
API-Driven Generation of Well-Typed Terms
Master of Science Thesis in Computer Science

David Spångberg

University of Gothenburg
Chalmers University of Technology
Department of Computer Science and Engineering
Göteborg, Sweden, June 2014



The Author grants to Chalmers University of Technology and University of Gothen-
burg the non-exclusive right to publish the Work electronically and in a non-
commercial purpose make it accessible on the Internet. The Author warrants that
he is the author to the Work, and warrants that the Work does not contain text, pic-
tures or other material that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party (for exam-
ple a publisher or a company), acknowledge the third party about this agreement. If
the Author has signed a copyright agreement with a third party regarding the Work,
the Author warrants hereby that he has obtained any necessary permission from this
third party to let Chalmers University of Technology and University of Gothenburg
store the Work electronically and make it accessible on the Internet.

API-Driven Generation of Well-Typed Terms
David Spångberg

© David Spångberg, June 2014

Examiner: Emil Axelsson

University of Gothenburg
Chalmers University of Technology
Department of Computer Science and Engineering
SE-412 96 Göteborg
Sweden
Telephone + 46 (0)31-772 1000

Department of Computer Science and Engineering
Göteborg, Sweden June 2014





Abstract

In this thesis, a reusable library for defining generators for well-typed expressions in
standard Haskell is presented. The expressions are randomly constructed from a set
of functions and values specified by a user. Both the types of these functions and
the type of the generated expression can be polymorphic and/or higher order, i.e.
containing functions with polymorphic types as arguments. The main motivation for
this library is for generating test data when testing an Embedded Domain Specific
Language (EDSL) where constructing a generator for the language by hand might be
both tedious and error-prone.

The library was successfully used to define a generator producing terms similar to
those computed by such a hand-made generator. The code size and complexity of the
final generator was significantly reduced when compared to the hand-made one.



Contents

1 Introduction 1

1.1 Random generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Introducing QuickGen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3.1 Inductive programming . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3.2 Efficient enumeration . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3.3 Theorem proving . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Problem and goal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.5 Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Algorithm 5

2.1 A complete example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Undecided variables . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.2 Generating polymorphic expressions . . . . . . . . . . . . . . . . 8

2.1.3 Termination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.4 Subgoal ordering . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Matching expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.1 Unique types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.2 Matching functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3 Generating expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3 Implementation 20

3.1 Types and expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

i



3.1.1 Variables, Forall and Undecided . . . . . . . . . . . . . . . . . . . 20

3.1.2 Constructors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.1.3 Types and simple types . . . . . . . . . . . . . . . . . . . . . . . . 21

3.1.4 Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.1.5 Other types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2 Template Haskell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2.1 Calculating a class environment . . . . . . . . . . . . . . . . . . . 25

3.3 ExpGen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.3.1 The ExpGen state . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.3.2 Match function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.3.3 Selecting a random matching constructor . . . . . . . . . . . . . . 29

3.3.4 Generating expressions . . . . . . . . . . . . . . . . . . . . . . . . 30

4 Example usage 31

4.1 Simple usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.2 a DIY High-Assurance compiler . . . . . . . . . . . . . . . . . . . . . . . 33

4.2.1 A Copilot generator in QuickGen . . . . . . . . . . . . . . . . . . 35

4.3 Feldspar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5 Future work 42

5.1 Type variable arguments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.2 Selecting a Class Environment . . . . . . . . . . . . . . . . . . . . . . . . 43

5.3 Type Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.3.1 Entailment and undecided variables . . . . . . . . . . . . . . . . . 45

5.4 Supporting more expressions . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.5 Subgoal ordering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.6 Termination strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.7 Compiling expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

6 Conclusions 49



A Feldspar generator specification 52

B Changes made to feldspar-language 55



Chapter 1

Introduction

When developing a compiler for an Embedded Domain Specific Language (EDSL)
one often want to test certain aspects of the compiler, for instance, testing that the
result of evaluating an expression produces the same result both before and after
certain optimizations. One way to achieve this is to design unit tests that cover all
developed optimizations. This approach has several limitations, for instance, when
new optimizations are added, new unit tests have to be developed. Similarly, when
optimizations are modified, the corresponding unit tests have to be updated.

Instead, when testing a compiler, it is possible to construct a generator for random
Abstract Syntax Trees (ASTs) of the given language and use this generator to test the
implementation. However, these ASTs might have several invariants and constructing
a generator producing only valid ASTs might be non-trivial. One solution to this
problem is to only use smart constructors given by an Application Programming
Interface (API) to produce values of the requested type. However, combining these
smart constructors in a type-correct way might be equally non-trivial.

Aspects of the compiler, other than optimizations, can also be tested in similar ways.
One example is testing that interpreting a program versus compiling and executing it
produces the same result. This test and several others have similar preconditions as
the optimization tests; it requires that a program is generated or constructed before
the test in question can be run.

1.1 Random generation

Instead of creating a generator for an AST manually, one might want to randomly
generate values of the AST by using a list of functions from an API instead. This
is reasonable since all meaningful terms in the AST should be describable somehow
from the API provided by the EDSL. What is missing is a procedure, taking a list

1



1.2. INTRODUCING QUICKGEN CHAPTER 1. INTRODUCTION

of functions together with a goal type, producing random expressions of the goal
type by combining the given functions in a type-correct way. To create a generator
for an AST, one simply specifies the type of the AST as the goal type and the list of
functions as the functions from an API, working on that AST. If functions are added
or removed from the API, these functions only need to be added or removed from
the list of available functions supplied to the procedure. Even better, if the AST or
functions in the API are modified, no modification is required for the term generation
procedure.

1.2 Introducing QuickGen

In this report, the library QuickGen, written in the programming language Haskell
[Mar10], is presented. The library can be used to generate random functions and
values, with higher order types, containing polymorphic type variables. A Language
(i.e. an API) is simply defined using Template Haskell [Lyn14], by specifying the
functions and values available during term generation, for example:

1 lang :: Language
2 lang = $(defineLanguage [| ( map :: (a -> b) -> [a] -> [b]
3 , const :: a -> b -> a
4 , foldr :: (a -> b -> b) -> b -> [a] -> b
5 , nil :: [a]
6 , cons :: a -> [a] -> [a]
7 , n :: Int
8 )
9 |])

A specific library function is responsible for generating expressions given a language,
a goal type and a random seed:

1 generate :: Language -> Type -> Seed -> Maybe Exp

A generator for terms of type a -> [a] using lang above can then be defined in the
following way:

1 f :: Seed -> Maybe Exp
2 f seed = generate lang $(getType [t| a -> [a] |]) seed

2



1.3. RELATED WORK CHAPTER 1. INTRODUCTION

Different seeds supplied to this function then produce random well typed expressions,
using the available functions and values from lang. The generated expressions can
later be turned into real Haskell terms by using, for instance, the GHC API [ghc14].

1.3 Related work

Generating higher-order terms and functions have been the subject of research re-
cently. For instance, in [Pal11] a generator very similar to the one presented in this
thesis is introduced. This generator was successfully used to discover bugs in the
Glasgow Haskell Compiler (GHC) [Mar13]. The following sections provide a brief
overview over related research that has been used as inspiration for the duration of
this project.

1.3.1 Inductive programming

In the field of inductive programming [Hof13], the interest lies in generating a pro-
gram from an incomplete specification. For instance, in [Kat10], Katayama presents a
generator that searches for all expressions, in a breadth-first manner, matching a goal
type and at the same time satisfies a predicate. Since this generator produces and
examines all well-typed expressions, instead of randomly searching for one, it was
deemed not suitable for producing random expressions with deep nesting1.

1.3.2 Efficient enumeration

In [DJW12] a library for defining enumerations of arbitrary algebraic data types is
developed. These enumerations can also be indexed efficiently. As an example, the
term at position 10100 for the complex Exp data type defined in Template Haskell
is generated in less than a second on a normal desktop computer. However, Feat is
currently not able to enumerate terms with complicated invariants, such as well-typed
terms, [DJW12, p. 71].

1.3.3 Theorem proving

Augustsson presents a library for generating expressions in Haskell given a type
[Aug05]. These terms are constructed with the help of a theorem prover for intu-
itionistic propositional logic by encoding types as logical statements. However, this

1However, the interface in the Testing.QuickGen.TH Haskell module was greatly inspired by the one
used in [Kat10].

3



1.4. PROBLEM AND GOAL CHAPTER 1. INTRODUCTION

theorem prover, and theorem provers in general, will search for any, often minimal,
proof of a statement and is therefore not suitable for generating random terms.

1.4 Problem and goal

The problem is that there currently is no automatic way to construct specialized
generators for an EDSL, i.e. by specifying an API, in the programming language
Haskell. The generators, when constructed, should be capable of generating any
well-typed standard Haskell expression, of a given goal type. Any, in this context,
means functions and values, possibly higher order and/or containing polymorphic
type variables. In the best case scenario, the generators should be able to construct
terms from functions, in the API, using type classes.

The goal is to implement a library that automatically constructs such generators. The
functions and values produced from the generators should possibly have higher or-
der and/or polymorphic types. The goal of the project is considered reached when
the library has been used to successfully test a real world EDSL, such as Feldspar

[Axe+10].

1.5 Structure

This thesis starts in chapter 2 with a formal definition of the algorithms used when
generating expressions. Some limitations are also discussed here. After this, in chap-
ter 3, the current implementation in the programming language Haskell is discussed.
This chapter can be used as an extended documentation to the implementation. Ex-
ample usage of the library is presented in chapter 4. For instance, the implementation
of a generator with similar behaviour to that of the hand-made generator used when
testing the EDSL Copilot [Pik+12] is defined and discussed. The last two chapters,
chapters 5 and 6, discuss future work and conclusions of the project, respectively.

4



Chapter 2

Algorithm

This section is dedicated to the formal definition of the algorithm used to generate
expressions from a user API. The first part contains an example run of the complete
algorithm, followed by a discussion regarding some tricky parts. The last two subsec-
tions contain more formal definitions, with pseudo code, of the functions responsible
for type matching and term generation, respectively.

2.1 A complete example

Suppose a user wants to generate an expression of type [Int] using values and
functions from the following API:

Constructor name Type
map (a→ b)→ [a]→ [b]
sing a→ [a]

nil [a]
n Int
d Double

Table 2.1: Simple API

The first step is to choose a random function or value where the return type matches
our current goal type. In table 2.1 above, the term constructor is used to refer to one
of the functions or values that can be used by the algorithm to generate expressions,
this is also the term used in the rest of this thesis. Just by looking at the available
constructors, one finds that all but the last two values have return types that match
our current goal: [Int]. The constructors that do match, however, need to be slightly

5



2.1. A COMPLETE EXAMPLE CHAPTER 2. ALGORITHM

specialized to correctly match our goal type.

