
Scalable Machine Learning for Big Data
Bachelor’s Thesis in Computer Science

EMANUEL ANDERSSON
EMIL BOGREN
FREDRIK BREDMAR

Department of Computer Science & Engineering
Chalmers University of Technology
University of Gothenburg
Gothenburg, Sweden 2014
Bachelor’s Thesis DATX02-14-02

Abstract

We describe each step along the way to create a scalable machine learning system suitable
to process large quantities of data. The techniques described in the report will aid
in creating value from a dataset in a scalable fashion while still being accessible to
non-specialized computer scientists and computer enthusiasts. Common challenges in
the task will be explored and discussed with varying depth. A few areas in machine
learning will get particular focus and will be demonstrated with a supplied case-study
using weather data courtesy of the Swedish Meteorological and Hydrological
Institute.

Acknowledgements

We would like to extend our utmost gratitude towards our supervisor Prof. Laura
Kovacs. Her guidance and motivation has been invaluable.

Thanks to all our professors and staff over the years at Chalmers and the Univer-
sity of Gothenburg.

The Authors - Sweden, Spring 2014

Contents

1 Introduction 1
1.1 Dataset . 2
1.2 Scalability . 2
1.3 Machine learning . 2
1.4 Case-study . 3

2 Dataset 4
2.1 Cleaning . 4

2.1.1 Missing values . 4
2.1.2 Faulty values . 6

2.2 Exploration . 6
2.3 Visualization . 7

3 Scalability 10
3.1 Horizontal scaling . 11
3.2 Apache Hadoop . 11

3.2.1 Hadoop Distributed File System 11
3.2.2 Hadoop MapReduce . 11

3.3 Apache Spark . 11
3.4 Clustering . 12
3.5 Fault tolerance . 13

4 Machine learning 14
4.1 General topics . 14

4.1.1 Feature vector . 14
4.1.2 Supervised- and unsupervised learning 15
4.1.3 Parametric- and non-parametric algorithms 15
4.1.4 Similarity measurements . 15
4.1.5 Algorithm complexity . 15

4.2 Classification . 15

i

CONTENTS

4.2.1 Binary- and multi-class classification 16
4.2.2 Probabilistic classification . 16
4.2.3 Algorithms . 17

4.3 Regression analysis . 17
4.3.1 Curves and techniques . 17
4.3.2 Core model . 18
4.3.3 Managing the model . 19
4.3.4 Complexity vs accuracy trade-off 20

4.4 Recommender system . 21
4.4.1 Neighborhood-based . 21
4.4.2 Model-based . 22
4.4.3 Explicit- and implicit data . 23

5 Case-study results 24
5.1 Evaluation strategy . 24
5.2 Classification . 24
5.3 Regression analysis . 26
5.4 Recommender system . 26

5.4.1 Neighborhood-based . 28
5.4.2 Model-based . 28

6 Discussion 31
6.1 Target audience and the need for scale . 31
6.2 Scientific-, social- and ethical aspects . 32
6.3 Case-study shortcuts . 33
6.4 System . 33
6.5 Streaming . 33
6.6 Further work . 33
6.7 Conclusion . 34

Bibliography 37

ii

1
Introduction

Y
ou know that great feeling of not having to browse through all spam
emails when checking your inbox? Or getting discounts on items at the local
grocery store that are relevant to you? Personal recommendation lets you ex-
plore new artists at Spotify or unknown movies at Netflix. All those things are

accomplished through machine learning. It is by modeling historical data and making
statistical decisions based on the models that our inboxes are not flooded or the grocery
store actually gives discounts on groceries you would buy. Machine learning can not solve
every problem, but it has become a tool for solving problems previously hard to solve.
Problems that are much too complex for people to handle with traditional methods, such
as static condition rules. In this report we will explain step-by-step and discuss how you
can take your data and your unanswered questions and produce new value and results.

Machine learning can be used as a tool to create value and insight which helps orga-
nizations to reach new goals. As we mentioned above in the examples for Spotify and
Netflix, it is essential that their customers get relevant suggestions. Throughout the re-
port, uses for the case-study based on the data from SMHI (Swedish Meteorological and
Hydrological Institute) will be explored, ultimately answering three questions: Is there
going to be storm? How will the weather be in the future? and How will the weather be
in a new city with no prior data?

The challenge of scalable machine learning can be broken down into three different
areas. First, you have to know your dataset and explore it to find questions you want
answered and the format you can answer them with. Secondly, a scalable architecture
which allows for cost-efficient computing has to be setup and configured. Lastly, you
apply the right machine learning algorithms within the architecture on the dataset in
order to produce valuable results. The difficulty of each step may vary depending on
the sort of problem you want to solve. For example, exploring- and cleaning the dataset

1

1.1. DATASET CHAPTER 1. INTRODUCTION

might prove harder than the actual machine learning in some cases and vice versa.

Each section of the report can be read separately. Each section starts with an intro-
duction and a brief description of the structure.

1.1 Dataset

Knowing your dataset will not yield any results in itself, but ignorance might be costly
later on. Exploring your dataset helps you discover new areas of advance and reduce un-
certainty, even eliminating unreachable goals early on. There are a few tools and tricks
to handle common challenges with the dataset which are useful to master. Knowledge
about missing values is an important tool for preprocessing data and also for the final
results. For instance, all missing- and faulty values could be removed before processing
the data.

Example: Reason about missing values.

1.2 Scalability

Scalability is essential when the dataset stops fitting on a single machine and the pro-
cessing becomes unacceptably slow. If you plan ahead for your processing needs, much
hassle can be avoided. For example, all scalable solutions should be implemented for
at least two machines. That way most of the scaling problems are solved in the initial
implementation if more processing power is needed. There exist numerous free- and
proprietary solutions to assist with large scale processing. Each with its own pros and
cons. Apache Spark[1] is one such solution and the solution that is used in this paper’s
case-study.

Example: Distribute processing to several computers.

1.3 Machine learning

Machine learning is about turning a question and some data into value by using sta-
tistical inference. Different algorithms suit different questions, and there are always
important factors to consider. Three of the most common techniques are called classifi-
cation, regression analysis, and recommender systems.

Example: Apply a classification algorithm to fight spam.

2

1.4. CASE-STUDY CHAPTER 1. INTRODUCTION

1.4 Case-study

A use case based on SMHI weather data[2] will be used as an example for the techniques
described in this paper. The data can be used in several different ways and is in a form
that is easy to understand and work with. It provides enough data so that a wide range
of techniques can be applied to it.

Our report tackles the challenge of machine learning in three steps: dataset (chapter
2), scalability (chapter 3), and machine learning (chapter 4). Each step has its own
chapter which deals with problems related to that step. The case-study will be used
as examples throughout the text with results at the end. Lastly, there is a discussion
section which expands on some topics encountered in the text.

3

2
Dataset

T
he dataset is the core of machine learning. It is the dataset that creates the
opportunity to make heavy statistical computations to answer hard questions
which are unfit to be solved with common techniques. The dataset is a gather-
ing of information. A few examples of datasets are records of public transport,

a grocery store’s information about product sales during a period, stock prices, weather
metrics, visitors to a website. The list can be made very long as there are no real con-
strains of what constitutes a dataset. However, to benefit from the information hidden
in the dataset it is important to make sure to understand the data, and how it relates to
the questions that are being asked. Without a scientific approach to the dataset, pitfalls
such as implying causation just with the motivation of correlation[3] might lead to faulty
conclusions.

