
VisualizingUDistributedUAlgorithms
onUtheUSeattleUPlatform
Master's thesis in Computer Science

JAKOBUKALLIN

ChalmersUUniversityUofUTechnology
UniversityUofUGothenburg
DepartmentUofUComputerUScienceUandUEngineering
Gothenburg1USweden1UJuneU2014

The.Author.grants.to.Chalmers.University.of.Technology.and.University.of.Gothenburg.the.
non2exclusive.right.to.publish.the.Work.electronically.and.in.a.non2commercial.purpose.make.
it.accessible.on.the.Internet0

The.Author.warrants.that.he1she.is.the.author.to.the.Work©.and.warrants.that.the.Work.does.
not.contain.text©.pictures.or.other.material.that.violates.copyright.law0.

The.Author.shall©.when.transferring.the.rights.of.the.Work.to.a.third.party.Ofor.example.a.
publisher.or.a.companyB©.acknowledge.the.third.party.about.this.agreement0.If.the.Author.has.
signed.a.copyright.agreement.with.a.third.party.regarding.the.Work©.the.Author.warrants.
hereby.that.he1she.has.obtained.any.necessary.permission.from.this.third.party.to.let.Chalmers.
University.of.Technology.and.University.of.Gothenburg.store.the.Work.electronically.and.
make.it.accessible.on.the.Internet0

Visualizing Distributed Algorithms on the Seattle Platform

JAKOB.KALLIN

©.JAKOB.KALLIN©.June.:4ED0

Examiner3.OLAF.LANDSIEDEL

Chalmers.University.of.Technology
University.of.Gothenburg
Department.of.Computer.Science.and.Engineering
SE2DE:.+9.Göteborg
Sweden
Telephone.N.D9.O4BFE266:.E444

Department.of.Computer.Science.and.Engineering
Göteborg©.Sweden©.June.:4ED

Abstract

This report describes Seastorm: a visualizer for distributed algorithms running
on the Seattle platform. Seastorm displays the execution of algorithms as
interactive sequence diagrams, intended to make reasoning about and debugging
these algorithms easier. In order to do this, Seastorm augments the behavior
of algorithms to also log events of interest, such as messages being sent and
received. Most notably, this involves the addition of logical timestamps to
messages, in order to avoid common problems related to event ordering in dis-
tributed systems. We designed Seastorm for students in courses on distributed
systems and thus aimed to make its barrier to entry as low as possible: it requires
very little installation, runs in the browser on any platform, and requires no
manual modification of user algorithms. We performed small-scale qualitative
testing to assess the value of Seastorm’s visualization, with participants report-
ing an improved debugging experience compared to only using textual logging.

Acknowledgments

I would like to thank my supervisor Olaf Landsiedel, whose guidance and
support confirmed that I made the right decision when asking him to be my
supervisor before selecting a thesis topic. I would also like to thank Justin
Cappos and the rest of the Seattle team, who provided me with invaluable help.
Finally, I would like to thank my opponents Hongchao Liu, Lars Tidstam, and
Xinwei Wang for their feedback.

1

Contents

1 Introduction 4
1.1 Problem . 4
1.2 Goal . 5
1.3 Research questions . 5
1.4 Outline . 5

2 Background 7
2.1 Software visualization . 7

2.1.1 Benefits of software visualization 7
2.1.2 User adoption . 8
2.1.3 Types of visualizations . 8

2.2 Distributed algorithms . 10
2.2.1 Modeling distributed algorithms 10
2.2.2 Time and event ordering 10

2.3 Seattle . 14
2.3.1 Architecture . 14
2.3.2 Repy . 14
2.3.3 Node manager . 15
2.3.4 Clearinghouse . 15

2.4 HTML5 . 16
2.4.1 Browser restrictions and limitations 16
2.4.2 The same-origin policy . 16
2.4.3 Graphics . 17
2.4.4 JSON . 17
2.4.5 XML-RPC . 17
2.4.6 Server-sent events . 17

3 Related work 19
3.1 Distributed system visualization 19

3.1.1 Cooja TimeLine . 19
3.1.2 Ericsson EJBActorFrame trace monitor 19
3.1.3 LYDIAN . 20

3.2 Browser projects . 20
3.2.1 D3.js . 20
3.2.2 Cloud9 IDE . 20

3.3 Seattle-related work . 20
3.3.1 Seash . 20
3.3.2 Try Repy . 21

2

4 Design 22
4.1 Conceptual architecture . 22
4.2 Visualization . 23

4.2.1 Choice of visualizations 23
4.2.2 The sequence diagram in Seastorm 24

4.3 Events . 26
4.3.1 Event sources . 26
4.3.2 Event data and metadata 27

4.4 Monitoring . 28
4.4.1 Detecting events . 28
4.4.2 Ordering events . 28
4.4.3 Augmenting the Repy API 29

4.5 User interface . 30
4.5.1 File panel . 30
4.5.2 Vessel panel . 30
4.5.3 Visualization panel . 31

5 Implementation 32
5.1 Technical architecture . 32

5.1.1 Platform . 33
5.1.2 Client–server interaction 33

5.2 Monitoring . 35
5.2.1 Detecting events . 35
5.2.2 Logging events . 37

5.3 Visualization . 38
5.3.1 HTML, CSS, and SVG . 39
5.3.2 Arrows to self . 39
5.3.3 Event titles . 41

6 Results 42
6.1 Functionality . 42

6.1.1 User interface . 42
6.1.2 Visualization . 42

6.2 User testing . 45
6.2.1 Test outline . 45
6.2.2 Design of tasks . 45
6.2.3 Test execution . 46
6.2.4 Quantitative results . 47
6.2.5 Qualitative findings . 47

6.3 Performance testing . 49
6.3.1 Visualization . 50
6.3.2 Monitoring . 51

7 Conclusions 52
7.1 Summary . 52
7.2 Future work . 53

7.2.1 Design and implementation 53
7.2.2 Testing . 56

3

Chapter 1

Introduction

1.1 Problem
A central challenge for computer scientists is learning and understanding the
behavior of algorithms. One way of classifying algorithms is as either sequen-
tial, parallel, or distributed. Of these, a sequential algorithm is the easiest
to understand, because it is a single sequence of actions taken in order. A
parallel algorithm is more challenging to understand, because it involves several
processes taking actions simultaneously. A distributed algorithm is even more
difficult to understand, because it involves inter-process communication with
fewer or no guarantees about timing and reliability.

Visualization can be an effective way of learning and understanding al-
gorithms. In computer science textbooks, algorithms are often visualized as
various forms of graphs that allow readers to see important behaviors in ad-
dition to reading about them. In a typical programmer’s tool set, however,
visualizations are rare. This is especially problematic for those working with
distributed algorithms, which often cannot be used with traditional debuggers.
A possible reason for the lack of visualizations in common developer tools is
the complexity introduced by the fact that such tools must be able to visualize
every type of algorithm—as well as every execution of those algorithms—and
not just a single case as in a textbook.

There are some visualizers for distributed algorithms, both for simulators
and for real environments, but many environments lack such tools completely.
One example of an environment lacking visualizations is the Seattle platform
for peer-to-peer computing [1], which is used for education and research related
to distributed algorithms.

At present, users of the Seattle platform are limited to textual logging when
inspecting the behavior of their algorithms. In such a scenario, they must
manually cross-reference the data from different processes in order to determine
which messages were sent, which were lost, and in what order it happened. This
is a tedious and error-prone process, especially since no data is logged by default
and each logging statement must be added manually.

4

1.2 Goal
The goal of this project was to improve education on distributed systems by
implementing a visualizer for algorithms running on the Seattle platform. We
named the resulting visualizer Seastorm.

We developed Seastorm with the following design goals:

• It should be targeted at students and educators making use of Seattle, such
as those taking and giving the Distributed Systems course at Chalmers
University of Technology (where Seattle is used).

• It should provide generic visualizations that can be used to understand
a large number of algorithms, rather than specific visualizations that are
only useful for a small number of algorithms.

• It should focus on relatively small algorithms that do not involve a large
amount of data and activity, as such algorithms are often used in educa-
tion. Examples of such algorithms include leader election algorithms (like
the bully algorithm [2]). Examples of the opposite include long-running
servers with complex behavior or many clients.

• It should have a low barrier to entry, which means that it should be
platform-independent and that installation, configuration, and updating
should be as simple as possible. It should also require little to no modifica-
tion of existing programs in order to be able to visualize them. Finally, it
should not require users to learn a large number of new concepts. This is
important because students taking a single course in distributed systems
may not have time for a lengthy setup and learning process.

We acknowledge the problem of software visualization systems being frequently
constructed and then quickly abandoned without seeing much use (referred to
by Hundhausen [3] as “system roulette”). As the design goals above suggest, we
developed Seastorm to fill a specific niche rather than as a proof-of-concept or
generic framework, increasing the chances that it will ultimately become useful.

1.3 Research questions
• How can visualization improve the understanding of distributed algo-
rithms and make them easier to debug?

• How can monitoring of activity be added to programs running on the
Seattle platform?

• How can the result of the project be made as accessible as possible for
users who might benefit from it?

1.4 Outline
Chapter 2 provides background information for the rest of the report, includ-
ing an overview of software visualization and a description of relevant aspects

5

of distributed systems. It also briefly describes the technologies used in the
development of Seastorm.

Chapter 3 describes some prior projects related to Seastorm, either because
they also focus on visualization or because they were developed for the same
platform or environment.

Chapter 4 presents the design of Seastorm, without concern for implementa-
tion details. It describes the sequence diagram that Seastorm uses to visualize
algorithms, including some ways in which it differs from other common sequence
diagrams. It also gives the criteria that Seastorm uses to model algorithms as
sequences of events, which allows them to be presented as sequence diagrams.
Finally, it gives a brief overview of the Seastorm user interface.

Chapter 5 details how Seastorm was implemented using HTML5 and Python.
It begins by describing the “heavy client” architecture that makes Seastorm as
easy as possible to install and update yet still allows it to bypass some signif-
icant browser limitations. It then provides details on how Seastorm monitors
the activity of Seattle programs without requiring user modification of source
code. Finally, it outlines how Seastorm’s sequence diagram was implemented in
HTML5.

Chapter 6 presents the results of the project. It begins by giving an illus-
trated overview of Seastorm’s main functionality. It then describes the small-
scale qualitative testing of Seastorm that we performed, in which users reported
a positive experience compared to having no visualization available. Finally, it
describes the findings of a small performance test that we performed to identify
possible issues with the speed of the user interface.

Chapter 7 summarizes the project and relates the final result to the design
goals given above. It then suggests several ways in which the design, implemen-
tation, and testing of Seastorm could be improved in the future.

6

Chapter 2

Background

This chapter describes the most relevant background material needed for reading
this report. It begins with an overview of software visualization and a discussion
on its benefits. It then describes distributed algorithms and their properties,
which need to be taken into account when designing development tools for them.
It also gives an overview of the Seattle platform itself, focusing on the concepts
that are important for Seastorm. Finally, it provides details on some parts of
HTML5, which was used to implement much of Seastorm’s functionality.

2.1 Software visualization
Software visualization is the act of presenting the behavior of software visually,
in order to benefit learning or otherwise make the software easier to work with.

2.1.1 Benefits of software visualization
Intuitively, the benefits of visualization seem obvious, as evidenced by the
widespread use of diagrams and charts in contemporary as well as historical
teaching material. In modern development environments, however, visualization
is exceedingly rare, possibly due to the difficulty of implementing dynamic
and interactive visualizations compared to creating static visualizations for
non-interactive media.

While critical of the methodology used by many developers of software
visualization systems, Hundhausen [3] concludes that software visualization is
effective in an educational context when the students interact with the visual-
ization in some way. Merely seeing visualizations was not deemed useful, but
making use of them in activities like programming exercises turned them into
“catalysts for learning”.

Wu [4] found significant benefits to teaching distributed algorithms with
visualization as an aid. One of the drawbacks mentioned, however, is the
potential difficulty of creating visualizations that map to the student’s mental
model of the algorithm. Rajala et al. [5] found some support for the benefit of
visualization and solid evidence that it is especially beneficial for students with
no prior programming experience.

7

We should note that the studies mentioned here evaluate vastly different
types of visualizations, and directly applying their conclusions to Seastorm may
not be relevant in all cases.

2.1.2 User adoption
Hundhausen [3] discusses a large body of research and concludes that, despite
many software visualization systems having been developed, very few have seen
widespread use. While the situation may have changed since Hundhausen’s
study, there are still very few, if any, well-known software visualization systems.
In comparison, there are many notable development tools of other kinds, both
old and new, with large audiences. Examples include Emacs, Vim, Eclipse,
Visual Studio, Xcode, and Firebug.

An important issue highlighted by Hundhausen is the risk that visualizations
themselves could contain errors, causing programs to be incorrectly visualized
and possibly obscuring real errors in them. In general, this only applies to
software visualization systems that require users to manually map program
behavior to visualizations. The study found that programmers preferred textual
debugging over such visualization systems, because they could then be confident
that all errors were in their own programs rather than in the tools they were
using. In other words, even useful visualizations could turn out to be rarely
used in practice, as the barrier to entry and risk of complications is too high.

2.1.3 Types of visualizations
This section discusses some types of visualizations that are commonly used to
visualize distributed systems and thus relevant to this project. The following
visualizations will be outlined:

• Sequence diagram

• Communication diagram

2.1.3.1 Sequence diagram

The sequence diagram presents an algorithm as a set of vertical lifelines con-
nected by arrows, with the vertical axis representing time, the lifelines repre-
senting different processes, and the arrows representing messages. A simple
example of a sequence diagram as used in UML is given in figure 2.1. A more
detailed description of the sequence diagram as used in UML is given by Bell [6].

Because it describes algorithms on the level of messages, the sequence dia-
gram can be used for visualizing practically any distributed algorithm. Another
significant benefit of the sequence diagram is that all available data can be
visualized in a single image, as opposed to visualizations that present algorithms
as a sequence of images. The sequence diagram is also pervasive in teaching
material for distributed systems and thus already familiar to many students.

