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Abstract

Using recent improvements to Valiant’s algorithm for parsing context-
free languages, we present an implementation of a generator of parsers
that works incrementally, that can be parallelized and generated from
a grammar specification. Using a tree structure makes for both easy
use of incrementality and parallelization. The resulting code is reason-
ably fast and handles correct input in a satisfactory way, and would
be suitable for use in a text editor setting, where small changes are
frequent but only should lead to minimal work.
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Chapter 1

Background

This thesis is about parsing in an incremental fashion that can easily be
parallelized, using a divide-and-conquer approach. First, we look at
the involved topics, and later in this chapter, the concept of dependently
typed programming is discussed, because it is a technique used in the imple-
mentation of the parser.

1.1 Topics involved
In this section, we give a brief explanation of the topics involved in the
implementation of this parser algorithm, and end with a motivation for why
this is interesting in the first place.

Divide-and-conquer One important class of algorithms in computer sci-
ence are divide-and-conquer algorithms. The name refers to the technique of
breaking down a problem into sub-problems, where the same rule is applied
recursively (the divide step). Each sub-problem can be solved independently,
and the results of the sub-problems are then combined, finally becoming the
result of the initial problem (the conquer step) [Kleinberg and Tardos, 2006,
p.209]. A typical example is mergesort, where a list of elements is broken
down to lists of single elements (trivially sorted), that are then combined
using an improved insertion sort, observing that each sub-list is sorted. It
was shown by Bird [1987] that the conquer step has to be associative, so that
grouping of items does not effect the outcome of the algorithm.

Trees are a class of data structures that are especially suited for divide-
and-conquer algorithms, because of their structure as trees with subtrees,
naturally following the divide-step. To conquer is just to reduce, or in func-
tional programming terms: fold, the tree. It was shown by Bernardy and
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1. Background 1.1. Topics involved

Claessen [2013] that for trees of symbols in a finite alphabet, such a reduc-
tion can be made in a way that is associative, thus preserving the structure
of the input.

Incrementality In an interactive system, such as a text editor, one typi-
cally want to do as little work as possible when some input in the system is
changed. For the text editor case, we do not want to recompute all syntax
highlighting information when just one word is changed. Techniques cap-
turing this behaviour are said to work incrementally, and was perhaps first
described by [Wilcox et al., 1976]. In a setting with lazy evaluation, it can
be especially interesting to use, as shown by [Bernardy, 2009].

Parallelism With computer architectures being parallel these days, the
ability to run many threads simultaneously has become reality. Writing
code that can be parallelized is crucial to make use of these features, and
thus having code that run physically in parallel. Because divide-and-conquer
algorithms usually work on several independent sub-problems, they are well-
suited for parallelization. For this to become a reality, however, both the
compiler and the source code must be written in a special way to permit
parallelization. While our work is not explicitly written to run in parallel,
the algorithm can be easily parallelized, as goes for the main third party
library used.

Parsing To parse is to check if some given input corresponds to a certain
language’s grammar, and if so, return a parse tree of that input. In this thesis
we will use context-free grammars to describe programming languages.
Many programming errors are syntactical ones, such as misspelled keywords,
missing parenthesis or semicolons and so on. All such errors are caught in
parsing. Parsing will be described in more detail in section 1.4.

Motivation In compilers, lexing and parsing are the two first phases. The
output of these is an abstract syntax tree (AST) which is fed to the next phase
of the compiler. An AST could also provide useful feedback for programmers,
already in their editor, if the code could be lexed and parsed fast enough.
With a lexer and parser that is incremental and that can also be parallelized,
real-time feedback in the form of an AST could easily be provided to the
programmer. Most current text editors give syntax feedback based on regular
expressions, which does not yield any information about, for example, nesting
or the surrounding AST. A fast incremental parser, can also be connected
to a type checker to get even more information, possibly in real-time, while
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1. Background 1.2. Lexing

not having to recompile the whole file to get such information, but any real
world use cases are beyond the scope of this thesis.

1.2 Lexing
In compilers, a lexer reads input source code and groups the characters into
sequences called lexemes so that each lexeme has some meaning in the lan-
guage the compiler is built for [Aho et al., 2007, p. 5, p. 109]. The lexemes
are wrapped in tokens that denote what function and position each lexeme
relates to. The tokens are then passed on to the parser for syntactic analysis.

For a language like C, the code in figure 1.1 would be valid, and can serve
as an example of how lexing is done. A lexer for C would recognise that
while is a keyword and place it in its own token. It would also observe that
(, ), { and } are used for control-grouping of code. Furthermore, i is an
identifier and 5 is a number, < and ++ are operators and ; denote separation
of statements. All will be forwarded as tokens to the parser.

1 while(i < 5) {
2 i++;
3 }

Figure 1.1: A while loop that would be syntactically valid in C

1.2.1 LexGen
A generator for incremental divide-and-conquer lexers was developed by
Hansson and Hugo [2014] as a master’s thesis. The aim of the present thesis
is to write an incremental divide-and-conquer parser, so their work is well-
suited as a starting point, and as something to build on. Their lexer uses
Alex [Marlow, 2003] for core lexing routines and relies heavily on the use
of arrays and finger trees, which we will see more of later. It is important
to be able to use an incremental lexer when building an incremental parser,
since we would otherwise have to lex the whole character stream before even
getting to the parsing stage.

1.3 Context-free grammars
Context-free grammars are a way to describe formal languages, such as pro-
gramming languages. They describe both the alphabet of a language and the
rules for how to combine words in that language.
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1. Background 1.3. Context-free grammars

Formally, a context-free grammar is a 4-tuple: G = (V,Σ, P, S) [Hopcroft
et al., 2003, p.171]. V is a set of non-terminals, or variables. Σ is the finite
set of terminal symbols, describing the content (or alphabet) that can be
written in the language. P is a set of productions (or rewrite rules) that
constitute the recursive definition of the language. S is the start symbol,
where S ∈ V .

