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WATERS is a five-year research programme that started in spring 2011. The programme’s 
objective is to develop and improve the assessment criteria used to classify the status of 
Swedish coastal and inland waters in accordance with the EC Water Framework Directive 
(WFD). WATERS research focuses on the biological quality elements used in WFD water 
quality assessments: i.e. macrophytes, benthic invertebrates, phytoplankton and fish; in 
streams, benthic diatoms are also considered. The research programme will also refine the 
criteria used for integrated assessments of ecological water status. 

This report is a deliverable of one of the scientific sub-projects of WATERS focusing on 
uncertainties of WFD classifications for biological quality elements. The report presents 
reviews of WFD requirements and current Swedish assessment criteria and proposes a 
coherent framework for handling uncertainty for all biological quality elements. These 
results will be further elaborated in coming work, thus providing a framework for a more 
harmonised treatment of measurement uncertainties and a tool for optimisation of 
monitoring programmes.  

WATERS is funded by the Swedish Environmental Protection Agency and coordinated 
by the Swedish Institute for the Marine Environment. WATERS stands for ‘Waterbody 
Assessment Tools for Ecological Reference Conditions and Status in Sweden’. 
Programme details can be found at: http://www.waters.gu.se 
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Executive summary 
Assessments of ecological status according to the principles devised by the Water 
Framework Directive (WFD) are always associated with some degree of uncertainty. This 
uncertainty stems from the inevitable imperfection of the assessment criteria and from the 
uncertainty of measurements. While the assessment criteria (i.e. development of indicators 
of ecological status, refinement of reference conditions and class boundaries, and routines 
for integrated assessment) are dealt with in other parts of WATERS, this report aims to 
provide a general framework for analysing the uncertainty of measurements in Swedish 
inland and coastal waters. 

The underlying basis for this work is that: 1) the WFD requires that member states assess 
and report aspects of uncertainty, 2) the Swedish assessment routines and their practical 
application can be further developed to better accommodate WFD requirements and to 
use available monitoring data more efficiently, and 3) a general uncertainty framework 
based on fundamental statistical principles is necessary to improve the consistency and 
transparency of assessments. These topics, including practical examples using Swedish 
data, are covered in different chapters of this report. 

Review of existing policy and guidance documents reveals that two mutually related 
aspects of uncertainty are defined in the WFD, relating to precision and to confidence in 
classification. Precision, defined as the “half-width of the confidence interval”, is a 
measure of the uncertainty of an estimated mean status. How large is the interval within 
which the true mean is located with a given level of confidence (e.g. 95 or 80%)? 
Confidence in classification is a measure of how confident we can be in a certain status 
classification. If the estimated average classification falls within the “good” interval, how 
certain can we be that this is the correct classification? In particular, the Directive stresses 
the importance of confidence in the “better than moderate” classification, because this 
marks the boundary that usually requires that actions be taken. Although the technical 
definitions of these concepts are well known, we conclude that issues concerning 
acceptable levels of confidence and burden of proof are still open to debate and value 
judgement. 

Although the Swedish assessment procedures as developed in the “handbook” (SEPA 
2010) provide some recommendations about the treatment of both precision of estimates 
and confidence in classification, the approach to and practical application of uncertainty 
assessments differ greatly among biological quality elements (BQEs). This is partly 
because of issues related to differences in biology and sampling methods, but partly also 
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due to seemingly arbitrary differences in the approaches used to assess uncertainty. 
Another conclusion is that none of the BQEs in the handbook provides a comprehensive 
treatment of spatial and temporal sources of uncertainty in a way that reflects uncertainties 
associated with assessment throughout a six-year cycle. Consequently, the uncertainty, in 
terms of both precision and confidence, likely differs greatly among BQEs, water bodies, 
and water body types, and there is often a substantial risk that the uncertainty of an 
estimate or a classification is unknown. 

To improve assessments of uncertainty and to achieve better harmonisation among quality 
elements, a general framework is needed. Such a framework would involve conceptual 
identification, quantitative estimation of relevant components of variability, and 
estimation of total variability by combining information on variability and on the structure 
of the sampling design. This framework would provide tentative, qualitative assessments 
of the importance of spatial, temporal, interactive, and sampling-related sources of 
variability. It would distinguish fixed, potentially predictable components of variability 
from random, unpredictable components, which have different consequences for the 
estimation of uncertainty. We illustrate how different sources of variability are combined 
into a total variability measure using fundamentally different designs in terms of spatial 
and temporal replication, and how existing patterns of spatio-temporal variability may 
influence the optimisation of sampling designs. We also briefly review existing methods 
for the estimation of variance components and the calculation of precision and 
confidence. 

Finally, we used the developed framework, estimation methods, and routines for 
combining uncertainties to analyse uncertainty in two datasets on marine benthic 
vegetation and fauna. These analyses demonstrate how the framework can be used to 
estimate sources of uncertainty and to assess overall uncertainty. Among other matters, 
the examples illustrate that: 1) many sources, both fixed and random, contribute to 
uncertainty, 2) coherent analyses of larger datasets produce more reliable estimates of 
sources of uncertainty, 3) the uncertainty of status assessment can be reduced by 
accounting for fixed components, 4) the size and relative importance of different sources 
of uncertainty can differ greatly among areas and regions, within the same BQE and, 5) 
despite considerable uncertainty, it is realistically possible to obtain precise status 
assessment if the full potential of spatial and temporal replication is realised. 

The general conclusion from the analyses presented in this report is that the uncertainty 
framework can contribute substantially to improving the consistency and transparency of 
uncertainty assessments of Swedish coastal and inland waters. The possibility of 
developing a catalogue of uncertainty estimates for Swedish indicators based on extensive, 
quality-controlled datasets should be contemplated. Such a library could provide an 
important tool for future status assessments, particularly in instances in which monitoring 
programmes are insufficient for reliable estimation of uncertainty. Finally, the framework 
developed here will provide an invaluable basis for the further development of monitoring 
designs in subsequent work within WATERS. 
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Svensk sammanfattning 
Alla klassificeringar av ekologisk status enligt EU:s vattendirektiv är behäftade med någon 
grad av osäkerhet. Osäkerheten uppkommer som ett resultat av brister i 
bedömningsgrunderna och på grund av osäkerhet i mätningarna. Medan utveckling av 
bedömningsgrunderna, exempelvis indikatorer, modifiering av referenstillstånd och 
klassgränser samt rutiner för sammanvägd bedömning sker i andra delar av WATERS, är 
syftet med denna rapport att presentera ett generellt arbetssätt för hantering av osäkerhet i 
beräkningar av ekologisk status i Svenska inlands- och kustvatten. 

Bakgrunden för denna ansats är att: 1) genomförande av vattendirektivets intentioner 
kräver att medlemsstaterna utvärderar och rapporterar olika aspekter av osäkerhet i 
statusklassningen, 2) det finns utrymme för utveckling av de svenska 
bedömningsgrunderna och rutinerna för deras praktiska tillämpning så att de bättre 
tillgodoser direktivets krav och så att befintlig övervakningsdata kan utnyttjas på ett 
effektivare sätt, och 3) ett enhetligt arbetssätt grundat på välkända statistiska principer kan 
förbättra enhetligheten och transparensen hos statusbedömningarna och 
osäkerhetshanteringen. 