Assume that map was the first randomly selected matching constructor. In this case,
for map to match our goal type of [Int], the universally quantified type variable b
has to be instantiated to the type Int. The other type variable, a has nothing to do
with the current goal and can therefore be instantiated to anything. We might at this
point generate a random type for a based on the constructors in scope – this is done
by Palka in [Pal11]. Here, another tactic is employed: we say that the type variable
is undecided. We introduce the special notation ?a to mean exactly this; that the type
variable a is undecided. What this means is that the type of a has not been specialized
yet, but might be in a later stage of the generation algorithm. In the end, the final
specialized type for map is (?a → Int) → [?a] → [Int]. At this point, it might help to
visualize the current expression as:

map e1 e2

where e1 and e2 are two placeholder expressions with types (?a → Int) and [?a],
respectively. To succeed, we need to generate these new subexpressions (subgoals) in
some order. In this example, we choose to do it from left to right, starting with e1:

• Generating e1 with type ?a→ Int:

At this point, the algorithm differs slightly from what was done when starting
to generate [Int] above; the difference is that this time, we are trying to generate
a function. In the end, we want a lambda abstraction of the form:

λx → body

where the argument x can be used inside body. To proceed, all arguments are
added as constructors available when generating the body of the lambda ab-
straction. In this case, the only constructor added is x :: ?a, resulting in the
following set of constructors:

Constructor name Type
map (a→ b)→ [a]→ [b]
sing a→ [a]

nil [a]
n Int
d Double
x ?a

Table 2.2: Extended API

From here on, the algorithm is exactly the same as for the case when generating
an expression of type [Int] as seen above: a random matching constructor C

6



2.1. A COMPLETE EXAMPLE CHAPTER 2. ALGORITHM

is chosen and the arguments of C, y1 . . . yn, are recursively generated. If all
arguments are successfully generated, then body will be equal to C y1 . . . yn

and the complete expression e1 will be (λx → C y1 . . . yn).

Here, only the two constructors n and x match the current goal, which is Int,
and are therefore the only candidates for C. If we choose C = n, we return with
e1 = (λx → n) and continue generating e2 :: [?a]. If we choose C = x, we return
with e1 = (λx → x) 1. At this point, instead of continuing generating e2 :: [?a]
as before, we now need to generate e2 :: [Int]. The reason is that in the original
types of e1 and e2, (?a→ Int) and [?a], respectively, the undecided type variable
?a refers to the same type in both expressions. If we start generating e1 and
decide that ?a has to be an Int, then this choice has to be remembered when
generating e2. To illustrate the difference, both of these cases will be considered
below:

• Case e1 = (λx → n): Generating e2 with type [?a]:

This time, no new constructors are added to the API since we are not generating
a function. The API at this point is therefore the one found in table 2.1. Similar
to before, when choosing map as a constructor, the first three constructors are the
only ones matching the current goal. Suppose the second one, sing, is chosen.
In this case, the specialized type for sing would be (?a → [?a]) and a new
subgoal for an expression of type ?a is created. Here, ?a can be matched with
any constructor in the API, but let us assume d :: Double is chosen, resulting
in e2 = sing d. Since this is the last subgoal, the term generation algorithm
terminates with the complete expression map (λx → n) (sing d).

• Case e1 = (λx → x): Generating e2 with type [Int]:

Similar to the case for [?a], no new constructors are added and the API is there-
fore the one found in table 2.1. Suppose that the randomly selected constructor
chosen is the same as in the last step, sing. Here is where the difference in choice
in e1 is visible when generating e2. In the case above, all constructors matched
the goal of ?a. However, in this case, ?a has already been instantiated to a type
when generating e1, namely Int. This forces us to choose n as our constructor,
since no other constructors match the current goal. Again, this terminates the
algorithm leaving us with the final expression map (λx → x) (sing n).

2.1.1 Undecided variables

When generating e1 in section 2.1 above, two different cases were considered. In the
first case, the undecided variable ?a was never instantiated. The second case showed

1There is actually an infinite number of ways to instantiate ?a to match the current goal of Int. Only
considering one of them is a simplification to the original problem. See section 2.2.2.

7



2.1. A COMPLETE EXAMPLE CHAPTER 2. ALGORITHM

that a guess made for an undecided variable in one part needs to be remembered in
the rest of the generation process. How this information about guesses for undecided
variables should be handled is non trivial. Let us look at an example:

Example 2.1: Imagine that we are generating a term of type t using the following
constructor:

c :: t1 → . . .→ tn → t

Furthermore, assume that the undecided variable ?a is part of the type of c, i.e., ?a
is present in at least one, and potentially all, of the types t1, . . . , tn and t. If we start
generating a subgoal, for instance t1, we might select another constructor containing
additional subgoals which in turn might introduce even more subgoals. At any point
in these subtrees we might decide that ?a should have type Int. It is critical that
this information is shared between all subgoals. One could try to update the API by
exchanging every usage of ?a with Int. However, this does not solve the problem
that ?a might be present in one of the subgoals at the same level or higher up. If the
subgoals and intermediate constructors were saved on a stack one might traverse this
stack updating the types for subgoals containing ?a. However, this stack, and the API,
might grow to be very large making it inefficient to traverse the stack every time an
undecided variable is updated.

An alternative tactic, that is employed in this project, is to have a global set of guesses
for undecided variables, henceforth referred to as U, that is consulted before trying
to generate a subgoal containing undecided variables. Suppose that we have a goal
type t containing the undecided variable ?a. Further assume that U contain a guess,
?a 7→ Int, indicating that ?a should be substituted by Int. To continue, we substitute
each occurence of ?a with Int inside the type t.

The set of guesses, U, is also consulted before trying to match a goal with any con-
structor c from the API since the type of c might also contain undecided variables.
Finally, when a guess for an undecided variable is performed, this guess is recorded in
U. For instance, the guess ?a 7→ Int was performed when x was used as a constructor
when generating e1 in section 2.1.

2.1.2 Generating polymorphic expressions

One more type of expression needs to be discussed before continuing, namely expres-
sions with polymorphic types. To see how this is done in this project, let us first look
at a problematic example run:

• Imagine that we want to generate an expression with goal type a → a → [a].
We proceed in the same way as was done when generating the first argument
to map in section 2.1 above, i.e. generating a lambda abstraction by generating

8



2.1. A COMPLETE EXAMPLE CHAPTER 2. ALGORITHM

names for the variables, adding the arguments with their respective types to the
API and finally generating the lambda body with the updated API. The goal
type when generating the body would be [a]. Furthermore, let us assume that
the API is the following:

Constructor name Type
map (a→ b)→ [a]→ [b]

succInt Int→ Int
sing a→ [a]

x1 a
x2 a

Table 2.3: The constructors marked in red were added by the algorithm when
generating the lambda abstraction.

Further imagine that map was randomly chosen as our constructor, introducing
two subgoals e1 :: (?b → a) and e2 :: [?b]. Suppose we start with the second
subgoal, with goal type [?b], and randomly select sing followed by succInt as
our next constructors. Our expression at this point would be:

λ x1 x2 → map e1 (sing (succInt e3))

Note that selecting succInt above also introduced the guess ?b 7→ Int in U. The
variables e1 and e3 refers to the currently unsolved subgoals. At this point, the
current goal type, the type of e3, is Int. By looking at the types in the API alone,
it would be perfectly reasonable to choose x1 as a constructor for this goal, since
x1 is universally quantified and can be matched with anything. However, if we
substitute e1 by x1 and try to type check the resulting expression in, for instance,
ghci we get the following:

λ> :t (λ x_1 x_2 -> map undefined (sing (succ_int x_1))) :: a -> a -> [a]

<interactive>:1:44:
Couldn’t match expected type ‘a’ with actual type ‘Int’
...

9



2.1. A COMPLETE EXAMPLE CHAPTER 2. ALGORITHM

The problem above is that the type of x1 and x2 should not be a universally quantified
type variable (∀ a. a), when introduced to the API above. A solution to this problem
is to substitute every universally quantified type variable with a dummy unique type
constructor. This is the tactic employed by Katayama in [Kat10]. Thus, in the example
above, before starting the generation process, each occurrence of the type variable a
in a → a → [a] should be exchanged by a unique type constructor, for instance A1,
resulting in the type A1 → A1 → [A1]. Later during matching, the type A1 will be
matched using the same procedure used to match other type constructors. The exact
procedure for matching type constructors can be found in listing 1.

2.1.3 Termination

There is one simplification to the simple algorithm presented above that need to be
mentioned. The algorithm, if implemented directly, is not guaranteed to terminate.
To see why, consider the following example:

Constructor name Type
id a→ a
n Int

Say that we want to generate a term of type Int. The generation algorithm might
choose id as the first constructor. After type matching and specialization we have
exactly the same API and subgoal as in the original problem, we need to generate
an Int. At this point there is nothing that stops the algorithm from choosing id
indefinitely making this a non terminating process. In this particular example, the
probability of termination is quite high but this might not be the case if constructors,
requiring several subgoals to be generated, are introduced to the API.

The solution used to solve this problem in this project is to limit the number of uses
for each constructor of functional type, i.e. constructors requiring subgoals. Con-
structors with zero subgoals, such as Int, will have an infinite number of uses. The
notation Uses(t) will henceforth be used to denote the number of uses available for a
constructor with type t.

Uses(t) =

{
10 if t is a function type

∞ otherwise

The number 10 here was chosen after some experimentation and seems to enable
complicated expressions in a reasonable big API while still limiting the search space
enough to make the algorithm terminate if no solution can be found.

10



2.1. A COMPLETE EXAMPLE CHAPTER 2. ALGORITHM

The solution with Uses above is not the only way to solve the issue of termination. In
section 5.6, some other termination strategies are discussed.

2.1.4 Subgoal ordering

After choosing map as the first constructor in the original algorithm in section 2.1,
we choose to generate the subgoals to map from left to right. With the addition of
limited uses of constructors, as mentioned in section 2.1.3 above, the order in which
subgoals are generated influence the final shape of generated expressions2. Again, let
us illustrate this by looking at an example where we want to generate an expression
with type Int using the following API:

Constructor name Uses Type
const 2 a→ b→ a

n ∞ Int

Table 2.4: API containing constructors with a limited number of uses

As before, the API contains the constructors available for use when generating ex-
pressions. The difference this time is that a limited number of uses, here two, is also
imposed on the first constructor. The second constructor, having no subgoals, is given
an infinite number of uses. Suppose const, with the specialized type Int →?b → Int,
is our first randomly chosen constructor. After choosing const, we must also update
the API decreasing the number of uses for const by one. From here, we can choose to
generate either of the subgoals, Int respectively ?b. If we choose to generate from left
to right starting with Int, and const is our next random choice of constructor, then we
have effectively used up all usages of const available in this run of the algorithm. This
forces us to choose n as a constructor in all remaining subgoals, including the goal for
?b. If we go right to left instead, we may experience the same problem, i.e. we may
limit the available constructors, thereby forcing the shape of the finished expression.

In general, if there are several constructors in the API containing at least one subgoal,
the generated expressions are biased towards the direction of the first subgoals, i.e.
if we start from the left, most usages of constructors will be present in the leftmost
subgoals.

Due to implementation details, the algorithm used in this project generates goals from
right to left making the expressions biased towards the right. In one of the sections
in future work, section 5.5, some alternative tactics regarding subgoal ordering are
discussed.

2This is also true for undecided variables as was shown in section 2.1.1.

11



2.2. MATCHING EXPRESSIONS CHAPTER 2. ALGORITHM

2.2 Matching expressions

Type matching is the process of finding a minimal substitution for a type t1 that makes
it equal to a goal type t2 [JP08, pp. 7–8]. For instance, imagine we have the following
variables: x :: a → Int → b and y :: Int → Int → Bool. If we try to match the type of
x with y then the substitution {a 7→ Int, b 7→ Bool} will be returned. If no match is
found a failure is raised instead.

The Match algorithm presented below is similar to regular type matching in the
respect that it finds a substitution for the universally quantified type variables. How-
ever, there are some differences. Let us look at one example to see how it differs from
normal type matching:

Match(Int, a→ b) =⇒ (?a→ Int)

The first difference we see is that Match actually returns a new type instead of a
substitution. Match did find a substitution but then immediately applied it to the
second argument to produce a specialized type. Further, a normal type matching
algorithm would not find a substitution at all, it would fail on this particular input,
since a value type normally cannot be matched against a function. Match however
returns the type (?a→ Int).