A drawback of the sequence diagram is that messages can become difficult
to distinguish when the number of processes and messages increases. The same
problem was identified by Nessa [7]. Another drawback of the sequence diagram
is the lack of a spatial dimension: it does not present the distances and routes
between processes.

8

Figure 2.1: A sequence diagram

Figure 2.2: A communication diagram

2.1.3.2 Communication diagram

A communication diagram (used in UML and based on the older collaboration
diagram) displays the same information as a sequence diagram but has no
separate axis representing time. Instead, processes are placed in arbitrary
positions, and messages passed between two processes are represented by arrow
drawn between the processes, with one label for every message sent. The order
of messages is presented using numbers next to the messages. A simple example
of a communication diagram is given in figure 2.2. A more detailed description
of the collaboration diagram (the predecessor of the communication diagram)
is given by Karlsen [8].

A benefit of the communication diagram is that processes can be placed
in any formation, potentially visualizing the topology of the network that the
algorithm runs on. Like the sequence diagram, it is also general enough to be
suitable for a large number of distributed algorithms.

A drawback of the communication diagram is that its presentation of order-
ing is relatively subtle: determining the order of messages requires comparing
numbers rather than perceiving it graphically. A solution to this could be to
instead use multiple network topology diagrams, with each individual diagram
displaying only some of the messages. This approach, however, could make the
overall behavior of the algorithm more difficult to understand, as information
would be spread out over many diagrams.

9

2.2 Distributed algorithms
A distributed algorithm is an algorithm designed to run on multiple hosts in a
network, with hosts communicating by passing messages to each other. These
algorithms are generally subject to problems not encountered by sequential
algorithms running on a single host, including [2]:

• Absence of a globally synchronized clock, which means that ordering of
events cannot be determined simply from comparing physical timestamps.

• Unreliable means of communication, which means that events such as
network failure or congestion can cause messages to be delayed or lost.

• Possibility of process failure, which means that processes have to take
into account the possibility of other processes going down temporarily or
permanently.

The exact nature of these problems depends on the specific network that the
algorithm is running on. For the purposes of this report, algorithms are assumed
to run on the Internet, which adds the additional complication that the author
of the algorithm cannot control all hosts and network links involved.

2.2.1 Modeling distributed algorithms
At a conceptual level, the most general abstraction for representing activity in
a distributed algorithm is a sequence of events [9]. This abstraction can also
be used to describe a sequential algorithm (with each executed statement being
considered an event), but it is more common in distributed algorithms, where
it forms the basis for tracking time and causality.

In a distributed algorithm, there are two main types of events to consider:

1. events representing computations within a single process (internal events)

2. events representing communication between the processes (messaging events),
which can be further divided into:

(a) events representing the sending of a message (send events)
(b) events representing the receipt of a message (receive events)

The reason for making this distinction is that the messages sent from a process
make up the public interface of that process, whereas the internal events of the
process are generally considered private implementation details.

2.2.2 Time and event ordering
Due to well-known limitations inherent in distributed systems, such systems
commonly do not have globally synchronized clocks. This causes notable prob-
lems for systems that base their event ordering on the physical clocks of the
different processes in the system. While protocols such as NTP employ algo-
rithms to improve synchronization using approximations, inevitable clock drift
makes it impossible to guarantee global synchronization.

We illustrate the problems caused by relying on physical clock synchroniza-
tion with a minimal example program: a process A sending a single message to

10

another process B. If A reports the message departure time based on its physical
clock and B reports the message arrival time based on its physical clock, the
message can be reported as having been sent from the future to the past if the
B’s clock is sufficiently behind A’s clock.

2.2.2.1 The happened-before relation

The rules governing event ordering are formalized by the happened-before rela-
tion [10], which holds for two events a and b if any of the following is true:

• a and b take place in the same process and a takes place before b. This rule
might seem obvious, but it needs to be highlighted because only within a
single process can such observations be made trivially.

• a is a send event and b is the corresponding receive event. This rule
enforces the fact that a message must always be sent before it is received,
regardless of whatever the physical timestamps might indicate.

In addition, the happened-before relation is transitive.
In order to avoid violations of the happened-before relation, an alternative

to physical timestamps is required for ordering events. A common approach to
that is described below.

2.2.2.2 Logical clocks

The first step towards improving event ordering is to replace physical clocks with
logical clocks [10]. A logical clock is a counter that generates strictly increasing
values with every event that occurs, allowing us to determine the order of events.
Unlike a physical clock, the value of a logical clock is abstract and only intended
to convey ordering. As an example, an event occurring at logical clock value 1
could have taken place one second earlier than event occurring at logical clock
value 2, or it could have occurred five minutes earlier; with logical clocks, the
distinction is irrelevant.

2.2.2.3 Lamport timestamps

With logical clocks implemented, the second step towards improving event
ordering is to provide a method of synchronizing the logical clocks of different
processes, so that one clock’s value is relevant even when comparing it to that
of a clock in another process. One of the simplest methods of doing this is
the Lamport timestamp algorithm [10]. This algorithm synchronizes the logical
clocks of two processes whenever a message is exchanged between them, by
performing the following steps:

1. When a process sends a message, it includes its logical clock value in the
message.

2. When a process receives a message, it sets its logical clock value to be
greater than both its current value and the value included in the message.
An example way of doing this is to set the logical clock value to the
maximum of the two values and then increase it by one.

11

Lamport timestamps ensure that a message will always be reported as having
been received after being sent, since every received message sets a process’s clock
to greater than the maximum of the two clocks involved.

2.2.2.4 Vector clocks

Vector clocks [2] are an alternative to Lamport timestamps based on each
process having its own logical clock and maintaining local copies of the clocks
in other processes. As vector clocks are not used by Seastorm and only briefly
appear in our discussion on future work, a more detailed description of them is
beyond the scope of this report.

2.2.2.5 Concurrent events

Lamport timestamps allow us to establish a happened-before relation between a
send event and its corresponding receive event, but it does not give us guarantees
about the ordering of subsequent events in the two processes where the send
and receive events took place. In such a scenario, we consider the events to be
concurrent.

For instance, if five events subsequently take place in each of the two pro-
cesses, with no further synchronization, then we cannot determine the exact
order in which these ten events took place (apart from knowing that events
within a single process are ordered according to their timestamps). In this case,
each of the five events in the first process could have taken place before each of
the five events in the second process. The opposite could also be true, or any
other interleaving.

It should be noted that, given accurate knowledge of the physical timestamp
of every event in the system, we would be able to accurately order events that
we would otherwise have thought to be concurrent. Because we do not have
such knowledge, however, event concurrency is the most reliable assumption
that we can make.

2.2.2.6 Inconsistent cuts

An inconsistent cut [11] is an invalid view of the state of a distributed system.
Such a cut is obtained when a monitor process requests the state of each
individual process in the system without taking precautions to ensure that each
process records its state at roughly the same time.

A common property of an inconsistent cut is that one process reports to
have received a message from a process that does not report to have sent it.
This can in turn lead to incorrect analysis of what has actually happened in the
system.

There are methods for avoiding inconsistent cuts (instead obtaining a con-
sistent cut), but descriptions of those are beyond the scope of this report.

2.2.2.7 Causality violations

A causality violation [12] is when a process in a distributed system incorrectly
orders events for which the happened-before relation holds. This can occur
when messages from one process are received by another process in a different
order than they were sent. The effect of a causality violation is that a message

12

Figure 2.3: Client–server interaction with intended behavior

Figure 2.4: Client–server interaction with causality violation

b, whose existence may have been caused by the sending of a message a that
was sent before b, is received by another process before a, potentially causing
unintended behavior.

As an example, consider a client uploading a file to a file server and then
ending its session with the file server. Figure 2.3 depicts the expected scenario,
in which the file is uploaded first and the session is ended last. Figure 2.4
depicts a potential scenario that contains a causality violation: the session is
ended before the file is uploaded (which in practice would prevent the file from
being uploaded at all). The causality violation is visually indicated by the
crossing arrows.

Causality violations can be avoided by delaying delivery of messages until
all messages sent earlier have arrived, and then reordering them to remove all
causal violations. Such a strategy thus enforces a logical ordering of messages
rather than ordering them according to physical delivery times. Many common
networking APIs, including those used in Seattle, do not prevent causality vio-

13

lations. In such APIs, causality violations must be prevented on the application
level.

2.3 Seattle
Seattle is a platform for educational cloud computing that allows users to run
distributed algorithms on a large collection of computers on the Internet.

2.3.1 Architecture
A computer participating in the Seattle platform does so by donating resources,
which means providing other users with vessels. Vessels are virtual machines
used for running experiments. An experiment is a set of individual programs
running simultaneously on multiple vessels, acting as a distributed system. A
Seattle user can acquire vessels on different computers in order to run experi-
ments on them.

2.3.1.1 Vessel IDs

For the purposes of this report, a vessel is uniquely identified by the combination
of its IP address and the port number assigned by the Seattle Clearinghouse
(described in section 2.3.4) to its user.

Each vessel also has a name, which is a string used to distinguish vessels
on the same node from each other. Seastorm assumes the use of the Seattle
Clearinghouse to acquire vessels, however, and thus does not include the vessel
name in the ID. This is because it is not possible for a user to acquire multiple
vessels on the same node through the Seattle Clearinghouse.

2.3.2 Repy
Programs running on Seattle are written in Repy [13], which is a subset of the
Python language. Repy denies access to much of the built-in functionality of
Python and its libraries but provides replacements to some of these through the
Repy API, including support for UDP and TCP communication.

There are two versions of Repy, with breaking API changes between them.
Seastorm supports only Repy version 2, which is also the one described below.

2.3.2.1 Modules

Repy does not support Python’s import statement. Instead, modules are in-
cluded in a program using the dylink module [14], which dynamically includes
the module at runtime.

2.3.2.2 UDP communication

Repy provides two functions for communicating over UDP:

• sendmessage sends a single message.

14

• listenformessage sets up a server socket that listens for messages. The
server socket object in turn contains a getmessage method, which returns
a single message if one is available (in a non-blocking fashion), as well as
the IP address and port number that the message was sent from.

2.3.2.3 TCP communication

Repy provides two functions for communicating over TCP:

• openconnection attempts to open a connection and returns a connection
socket if the connection is accepted before a specified timeout.

• listenforconnection sets up a server socket that listens for connections.
The server socket object in turn contains a getconnection method, which
returns a single connection socket if one is available (in a non-blocking
fashion).

Connection sockets take the form of objects with three methods: send, recv,
and close. The behavior of these is analogous to non-blocking TCP connection
sockets in Python, which are in turned based on Berkeley sockets.

2.3.3 Node manager
A computer donating resources to Seattle runs a node manager, which manages
the vessels available on that computer. For each vessel, the node manager keeps
track of which user is allowed to control the vessel and handles commands issued
by the user to control the vessel.

The Node Manager provides an API [15] based on a custom communications
protocol on top of TCP that implements remote procedure calls. The supported
procedures comprise public procedures, which can be called by anyone, and
private procedures, which can only be called by the owner and possibly the
users of a vessel. For private procedures, authentication and encryption are
handled by means of public-key cryptography. Keys are provided to a user
through the Seattle Clearinghouse website, described below.

2.3.4 Clearinghouse
The Seattle Clearinghouse [16] is a website that enables Seattle users to acquire
vessels. The number of vessels that a user is allowed to acquire is based on
the number of resources that they have donated to Seattle, or that others have
donated on their behalf, but all users can acquire up to 10 vessels without
donating. Each Clearinghouse user is assigned a port number that determines
which port number the user’s programs are allowed to use for communication
on a vessel.

The Clearinghouse provides an API implemented using XML-RPC (briefly
described in section 2.4.5). Authentication is handled by means of an API
key, which is provided to a user through the Seattle Clearinghouse website.
Encryption is provided by HTTPS.

15

2.4 HTML5
This section describes some relevant parts of HTML5 that are not central
components and thus less well-known. A description of core technologies like
HTML, CSS, and JavaScript is beyond the scope of this report.

In this report, we use the term HTML5 to refer to the collection of technolo-
gies used in modern web development and standardized by the W3C. The official
term is Open Web Platform; HTML5 is colloquially used to more concisely
describe the same concept.

2.4.1 Browser restrictions and limitations
At this point in time, browser applications are subject to some notable restric-
tions and limitations.

• Security restrictions: Due to the same-origin policy, an HTML5 appli-
cation cannot communicate with another host unless that host explicitly
allows the communication with CORS. It also cannot access the local
filesystem except in very restricted ways, such as a user explicitly selecting
files with a file selector controlled by the browser.

• Network restrictions: Even within the same origin or with CORS enabled,
HTML5 applications cannot communicate with other hosts using arbitrary
protocols; only a limited subset is allowed, most notably including HTTP.

• Cryptography limitations: HTML5 applications do not have access to the
primitives needed to reliably perform cryptographic operations.

2.4.2 The same-origin policy
In order to increase security, browsers restrict webpage communication using the
same-origin policy, which dictates that pages may only communicate with other
pages if they have the same origin. An origin is defined by Mozilla as follows:
“Two pages have the same origin if the protocol, port (if one is specified), and
host are the same for both pages.” [17]

Cross-Origin Resource Sharing (CORS) is a protocol that allows webpages to
bypass the same-origin policy. Browsers with support for CORS allow webpages
to access resources on servers of other origins that explicitly allow it. These
permissions are implemented as headers sent in HTTP responses from the server
to the webpage trying to access a resource.

Before a webpage in a browser with CORS support can access a resource
from another origin, the browser checks the CORS headers sent by the server.
If the webpage should be allowed access, the response is transparently delivered
to the webpage. If the webpage should not be allowed access, the response is
withheld and an error is raised.

We should emphasize that the default behavior of browsers in absence of
CORS headers is to disallow cross-origin communication. This means that
services designed without CORS in mind cannot be accessed by webpages of
other origins.