Analys av direktivstext och vägledande dokument visar att vattendirektivet definierar två 
olika, sinsemellan relaterade, aspekter av osäkerhet: precision och sannolikhet för korrekt 
klassificering. Precision, definierat som bredden på halva konfidensintervallet, är ett mått 
på osäkerheten i en skattad medelstatus. Hur stort är intervallet inom vilket det sanna 
medelvärdet är beläget givet en viss önskad säkerhet (t.ex. 95 eller 80 %)? Sannolikheten 
för korrekt klassificering är ett mått på hur säkra vi kan vara på att en viss klassificering är 
korrekt. Till exempel, om den ekologiska statusen faller inom ramen för intervallet som 
klassas ”god”, hur säkra kan vi vara på att den sanna statusen inte är ”dålig”, ”måttlig” 
eller ”hög”? Direktivet fäster speciell vikt vid sannolikheten för korrekt klassificering av 
bedömningen ”bättre än måttlig” eftersom klassificering ”sämre än måttlig” föranleder 
åtgärder för att rätta till miljöproblem. Dessa två begrepp definieras på ett tillfredsställande 
sätt inom direktivet och dess vägledande dokument. Däremot specificeras i dessa 
dokument inte några definitioner av vad som är en acceptabel nivå för precision eller 
sannolikhet för korrekt klassificering. Inte heller ger direktivet några tydliga 
rekommendationer för hur osäkerheten skall påverka fördelningen av bevisbördan mellan 
olika intressen. 

Handboken för hur vattendirektivets bedömningsgrunder skall tillämpas i svenska kust-
och inlandsvatten innehåller vissa rekommendationer om hur precision och sannolikheten 
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för korrekt klassificering kan utvärderas (Naturvårdsverket 2007). Trots detta skiljer sig 
rutinerna och metoderna starkt mellan de olika biologiska kvalitetsfaktorerna. Detta kan 
delvis förklaras av ekologiska skillnader och övervakningsmetoder, men även av till synes 
godtyckliga skillnader in sättet att hantera osäkerhet. En annan slutsats är att handboken 
inte för någon av kvalitetsfaktorerna ger en sammanhållen strategi för hantering av 
osäkerhet orsakad av rumslig och tidsmässig variation inom ramen för direktivets 6-åriga 
bedömningscykel. En trolig konsekvens av detta är att osäkerheten, både i termer av 
precision och sannolikhet för korrekt klassificering, skiljer sig på ett betydande sätt mellan 
kvalitetsfaktorer, mellan vattenförekomster och –typer. Dessutom finns det en stor risk 
för att osäkerheten i skattningar och klassificeringar i själva verket är okänd. 

För att förbättra bedömningen av osäkerhet och åstadkomma bättre samstämmighet 
mellan kvalitetsfaktorer, krävs det ett gemensamt arbetssätt för hantering av osäkerhet. Ett 
sådant arbetssätt innefattar konceptuella definitioner och kvantitativa skattningar av 
relevanta källor till variation (variationskomponenter), samt att den övergripande 
osäkerheten beräknas genom att kunskap om variationskomponenter kombineras med 
information om övervakningsprogrammens rumsliga och tidsmässiga struktur. Det 
föreslagna arbetssättet ger en preliminär, kvalitativ bedömning av betydelsen av rumsliga, 
tidsmässiga, interaktiva och metod-relaterade osäkerhetskällor. Arbetssättet skiljer mellan 
förutsägbara (”fixerad”) och slumpmässiga variationskällor, eftersom sådana komponenter 
påverkar osäkerheten på olika sätt. Vi visar också hur olika variationskällor kombineras till 
en övergripande osäkerhet när två fundamentalt olika sätt att utforma 
övervakningsprogram med avseende på rumslig och tidsmässig replikering tillämpas. 
Effektiviteten hos sådana program bestäms delvis av hur de faktiska variationsmönstren 
ser ut. Vi ger även en kort översikt av metoder för beräkning av variationskomponenter 
och beräkning av precision och osäkerhet hos klassificeringar. 

Slutligen använder vi det föreslagna arbetssättet för att analysera osäkerheten hos två 
dataset över marin flora och fauna. Dessa analyser visar hur arbetssättet kan användas för 
att skatta enskilda osäkerhetskällor och hur de kan kombineras för att utvärdera 
övergripande osäkerhet. Dessa exempel illustrerar bland annat att: 1) den övergripande 
osäkerheten påverkas typiskt av flera slumpmässiga och delvis förutsägbara källor, 2) 
övergripande analyser av stora dataset ger mer tillförlitliga skattningar av olika källor till 
osäkerhet, 3) osäkerheten hos statusbedömningar kan minskas genom att fixerade faktorer 
inkorporeras i analyserna, 4) storleken på och den relativa betydelsen av olika 
variationskomponenter kan skilja sig mellan regioner för enskilda kvalitetsfaktorer, och 5) 
trots att det finns betydande osäkerheter, är det ofta möjligt att åstadkomma tillräckligt 
precisa statusbedömningar om den fulla potentialen hos den rumsliga och tidsmässiga 
replikationen hos övervakningsprogrammen utnyttjas fullt ut. 

En övergripande slutsats från dessa analyser är att ett gemensamt arbetssätt för att hantera 
osäkerhet kan bidra till att förbättra enhetligheten och transparensen i sättet på vilket 
osäkerhet hanteras i svenska kust- och inlandsvatten. Möjligheten att utveckla ett bibliotek 
av skattade osäkerhetskällor för svenska indikatorer för biologiska kvalitetsfaktorer, 
baserat på stora, kvalitetssäkrade dataset bör övervägas. Ett sådant bibliotek skulle kunna 
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vara ett viktigt redskap för i framtida statusbedömningar, speciellt i fall där relativt lite 
övervakningsdata är tillgängliga. Slutligen kan vi konstatera att det arbetssätt som 
utvecklats här kommer att kunna utgöra en viktig grund för det framtida arbetet med 
utformning av övervakningsprogram i WATERS. 
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1 Introduction 
Assessments of ecological quality according to the Water Framework Directive (WFD) 
(2000/60/EC) are based on four biological quality elements (BQEs): phytoplankton, 
macrophytes, benthic invertebrates, and fish. Using indicators (or metrics) responsive to 
human stressors for each of these BQEs of ecological status allows the status of individual 
water bodies to be assessed using data sampled in monitoring programmes. This process 
typically involves calculating a mean (or median) status that represents an estimate of the 
true mean status during the assessment period. Because this estimate is based on samples, 
and not on complete knowledge of the status throughout the assessment period and in all 
parts of the waterbody, it is very unlikely to correspond perfectly to the true mean status. 
Consequently, estimates of ecological status using indicators are always associated with 
some degree of error.  