This chapter will be tackled in three steps beginning with cleaning followed by ex-
ploration and then visualization. Each step is designed to increase the quality of the
dataset as well as the understanding of the data and its properties.

2.1 Cleaning

Incomplete datasets, whether values are missing or faulty, are a big concern when working
with tough problems (such as machine learning). There is no single perfect solution to
fix an incomplete dataset. A lot of papers have been written targeting these issues. We
will scratch the surface of this issue in this report. Hopefully it will be enough to see
what type of problems your data may have.

2.1.1 Missing values

Having missing values in a dataset is more common than not. Extensive research has
been done in the area because of this. This report will touch briefly on the subject. The

4

2.1. CLEANING CHAPTER 2. DATASET

goal is to give a guiding hand toward addressing the structure and possible methods of
correction for missing values.

The reason a dataset misses values is usually tied to the type of the dataset. The
key to handling this issue is to look at the possible structure of the missing values.
A broad categorization is to determine if your datasets is missing values completely
random, missing values at random or non ignorable missing values. Missing completely
at random is, like it sounds, that the values that are missing is not grouped in any way.
Not in time, nor in group of similar other values. This is quite rare but if it occurs, there
are some simple ways to create a value for the missing positions. Missing at random is
a more realistic assumption.
Edgar Acuna et al. [?] discusses four ways missing values are usually handled:

Structure within missing values When visualizing the data, it is helpful to search
for a structure among the missing values. Are they in clusters? Are they com-
pletely random? Or do they depend on other features? A simple and efficient
categorization to determine the structure of missing values is to check which of the
following categories the missing values belong to.

Missing completely random If the missing values in the dataset are completely ran-
dom there is no way to see when or why they are missing. This is quite a rare case
and nice to have when it comes to correcting or modifying the missing values.

Missing at Random Missing values at random is much more common than completely
at random. When missing values at random it may be possible to see a reason for
why groups of values might be missing, however, not all missing values follow the
same condition to why it is not present. There is also no clear correlation between
a missing value and the values indicating a missing value.

Not missing at random This type of structure is the hardest to handle. Here, there
exists a very concrete relation between other values and the missing values. The
reason this becomes difficult to handle is that the number of different techniques for
correcting the missing values decreases rapidly. This is due to the low probability
of similar data points to those which are missing.

Based on the above four approaches to handling missing data, several strategies have
been developed. Which one to use depends on the dataset and the structure of the miss-
ing values. The most widely used strategy is called Case Deletion. This strategy simply
removes all samples with missing values in them and use the new dataset without the
missing values. It works well if the samples in the dataset are independent and the new
dataset is still large. It is trivial to handle if the missing values are less than 1% of the
total dataset. 1-5% are usually manageable.[5]

Mean Imputation is another strategy for handling missing values. Each missing value
gets represented by the mean of that feature through the whole dataset. The benefit of
this strategy compared to case deletion is that we get to keep the samples containing

5

2.2. EXPLORATION CHAPTER 2. DATASET

missing values. However, it is important to be aware of the structure of the data points.
If the spread of the values for computing the mean is large, then it can be dangerous to
use this strategy, especially if the values are continuous in nature.

K-nearest neighbor imputation is a strategy where the k most similar data points are
used to determine the missing value of a data point. This method is the most complex
of the strategies we discuss in this report. The trade-off for this complexity is that the
determined value often is close to the real value. This strategy is well-suited for datasets
with a structure of completely random missing values since the probability of finding
other samples with similar values in other features is high. It might work with datasets
that have the structure of missing at random values. If the dataset have a structure of
not missing at random, the probability of being able to use the KNN imputation strat-
egy with good results is low. The way to implement this strategy is in itself a machine
learning algorithm. It will be covered more in detail in the recommendation part of the
machine learning chapter.

2.1.2 Faulty values

Faulty values are almost by definition misinformation and will only corrupt the final
result. The exception is if the faulty values are by themselves the data being explored.
An example of a faulty value is a misreading of a thermostat. Faulty values will usually
have to be removed from the dataset.

2.2 Exploration

Often the dataset is accessible as files and can be explored with commands in the ter-
minal. Storage systems, such as a database, usually offer similar tools for exploration.
After navigating to the directory of the dataset in the terminal, usually by using the
command cd, commands can be executed by typing the command followed by a number
of arguments. cat prints the contents of a file to the terminal.

cat filename

Using globbing we can print all files ending with .txt. By using pipes we can then
forward the result to another command. grep finds patterns in text and wc together
with the argument −l count the lines.

cat *.txt | grep 999.0 | wc -l

6

2.3. VISUALIZATION CHAPTER 2. DATASET

This command counts the number of missing or faulty values in the SMHI dataset.
Commands such as mv, cp, rm, and ls are useful when managing files in the dataset.

Another way of exploring the dataset is to use a programming language. Code writ-
ten for this purpose is usually reusable later on when writing the actual implementation.
By asking simple questions, it is possible to get an idea of extensive missing values and
discover information that is was not known on forehand. Some questions that could be
asked about the SMHI dataset: What is the highest temperature value? What is the
mean precipitation? and How many cities have full coverage of data?

2.3 Visualization

Exploring the shape, patterns, and characteristics of your data increase both your own
understanding as well as your collaborators’ understanding. It is the most important
tool for exploration and often a product in itself. It can reveal characteristics which
increase your accuracy later on and help you avoid pitfalls. A famous illustration of how
seemingly similar datasets might have vastly different properties is Anscombe’s quartet[6]
shown in Figure 2.1. It is for example crucial to have a visual grasp of the dataset when
picking the kernel for SVM[7].

Figure 2.1: Anscombe’s quartet

The ability to efficiently process the data on a single machine decreases as the dataset
grows larger. Most datasets can be visualized by looking at key values but sometimes

7

2.3. VISUALIZATION CHAPTER 2. DATASET

that is not enough, and sometimes the dataset is too big. There are essentially two ways
of handling such scenarios: either sample the data or stream the data. Streaming
is beyond the scope of this paper as it combines elements from infrastructure and data-
flow, however, most processing frameworks have tools for it. In our work we focused
on the method of sampling the data, by picking the data at random in order to avoid
bias. Using randomization when sampling data is a common practice in order to avoid
so called biased samples, in other words, samples which are unfairly picked and provide a
skewed picture of the population. Numerous tools exist to aid with visualization. Some
software suits include visualization tools built-in, e.g. Microsoft Excel. Matplotlib[8]
is a widely used visualization library for Python that is easy to setup and use. It also
provides sufficient functionality for the advanced user. Figure 2.2 shows where SMHI’s
complete (1961-2011) weather stations are located. The stations are spread throughout
the country quite evenly. It would probably be better to have some additional stations
in the central-north areas.

Figure 2.2: SMHI’s weather stations.

Figure 2.3 is a favorite and taken from visualization of our dataset. The figure shows
mean temperature for each year between 1961 to 1996. There is a huge variation and
nothing can really be concluded from this visualization.

