheral LPS administration.

Effects of systemic inflammation on neurogenesis (Paper II)
The process of neurogenesis is highly plastic and may be influenced by 
numerous factors including stress, exercise and inflammation (Ekdahl et 
al., 2003, Butovsky et al., 2006, Rolls et al., 2007, Cacci et al., 2008, Bland 
et al., 2010, Lucassen et al., 2010). At P5 the hippocampus is relatively im-
mature and both cell proliferation (Paper II, Figure.4.) and developmen-
tal neurogenesis (Bayer 1980a) remain highly active. Having observed 
LPS induced changes in hippocampal immune activity, we asked whether 
these changes would impact hippocampal neurogenesis. We observed a 
transient reduction of neuronal commitment amongst hippocampal pro-
genitors entering the synthesis phase of the cell cycle at 16 days after LPS 
administration (Paper II, Figure.5.). This alteration was manifest solely 
through reduced numbers of type 3 late stage precursor cells with less 
mature hippocampal stem/precursor populations unaffected (Paper II, 
Figure.6.). Interestingly, when we analysed long-term fate of cells born 
during the P22-P25 period (when decreased neurogenesis and increased 
hippocampal inflammatory state were detected ) we found no effect on 
the number of surviving neurons (Paper II, Figure.7.), a result which 
strongly suggests enhanced survival and potentially enhanced network 
integration of the fewer neurons born during this period. This hypothesis 
garners some support from the fact that many more cells are born in the 
hippocampus than are required, and that a great number of these die long 
before maturing to granule cells (Biebl et al., 2000, Kempermann et al., 
2003). 

Leukocyte trafficking in neonatal HI (Paper III)
The immune privilege displayed by the CNS (Hickey, 1999, Ransohoff 
et al., 2003, Callahan and Ransohoff, 2004, Carson et al., 2006, Galea et 
al., 2007, Gao and Hong, 2008) is widely understood to be severely un-
dermined in the context of both central and peripheral inflammation 
(Vallieres and Rivest, 1997, Turrin et al., 2001, Eklind et al., 2006, Galea 
et al., 2007, Schwarz and Bilbo, 2011, Hagberg et al., 2012). In rodent 
models of neonatal HI numerous chemokines are upregulated (Hedtjärn 
et al., 2004) and accumulation of macrophages (McRae et al., 1995), neu-
trophils (Bona et al., 1995, Hudome et al., 1997, Nijboer et al., 2008), 
mast cells (Jin et al., 2009) and NK cells (Bona et al., 1999) have been 
documented. Under neuroinflammatory conditions macrophages can 
arise from both activated microglia and circulating monocytes (Ajami 
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et al., 2011), and are respectively referred to as microglia derived mac-
rophages (MiDMs) and monocyte derived macrophages (MDMs). These 
two ontogenetically distinct cell populations have proven difficult to dif-
ferentiate using traditional techniques due to their shared expression of 
numerous surface markers (Perry et al., 1985, Sedgwick et al., 1991) and 
presumed morphological similarities (Kreutzberg, 1996). Although such 
differentiation may sound arbitrary, modern analysis techniques are in-
creasingly demonstrating differential roles of these cellular populations 
in CNS pathology (Ajami et al., 2011, Yamasaki et al., 2014). By combin-
ing the Lys-EGFP-ki with the modified Rice-Vannucci neonatal HI model 
we were able to unambiguously identify infiltrating peripheral myeloid 
cells in the post-HI CNS. 

MiDMs and MDMs are morphologically distinct
Although MiDMs and MDMs are generally considered to be morpho-
logically similar we found EGFP positive infiltrating cells to be distinct 
from Iba1 positive central microglia at 7 days post-hypoxia-ischemia. Pe-
ripheral MDMs where generally elongated or rod shaped and displayed 
low Iba1 immunoreactivity whilst Iba1 immunoreactive MiDMs dis-
played the characteristic ramified morphology with thickened process-
es expected of activated central microglia (Kreutzberg, 1996) (Paper III, 
Figure.2.). Similar observations have recently been made in CCR2-RFP/
CX3CR1-GFP mice subjected to experimental autoimmune encephalo-
myelitis (Yamasaki et al., 2014). 