Such errors may be small or large, and may be caused by numerous processes that may 
differ among BQEs, but they always introduce some level of uncertainty to decisions 
based on the data. These facts are, of course, well known in the ecological and 
management literature (e.g. Green 1979, Underwood 1992), and robust methods for 
dealing with such uncertainty have largely been developed (e.g. Cochran 1977, Taylor 
1997, Clarke et al. 2006a). Nevertheless, several reviews have identified the need for a 
more coherent treatment of uncertainties in BQE estimates and classification (e.g. Noges 
et al. 2009, Hering et al. 2010, Birk et al. 2012), and the scientific literature raising issues of 
uncertainty in connection with the WFD has grown at an increasing rate since the 
adoption of the Directive (Figure 1.1). Thus, to develop and harmonise current Swedish 
assessment criteria with respect to uncertainty and to illustrate how monitoring can be 
optimised, WATERS has devoted a specific work package to reviewing, analysing, and 
comparing current practices with what was intended in the WFD and to the fundamental 
scientific principles for dealing with various types of uncertainty. 
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FIGURE 1.1 
Amount of research focussing on the WFD since its adoption. Number of scientific 
papers per year mentioning the “Water Framework Directive” with and without 
references to “uncertainty”, “bias”, “error”, or “precision”. Search criteria: (Topic = 
("WATER FRAMEWORK DIRECTIVE" AND (uncertainty OR bias OR error OR 
precision)) Timespan = All Years. Databases = SCI-EXPANDED, SSCI, A&HCI, CPCI-
S, and CPCI-SSH). 

1.1 Uncertainty in the WFD and its guidance documents 

1.1.1 Definitions of uncertainty 

One important component of the WFD and the resulting management cycle is the 
development of monitoring programmes. In this context, notions related to uncertainty 
are introduced; for example, Annex V states that: 

“Member States shall monitor parameters which are indicative of the status of each 
relevant quality element … Estimates of the level of confidence and precision of the 
results provided by the monitoring programmes shall be given.” (p. 53)  

“Frequencies [of sampling] shall be chosen so as to achieve an acceptable level of 
confidence and precision. Estimates of the confidence and precision attained by the 
monitoring system used shall be stated in the river basin management plan.”  
(p. 55) 
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The central aspects of uncertainty identified by the WFD are thus precision and confidence. 
These concepts are elaborated on in CIS Guidance Documents nos. 7 and 13 and the 
definitions provided by these documents are fully consistent with basic statistical 
principles. Nevertheless, as will be demonstrated in the following chapters, their 
application to real-world problems related to the WFD is not always straightforward. 

Precision is a concept that refers to the uncertainty of an estimated parameter, usually the 
mean (though estimates of the precision of the medians or slopes of a regression are 
occasionally required). The operational definition adopted by the guidance documents is 
that precision equals “the half-width of the C% confidence interval”. The confidence 
interval is the interval in which the true value of the estimated mean is located with C% 
probability (Figure 1.2). If a mean is estimated from a number of samples, the width of 
the confidence interval depends on the variability among samples and the number of 
samples (see Annex A for a technical definition). Little variability and many samples result 
in small confidence intervals. It is also well known that C% is, by convention, usually 95% 
in the scientific literature, though it must be noted that the Directive does not stipulate a 
specific confidence level. 

 

 

FIGURE 1.2 
Schematics of the terms precision and confidence. Left: mean ±95% confidence 
interval; right: class boundaries (G–M = 90) and confidence of classification. 

Confidence, on the other hand, is a concept related to precision but, unlike precision, is 
not a measure of the “goodness” of an estimate but a measure of the confidence 
associated with a classification (Figure 1.2), i.e. a probabilistic assessment of a statement 
(e.g. “75% confident that the status is good or high” or “the probability of the status 
being good or high is 75%”). The guidance documents state that confidence is: 

“The long-run probability (expressed as a percentage) that the true value of a 
statistical parameter (e.g. the population mean) does in fact lie within calculated 
and quoted limits placed around the answer actually obtained from the monitoring 
programme (e.g. the sample mean)”. 
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Thus, confidence is an estimate of the probability that a certain classification is correct 
(the probability of an incorrect classification equals 1 – confidence). Although the term 
confidence may refer to the confidence interval, this is often trivial because it is defined by 
convention when the desired precision is defined. More important in terms of the WFD is 
the confidence in status classifications. The confidence in a classification depends on the 
precision of the estimated mean and the location of the mean in relation to class 
boundaries (Figure 1.2; see Annex A for technical definitions of confidence). Large 
confidence intervals and small deviations from class boundaries lead to poor confidence. 
One consequence of this is that any uncertainty about the location of class boundaries will 
introduce additional uncertainty in terms of reduced confidence. Because of its 
implications in terms of mitigation actions, the Directive also stipulates that the most 
important class boundary for classification is that between “Good” and “Moderate” 
(Guidance Document No. 10, p. 42); therefore, the confidence in classification at this 
boundary is crucial (Figure 1.2). 

It should be noted that, although the Directive and its guidance documents provide 
conceptual definitions of precision and confidence, they do not provide quantitative rules 
or targets for acceptable levels of uncertainty. In the scientific community, the use of a 
conventional level of probability, i.e. α = 0.05 and 95% confidence intervals, has long 
been dominant. For various reasons, this approach has in fact been strongly debated in 
the scientific community in recent decades (see Quinn & Keough 2002 for an accessible 
discussion), and it is clear that naïve use of such “rules” may be misleading. Furthermore, 
in the context of environmental impact assessment and status assessment according to the 
WFD, it is important to consider the risks and costs associated with various types of 
decision errors based on statistical arguments (e.g. Mapstone 1995). Nevertheless, the lack 
of guidance in matters concerning the level of confidence clearly introduces risks of 
arbitrariness and lack of coherence among countries and BQEs in status assessment 
procedures. 

In conclusion, uncertainty in the estimation and classification of biological indicators is 
clearly unavoidable in WFD status assessment procedures. The Directive and its guidance 
documents acknowledge this, provide useful definitions of uncertainty, and stipulate 
requirements for reporting, specifying that all assessments should be associated with 
estimates of the precision of and confidence in classification. 

1.1.2 Monitoring and uncertainty 

Because variability and sample size are important determinants of precision and 
confidence, the design and dimensioning of monitoring programmes is crucial for the 
amount of uncertainty in any status classification according to the WFD. The Directive 
and its guidance documents provide some definitions and recommendation on these 
matters. 

First, the Directive distinguishes among three types of monitoring: surveillance, 
operational, and investigative monitoring (WFD Annex V section 1.3). Briefly stated, the 
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purpose of surveillance monitoring is to provide data for an overall status assessment and 
for the detection of long-term trends and effects of human pressures on the BQEs in 
lakes, streams, and coastal and transitional waters. Operational monitoring is designed to 
assess the status of water bodies at particular risk of being classified below target and to 
assess whether mitigation actions have the desired effects. The aim of investigative 
monitoring is to disentangle the causes of any deviations from the desired status. 
Although these types of monitoring are sometimes difficult to distinguish in practice (e.g. 
with respect to sources of funding and division of responsibilities among authorities), the 
framework developed in this report is concerned mainly with surveillance and, to some 
extent, with operational monitoring. 