The language recognised by a context-free grammar G is denoted L(G)
and is defined as

αAβ =⇒
G
αγβ iff. (A ::= γ ∈ P )

L(G) = {w ∈ Σ∗ | S ∗=⇒
G
w}

That is, all words in the language that can be derived by recursively applying
rules from the grammar when starting from the start symbol (denoted by the
double arrow; * for closure, G for the grammar) [Hopcroft et al., 2003, p.
177]. A language L is said to be context-free if there is a context-free grammar
G that recognises the language, meaning that L = L(G).

We can exemplify by using a simple made-up language of if-then-else
clauses. The language terminals are if, then, else, true and false. There
are two variables, I (for if) and R (for recursive) described by a total of
four productions. The starting symbol is I — so just true would not be a
string of this language. The formal definition of this language can be seen
in figure 1.2. Note that P is defined by the rules for I and R, and each
production (partially) defines a variable and contains terminals or symbols
on its right-hand side [Hopcroft et al., 2003, p.171].

G = (V,Σ, P, I)
V = {I, R}
Σ = {true, false, if, then, else}
P = {
I → if R then R else R

R→ I

R→ true

R→ false

}

Figure 1.2: Context-free grammar for a recursive if-then-else language
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1.3.1 Chomsky Normal Form
Chomsky Normal Form (CNF) is a canonical way to write context-free gram-
mars that was first described by Chomsky [1959]. Productions in CNF are
restricted to the following forms:

A → BC, A is a variable, B and C are variables
A → a, A is a variable, a is a terminal symbol

Figure 1.3: Rules allowed in Chomsky Normal Form

Because grammars in CNF are restricted to branches or single terminal
symbols, they are well suited for usage in divide-and-conquer algorithms.
There are several existing algorithms to convert context-free grammars into
CNF, so one does not have to write grammars in CNF in the first place
[Lange and Leiß, 2009].

1.3.2 Backus-Naur Form
Context-free grammars are often used to describe the syntax of programming
languages. Such descriptions are often given in Backus-Naur form [Backus,
1959], where each rule is written on the following form:

V ariable ::= Production

However, for practical programming purposes, one usually uses a labelled
version of BNF, where the rules are extended to be on this form:

Label. V ariable ::= Production

This labelled Backus-Naur form is what we will be using in this thesis,
and is the format also used in the BNF Converter (BNFC) [Ranta and
Forsberg], a lexer and parser generator tool developed at Chalmers. Given
such a grammar, BNFC generates, among other things, a lexer and a parser,
implemented in one of several programming languages, for the language de-
scribed in that grammar. According to its documentation, usage of BNFC
saves around 90% of source code work in writing a compiler front-end.

1.4 Parsing
The technical role of the parser is, given a list of tokens, to determine if those
tokens can be written in that order for a specific language, and if so, return
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an abstract syntax tree corresponding to that list of tokens. More formally,
and connecting to the language of a context-free grammar above, the parser
is given a string w and checks if

w ∈ Σ∗, S ∗=⇒
G
w

that is, to check if, and how, the given string can be generated by applying
the grammar rules recursively. There are many different algorithms to do
this, most common are LL(k) and LR(k) parsers that are bottom-up and
top-down parsers, respectively [Aho et al., 2007, p.192]. This project will use
an improved version of the CYK algorithm, a bottom-up parser.

1.4.1 CYK algorithm
The CYK algorithm is named after its inventors Cocke, Younger and Kasami,
who independently discovered the algorithm in the late 1960s [Younger, 1967].
The algorithm works on a context-free grammar in CNF, and yields a matrix
with the following properties, as stated by Younger [1967].

This recognition algorithm will be framed in terms of a recog-
nition matrix. This matrix lists, for each substring of the test
string St , all the symbols in N which generate that substring. In
particular, this matrix lists the symbols which generate the full
string St : if special symbol S is contained in this list, the string
St is then accepted as a sentence in the language; if not, it is
rejected.

Note that N refers to the set of variables, which we denote as V . The
algorithm creates a square matrix W of dimension |St|+1. It then computes
the rest of its entries using dynamic programming and the definitions below.

Wi,j =


∅ if j ≤ i

{A|(A ::= St[i]) ∈ P} if j = i+ 1
j⋃

k=i+1
Wik ·Wkj otherwise

(1.1)

x · y = {A|A0 ∈ x,A1 ∈ y, (A ::= A0A1) ∈ P} (1.2)

As we can see, just above the diagonal of W , we place the set of all
variables that can match that substring of the input as a terminal. Anything
below the diagonal is zero, and anything that is not just above the diagonal
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1. Background 1.4. Parsing

is computed by checking if there are any rules on the form A ::= BC as
seen in equation 1.2. A graphical representation of these rules in action
is shown in figure 1.4. The input string is placed just above the diagonal,
and matching against the grammar rules are then applied recursively using
dynamic programming.

X

Y

Zi

j

k

Figure 1.4: Upper-triangular matrix for which the CYK algorithm has been
applied. X ::= St[i..j] and Y ::= St[j..k] are terminal rules in the grammar this
matrix is built from, and Z ::= XY is a nonterminal one

1.4.2 Valiant
Valiant improved the CYK algorithm by showing that context-free recogni-
tion can be reduced to matrix multiplication of boolean matrices [Valiant,
1975]. This was done by first reducing recognition to the transitive closure of
upper-triangular matrices. The closure of a matrix W , denoted W+, is de-
fined as the matrix C such as C = C ·C+W . Valiant then showed that closure
could be reduced to matrix multiplication by employing a divide-and-conquer
approach, and furthermore only having to consider boolean matrices.

Most important for this project, the step to reduce closure to matrix
multiplication described a recursive function that we will call V , such that
given input matrices A and B, and a partial matrix X only used for strings
that starts in A and ends in B, it computes a matrix Y , where Y = AY +
Y B + X [Bernardy and Claessen, 2013]. The function V is responsible for
parsing Z ::= XY in figure 1.4 above.