We should also note that there is an older, widely used alternative to CORS
for enabling cross-origin communication: JSONP. The JSONP technique has

16

the same limitations as CORS, however, in that it must be explicitly supported
by the server in question.

2.4.3 Graphics
HTML5 offers three main technologies for drawing graphics:

• Canvas [18], which is a JavaScript API for drawing bitmap graphics on
part of an HTML page.

• HTML/CSS, which are designed primarily for styling documents, although
support for layout has been present in some form for many years and
improved in recent years.

• SVG [19], which is an XML-based image format for creating scalable vector
graphics that can be embedded into an HTML page.

While Canvas offers a great degree of freedom, it is complex (because it does
not provide many abstractions) and does not allow for lossless scaling (because
it draws bitmap graphics) compared to HTML/CSS and SVG.

HTML/CSS provides many layout facilities, but very few ways of drawing
graphics. Conversely, SVG provides many facilities for drawing graphics, but
very few for handling layout. For instance, HTML/CSS can create rectangles
whose dimensions are determined by their contents but not draw arrows between
two rectangles, while SVG can draw arrows between two rectangles but not
have them automatically adapt to their contents. Either approach imposes
limitations: HTML/CSS restricts graphics to essentially a grid of boxes, while
SVG requires significant amounts of code in order to recreate the fluidity of
HTML/CSS.

2.4.4 JSON
JSON [20] is a text-based data format, especially common on the web, used for
serializing data and transferring data between different applications. Its data
model includes several types of data common to many programming languages,
including strings, numbers, boolean values, lists, and dictionaries.

2.4.5 XML-RPC
XML-RPC [21] is a protocol for performing remote procedure calls over HTTP.
It uses a small subset of HTTP to achieve this: only the POST method is
used, and only the 200 status code is used (unless a lower-level error occurred).
Arguments, return values, and error messages are sent as part of the request
body in XML format.

2.4.6 Server-sent events
Server-sent events are a web technology that allows servers to push data to web
pages, in contrast with the traditional model of web pages requesting data from
servers.

On the server, events are created by incrementally writing output to the
client, using special character sequences to delimit events.

17

On the client, events are received by opening a special type of connection to
the server. This connection triggers events as they arrive and allows for listening
to events in the same way as with other JavaScript events.

18

Chapter 3

Related work

This chapter gives an overview of prior work related to Seastorm. It begins
by describing a few existing projects that visualize distributed systems and
highlighting notable ways in which they differ from Seastorm. It then briefly
covers related projects that, like Seastorm, were developed for the browser.
Finally, it describes existing tools used for running experiments on the Seattle
platform.

3.1 Distributed system visualization
3.1.1 Cooja TimeLine
Cooja is a network simulator for Contiki, which is an operating system for the
Internet of Things. Cooja includes the module TimeLine [22], which visualizes
the behavior of wireless sensor networks. The visualization takes the form of a
set of timelines, with each separate timeline showing the power state of a node
as well as its transmissions and receptions.

As it focuses on wireless sensor networks, Cooja TimeLine needs to consider
some low-level concepts that are not present in Seattle, such as packet collisions
and power consumption. In fact, Cooja TimeLine focuses on these concepts,
unlike Seastorm, which focuses on the messages being sent and their contents.

3.1.2 Ericsson EJBActorFrame trace monitor
Ericsson EJBActorFrame is a framework for developing services based on dis-
tributed state machines. Nessa [7] developed a visualizer that presents the
behavior of such services as sequence diagrams. One of the problems identified
in the analysis of the system was the difficulty of understanding these diagrams
in systems with a large number of messages or processes. This was improved
to some degree by providing filtering capabilities. The potential for improving
visualization of such systems with the use of other diagrams was also proposed
(and later implemented [8]).

This project is very similar to Seastorm but contains a couple of notable
differences. First of all, it is not compatible with Seattle, although it has mech-
anisms for adding support for other environments. Secondly, its installation

19

process is much more involved, requiring the installation of Eclipse and two
Eclipse plugins, among other things.

3.1.3 LYDIAN
Lydian [23] is an educational environment for distributed algorithms that pro-
vides multiple ways of visualizing algorithms. It uses a simulator to execute the
algorithms, which means that the user is also in control of factors like network
topology and timing. Algorithms are written using a C-like language.

LYDIAN was developed with the same goals as Seastorm and with the same
target audience but offers a more comprehensive set of visualizations. On the
other hand, LYDIAN uses a simulator and thus does not have explicit support
for Seattle (although execution data from other systems could be compiled into
the trace file format that LYDIAN uses). Additionally, the installation process
is more involved than Seastorm’s, at least when used on Windows and possibly
other platforms.

3.2 Browser projects
3.2.1 D3.js
D3.js is a general-purpose visualization library written in JavaScript that is
used to visualize data as SVG images. It has been used for many different
visualizations, both interactive and non-interactive. Although the library allows
for creating completely custom visualizations, it also provides layout algorithms
for common diagrams, such as pie charts and trees.

In contrast to the general nature of D3.js, Seastorm specifically visualizes
the execution of distributed algorithms. Although we considered using D3.js
for Seastorm, the visualizations that we ultimately decided to implement were
simple enough that we did not need the generality of D3.js and could implement
a custom solution fairly quickly.

3.2.2 Cloud9 IDE
Cloud9 IDE [24] is a browser-based integrated development environment. It
offers features common to many other development environments but also pro-
vides support for collaboration and online storage of projects.

Seastorm has much less sophisticated support for editing files and managing
projects than Cloud9, and generally assumes that users perform these tasks in
other applications. The focus of Seastorm is instead to provide visualization,
which Cloud9 does not.

3.3 Seattle-related work
3.3.1 Seash
Seash (Seattle Shell) [25] is a terminal-based experiment manager for Seattle. It
is the only experiment manager included in the standard distribution of Seattle
(the demokit) and thus the most notable one. Seash allows the user to control

20

and inspect vessels. In addition to offering control over individual vessels, Seash
can be used to create groups of vessels. Batch operations, such as running a file
with a list of arguments, can then be performed simultaneously on all vessels in
a group.

Seash runs entirely on the command line and performs no visualization or
automatic logging, unlike Seastorm. It is not a subset of Seastorm, however, as
it does allow for more fine-grained control over vessels.

3.3.2 Try Repy
Try Repy [26] is a web-based experiment manager for Seattle. Its aim is to
provide a simple environment where users can try writing and running Repy
programs without having to spend time learning to use more advanced exper-
iment managers like Seash. Try Repy uses a client–server model: the client
provides the user interface while the server runs the user’s experiments. Unlike
Seash, Try Repy only runs experiments on the server, rather than on nodes
participating in Seattle.

Both Try Repy and Seastorm run in the browser and make use of a server.
The installation process is similar for both, but Try Repy supports running the
server on a different host, potentially sparing the user from doing any installation
at all. Unlike Seastorm, Try Repy performs no visualization.

21

Chapter 4

Design

This chapter describes the design of Seastorm, starting with a conceptual ar-
chitecture that describes on a high level how Seastorm creates visualizations
from Seattle experiments. It then discusses which visualizations we decided to
implement in Seastorm and on what grounds we made the decision. After this,
it goes into detail about Seastorm’s definition of events in a Seattle experiment,
and further describes how these events are monitored. The chapter ends with
an overview of how Seastorm’s user interface exposes this functionality to the
user.

4.1 Conceptual architecture
This section describes the architecture of Seattle on a conceptual level, free
of concerns about platform and other implementation details. The technical
architecture is described in section 5.1.

The two main tasks that Seastorm performs are gathering data from exper-
iments running on Seattle and interactively visualizing this data for the user.
On a conceptual level, the architecture of Seastorm is based on this division and
thus consists of two core components: the monitor and the visualizer.

To achieve as much decoupling between these components as possible, Seast-
orm compiles all execution data into trace files using an intermediate data
format that can be used for visualization with a small amount of preprocessing.
This data format is the only link between the two components, and is free of
implementation details from the system that is being monitored as well as the
system that is doing the visualization. The result is that changes to the monitor
do not affect the visualizer, and vice versa; only changes to the data format itself
can force changes to both components. This architecture is illustrated in figure
4.1.

Figure 4.1: Conceptual architecture of Seastorm

22

Decoupling monitoring from visualization by using an intermediate data
format has the following benefits, in descending order of importance:

1. Modularity: Insulating each part from changes in the other part makes
development simpler, because each part has only one responsibility that
is affected by outside factors. For the monitor, this is to create a data file
with the correct format. For the visualizer, it is to correctly read a data
file in this format.

2. Flexibility: Using an intermediate data format makes execution data
modifiable and reproducible. This is useful, for instance, when synthesiz-
ing data, such as a teacher providing students with a reference file showing
the intended behavior of an algorithm.

3. Extensibility: Similar to the second point, using an intermediate data
format allows any system—not just Seattle—to produce trace files that
can then be visualized with the same visualizer. For instance, compatible
data could be generated from JavaScript to visualize a system of web
workers [27] or from Erlang [28] to visualize a system of Erlang nodes.
Although this extensibility is not a goal of the project itself, it is an
incidental benefit of the architecture described.

4.2 Visualization
4.2.1 Choice of visualizations
In the interest of keeping Seastorm’s implementation and user interface simple,
we decided to implement a single visualization to begin with and only add
others if we had time and found it useful. As such, we began by selecting
which visualization to implement based on the design goals of Seastorm, listed
in section 1.2. We considered two visualizations: the sequence diagram and the
communication diagram.

The communication diagram is better than the sequence diagram at visual-
izing network topology and other information about network links. Given Seast-
orm’s focus on education, however, we did not find this a significant problem,
since education on distributed systems generally emphasizes algorithms that
do not make assumptions about latency, bandwidth, and reliability. Further,
the lack of route information does not affect Seastorm, as Seattle runs with no
topology restrictions on the Internet, where full connectivity between all hosts
is generally assumed.

Although the design goals do not require Seastorm’s visualization to handle
large algorithms, we also looked at how the two diagrams scale in general, as
scaling issues can appear even in small algorithms. From this perspective, a
benefit of the sequence diagram is that it can always grow on the vertical axis
(representing time), unlike the communication diagram.

Possibly the most significant drawback of the communication diagram is
that it does not visualize the order of events as clearly as the sequence diagram.
Using multiple separate diagrams could make ordering more explicit, but it
would instead hide more information and possibly make the diagram tedious to
navigate.

23

Figure 4.2: Visualization of unreceived messages in Seastorm

For these reasons, the sequence diagram was the first and only visualization
that we implemented for Seastorm. In the interest of keeping the implementa-
tion and user interface simple, we ultimately did not implement any others.

4.2.2 The sequence diagram in Seastorm
This section describes the sequence diagram that we designed specifically for
Seastorm, which differs somewhat from that used in UML. Notable differences
between Seastorm’s sequence diagram and that in UML are described in sec-
tion 4.2.2.5.

4.2.2.1 Layout

When visualizing an experiment, Seastorm presents each vessel taking part
in the experiment as a lifeline. Along a vessel’s lifeline, Seastorm presents
the events taking place in that vessel as boxes, ordered by their timestamps.
Seastorm presents each send event as an arrow leading to the box in another
vessel that represents the corresponding receive event. Each box contains a
string describing the event, such as a log line in the case of internal events or
the payload of a message in the case of messaging events.

4.2.2.2 Unreceived messages

If a message was sent but not received (due to a network failure, for instance),
Seastorm draws a cross on the arrow’s midpoint to indicate this. Additionally,
the arrow is perpendicular to the lines and leads to the line of the receiving
vessel, rather than to a box along that line. Figure 4.2 illustrates this.

Intuitively, it may seem unrealistic and misleading that an unreceived mes-
sage is presented as an arrow perpendicular to the timelines, implying that the
message would have arrived instantly if it had not been lost. We could not find
a more general and less misleading representation, however. The reason for this
is that in general, due to the inherent properties of distributed systems, we do
not know when and where the message in question was lost, and thus cannot
accurately decide what the arrow would have looked like if the message had
been received.

We considered a potential solution to this based on calculating the average
delivery time of other (successfully received) messages in the experiment and
using this to draw an arrow with a more realistic angle. Because Seastorm

24

measures time using logical clocks rather than physical clocks, however, this
would not yield a meaningful result.

Further, even if we added physical timestamps for this purpose, the approach
would fail in executions that contain no successfully delivered messages and
thus provide no data for estimates to be made. Finally, and perhaps most
importantly, this method of drawing arrows would risk misleading users by
giving the illusion that something is known about how the unreceived message
traveled through the network.

In many sequence diagrams, arrows representing unreceived messages are
also shorter than other arrows, to indicate that the message was lost somewhere
between the sender and the recipient. Seastorm, however, draws such arrows
all the way to the recipient. If it did not, there would be many scenarios in
diagrams involving more than two vessels where the recipient of the message
would not be clearly pointed out by the arrow. In other words, only drawing an
arrow halfway to its recipient could make it seem like the message was intended
for a vessel between the sender and the recipient in the diagram.

4.2.2.3 Undelivered messages

There is another category of messages that Seastorm draws in the same manner
as lost messages: those that were successfully received by the receiving host but
not delivered to the application on that host because the application did not
call getmessage or recv.

In theory, Seastorm could draw these messages in some other fashion to
distinguish this scenario from messages lost in transition, such as the end of the
arrow “bouncing” off an event box in the other vessel. In practice, we did not
find a practical way of doing this, due to the fact that Repy programs are not
informed of undelivered messages.

4.2.2.4 Concurrent events

Seastorm draws each event box on a separate row in the sequence diagram,
even when it may be concurrent with other events. Compared to displaying
concurrent events on the same row, we found that this avoids a set of problematic
edge cases: when two or more event boxes are placed on the same row and one
or more of those events are send events whose messages were lost, the horizontal
“lost message” arrows may well overlap almost entirely with other such arrows
on the same row, or be covered to a large degree by other event boxes on that
row.