Second, the Directive provides certain definitions as to the spatial and temporal context of 
monitoring and assessment. For example, it states that: 

“The monitoring network shall be designed so as to provide a coherent and 
comprehensive overview of ecological and chemical status within each river basin and 
shall permit classification of water bodies into five classes consistent with the 
normative definitions … 

On the basis of the characterisation …, Member States shall for each period to which 
a river basin management plan applies [i.e. six years], establish a surveillance monitoring 
programme and an operational monitoring programme.“ (p. 53) 

“Monitoring frequencies shall be selected which take account of  the variability in 
parameters resulting from both natural and anthropogenic conditions. The times at 
which monitoring is undertaken shall be selected so as to minimise the impact of 
seasonal variation on the results, and thus ensure that the results reflect changes in the 
water body as a result of changes due to anthropogenic pressure.” (pp. 55–56) 

These sections identify particular spatial units for monitoring river basins and water 
bodies and recognise the importance of temporal aspects of monitoring, such as periods, 
frequency, and timing. No specific guidelines are provided as to the minimum number of 
samples or spatial units to be sampled, but regarding the sampling frequency, the 
Directive identifies the need for multiple sampling times during an assessment period 
(Figure 1.3). It should be stressed that the prescribed minimum frequencies are very likely 
to produce extremely uncertain estimates and consequently a high risk of 
misclassifications. It is also noteworthy that these sections: 1) attempt to differentiate 
among quality elements, based on differences in temporal variability, and 2) acknowledge 
the importance of temporal variability as a source of uncertainty regarding the overall 
status during an assessment period. The inadequate sampling frequencies suggested in 
Annex V were acknowledged in CIS Guidance Document No. 7, regarding monitoring, 
which recommended higher sampling frequencies for most BQEs and supporting 
elements. 
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FIGURE 1.3 
Minimum sampling frequency requirements for all of the quality elements defined in the 
WFD (from p. 56 of the WFD Annex V). 

 

In summary, the Directive provides certain more or less specific definitions as to the 
spatial and temporal scope when monitoring the various BQEs. The primary spatial unit 
for assessment is the water body and the fundamental temporal unit is the management 
plan period, i.e. six years. These definitions have fundamental implications for the amount 
of uncertainty that we can expect and, more importantly, for how uncertainty is to be 
quantified and accounted for. This is because any estimate of variability and thus 
uncertainty always must be accompanied by a specific spatial and temporal context (e.g. 
Wiens 1989, Levin 1992, Schneider 2001). 

Finally, it is also worth pointing out that one important aim of these definitions is to 
ensure that measures are taken to reduce uncertainty in estimation and classification. Two 
fundamental strategies for doing this can be identified. The first is based on the 
dimensioning and optimisation of spatial and temporal replication; this strategy will reduce 
uncertainty by adjusting the sample size. Second, uncertainty can be reduced by 
minimising and/or accounting for predictable sources of variability. Both these 
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approaches will be explored in WATERS. The framework developed in the present work 
will provide a solid foundation for both efforts. 

1.2 Current procedures for handling uncertainty in Sweden 
In Sweden the WFD is implemented by chapter 5 in the Environmental Code, the 
Ordinance on Water Quality Management (Vattenförvaltningsförordningen, (SFS 
2004:660)) and regulations from the Environmental Protection Agency 
(Naturvårdsverkets föreskrifter och allmänna råd om klassificering och 
miljökvalitetsnormer avseende ytvatten, (NFS 2008:1)). Further guidance and advice on 
the application of assessment criteria are provided in the handbook “Status, potential och 
kvalitetskrav för sjöar, vattendrag, kustvatten och vatten i övergångszon” (2007:4) (see 
SEPA 2010 for a version in English). The latter contains general guidelines as well as 
BQE-specific information on how uncertainty should be assessed and dealt with within 
the Swedish assessment procedures. 

The general guidelines provided in the handbook (chapter 4) stress that all classifications 
are assessed with respect to uncertainty and observe that how uncertainty is assessed 
differs among the BQEs. In accordance with CIS Guidance Documents nos. 7 and 13 
(EC 2003, 2005), the handbook clarifies the importance of precision and confidence as 
central concepts in relation to uncertainty. Procedures for calculating precision and 
confidence based on replicate samples are presented. For situations in which replicate 
samples are missing but prior information on sampling variability is available, alternative 
routines based on the normal distribution assumption are given (see Annex A). 

The table in Annex B summarises the recommendation and requirements for sampling 
and routines dealing with uncertainty for all existing indicators of BQEs in lakes, streams, 
and coastal waters (summarised from annexes A and B of the handbook). Several patterns 
emerge from a coherent analysis of these routines. First, the analysis indicates that, for all 
BQEs, sampling can be done using certain criteria defined in order to reduce variability 
and thus uncertainty in estimates. These criteria are often defined in methodological 
standards developed for monitoring programmes (Annex B). Sampling is typically done at 
standardised depths, substrates, and times of the year and guidelines are occasionally 
provided as to maximum distances among samples. These restrictions, which are based on 
ecological knowledge, have the effect of narrowing down the statistical population to be 
estimated and in most instances probably substantially reduce the uncertainty of estimated 
means. Nevertheless, we can still expect to encounter considerable uncertainty due to a 
number of “uncontrolled” factors. 

Second, the intensity and resolution of spatial and temporal replication differ among 
BQEs. Some BQEs require replicate samples at individual sites, while the replication of 
sites varies among BQEs. Similarly, some BQEs require sampling several times per year 
while others do not. Clearly, these differences are often justified by sound ecological 
knowledge. One particular aspect related to the overall assessment procedures is that 
some BQE status assessment prescribe that data from a number of years (typically ≥3) 
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should be incorporated in estimates of status (e.g. phytoplankton in lakes and coastal 
waters). For other BQEs, it is stated that estimates are preferably based on “several 
measurements”, but it is not clear whether these involve several years of data, and a 
minimum number is not prescribed. This means that the status of some BQEs is assessed 
based on individual years, while the status of others is averaged over a number of years, 
thus including uncertainty due to year-to-year variations.  

Finally, it is also evident that recommendations about how to deal with uncertainty in 
estimates in the assessment procedure differ among BQEs and in some respects do not 
completely cover all aspects of uncertainty defined in the WFD guidance documents. One 
striking difference is the use of different measures of precision. All the metrics for lakes 
and streams employ the standard deviation as a measure of precision, while the metrics for 
coastal waters (a) make no mention of measures of precision for coastal phytoplankton, 
(b) use a one-sided bootstrap confidence interval (80%) for coastal macrofauna, and (c) 
use the standard deviation for macrophytes (note that recommendations as to the level of 
precision are given for only one BQE). Furthermore, in lakes and streams, standard 
deviations indicative of methodological uncertainties are given in tables (except in the case 
of fish, for which an empirical formula is given). Some of these differences may relate to 
differences in sampling designs (i.e. differences in spatial and temporal replication). 
Nevertheless, this diversity in recommendations and routines clearly could obscure a 
coherent assessment of uncertainty, lead to arbitrariness in the handling of uncertainty in 
whole-system assessment, and cause confusion in practical application. The analysis also 
indicates that considerations related to the confidence of estimates and the precision of 
reference conditions or class boundaries are not covered, even though these are central 
concepts in the Directive and its guidance documents.  