From the original type we can see that b has been turned into Int which might not
be all that surprising. The type variable a, however, has lost its quantifier and been
turned into an undecided type variable, as explained in section 2.1. Further, the
Match function only looks at the return type of the second argument during match-
ing. Therefore, in this example, the only type variable considered during matching
was b. All of the remaining universally quantified type variables, which in this case
is a, will be turned into undecided type variables, here ?a.

The intuition is that a function f of type (a → Int) can be used to construct a value
of type Int if we give it another value of type a. Since a is universally quantified, a
value of any type can be given to f for it to produce an Int.

With this small introduction it is time to look at the algorithm for the match function.

12



2.2. MATCHING EXPRESSIONS CHAPTER 2. ALGORITHM

• Let U be the set of guesses for undecided variables, as discussed in section 2.1.1.
Then the Match function takes two types, t1 and t2, and finds out if the type t2

can be specialized in such a way that a value of this specialized type can be used
in the construction of a value of type t1. If Match is successful, the specialized
version of t2 is returned. In addition to returning the specialized type, the set of
guesses might be updated during matching. If no match is found, the algorithm
will fail.

1: function Match(t1, t2)
2: if t2 is a function type t2 = (x1 → . . .→ xn) then
3: s← MatchAux(t1, xn)

4: else
5: s← MatchAux(t1, t2)

6:

7: Update t2 by applying the substitution s to the type
8: Update t2 by converting all Forall quantified types to Undecided ones
9:

10: return t2

11: end function

The first step is trying to find a substitution that either makes t2, or the return type of
t2, match t1. If such a substitution is found then it is applied to t2. The last step before
returning t2 is to make all Forall quantified type variables into Undecided ones. The
algorithm that finds a substitution is found in listing 1 3. Let us look at an example of
how the complete algorithm works:

• Let t1 = [Int] and t2 = (a → b) → [a] → [b]. Match will proceed by trying to
find a substitution for [Int] and the return type of t2, [b], since t2 is a function
type.

– In MatchAux the second case will match with C = [ ] and y1 = b. Since t1

is also of this form, C = [ ] and x1 = Int, then MatchAux(Int, b) will be
called recursively.

– Now since the second argument is universally quantified, the singleton
substitution {b 7→ Int} is returned. This is also the value returned to
Match.

• The substitution returned from MatchAux is applied to t2 = (a→ b)→ [a]→
[b] resulting in (a→ Int)→ [a]→ [Int].

• In the last step the remaining universally quantified variable is turned into an
undecided one and (?a→ Int)→ [?a]→ [Int] is returned.

3This function is closer to traditional type matching compared to Match.

13



2.2. MATCHING EXPRESSIONS CHAPTER 2. ALGORITHM

1: function MatchAux(t1, t2)
2: case t2 of
3: ∀ b. b then
4: return {b 7→ t1}
5: C(y1, . . . , yn) then
6: if t1 is not the same type constructor as t2, i.e. t1 6= C(x1, . . . , xn) 4 then
7: raise No_Match
8: else
9: return

⋃
i MatchAux(xi, yi)

10: ?b then
11: if t1 = t2 =?b then
12: return ∅
13: else if ?b ∈ Vars(t1) then
14: raise No_Match
15: else if ∃ t, s.t. (?b 7→ t) ∈ U then
16: return MatchAux(t1, t)
17: else
18: Add the mapping (?b 7→ t1) to U

19: return ∅
20: else
21: case t1 of
22: ?a then
23: . Similar to the case for ?b except in the last else
24: . . .
25: else
26: Convert all ∀ type variables in t2 to undecided
27: Add the mapping (?a 7→ t2) to U

28: return ∅
29: else
30: raise No_Match
31: end function

Listing 1: The complete matching algorithm.

2.2.1 Unique types

One important property which has been left out of the discussion so far is that all
undecided type variables introduced in Match are assumed to be unique. Let us
look at an example to explain this:

4For some types x1 . . . xn.

14



2.2. MATCHING EXPRESSIONS CHAPTER 2. ALGORITHM

Example 2.2: Imagine we are generating a value with type [[Int]] using the API found
in table 2.1. Further suppose that the final, well-typed, expression we want to generate
is the following:

map (λxs→ map (λx → x) xs) [[n]]

If we follow the general algorithm introduced in section 2.1 in minute detail we would
use the same undecided type variable ?a for both uses of map, which is not correct.
To see this, imagine the generation algorithm proceeds as follows:

• We choose map as our first constructor, introducing ?a → [Int] and [[?a]] as
subgoals.

• We continue with the second subgoal, i.e. we generate the expression [[n]],
introducing the guess (?a 7→ [Int]) in U.

• The first subgoal, λxs→ e3, to the outer map is generated. Since ?a was resolved
to [Int], xs will also have this type.

• The remaining subgoal is that for the placeholder expression e3 with type [Int].
Again, we choose to use map as our constructor, introducing the subgoals
?a → Int and [?a]. This time, since we already have a guess for the undecided
variable ?a in U, the subgoal for the inner map will be updated to ([Int]→ Int)
and [[Int]], respectively. However, these types do not permit us to choose, for
instance, xs as a second argument for the inner map which is incorrect.

A simple way to solve this problem is to exchange every universally quantified type
variable in a type t with a natural number before supplying t as the second argument
to Match. Start with n := 0 which represents the next unique natural number to be
used in a type. The general procedure is defined as follows:

• For some type t find the set of universally quantified type variables encountered
in t:

Vars(t) = {a1, . . . , am}

• Create the substitution s = {a1 7→ n, . . . , am 7→ n + m− 1}

• Let n := n + m

• Update t by applying the substitution s to t

At this point every type variable in t is unique for the entire run of the algorithm
since it is not legal to have natural numbers as types in standard Haskell. This makes
it completely safe to introduce mappings for undecided variables in U in MatchAux.

15



2.2. MATCHING EXPRESSIONS CHAPTER 2. ALGORITHM

2.2.2 Matching functions

One simplification to the problem of type matching was made in this project. A
simple example illustrates how this simplification affects the type matching algorithm.
Suppose we want to generate an expression with goal type Int using the API found
in Table 2.5 below:

Constructor name Type
head [a]→ a

succInt Int→ Int
n Int

sing a→ [a]

Table 2.5: API containing head

When the matching algorithm in section 2.2 matches head with our current goal type,
it would immediately notice that the return type of head is universally quantified and
produce the substitution {a 7→ Int}. The specialized type returned by the algorithm
would be [Int] → Int. However, this is not the only valid specialization of this type
to produce a constructor for this goal. For instance, the expression below with type
Int can be constructed manually from the API:

head (sing succInt) n

To be able to generate this expression, another specialization of the type of head would
have to be considered:

[?b→ Int]→?b→ Int

In general, there are an infinite number of valid instantiations for a universally
quantified type variable when matching against a goal type t; each on the form:
?a1 → . . . →?an → t where n can be zero. Katayama uses this tactic when enumerat-
ing expressions in [Kat10].

In this project, it was decided to only consider the simple case, when n = 0. This is
since instantiations where n > 1 does not make sense in several EDSL’s, for instance
in the Feldspar core language [Axe+10]. Furthermore, such instantiations taking extra
arguments are not interesting for testing most of the time. In [Pal11], it was argued
that setting n > 1 did not give any advantage in testing. In any case, if this func-
tionality is required in the future, it can be implemented by redefining the Match

procedure, see 2.2, to return a list of specialized types, for each 0 ≤ i ≤ n, letting n be
a user configurable parameter.

16



2.3. GENERATING EXPRESSIONS CHAPTER 2. ALGORITHM

2.3 Generating expressions

Here we look at the complete term generation algorithm that was informally intro-
duced in section 2.1. Similar to the Match algorithm, the first function we look at,
Generate, does some basic computations and then delegates the more complicated
work to an auxiliary function.

1: function Generate(t)
2: Bind all ∀ quantified variables in t to some unique Data constructor types. .

If for instance t = a→ b then the resulting type might be A1→ B2
3: Substitute the undecided type variables in t by some unique undecided vari-

ables.
4: return GenerateAux(t)
5: end function

On the second line of the algorithm, all universally quantified variables are substituted
with unique dummy types as discussed in section 2.1.2. A similar transformation is
done with the undecided type variables on the third line, to avoid capturing these
undecided variables in later stages of the generation process5. The last line calls and
returns the result of the auxiliary function. Before introducing this function, we need
some additional definitions:

• Let Uses(t) denote the number of uses for a constructor of type t, see 2.1.3, Γ
a context (API) and U a set of guesses for undecided type variables, the rest of
the generation algorithm can be found in listing 2.

The following literal interpretation of the algorithm is also included for clarity. The
first step of the GenerateAux algorithm above is to case match on the current goal
type t:

• If t is a function type, a lambda abstraction is constructed and the body of the
lambda abstraction is generated in a context that has been extended to include
the arguments of the lambda abstraction. This process may fail as can be seen
from the usage of the standard Haskell type Maybe in the if statement from line
7 to 10.

• If t is not a function type, we first make local copies of U and Γ and try to
find a matching constructor. Once again, this process may fail if no matching
constructors are found in Γ. If a constructor is found, the number of uses for this
constructor is decreased by one and there is once again a case match on a type,
this time on the type of the constructor. Since the second case can be seen as a
special case of the first one, with m = 0, only the first case will be considered.

5The procedure used to do this is the same one introduced in section 2.2.1.

17



2.3. GENERATING EXPRESSIONS CHAPTER 2. ALGORITHM

For each of the argument types of the constructor c, ti where 1 ≤ i ≤ m, a re-
spective expression ei is generated. In this particular algorithm, the subgoals are
generated from right to left as discussed in section 2.1.4. If any of the expres-
sions fails to generate, i.e. if me = Nothing, then Γ and U is reset and Nothing
is returned. Otherwise, all the expressions ei were set and we can return the
complete expression n applied to the arguments e1 . . . em.

18



2.3. GENERATING EXPRESSIONS CHAPTER 2. ALGORITHM

1: function GenerateAux(t)
2: if t is a function type t1 → . . .→ tm then
3: Generate unique variable names x1, . . . , xm−1

4: Add the constructors (Uses(ti), (xi, ti)), 1 ≤ i < m to Γ
5: v← GenerateAux(tm)
6: Remove the xi, 1 ≤ i < m constructors from Γ
7: if v is Just an expression then
8: return (λx1 x2 . . . xm−1 → v)
9: else . v is here Nothing

10: return Nothing

11: else Retry up to 3 times . t is here a value type
12: U′ ← U

13: Γ′ ← Γ
14: c← A random matching constructor with positive uses in Γ . This line

might introduce guesses for undecided type variables
15: if c is Just a constructor c = (n, t′) then
16: decrease the number of uses for c in Γ by one
17: if t′ = t1 → . . .→ tm → t then . t is here the same t as on line 1
18: for i = m, m− 1, . . . , 1 do
19: me← GenerateAux(ti)
20: case me of
21: Nothing then
22: Γ := Γ′

23: U := U′

24: return Nothing

25: Just e then
26: ei = e
27: return Just (n e1 . . . em)

28: else . c has here a value type
29: return Just n
30: else . c is here Nothing
31: return Nothing

32: end function

Listing 2: The auxiliary generate function

19



Chapter 3

Implementation

In this chapter the current implementation of the algorithm,as defined in chapter 2,is
discussed. First, the data types used to represent types and values are presented,
together with the functions used to work with the respective data types. Some of the
limitations imposed by the specific representation scheme for the types presented are
also discussed. After this, the Template Haskell module, and its functions, found in
the library is introduced. Some usage examples of these functions are also presented.
Finally, the current implementations of the Match and Generate algorithms are
presented.

3.1 Types and expressions

This section provides an overview of the data types that were defined to more easily
describe the different parts of the algorithm as defined in chapter 2.