When deciding in which order to present concurrent events, Seastorm orders
them based on their timestamp. When their timestamps are equal, it breaks
ties based on the IDs of the vessels.

4.2.2.5 Differences from the UML sequence diagram

One notable difference between Seastorm’s sequence diagram and the UML
sequence diagram is the fact that arrows are not always horizontal, in order to
represent the delay between a message being sent and received. In that sense, it
more resembles the sequence diagrams often used to illustrate TCP connections,
such as the one in figure 4.3.

25

Figure 4.3: TCP sequence diagram

Another difference is the usage of synchronous messages: while the UML
sequence diagram allows for them, Seastorm does not use them at all, since all
of the communication in Seattle is asynchronous.

Finally, in Seastorm’s sequence diagram, each event has its own description
inside its box. In contrast, each message in a UML sequence diagram (consisting
of a send event and a receive event) has a single description presented alongside
the message’s arrow.

4.3 Events
Based on the event abstraction described in section 2.2.1, this section outlines
how Seastorm defines events in a Seattle experiment. This in turn affects the
design of Seastorm’s monitor, described in section 4.4.

4.3.1 Event sources
4.3.1.1 Messaging events

Seastorm recognizes two sources of messaging events in Seattle:

• UDP messages

• TCP connections

UDP messages In Seastorm, one call to sendmessage generates one send
event. Similarly, one call to getmessage generates one receive event.

TCP connections Identifying messaging events from a TCP connection is
significantly more complex than for UDP messages. This is because a single
TCP connection is often used to send multiple messages, even though the
connection itself includes no concept of discrete messages; all data being sent
is a single stream of bytes. When application code uses custom logic to send

26

multiple discrete messages over the connection, a monitor working with the TCP
abstraction cannot distinguish between them.

While we could solve this problem by letting the user explicitly signal the
beginning and end of messages using Seastorm-specific function calls, this goes
against the goal that Seastorm should have a low barrier to entry, because it
would require the user to learn a new API, and to modify existing programs to
work with Seastorm.

We thought at first that the sockets used for TCP communication in the
Repy API provided a solution: each individual call to send and recv could
generate one event. We realized that this approach was infeasible for several
reasons, however, the primary one being that the calls are not symmetric. In
other words, the bytes sent with one call to send could be received with multiple
calls to recv, and the bytes sent with multiple calls to send could conversely be
received with a single call to recv. This means that calls to socket operations do
not map to any concept of messages used by the user, prompting us to consider
this approach unsuitable.

Instead, Seastorm keeps the monitoring of TCP communication transparent
to the user by imposing a significant limitation on how this communication
is interpreted: each TCP connection is treated as an exchange of only two
messages, regardless of the amount of data being sent, the number of calls to
recv and send being made, and the time taken to send the data. These two
messages are the entire contents of the two byte streams sent over the connection.
The send event is generated when the socket is opened on the local end, and
the receive event is generated when the socket is closed on the remote end. If
one end of the connection does not send any data over the connection, no send
event and corresponding receive event is generated.

The effect of this is that Seastorm is less than optimal for forms of TCP
communication involving multiple discrete messages (as defined by the user)
being sent by one or both sides of the connection. This is because each collection
of messages will be visualized as a single message, based on when the entire byte
stream started and stopped being sent.

4.3.1.2 Internal events

While any number of sources could potentially provide internal events in Seattle,
we found one particularly suitable because of its simplicity and flexibility: the
log function, which is used to generate arbitrary text output from a Repy
program. In Seastorm, one call to log generates one internal event.

We identified one other source of important internal events: exceptions,
which are important for debugging. When a vessel terminates due to an excep-
tion, one internal event is generated.

4.3.2 Event data and metadata
4.3.2.1 Data

Each event is associated with some data. In the case of messaging events, this
is the payload of the message that was sent. In the case of internal events, this
is a string logged by the user (with a call to log) or an error message and a
stack trace (from an exception).

27

4.3.2.2 Metadata

Each event also contains metadata. The most crucial piece of metadata in an
event is its timestamp, which is used for ordering.

Messaging events Messaging events also contain the following metadata:

• ID of the sender

• ID of the recipient

• Time of departure

Finally, receive events also contain the message’s time of arrival.
Seastorm needs this metadata in order to match send events with their

corresponding receive events. The IDs are required to identify the sender and
the receiver, while the times are required to disambiguate between multiple
messages sent between the same sender/receiver pair. This requires timestamps
to be unique within each vessel.

4.4 Monitoring
4.4.1 Detecting events
Seattle itself makes available only a small amount of data on vessel activity,
such as a vessel’s log and its status. This means that, in order to record the
events taking place in an experiment running on Seattle, Seastorm must add
extra logic to the programs in the experiment.

We could do this by providing a library containing alternate versions of
functions in the Repy API that perform the extra logic as well as invoke the
original functions. The user would then call these library functions instead of the
original ones. A significant problem with this approach is that it would require
new programs to be written with Seastorm in mind and existing programs to
be modified in order to be of use with Seastorm, which goes against the design
goal that Seastorm should have a low barrier to entry.

We instead selected an approach that is less intrusive for the user: to
implement a preprocessor that automatically inserts the extra logic in all the
required places in the source code.

4.4.2 Ordering events
An initial prototype of Seastorm used the NTP-synchronized physical clocks
of Seattle nodes to order events, partially to achieve basic functionality as
quickly as possible, and partially to confirm the need for alternative synchro-
nization methods in future versions. Minimal example programs encountered
the clock synchronization problems described in section 2.2.2, and they did so
frequently enough to confirm that an alternative or complementary synchro-
nization method was required.

We concluded that the crucial property of a sequence diagram is that events
are visually ordered according to the happened-before relation. In other words,
events that took place before other events must be visualized as doing so. As

28

per the definition of the happened-before relation, this means correctly ordering
events within a vessel and making sure that send events are always ordered
before their corresponding receive events. Seastorm uses Lamport timestamps
to achieve this ordering. There are notable alternatives to this choice, however,
as we discuss in section 7.2.1.5.

Concurrent events and causality violations, on the other hand, do not need
special treatment, as explained below.

• Concurrent events can be ordered in any way, as nothing is known about
their true ordering.

• Causality violations are not prevented by Repy’s networking API, which
delivers messages as soon as they arrive. Since Seastorm only intends to
monitor the behavior of Repy programs, not alter them, it likewise does
not prevent causality violations. Messages are instead ordered according
to their actual arrival times, and causality violations can thus be identified
by crossing arrows, as in figure 2.4.

We should note that Seastorm can detect causality violations, even though this
is generally impossible with only Lamport timestamps. The reason for this is
that Seastorm orders events after-the-fact, with ordering data from all vessels
available. This process is described in section 5.2.2.

4.4.3 Augmenting the Repy API
Whenever an event takes place in a vessel, Seastorm performs the following
additional logic, automatically inserted by a preprocessor:

• The vessel’s logical clock is incremented.

• The event is logged. (The exact meaning of this is described in sec-
tion 5.2.2.)

For messaging events, Seastorm also takes the following steps, as per the Lam-
port timestamp algorithm:

• For send events, the logical clock value of the vessel, after being updated,
is included in the message.

• For receive events, the clock value included in the received message is used
to update the vessel’s logical clock before incrementing it.

4.4.3.1 Messages to and from external processes

Seattle vessels can send messages to and receive messages from processes that
are external to Seattle (such as web browsers) and whose activity thus cannot be
directly controlled and observed by Seastorm. Since external processes are not
configured to use Lamport timestamps in the way that vessels are, Seastorm
cannot properly order the events caused by these processes and thus ignores
them.

29

4.5 User interface
The Seastorm user interface consists of three parts: the file panel, the vessel
panel, and the visualization panel.

4.5.1 File panel
The file panel lists the files that the user has included for use in Seastorm. These
files come from one of two sources:

1. A directory on the user’s computer, if the user chooses to enable this
functionality. In this case, the user edits the files outside of Seastorm, and
the user interface simply lists the files available.

2. From the browser’s local storage, if the user does not enable the above
functionality. In this case controls are provided to create, remove, and
edit files directly inside the browser.

4.5.2 Vessel panel
The vessel panel lists the vessels that a user has acquired through the Seattle
Clearinghouse website. Apart from displaying the IP address of each vessel,
the vessel panel allows the user to associate the following information with each
vessel:

• File: A program (selected from the files available in the file panel) that
the vessel will execute when started.

• Arguments: An optional list of arguments that will be passed to the
program when the vessel is started.

• Title: A string that will be used in place of the vessel’s IP address when
visualizing the activity of the vessel.

• Active: Whether the vessel will take part in the next execution.

The vessel panel allows the user to execute three different commands on the
vessels: start, stop, and reset.

4.5.2.1 Start

The start command starts an experiment by uploading all of the user’s files to
each vessel and then starting the vessels at approximately the same time. While
the vessels are running, the results of the experiment are continuously displayed
in the visualization panel.

4.5.2.2 Stop

The stop command stops an experiment by stopping all of the vessels and then
displays the final results of the experiment in the visualization panel.

30

4.5.2.3 Reset

The reset command stops all vessels and removes all files on them, just like the
reset command in Seash. It is only intended for exceptional situations where
unexpected errors cause the other commands to not work properly.

4.5.3 Visualization panel
The visualization panel contains the sequence diagram, which is described in
section 2.1.3.1. In addition, it contains a table that lists all the events in an
experiment as raw data. Finally, it contains a panel displaying the details of a
single event selected by the user.

The visualization panel also enables the user to save the current visualization
to a file, and to open other files saved in this way.

The visualization panel can be opened in a new window in order to provide
the user with more room when analyzing the data.

4.5.3.1 Interactivity

In order to make the visualization more effective, Seastorm lets the user interact
with the sequence diagram.

When an event is given focus by the keyboard or hovered over with the
mouse pointer, the event’s rectangle is highlighted. In addition, if the event is
a send event, the arrow leading from the event’s rectangle and the rectangle of
the related receive event are also highlighted; vice versa if the event is a receive
event. The sequence diagram and the table are linked, so that focusing on an
event in one of them also highlights that event in the other.

When an event is selected with the keyboard or mouse (in the same way
that a hyperlink is activated), highlighting takes place as described above and
the details of the event are displayed in a separate panel.

The user can also zoom the sequence diagram in and out in order to get a
broader or more narrow view of it.

31

Chapter 5

Implementation

This chapter describes how we implemented the design described in the previous
chapter. It begins with a description of Seastorm’s technical architecture,
including the distinct software components that together form the application
and how these components communicate. It then goes into detail about how
Seastorm monitors Seattle experiments in order to gather execution data. Fi-
nally, it provides an overview of how Seastorm draws the sequence diagrams
used to visualize experiments.

5.1 Technical architecture
On a technical level, Seastorm consists of two separate applications: an HTML5
application running in the user’s browser (the client) and a Python application
running as a process on the user’s computer (the server). Nearly all of the
functionality is contained within the HTML5 application; the Python applica-
tion is used solely to bypass a few restrictions and limitations of HTML5. This
architecture is illustrated in figure 5.1.

We deliberately chose this “heavy client” model in order to make the barrier
to entry as low as possible. Keeping the server lightweight makes it less likely
that it will need to be updated when a new version of Seastorm is released,
which in turn means that most new versions can be distributed through the
automatic update mechanism already present in the browser. The effect is that
the user will rarely, if ever, have to download and run a new version of the
Python application.

Another benefit of this architecture is that it becomes easier to remove

Figure 5.1: Technical architecture of Seastorm

32

the need for the server entirely if future developments remove the browser
restrictions and limitations currently affecting Seastorm. For instance, improved
support for cryptography in the browser and alternate versions of the Seattle
APIs could remove the need for the server. In such a situation, moving all of
the functionality into the client is much easier if the server contains very little
functionality to begin with.

Requiring the use of a server works against the goal that Seastorm should
have a low barrier to entry, because it requires a program to be downloaded and
run outside of the browser. This is mitigated, however, by the fact that users
of Seattle already have to install Python (in order to use Seash), which means
that the only additional requirement is to download and run a single Python
script.

5.1.1 Platform
Seastorm is developed for HTML5. At present, and for the foreseeable future,
we consider HTML5 to be the most practical way of delivering a platform-
independent application that requires no installation. Alternative platforms,
such as Flash and Java, may have large market shares, but they still do not
match the penetration of browsers. The market share of those alternative
platforms are also at risk of a significantly reduced market share in the next
few years, as the latest HTML5 standards become more widespread.

5.1.1.1 Bypassing browser restrictions and limitations

In order to get around the restrictions and limitations described above, Seastorm
uses a Python script that runs on the user’s computer and implements the
required functionality. The Python script exposes the functionality by running
a local web server that the HTML5 application can communicate with.

5.1.2 Client–server interaction
The client interacts with the server by sending HTTP requests to it, in order
to access its unique functionality. Using different port numbers on localhost,
the server exposes a proxy for the Clearinghouse API, a proxy for the Node
Manager API, and a local filesystem server. The server uses CORS to allow the
client access to it.

5.1.2.1 Clearinghouse API proxy

In order to access the Clearinghouse API, the client sends a request to the server,
which forwards the request to the Clearinghouse API, waits for the response,
and finally passes the response on to the client. The client application never
directly communicates with, and has no knowledge of, the Clearinghouse API
server. Both the proxy and the actual API use exactly the same XML-RPC
protocol, however, so we could trivially remove this proxy from Seastorm if
CORS support were ever added to the Clearinghouse API. (The possibility of
adding CORS support was discussed with the developers of Seattle, but this
approach was ultimately disregarded due to the other browser restrictions and
limitations mentioned in section 2.4.1, which are more significant.)

33

5.1.2.2 Node Manager API proxy

The Node Manager API proxy exposes the functionality of the Node Manager
API over HTTP. Unlike the Clearinghouse API, the Node Manager API uses a
proprietary protocol that is not supported by browsers, which means that the
server must perform some degree of translation in order to expose the API to
the client.