These initial analyses have identified several issues in relation to uncertainty in estimation 
and classification that are largely or partly unresolved in the Swedish assessment criteria. 
Specifically, issues related to: 1) the quantification of uncertainties at different temporal 
and spatial scales (e.g. a whole assessment cycle, individual years, water bodies or water 
body types) in situations in which spatial and temporal replication is sub-optimal, and 2) 
decision rules in statistical tests of deviations from the good–moderate boundary. To 
address these issues, we propose a framework-based identification, estimation, and 
combination of various components of variability. This allows the more realistic 
estimation of precision and confidence than is permitted by current procedures and 
creates the prospect of harmonising assessment criteria in relation to the handling of 
uncertainty. Furthermore, this framework provides a solid foundation for attempts to 
reduce uncertainty by optimising monitoring designs and incorporating important 
environmental factors as covariates. 
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2 Objective 
The objective of this report is to review important concepts, routines, and scientific tools 
for assessing and treating uncertainty in the estimation and classification of ecological 
status indicators. Special attention is paid to central concepts defined in the WFD and to 
the routines described in Swedish assessment criteria and routines.  

This review will form the basis for developing a general framework for treating 
measurement uncertainty across all BQEs. The framework needs to be flexible in that it 
acknowledges fundamental differences in spatio-temporal variability, sampling costs, and 
other specific ecological differences among BQEs, but also general in that it can be 
applied to all BQEs and possibly also to other quality elements relevant to the WFD and 
related directives. To assess its general applicability, we test this framework by applying it 
to two examples using real monitoring data.  

The aim is to improve the treatment of uncertainty in revised versions of the Swedish 
assessment criteria and routines. The main benefits will be better appraisal of the 
uncertainties associated with the estimation and classification of ecological status, more 
user-friendly routines through better harmonisation and transparency, and ultimately 
reduced uncertainty due to more appropriate sampling designs and by proposing various 
ways to account for important factors contributing to the overall uncertainty. 
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3 Sources of uncertainty  
Assessing the ecological status of water bodies is inherently associated with uncertainty; 
accordingly, the WFD Common Implementation Strategy guidelines (no. 13) stipulate that 
the confidence of the classification should be reported. To report the confidence of an 
indicator referring to different status classes, the uncertainty of the indicator must be 
quantified. As outlined in CIS guideline no. 13, many sources of uncertainty can 
contribute to the overall uncertainty of the indicator. 

The observations used for calculating an indicator contain elements of uncertainty 
stemming from the sampling and analysis of the sample. The various sources of 
uncertainty can be grouped into three categories of variation: temporal components, 
spatial components, and components associated with sampling and analyses. These 
sources of variability can be completely or partly fixed and completely or partly random. 
The distinction between fixed and random factors is sometimes difficult to make, but may 
greatly affect how they contribute to the uncertainty of a status assessment and how the 
uncertainty is calculated (e.g. Clarke 2012). For the purposes of the present report, we 
define fixed (i.e. predictable) and random (i.e. unpredictable) components as follows: 

• Fixed components are either continuous variables displaying a linear or 
otherwise predictable relationship with the response variable, or a categorical 
variable with a limited number of classes for which means of the response 
variable differ. The component is completely fixed if the continuous variable 
completely explains the variability (not relevant) or if all levels of the categorical 
variable are sampled (i.e. all years within an assessment cycle). In this report, fixed 
components are denoted by lowercase letters. 

• Random components are spatial and temporal components of variability that 
cannot be attributable to any continuous variable in a predictable way, using 
currently existing data or models. In this report, random components are denoted 
by CAPITAL letters. 

3.1 Uncertainties associated with temporal variability 
According to the WFD, the classification should be carried out for six-year periods, and 
the indicator should characterize the overall mean conditions for that six-year period. 
Since the water body cannot be continuously monitored throughout the assessment 
period, the overall temporal mean should be assessed based on discrete samples in time. 



WATERS: UNCERTAINTY IN STATUS ASSESSMENT 
 

 24 

Variations in environmental time series can generally be partitioned into trends (i.e. 
interannual variation), seasonal variation, diurnal variation, and irregular fluctuations. 

• Interannual variation describes the variation between years, and this variation is 
partly fixed and partly random. The fixed variation can be described by external 
factors influencing the environmental time series, such as temperature, 
freshwater, and discharge, whereas the random variation describes the remaining 
unexplained interannual variation. 

• Seasonal variation describes the variation within a year that is of a cyclic 
character. It can also be partitioned into a fixed component, which is the mean 
seasonal variation repeating itself every year, and a random component, which 
describes fluctuations around the mean seasonal variation. 

• Diurnal variation describes the variation within a day with a cyclic character. It 
can also be partitioned into a fixed component, which is the mean diurnal 
variation repeating itself every day or in response to changes in day length or 
another external factor with a diurnal pattern, and a random component, which 
describes additional fluctuations around the fixed diurnal variation. 

• Irregular fluctuations are random short-term variations between samples taken 
within a time interval that is short relative to the other factors. 

3.2 Uncertainties associated with spatial variability 
The ecological status assessment of a water body should apply to the entire water body 
and not just consider a single monitoring station. Since it is impossible to monitor every 
parcel of water or every square meter of the bottom, the status of the water body should 
be assessed from a few spatially distinctive monitoring stations. The spatial variation can 
be partitioned into large-scale gradients within the water body and small-scale fluctuations. 

• Large-scale gradients describe the spatial variation within a water body, and 
this variation is partly fixed and partly random. The fixed variation can be 
explained by differences in depth, sediment, substrate, salinity, etc., whereas the 
random variation describes the remaining unexplained spatial variation. 

• Small-scale fluctuations describe random variations between samples taken 
near each other, for example, benthic samples from the same station. 

3.3 Uncertainties associated with sampling and analysis 
These uncertainties relate to the methods, materials, and people used when sampling and 
measuring the variable in question and, as such, are highly specific to the actual type of 
monitoring. 

• Variation between sampling devices describes the variation between different 
sampling methods. For example, in the case of water samples, there could be 
differences between Niskin bottle and hose samples; for benthic vegetation cover, 
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there could be differences between video recording and diver assessment; and for 
benthic fauna, there could be differences between van Veen grab and Smith-
McIntyre grab sampling. Since the number of sampling methods is fairly limited 
and the methods are assumed to be intercalibrated, this factor would normally be 
considered fixed. 