3.1.1 Variables, Forall and Undecided

In Haskell, a type can contain universally quantified type variables. For instance, in
the type for id :: a -> a, an implicit forall for the type variable a is introduced
resulting in the final type id :: forall a. a -> a. This type says that id works
for any type a, be it integers, list of strings or functions containing their own uni-
versally quantified type variables. QuickGen introduces another kind of quantifier,
Undecided, as first introduced in section 2.1. Internally, the types used for represent-
ing variables are the following:

20



3.1. TYPES AND EXPRESSIONS CHAPTER 3. IMPLEMENTATION

1 data Quantifier = Forall | Undecided
2 type Nat = Int
3 type Variable = (Nat, Quantifier)

Simply put, a Variable in QuickGen is a natural number paired together with a value
of type Quantifier. A natural number is used instead of, for instance, a string since
comparing two natural numbers is far more efficient than comparing two strings.

3.1.2 Constructors

A constructor is the term used for the Haskell functions and values found in a user
specified API. The intuition is that one of these terms can be used to construct parts
of, or a complete, Haskell expression. Constructor’s are also returned by the function
randomMatching, discussed in section 3.3.3.

The internal representation of a constructor is very simple:

1 type Name = TH.Name
2 type Constructor = (Name, Type)

A Name is simply a type alias for names in Template Haskell [Lyn14]. A Type corre-
sponds to the, possibly specialized, type of the constructor. Types are discussed in
the next section. How to a specialize a type for a constructor when defined in an API
is explained in section 3.2.

3.1.3 Types and simple types

Below are the two data types in QuickGen that are used to represent types in Haskell:

1 data Type = Type [Variable] Cxt SType
2

3 data SType =
4 FunT [SType]
5 | VarT Variable
6 | ConT Name [SType]
7 | ListT SType

21



3.1. TYPES AND EXPRESSIONS CHAPTER 3. IMPLEMENTATION

The first data type is used to introduce variables, and constraints on these variables,
in types. The second data type, SType, has constructors for representing functions,
variables, constructors and lists. For instance, the implicitly universally quantified
type a→ b→ b could be represented as:

1 Type [(0, Forall), (1, Forall)] [] (FunT [ VarT (1, Forall)
2 , VarT (1, Forall)
3 , VarT (0, Forall)
4 ])

Each name of a type variable is turned into natural a number and a quantifier (here
Forall), as explained in 3.1.1 . The type variable a is here turned into (0, Forall)
and b is turned into (1, Forall). A not so obvious transformation is done for the
inner SType. The order of the type variables in the function type is reversed, compared
to the original type. The reason this is done is to make the implementation of the type
matching more efficient since only the return type of functions are considered during
matching, see section 2.2. For now, it is enough to remember that function types are
reversed.

The rest of the constructors, VarT, ConT and ListT, represent type variables, type
constructors and lists, respectively. The observant reader may notice that there is
currently no way to represent type variables with arguments, i.e. there is no way to
represent the type of return :: Monad m => a -> m a This limitation, and ways to
solve it, is discussed in section 5.1.

The reason there is an extra constructor ListT for lists instead of representing them
as ConT "List" a 1 is just a convenience, making the implementation simpler. It also
follows the representation for types used in Template Haskell [Lyn14].

The last type to mention here is that of constraints in types:

1 data Pred = ClassP Name SType
2 type Cxt = [Pred]

A constraint is simply a list of predicates. E.g. the constraints in the Haskell type
(Monoid a, Monoid b) => Monoid (a,b) would be:

1 [ ClassP "Monoid" (VarT (0, Forall))
2 , ClassP "Monoid" (VarT (1, Forall))
3 ]

1Also note that in this example you cannot use the name "List" for the list type constructor since a
user might add this data type themselves.

22



3.1. TYPES AND EXPRESSIONS CHAPTER 3. IMPLEMENTATION

3.1.4 Expressions

The following data type is used for the generated expressions in QuickGen:

1 data Exp =
2 ConE Name
3 | AppE Exp Exp
4 | LamE [Name] Exp

An expression is either the name of a Constructor 3.1.2, an expression applied to
another expression or a lambda expression. The list of Name’s in a lambda expression
will always be non empty. This data type is very simple when compared to the ex-
pression data type used by Template Haskell [Lyn14]. This implies that some Haskell
expressions, like case- and let-expressions, cannot be generated by the library. This
has very little effect on the usability of the library as an EDSL testing framework, since
functions and values are the only visible parts outwards in an EDSL. Furthermore, if
a user, for instance, wants a case match for a specific data type to be generated, a
function directly corresponding to this case match can be added to the API. Below
is an example showing how such a function would be defined for the Maybe Haskell
data type:

1 data Maybe a = Nothing | Just a
2

3 maybe :: b -> (a -> b) -> Maybe a -> b
4 maybe b f m = case m of
5 Nothing -> b
6 Just a -> f a

It might be worth noting that this particular function, maybe, is already present in the
Haskell Prelude2. Defining it again is probably unnecessary. In any case, the last step
is to simply add this function to the API.

3.1.5 Other types

1. Substitutions: A mapping from type identifiers (natural numbers) to simple
types and a list of variables contained in the simple type.

1 type Substitution = Map Nat ([Variable], SType)

2It can be found here: http://hackage.haskell.org/package/base-4.7.0.0/docs/Prelude.html#
v:maybe.

23

http://hackage.haskell.org/package/base-4.7.0.0/docs/Prelude.html##v:maybe
http://hackage.haskell.org/package/base-4.7.0.0/docs/Prelude.html##v:maybe


3.2. TEMPLATE HASKELL CHAPTER 3. IMPLEMENTATION

There is a value of type Substitution in the EGState, see section 3.3.1, when
generating expressions. This value only contains mappings for Undecided vari-
ables and represents the set of guesses, U, first introduced in section 2.1.1. The
Testing.QuickGen.Types module contains several functions 3, for transforming
and getting information from Substitution’s.

2. Contexts and Uses: A Context is a mapping from type identifiers to constructors
paired together with the available Uses left for each particular constructor.

1 type Uses = Maybe Nat
2 type Context = Map Id (Uses, Constructor)

The number of uses can either be Just a natural number or Nothing, the latter
indicating that this particular constructor can be used an unlimited number of
times.

3. Class environments: A mapping from names of Haskell type classes to a list of
super classes paired with the Template Haskell instance declaration.

1 type ClassEnv = Map Name ([Name], [TH.InstanceDec])

Currently the class environment is not used internally apart from being con-
structed in the Template Haskell module. Future work regarding the usage of
this type is discussed in section 5.3.

4. Languages: Basically a ClassEnv paired together with a list of Constructor’s.

1 data Language = L ClassEnv [Constructor]

A Language is one of the arguments for the library function generate, the other
two being a Type and a Seed (Integer). The generate function, together with a
value of these three types, are the only thing a user needs in order to generate
well-typed terms using this library. Currently, the only way for an end user to
construct a value of this type is via the function defineLanguage, introduced in
the next section.

3.2 Template Haskell

The library contains a small module named Testing.QuickGen.TH with two exported
Template Haskell functions, defineLanguage and getType, that a user can use to con-
struct a Language or a Type, respectively. Example usage of these functions is shown
in listing 3 below:

3For instance lookupSubst :: Nat -> Substitution -> Maybe ([Variable], SType) and
(|->) :: Nat -> SType -> Substitution.

24



3.2. TEMPLATE HASKELL CHAPTER 3. IMPLEMENTATION

1 ty :: Type
2 ty = $(getType [t| forall a b. (a -> b) -> [a] -> [b] |])
3

4 genInt = 0 :: Int
5 nil = []
6 cons = (:)
7

8 lang :: Language
9 lang = $(defineLanguage [| ( genInt, nil, cons

10 , id, map
11 ) |])

Listing 3: Example usage of getType and defineLanguage.

The getType function simply converts a type, represented as a Template Haskell data
type, into the representation used by this library. This function can be used to easily
construct goal types to be used together with the generate function introduced in
section 3.3.4 below.

The defineLanguage function, also seen in the example above, takes a tuple containing
the constructors that should be available when generating expressions. The observant
reader might notice the usage of nil and cons instead of the more common [] and
(:). In the used version of the library, it is not possible to directly include the latter
constructors in the API definition, since variables are the only form of expression cur-
rently accepted. How one might extend the definition of defineLanguage, to include
other types of expressions, is discussed in section 5.4.

One additional form when specifying a constructor in the API is also allowed:

1 $(defineLanguage [| (map :: (a -> Int) -> [a] -> [Int], id) |])

This would specialize the type of map so that it can only be used to construct expres-
sions of type [Int]. The constructor id however, having no type annotation, would
still be associated with its most general type: a→ a.

3.2.1 Calculating a class environment

As mentioned when discussing Class Environments in section 3.1.5, a Language is iso-
morphic to a ClassEnv paired with a list of Constructor’s. The easiest way to explain
how a class environment is calculated is probably by presenting the documentation
for the internal function getClassEnv together with some Haskell type class instances:

25



3.2. TEMPLATE HASKELL CHAPTER 3. IMPLEMENTATION

1 type ClassEnv = Map Name ([Name], [TH.InstanceDec])
2

3 -- | Given a list of class names iteratively find new classes
4 -- mentioned in either the constraints of a class name or in any of
5 -- the instances. Returns the ‘ClassEnv’ with information about all
6 -- instances for the initial classes and the discovered classes.
7 getClassEnv :: [Name] -> TH.Q ClassEnv
8

9 class Functor f => Applicative f where
10 pure :: a -> f a
11

12 instance Applicative [a]
13 instance Monoid a => Applicative ((,) a)
14

15 class Monoid a
16

17 instance Monoid [a]
18 instance Monoid a => Monoid (Maybe a)

Example 3.1: Suppose a user includes the function pure :: Applicative f => a -> f a
as a constructor in the language. If this is the only function in the language contain-
ing a type class constraint, the initial list of names, ns, will be [Applicative]. The
algorithm proceeds as follows:

• Initialize a class environment cenv to the empty set.

• Loop until ns is empty:

1. Remove the first name n from ns and ask Template Haskell about the su-
perclasses sups and instances is of n.

2. Extend cenv by adding a mapping from n to is.

3. Extend ns by adding all type classes in sups, not yet mentioned in neither
ns nor cenv.

4. Extend ns by adding all type classes mentioned in any of the instances in
is, but not yet mentioned in neither ns nor cenv.

• Return cenv

26



3.3. EXPGEN CHAPTER 3. IMPLEMENTATION

In our example with [Applicative] as the initial list, we would start by finding all
information about the Applicative type class and proceed by adding Functor, a
superclass of Applicative, and Monoid, mentioned in one of the instances, to ns. The
next step would be looking up the information of, for instance, Monoid. Since there are
no superclasses for this class, only the classes mentioned in the instances are added.
In this case, one of the instances mentions a class which is already in cenv, Monoid,
and this particular class is therefore not added to ns.

The algorithm above is the most straightforward way known to the author to find all
information about the type classes possibly used when generating values. However,
the proposed algorithm has some problems: when applied to, for instance, the list
[Num], the resulting class environment is calculated very quickly, but then compiling
this value again might take noticable time even on a modern computer. The reason is
that the class environment calculated using this algorithm grows very large due to the
large amount of instances available in GHC. Furthermore, several type classes that do
not seem to be relevant for generating functions using the Num type class are present
in the final class environment4. The text representation of the final class environment
calculated from [Num] is around 50000 characters long. The fourth step in example
3.1 was therefore removed from the algorithm used in the library.

In future versions, a modification to the fourth step should be added again, i.e. so
that only classes that are relevant to the current problem are added to the class envi-
ronment. Possible ways to solve this are discussed further in section 5.2.