1.4.3 Improvement by Bernardy and Claessen
Bernardy and Claessen [2013] showed that for many inputs, most of the sets
in the matrix in Valiant’s algorithm would be empty. By optimizing the algo-
rithm to handle empty matrices as a special case and avoiding multiplication

9



1. Background 1.5. Dependently typed programming

of those empty matrices, they managed to lower the time complexity of the
algorithm from that of matrix multiplication, which is O(ny), 2 ≤ y ≤ 3 to
O(log3n).

In the same article, another improvement that regarded sequential input,
such as lists of statements in a while loop, was made. Such input can have
rules as

Stms ::= ε

Stms ::= Stm Stms

which are by nature linear and do not fit well for parallelization. The
solution is to introduce tagging of all non-terminals that indicated if they
should be on the left (tagged 0) or right (tagged 1) side of the tree, and
then adding a new rule for constructing the whole tree of the nonterminal:
Y ::= Y 0Y 1. This restricts the number of branches that can be explored,
and thus helps to avoid the otherwise linear behaviour of such rules. The
tagging bit should be selected by an oracle, so the algorithm must behave
the same regardless of how each bit is set. In practice, the bit can be set
by using a random number generator, which is what is done in this project
and is discussed more in section 2.3.3, or one could simply use an alternating
stream of 0s and 1s, which is what the reference implementation uses.

1.5 Dependently typed programming
In this project, the implementation of the parsing algorithm uses dependent
types Therefore, it is good to know what this means before diving further
into it.

In a strictly typed programming language like Haskell, every value has
a type that is enforced. Assigning an integer a floating-point value would
not type-check and therefore would not compile. While typing is useful and
saves debugging time, it usually does not say anything about the contents of
the values, at least that is the case in Haskell.

A motivating example often used is the implementation of a vector type.
Vectors in this case is a fixed-length list of some type. In a typical Haskell
setting we may have a type as follows:
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1. Background 1.5. Dependently typed programming

1 data Vec a = Nil | V a Vec
2
3 head :: Vec a → a
4 head Nil = error "empty␣vector"
5 head (V a _) = a

Figure 1.5: Vector type and head function

This looks good, but it has the inherent problem that any code that tries
to access the head of an empty Vec will compile but result in a runtime error.

In dependently typed programming, types may contain not only other
types (i.e. when using polymorphism), but also values. That way, a type
can be dependent on a value of some other type that is embedded in the
first one. While standard Haskell is not a dependently typed programming
language, there are ways to use dependent types even in Haskell, for example
by enabling the DataKinds extension to GHC. For our vector example that
would look something like this:

1 data Nat = Z | S Nat
2 data Vec a n where
3 Nil :: Vec a Z
4 V :: a → Vec a s → Vec a (S s)
5
6 head :: Vec a (S b) → a
7 head Nil = error "empty␣vector" -- this does not type-check
8 head (V a _) = a

Figure 1.6: Dependently typed vector with head function. Note that the
DataKinds extension for GHC is needed for this to work.

We created a new type Nat (for natural numbers) to keep track of the
size of our vector. The new Vec type is dependent on the Nat type, while still
holding values of some type a. What this code does not permit, however,
is the Nil case for head. Because the type of head requires the Vec to be
non-nil (with (S b) in its type signature) there is no need to check for a Nil
vector here. In fact, the compiler will not pass the above code, as indicated
by the comment, because the first case in head does not type check. The
main advantage of this vector type is that any code that uses head and passes
type-checking will be guaranteed to never encounter an empty vector. This
way, even more bugs are caught at compile-time.
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Chapter 2

Implementation

The actual goal of this project is to implement a parser that would be incre-
mental and easily parallellizable. In short, the parser hooks into a previously
written lexer, uses a tree structure and some matrix multiplication code, and
is as a whole generated from a grammar specification using BNFC.

Before going into the details of the implementation, there are a couple
of libraries and programming techniques one has to be familiar with before
moving forward. We will first describe those, and then move on to describe
changes to the lexer we inherited from Hansson and Hugo [2014], and the
implementation of the parser.

The source code for this project can be found both in the Quad.hs module
in a fork of BNFC [Bernardy and Olausson, 2014], but also in source/src/
BNFC/Backend/Haskell/ directory in the same repository, where the files
CFtoAlex3Incremental.hs and ToCYK.hs are the most significant contribu-
tions. Before integration to BNFC, work was done in a separate repository
[Olausson, 2014].

2.1 Finger trees
A finger tree is a finite data structure with logarithmic access time and
concatenation time. The finger tree is similar to a general binary tree, where
each branch has a couple of fingers (values) so that adding a new value does
not neccessarily add a new branch to the tree [Hinze and Paterson, 2006].
The tree structure makes the data structure suitable for a divide-and-conquer
algorithm.

A Haskell implementation suitable for general use exists in the package
Data.Sequence, and a more general structure is available in the package
Data.FingerTree. The more general one is the one that will be used for this
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2. Implementation 2.1. Finger trees

project, and is the one that was used for the LexGen project. Except for
the concepts related to measuring, the reader can think of these as regular
balanced binary trees.

2.1.1 Measuring and Monoids
Two specific features in the general FingerTree data type are monoids and
measuring. These are fundamental to the parser, so we will look more deeply
into them here.

A monoid is a mathematical object with an identity element and an
associative operation. In Haskell, monoids are provided by writing instances
of this type class (available in Data.Monoid):

1 class Monoid a where
2 -- Identity of mappend
3 mempty :: a
4 -- An associative operation
5 mappend :: a → a → a

Figure 2.1: The Monoid type class

This means that anything that is a Monoid has an identity element
(that can be accessed with mempty) and an associative operation to append
monoids together (mappend). A simple list example illustrates this:

1 instance Monoid [a] where
2 mempty = []
3 mappend = (++)

Figure 2.2: Monoid instance for lists

The FingerTree type has a notion of measure on its elements. In this
case, to measure means to have a function that, given an element of the type
the FingerTree contains, yields a value of some type – the measure of that
element. Furthermore, any type that the elements can be measured to has
to be a monoid. The existence of a measured instance is ensured by the
FingerTree API in Data.FingerTree.