• Person(s) conducting the sampling and analysis accounts for the human 
factor affecting the measurement. For example, there are differences between 
taxonomists counting the phytoplankton samples, between divers assessing 
macroalgal cover and species-specific depth limits, and between people operating 
HPLCs and other devices. This source of uncertainty is random, since it must 
account for all people potentially involved in the sampling and analysis. 

• Analytical variation between instruments describes the variation caused by 
using different types of instruments (i.e. different brands and models) to measure 
constituents such as chlorophyll a. Since the number of different types of 
instruments is limited, this factor would be considered fixed. 

• Replicate and sub-sampling uncertainty accounts for the random variation 
occurring if a sample measurement is replicated or a sample is subdivided into 
several samples that are analysed separately.  

3.4 Uncertainties due to interactive variability 
These ten different sources of uncertainty as well as their interactions may significantly 
affect the various indicators used for ecological status classification in the WFD. Although 
most of the interactions can be considered irrelevant and are often set to zero, two of 
them warrant more consideration. First, the interaction between interannual variation and 
large-scale spatial variation could be a significant source of random variation, in that there 
could be large-scale shifts in spatial distributions across years. Second, there could also be 
differences in seasonal variation across the large-scale spatial gradient. However, 
interactions between the large-scale spatial gradient and the diurnal variation as well as 
irregular fluctuations are more difficult to interpret and hence could be assumed to be 
irrelevant and set to zero for practical purposes. Similarly, the possible interactions 
between small-scale spatial variation and temporal variation can be considered small and 
assumed to be negligible. Finally, it can also be justifiable to assume that the 
methodological uncertainty associated with sampling and analysis is independent of the 
sampling in time and space, so all interactions between these factors can be set to zero.  
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3.5 Combining uncertainties of BQE monitoring data 
A measurement variable can be assumed to be governed by the following sources of 
variation: 

𝑦 = 𝜇 + 𝑦𝑒𝑎𝑟 + 𝑌𝐸𝐴𝑅 + 𝑠𝑒𝑎𝑠𝑜𝑛 + 𝑆𝐸𝐴𝑆𝑂𝑁×𝑌𝐸𝐴𝑅 + 𝐷𝐼𝑈𝑅𝑁𝐴𝐿 + 𝐼𝑅𝑅𝐸𝐺𝑈𝐿𝐴𝑅
!"#$%&'(  !"#$%&!  !"  !"#$%&!"#$%

 

+ 𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡 + 𝐺𝑅𝐴𝐷𝐼𝐸𝑁𝑇 + 𝑃𝐴𝑇𝐶𝐻𝐼𝑁𝐸𝑆𝑆
!"#$%#&  !"#$%&!  !"  !"#$%&'("&)

 

+ 𝑌𝐸𝐴𝑅×𝐺𝑅𝐴𝐷𝐼𝐸𝑁𝑇 + 𝑆𝐸𝐴𝑆𝑂𝑁×𝐺𝑅𝐴𝐷𝐼𝐸𝑁𝑇
!"#$%&!!"#$%&'(  !"#$%&'#!(")

 

+ 𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔  𝑑𝑒𝑣𝑖𝑐𝑒𝑠 + 𝑃𝐸𝑅𝑆𝑂𝑁 + 𝑖𝑛𝑠𝑡𝑟𝑢𝑚𝑒𝑛𝑡 + 𝑅𝐸𝑃𝐿𝐼𝐶𝐴𝑇𝐸
!"#$%&'(  !"#  !"#$%&"!"'(  !"#$%&'("&($)

 

where fixed effects are shown in lowercase letters and random effects in capital letters. 
However, it is difficult to quantify all of these separately, since this would require an 
unrealistically large monitoring programme combining the factors at different levels. In 
practice, it is only possible to estimate a few of these factors from monitoring data, and 
the ones that can be estimated are specific to each type of monitoring data and 
programme. Another issue is that several of the above factors may contribute relatively 
little variation to the observations and therefore not merit inclusion. 

In the following tables, the interpretation and possible relevance of the various factors are 
assessed. The relevance is assessed in relation to any uncertainty the factors may add to 
the estimation of the ecological status of single water bodies throughout a six-year 
assessment period. Therefore, they do not primarily assess the importance of large spatial 
(e.g. biogeographic and among water bodies or water body types) or temporal (e.g. 
climatic trends or decadal shifts) scales. Similar qualitative and quantitative assessments of 
several quality elements, including attempts to synthesise information from various parts 
of Europe, were conducted in the WISER project (www.wiser.eu; e.g. Neto et al. 2012, 
Courrat et al. 2012, Dudley et al. 2012, Thackeray et al. 2012). Furthermore, it must be 
stressed that these assessments are qualitative and relative to other components: there may 
be circumstances in which components deemed irrelevant here may add some uncertainty 
to estimated means. To assess uncertainty and to design sampling programmes, it is crucial 
to obtain quantitative estimates of these components. Procedures for estimating variability 
and uncertainty are described elsewhere in this report, and realistic, numerical examples of 
how variability and uncertainty are calculated are given in chapter 5. 

3.6 Uncertainty in estimates of phytoplankton 
Temporal variations in phytoplankton characteristics are dynamic and will contribute 
substantial variation (Table 3.1) on the interannual scale (as both predictable, year, and 
unpredictable, YEAR) and seasonal scale (as both predictable, season, and unpredictable, 
SEASON). However, it is more difficult to assess the relevance of diurnal variation 
(DIURNAL) for phytoplankton, as vertical migration can be important for some 
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communities in some waters, whereas it could be irrelevant in other cases. In addition, 
large fluctuations in the short-term dynamics will be included in the IRREGULAR 
component. It is also believed that most water bodies will exhibit a pronounced and 
predictable spatial gradient (gradient) in response to depth, nutrient conditions, salinity, 
etc., but this represents only a fraction of the explicable large-scale spatial variation, so the 
remaining variation is termed random (GRADIENT). The relative spatial distribution of 
phytoplankton may not necessarily be static, i.e. changing similarly over time in a given 
spatial segment, since the spatial patterns may change between years (YEAR × 
GRADIENT) and over the season (SEASON × GRADIENT). Finally, the sampling and 
analytical uncertainties associated with measuring chlorophyll a are considered small and 
likely not relevant, as using different water samplers, people, and instruments is believed 
to change the measurement results only marginally, and the variation between duplicate or 
triplicate measurements (REPLICATE) is small. However, for phytoplankton counts, the 
human factor (i.e. taxonomical skills of the person identifying and enumerating the 
specimens) is substantial, and there can be large variations between sub-samples, even 
when analysed by the same person. 

TABLE 3.1 
Importance of different sources of variation in phytoplankton characteristics assessed 
using chlorophyll a or pigment analyses as well as in phytoplankton counts for 
estimating the phytoplankton volume/biomass and composition. 