8

2.3. VISUALIZATION CHAPTER 2. DATASET

Figure 2.3: An example of the risk of abstraction and high variation

9

3
Scalability

S
ome tasks are too time consuming and computationally hard to be run on
a single computer. Machine learning on large datasets is one such task. Using
scaling techniques, even extensively heavy computations are possible. Scaling is
the techniques used to handle increasing workload in a sustainable fashion, to

expand resources that accommodate computation. There are two common approaches
to scaling, vertical- and horizontal scaling. When scaling vertically, it is common to have
one really fast and expensive computer to do all the heavy computation. Vertical scal-
ing used to be more common back when commodity hardware was significantly slower
than high priced hardware. Commodity hardware has gained a lot of performance and
putting several computer together may yield a far superior system in most cases. Third-
party companies offer hourly rental of hardware which have made horizontal scaling very
attractive lately. This report will put more focus towards horizontal scaling since this
is more commonly used by organizations today and is is more sustainable. There is a
lot of buzz around big data and scaling but it is wise to question if the computations
and dataset is heavy and large enough to actually benefit from scaling. If the speed
of the computation is less important and the size of the dataset and computations are
manageable on a single computer, consider running the program on a single machine. It
is incomparably cheaper and easier to not have to scale. Do not scale just for the sake
of scaling.

This chapter will contain a part about the concept of scaling followed by several
frameworks and tools used to solve the task. We conclude this chapter with a brief
discussion on clusters and fault tolerance.

10

3.1. HORIZONTAL SCALING CHAPTER 3. SCALABILITY

3.1 Horizontal scaling

Vertical scaling is about increasing processing power to existing machines. Contrary to
this, horizontal scaling is about adding more machines in order to increase processing
power. A limitation to vertical scaling is that it requires expensive components and will
eventually stop scaling when the latest upgrades have been added. Horizontal scaling,
on the other hand, will keep on scaling just by adding commodity hardware, more
computers, in theory forever. Horizontal scaling is obviously more desirable but requires
the processing to be done in parallel on each machine. Writing parallel programs is
tricky and distributing the processing to a cluster of machines is outright hard. Luckily,
open-source systems exist which take care of the problem and expose an easy interface
to the user for writing programs. Even the cluster itself, the machines, can be created
easily using third-party systems.

3.2 Apache Hadoop

Hadoop[9] is a widely used collection of tools that are used for common tasks related to
scalable computing. Looking at the modules included in Hadoop gives a good indication
of the challenges with scaling. Two of the modules are The Hadoop Distributed File
System and Hadoop MapReduce.

3.2.1 Hadoop Distributed File System

A distributed file system enables the user to distribute files to several systems. In the
case of HDFS, normal *nix file commands can be used to handle files, such as rm and
mv. The files are automatically synced throughout the distribution.

3.2.2 Hadoop MapReduce

In 2004, Jeffrey Dean et al. released a white paper[10] about a programming model
called MapReduce. MapReduce enforces a certain type of abstraction when computing
in order to distribute the work load. The model divides the computation into two steps,
map and reduce. These two simple functions can represent most computations when
used in combinations. Hadoop includes its own version of the popular programming
model named Hadoop MapReduce.

3.3 Apache Spark

Apache Spark was open sourced in 2010 and has grown into a fierce competitor to current
frameworks. Spark works well with the usual Hadoop modules but has its own process-
ing framework. Spark’s processing framework focuses on information flow[11] instead of
MapReduce. The information flow often results in increased speed and a more natural
way of reasoning about computing. It provides the developer with an easy interface

11

3.4. CLUSTERING CHAPTER 3. SCALABILITY

accessible through Scala, Java, and Python and has a complete machine learning library
built-in.

3.4 Clustering

Most distributed frameworks, such as Hadoop and Spark, use the concept of clusters.
A cluster is a group of connected entities which perform a task together. In the case
of Hadoop and Spark, the cluster is a collection of computing nodes (computers) which
distributes the workload. Both frameworks enable an easy way of creating clusters and
then running jobs on them. It is usually inconvenient to maintain physical computers.
Third-party providers have grown from the need of easy access to computers. One of the
most known and used such companies is Amazon and its service Amazon Elastic Compute
Cloud (EC2). EC2 lets its users rent computers by the hour and multiple computers
may be spawned and removed trivially. Spark includes a script and a document[12]
which guides the users through the initial configuration and ultimately to a work-flow
consisting of three commands for running jobs.

Listing 3.1: Running Spark on EC2: Launching a cluster

1 ./spark -ec2 -k <keypair > -i <key -file > -s <num -slaves >

launch <cluster -name >

The first command is used to create the cluster. It includes argument for cluster size,
type, authentication etc. The documentation explains all the steps in detail.

Listing 3.2: Running Spark on EC2: Login to a cluster

1 ./spark -ec2 -k <keypair > -i <key -file > login <cluster -name >

In order to run jobs on the cluster, the user first needs to login via SSH[13]. The
user then run Spark jobs as usual via the command line when logged in.

Listing 3.3: Running Spark on EC2: Destroying a cluster

1 ./spark -ec2 destroy <cluster -name >

Destroying the cluster, or pausing it, is a good idea since Amazon bills by used hour.
Both Spark and Amazon offer great documentation on how to use its services via their
respective websites[1][14].

12

3.5. FAULT TOLERANCE CHAPTER 3. SCALABILITY

3.5 Fault tolerance

The risk of failure increases when the complexity of a problem grows. When dealing
with a large cluster, things are bound to break eventually. When things break, it leads
to errors, or worse, faulty results. It is important then to pick a system which has a
carefully considered fault strategy. Both MapReduce and Spark offer fault tolerance on
multiple levels with precautions such as restarting nodes and exiting the whole system.
Exiting the whole system might sound undesirable but is actually more helpful then
silent errors which in worst case corrupt the result.

13

4
Machine learning

T
he techniques and aims of machine learning are much the same as those
in statistics and applied mathematics. Essentially, machine learning concerns
drawing statistical conclusions about data, also known as statistical inference.
This means that there is no universal approach to machine learning but rather

a set of tools. It also means that one tool may solve various different problems. Three
common tools for solving problems in this manner are classification, regression analysis,
and recommender systems.

First, some general topics in the area will be discussed (Section 4.1). After that
the three major techniques picked for this report will be demonstrated starting with
classification (Section 4.2) followed by regression analysis (Section 4.3) and recommender
systems (Section 4.4).

4.1 General topics

Some features and techniques are common for most machine learning algorithms. Gen-
eral topics will explore some of the different categories and properties of machine learning
algorithms. The subsection will also describe a few important concepts shared between
all methods.

4.1.1 Feature vector

In order to quantify and represent the dataset as numbers, which can be used by the
algorithms, one translates the relevant data into a vector of numbers. Each number in
the vector is called a feature, and as the name hints at, it will decide the result. The
technique of translating the dataset to feature vectors varies and depends on the dataset.
For example, it is common to use the bag-of-words model[15] when dealing with text.

14

4.2. CLASSIFICATION CHAPTER 4. MACHINE LEARNING

The SMHI dataset has a natural feature vector representation with each column used as
a feature.