13



2. Implementation 2.1. Finger trees

1 -- Things that can be measured
2 class Monoid v ⇒ Measured v a | a → v where
3 measure :: a → v
4
5 -- FingerTrees are parametrized on both v (measures) and a (values)
6 data FingerTree v a
7
8 -- Create an empty finger tree
9 empty :: Measured v a ⇒ FingerTree v a

Figure 2.3: Measuring and the FingerTree type. The Measured class is con-
strained on both the existence of a monoid instance and the existence of a func-
tional dependency between a and v, so that the type v can be uniquely determined
from having only type a [Jones, 2000].

This means that, in order to use the FingerTree, one need to fulfil a few
criteria first. Let us say you want to have a FingerTree of Strings and
that the measure should be the (combined) length of the strings, then your
type would be FingerTree Int String. For that to work, you first need
to be able to convert between String and Int, by writing an instance of
Measured for String Int. For our use case this is just the length function.
However, you also need a Monoid instance for Int. In this case, the following
definitions would give us the desired behaviour:

1 type MyTree = FingerTree Int String
2 instance Measured String Int where
3 measure = length
4 instance Monoid Int where
5 mempty = 0
6 mappend = (+)

Figure 2.4: One possible measure from String to Int

It should be noted, however, that because instances cannot be hidden,
writing a general Monoid instance for integers over addition is perhaps not
the best idea. Wrapper types with instances over addition and multiplication
are available in the Data.Monoid library.

An important feature of the FingerTree type, especially in an incremen-
tal setting such as in a text editor, is that measures are cached at each node.
An update at one node does not force recomputation of the measure for the
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whole tree, but only for the nodes leading to the changed node, which are no
more than O(log n), i.e. the height of the tree.

2.2 Lexing
For lexing code into tokens, the results from the LexGen project was used.
Some modifications had to be done to LexGen in order to be easily combined
with an incremental parser. In the LexGen code, the output structure is a
Sequence of tokens. Because Sequence is a less general implementation of
finger trees, they cannot be measured, and is therefore not as suitable to use
in an incremental setting, where we want to do several transformations at
the nodes. Hence, instead of outputting tokens as a Sequence, the code was
changed to output another FingerTree, from which the tokens could then
be measured (see section 2.3.1 below).

2.3 Parsing
There is an existing reference implementation in BNFC for the optimisation
to Valiant’s algorithm, that can be accessed using the –-cnf flag [Bernardy
and Claessen, 2013]. That option generates large tables needed for combining
different tokens. Because this project is similar to the reference implemen-
tation, but with an incremental approach, it is natural to generate the new
parser by using a new flag.

For the Haskell backend, BNFC uses Alex as a lexer, as did LexGen, so
it was easy to use the LexGen core and have BNFC and Alex generate the
automaton needed for the lexer to work. The pipeline to obtain an abstract
syntax tree is as follows:

1. Input to lexer are characters placed in a finger tree

2. The characters are measured. The measure is a data structure contain-
ing another finger tree of tokens

3. Measure each node in the finger tree of tokens into a representation of
upper-triangular matrices.

4. When the measure is mappend’ed, the matrices are merged, using the
improved Valiant’s algorithm.

5. The resulting AST will be whatever is found at the topright position
in the matrix
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We will therefore first look at the pipeline from Char to AST, and then we will
dive into the code for merging matrices, that being the core of this project.

2.3.1 Pipeline of measures
Using the FingerTree type, the lexer could use that data type to mea-
sure characters into an intermediate type for lexing. That intermediate
FingerTree could then in turn be measured to the type used for parsing.

1 instance (Measured v IntToken) ⇒ Measured IntToken Char where

Figure 2.5: Diagram of measuring pipeline. The type signature for the measured
instance in the lexer shows the constraint: to measure a Char into an IntToken,
one has to be able to measure from IntToken to some type v, which is defined as
SomeTri, a type for upper-triangular matrices, in the parser.

We will describe what SomeTri is in more detail in section 2.3.2, so for now
it can be thought of as the internal parser state. Looking at simple testing
code shows easily how the data progresses through the pipeline. stateToTree
is an auxiliary function extracting a FingerTree from the internal lexer state.

1 test :: FilePath → IO [(CATEGORY,Any)]
2 test filename = do
3 file ← readFile filename
4 let lexed = measure $ makeTree file
5 parsed = measure $ stateToTree lexed
6 return (results parsed)

Figure 2.6: Code showing the measuring pipeline

Note that figure 2.5 is restricted to a single character. This process is
done for every char in the input source code, and the results are merged
using the monoid implementations of mappend for the lexer and the parser.
This behaviour is done internally in the finger tree with the call to measure.
The lexer measure yields a lexer state containing tokens, which are then

16



2. Implementation 2.3. Parsing

in turn measured into the matrix type SomeTri [(CATEGORY,Any)] by the
parser, where each tuple holds a value of the CATEGORY type, representing an
intermediate parser state, such as an almost-complete function header, and
Any is a universal type that can hold any value, and is used as an intermediary
for the generated AST.

The Measured instance for the lexer was written as part of the LexGen
project, and was only slightly modified to fit the parser. The Measured
instance for the parser is far more interesting, though. We can see how it
works in figure 2.7.