3.3 ExpGen

The ExpGen module contains the core algorithm and methods to generate type-safe
expressions. The generation starts in the appropriately named function generate
which works by finding a random matching Constructor’s for the current goal type
and recursively tries to generate expressions of the argument types of the constructor.

4I.e. the type class MVector in Data.Vector.Generic.Mutable in the vector Haskell package can be
found in the class environment.

27



3.3. EXPGEN CHAPTER 3. IMPLEMENTATION

3.3.1 The ExpGen state

The ExpGen type is basically a state monad keeping track of and updating relevant
information when generating expressions.

1 type Nat = Int
2 type NextLambda = Nat
3 type NextType = Nat
4

5 type EGState = (NextLambda, NextType, [Context], StdGen, Substitution)
6

7 newtype ExpGen a = EG (State EGState a)
8 instance Monad ExpGen
9 instance MonadState EGState ExpGen

The type EGState is a tuple with several elements. The first two elements, NextLambda
and NextType, are used to generate unique identifiers for lambda variables and type
variables, respectively. The list (stack) of Context’s contain all Constructor’s intro-
duced either in the language definition or in a lambda abstraction generated by the
algorithm. If, for instance, the starting language contains map and id and the type
to generate is Int -> Double -> Int, then the starting stack of contexts would be a
singleton list only containing map and id. The next step would introduce a lambda
abstraction \x y -> ..., effectively adding one more Context, containing the values
x and y 5, to the stack of contexts and continue to generate an expression of type Int
at the point of the ellipsis. If the expression finishes successfully, the top-most context
on the stack is popped off and the algorithm returns the generated expression.

The StdGen is from the System.Random module and is used when selecting random
constructors when generating expressions. The last value, with type Substitution,
contains the current guesses for all Undecided type variables, i.e. it represents the set
U.

3.3.2 Match function

The function match found in the ExpGen module implements the algorithm discussed
in section 2.2. The observant reader might notice that this function does not pattern
match on the type of t, as is done in the pseudo code for Match. Instead, this is done
in the match’ function. However, the complete algorithm is still the same.

5With the appropriate types Int respectively Double.

28



3.3. EXPGEN CHAPTER 3. IMPLEMENTATION

1 match :: Monad m => Type -> Type -> StateT Substitution m Type
2 match gt t = do
3 s <- match’ gt t
4

5 let t2 = // apply the substitution s to t
6 t2’ = // Convert all Forall quantified variables in t2 to
7 // Undecided variables
8

9 return t2’
10

11 match’ :: Monad m => Type -> Type -> StateT Substitution m Substitution

match takes a goal type gt and a matched against type t and returns a type inside a
state monad. The state being kept, if called with an initial empty state, is the current
guesses for the Undecided variables encountered during this particular run for the
function. This is correct if the current set of guesses, represented as a substitution,
is fully applied to both arguments, gt and t, before being sent as arguments to this
function. The only undecided variables found in either gt or t are therefore variables
without any previous guesses, i.e. these variables are not present in U. This function,
when called in this manner, can therefore only introduce guesses for variables not
present in the current set of guesses.

3.3.3 Selecting a random matching constructor

The following function gets a goal type gt and randomly selects a Constructor from
the current context matching the given type:

1 randomMatching :: Type -> ExpGen (Maybe (Id, Constructor, Substitution))
2 randomMatching gt = ...

The function works by looking through each Context, filtering out those Constructor’s
having no uses left and then runs match with the goal type gt and the type t for each
of the remaining Constructor’s. As discussed above, the initial state for match will be
the empty set. Further, the substitution containing the current set of guesses, U, will
be fully applied to both gt and t. If match succeeds, it returns a, possibly specialized,
constructor of type t and a Substitution containing new guesses for Undecided vari-
ables. The constructor is then saved to a list of constructor candidates. If match fails,
the list of candidates is unchanged.

The last step of the function is simply to randomly select and return one of the can-
didate Constructor’s by using the StdGen from the EGState.

29



3.3. EXPGEN CHAPTER 3. IMPLEMENTATION

3.3.4 Generating expressions

generate will be the only exported function in the ExpGen module, i.e. in future
versions of this library, it is the only function from this module that will be visible to
the end user:

1 generate :: Language -> Type -> Seed -> (Maybe Exp, EGState)
2 generate lang t seed = runEG seed lang $ do
3 t’ <- bindForall <$> uniqueTypes t
4 generate’ t’
5

6 generate’ :: Type -> ExpGen (Maybe Exp)

The function generate is extremely simple, as its basically a wrapper for the func-
tion generate’ where the real work is done. Here the different functions presented
in the last section are combined into a complete algorithm that is used to generate
expressions. This is also the algorithm presented in pseudocode in section 2.3.

30



Chapter 4

Example usage

In this section, some example usage of QuickGen is presented. The first example we
look at is a simple language from the test suite included in the library. This example
includes generating both polymorphic and monomorphic functions from a simple
API. After this, two real world examples are presented. More specifically, a generator
designed to mimic the behaviour of the handmade generator, used when testing the
Copilot EDSL [Pik+12], is presented followed by a simple generator used to discover
an artificially introduced bug in Feldspar [Axe+10].

4.1 Simple usage

Bundled with the QuickGen library is a test suite where one of the tests include
testing the complete usage of the library. First an API, or more more correctly a
value of type Language, is defined using the function defineLanguage as discussed
in section 3.2. This API includes a selection of some common functions found in the
Haskell Prelude:

31



4.1. SIMPLE USAGE CHAPTER 4. EXAMPLE USAGE

1 lang :: Language
2 lang = $(defineLanguage [| ( arbiInt :: Int
3 , arbiDouble :: Double
4 , nil :: [a]
5 , cons :: a -> [a] -> [a]
6 , id :: a -> a
7 , foldr :: (a -> b -> b) -> b -> [a] -> b
8 , const :: a -> b -> a
9 , sing :: a -> [a]

10 , map :: (a -> b) -> [a] -> [b]
11 , app :: (a -> b) -> a -> b
12 , succInt :: Int -> Int
13 , succDouble :: Double -> Double
14 )
15 |])

Listing 4: One of the API’s used by the test suite. For clarity, all types of the
constructors are written out explicitly.

The value lang, defined in listing 4 above, is used as the first argument to the function
generate presented in section 3.3.4. In the current setup, generate will be called
multiple times with lang and the two goal types, a→ [a] and [Int]:

1 -- | Generates values of type ‘[Int]’
2 genListInt :: Seed -> Maybe (Exp, Type)
3 genListInt seed = generate lang ty seed
4 where
5 ty = $(getType [t| [Int] |])
6

7 -- | Generates values of type ‘a -> [a]’
8 genPolyList :: Seed -> Maybe (Exp, Type)
9 genPolyList seed = generate lang ty seed

10 where
11 ty = $(getType [t| forall a. a -> [a] |])

For both of these functions, a random list of seed values will be generated and each
seed will then be passed as an argument to its respective function. The only step left in
the test suite is to compile the expressions using the GHC API [ghc14]. This is done
to ensure that the types of the generated expressions are correct. For genListInt,
something similar to the following will be executed1:

1The complete implementation of the compilation process using the GHC API is beyond the scope of

32



4.2. A DIY HIGH-ASSURANCE COMPILER CHAPTER 4. EXAMPLE USAGE

1 checkTypeListInt exp = do
2 let expStr = "(" ++ show exp ++ ") :: [Int]"
3 runGhc $ do
4 -- Load required modules. Specifically the Haskell Prelude
5 -- and the module containing the API shown above.
6 ...
7 compileExpr expStr

The function compileExpr above takes a normal Haskell string and compiles this
string as an expression using the modules loaded into scope. If successful, a value
that can safely be cast into a list of integers is returned. The compilation can fail,
however, with an error message similar to what GHC report for incorrect source files.
If this happens, the current test case will be aborted, and the error message will be
displayed to the user.

The function checkTypeListInt and the respective function for the polymorphic test
case are then called 50 times each to check that only well-typed expressions are gen-
erated by the library. Listing 5 below shows a sample from the polymorphic function
generator:

1 \m_0 -> const nil (succInt (id (foldr (\e_3 d_3 -> e_3) arbiInt
2 (app (\c_3 -> nil) (foldr (\b_3 a_3 -> a_3) arbiInt (cons
3 arbiDouble (foldr (\z_2 y_2 -> z_2) nil (sing (map (\x_2 ->
4 arbiDouble) (sing (succDouble (const arbiDouble (app (\w_2 -> nil)
5 (map (\v_2 -> arbiInt) (sing (map (\u_2 -> m_0) (const nil (sing
6 (id (succDouble (id (app (\t_2 -> arbiDouble) (sing (map (\s_2 ->
7 arbiDouble) (sing arbiDouble)))))))))))))))))))))))))

Listing 5: A randomly generated polymorphic function.

The running time for the complete test case, random generation followed by type
checking of 100 expressions, averages around 10 seconds on a modern laptop. Fur-
thermore, the memory usage remains low for the complete duration of the test.

4.2 a DIY High-Assurance compiler

The Copilot EDSL is designed to monitor C programs by periodically sampling vari-
ables, arrays and return values of side-effect free functions [Pik+12]. A stream of

this thesis but the curious reader can find it in the GenTest module found here: https://github.com/
solarus/quickgen/blob/master/testing/GenTests.hs

33

https://github.com/solarus/quickgen/blob/master/testing/GenTests.hs
https://github.com/solarus/quickgen/blob/master/testing/GenTests.hs


4.2. A DIY HIGH-ASSURANCE COMPILER CHAPTER 4. EXAMPLE USAGE

sampled values with type t can be specified in Copilot by constructing a value of
type Stream t.

1 fib :: Stream Word32
2 fib = [0,1] ++ (fib + drop 1 fib)

Listing 6: The fibonacci sequence as defined in Copilot.

External C values are accessed by using one of the functions found in the Copilot.Extern
Haskell module, for instance: extern :: Typed a => String -> Maybe [a] -> Stream a.
In addition to Streams, a mechanism called triggers are also discussed by Pike et al.
in [Pik+12]. A trigger is constructed by using the following functions:

1 arg :: Typed a => Stream a -> Arg
2

3 -- | The trigger function takes a string representing an external
4 -- function in C. This function will be called every time the
5 -- second argument, its guard, is true. The arguments supplied to
6 -- the C function will be the current values of the streams
7 -- supplied in the third parameter.
8 trigger :: String -> Stream Bool -> [Arg] -> Trigger

A complete Copilot program, as generated by the Copilot generator, can be seen as a
list of streams together with a list of triggers2.

2The copilot-core Haskell package [Pik+14] also defines one more mechanism in its Spec data type
called an observer. This mechanism is not generated by the handmade generator for Copilot programs
included in this same package and is therefore not considered in the QuickGen generator either.

34



4.2. A DIY HIGH-ASSURANCE COMPILER CHAPTER 4. EXAMPLE USAGE

1 let s_0 :: Stream Bool
2 s_0 = {- A random expression of type Stream Bool -}
3

4 s_1 :: Stream Word64
5 s_1 = {- A random expression of type Stream Word64 -}
6

7 ...
8

9 s_n :: Stream Int32
10 s_n = ...
11 in do
12 trigger "f_1" {- A random expression of type Stream Bool -}
13 [ arg {- A random expression of type Typed a => Stream a -}
14 , ...
15 , arg {- A random expression of type Typed a => Stream a -}
16 ]
17 ...
18 trigger "f_m" ... [ ... ]

Listing 7: Example structure of a Copilot specification

– Before continuing, it should be noted that the types for the streams given in listing 7 above
are just a selection of the available types for Copilot streams. A complete list of instances can
be found in [Pik+14]. Furthermore, it is not required that, for instance, s_n on line 9 to have
type Stream Int32. Instead, any type t with an instance of the Typed type class can be
chosen. –

As can be seen in listing 7, for each of the variables s_i above, a stream with a match-
ing type will be generated in the location of the comment. It is possible for each of
these stream expressions to use any of the streams s_i in the final expression. For the
triggers the generation is slightly more complicated. First we generate an expression
of type Stream Bool. This is followed by a non-empty list of expressions always start-
ing with a call to arg and ending with an expression of type Typed a => Stream a.
Similar to before, any of the streams s_i can be used while generating random guards
and arguments for the triggers.