Seattle provides a client library for the Node Manager API, written in Repy,
that takes care of the protocol specifics. The proxy makes use of this library
in order to be as lightweight as possible. The proxy exposes the methods of a
node manager to the client through URL paths containing the IP address and
port number of the node manager to contact as well as the name of the method
to call. The client calls a method by making a POST requests to one of the
URLs, with arguments passed in the request body. The server passes the return
value or error message in the response body, with the status code distinguishing
errors from return values.

We made one decision when exposing the Node Manager API over HTTP
that makes the server more complex than necessary: the client calls methods
with named arguments rather than positional arguments. This makes the server
more complex because the methods available must be provided by a table
hardcoded into the proxy, mapping argument names to argument positions.
It also means that any future changes to the Node Manager API will require
changes to the proxy. As the API had not changed in five years when we
developed Seastorm, however (with the exception of a single method added
to provide support for Repy version 2), we deemed it stable enough to consider
future-proof. We thus decided that this drawback was outweighed by the benefit
to development of being able to pass named arguments.

5.1.2.3 Local filesystem server

In order to allow users to write programs in their editor of choice rather than
the one embedded in the web page, the Seastorm server optionally serves files
to the web page from a single, user-selected directory on the local filesystem.
This works around the client’s otherwise limited access to the local filesystem.

The client accesses a list of the available files by connecting to the server
and listening for server-sent events. Upon the initial connection, one event
containing the filename of each available file is sent from the server. The client
downloads each of these files from the server by sending a request to the server
for each file, specifying the name of the file to retrieve.

In order to detect changes to the available files (such as when the user edits
and saves a file in a text editor, or deletes a file in a file manager), the server
polls the filesystem regularly (at a one-second interval). Whenever a change
is detected—which includes file modification, creation, and deletion—an event
is created, prompting the client to request the file. If the file exists, the client
updates its file list with the latest version of the file. If the file has been removed,
the client removes it from its file list.

34

5.2 Monitoring
5.2.1 Detecting events
Seastorm adds monitoring to a Repy program by uploading a wrapper library to
each vessel and then adding a single line to the beginning of each user file that
dynamically includes this library at runtime. The library replaces the built-in
functions and methods with wrappers that perform extra logic in addition to
calling the built-in function. The main metaprogramming features of Repy used
to accomplish this are the ability to store a reference to a function in a variable
and the ability to redefine previously defined functions.

We could have done this on a textual level by employing a Python parser
to alter the actual source code of the programs, but this would add external
dependencies by requiring the use of a parser. Making use of Repy’s metapro-
gramming features to dynamically insert the extra logic a runtime, on the other
hand, requires no external dependencies.

5.2.1.1 The wrapper library

This section describes how the wrapper library uses metaprogramming to add
monitoring to the functions in the Repy API.

Standalone functions When adding monitoring to a standalone function
(like sendmessage and log), the wrapper library takes the following steps:

1. A reference to the original function is saved in a variable.

2. A wrapper function with the same name as the original function is defined,
effectively replacing the original function with the wrapper function.

3. The wrapper function performs the monitoring logic described in sec-
tion 4.4.3.

4. At some point inside the wrapper function, the original function is called
through the previously saved reference to it.

Object methods When adding monitoring to functions returning objects
whose methods should in turn be monitored (such as listenformessage and
listenforconnection), the process is similar. The only addition is that before
being returned, the objects are wrapped in wrapper objects whose methods are
monitored much in the same way as standalone functions.

5.2.1.2 Exceptions

When an exception occurs, the program running on a vessel terminates, which
means that the monitoring performed by the vessel also terminates. As such,
Seastorm cannot detect exceptions from within Repy.

Seattle still makes information about the exception available, however, via a
vessel’s log file. Thus, in order to detect exceptions, the client checks the status
of the vessel. If the status is “Terminated” (which means that the program has
exited, but not necessarily due to an exception), the client reads the vessel’s
log. If the log ends with a pattern matching that of a stack trace, the client

35

extracts the information about the exception and adds an internal event with
the information to the trace file. This event is given a timestamp one greater
than the last of the vessel’s events, so that it will appear at the very end of the
vessel’s lifeline.

5.2.1.3 Logical clocks

The wrapper library stores the value of a vessel’s logical clock as an integer in
the global mycontext dictionary available to every vessel.

When a vessel’s logical clock is sent in a message to another vessel, it is
encoded as a 4-byte numeric string padded with zeroes, preceding the payload
of the message. This means that the maximum supported logical clock value
is 9999. We made the clock value fixed-length because it simplifies parsing,
as the recipient knows exactly how many bytes to consider metadata. We
chose a numeric string for this purpose because the Repy functions for receiving
messages return strings, which means that an integer can easily be obtained
by calling Repy’s integer conversion function on the numeric string. Since we
developed Seastorm with small algorithms in mind, we did not consider the limit
of 9999 to be a pressing concern.

If clock values of more than 9999 are ever needed, the timestamp could
instead be encoded bytewise as an integer, providing that the sender and the
recipient use the same string encoding when converting the clock value to and
from a string. Additionally, or alternatively, the length of the timestamp could
be increased.

5.2.1.4 Messages to and from external processes

When an experiment starts, Seastorm uploads a text file to each vessel contain-
ing the IP addresses of the vessels taking part in the experiment. Whenever
a vessel sends or receives a message, it also compares the message’s recipient
(when sending a message) or sender (when receiving a message) with the IP
addresses and port numbers in this file. Only if the recipient or sender matches
one of the IP address and port number pairs does the wrapper library actually
log the messaging event.

5.2.1.5 Hiding timestamps from the user

When monitoring messaging functions, the wrapper library makes sure that the
presence of timestamps in the messages being sent and received does not visibly
affect the program for the user.

When sending a message (whether with UDP or TCP), the wrapper library
returns to the user the number of actual payload bytes sent. This means that
the length of the timestamp must be subtracted from the actual number of
bytes sent over the network. If only the timestamp or part of the timestamp
was successfully sent, the wrapper library returns 0 and no event is logged.

When receiving a message, the wrapper library removes the timestamp from
it and only returns the payload to the user. If the message contains only a
timestamp or part of a timestamp, no event is logged and the message is ignored.

36

5.2.1.6 Maintaining state in TCP connections

When monitoring TCP connections, the wrapper library takes into account the
fact that a message can be sent or received with multiple calls to send or recv.

When send is called, the wrapper library sends the timestamp before sending
any of the payload. If some or all of the timestamp fails to be sent, the wrapper
library saves the remaining portion. When send is called again, the wrapper
library attempts to send the remaining part of the timestamp before sending
the payload. This process is repeated until the entire timestamp has been
successfully sent, upon which the wrapper library begins sending the payload.

The wrapper library performs a similar process when recv is called.

5.2.1.7 Monitoring sessions

Whenever Seastorm starts a vessel, the wrapper library resets the state associ-
ated with a monitoring session (including the logical clock and the list of vessels
taking part in the experiment). This means that a monitoring session lasts for
the duration of an experiment.

5.2.2 Logging events
All events that the wrapper library detects must be saved somewhere so that
they can ultimately be made available to the visualizer.

One way of doing this would be to have the vessels themselves send data
about their events to a separate monitor process while they are running, and
having the monitor process store the data. This approach would incur significant
overhead, however, as every event taking place would cause a message to be sent
to the monitor. This overhead would be especially significant if the messages
were sent using TCP, which would be required in order to ensure a correct view
of the experiment’s execution. Additionally, the possibility of a TCP timeout
would require vessels to also keep a local log of messages that have not yet
reached the monitor, increasing the overhead even more. Finally, while this
would provide as much of a real-time monitoring process as is possible, the
benefits of this are small in a debugging environment, where most inspection
will take place after-the-fact and not require instant results while the experiment
is running.

The approach that Seastorm uses is instead based on vessels recording their
events in locally stored activity log files, which Seastorm then downloads on
demand when the data is needed. (The exact interval that Seastorm uses is
three seconds.) This requires a vessel to only write an entry to its activity log
whenever an event takes place (rather than sending messages), which incurs less
overhead and less complexity while still being suitable for Seastorm’s purposes.

Note that these activity logs are different from the logs that every Seattle
vessel has automatically, and that a user can write to using the log function.
For that reason we specifically use the term activity log when referring to the
logs created by Seastorm.

5.2.2.1 File format

The file format that the wrapper library uses to log events is a subset of the
de facto comma-separated values format (CSV). For each event, the wrapper

37

library saves all the data and metadata that will eventually be needed to create
a valid trace file. Data that is provided by the user (such as message payloads),
which could corrupt the CSV file if not properly escaped, is encoded using
Base64. We selected Base64 for this rather than conventional CSV escaping
methods because implementations of Base64 were already available in Repy
(which is used to create the activity logs) and in JavaScript (which is used to
parse them), unlike implementations of CSV.

5.2.2.2 Ordering of activity log entries

The wrapper library logs internal events and UDP messaging events immedi-
ately, which means that those will always be sorted according to their logical
clock value. It does not, however, log TCP messaging events until the connection
sending the message has been closed, since only then is the entire payload of the
message known. Because the logical clock value of a TCP messaging event is
the time at which the TCP connection was opened, this means that other events
can be logged before the connection closes. When the TCP messaging event is
finally logged, it can thus end up later in the activity log than events with a
higher clock value. As a result, the entries in an activity log are not guaranteed
to be sorted. Maintaining a correct ordering is instead the responsibility of the
visualizer, as described in section 5.3.1.

5.2.2.3 Inconsistent cuts

Seastorm does not guarantee that the events recorded from an experiment
represent a consistent cut. This is because it downloads the logs of the processes
in the experiment without ensuring that the states they represent were all
recorded at valid times.

We did not consider this a significant problem, as the errors in an inconsistent
cut generally only appear toward the end of the sequence of recorded events, and
are usually resolved the next time that Seastorm downloads the logs. Unless an
experiment runs indefinitely, Seastorm will eventually download the final logs
of the processes and construct a consistent cut. Since we designed Seastorm
primarily for after-the-fact inspection of experiments, we did not consider this
risk of temporary inconsistencies a significant problem.

5.2.2.4 Trace file

With a small amount of processing, the Seastorm client combines the Seastorm
logs from all vessels taking part in an experiment into a JSON trace file. Events
are serialized as a list of objects whose properties map to the event data and
metadata described in section 4.3.2.

Apart from the list of events, the only other component of a trace file is a
dictionary mapping vessel IDs to titles, provided by the user through the user
interface.

5.3 Visualization
When deciding on a way to implement the sequence diagram visualization in
HTML5, we used two criteria to make the decision: simplicity and responsive-

38

ness. The implementation should be simple, and the resulting visualization
should be responsive. In this context, “responsive” means that the visualization
fluidly adapts to the user’s browser and makes use of the available space to
provide information as clearly as possible. (This is the same meaning of the
term as used in modern web design.)

We decided that the flexibility of Canvas was not required, and that its lack
of responsiveness made it less desirable than the alternatives.

We found that HTML/CSS and SVG better met the criteria, but we also
identified important limitations: HTML/CSS is not suitable for arbitrary graph-
ics (such as arrows) while the lack of layout facilities in SVG makes it more
complex than HTML/CSS.

In order to gain the benefits of both, we opted for a hybrid approach: the lay-
out of the sequence diagram is created with HTML/CSS while non-rectangular
graphics (such as arrows) are created with SVG and superimposed over the
HTML/CSS layout.

5.3.1 HTML, CSS, and SVG
Seastorm represents the sequence diagram in HTML as a table of data with one
column for each process. The table header contains a single row where each cell
contains the title of the process associated with that column. The table body
contains one row for each event in the trace, sorted by their timestamps, with
ties broken by vessel IDs. The cells in this row are empty, except for the cell
in the column of the process where the event took place. This cell contains the
data associated with the event.

Using CSS, Seastorm gives each cell in the table body a background con-
sisting of a line going from the top of the cell to the bottom of the cell along
its horizontal middle, forming the timeline of the process associated with that
column. Each non-empty cell in the table body is styled as a box, visually
setting it apart from the other cells in the same row (which are empty).

Each cell in the HTML table corresponding to a send event contains an SVG
object that in turn contains the arrow representing the sending of the message
associated with that event. The dimensions of the arrow are calculated with
JavaScript based on pixel coordinates acquired through the DOM. The SVG is
finally positioned relative to its containing event box using CSS.

5.3.2 Arrows to self
Although rare in practice, it is possible for a vessel to send a message to itself.
If it does, it is not guaranteed that it will be received immediately, as other
events might take place in-between. Consequently, Seastorm needs to draw an
arrow of arbitrary length from a vessel to itself (an “arrow to self”).

Drawing an arrow to self is not as straightforward as drawing one to another
vessel, for a few reasons. Perhaps most notably, multiple such arrows from the
same vessel in close proximity may end up either overlapping almost completely
or running out of horizontal space, depending on how they are drawn.

Figure 5.2 depicts the first situation, in which multiple arrows to self overlap
and thus become indistinguishable. Figure 5.3 depicts the second situation, in
which multiple arrows to self can potentially require so much horizontal space
that the entire diagram becomes difficult to interpret.

39

Figure 5.2: Overlapping arrows to self

Figure 5.3: Adjacent arrows to self

40

While these problems can likely be solved either partially or completely, we
decided that arrows to self were not a common enough use case to warrant the
time that would be required to implement a solution to the problems described
above. As such, Seastorm does not draw arrows to self.

Based on the results of our user testing, section 6.2.5.2 discusses why arrows
to self may still be worth implementing.

5.3.3 Event titles
In some cases, event data might be too large to easily fit inside an event box.
Seastorm allows the user to avoid this problem by giving optional titles to events.
When an event has a title, that title, rather than the event data, is displayed in
the event box.