1 instance Measured (SomeTri [(CATEGORY,Any)]) IntToken where
2 -- Note: place the token just above the diagonal
3 measure tok = T (bin’ Leaf’ Leaf’) (q True :/: q False)
4 where q b = quad Zero (t b) Zero Zero
5 select b = if b then leftOf else rightOf
6 t b = case intToToken tok of
7 Nothing → Zero
8 Just token → One $ select b $ tokenToCats b token

Figure 2.7: Measure from token to upper-triangular matrix. The T construct
guarantees a square matrix of a given size. The call to quad makes sure the
observation about empty matrices by Bernardy and Claessen [2013] is handled
properly when creating a matrix. The intToToken function is an auxiliary which
is due to implementation details in the lexer. The operator :/: is a constructior
for a type Pair used to capture the behaviour with oracle. The functions leftOf
and rightOf are used to deconstruct a Pair.

We create a 2x2 matrix, and place the lexed token in the upper-right
corner – just above the diagonal. If the lexer did not return a token, a zero
matrix of the same size is created. This is shown in figure 2.8. In the zero
case, the call to quad enables the optimisation for empty matrices by pattern
matching and possibly choosing another matrix constructor (all constructors
are shown in figure 2.11 later).
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(b) 2x2 matrix without a token

Figure 2.8: Graphical representation of the two possible cases for measuring to
matrices in the parser. {Tok} represents the set of all rules A such that A ::= token
where token is the lexed token.

Finally, the actual parsing happens in the Monoid instance for SomeTri,
where the call to merge in turn creates a call to closeDisjointP, which
in turn uses mul. The mul function is defined in the typeclass RingP, our
instance uses the combine tables generated by the reference implementation
in BNFC.

1 instance RingP a ⇒ Monoid (SomeTri a) where
2 mempty = T Leaf’ (Zero :/: Zero)
3 t0 ‘mappend‘ t1 = unsafePerformIO $ do
4 b ← randomIO
5 return (merge b t0 t1)
6
7 instance RingP [(CATEGORY,Any)] where
8 mul p a b = trav [map (app tx ty) l :/: map (app tx ty) r
9 | (x,tx) ← a, (y,ty) ← b

10 , let l:/:r = combine p x y]
11 where trav :: [Pair [a]] → Pair [a]
12 trav [] = pure []
13 trav (x:xs) = (++) <$> x <∗> trav xs
14 app tx ty (z,f) = (z, f tx ty)

Figure 2.9: Monoid instance for SomeTri, and RingP instance for the parser data

The call to combine in figure 2.9 is the programming version of checking
if there exists a rule on the form A ::= BC in the grammar.
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Figure 2.10: Graphical representation of lexing and parsing using trees, with
the measured parts enclosed in rectangles. This is still a simplification, all calls
to mappend are not neccessary in order to move forward in the process, and it is
indeed possible to get an AST from just one character by just measuring at one
leaf, as shown in figure 2.5. Remember that measures are cached at each node in
the finger trees, so changing one char will not cause a complete recomputation.
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2.3.2 Dependently typed programming with charts
When merging the matrices, combining elements to create new, larger ma-
trices, it is important to keep the sizes of these matrices correct to avoid
bugs that would be hard to catch otherwise. The way this is done in the
library available in BNFC is by using dependent types [Bernardy and Olaus-
son, 2014]. The existing code for merging could not be used, but had to be
extended to work in the tree/monoid setting. More on this in section 2.3.2.1.

First, the matrix type Mat is dependent on another type, Shape, that
describes the shape of a matrix as a binary tree.

1 data Shape = Bin Shape Shape | Leaf
2
3 data Mat :: Shape → Shape → ∗ → ∗ where
4 Quad :: !(Mat x1 y1 a) → !(Mat x2 y1 a) →
5 !(Mat x1 y2 a) → !(Mat x2 y2 a) →
6 Mat (Bin x1 x2) (Bin y1 y2) a
7 Zero :: Mat x y a
8 One :: !a → Mat Leaf Leaf a
9 Row :: Mat x1 Leaf a → Mat x2 Leaf a → Mat (Bin x1 x2) Leaf a

10 Col :: Mat Leaf y1 a → Mat Leaf y2 a → Mat Leaf (Bin y1 y2) a
11
12 data SomeTri a where
13 T :: Shape’ s → Pair (Mat s s a) → SomeTri a

Figure 2.11: The Mat type with its dependent Shape type. Note that shapes
are used both for x- and y-axis size. Also note the SomeTri type that captures
two square matrices, used for the oracle functionality, which is described more in
section 2.3.3.

Here are some example matrices, just to get a feel for how they are con-
structed. Pay attention to the width of the lines, used to show how construc-
tors are grouped inside the matrices.
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Figure 2.12: Example matrices with their Shapes written out, and the Mat con-
structor used to create them

2.3.2.1 Merging charts

In a setting without using finger trees and monoids, such as the reference im-
plementation by Bernardy and Claessen [2013], where this was implemented
as the mergein function, it is possible to merge matrices using an additional
single element as glue. Such an approach simplifies the merging a lot, be-
cause elements are placed just above the diagonal and that means a single
element can fill the small void in the merged matrix, as illustrated in figure
2.13.
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(a) Merging with middle element,
as done by Bernardy and Claessen
[2013]
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(b) Merge without middle element –
the diagonal is broken!

Figure 2.13: Merging with and without a single element as glue.

Because of the absence of an extra element, the existing function mergein
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Figure 2.14: Successful merge without a middle element. The first row on the
right matrix is chopped off, we discard elements D and E and put A in the leftmost
bottom position, placing it just above the diagonal as wanted.

could not be used, but a merge function had to be implemented. Without the
extra element, the diagonal would be broken, and the algorithm would not
be able to move forward. We thus want to imitate the behaviour of having a
middle element. The solution: chop off the first row in the second argument,
and recompute all but the leftmost elements when applying the V function
from Valiant’s algorithm.

2.3.2.2 Chopping matrices

Before looking at the actual merge code, we should look at how the chopping
works. By pattern matching on the Shape in our SomeTri we can get a data
structure where the relation between a larger and smaller matrix can be
expressed. This data structure is ChopFirst. Once we obtain such a value,
we can pattern match on it to control our recursion for chopping, and thus
being able to guarantee that the chopped matrix is exactly one row smaller,
and that the chopped row has height 1. This can be seen in figure 2.15. To
make it clear, these are the steps:

1. Call chopShape to obtain ChopFirst value (see figure 2.15).

2. Use ChopFirst value to chop off row and column in matrix, returning
chopped off row and smaller matrix (see figure 2.16).