4.2.1 A Copilot generator in QuickGen

A generator using QuickGen was constructed with the goal to mimic the behaviour
of the generator provided by Copilot. Unfortunately, since type classes were not fully
implemented at the time of the experiment, some restrictions had to be made to the

35



4.2. A DIY HIGH-ASSURANCE COMPILER CHAPTER 4. EXAMPLE USAGE

constructors available in the API. Specifically, since functions and values with type
class constraints does not function properly, these functions were specialized to a
selected subset of the types within the type class. For instance, instead of having
the more general function app :: Typed a => [a] -> Stream a -> Stream a in the
API, two specialized versions3 of this function were defined and included instead.
The complete API can be found in listing 9.

This API contains a selection of the functions and values available when creating
specifications using the Copilot EDSL. Before continuing, some things need pointing
out. First of all, the function drop, used in listing 6 above, has been left out of the
API because of some issues with totality of this function. Secondly, the API contains
functions called cycle... that have no counterpart in the Copilot standard library.
These functions are used to create infinite streams from finite list in the same way as
cycle from the Haskell standard library works.

1 cycleBool xs = let s = xs ‘app‘ s in s
2

3 -- These two streams are equivalent
4 x1 = [True,False] ‘app‘ x1
5 x2 = cycleBool [True, False]

Listing 8: The definition of the cycle function together with example usage.

To generate Copilot expressions, a variant of the generate function was defined that
reruns the generation process with new random seeds until it succeeds.

1 -- | A Copilot expression is represented using a Quickgen Exp and Type
2 type CopilotExpr = (Exp, Type)
3

4 genExpr :: Language -> Type -> StdGen -> (CopilotExpr, StdGen)
5 genExpr l t g = case generate l t seed of
6 Nothing -> genExpr l t g’
7 Just r -> (r, g’)
8 where (seed, g’) = next g

3Where a was substituted with Word64 and Bool, respectively.

36



4.2. A DIY HIGH-ASSURANCE COMPILER CHAPTER 4. EXAMPLE USAGE

1 lang :: Language
2 lang =
3 $(defineLanguage
4 [| ( sing :: a -> [a]
5 , cons :: a -> [a] -> [a]
6 , ifBool :: Stream Bool -> Stream a -> Stream a
7 , ifWord64 :: Stream Bool -> Stream a -> Stream a
8

9 , true :: Stream Bool
10 , false :: Stream Bool
11 , cycleBool :: [Bool] -> Stream Bool
12 , appBool :: [Bool] -> Stream Bool -> Stream Bool
13 , not :: Stream Bool -> Stream Bool
14 , and :: Stream Bool -> Stream Bool -> Stream Bool
15 , or :: Stream Bool -> Stream Bool -> Stream Bool
16

17 , cycleWord64 :: [Word64] -> Stream Word64
18 , appWord64 :: [Word64] -> Stream Word64 -> Stream Word64
19 , signumWord64 :: Stream Word64 -> Stream Word64
20 , absWord64 :: Stream Word64 -> Stream Word64
21 , eqWord64 :: Stream Word64 -> Stream Word64 -> Stream Bool
22 , lteWord64 :: Stream Word64 -> Stream Word64 -> Stream Bool
23 , gtWord64 :: Stream Word64 -> Stream Word64 -> Stream Bool
24 , plusWord64 :: Stream Word64 -> Stream Word64 -> Stream Word64
25 , minusWord64 :: Stream Word64 -> Stream Word64 -> Stream Word64
26 , timesWord64 :: Stream Word64 -> Stream Word64 -> Stream Word64
27 , divWord64 :: Stream Word64 -> Stream Word64 -> Stream Word64
28

29 , externBool :: ExtBool -> [Bool] -> Stream Bool
30 , externWord64 :: ExtWord64 -> [Word64] -> Stream Word64
31 , ext1, ext2 :: ExtBool
32 , ext3, ext4 :: ExtWord64
33

34 , arbiBool :: Bool
35 , arbiListBool :: [Bool]
36 , arbiStreamBool :: Stream Bool
37 , arbiWord64 :: Word64
38 , arbiListWord64 :: [Word64]
39 , arbiStreamWord64 :: Stream Word64
40 )
41 |])

Listing 9: The initial API used when generating Copilot expressions.
37



4.2. A DIY HIGH-ASSURANCE COMPILER CHAPTER 4. EXAMPLE USAGE

To generate the list of streams, s_1 ... s_n, a function that starts with lang as the
initial API and incrementally adds streams to the API, as they are generated, was
defined:

1 type CopilotName = String
2 -- | A Copilot stream is represented as a name together with an expression
3 type CopilotStream = (CopilotName, CopilotExpr)
4

5 someStreamTy :: Type
6 someStreamTy = Type [u] [] (ConT (mkName "Stream") [VarT u])
7 where u = (0, Undecided) :: Variable
8

9 genStreams :: Int -> StdGen -> (Language, [CopilotStream], StdGen)
10 genStreams n g = go lang (map ((’s’:) . show) [1..n]) [] g
11 where
12 go l [] acc g = (l, reverse acc, g)
13 go l (name:ns) acc g =
14 let (r@(_, ty), g’) = genExpr l someStreamTy g
15 c = (mkName name, ty)
16 l’ = [c] ‘addTo‘ l
17 in go l’ ns ((name, r) : acc) g’

The first element in the return value of genStreams is the final language value, con-
taining the complete API together with all s_i variables. The second and third ele-
ments are the generated streams and the updated standard generator value, respec-
tively. It should be noted that this is not exactly the same tactic as employed by
the Copilot generator since an expression s_i, constructed by the latter generator,
can use any of the other streams, s_j, in the final expression, including s_i itself.
Since, at least, some recursion in streams can be achieved using the cycleBool and
cycleWord64 functions, it did not seem necessary to add this extra step in the gener-
ation process.

Finally the genTriggers and genSpec functions were defined to generate triggers and
a complete spec, respectively.

38



4.2. A DIY HIGH-ASSURANCE COMPILER CHAPTER 4. EXAMPLE USAGE

1 type CopilotTrigger = (CopilotName, Exp, [CopilotExpr])
2

3 -- | Generates ‘n’ Copilot triggers using the language ‘lang’. The
4 -- number of arguments for each trigger will be between low and high
5 genTriggers :: Language -> Int -> (Int, Int) -> StdGen
6 -> ([CopilotTrigger], StdGen)
7 genTriggers lang n (low,high) g = ...
8

9 type CopilotSpec = ([CopilotStream], [CopilotTrigger])
10

11 genSpec :: StdGen -> (CopilotSpec, StdGen)
12 genSpec g1 = let (numStreams, g2) = randomR (2,12) g1
13 (numTriggers, g3) = randomR (1,6) g2
14 (l, streams, g4) = genStreams numStreams g3
15 (triggers, g5) = genTriggers l numTriggers (1,5) g4
16 in ((streams, triggers), g5)

The implementation of genTriggers function has been left out since it is similar to
the genStreams function found above. The only function left to explain, genSpec,
ties together the other specialized generator functions, by choosing the number of
streams and triggers to generate, and threads the standard generator through the
complete computation.

What remains now is converting this representation into a representation understood
by Copilot. In this particular case study, the generated CopilotSpec was transformed
into an expression very similar to the example structure found in listing 7, the differ-
ence being a call to the Copilot prettyPrint function before the do on line 11. This ex-
pression was later type checked, compiled and executed using the GHC API [ghc14].
The resulting values were compared to random values produced by the Copilot ran-
dom generator and the two generators were found, by visual inspection, to be similar
in operation4. However, this test is not enough to draw any real conclusions but it is
an indication that the library is heading the right way. Furthermore, the running time
of the QuickGen generator was significantly higher than that of the corresponding
generator in Copilot. On a modern laptop, the former generator requires around one
second to generate a complete specification, the latter, in many cases, is perceived to
finish instantly. Still, it is the author’s understanding that one second, in this case, is
short enough to render the QuickGen generator usable as a source for random test
data.

What is worth noting is that the size of the complete QuickGen generator was esti-
mated to be about 25 to 30 percent the size of the Copilot generator. This estimation

4Modulo the number of available types and the inclusion of drop in the Copilot generator.

39



4.3. FELDSPAR CHAPTER 4. EXAMPLE USAGE

was made by counting significant lines of code for both generators5. The complete
generator implemented using QuickGen can be found in [Spå14].

4.3 Feldspar

Since one of the motivations for this project was to implement a random generator for
the EDSL Feldspar [Axe+10], it seemed natural that one of the use case examples was
to test this language. As in section 4.2, a language, lang, and a generator, gen, were
defined. Since these definitions are very similar to those in the previous examples,
the specification of the language and generator can be found in Appendix A.

To test that, for instance, optimizations do not change the behaviour of the program,
we will require two evaluation functions – one that optimizes the program and evalu-
ates it and another one just performing the evaluations. We will call these evaluation
procedures Evalopt and Eval, respectively. To test the optimizations done by the lan-
guage, we need to generate and compile an expression e. We proceed by comparing
the output of running both Evalopt(e) and Eval(e).

Unfortunately, Feldspar does not export an evaluation function matching the be-
haviour of Eval, there is however, a function named eval that behaves like Evalopt.
To continue, another evaluation function, having the correct behaviour, was defined
and added to Feldspar6. Next, a procedure was defined to repeatedly call gen fol-
lowed by compiling the generated expressions using compileExpr from the GHC API.
The result of evaluating the compiled expressions using the two evaluation functions,
Evalopt and Eval, were then compared.

Using the API found in Appendix A, no bugs were discovered for the particular
type of expressions generated. To proceed, a bug was artificially introduced into the
Feldspar.Core.Constructs.Num module, incorrectly optimizing an expression 1 + n
by replacing it with the value n. The bug was quickly discovered by the procedure
and several counterexamples were produced. The exact modifications to introduce the
bug can be found in Appendix B. The exact code used to compile and evaluate the
generated expressions using the GHC API can be found in listing 12 in Appendix A

4.4 Summary

This chapter started with a demonstration of one of the test cases bundled with the
QuickGen library. This particular example showed how to use the functions intro-
duced in chapter 3, to describe an API used when generating, for instance, higher

5By removing comments, import statements and empty lines.
6The required changes can be found in Appendix B.

40



4.4. SUMMARY CHAPTER 4. EXAMPLE USAGE

order functions. Fairly complicated expressions were generated reasonably quickly,
averaging at about 100 ms per expression, while still using low amounts of memory
on the host computer.

In the second example, a more refined generator was defined producing random
expressions with form similar to those generated by the Copilot random expression
generator. However, mainly due to type classes not being fully implemented, the API
used in the former generator was more restrictive than the one available in the Copilot
counterpart. The defined generator was also noticeably slower than the existing one
but was still fast enough to be considered usable by the author. The biggest gain was
noticed when comparing code size, where the generator defined in QuickGen was
about 25 percent the size of its counterpart.

Finally, a generator for the EDSL Feldspar was defined. The API in this example,
while small, contained functions taking higher order arguments with polymorphic
types. However, no bugs were found in the Language using the API and a goal type
of Data WordN. At this point, a bug was artificially introduced into the language. This
bug was then quickly discovered by a simple testing procedure.