A user gives a title to an event by calling the event-generating functions
(log, sendmessage, and getmessage) with a title keyword argument. When
this is done, the wrapper library logs the event title in addition to the event
data. The title is likewise included in the resulting trace file. It should be noted
that this is the only scenario where a user’s code needs to be modified in order
to achieve a certain visualization.

When an event has a title, the event’s data can still be inspected in a
separate panel displayed when the event is selected. This panel is described
in section 4.5.3.1.

41

Chapter 6

Results

This chapter describes the results of this project from three different perspec-
tives. First, it gives an illustrated overview of the main functionality of Seast-
orm. It then describes the user testing that we performed in order to assess the
value of Seastorm’s visualization based on user impressions. Finally, it describes
a limited amount of performance testing that we carried out in order to identify
possible bottlenecks in Seastorm, especially related to its user interface.

6.1 Functionality
6.1.1 User interface
Figure 6.1 shows the complete Seastorm user interface, with the vessel panel,
file panel, and visualization panel in the same window. The file panel lists files
from the local filesystem. It also shows a visualization demonstrating most of
the features of Seastorm’s sequence diagrams.

Figure 6.2 shows the same user interface except with an embedded text editor
accessing files stored in the browser rather than on the local filesystem.

6.1.2 Visualization
Figure 6.3 shows the visualization of lost messages in Seastorm. As pointed
out in section 4.2.2, the arrow representing the lost message sent from Vessel A
to Vessel C necessarily misrepresents the speed with which the message moved
through the network. Likewise, the arrow is as long as it would have been if
it had been received, in order to avoid the risk of users interpreting it to be
intended for Vessel B rather than Vessel C.

Figure 6.4 show the visualization of causality violations in Seastorm. The
diagram does not explicitly highlight these violations in any way. Instead, the
presence of crossing arrows allows the user to visually interpret this information
when necessary.

42

Figure 6.1: The Seastorm user interface with files from the local filesystem

Figure 6.2: The Seastorm user interface with an embedded text editor

43

Figure 6.3: Visualization of a lost message in Seastorm

Figure 6.4: Visualization of a causality violation in Seastorm

44

6.2 User testing
In order to assess the value for users of having access to Seastorm’s visualization
while working with the Seattle platform, we performed user testing. Because
there was no existing Seastorm user base from which to identify specific testing
goals, and because resources for testing were limited, we opted for qualitative
rather than quantitative testing. Our main goal was to gather overall user
impressions of the software, which could then form the basis for future tests.

6.2.1 Test outline
The method that we selected for testing was one-on-one testing with one partic-
ipant and one test leader at a time, due to the ease of performing and gathering
results from such tests with limited resources. For the main part of the test,
we gave participants two programming tasks to perform, one of them using
Seastorm and the other using Seash. This was followed by an interview where
we asked the participants questions about their experience and solicited them
for feedback.

6.2.2 Design of tasks
Due to the limited amount of time per test session and the probability that some
participants would need to refresh their memory on Seattle and Repy during
the test, the tasks that we gave to the participants did not require them to
write programs on their own. Instead, we provided them with two complete
programs, each containing an error, and asked them to find and correct the
errors. Given small enough programs, we deemed that the participants would
be able to read and understand the programs in less time than needed to write
similar programs on their own.

6.2.2.1 Design considerations

In order to better evaluate some of the unique features of Seastorm compared to
other tools for Seattle, we designed the tasks to contain the type of errors that
would be distinctly visible in Seastorm’s visualizations. Two of the concepts that
Seastorm visualizes most distinctly are lost or undelivered messages (indicated
by crossed-out arrows) and messages being delivered in a different order than
they were sent (indicated by two or more arrows crossing). Because of their dis-
tinctive visual representations, we identified these two concepts as particularly
desirable to include in tasks assigned to the users during user testing.

We found a major obstacle to including either of them in a test, however:
both of them are affected by the inherent unreliability of a distributed system
and thus cannot consistently be reproduced. Put differently: it is not possible in
practice to write a program that consistently loses a particular message or con-
sistently delivers one message before another one that was sent earlier. Without
this kind of guarantee, it is possible that a user by chance observes a correct
execution of the program and (correctly) fails to identify any errors, possibly
rendering the entire test useless. Although we could in theory introduce this
kind of guarantee by modifying the testing environment to manipulate message
delivery in some fashion, this would give the program unrealistic properties and

45

risk removing the user’s trust in the environment. For this reason, we found it
unfeasible to include these two concepts in user testing.

We identified one variant of the above concepts, however, that can be reliably
reproduced: messages that are received by the destination host but ignored by
the vessel on that host (because the user does not call getmessage or recv).
Seastorm visualizes these in the same manner as messages lost in transition,
and they indicate similar error conditions to the user. This means that crossed-
out arrows can reliably be introduced into the visualization by introducing a
defect into the program that causes it to not call getmessage or recv at the
appropriate time.

It should be noted that the failure to reliably introduce certain types of errors
into the user test indicate that some benefits of Seastorm could in practice only
be available in real-world scenarios, where Seastorm could help to identify the
errors when they happen to appear.

6.2.2.2 Resulting tasks

Based on the considerations described above, we designed two tasks. The errors
that we introduced into the tasks both had a visual representation: a crossed-out
arrow in the first task and an arrow leading to the wrong place in the second
task.

Task 1: Calculator This task involved two vessels: a client sending requests
for simple mathematical calculations, and a server performing these calculations
and replying with their results. The error that we introduced into the code
was an off-by-one error that caused one message to be ignored by its intended
recipient.

Task 2: Auction This task involved four vessels: a seller offering an item for
sale, and three bidders placing bids on that item. The error that we introduced
into the code was an ordering error that caused one message to be sent to the
wrong recipient.

6.2.3 Test execution
Eligible participants were readily available from the pool of Chalmers students
who had previously taken the Distributed Systems course. We recruited partic-
ipants from two sources: M.Sc. students who had taken the course, and Ph.D.
students who had both taken the course and acted as teaching assistants for it.
The only requirement of participants was that they have previous experience
with Seattle.

We recruited a total of four M.Sc. students and three Ph.D. students in this
way. One of the M.Sc. students participated in a pilot test used to identify
problems with the test or the tasks given. Although the tasks were slightly
redesigned based on the results of the pilot test, we still included the pilot test
in our qualitative findings.

In order to make the test sessions as unobtrusive as possible for the partici-
pants, we set the length of a test session to 45 minutes, and no preparation of
any kind was required of the participants. Of the 45 minutes, 15 were allotted

46

Participants Unsuccessful Successful
Task 1 with Seash 3 3 0

Task 1 with Seastorm 3 2 1
Task 2 with Seash 3 2 1

Task 2 with Seastorm 3 2 1

Table 6.1: Quantitative results of Seastorm user testing

to the first task, 15 to the second task, and 15 to the interview and instructions
given at the start of the test session.

During each test session, the voices of the the participant and the test leader
were recorded and screenshots of the test computer were automatically taken
every 30 seconds (with the participant’s consent), for use as reference data.

The main objective of the user test was to assess the value of Seastorm’s
visualization rather than the design of Seastorm’s user interface, but we also
noted comments about the user interface when given.

While Seastorm was designed for use with Repy version 2, the participants
only had experience with the version 1. For this reason, we created a separate
version of Seastorm with partial support for Repy version 1, to the degree needed
for the tasks that we designed. We then used this alternate version of Seastorm
in the user test.

6.2.4 Quantitative results
While the test itself was qualitative, we present the quantitative results of
the test in table 6.1 for completeness. These results do not include the one
participant who took part in a pilot test with slightly different tasks given.

We quantified success with one of two results: failing to locate and correct
the error (“unsuccessful”), and successfully locating and correcting the error
(“successful”). This means that participants who located the error but were not
able to correct it were placed in the first group.

The only clear-cut observation that we made from these results was that the
tasks given were too difficult for most participants to complete in the time given.
While we do not necessarily consider this a problem in a qualitative study, we
would likely strive towards making the tasks simpler or giving the participants
more time in any future quantitative studies.

6.2.5 Qualitative findings
6.2.5.1 Automatic logging

The very first step taken by most users for most tasks, whether they were using
Seastorm or Seash, was to start the programs and observe any effects, without
reading the source code.

When this was done with Seash, participants quickly realized that the pro-
grams provided to them contained no logging statements, practically rendering
the result of the first execution useless and prompting them to start reading the
code and possibly insert custom logging statements before starting the programs
again.

47

When this was done with Seastorm, on the other hand, the participants
always saw a result that they could analyze, and based on this were often
able to identify the general nature of the error that they were looking for.
Further, one of the most common benefits of Seastorm pointed out during the
interviews was the automatic logging that Seastorm performed without requiring
any modification of the source code by the user.

It should be noted that this benefit by itself is independent of the visualiza-
tion provided by Seastorm; it’s possible that a similar logging feature provided
by Seash would be considered equally useful even with no visualization.

Even then, we see reason to believe that the source code is not always the
most representative view of a program’s behavior to many users. In fact, one
participant started out by translating the intended behavior of the program to
a sequence diagram by hand, then comparing that to the visualization provided
by Seastorm, and only then inspecting the source code. This also highlights the
generality of the sequence diagram, and how familiar it is to many programmers.

6.2.5.2 Usefulness of arrows to self

One participant, when using Seash for task 1, accidentally started the client
with incorrect arguments, causing messages to be sent from the client to itself,
rather than to the server. The participant was not able to identify this mistake
in the allotted time using only custom logging statements.

Seastorm would have clearly visualized this error, as the client’s timeline
would contain both the sending and the receipt of the message, whereas the
server’s timeline would be empty. Since Seastorm does not draw arrows be-
tween send events and receive events in the same process, however (due to
complications discussed in section 5.3.2), the error would not be as self-evident
as it could be. This finding indicates the value of implementing arrows to self,
if only to help users avoid similar errors.

6.2.5.3 Batch vessel operations

Several participants pointed out the value of being able to perform batch op-
erations on vessels, such as simultaneously starting all available vessels with
different files and different arguments. Similar functionality is either not avail-
able or not readily apparent to users in Seash.

At the same time, participants expressed a desire to retain the fine-grained
control over individual vessels available in Seash (such as starting a single long-
running server vessel only once), which Seastorm provides only to a small extent.

6.2.5.4 Ambiguity of crossed-out messages

The unfortunate similarity between lost messages and ignored messages (both
visualized as a crossed-out arrow) is pointed out in section 4.2.2 and did indeed
cause some degree of confusion among participants. Although all of them
correctly identified the crossed-out arrows as indicating some form delivery
failure, the initial reaction of most was to assume a network failure rather than
the message being ignored by the recipient, in some cases prompting them to
run the program again in order to confirm their suspicions.

48

This confusion was expected and points to the value of differentiating be-
tween the two errors, but we do not at this point know whether there is a
practical way of doing so.

6.2.5.5 Risk of noisy diagrams

In some instances, the layout of the sequence diagram presented to a participant
caused problems when interpreting the data. One example of this is an arrow
that was partially concealed by boxes, causing it to not stand out as much as
other arrows. Another example is a crossed-out arrow whose midpoint aligned
closely with the midpoint of another arrow, making it ambiguous which arrow
the cross belonged to. Approaches to reducing the impact of this type of noise
are discussed in section 7.2.1.1.

6.2.5.6 Familiarity with Repy

A significant challenge for many participants was to recall the commands and
functions available in Seash and Repy. When the user testing was performed, a
few months had passed since the participants last used Seash and Repy. (When
the tests were performed, almost half a year had passed since the last time the
Distributed Systems course was given at Chalmers, making it difficult to find
participants with recent Seattle experience.) Although the participants were
provided with a summary of Seash commands, the Repy API documentation,
and the opportunity to ask questions about Seash and Repy, their need to recall
Seattle functionality was an unfortunate problem that introduced distractions
to the tests.

6.2.5.7 Abstract nature of time and ordering

On at least one occasion, a participant interpreted the ordering of events in the
sequence diagram literally and made an unwarranted assumption about latency
in the network. The participant’s assumption was that events are ordered using
(correctly synchronized) physical timestamps, and Seastorm’s sequence diagram
did not provide any indication that logical clocks were in fact used instead,
potentially yielding a different visualization than a corresponding visualization
based on physical timestamps.

Although the same line of thinking was not explicitly highlighted by other
participants, we find it reasonable to assume that most users will intuitively
interpret the sequence diagram in this literal sense.

6.3 Performance testing
In order to identify possible bottlenecks in the design or implementation of
Seastorm, we performed a small amount of performance testing. Due to the
decoupled nature of Seastorm, it is possible to test each of its two major
features—visualization and monitoring—in isolation.

49

6.3.1 Visualization
Because Seastorm creates visualizations from trace files, any conceivable se-
quence diagram can be created and tested by creating a corresponding trace
file. The impact of the network or previous trace files is not relevant even when
visualizations are created during an experiment. This is because the entire trace
file is compiled and provided in a single operation to the visualizer, which then
visualizes the trace file from scratch.

The most relevant aspect of Seastorm’s visualization that we identified from a
performance perspective was the user interface’s speed when the user interacts
with the sequence diagram. Under ideal conditions, events should highlight
without a visible delay when the user hovers over them with the mouse pointer.
Similarly, the diagram should smoothly resize when the zoom functionality is
used.

The performance of an HTML5 application usually depends on both the
computer’s hardware and the browser’s JavaScript engine. Although our per-
formance testing was not intended to be rigorous, we still wanted to establish a
metric of the browser’s performance on any given computer, in order to make the
results more relevant. For this purpose we used Dromaeo [29], a work-in-progress
test suite for browser performance.

6.3.1.1 Test execution

We used two different computers in the performance test. In order to compare
their browser performance numerically, we used the total number of runs per
seconds given after the running the suite of recommended tests with Dromaeo
in Google Chrome 35. On computer #1, running Windows, the number was
449.31. On computer #2, running Linux, the number was 839.95.