4.1.2 Supervised- and unsupervised learning

Machine learning algorithms can be divided into different categories depending on how
they work and what they achieve. Two categories often used are supervised- and un-
supervised algorithms. Supervised algorithms are discrete. Data is given a class and
prediction data generates one of the used classes. Unsupervised algorithms are used
when the goal is to understand the data itself, for example what groupings exist within
the data.

4.1.3 Parametric- and non-parametric algorithms

Parametric algorithms are bound to the parameters set by the user. For example a
linear regression classification algorithm will yield a binary result. A non-parametric
algorithm’s model will grow with its dataset. Non-parametric algorithms include nearest
neighbor classifiers and random forests. In general, non-parametric algorithms are more
accurate but slower.

4.1.4 Similarity measurements

A common task of machine learning algorithms is to compare the similarity of different
feature vectors. While there is a few similarity functions which are used most of the time,
there are no single perfect one and each case requires some consideration regarding the
similarity function. Spertus et al. [4] performed a study on similarity functions which
showed very good results for the cosine similarity function in particular.

4.1.5 Algorithm complexity

An important property to consider with all algorithms is its resource complexity, such
as space- and time complexity. It indicates how resource usage grows with increased
input. The complexity varies between algorithms and they all have different trade-
offs, for example worse time complexity but higher accuracy. It is common to speak of
two different speeds when looking at an algorithm in machine learning. First, its train
speed. This is the time it takes for the algorithm to be trained given input. Second, the
prediction speed is important. The predict speed is the time it takes to make a prediction
given a trained model. It is important to have these complexities in mind as they dictate
the suitability for different algorithms expected to achieve certain performance.

4.2 Classification

The idea with classification is to connect new observations to classes with the help of
previous training data. The classification algorithm is often called a classifier. The fea-
tures, or properties, of the data can be expressed in different forms, for example A, B,

15

4.2. CLASSIFICATION CHAPTER 4. MACHINE LEARNING

AB or O for blood types or as integer values like the SMHI dataset. The case-study uses
a binary classifier, that is, a classifier which has two possible labels: storm or not storm.

It is possible to perform forecasting using classification. The technique used in the
case-study classified weather data as pre-storm data or non-pre-storm data which could
be used to compute a probability to forecast a storm based on new observations. Clas-
sification does not have to be binary as there could be several possible categories for the
classifier to decide where new observations should be placed. Figure 4.1 illustrates how
a binary classification places mail in a spam folder instead of the users’ inbox.

Figure 4.1: Spam filter

4.2.1 Binary- and multi-class classification

Binary- and multi-class classification are both concerned with placing observations in a
correct class. Binary classification consists of two classes while multi-class classification
consist of two or more classes. For example, doctors perform a multi-class classification
assigning medical diagnosis given data from their previous patients. An extension to the
spam example above is if the mail is classified into more classes, such as family, private,
work, and spam. Some algorithms are used for binary classification while others are
used for multi-class classification. It is even possible to use multiple binary classification
algorithms in order to do multi-class classification.

4.2.2 Probabilistic classification

Algorithms that use probabilistic classification will return not just the class, but also the
probability of that class. The probability value can be used in various ways to improve
the results of the algorithms and provide feedback to improve the classifier, for instance
to lower error prorogation (uncertainty) which can be avoided if the probability value is
low and no conclusions can be drawn form the results.[16]

16

4.3. REGRESSION ANALYSIS CHAPTER 4. MACHINE LEARNING

4.2.3 Algorithms

There are a lot of techniques to be used for classification in a wide range of complexity.
There are linear classifications similar to the ones used for regression analysis and k-
nearest neighbors which is also used for recommender systems that can be applied to
classification problems. Our case-study focuses on decision trees and a combination of
decision trees into Random Forests[17]. Random Forest is one of the most powerful
methods for classification and can be very efficient with default parameter settings.

4.3 Regression analysis

Today, more than ever, organizations are interested in trying to predict the future. A
few well known cases where prediction is used are stock prices, future sales, and climate
change. The common denominator of these problems is the ability to describe them
as functions. Therefore, when trying to solve or study, one of these problems what we
are actually trying to do is to reproduce the function that describes the input data.
Regression analysis contains several techniques for calculating the function, or curve, to
fit the input data. In this section we will show some basic examples for predicting the
temperature for a city based on the historical data provided. The figure below is an
example of regression analysis used to predict trends in the stock market.

Figure 4.2: Looking for trends in time-series with the help of linear regression analysis

4.3.1 Curves and techniques

This report will focus on the Ordinary least squares technique to compute the constants
for each x-factor in the model.[18] The ordinary least squares method is well suited since
it is well documented and quite easy to grasp. Combined with the method’s wide use
makes it a great fit for this report.

Similar to the mathematical definition, we split curves into two categories: Linear
and Non-linear curves. Linear curves are all curves on the form y = a ∗ X where the
length of vector a and X is the same as the largest x-factor exponent in the curve.
Non-linear curves are curves on the form y = f(x). Examples of these functions are sine,

17

4.3. REGRESSION ANALYSIS CHAPTER 4. MACHINE LEARNING

cosine, logarithmic functions or any other function that depends on an input variable.

Choosing the type of curve to model the data after is a critical point in regression
analysis. A helpful way to decide a good curve type is to visualize the dataset. Try to see
what type of curve may be a good candidate. It is of course possible to check the result
for many different type of curves. The problem is that there does not exist a real end to
how complex the function describing the curve can be. The complexity-versus-accuracy
problem will be discussed later on but a rule of thumb is to not mix different types of
functions if possible. In this report the focus will be towards polynomial curves since
they have a wide area of use in practice. The difference in implementation between the
curves is fairly small.

4.3.2 Core model

This section will describe how the computations of the ordinary least squares method
are done to give an understanding of what is happening “under the hood”. The infor-
mation needed from the dataset is a feature-vector. The feature-vector contains the
values we want to use to compute the curve. In the use-case we extracted the average
temperature of April for each year from a city. The average temperatures will be the
feature-vector in the use-case. Another important thing to be aware of is the design-
vector. The design-vector contains the values for where along the x-axis each data-point
in the feature-vector should be plotted. In the use-case this came straightforward from
the feature-vector. We took the first data-point as index 0 and then each consecutive
point got the corresponding natural number. However there are two pitfalls to be aware
of. The first comes back to chapter two about missing values. In the use-case, if a year
would not have an average temperature for April the design-vector would be wrongly
adjusted one step. This would possibly end up in an incorrect curve. The other thing
is if the design-vector does not follow a uniform tick between each data-point. This can
usually be determined from the context of the dataset.