3. Discard all but the leftmost element in the chopped off row, and extend
the row to match the sizes of the input matrices, done by mkLast (see
figure 2.17).

4. Use chopped off row and smaller matrix to apply Valiant’s V function,
called closeDisjointP here, facilitating the merge (see figure 2.18).
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1 chopShape :: Shape’ x
2 → (forall x’. ChopFirst x x’ → Shape’ x’ → k) → k
3 chopShape Leaf’ k = error "chopShape:␣can’t␣chop!"
4 chopShape (Bin’ _ Leaf’ y) k = k Stop y
5 chopShape (Bin’ _ y1 y2) k =
6 chopShape y1 $ λq y1’ → k (Continue q) $ bin’ y1’ y2
7
8 -- intuitively, x = x’ + 1
9 data ChopFirst x x’ where

10 Stop :: ChopFirst (Bin Leaf x) x
11 Continue :: ChopFirst x x’ → ChopFirst (Bin x x0) (Bin x’ x0)

Figure 2.15: The chopShape function, returning a continuation with both an
instance of ChopFirst together with a smaller (chopped) Shape.

The result of running chopShape is used when chopping off the first row
and first column in a given matrix. The column is discarded, since it is always
empty due to being below the diagonal, while the row is returned together
with a smaller matrix. This is shown in figure 2.16.

1
2 chopFirst :: ChopFirst x x’ → Mat x x a
3 → (Mat x’ Leaf a, Mat x’ x’ a)
4 chopFirst _ Zero = (Zero,Zero)
5 chopFirst Stop (Quad a b c d) = (b,d)
6 chopFirst (Continue q) (Quad a b c d) =
7 let (e, a’) = chopFirst q a
8 (b’,f) = chopFirstRow q b
9 in (row e f,quad a’ b’ zero d)

Figure 2.16: The chopShape function, ChopFirst type and corresponding func-
tion.

Note that chopFirst, as seen in figure 2.16 does not match the Col, Row
or One constructors. For the One case it is quite obvious because we cannot
chop a 1x1 matrix. For the other two, this is due to the type of chopFirst,
where the input is a square matrix: Mat x x a. Because both Col and Row
cannot be square (unless they have shape 1x1, in which case the One construct
should be used instead, which cannot be chopped anyway), there is no need
to check for them, and actually writing those cases would trigger a type error
when compiling.
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Finally, before calling the function corresponding to the V function from
Valiant’s algorithm, we need to 1) throw away all but one value from the
chopped off row, and 2) extend the row to match the size of the matrices we
merge with. This is done by a function called mkLast, shown in figure 2.17.

1 mkLast :: RingP a ⇒ Shape’ y → Mat x Leaf a → Mat x y a
2 mkLast Leaf’ m = m
3 mkLast (Bin’ _ _ y) Zero = zero
4 mkLast (Bin’ _ _ y) (One a) = col zero (mkLast y (one a))
5 mkLast (Bin’ _ _ y) (Row a b) = quad zero zero (mkLast y a) zero

Figure 2.17: Implementation of the mkLast function

We now have everything we need to create a new, larger, better matrix
containing soon-to-be abstract syntax trees. The code for merge is included
in figure 2.18, resulting in a new quad, where the left matrix is left untouched
(as seen in figure 2.14), but we get a new, smaller, right matrix, and the top-
right part is computed using Valiant’s algorithm. As usual, all values below
the diagonal are zero.

1 merge :: Bool → SomeTri a → SomeTri a → SomeTri a
2 merge p (T y l) (T x r) = chopShape x $ λchopper x’ →
3 let (rTopL, rL’) = chopFirst chopper (leftOf r)
4 (rTopR, rR’) = chopFirst chopper (rightOf r)
5 cdp = closeDisjointP p (leftOf l)
6 (mkLast’ y $ sequenceA (rTopL :/: rTopR)) rR’
7 in T (bin’ y x’) (quad’ l cdp zero (rL’ :/: rR’))

Figure 2.18: The function merge without middle element

2.3.3 Oracle and unsafePerformIO
The use of an oracle as described by Bernardy and Claessen [2013] presented
a bit of a problem in implementing a monoid instance for the parser, for the
simple reason that it is very hard to simply pick a boolean value at random
in Haskell without it being always True or always False. The call to merge
in mappend illustrates this clearly:
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1 instance Monoid (SomeTri a) where
2 t0 ‘mappend‘ t1 = merge True t0 t1

Figure 2.19: First attempt at parser Monoid instance before random oracle. True
in this case means that the left matrix will always be chosen, leading to linear
behaviour, exactly the opposite of what we want to achieve.

The call to merge requires a Bool acting as the oracle as an argument,
to choose the left or right matrix. Because a Monoid has no context outside
its own type, it is hard, if not impossible, to generate a Bool using only the
SomeTri type. One could argue for creating a newtype wrapper around a
tuple of SomeTri and StdGen, used to generate the Bool at each step, but
that only moves the problem to the mempty call, where a fresh StdGen would
have to be picked at each instance.

The solution to this problem came in the form of a call to unsafePerformIO.
Not only is this controversial, it was also not completely obvious to imple-
ment. If an unsafe call to randomIO was made separately from the merge
call, this call would be evaluated only once, rendering the solution useless.
The trick here was to put the whole call inside an unsafe wrapper, so that
the call to merge, and with that the call to randomIO, became dependent on
the input.