In order to test the performance of the Seastorm sequence diagram on
these two computers, we generated trace files containing two vessels: one that
continuously sends messages, and one that continuously receives those messages
in the order that they were sent. The result is a diagram consisting of n event
boxes and n/2 arrows between those event boxes, where n is the number of
messages sent and received in the trace file. (The fact that all arrows in the
diagram will have the same dimensions should not improve performance, as
Seastorm still calculates the dimensions of and draws each arrow individually.)
We generated such files for several different values of n: 50, 100, 150, 200, 500,
and 1000.

In order to get a rough impression of when the user interface starts to
visibly slow down, we opened the files in Seastorm on both computers. We
then interacted with the diagram and manually judged when there was a visible
drop in performance.

6.3.1.2 Findings

On computer #1, performance issues were noted at n = 150 and above. On
computer #2, the corresponding number was n = 200. When these numbers
were reached, interactivity was noticeably slower, including the highlighting of
events under the mouse pointer and the zoom functionality.

As we designed Seastorm with small algorithms in mind, these numbers
would not negatively affect the most common use cases on the computers that

50

we tested. In order to enable more use cases, however, Seastorm’s visualization
would need to be optimized for performance.

We should note that we did not implement Seastorm’s visualizer with per-
formance in mind, which means that there are most likely ways in which it could
be considerably improved. It is also possible that Canvas could be used partially
or entirely in place of HTML/CSS and SVG in order to increase performance.

6.3.2 Monitoring
We identified one primary aspect of monitoring in Seastorm that can be tested
for performance: the overhead caused by the monitoring logic inserted into the
Repy programs in an experiment. This overhead includes the processing cost
of performing monitoring logic as well as the processing and bandwidth cost of
the node manager sending the activity log over the network when polled for it.

We did not carry out any performance testing of Seastorm’s monitor, as
we did not consider it crucial given the design goals. We did not encounter
performance problems in the experiments run during our user test, and we
concluded that there are enough algorithms used in education that would yield
experiments of similar sizes and thus not be negatively affected by performance
concerns.

If performance testing of the monitoring were to be attempted in the future,
one challenge to overcome would be the fact that users are given very limited
control of Seattle vessels and thus cannot run custom applications on them, such
as Python profilers. In order to have access to the tools needed for testing, one
or more custom Seattle nodes would likely have to be set up.

51

Chapter 7

Conclusions

This chapter begins by summarizing the key points of this report, with a focus
on the results of the project. It then outlines several suggestions for future work
related to Seastorm, in two different areas: improvements to the design and
functionality of Seastorm, and expanded user testing that can identify benefits
and drawbacks of Seastorm in a more rigorous way.

7.1 Summary
We set out to create a visualizer for the Seattle platform aimed at students
learning about distributed systems. Our main goals were to give it a low barrier
to entry yet still make it useful for a large number of use cases.

We achieved the low barrier to entry by making the visualization seamless to
the user, not requiring any changes to program source code. Further, we made
the installation and update process as simple as possible within the constraints,
requiring only the use of a web browser and a small Python script.

We made the visualizer useful for many different situations by generating se-
quence diagrams, which can represent any algorithm based on processes passing
messages. In addition, the diagram is familiar to students from common course
material and thus often maps well to their mental models of such algorithms.

Based on qualitative user testing with users having previous Seattle experi-
ence, we found that users quickly learned to use the visualizer and gave positive
assessments of it. Although testing was not rigorous enough to provide clear
evidence of the visualizer’s usefulness, comments from users provided several
examples of how it simplified the development process.

We believe that future work should focus on two different areas. First, the
visualizer should be improved for current use cases and expanded to become
suitable for new use cases, such as larger and more complex algorithms. Second,
user studies should be conducted to investigate what qualities make visualizers
attractive for use in real-world scenarios, given the positive reactions to such
tools during testing but low adoption rates in the wider developer community.

52

7.2 Future work
7.2.1 Design and implementation
7.2.1.1 Filtering and sorting

In many cases, inspecting the behavior of a complex program is not a matter
of using abstractions that can present all the information at once, but rather
about viewing smaller parts of the program in isolation. This is how traditional
debuggers and unit tests approach program complexity.

Seastorm does not provide features for filtering and sorting visualizations,
and we did not consider such features crucial for the small programs that we
designed it for. Even in educational settings, however, programs can grow too
large to become impractical to visualize. One such example is a program that
involves file transfers: showing every single message being sent in the transfer
of large files would quickly clutter up the visualization.

We believe that filtering and sorting capabilities could make Seastorm a
viable tool even for larger programs, in the same way that advanced filtering
features makes tools like Wireshark useful even for traffic-heavy network con-
nections. Relevant factors to filter on could be event data and metadata in
general, including message payloads and event timestamps.

There would also be challenges in implementing features like these. The
features would need be intuitive enough that users can make use of them without
much training. They would also need to handle the absence of filtered events
and vessels without presenting misleading information. For instance, if an entire
vessel is hidden by the user, a decision needs to be made on what to do with
messages being sent to that vessel.

7.2.1.2 Lower barrier to entry

Our original goal was for Seastorm to not require any installation at all for
the user, and to be fully accessible from a single URL in the browser. While
it currently only requires the additional step of running a script with Python
(which the user already needs to install in order to use Seattle), we still consider
it desirable to lower the barrier to entry, especially in an educational setting.

One way of doing this would be to run the Python script at a computer
provided by the educational institution, and allowing users to connect to that
server instead. In order to make this possible, an alternative to transmitting
the user’s private key over the network would have to be devised.

Another way would be to make a number of changes to the Seattle platform
itself, namely to provide its APIs over HTTP (including CORS). This approach
would also require an alternative to exposing the user’s private key.

7.2.1.3 Support for other environments

The Seastorm visualizer is already modular: it can be used to generate sequence
diagrams from a trace file, no matter how that trace file was produced. If
Seastorm is found to be a useful tool for working with the Seattle platform, there
is good reason to believe that it would be equally useful in other distributed
systems, or other systems based on message passing (such as JavaScript web

53

workers, or a locally run Erlang program). In this case, it could be desirable to
investigate ways of integrating Seastorm with other environments.

We recommend, however, that this only be done after getting positive results
from a single environment. Trying to generalize the system before knowing in
detail how it should behave would likely lead to duplicate or even wasted effort.

7.2.1.4 Alternate implementation of wrapper library

When seamlessly adding monitoring to Repy programs, Seastorm currently
dynamically includes a wrapper library that redefines the functions that are
to be monitored. An alternate approach that might be more robust, efficient,
modular, or otherwise better is to make use of the security layers [30] available
in Repy version 2. A security layer allows users to intercept function calls and
potentially perform the same type of monitoring that Seastorm currently does.
Because we did not have previous experience with security layers, and because
Repy version 2 was still being worked on during the development of Seastorm,
we did not look closer at the viability of this approach.

7.2.1.5 Alternatives to Lamport timestamps

Although Lamport timestamps allow Seastorm to correctly order events as
required for creating a sequence diagram, there are even simpler methods that
provide the same information. We base this on the observation that Seastorm’s
use of Lamport timestamps is equivalent to vector clocks, due to the fact
that events are ordered after-the-fact, when all timestamps from all vessels are
available. These timestamps can be converted to vector clocks as follows:

1. For each vessel, a new set of timestamps is created from the existing
timestamps such that the ordering is the same but counting starts at 1 and
each timestamp differs by exactly one. Figures 7.1 and 7.2 give examples
of timestamps in an experiment before and after such a transformation,
respectively.

2. Starting from the first event in each process, vector clocks are created for
each event in the same way as in a running system, based on the new
timestamps acquired in the previous step. Figure 7.3 gives an example of
vector clocks acquired in such a way, with values of zero representing the
clocks of vessels not yet contacted.

The timestamps created in the first step above are effectively per-vessel
sequence numbers, which are easier to implement than Lamport timestamps, as
the only operation needed for updating a sequence number is incrementing it.
Thus, using sequence numbers instead of Lamport timestamps would simplify
the implementation of Seastorm’s wrapper library.

On the other hand, sequence numbers would require the Seastorm client to
perform more preprocessing when creating sequence diagrams. This is because
per-vessel sequence numbers do not capture ordering of events between processes
as directly as Lamport timestamps; the client would instead need to create
vector clocks as described above and use these to get equivalent information.
As an example, consider the first event in vessel C in figure 7.1, which can
easily be ordered relative to the first event in vessel A by simply comparing

54

Figure 7.1: Example of Lamport timestamps

Figure 7.2: Example of sequence numbers acquired from Lamport timestamps

Figure 7.3: Example of vector clocks acquired from sequence numbers

55

timestamps. By contrast, the same events in figure 7.2 cannot be compared
quite as easily.

Simplifying Seastorm’s wrapper library could be beneficial in other future
work, such as improving monitoring performance or adding support for other
environments. In these scenarios, the benefits of doing so would likely outweigh
the drawbacks of making the Seastorm client more complex.

7.2.2 Testing
7.2.2.1 Quantitative testing

In order to assess the usefulness of Seastorm for its intended purposes, quan-
titative testing should be performed. These tests should preferably focus on
different use cases, such as understanding existing programs, debugging existing
programs, and developing new programs. If Seastorm were to be found more
useful in some of these use cases than in others, that would point to aspects of
the system that should be improved, given less emphasis, or removed entirely.

7.2.2.2 Adoption

A truly useful system is one that users will adopt and start using on their own
rather than only using as part of a user test. We believe that adoption rates
should be examined in their own right when evaluating Seastorm, because even
systems with a high level of usability may end up not being used in practice.
This is especially likely if they involve a complicated setup process or are only
useful for a small number of use cases.

This type of testing could be performed by introducing Seastorm at the start
of a course in distributed systems (such as that at Chalmers) but not mandating
its use. Questionnaires or interviews could then be used at the end of the course
to see how many students voluntarily started using Seastorm and how many kept
using it throughout the course, as well as finding out their reasons for doing so.

If all other forms of testing were to indicate that Seastorm is useful, but
adoption rates among students are low, this would provide a good opportunity
for identifying specific features or circumstances that make such tools attractive
in practice.

7.2.2.3 Larger tests

The tests that we performed in the course of this project involved only seven
participants, each of which only spent 30 minutes using Seastorm (15 minutes for
each task). While small tests like these can be useful for providing indications
on what to focus on in the future, they are generally not comprehensive enough
to draw significant conclusions from.

One important factor that should be increased in future tests is the amount of
time that students spend on a single task. Fifteen minutes is not representative
of how much time developers spend on a single defect in an unknown program,
and the limited amount of time can itself cause the participant to behave
differently than normal.

56

7.2.2.4 Performance testing

If in the future Seastorm were used for larger experiments than the ones tested
during this project, performance testing would become much more of a priority.
In such experiments, the performance of both the monitor and the visualizer
could become relevant. In order to identify and fix potential problems, more
rigorous performance testing would be an important first step.

57

Appendix: User testing
material

This appendix includes the material that was provided to users participating in
the user testing of Seastorm.

Task 1: Calculator
Description
In this task, you will debug a program simulating a simple calculator that
involves one client requesting calculations and another server performing them.

Task

The source code for the program has already been written, but it contains a
defect that causes it to behave incorrectly. Your task is to find the defect, correct
it, and verify that the program behaves correctly after your fix. The intended
behavior of the program is described below.

Note: The program might fail if a message is lost due to congestion or
network failure. In this task, you should look for a defect that can occur even
when no messages are lost for this reason.

Intended behavior

1. The client sends an “AddOne” message to the server.

2. The server replies with “Value: 1”.

3. The client sends another “AddOne” message to the server.

4. The server replies with “Value: 2”.

5. The client sends a “Double” message to the server.

6. The server replies with “Value: 4”.

7. The final value of mycontext[’number’] on the client is 4.

58

Files and arguments

One vessel: calculator-server.repy port, where:

• port is your assigned port number (63173)

One vessel: calculator-client.repy port server action1 action2 action3,
where:

• port is your assigned port number (63173)

• server is the IP address of the other vessel

• action1, action2, action3 are the requests that the client should send
to the server

– The following three values should be used, in order: AddOne, AddOne,
Double

Note: If you are running the program using Seash, make sure to start the server
before starting the client, so that the client doesn’t start sending requests too
early.

Source code
calculator-server.repy

de f on_rece ive (other_ip , other_port , msg , handle) :
i f msg == ’AddOne ’ :

mycontext [’ number ’] += 1
e l i f msg == ’Double ’ :

mycontext [’ number ’] = mycontext [’ number ’] ∗ 2

sendmess (
other_ip ,
mycontext [’ port ’] ,
’ Value : ’ + s t r (mycontext [’ number ’]) ,
getmyip () ,
mycontext [’ port ’]

)

i f c a l l f u n c == ’ i n i t i a l i z e ’ :
mycontext [’ port ’] = i n t (c a l l a r g s [0])
mycontext [’ number ’] = 0
recvmess (getmyip () , mycontext [’ port ’] , on_rece ive)

calculator-client.repy

de f on_rece ive (other_ip , other_port , msg , handle) :
mycontext [’ number ’] = in t (msg . s p l i t (’ : ’) [1])

i f mycontext [’ next_action ’] == len (mycontext [’ ac t i ons ’]) − 1 :
stopcomm(handle)

59

i f mycontext [’ next_action ’] < l en (mycontext [’ ac t ions ’]) :
send_action (mycontext [’ next_action ’])
mycontext [’ next_action ’] += 1

de f send_action (index) :
sendmess (

mycontext [’ s e rver ’] ,
mycontext [’ port ’] ,
mycontext [’ ac t i ons ’] [index] ,
getmyip () ,
mycontext [’ port ’]

)

de f s t a r t () :
recvmess (getmyip () , mycontext [’ port ’] , on_rece ive)
mycontext [’ next_action ’] = 1
send_action (0)

i f c a l l f u n c == ’ i n i t i a l i z e ’ :
mycontext [’ port ’] = i n t (c a l l a r g s [0])
mycontext [’ s e rver ’] = c a l l a r g s [1]
mycontext [’ ac t i ons ’] = c a l l a r g s [2 :]
Make sure that s e r v e r has s t a r t ed be f o r e sending r eque s t s .
s e t t ime r (2 , s t a r t , [])

Task 2: Auction
Description
In this task, you will debug a program simulating an online auction that involves
one seller, three bidders, and one item being sold.