We will make up a simple example to explain the computations of the ordinary
least squares method and to show how the underlying vectors look. The vectors will
be a feature-vector with five values and a design-vector with five consecutive values for
simplicity. They could look as follows;

Feature− vector =



3

4

6

8

11


Design− vector =



0

1

2

3

4


Now the formula for the ordinary least squares method is (X ′X)−1X ′Y . Y is the

18

4.3. REGRESSION ANALYSIS CHAPTER 4. MACHINE LEARNING

same matrix as the feature-vector, just transposed to create the correct output matrix.
The X matrix is the same as the design-vector with one minor change. In the X matrix
we determine the exponent factor of x in the computed model. So if we want to make a
classic linear equation on the form y = k ∗ x + m or more explicitly y = k ∗ x1 + m ∗ x0.
Then the X matrix will look as the figure below. X ′ is the transpose of X and (X ′X)−1
is the inversion of the dotproduct of X and it’s inversion. The X matrix for the line we
want to compute looks as follows;

X =



x0 x1

1 1
1 2
1 3
1 4
1 5


Now that we know how the matrices look for each variable in the formula the actual
calculations in itself will not be shown here. Rather we will show a few lines of code that
perform the calculations.[19]

1 yMat = mat(valueArr).T

2 xTx = xMat.T*xMat

3 ws = xTx.I * (xMat.T*yMat)

ws is an 1 × n matrix with each slope coefficient in consecutive order starting with
x0

4.3.3 Managing the model

When the system is implemented it is time to determine which curve describes the data
points best. A common method to do this in regression analysis is the coefficient of
determination.[20] The coefficient of determination is calculated as an average error-rate
between the predicted points and the data-points provided. The coefficient is a value
between 0 and 1 which is called R squared, written R2. The closer R2 is to 1, the better
the curve describes the data-points. If R2 = 1 then all the data-points are on the com-
puted curve. The mathematical computation of R squared is as follows;

R2 = 1 − SSres

SStot
SStot =

∑
(yi − y)2 SSres =

∑
(yi − fi)

R2 is a way to check how well the model fits the training data. This can be a nice mea-
surement to have but it is more interesting to see how well the model fits validation data.
this report uses the metrics of mean absolute error to compute the fit of validation data
(test data). The equation below shows how the mean absolute error is computed. yi is

19

4.3. REGRESSION ANALYSIS CHAPTER 4. MACHINE LEARNING

the data-point from the validation set and fi is the model computed value for that index.∑√
(yi − fi)2

To cross-validate the models we split up the dataset into k equally sized folds and use
k− 1 folds for training and the last fold for validation.[21] For each run we compute the
mean absolute error. The computations run k times, so each fold get to act as validation.
Then we compute the average mean absolute error to get a value that is not dependent
on a specific fold.

It is common to get more data over time from problems solved by regression analysis.
Therefore, it is interesting to know how to update the model and get a better prediction
over time. The solution is simple. Add the new data-points to the existing dataset and
run the system again to get the new model. Usually this is not done for every new
data-point that gets observed; it is rather done in batches. How large a batch is depends
on the data intensity of the observations. Since the latest model is saved away it can still
be used while computing the new model. This allows for a nice overlap when updating
the model.

Saving away the model is simple. After determining which model fits the data best.
The only thing needed to be done is to save it or send it to the system that will benefit
from the predicted data.

4.3.4 Complexity vs accuracy trade-off

The main aim of regression analysis is not to predict the exact data-point, even if that
would of course be nice, but rather to predict trends and find the way the data develops.
Due to this, reason there exists a model complexity versus prediction accuracy trade-off.
A complex model correlates well with historical data, but usually leads to overfitting and
poor accuracy when trying to predict new data. This is the core problem in regression
analysis. A very complex model can fit any cluster of data-points but it does not tell
how well the model predicts the future.

There is no simple correct way to handle this trade-off but there are two common
ways to look at it. The first one is to strive toward choosing a simple model. It is useful
to use the R2 measurement to see how much better a more complex model fits the data
than a simple model. A useful guideline for linear models is to only use models that
contain the first three x exponents, it is preferred that those slope coefficients may not
be zero. The other tool to handle complexity and accuracy is to actually look at the
curve. Measurements can only help with historical data but we can with our eyes and
mind make assumptions on where data-points might come in the future. All these tools

20

4.4. RECOMMENDER SYSTEM CHAPTER 4. MACHINE LEARNING

are subject to us developers to some degree which might not be perfect, so use the tools
with some caution.

4.4 Recommender system

In certain situations, data is available but with missing values. For example a user who
has rated some movies, but not all. Note that these missing values are intentional and
not a dataset flaw. A recommender system tries to fill in the missing values using cur-
rent knowledge. It recommends new values. It is easy to reason about the problem by
dividing it into a user part and an item part. The user is the user in the case of rating
movies, while the movie is the item. Most datasets where recommendation systems are
appropriate can be modeled this way. Two approaches which try to fill in the blanks are
neighborhood-based recommendations and model-based recommendations.

Figure 4.3: Amazon recommended items

A common use-case for recommender systems is finding items that a user might be
interested in, or a movie the user probably will like with regards to previously rated
movies. A wide range of services benefit from recommender systems with some even
using it as its main product.

4.4.1 Neighborhood-based

This approach concerns itself with finding users that should behave similarly to the in-
vestigated user - a neighborhood. The neighbors then decide what the user’s missing
value should be. A common technique when looking for neighbors is to use domain-
specific knowledge about the problem. For example, a social networking site might want
to pick neighbors based on the friend relation with the user. A possible way of find-
ing neighbors for our SMHI problem is to pick them based on physical distance from
the user. The classification algorithm k-nearest neighbors[22] can pick neighbors for us
without requiring specific domain knowledge. The algorithm returns k users based on
how similar their feature vectors are, compared to the investigated user’s feature vector
using a similarity function described earlier.

21

4.4. RECOMMENDER SYSTEM CHAPTER 4. MACHINE LEARNING

Listing 4.1: k-nearest neighbors on Spark

1 # rdd_vectors is a rdd without the investigated vector

2 sims = rdd_vectors.map(lambda ary: (similarity(vector [1:],

ary [1:]), ary [0]))

3 sims = sims.sortByKey(ascending=False)

4 most_similar = sims.take (10)

When the neighbors have been decided we can let them vote on what value the user
should have. The kNN algorithm also returns how similar the neighbor is to the user and
we can use that similarity to weigh the vote of the neighbor, similar neighbor’s votes
influences the result more. When using domain specific knowledge all neighbors may
have the same influence, or in our examples, the number of mutual friends and physical
distance.

Listing 4.2: Weighing neighbors

1 # new base to vote

2 base = 1 / reduce(lambda x,y: x+y[0], most_similar , 0)

3
4 # find the averages from the knns

5 neighborhood_averages = averages.filter(lambda ary: ary[0]

in [y for x,y in most_similar])

6 closest_cities_temp_mean = neighborhood_averages.map(lambda

ary: [[x for x,y in most_similar if (y == ary [0])][0],

ary [39]])

7
8 # Now we weigh the votes with regards to distance

9 new_city_temp_mean = reduce(lambda x,y: x+(base*y[0]*y[1]),

closest_cities_temp_mean.collect (), 0)

Neighborhood-based recommender systems are usually easy to understand and im-
plement but suffer from a few practical flaws when used with big data. The whole
dataset must be considered in order to find neighbors each time a prediction is made,
therefor, the dataset must be in-memory. Neighborhood-based recommender systems
are widely used even with the in-memory performance characteristic.

4.4.2 Model-based

It is common to create models for problems in math. A model usually requires some
limitations and assumptions in order to be practical. When the model has been created
it can be used to explore scenarios and problems related to it. A common approach when

22

4.4. RECOMMENDER SYSTEM CHAPTER 4. MACHINE LEARNING

building recommender systems is to create a model for the dataset and then use that
model to, for example, predict missing values. Some models can be saved and used later.