1 instance Monoid (SomeTri a) where
2 t0 ‘mappend‘ t1 = unsafePerformIO $ do
3 b ← randomIO
4 return $ merge b t0 t1

Figure 2.20: Parser Monoid instance with oracle

Now usually, for unsafePerformIO to be safe one should make sure that
the call is free from side effects and independent of its environment. [The
GHC Team]. None of those two requirements are fulfilled here, so this calls
for discussion. In general, one does not want a call to unsafePerformIO to
be evaluated more than once – but in this case this is a requirement for the
code to behave as expected, and that is why it is indeed dependent on its
environment. The only side effect in this snippet is the use of the global
random number generator and that should not affect any other part of the
program, and can thus be considered safe.
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Chapter 3

Results

Our results are as follows.
We have managed to write a parser that is incremental and which, when

given correct input, produces correct output in the form of an AST. The
parser, and the accompanying lexer, can be generated by BNFC by using the
–-incremental flag. When given incorrect input however, the output is not
especially satisfactory. The lexer can tell if an incorrect token is part of the
input, but it cannot tell where in the input that token is placed. The parser
can also recognise that the input tokens does not follow the grammar of the
language, but it cannot give any information about where the syntactic error
was made. In the rest of this chapter, we support and discuss these results.

3.1 Branching in the parser
A bug was discovered late in the project and has, due to time constraint,
not been investigated. The bug consists of the parser giving too many parse
results, all being identical. The number of results is deterministic and de-
pends solely on certain constructs in the input source code. It has not been
possible to pinpoint the source of this bug, but the behaviour suggests an
error in merge, or possibly ambiguities in a given grammar.

3.2 Possible text editor usage
One of the motivations for writing this thesis was the possible usage of the
parsing algorithm in a text editor, where speed is of the essence, but where
one does not want to redo the whole parsing when just small parts are up-
dated. What we can see from the results is that we have managed to achieve,
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through the use of the FingerTree data structure, an incremental implemen-
tation. Furthermore, the same data structure also enables use of divide-and-
conquer techniques to parallelize the algorithm.

If this algorithm was to be used in an editor, care would need to be
taken when handling any parse errors, and in order to use it at all, position
information is absolutely essential. This is discussed more in section 4.2.
However, for real use, the algorithm is currently performing poorly, probably
due to high memory consumption in the lexer, where, at each leaf, a table
of each output state given every possible input state. Currently, for files
larger than about 1000 lines, the runtime system will run out of stack space.
Since there is no sharing between these tables, this is very inefficient. For
example, the token ’;’ is typically used in the same way at many positions
in the source code. If the tables for that token could be shared, it would
save both time and memory. The same is partly true for the parser as well,
since some combinations of tokens are more common, the parser could save
memory if some sharing was done there as well.

3.3 Testing
To test this parser algorithm was rather easy, since a parser conforming to
the algorithm could be generated by from a LBNF grammar using BNFC.
The main testing language was Javalette Light, a small subset of C, but still
with the ability to create interesting parse trees. Later, both the Javalette
language and C were used to test the parser. When testing with C a serious
bug was discovered, this is discussed in 3.1.

Testing was not automated, but instead simple input files were used,
where the source code was either correct or had some syntax error. This
proved to be sufficient for this project, but for future versions, when hand-
written cases might not be enough to cover all trivial uses, one would prob-
ably want to have tests generated by something like QuickCheck [Hughes
et al.]. Although one would probably get quite far by being systematic and
using the given grammar as a base for test cases.

3.4 Measurements
We have been using criterion [O’Sullivan, 2009] as a benchmarking library to
test the implementation.

Benchmarking included both measuring of the merge step with two previ-
ously parsed subtrees as well as measuring the time to parse input of increas-
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ing sizes. Measuring was done on a computer running an Intel i7 processor
clocked at 3.40 GHz, with a sample size of 1000.

The benchmarks were carried out in such a way that lexing was done prior
to measurement of parser measurement, so that lexer performance would
not affect measurement of parser performance. The complete bechmark
code can be found in the project repository under src/Test/Javalette/
BenchParser.hs [Olausson, 2014].

It should be noted that testing large inputs for this project has been hard
due to large memory consumption, possibly owing to the structure of the
lexer. An experiment was conducted where the lexer was switched to the
standard Alex lexer generated by BNFC. These tests however, were even
worse when it came to memory consumption.

Because not all tests look the same, this constraint affect different mea-
surements differently, so the same input sizes have not been possible to use
for the merge test and the more general running time test.

3.4.1 Behaviour
The input to the parser is a fingertree, generated by the lexer. We will
ignore the behaviour of the lexer, because it is not the main scope of this
project, but instead look a bit about how the parser should behave when
it comes to time complexity. The steps taken to parse the input is to first
create the initial matrix at each leaf. The time at each leaf is independent
on the input size, and is therefore O(1), but it is done at each leaf, so the
total is O(n). The second step is the merging, which at each point also
does the matrix multiplications — shown by Bernardy and Claessen [2013]
to be O(log3n). Implementation of the merging step was relatively straight-
forward, and should therefore satisfy these conditions.

3.4.2 Merging matrices
The core of the parser is the merging of matrices corresponding to previously
parsed subtrees. The merge process uses the V function from Valiant’s al-
gorithm, and does matrix multiplication, so it should depend heavily on the
input size. Tests designed to measure this behaviour were inconclusive due
to technical limitations in memory, but for the small files we were able to
test, the behaviour was similar to that of the total running time. Such a
behaviour can be expected, because all parsing work is done in merge, and
the number of calls to merge is linear in the input size.
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3.4.3 Total running time
From stress testing the parser with large inputs, it seems that the parser
behaves as expected relative to the input size, growing in a linear fashion
with it. This should be expected, since O(n) dwarfs O(log3n) for inputs just
below 1000 and upwards.
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Figure 3.1: Mean running time for files where the input size denote the number
of functions (of equal size) in that file. The green regression line shows that the
parser more or less behaves linearly with respect to input size.
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Chapter 4

Discussion

In this chapter, we will look at some things that are not strictly part of the
result, but related to it in some way. First, we will discuss some mistakes and
how they were remedied, later we will look at some possible future work with
the parser and lexer, and we will end with some conclusions of the project
as a whole.