41



Chapter 5

Future work

Due to time limitations, the scope and complexity of the project was reduced by
limiting the implementation of the final project. This chapter discusses some of these
limitations and how they affect the final product.

5.1 Type variable arguments

Currently there is no way to represent type variables with multiple arguments. This
functionality was never prioritized since type classes were not fully implemented in
the library. To see the limitation, let us look at the SType data type found in the
Testing.QuickGen.Types module:

1 data SType =
2 ...
3 | VarT Variable
4 | ConT Name [SType]
5 ...

This implementation makes it possible to represent, for instance, the type Maybe Int
as ConT "Maybe" [ConT "Int" []]. However, it is not possible to represent m a as in
return :: Monad m => a -> m a since there is no way to give arguments to the type
variable m. The definition of VarT on line 3 above can be changed slightly, mimicking
the definition of ConT, to allow type arguments:

1 data SType =
2 ...
3 | VarT Variable [SType]
4 ...

42



5.2. SELECTING A CLASS ENVIRONMENT CHAPTER 5. FUTURE WORK

Now it is possible to, at least, represent type variables with type arguments. What is
missing is to update the matching algorithm, introduced in section 2.2, to correctly
handle type variables. However, this update is highly dependent on first implement-
ing type classes correctly which is discussed in section 5.3.

5.2 Selecting a Class Environment

In the end of section 3.2.1, there is a problem presented where a large expression
is constructed, consisting of around 50000 characters, when calculating the complete
class environment for an API only containing the type class Num. Furthermore, the
calculated class environment contained several type classes that did not seem relevent
for the particular API. Two different approaches to handle this problem are discussed:

• Instead of automatically trying to calculate the complete class environment, a
user could specify exactly which instances of a particular type class they are
interested in at the same time as an API is specified. Then, only those spe-
cific instances are added to the class environment. Let us look at some of the
instances of the Monoid type class as an example:

1 instance Monoid [a]
2 instance Monoid Ordering
3 instance (Monoid a, Monoid b) => Monoid (a, b)
4 instance (Monoid a, Monoid b, Monoid c) => Monoid (a, b, c)

Listing 10: A selection of instances of the Monoid type class

Furthermore, imagine that a user has the function mempty :: Monoid m => m in
the API together with some functions working with lists and pairs. In this par-
ticular example it would probably not make sense to use the function mempty to
produce values of type Ordering or (Monoid a, ...) => (a,b,c) since these
values cannot be consumed by any of the other functions in the API. The user
could instead specify in the API to only include the first and third instance re-
moving the extraneous instances altogether. The function mempty could still
be used, in this case, to produce values of complicated types; for instance
((([],[]),[]),([],[])) :: ((([a],[b]),[c]),([d],[e])).

• If the user is interested in a big set of instances, specifying all of them manually
might be a very cumbersome task. Furthermore, new constructors added to the
API might require additional instances to be added. Forgetting to do this last
step might be easy, making the complete process error-prone.

43



5.3. TYPE CLASSES CHAPTER 5. FUTURE WORK

Instead of trying to add every instance manually, it might be possible to look at
the return types of the constructors, available in the API, to filter out instances
that are not interesting. Using the same argument as in the suggestion above, if
we only have functions and values producing lists and pairs it might be enough
to only include the first and third instances. However, this kind of filtering might
be to restrictive in some cases. For instance, if we add the following function to
the API, f :: a -> b -> a, it is perfectly legal to apply mempty :: Ordering as
a second argument to this function and a specific user might even be interested
in expressions on this form.

None of the suggestions above completely solve the problem at hand. However, it
might be possible to combine them, i.e. letting a user specify a set of instances that
should be included and then taking the union with the set of instances that somehow
relates to the constructors in the API.

5.3 Type Classes

Complete support for type classes was initially a goal of the project but was never
fully realized. What is missing is to implement something similar to performing
class entailment as defined in [Jon00]. This function would have a type similar to the
following:

1 data Pred = ClassP Name SType
2 type Cxt = [Pred]
3 data Type = Type [Variable] Cxt SType
4

5 entail :: ClassEnv -> Cxt -> Pred -> Bool
6 entail ce ps p = ...

The first three lines were introduced in section 3.1.3 and are repeated here for clarity.
The intuition is that entail is given a class environment, a list of predicates (the initial
constraints for the type) and a predicate that we want to find out if it is true or not
given the class environment and the constraints. If ps is empty and p is equal to, for
instance, ClassP "Num" (VarT (a, Forall)), this corresponds to finding an instance
of Num a in the class environment ce [Jon00]. This function would be used, after type
matching, to verify that all class constraints, for a given specialized constructor, can
be satisfied using the current class environment and class constraints of the current
goal type.

For instance, consider the following example during type matching with some goal
type Cxt => gt against the following constructor plus :: Num a => a -> a -> a.

44



5.3. TYPE CLASSES CHAPTER 5. FUTURE WORK

For these particular types, since a is universally quantified, the substitution {a 7→
gt} will be produced on line three in the match function found in section 3.3.2.
This substitution is then applied to the type Num a => a -> a -> a, producing
Num gt => gt -> gt -> gt. What needs to be done is to find out if gt really is an
instance of the Num type class which is exactly what entail is defined to do. The
constraints to send to this function are simply the constraints found in our goal type,
Cxt. The next step is to identify our predicate(s) to verify. In this case, it will be
ClassP "Num" st. In general, several predicates may need to be verified. For in-
stance, if the type of our constructor is (Num a, Num b) => (a, b), then both pred-
icates Num a and Num b needs to be sent to entail as the third argument and both
predicates must be satisfied.

If entail returns true, it successfully found an instance for Num st, and the construc-
tor plus is safe to use as a constructor for a value of the current goal type.

5.3.1 Entailment and undecided variables

The entail function used above, as defined in [Jon00] and [Jon99], solves the prob-
lem for the definition of types used in standard Haskell, however, this project in-
troduces another type that is not present in standard Haskell, namely the type
of undecided type variables. Imagine that our current goal type is ?a and that
mempty :: Monoid m => m is the chosen constructor. This would introduce a guess
for ?a as Monoid ?a => ?a. If the type for ?a is never fully realized, this could actually
result in a compile error. To see why consider the following expressions:

λ> :t const (5 :: Int) mempty

<interactive>:1:18:
No instance for (Monoid b0) arising from a use of ‘mempty’
The type variable ‘b0’ is ambiguous

λ> :t const (5 :: Int) (mappend [] mempty)
const (5 :: Int) (mappend [] mempty) :: Int

In the first example, the type of mempty would still be ?a. In the second one, the type
would have been further specialized to [?a] giving us an unambiguous instance for
the type class. This problem could be solved by trying to default the instances to some
instance in the class environment. This is done in standard Haskell most notably with
the Num type class. The Exp data type, see section 3.1.4, would also have to be updated,
by adding a way to add type annotations to constructors if needed, possibly with the
following definition of ConE:

45



5.4. SUPPORTING MORE EXPRESSIONS CHAPTER 5. FUTURE WORK

1 data Exp =
2 ConE Name (Maybe Type)
3 | ... -- As before

5.4 Supporting more expressions

Several types of expressions that are available in the Template Haskell Exp data
type, see [Lyn14], are not yet understood by the function defineLanguage used
when defining an API. For instance, it is currently not possible to directly specify
(:) :: a -> [a] -> [a] and [] :: [a] to be available as constructors. This feature
was never a priority since it has little effect on the type of expressions that can be
generated by the library. In several examples throughout this thesis, a constructor
named cons was used instead of (:). The definition of this constructor would simply
be cons = (:) in these examples making it possible to indirectly use this constructor
without it being directly available in the API.

However, supporting additional expressions does make a big difference from a usabil-
ity perspective and will therefore be a goal for the future. Doing so however might
make it necessary to also add respective type constructors to the Exp data type as
defined in section 3.1.4. An alternative would be to redefine the Template Haskell
function defineLanguage to generate the kind of definitions seen above. I.e. if (:) is
used as a constructor in the API, defineLanguage would generate a definition similar
to c1 = (:) and then substitute (:) with c1 in the language definition.

5.5 Subgoal ordering

In the current implementation of the generate function found in section 3.3.4, sub-
goals for constructors with functional types are generated from right to left due to an
implementation detail. This has the effect that expressions generated by the current
algorithm tend to be biased towards the right, i.e. the deepest nesting of constructors
are more probable to be found on the rightmost arguments to functions. By instead
generating the subgoals in a random order, one should be able to generate expressions
with deep nesting in arbitrary subgoals. This makes the distribution of expressions
more evenly spread out in the complete domain of the problem. However, this would
most probably not effect the probability of balanced expressions, i.e. this kind of
expressions might still be underrepresented in the final distribution.

46



5.6. TERMINATION STRATEGY CHAPTER 5. FUTURE WORK

5.6 Termination strategy

A method to ensure termination of the generation algorithm was presented in sec-
tion 2.1.3. Several other strategies exist that might be worth examining. For instance,
in [Pal11], an algorithm similar to the one presented in this project is discussed where
each subgoal is limited by a size parameter. This parameter is then decreased for each
recursive call.

Another strategy which seems reasonably to examine, is to instead associate each
constructor with a function taking the current depth as a parameter and producing
a weight for its particular constructor at the current depth. A higher weight would
then equate to a higher probability to be chosen as a constructor for the current goal
type. These functions could, for instance, be defined to favour constructors with many
subgoals at lower depths and to favour constructors with few goals at deeper levels
of recursion. It might even be interesting to let a user partially specify how these
weights are calculated for certain constructors in the API since this would improve
the usability of the library for generating expressions.

5.7 Compiling expressions

Currently, one of the only ways to compile generated expressions is to pretty print
them followed by compiling the pretty printed value using the function compileExpr
from the GHC API. This is also the way that was presented in chapter 4. A complete
generator suffers from this limitation in that it has to depend on the GHC API. In
addition, it has to include modules and source code, containing the API used by the
generated expressions, while compiling the expression. A more automated way to
construct real executable values from expressions is required.

In [Kat10], in addition to storing the type and name of a constructor in the language
definition, a value of the data type HValue is also stored for each constructor:

1 newtype HValue = HV (forall a. a)

This is used to store a real executable value. Later, when a generated expression is to
be constructed, the value associated with each constructor is extracted and cast into
its corresponding type. The constructors are then put together in the same fashion as
was done when searching for a matching expression.

This tactic to construct executable values from expressions should currently be possi-
ble in QuickGen. However, with the addition of type classes, this is no longer possible
since the complete instance for a type class needs to be fully realized to be able to find
the concrete function to be executed. The following session in ghci should describe
the problem:

47



5.7. COMPILING EXPRESSIONS CHAPTER 5. FUTURE WORK

λ> let hId = HV (unsafeCoerce id) -- OK
λ> let hMempty = HV (unsafeCoerce mempty) -- Not OK

<interactive>:21:32:
No instance for (Monoid a0) arising from a use of ‘mempty’
The type variable ‘a0’ is ambiguous
...

λ> let hMemptyList = HV (unsafeCoerce (mempty :: [a])) -- OK

48



Chapter 6

Conclusions

The goal of this project, as stated in section 1.4, is to implement a reusable library for
automatically constructing generators for EDSL’s by specifying an API. A library was
implemented, and in chapter 4, we showed how to use the library to define generators
for two different EDSL’s, Copilot and Feldspar. In the case for Feldspar, the generator
was simply defined by specifying an API together with a single call to a library func-
tion, very much in the spirit of the goal. However, to test the EDSL, another function
had to be defined to compile the generated expressions into real values. Furthermore,
due to type classes not being fully implemented, it did not generate expressions using
the full range of types available in the language. Even so, the generated values were
used to discover an artificially introduced bug in the language, leading us to conclude
that the library can be used today for simple regression testing.