Matrix factorization[23] creates approximate product matrices of an input matrix.
The goal is for the product matrices to be equal to the input matrix when multiplied
with each other.

R ≈ P ×Qt = R̂

The matrix R̂ contains the missing values from R so that recommendations can be
made. Spark implements an algorithm for matrix factorization using alternating least
squares[24]. The input used when training should be on the form [user, item, rating].

Listing 4.3: Using Spark’s matrix factorization

1 from pyspark.mllib.recommendation import ALS

2 # train = [[user , item , rating], [user , item , rating] ...]

3 model = ALS.train(train , 2, 25)

The second argument passed to the method is the number of desired latent factors[25]
while the third argument indicates how many times the approximation algorithm will
run. As always, it is important to test and tune these arguments to find a good balance
between accuracy and performance.

The prediction only requires the user and item as expected.

Listing 4.4: Predicting with Spark’s matrix factorization

1 model.predict(user , item)

4.4.3 Explicit- and implicit data

Explicit- and implicit data collection are the two ways of gathering data for a recom-
mender system. Explicit ratings are the direct data in relation to an item, such as a
vote, while implicit data is gathered by assuming causation of user actions. When a user
for example watches a lot of romantic movies and that is thought to affect the user’s
preference, then that is implicit recommender data. It is easier to gather implicit data
than explicit data, but implicit data is usually less accurate and using it will sometimes
infringe on the user’s privacy.

23

5
Case-study results

5.1 Evaluation strategy

Classification, regression analysis, and recommender system each use their own described
technique in order to evalute accuracy and result. The most common method however
is to use cross-validation[26]. One of the most common ways to deal with this is to split
up the dataset into k-folds. k − 1 folds is used for training the algorithm and the last
fold is used for validating how the algorithm preforms. To get an average result of how
good the algorithms perform the validating fold is switched so each fold gets to validate
one time each and then the average is computed as a result.

5.2 Classification

A decision was made to go for the Random Forest[17] algorithm since it has become
one of the most popular algorithms lately. Random forest performs well with noise and
variable scaling so depending on how we set up our test we would still be able to use
the same algorithm if we should change our minds and try a different implementation.
Random Forest combine decision trees into a forest. Generated forests can be saved for
future use and estimates of what variables are important, are some of the Features of
Random Forests[?].

There is no implementation of Random Forest in Sparks Mllib[27], thrilled by the
idea to implement our own Random Forest algorithm for spark, we decided not to, due
time limitations. This means that following tests are done by scikit-learn[28], pandas[29]
and NumPy[30] in python.

The first attempt did not show any sign of any storms in Sweden for the specific
test city. Problem were that there the algorithms could not find 5 storms in a total of

24

5.2. CLASSIFICATION CHAPTER 5. CASE-STUDY RESULTS

137,465 data values even though adjustments were made and the algorithms was left to
run for several minutes. According to SMHI the criteria for a storm is when wind force
exceed 24,5 m/s (10-11 Beaufort)[31], this is translated into >24 since there is no double
values for wind force in our datasets.

To achieve better results in the second attempt there were changes to be made. The
dataset was adjusted so that there were significant more storm values in the training set,
which would create a better classifier to be used for test set. A similar technique is used
in Williams, John K et al[32], where test data is created in addition to existing data to
get a more clever algorithm and better end results.

The second attempt gave much better results than the first attempt where the clas-
sification looked like the table 5.1 below. In table 5.2 there are two instances that have
been classified as storm and there is none in first try. Note: both tables are fragments
of the two generated in the test (>130,000 rows).

Table 5.1: First attempt

Storm Non-storm

1.000 0.000

1.000 0.000

9.999 0.001

1.000 0.000

9.998 0.002

Table 5.2: Second attempt

Storm Non-storm

1.000 0.000

9.974 0.026

0.005 9.995

0.007 9.993

9.989 0.011

A binary count using NumPy were done to see how many storm that were not found
in the first attempt and how many was were found in second attempt.

The main goal was to see if we could predict storms from given weather data, applied
to another test weather station (unseen data for our algorithm) to see if we could pre-
dict any storms for that location. Results show that we found more storms than there
actually were during time of data. In a closer look at the dataset we found in total 3
storms, 14 points where wind exceeded 20 m/s and 3216 where it exceeded 15m/s.

Falsterbo, one of the weather stations with a total of 20 measurements indicating
storm had more than four times of predictions which is close to the number of measured
points where wind force exceed 20m/s (171).

25

5.3. REGRESSION ANALYSIS CHAPTER 5. CASE-STUDY RESULTS

5.3 Regression analysis

An abstraction is made over the dataset by using average temperatures within different
timespans. First, by years. Then by using average temperature. The final set of data
points is an average of the month of April each year. This became another abstraction
layer in the sense of taking samples, which was necessary. The best model was deter-
mined with the combined result of the R2 value, the value of the mean absolute error
and subjective prediction of the curve.

The X4-model would be the best fit only looking at the R2 value. When taking
into account the mean absolute error from the cross-validation, the X2-model performs
better at prediction. We do note the steep upward trend that starts in the end, but it is
clearly less steep than the one computed by the X4-model. So among these models, the
X2-model is the preferred one.

Figure 5.1: X2-model with R2 = 0.1344 and Mean absolute error = 0.9469

5.4 Recommender system

Each method is trained on 80% of the data and tested on the remaining 20%. All data
and categories are picked at random.

26

5.4. RECOMMENDER SYSTEM CHAPTER 5. CASE-STUDY RESULTS

Figure 5.2: X3-model with R2 = 0.2243 and Mean absolute error = 1.287

Figure 5.3: X4-model with R2 = 0.2452 and Mean absolute error = 1.089

27

5.4. RECOMMENDER SYSTEM CHAPTER 5. CASE-STUDY RESULTS

5.4.1 Neighborhood-based

First n neighbors are found using the k-nearest neighbor algorithm with features other
than the one being predicted. The neighbors do a weighted vote on the missing feature.
The weight is determined based on the similarity of the k-nearest neighbor algorithm.
All cities are tested in turn against the others in each test.

The lowest error was achieved when 5 neighbors were picked with the kNN algorithm.
If a new city is inserted into the dataset without a temperature, then we can approxi-
mately predict its actual temperature almost within one degree Celsius. The graph 5.1
shows a slight increase in error as the number of kNN neighbors increases. The increase
in error will probably continue to grow as we add more neighbors.

kNN neighbors error

3 1.1

5 1.09

10 1.21

15 1.34

Figure 5.4: kNN neighbors and error

5.4.2 Model-based

Each city inputs each of its features as a ranking into the matrix factorization algorithm.
The investigated city’s feature is not added. Then the city’s missing feature is predicted

28

5.4. RECOMMENDER SYSTEM CHAPTER 5. CASE-STUDY RESULTS

with the help of the newly constructed matrix.

Using 40 latent factors produced an average error of 0.268 looking at the temperature
feature (item). If a new city is inserted into the dataset without a temperature, then we
can approximately predict its actual temperature almost within a quarter of a degree
Celsius. In the graph Figure 5.2, we can clearly see that using between 15 and 43 latent
factors seems to produce good results.