4.1 Pitfalls
During implementation, a few mistakes worth mentioning were made. These
are discussed here.

4.1.1 Too many parse results
When the parser was finally working, there was an issue that, whenever a
file was successfully parsed, the parser returned a number of results, from
4 to 1024, all identical to each other. This led us to believe that there was
branching done in places where no branching was motivated. Branching in
this sense means that there are more than one possible AST for given input.
In a grammar without ambiguities, this should not be possible on the top-
level.

The problem turned out to be a bug in merge, in the subroutine taking
care of the row that was chopped (see 2.3.2.1). Initially, merge was written
so that the chopped off row was included as a part of the upper-right matrix
as an argument to the V function from Valiant’s algorithm. This led that
row to be combined with itself, because that row had already been computed
using the V function. The solution was to remove all but the first element,
so that nothing would be recomputed.
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4.1.2 Loosen constraint on Matrix type
When writing merge, one attempt was made at loosening the constraints on
the Row and Col constructors so that they could correspond to more than
one row or col, respectively. This turned out to be a bad idea when one
wanted to control recursion using these constructors. Such a change also
introduced an ambiguity in the semantics of matrices, because then a 4x4
matrix could be created by using Quad (the right way), or by using the less
strict versions of Col (a wide column of height four) or Row (a tall row of
width four). Having the different constructors constrained to a certain type
of matrix proved easier in the end, and the extra work in terms of pattern
matching was worth it to avoid the extra work needed every time a Row or
Col was encountered — just to check their height and width, respectively.

4.2 Future work
The result of this project is a parser that can parse correct input and does
that well. There are two main features missing however; position information
on tokens, and good error reporting. Furthermore, the bug described in 3.1
needs to be fixed before the library can be used in a real-world application.

4.2.1 Position information
Position information for tokens is a feature that is currently missing in the
parser, much due to the fact that it is missing in the lexer. Discussions with
Hansson and Hugo revealed that this is due to that not being a priority.
The most likely way to implement position information would be by using
relative positions for tokens, because of the tree structure where nodes are not
aware of each other. That way, position information, or lexical errors, can be
promoted using mappend. There are, however, several ways to integrate the
relative positions into the structure, but the most obvious would be to create
a newtype wrapper for tuples where the lexer state and position information
are dependent on each other, as opposed to the monoid instance for regular
tuples.

4.2.2 Error information
Related to the issue of position information, the error reporting in the lexer
and parser is poor to say the least. Invalid tokens are reported by the lexer,
but invalid syntax is only reported by saying that there were more than one,
or zero, parse results. For the lexer, the only thing missing in error reporting
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is said position information. This is, as a consequence, true for the parser
as well, but due to the structure of the parser it is harder to know where an
error was made.

The reason for why it is hard to know where an error was made owes to
the matrix structure and how rules are combined as A ::= BC. Using the
CYK algorithm, it would be possible to have overlaps in the parse results
(where one would have to choose one to move further, as shown in figure
4.1b), and an error in the middle of a code snippet could lead to the parsing
resulting in many small results that lack structural glue, as shown in figure
4.1a.
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k

(a) Example chart where the
tokens from j to k cannot be
parsed, and therefore C and Z
could be given as parse results.

A

B

j

k

(b) Example chart where A and
B overlap. Here one has to de-
cide on how to proceed if there is
no rule that can parse from j to
k.

4.3 Conclusions
In this thesis, we have seen an implementation of an incremental version of the
CYK algorithm, using optimisations devised by both Valiant and Bernardy
and Claessen. Given a grammar file, both the parser and a matching lexer can
be generated from BNFC. The parser uses a tree structure, which, together
with the CYK algorithm, would make it suitable for an implementation util-
ising parallelism. The tree structure, and the fact that measures in the tree
are cached, also makes for efficient incremental use.

However, there is a serious bug in the code, making the parser return
several identical parse trees. The parser, and the lexer, is also lacking both
position information and usable error reporting. Before the library can be
used, these two issues will definately have to be dealt with. The implemen-
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tation also has unreasonably high memory requirements.
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Appendix A

Javalette Light

A.1 LBNF grammar

1 -- ordinary rules
2 Prog. Prog ::= [Fun];
3 Fun. Fun ::= Typ Ident "(" ")" [Stm] ;
4
5 SDecl. Stm ::= Typ Ident ";" ;
6 SAss. Stm ::= Ident "=" Exp ";" ;
7 SIncr. Stm ::= Ident "++" ";" ;
8 SWhile. Stm ::= "while" "(" Exp ")" [Stm] ;
9

10 ELt. Exp ::= Exp1 "<" Exp1 ;
11 EPlus. Exp1 ::= Exp1 "+" Exp2 ;
12 ETimes. Exp2 ::= Exp2 "∗" Exp3 ;
13 EVar. Exp3 ::= Ident ;
14 EInt. Exp3 ::= Integer ;
15 EDouble. Exp3 ::= Double ;
16
17 delimiters Fun "__BEGIN_PROGRAM" "__END_PROGRAM" ;
18 delimiters Stm "{" "}" ;
19
20 -- coercions
21 _. Stm ::= Stm ";" ;
22 coercions Exp 3 ;
23
24 TInt. Typ ::= "int" ;
25 TDouble. Typ ::= "double" ;
26
27 -- pragmas
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A. Javalette Light A.1. LBNF grammar

28 internal ExpT. Exp ::= Typ "(" Exp ")" ;
29
30 comment "/∗" "∗/" ;
31 comment "//" ;
32
33 entrypoints Prog;
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A. Javalette Light A.2. Sample code

A.2 Sample code

1 int main() {
2 int p;
3 int x;
4 x = 2;
5 p = 2;
6 while(p < 5) {
7 x = x ∗ x;
8 p++;
9 }

10 }
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