Type of 

uncertainty 

Uncertainty 

component 

Chla/pigments Phytoplankton 

volume/biomass 

Composition 

Temporal sampling Year Relevant Relevant Relevant 

YEAR Relevant Relevant Relevant 

season Relevant Relevant Relevant 

SEASON Relevant Relevant Relevant 

DIURNAL Maybe relevant Maybe relevant Maybe relevant 

IRREGULAR Relevant Relevant Relevant 

Spatial sampling gradient Relevant Relevant Relevant 

GRADIENT Relevant Relevant Relevant 

PATCHINESS Relevant Relevant Relevant 

Spatio-temporal 

interaction 

YEAR × GRADIENT Relevant Relevant Relevant 

SEASON × GRADIENT Relevant Relevant Relevant 

Sampling method sampling device Not relevant Not relevant Not relevant 

PERSON Not relevant Relevant Relevant 

instrument Not relevant Maybe relevant Maybe relevant 

REPLICATE Small Relevant Relevant 
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3.7 Uncertainty in estimates of benthic vegetation 
Temporal variations in benthic vegetation can be large, although not nearly as large as 
those of phytoplankton, so it is not relevant to consider short-term irregular variations 
(IRREGULAR) or diurnal variations (DIURNAL) (Table 3.2). Benthic vegetation 
typically has a characteristic unimodal seasonal variation, with the largest biomass, cover, 
and shoot density occurring in late summer. Hence, seasonal patterns, both fixed (season) 
and random (SEASON), are important sources of variation. However, benthic vegetation 
is normally sampled only during the summer–early autumn period, to allow for 
comparison across years and sampling locations without taking the seasonal variation into 
account. This approach of excluding the seasonal variation is permissible, provided that 
sampling is carried out only during a fairly invariant seasonal window and that the 
sampling methodology stays the same in the future. Interannual variations can be large in 
response to changing light conditions, nutrient levels, physical disturbances, etc., and these 
variations are partly predictable (year) and unpredictable (YEAR). Benthic vegetation 
exhibits a pronounced and partly predictable spatial pattern (gradient) in response to 
depth, sediment/substrate characteristics, salinity, and nutrient levels. However, a 
relatively large spatial variation (GRADIENT), unexplainable by other governing factors, 
is believed to remain. This large random spatial variation may even vary substantially 
between years (YEAR × GRADIENT). If the benthic vegetation is sampled, for example, 
using a frame to collect data, the actual choice of sampling device (sampling device) may 
influence the outcome, though this possibility is not well documented. In most cases, the 
same sampling device is used over time, so it may not be relevant to consider this source 
of uncertainty. On the other hand, the uncertainty associated with the person (PERSON) 
analysing the sample or monitoring the benthic vegetation can be quite substantial, 
particularly at the taxonomical level. The choice of monitoring instrument, for example, 
underwater cameras, can contribute some uncertainty to the observations, but this still 
needs to be further investigated. Replicated monitoring of the exact same location or of 
the same sample is not carried out in benthic vegetation monitoring, because it is 
considered too expensive or impossible (e.g. to ask a diver to repeat the exact same 
transect) or because sampling is destructive and replicated measurement is impossible. 
The uncertainty associated with replicated measurement (REPLICATE) cannot be 
assessed and thus will be confounded with other sources of variation. 
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TABLE 3.2 
Importance of different sources of variation in benthic vegetation characteristics 
assessed using cover and depth limits for the community as a whole and for specific 
key species as well as the taxonomical composition. 

Type of 

uncertainty 

Uncertainty 

component 

Community 

abundance 

(cover & depth 

limits) 

Abundance of 

key species 

(cover & depth 

limits) 

Composition 

Temporal 

sampling 

year Relevant Relevant Relevant 

YEAR Relevant Relevant Relevant 

season Maybe relevant Maybe relevant Maybe relevant 

SEASON Maybe relevant Maybe relevant Maybe relevant 

DIURNAL Not relevant Not relevant Not relevant 

IRREGULAR Not relevant Not relevant Not relevant 

Spatial sampling gradient Relevant Relevant Relevant 

GRADIENT Relevant Relevant Relevant 

PATCHINESS Relevant Relevant Relevant 

Spatio-temporal 

interaction 

YEAR × GRADIENT Relevant Relevant Relevant 

SEASON × GRADIENT Relevant Relevant Relevant 

Sampling method sampling device Maybe relevant Maybe relevant Maybe relevant 

PERSON Relevant Relevant Relevant 

instrument Maybe relevant Maybe relevant Maybe relevant 

REPLICATE Maybe relevant Maybe relevant Maybe relevant 

 

3.8 Uncertainty in estimates of benthic diatoms 
Benthic diatoms are sessile microscopic algae, primary producers often dominating 
periphytic communities on stones and other substrates in freshwater streams and lakes. It 
is a very taxa-rich group, and more than one hundred taxa can often be found within a 
few cm2. Because different taxa have different tolerances and sensitivities to 
environmental and human stressors, the taxon composition and the relative abundance of 
each taxon are considered suitable for detecting human impacts. The time scale of the 
response of benthic diatom indices to short- and long-term changes is poorly studied, but 
some studies suggest that temporal variability is usually smaller than that among sites or 
due to human stressors. Therefore, temporal variations in benthic vegetation are probably 
only of medium importance to random (e.g. YEAR and SEASON) as well as fixed (e.g. 
year and season) components (Table 3.3). In regular monitoring, some of this variability is 
accounted for by restricting sampling to late summer–autumn. Because of their relatively 
short generation time and sensitivity to temporary disturbances, such as high water flow, 
short-term irregular random variations (IRREGULAR) may be more important than 
predictable diurnal variations (DIURNAL). The spatial components of uncertainty 
involve both predictable factors (gradient), such as depth, water flow, and bottom 
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substrate, as well as larger-scale GRADIENTs and small-scale PATCHINESS, which are 
mainly unpredictable and potentially important. To eliminate the uncertainty due to small-
scale PATCHINESS, the required monitoring standard specifies that diatoms should be 
sampled from at least five stones (or macrophyte leaves if stones are absent) from a 10-m 
section of the stream, and then pooled into one sample per site. Furthermore, because of 
the unpredictability of yearly and seasonal fluctuations, that random spatio-temporal 
sources of variability (YEAR × GRADIENT and SEASON × GRADIENT) are likely 
important for the abundance and composition of benthic diatom communities. The main 
source of variability potentially associated with sampling and analytical methods is the 
difference in diatom identification in the laboratory among PERSONs. Diatom 
communities are diverse, and any metric constructed from these assemblages is dependent 
on accurate and reliable taxa identification. The importance of this uncertainty is 
underlined in the Swedish handbook (2007:4, p. 63), which stresses that 80% of the 
method-bound uncertainty is due to taxa identification. Finally, because the number of 
diatoms in one five-stone sample of diatom communities collected in the field is 
enormous, it is not feasible to count and identify every single cell. Therefore, uncertainties 
due to sub-sampling (REPLICATE) cannot be ruled out in the case of benthic diatoms. 

 

TABLE 3.3 
Importance of different sources of variation in benthic diatom characteristics assessed 
to determine the relative abundance of all diatom taxa in a sample.  