29

5.4. RECOMMENDER SYSTEM CHAPTER 5. CASE-STUDY RESULTS

latent factors error

1 2.53

2 2.26

5 1.79

10 4.27

15 0.65

20 0.37

25 0.33

30 0.33

35 0.30

40 0.26

43 0.35

45 1.55

50 1.87

Figure 5.5: latent factors and error

30

6
Discussion

T
he goal with the report was to create a tool for organizations that want to
get started with machine learning. The report divides the problem into three
different steps. Each step contains relevant and up-to-date descriptions, tips,
caveats, and guidelines. By the end of the report, enough content is covered

in order to allow the reader to solve the original problem. This complies with the goal
of the report and it should be deemed successful.

A sub-goal of the report was to provide a good case-study for demonstrative pur-
poses. The case-study lacks some details and scientific reproducibility, but it is easy to
understand and it demonstrates the discussed problems clearly. Although not optimal,
this compiles with the goals for the case-study.

6.1 Target audience and the need for scale

We intended this report to be read by people that want to use their data but do not know
how. Most chapters of the book are really useful for such people. The chapter about
scalability is only useful if the reader has more data than what can be stored in memory,
or even on a hard drive. In practice, organizations with this amount of data usually
have sufficient knowledge and resources to make this report redundant. We believe that
the target audience may still have use for the report as scalable machine learning is
a very specialized topic across disciplines. The assumption of sufficient resources at
organizations may become flawed as data gathering gets increasingly accessible to more
people.

31

6.2. SCIENTIFIC-, SOCIAL- AND ETHICAL ASPECTSCHAPTER 6. DISCUSSION

6.2 Scientific-, social- and ethical aspects

This report has kept a clear focus of the benefits that comes with machine learning and
big data. But storing data is a hot subject in media for all the wrong reasons. The
following thoughts and discussion reflect the potential downsides in using and storing
user data.

We look at machine learning and big data with eyes filled with excitement and eager,
as an opportunity to create and improve. Unfortunately, technology is not restricted to
good doings. Without proper care, human rights can be jeopardized with or without
evil intent.

Hollywood brought us Skynet and the discussion about malicious robots revolting
against humans. Even though we are nowhere near strong artificial intelligence, modern
computers and techniques, including those described in this paper, enables unimaginable
storage capacity. There is no longer a need for ever throwing away a piece of information
gathered about a user. As described in this paper, increasing data quantity paired with
the rights tools makes for really good features - and weapons. Laws aimed at protecting
the privacy of people have never been as important as they are now. Entities gathering
information have never had as large responsibility as they have now.

Currently, the control lies in the hands of companies and governments and most of
the rules are made with share holders and digital warfare in mind. The step from a great
recommendation on an e-commerce site to unfair profiling using private information is
small. Sometimes even reasonable systems can be used for questionable purposes, e.g.
do you really want your insurance company to run machine learning on your genetics
data?

At the time of writing, news of countries (U.S.A) doing surveillance on a global level
is getting more common. Spying is no longer about knowing what your enemies are do-
ing, but also knowing what your friends are doing and what your people are doing. The
consequences of these actions are beginning to show in the topics discussed at meetings
originally intended to increase the wellbeing of people. The last time international laws
surrounding similar attitudes was agreed on date back to 1949 - they where called the
Geneva Conventions[33].

Even though these extreme scenarios are possible we still believe that the great pos-
sibilities that come with machine learning and big data outperform the downsides. We
do not think the right way to tackle this problem is by trying to put boundaries on the
technology. History has shown that it is much too complicated with the current speed
of progress. We rather point out the importance of informing and educating people on
how to act on the Internet and to be more aware about their privacy. A quote from
Eric Schmidt may sound like a cliché but is really worth considering, “If you have some-

32

6.3. CASE-STUDY SHORTCUTS CHAPTER 6. DISCUSSION

thing that you don’t want anyone to know, maybe you shouldn’t be doing it in the first
place”[34].

The era of machine learning and big data is in an early stage and the possibilities
that come from it are still not widely discovered. We hope and think that this report
will benefit organizations that still have not found a good use for their data. We think
this will truly expand and push the limits of what is possible in machine learning thanks
to innovation in every day.

6.3 Case-study shortcuts

A few shortcuts were taken when creating the case-study. They where needed so that
certain concepts would be clearer for the reader, but also to reduce unnecessary work
for the authors. It was never a goal for the report to benchmark nor to optimize the
methods described. Unfortunately, this makes the case-study harder to reproduce and
ultimately verify.

6.4 System

The system and operations surrounding production machine learning for big data may
arguably be a harder challenge than the modeling itself, which we focus on in this report.
The math is often proven and even neatly packaged, however, the infrastructure from
raw data to real-time queries is not. There are few frameworks helping with this general,
and vast, problem. The final solution is often unique and formed by legacy technologies
and methodologies.

6.5 Streaming

Using real-time data with machine learning is called adaptive machine learning. Real-
time data can also be used with visualization instead of sampling. Streaming is a complex
challenge and outside the scope of this report.

6.6 Further work

Streaming is an interesting field and its perspective would add significant complexity,
but also value, to different topics such as visualization, scalability, and machine learning.

The methods in this report only constitutes the tip of the iceberg. We want to
add more algorithms which solves more problems for the reader. There are plenty of
scalability alternatives not discussed in this report which might fit certain organizations
better. Ultimately, the format of a book would be preferable to that of a report.

33

6.7. CONCLUSION CHAPTER 6. DISCUSSION

6.7 Conclusion

Looking back is not always easy. Knowing where one started then ended up can some-
times be harsh. But in our case it is rather joyful. Our goal was clear from the beginning:
take on one of the more advanced topics in computer science that is still under heavy
development, and create a document for organizations that is both guiding and fun to
read. We are confident in succeeding with that goal.

We have had some initial feedback from the community and the overall attitude has
been positive and encouraging. Representatives from AstraZeneca and Teradata have
expressed excitement and praise. There are separate resources available for most of the
topics discussed in this report. We felt a more comprehensive and complete document
was needed and it ultimately tied the topics together nicely. We have not been able to
find a document with similar breadth.

The report helps the reader go from data to value in logical steps. A mostly complete
system can be built by following this report. Of course, there is a lot more to explore.
Each topic comes with its own set of challenges and a report like this could easily be
turned into several books. The goal was never to fully emerge into each topic but to give
a brief overview helping the reader to explore on her own. It was important to open the
eyes of the reader and disarm the different topics.

34

Bibliography

[1] Apache spark (Apr. 2014).
URL http://spark.apache.org/

[2] Smhi weather data (Apr. 2014).
URL http://www.smhi.se/klimatdata/Oppna-data/Meteorologiska-data

[3] Correlation does not imply causation (Apr. 2014).
URL http://en.wikipedia.org/wiki/Correlation_does_not_imply_

causation

[4] C. R. Edgar Acuña, The treatment of missing values and its effect in the classifier
accuracy, Tech. rep., Department of Mathematics, University of Puerto Rico at
Mayaguez, Puerto Rico (2004).

[5] A. C. Acock, Working with missing values, Tech. rep., Department of Human De-
velopment and Family Sciences, Oregon State University, Corvallis (2005).