For QuickGen to become fully usable, and to completely reach the goal, the two
issues, type classes and the need for compiled expressions, has to be solved. In the
case for type classes, some of the work, calculating class environments, is already
done. This was discussed in section 3.2.1. The actual entailment of type classes
should be possible to implement using the discussion in section 5.2 as a base. To
compile generated expressions, it might be possible to include a specialized wrapper
for the GHC API in this library, making this process easy. In section 5.7, another tactic
used by Katayama, is also discussed.

All in all, QuickGen is a big step forward in achieving the goal. Using the library
and this thesis as a base, the goal can be realized in a timely fashion.

49



CHAPTER 6. CONCLUSIONS

References

[Aug05] Lennart Augustsson. Announcing Djinn, version 2004-12-11, a coding wizard.
2005. url: http://permalink.gmane.org/gmane.comp.lang.haskell.
general/12747.

[Axe+10] Emil Axelsson et al. “Feldspar: A domain specific language for digital
signal processing algorithms”. In: 8th IEEE/ACM International Conference on
Formal Methods and Models for Codesign (MEMOCODE), 2010. IEEE. 2010,
pp. 169–178.

[DJW12] Jonas Duregård, Patrik Jansson, and Meng Wang. “Feat: Functional Enu-
meration of Algebraic Types”. In: Haskell’12. ACM, 2012, pp. 61–72. doi:
10.1145/2364506.2364515.

[ghc14] ghc-devs@haskell.org. GHC/As a library. 2014. url: http://www.haskell.
org/haskellwiki/GHC/As_a_library.

[Hof13] Martin Hoffman. inductive-programming.org The IP Community. 2013. url:
http://www.inductive-programming.org/.

[Jon00] Mark P. Jones. Typing Haskell in Haskell: Revised version. 2000. url: http:
//web.cecs.pdx.edu/~mpj/thih/.

[Jon99] Mark P. Jones. “Typing Haskell in Haskell”. In: Haskell Workshop. 1999. doi:
10.1.1.41.470. url: http://citeseerx.ist.psu.edu/viewdoc/summary?
doi=10.1.1.41.470.

[JP08] Barry Jay and Simon Peyton Jones. “Scrap Your Type Applications”. In:
Proceedings of the 9th International Conference on Mathematics of Program Con-
struction. MPC ’08. Marseille, France: Springer-Verlag, 2008, pp. 2–27. isbn:
978-3-540-70593-2. doi: 10.1007/978- 3- 540- 70594- 9_2. url: http:
//dx.doi.org/10.1007/978-3-540-70594-9_2.

[Kat10] Susumu Katayama. “Recent Improvements of MagicHaskeller”. In: Ap-
proaches and Applications of Inductive Programming. Ed. by Ute Schmid,
Emanuel Kitzelmann, and Rinus Plasmeijer. Vol. 5812. Lecture Notes in
Computer Science. Springer Berlin Heidelberg, 2010, pp. 174–193. isbn:
978-3-642-11930-9. doi: 10.1007/978- 3- 642- 11931- 6_9. url: http:
//dx.doi.org/10.1007/978-3-642-11931-6_9.

[Lyn14] Ian Lynagh. Template Haskell hoogle documentation. 2014. url: http : / /
hackage.haskell.org/package/template-haskell.

[Mar10] Simon Marlow. Haskell 2010 Language Report. 2010. url: http : / / www .
haskell.org/definition/haskell2010.pdf.

[Mar13] Simon Marlow. The Glasgow Haskell Compiler. 2013. url: http : / / www .
haskell.org/ghc/.

50

http://permalink.gmane.org/gmane.comp.lang.haskell.general/12747
http://permalink.gmane.org/gmane.comp.lang.haskell.general/12747
http://dx.doi.org/10.1145/2364506.2364515
http://www.haskell.org/haskellwiki/GHC/As_a_library
http://www.haskell.org/haskellwiki/GHC/As_a_library
http://www.inductive-programming.org/
http://web.cecs.pdx.edu/~mpj/thih/
http://web.cecs.pdx.edu/~mpj/thih/
http://dx.doi.org/10.1.1.41.470
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.41.470
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.41.470
http://dx.doi.org/10.1007/978-3-540-70594-9_2
http://dx.doi.org/10.1007/978-3-540-70594-9_2
http://dx.doi.org/10.1007/978-3-540-70594-9_2
http://dx.doi.org/10.1007/978-3-642-11931-6_9
http://dx.doi.org/10.1007/978-3-642-11931-6_9
http://dx.doi.org/10.1007/978-3-642-11931-6_9
http://hackage.haskell.org/package/template-haskell
http://hackage.haskell.org/package/template-haskell
http://www.haskell.org/definition/haskell2010.pdf
http://www.haskell.org/definition/haskell2010.pdf
http://www.haskell.org/ghc/
http://www.haskell.org/ghc/


[Pal11] Michal H. Palka. “Testing an Optimising Compiler by Generating Random
Lambda Terms”. In: (2011). url: http://publications.lib.chalmers.se/
publication/157525.

[Pik+12] Lee Pike et al. “Experience Report: a Do-It-Yourself High-Assurance Com-
piler”. In: Proceedings of the Intl. Conference on Functional Programming
(ICFP). Preprint available at http://www.cs.indiana.edu/~lepike/
pub_pages/icfp2012.html. ACM, Sept. 2012.

[Pik+14] Lee Pike et al. Hackage: copilot-core: An intermediate representation for Copilot.
2014. url: http://hackage.haskell.org/package/copilot-core.

[Spå14] David Spångberg. Github: solarus/copilot-quickgen-test. 2014. url: https://
www.github.com/solarus/copilot-quickgen-test.

http://publications.lib.chalmers.se/publication/157525
http://publications.lib.chalmers.se/publication/157525
http://www.cs.indiana.edu/~lepike/pub_pages/icfp2012.html
http://www.cs.indiana.edu/~lepike/pub_pages/icfp2012.html
http://hackage.haskell.org/package/copilot-core
https://www.github.com/solarus/copilot-quickgen-test
https://www.github.com/solarus/copilot-quickgen-test


52



Appendix A

Feldspar generator specification

1 type DWord = Data WordN
2

3 lang :: Language
4 lang = $(defineLanguage [| ( plus’ :: DWord -> DWord -> DWord
5 , times’ :: DWord -> DWord -> DWord
6 , div’ :: DWord -> DWord -> DWord
7 , sum’ :: Vector DWord -> DWord
8 , zipWith’ :: (DWord -> DWord -> DWord)
9 -> Vector DWord

10 -> Vector DWord
11 -> Vector DWord
12 , map :: (a -> b) -> Vector a -> Vector b
13 , range :: DWord -> DWord -> Vector DWord
14 , id :: a -> a
15 , const :: a -> b -> a
16 , wordN0 :: DWord
17 , wordN1 :: DWord
18 , wordN2 :: DWord
19 , wordN3 :: DWord
20 )
21 |])
22

23 gen :: Seed -> Maybe (Exp, Q.Type)
24 gen seed = generate lang ty seed
25 where
26 ty = $(getType [t| Data WordN |])

Listing 11: API and generator used when testing Feldspar. The range function is a
similar to the Haskell function enumFromTo.



1 main = do
2 [n] <- getArgs
3 g <- getStdGen
4 let rs = P.take (P.read n) $ randoms g :: [Seed]
5 vals :: [Q.Exp]
6 vals = P.map fst . catMaybes . P.map gen $ rs
7

8 let go = runGhc (Just libdir) $ do
9 _ <- getSessionDynFlags >>= setSessionDynFlags

10 addTarget =<< guessTarget "Language.hs" Nothing
11 load LoadAllTargets
12

13 setContext [ IIDecl . simpleImportDecl . mkModuleName $ "Prelude"
14 , IIDecl . simpleImportDecl . mkModuleName $ "Language"
15 ]
16

17 cs <- mapM (compileExpr . show) vals
18 P.length cs ‘P.seq‘ return (P.zip cs vals)
19

20 res <- catch go $ \e -> P.error $ "Should not happen" P.++ show (e :: SomeException)
21

22 forM_ res $ \(p, v) -> do
23 let p’ = unsafeCoerce p :: Data WordN
24 doIt e prog = do
25 let r = e prog
26 r ‘P.seq‘ return (P.Right r)
27 f e prog = catch (doIt e prog) $ \e -> return (P.Left (show (e :: SomeException)))
28 r1 <- f eval p’
29 r2 <- f eval’ p’
30 if r1 P./= r2
31 then putStrLn $ "Not equal for: " P.++ show v
32 else return ()

.

Listing 12: Code used to compile expressions generated by gen above. The calls to
the different evaluation functions can be found on lines 28 and 29.



Appendix B

Changes made to feldspar-language
All changes were made in version 0.6.0.3 of feldspar-language.

55



1 --------------------------------------------------
2 -- In module Feldspar.Core.Interpretation
3

4 optimize’ :: ( Typeable a
5 , OptimizeSuper dom
6 )
7 => ASTF (dom :|| Typeable) a -> ASTF (Decor Info (dom :|| Typeable)) a
8 optimize’ = S.fold $ \s as -> appArgs (Sym $ Decor undefined s) as
9

10

11 --------------------------------------------------
12 -- In module Felspar.Core.Frontend
13

14 reifyFeld’ :: SyntacticFeld a
15 => BitWidth n
16 -> a
17 -> ASTF (Decor Info FeldDomain) (Internal a)
18 reifyFeld’ n = flip evalState 0 .
19 ( return
20 <=< codeMotion prjDict mkId
21 . optimize’
22 . targetSpecialization n
23 <=< reifyM
24 . Syntactic.desugar
25 )
26

27 eval’ :: SyntacticFeld a => a -> Internal a
28 eval’ = evalBind . reifyFeld’ N32

Listing 13: eval’ function that was added, i.e. evaluation function for unoptimized
code.



1 --------------------------------------------------
2 -- In module Feldspar.Core.Constructs.Num
3

4 -- Original code on line 110
5 constructFeatOpt (C’ Add) (a :* b :* Nil)
6 | Just 0 <- viewLiteral b = return a
7 | Just 0 <- viewLiteral a = return b
8 | alphaEq a b = constructFeatOpt (c’ Mul) (a :* literalDecor 2 :* Nil)
9

10 -- Artificially introduced bug
11 constructFeatOpt (C’ Add) (a :* b :* Nil)
12 | Just 0 <- viewLiteral b = return a
13 | Just 1 <- viewLiteral a = return b
14 | alphaEq a b = constructFeatOpt (c’ Mul) (a :* literalDecor 2 :* Nil)

Listing 14: Artificially introduced bug: optimizing 1 + n to n.


	Introduction
	Random generation
	Introducing QuickGen
	Related work
	Inductive programming
	Efficient enumeration
	Theorem proving

	Problem and goal
	Structure

	Algorithm
	A complete example
	Undecided variables
	Generating polymorphic expressions
	Termination
	Subgoal ordering

	Matching expressions
	Unique types
	Matching functions

	Generating expressions

	Implementation
	Types and expressions
	Variables, Forall and Undecided
	Constructors
	Types and simple types
	Expressions
	Other types

	Template Haskell
	Calculating a class environment

	ExpGen
	The ExpGen state
	Match function
	Selecting a random matching constructor
	Generating expressions


	Example usage
	Simple usage
	a DIY High-Assurance compiler
	A Copilot generator in QuickGen

	Feldspar
	Summary

	Future work
	Type variable arguments
	Selecting a Class Environment
	Type Classes
	Entailment and undecided variables

	Supporting more expressions
	Subgoal ordering
	Termination strategy
	Compiling expressions

	Conclusions
	Feldspar generator specification
	Changes made to feldspar-language