Task

The source code for the program has already been written, but it contains a
defect that causes it to behave incorrectly. Your task is to find the defect, correct
it, and verify that the program behaves correctly after your fix. The intended
behavior of the program is described below.

Note: The program might fail if a message is lost due to congestion or
network failure. In this task, you should look for a defect that can occur even
when no messages are lost for this reason.

Intended behavior

1. The seller sends an “Auction has started” message to each bidder.

2. Each bidder replies with a “Bid: xyz” message, where xyz is the amount
that the bidder wants to bid (provided as an argument to auction-bidder.repy;
see below).

3. After 3 seconds, the seller compares the bids that it has received, and:

60

(a) sends a “Sold!” message to the bidder that offered the highest bid.
(b) sends a “Not sold!” message to every other bidder.

Files and arguments

Three vessels: auction-bidder.repy port bid, where:

• port is your assigned port number (63173)

• bid is the amount that this bidder will bid

– The following three different values should be used: 500, 600, 800

One vessel: auction-seller.repy port bidder1 bidder2 bidder3, where:

• port is your assigned port number (63173)

• bidder1, bidder2, bidder3 are the IP addresses of the other vessels

Note: If you are running the program using Seash, make sure to start the bidders
before starting the seller, so that the seller doesn’t start sending messages too
early.

Source code
auction-bidder.repy

de f on_rece ive (other_ip , other_port , msg , handle) :
i f msg == ’ Auction has s tar ted ’ :

sendmess (
other_ip ,
other_port ,
’ Bid : ’ + s t r (mycontext [’ bid ’]) ,
getmyip () ,
mycontext [’ port ’]

)
e l s e :

stopcomm(handle)

i f c a l l f u n c == ’ i n i t i a l i z e ’ :
mycontext [’ port ’] = i n t (c a l l a r g s [0])
mycontext [’ bid ’] = in t (c a l l a r g s [1])
recvmess (getmyip () , mycontext [’ port ’] , on_rece ive)

auction-seller.repy

de f on_receive_bid (other_ip , other_port , msg , handle) :
amount = in t (msg . s p l i t (’ : ’) [1])
mycontext [’ bids ’] . append ({

’ ip ’ : other_ip ,
’ amount ’ : amount

})

61

de f s t a r t () :
mycontext [’ handle ’] = recvmess (

getmyip () ,
mycontext [’ port ’] ,
on_receive_bid

)
f o r b idder in mycontext [’ b idders ’] :

sendmess (
bidder ,
mycontext [’ port ’] ,
’ Auction has s tar ted ’ ,
getmyip () ,
mycontext [’ port ’]

)
s e t t ime r (3 , send_resu l t s , [])

de f s end_resu l t s () :
mycontext [’ bids ’] . s o r t (cmp=sort_bids)

sendmess (
mycontext [’ bids ’] [0] [’ ip ’] ,
mycontext [’ port ’] ,
’ Sold ! ’ ,
getmyip () ,
mycontext [’ port ’]

)

f o r bid in mycontext [’ bids ’] [: l en (mycontext [’ bids ’]) − 1] :
sendmess (

bid [’ ip ’] ,
mycontext [’ port ’] ,
’Not so ld ! ’ ,
getmyip () ,
mycontext [’ port ’]

)

stopcomm(mycontext [’ handle ’])

de f sort_bids (x , y) :
r e turn cmp(x [’ amount ’] , y [’ amount ’])

i f c a l l f u n c == ’ i n i t i a l i z e ’ :
mycontext [’ port ’] = i n t (c a l l a r g s [0])
mycontext [’ b idders ’] = c a l l a r g s [1 :]
mycontext [’ bids ’] = []
Make sure that b idder s have s t a r t ed be f o r e sending r eque s t s .
s e t t ime r (3 , s t a r t , [])

62

Appendix: Deployment

Overview
When deploying Seastorm, distribution of two separate applications must be set
up: the client and the server.

The client is distributed to the user like other browser applications: from a
single entry-point URL that allows the user to run the application by simply
visiting the URL in a browser. This URL should be served to the user from
some trusted source (preferably over HTTPS), such as the user’s educational
institution.

The server is distributed to the user from the client, which links to a URL
where a compressed folder containing the server can be downloaded. This URL
points to a file included in the client application itself; in other words, it is
served from the same location as the files that make up the client.

We should note that, in theory, the server could run on another computer
than the user’s own, and be modified to support serving multiple users at the
same time. For security reasons, however, this is not a viable approach: in
order to make calls to the Node Manager API, the server must have access to
the user’s private key, which should not leave the user’s computer. Because of
this, every user must run a personal instance of the server.

Requirements
• Python 2.6+

• A web server that can serve static files, preferably over HTTPS.

Instructions
On the host that will serve the Seastorm client and server to the users, perform
the following steps:

1. Download the Seastorm source code from GitHub: https://github.com/
JakobKallin/Seattle-Seastorm.

2. In the root directory of the Seastorm source code, run python build.py
output_path cors_origin, where:

• output_path is a directory served by a web server from this host.

63

https://github.com/JakobKallin/Seattle-Seastorm
https://github.com/JakobKallin/Seattle-Seastorm

• cors_origin is the origin from which the output_path directory is
served.

3. Instruct your users to visit the host’s web server in their browser and
follow the instructions given in order to install Seastorm.

Example
In this example, we want to distribute Seastorm from example.com. We have
set up a web server to serve static files from the directory /home/jakob/www.

1. We download the Seastorm source code to /home/jakob/downloads/seastorm.

2. We enter /home/jakob/downloads/seastorm and run python build.py
/home/jakob/www example.com.

3. We instruct our users to visit http://example.com/ in their web browser
and install Seastorm by following the provided instructions.

64

Bibliography

[1] J. Cappos, I. Beschastnikh, A. Krishnamurthy, and T. Anderson, “Seattle:
A Platform for Educational Cloud Computing,” in SIGCSE’09, March
2009.

[2] A. S. Tanenbaum and M. van Steen, Distributed Systems: Principles and
Paradigms. Pearson Prentice Hall, 2007.

[3] C. D. Hundhausen, S. A. Douglas, and J. T. Stasko, “A Meta-Study of
Algorithm Visualization Effectiveness,” Journal of Visual Languages and
Computing, March 2002.

[4] R. Wu, “Visualization as An Aid for Understanding Distributed Algo-
rithms: An Evaluation,” Master’s thesis, The University of Georgia, 2001.

[5] T. Rajala, M.-J. Laakso, E. Kaila, and T. Salakoski, “Effectiveness of
Program Visualization: A Case Study with the ViLLE Tool,” Journal of
Information Technology Education, vol. 7, 2008.

[6] D. Bell, “UML basics: The sequence diagram.” http://www.ibm.com/
developerworks/rational/library/3101.html, February 2004. Ac-
cessed: June 19, 2014.

[7] R. Nessa, “Trace Visualisation for distributed State Machines,” Master’s
thesis, Norwegian University of Science and Technology, 2005.

[8] L. E. Karlsen, “Providing a Birds Eye View on the Execution of Distributed,
Reactive Systems using Collaborations,” Master’s thesis, Norwegian Uni-
versity of Science and Technology, 2006.

[9] O. Babaoğlu and K. Marzullo, “Consistent Global States of Distributed
Systems: Fundamental Concepts and Mechanisms,” tech. rep., Laboratory
for Computer Science, University of Bologna.

[10] L. Lamport, “Time, Clocks, and the Ordering of Events in a Distributed
System,” Communications of the ACM, vol. 21, pp. 558–565, July 1978.

[11] F. Mattern, “Virtual Time and Global States of Distributed Systems,”
in Proceedings of the International Workshop on Parallel and Distributed
Algorithms, 1988.

[12] P. A. Ward, “Algorithms for Causal Message Ordering in Distributed
Systems.” http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.
1.1.92.1137&rep=rep1&type=pdf. Accessed: June 19, 2014.

65

http://www.ibm.com/developerworks/rational/library/3101.html
http://www.ibm.com/developerworks/rational/library/3101.html
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.92.1137&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.92.1137&rep=rep1&type=pdf

[13] “Repy Programming Guide.” https://seattle.poly.edu/wiki/RepyApi.
Accessed: June 19, 2014.

[14] “dylink.repy.” https://seattle.poly.edu/wiki/SeattleLib/dylink.
repy. Accessed: June 19, 2014.

[15] “Node Manager Design Document.” https://seattle.poly.edu/wiki/
UnderstandingSeattle/NodeManagerDesign. Accessed: June 19, 2014.

[16] “Seattle Clearinghouse.” https://seattleclearinghouse.poly.edu/.
Accessed: June 19, 2014.

[17] “Same-origin policy.” https://developer.mozilla.org/en-US/docs/
Web/Security/Same-origin_policy. Accessed: June 19, 2014.

[18] “HTML Canvas 2D Context.” http://www.w3.org/TR/2dcontext/, Au-
gust 2013.

[19] “Scalable Vector Graphics (SVG) 1.1.” http://www.w3.org/TR/SVG/, Au-
gust 2011.

[20] “The JSON Data Interchange Format.” http://www.
ecma-international.org/publications/files/ECMA-ST/ECMA-404.
pdf, October 2013.

[21] D. Winer, “XML-RPC Specification.” http://xmlrpc.scripting.com/
spec.html, June 1999. Accessed: June 19, 2014.

[22] F. Osterlind, J. Eriksson, and A. Dunkels, “Demo Abstract: Cooja Time-
Line: A Power Visualizer for Sensor Network Simulation,” in SenSys’10,
2010.

[23] B. Koldehofe, M. Papatriantafilou, and P. Tsigas, “LYDIAN: An Extensible
Educational Animation Environment for Distributed Algorithms,” Journal
on Educational Resources in Computing, vol. 6, June 2006.

[24] “Cloud9 IDE.” https://c9.io/. Accessed: June 19, 2014.

[25] “Seash: The Seattle Shell.” https://seattle.poly.edu/wiki/
SeattleShell. Accessed: June 19, 2014.

[26] L. Pühringer, “Try Repy!,” Bachelor’s thesis, University of Vienna, October
2011.

[27] “Web Workers.” http://www.w3.org/TR/workers/, May 2012.

[28] J. Armstrong, Making reliable distributed systems in the presence of soft-
ware errors. PhD thesis, The Royal Institute of Technology, December
2003.

[29] “Dromaeo.” https://wiki.mozilla.org/Dromaeo. Accessed: June 19,
2014.

[30] “Writing and Using Custom Security Layers in Repy V2.” https://
seattle.poly.edu/wiki/RepyV2SecurityLayers. Accessed: June 19,
2014.

66

https://seattle.poly.edu/wiki/RepyApi
https://seattle.poly.edu/wiki/SeattleLib/dylink.repy
https://seattle.poly.edu/wiki/SeattleLib/dylink.repy
https://seattle.poly.edu/wiki/UnderstandingSeattle/NodeManagerDesign
https://seattle.poly.edu/wiki/UnderstandingSeattle/NodeManagerDesign
https://seattleclearinghouse.poly.edu/
https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy
https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy
http://www.w3.org/TR/2dcontext/
http://www.w3.org/TR/SVG/
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf
http://xmlrpc.scripting.com/spec.html
http://xmlrpc.scripting.com/spec.html
https://c9.io/
https://seattle.poly.edu/wiki/SeattleShell
https://seattle.poly.edu/wiki/SeattleShell
http://www.w3.org/TR/workers/
https://wiki.mozilla.org/Dromaeo
https://seattle.poly.edu/wiki/RepyV2SecurityLayers
https://seattle.poly.edu/wiki/RepyV2SecurityLayers

	Introduction
	Problem

	Introduction
	Goal
	Research questions
	Outline

	Background
	Software visualization
	Benefits of software visualization

	Background
	Software visualization
	User adoption
	Types of visualizations

	Background
	Distributed algorithms
	Modeling distributed algorithms
	Time and event ordering

	Background
	Seattle
	Architecture
	Repy

	Background
	Seattle
	Node manager
	Clearinghouse

	Background
	HTML5
	Browser restrictions and limitations
	The same-origin policy

	Background
	HTML5
	Graphics
	JSON
	XML-RPC
	Server-sent events

	Related work
	Distributed system visualization
	Cooja TimeLine
	Ericsson EJBActorFrame trace monitor

	Related work
	Distributed system visualization
	LYDIAN

	Browser projects
	D3.js
	Cloud9 IDE

	Seattle-related work
	Seash

	Related work
	Seattle-related work
	Try Repy

	Design
	Conceptual architecture

	Design
	Visualization
	Choice of visualizations

	Design
	Visualization
	The sequence diagram in Seastorm

	Design
	Events
	Event sources

	Design
	Events
	Event data and metadata

	Design
	Monitoring
	Detecting events
	Ordering events

	Design
	Monitoring
	Augmenting the Repy API

	Design
	User interface
	File panel
	Vessel panel

	Design
	User interface
	Visualization panel

	Implementation
	Technical architecture

	Implementation
	Technical architecture
	Platform
	Client–server interaction

	Implementation
	Monitoring
	Detecting events

	Implementation
	Monitoring
	Logging events

	Implementation
	Visualization

	Implementation
	Visualization
	HTML, CSS, and SVG
	Arrows to self

	Implementation
	Visualization
	Event titles

	Results
	Functionality
	User interface
	Visualization

	Results
	User testing
	Test outline
	Design of tasks

	Results
	User testing
	Test execution

	Results
	User testing
	Quantitative results
	Qualitative findings

	Results
	Performance testing

	Results
	Performance testing
	Visualization

	Results
	Performance testing
	Monitoring

	Conclusions
	Summary

	Conclusions
	Future work
	Design and implementation

	Conclusions
	Future work
	Testing