[6] Anscombe’s quartet (Apr. 2014).
URL http://en.wikipedia.org/wiki/Anscombe’s_quartet

[7] Support vector machine (May 2014).
URL http://en.wikipedia.org/wiki/Support_vector_machine

[8] matplotlib (Apr. 2014).
URL http://matplotlib.org/

[9] Hadoop (Apr. 2014).
URL http://hadoop.apache.org/

[10] S. G. Jeffrey Dean, Mapreduce: Simplied data processing on large clusters, Tech.
rep., Google (2004).

[11] M. J. F. S. S. Matei Zaharia, Mosharaf Chowdhury, I. Stoica, Spark: Cluster com-
puting with working sets, Tech. rep., University of California, Berkeley (2010).

35

http://spark.apache.org/
http://www.smhi.se/klimatdata/Oppna-data/Meteorologiska-data
http://en.wikipedia.org/wiki/Correlation_does_not_imply_causation
http://en.wikipedia.org/wiki/Correlation_does_not_imply_causation
http://en.wikipedia.org/wiki/Anscombe's_quartet
http://en.wikipedia.org/wiki/Support_vector_machine
http://matplotlib.org/
http://hadoop.apache.org/

BIBLIOGRAPHY BIBLIOGRAPHY

[12] Running spark on ec2 (Apr. 2014).
URL http://spark.apache.org/docs/latest/ec2-scripts.html

[13] Secure shell (Apr. 2014).
URL http://en.wikipedia.org/wiki/Secure_Shell

[14] Amazon web services (Apr. 2014).
URL https://aws.amazon.com/

[15] Bag-of-words model (Apr. 2014).
URL http://en.wikipedia.org/wiki/Bag-of-words_model

[16] O. B. Ellen Spertus, Mehran Sahami, Evaluating similarity measures: A large-scale
study in the orkut social network, Tech. rep., Mills College, Google (2005).

[17] A. Nicluscu-Mizil, R. Caruana, Predicting good probabilities with supervised learn-
ing, Tech. rep., Department of Computer Science, Cornell University, Itchaca NY
14853 (2005).

[18] L. Breiman, Random forests, Tech. rep., Statistics Department, University of Cali-
fornia, Berkeley (2001).

[19] Ordinary least squares (May 2014).
URL http://en.wikipedia.org/wiki/Ordinary_least_squares

[20] P. Harrington, Machine Learning in action, Manning, 2012.

[21] Coefficient of determination (May 2014).
URL http://en.wikipedia.org/wiki/Coefficient_of_determination

[22] Cross-validation (May 2014).
URL http://en.wikipedia.org/wiki/Cross-validation_%28statistics%29

[23] k-nearest neighbors (Apr. 2014).
URL http://en.wikipedia.org/wiki/K-nearest_neighbors_algorithm/

[24] Matrix decomposition (Apr. 2014).
URL http://en.wikipedia.org/wiki/Matrix_decomposition

[25] M. J. Dave Zachariah, Martin Sundin, S. Chatterjee, Alternating least-squares for
low-rank matrix reconstruction, Tech. rep., ACCESS Linnaeus Centre, KTH Royal
Institute of Technology (2012).

[26] Latent variable (Apr. 2014).
URL http://en.wikipedia.org/wiki/Latent_variable

[27] Cross-validation (Apr. 2014).
URL http://en.wikipedia.org/wiki/Cross-validation_(statistics)

36

http://spark.apache.org/docs/latest/ec2-scripts.html
http://en.wikipedia.org/wiki/Secure_Shell
https://aws.amazon.com/
http://en.wikipedia.org/wiki/Bag-of-words_model
http://en.wikipedia.org/wiki/Ordinary_least_squares
http://en.wikipedia.org/wiki/Coefficient_of_determination
http://en.wikipedia.org/wiki/Cross-validation_%28statistics%29
http://en.wikipedia.org/wiki/K-nearest_neighbors_algorithm/
http://en.wikipedia.org/wiki/Matrix_decomposition
http://en.wikipedia.org/wiki/Latent_variable
http://en.wikipedia.org/wiki/Cross-validation_(statistics)

BIBLIOGRAPHY

[28] Random forests, leo breiman and adele cutler (May 2014).
URL http://www.stat.berkeley.edu/~breiman/RandomForests/cc_home.htm#

workings

[29] Spark mllib documentation 0.9 (May 2014).
URL http://spark.apache.org/docs/0.9.0/api/mllib/index.html

[30] scikit-learn, machine learning in python (May 2014).
URL http://scikit-learn.org/stable/

[31] pandas (May 2014).
URL http://pandas.pydata.org/

[32] Numpy (2014).
URL http://www.numpy.org/

[33] About storms smhi (May 2014).
URL http://www.smhi.se/kunskapsbanken/vad-betyder-olika-ord-om-

vind-1.35876

[34] J. K. Williams, T. S. M. S. D.A Ahijevych, C. J. Kessinger, S. Detting, A machine
learning approach to finding weather regimes and skillful predictor combinations for
short-term storm forecasting, Tech. rep., National Center for Atmospheric Research,
Boulder, Colorado (2008).

[35] The geneva conventions of 1949 and their additional protocols (May 2014).
URL http://www.icrc.org/eng/war-and-law/treaties-customary-

law/geneva-conventions/

[36] Eric schmidt about privacy online (May 2014).
URL http://video.cnbc.com/gallery/?video=1372176413

37

http://www.stat.berkeley.edu/~breiman/RandomForests/cc_home.htm#workings
http://www.stat.berkeley.edu/~breiman/RandomForests/cc_home.htm#workings
http://spark.apache.org/docs/0.9.0/api/mllib/index.html
http://scikit-learn.org/stable/
http://pandas.pydata.org/
http://www.numpy.org/
http://www.smhi.se/kunskapsbanken/vad-betyder-olika-ord-om-vind-1.35876
http://www.smhi.se/kunskapsbanken/vad-betyder-olika-ord-om-vind-1.35876
http://www.icrc.org/eng/war-and-law/treaties-customary-law/geneva-conventions/
http://www.icrc.org/eng/war-and-law/treaties-customary-law/geneva-conventions/
http://video.cnbc.com/gallery/?video=1372176413

	Introduction
	Dataset
	Scalability
	Machine learning
	Case-study

	Dataset
	Cleaning
	Missing values
	Faulty values

	Exploration
	Visualization

	Scalability
	Horizontal scaling
	Apache Hadoop
	Hadoop Distributed File System
	Hadoop MapReduce

	Apache Spark
	Clustering
	Fault tolerance

	Machine learning
	General topics
	Feature vector
	Supervised- and unsupervised learning
	Parametric- and non-parametric algorithms
	Similarity measurements
	Algorithm complexity

	Classification
	Binary- and multi-class classification
	Probabilistic classification
	Algorithms

	Regression analysis
	Curves and techniques
	Core model
	Managing the model
	Complexity vs accuracy trade-off

	Recommender system
	Neighborhood-based
	Model-based
	Explicit- and implicit data

	Case-study results
	Evaluation strategy
	Classification
	Regression analysis
	Recommender system
	Neighborhood-based
	Model-based

	Discussion
	Target audience and the need for scale
	Scientific-, social- and ethical aspects
	Case-study shortcuts
	System
	Streaming
	Further work
	Conclusion

	 Bibliography