Myeloid cell recruitment in the ischemic neonatal brain
Utilising flow cytometry we were able to quantify myeloid cell recruit-
ment in the post-HI brain. We observed significant presence of EGFP 
positive cells in the ipsilateral hemisphere at 1, 3, 7 and 14 days, with 
peak presence at 1 and 7 days, after HI (Paper III, Figure.3g.). Previous 
studies have addressed the question of myeloid cell accumulation in the 
CNS following neonatal stroke (Denker et al., 2007); here the authors 
performed flow cytometry at 24 and 48 hours and classified MDMs and 
MiDMs based on level of CD45 expression. Interestingly, we observed a 
much greater response than previously demonstrated, with infiltrating 
cells constituting 48% of the ipsilateral hemisphere’s myeloid cell popu-
lation at 1 day after HI vs 10% in the neonatal stroke model (Denker et 
al., 2007). Although likely due to inherent differences of the two neonatal 
injury models, it is possible that such previous findings may have con-
tributed to an under appreciation of the role of peripheral immune cells 
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in neonatal brain injury. 
As EGFP is expressed in both neutrophils and monocytes in the Lys-

EGFP-ki mouse (Faust et al., 2000) we further characterised the recruited 
EGFP positive cells based on expression of GR1 and Ly6C by multichan-
nel flow cytometry. This facilitated identification of three distinct mye-
loid cell populations; Neutrophils (CD11b+EGFP+GR1hiLy6Cint) (Hestdal 
et al., 1991), resident monocytes (CD11b+EGFP+GR1lo/-Ly6Clo/-) (Geiss-
mann et al., 2010), and inflammatory monocytes (CD11b+EGFP+GR-
1lo/-Ly6Cint/hi) (Geissmann et al., 2010). We found that the inflammatory 
cells, namely neutrophils and inflammatory monocytes displayed signifi-
cantly increased presence in the ipsilateral hemisphere at 1, 7 and 14, but 
not 3, days after HI. Peak accumulation was seen at 1 and 7 days (Paper 
III, Figure.4e, f.). In contrast to the inflammatory cell types, the resident 
monocyte subset was significantly present (albeit at much lower levels) in 
the ipsilateral hemisphere at 3, 7 and 14, but not 1, days after HI (Paper 
III, Figure.4d.).  

Together these data illustrate prolonged presence of inflammatory cells 
characterised by biphasic accumulation of neutrophils and inflammato-
ry monocytes occurring over a background of stable resident monocyte 
accumulation. This biphasic response is strongly indicative of occurrence 
of distinct phases of myeloid cell accumulation and clearance. Our data 
is partially supported by existing studies in neonatal mice exposed to HI 
which show peak presence of CD11b+CD86+ macrophages (both MiDMs 
and MDMs) at 1 and 7 days with reduced presence at 3 days (Winerd-
al et al., 2012). Additionally, data from our own lab has indicated peak 
chemokine expression at 8 hours post HI with reduced expression at 3 
days (Hedtjärn et al., 2004), suggesting reduced central recruitment of 
peripheral immune cells at this time.  

Although highly speculative, the idea of distinct phases of accumula-
tion and clearance also finds some support in the existing literature: mac-
rophages display peak neutrophil engulfment at 3 and 15 days post-is-
chemia in the adult rat (Weston et al., 2007). It would be interesting to see 
if this phenomenon extends to the neonatal HI model.
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Conclusions

In this thesis we investigated various aspects of cerebral inflammation 
and peripheral to central immune communication in two different mod-
els of neonatal brain injury.

We show, for the first time, that the immature brain is endowed with 
a full complement of Toll-like receptors. Additionally, we find that ex-
pression of several members of this family are regulated at gene level in 
response to neonatal HI. Importantly, we show that TLR2 is an important 
mediator of lesion development after hypoxia-ischemia.

We also demonstrate significant leukocyte recruitment in to the in-
flamed CNS following HI. We find that infiltrating macrophages and 
neutrophils hone to injured regions of the brain where they remain for 
up to 14 days after injury. Moreover, we find that up to 48% of the brains 
myeloid cell population may be of peripheral origin at times of peak ac-
cumulation. This immune cell recruitment is characterised by a steady 
influx of resident monocytes and distinct phases of infiltration and clear-
ance of inflammatory neutrophils and macrophages.  

Induction of peripheral inflammation through i.p. administration of 
lipopolysaccharide leads to gene-level regulation of several cytokines in 
the developing CNS, demonstrating peripheral to central immune signal 
transduction. Although we observed no gross neuropathological changes 
in this model, we did find changes in the processes of neurogenesis and 
microglial proliferation in the hippocampus. Microglial proliferation was 
acutely increased causing microglial cell density to prematurely reach 
juvenile levels, an effect that occurred without leukocyte contribution. 
Neurogenesis, by contrast, was transiently decreased: This change was 
manifest through effects on late stage precursor cells and appeared to be 
compensated for by enhanced neuronal survival. Although this change 
did not ultimately lead to a paucity of mature neurons, it may, specula-
tively, reduce hippocampal plasticity in the face of secondary challenge.

Together our results tentatively hint at mechanisms governing initiation 
of injury in the developing brain and illustrate peripheral to central im-
mune communication in two different injury models. Further, we show 
that inflammation without gross neuropathology is sufficient to disrupt 
developmental microgliogenesis and hippocampal neurogenesis but not 
initiate recruitment of peripheral myeloid cells.
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