Type of 

uncertainty 

Uncertainty 

component 

Relative abundance of taxa 

Temporal 

sampling 

year Maybe relevant 

YEAR Maybe relevant 

season Maybe relevant 

SEASON Maybe relevant 

DIURNAL Not relevant 

IRREGULAR Relevant 

Spatial sampling gradient Relevant 

GRADIENT Relevant 

PATCHINESS Relevant 

Spatio-temporal 

interaction 

YEAR × GRADIENT Relevant 

SEASON × GRADIENT Relevant 

Sampling 

method* 

sampling device Maybe relevant 

PERSON Relevant** 

instrument Not relevant 

REPLICATE Maybe relevant 

* “Sampling method” includes field sampling, preparation of permanent slides in the laboratory, and 

identification under the microscope. For the benthic diatom method, studies have demonstrated that the 

importance of identification (PERSON) is the largest source of uncertainty, followed by field sampling; slide 

preparation is only a small source of uncertainty (M. Kahlert, pers. comm.). 
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3.9 Uncertainty in estimates of benthic fauna 
Benthic fauna in Swedish coastal and inland waters consists of a wide range of taxonomic 
and functional groups. The species composition and thus the ecological traits of benthic 
fauna differ dramatically between inland and coastal waters. The fauna of inland waters is 
typically dominated by a great variety of insect families, while that of coastal waters is 
more diverse at the level of phyla. Coastal sediments are typically dominated by a rich 
fauna of polychaetes, molluscs, crustaceans, and, on the west coast, echinoderms. Despite 
these differences, particularly across the dominant salinity gradient extending from inland 
waters and the low saline areas in the Bothnian Bay, through the Baltic Sea, to the oceanic 
conditions in the northern Skagerrak, certain common features can be identified in terms 
of the spatial and temporal components of variability. 

In comparison with planktonic algae and many species of benthic vegetation, the temporal 
variability of macroscopic benthic fauna is usually less pronounced. This is both due to a 
less dynamic environment and because these organisms are more long-lived. Short-term 
DIURNAL and IRREGULAR components can therefore generally be neglected when 
estimating the biomass, abundance, and composition of benthic fauna (Table 3.4). 
Variability at larger time scales, however, is generally more important. Predictable and 
random yearly components (year and YEAR) can clearly be very important. The exact 
causes of these components are often very complex, but processes involving recruitment, 
food supply, and other biological interactions, partly those influenced by differences in 
meteorological and climatic factors, are likely to be important. It is also clear that 
predictable and random variability associated with seasonality (season and SEASON) may 
be important. Nevertheless, because benthic invertebrates are sampled during the same 
fixed periods of the year (i.e. spring in coastal waters and autumn in inland waters), the 
fixed component does not in practice add to the uncertainty of monitoring results.  

The abundance and composition of benthic fauna are also highly variable in space. The 
variability within a single water body may be due to relatively large-scale and predictable 
gradients such as depth, salinity, substrate, or wave exposure. Other large- (GRADIENT) 
and small-scale (PATCHINESS) sources of spatial variability may be more difficult to 
understand, and for all practical purposes can be considered random. This also applies to 
a host of spatio-temporal interactions (e.g. YEAR × GRADIENT and SEASON × 
GRADIENT). These interactions involve components associated with the varying 
strength of the effects of gradients among years and seasons. Finally, uncertainty may also 
be associated with the sampling procedures. In general, sampling device and instrument 
standardisation renders these fixed sources of variability less relevant. In coastal 
environments, the van Veen grab sampler is the dominant sampling device, whereas in 
lakes and watercourses, different sampling methods may be used. However, one potential 
source of uncertainty regarding benthic fauna is that due to species identification. As the 
benthic fauna consists of a very large number of species, considerable and specialised 
skills are required from the personnel. Thus, despite rigorous routines for quality 
assurance, PERSON-dependent variability is an issue, particularly in the case of long-term 
data series. In comparison with large-scale gradients, it is probably safe to conclude that 
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variability due to REPLICATE is smaller. Nevertheless, estimates of replicate variability 
from the Skagerrak suggest that this type of variability can account for approximately 15% 
of the variability observed within a water body. Examples from coastal areas are examined 
in more detail in section 6.2. 

 

TABLE 3.4 
Importance of different sources of variation in benthic fauna characteristics assessed 
using biomass, abundance of species weighted by their sensitivity to pollution (e.g. 
BQI), and overall taxonomical composition. 

Type of 

uncertainty 

Uncertainty 

component 

Biomass Abundance of 

sensitive/tolerant 

species 

Composition 

Temporal 

sampling 

year Relevant Relevant Relevant 

YEAR Relevant Relevant Relevant 

season Maybe relevant Maybe relevant Maybe relevant 

SEASON Maybe relevant Maybe relevant Maybe relevant 

DIURNAL Not relevant Not relevant Not relevant 

IRREGULAR Relevant Relevant Relevant 

Spatial sampling gradient Relevant Relevant Relevant 

GRADIENT Relevant Relevant Relevant 

PATCHINESS Relevant Relevant Relevant 

Spatio-temporal 

interaction 

YEAR × GRADIENT Relevant Relevant Relevant 

SEASON × GRADIENT Not relevant Not relevant Not relevant 

Sampling 

method 

sampling device Maybe relevant Maybe relevant Maybe relevant 

PERSON Not relevant Relevant Relevant 

instrument Not relevant Not relevant Not relevant 

REPLICATE Relevant Relevant Relevant 

 

3.10 Uncertainty in estimates of fish 
For practical reasons, monitoring of fish in lakes, streams, and coastal areas in Swedish 
national programmes is done using four different methods (see 
http://www.havochvatten.se/kunskap-om-vara-vatten/miljo--och-
resursovervakning/provfiske-i-kust---sotvatten.html): in lakes and some coastal areas, 
various nets are used; in the coastal Skagerrak and Kattegat, fyke nets are used; and in 
streams, sampling is done using electrofishing. However, in all of these sampling 
programmes, the abundance, species composition, and weight of fish are measured. 

In a pan-European study, temporal and spatial sources of variation in transitional areas 
were assessed qualitatively and quantitatively (Courrat et al. 2012). Similar studies of lakes 
and streams are unavailable, but the fact that the Swedish assessment criteria for these 
BQEs use models based on environmental (fixed) factors to predict reference conditions 
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and that they report uncertainty due to methodological errors (Annex B) suggest that 
information on these issues is available. Furthermore, taken together, this information 
suggests that fixed components due to temporal (year and season) as well as spatial gradients 
are likely very relevant (Table 3.5). These patterns are ultimately related to temporal and 
spatial variability due to temperature, salinity, depth, etc. (likely differing among lakes, 
streams, and coastal areas and also dependent on temporal and spatial scale). Of course, it 
is very likely that fish assemblages vary both predictably and unpredictably among seasons 
(season and SEASON), but because monitoring is usually restricted to certain times of the 
year, these components may not be particularly relevant to the uncertainty of monitoring 
data in practice. The abundance and composition of fish assemblages may vary depending 
on time of day in a particular habitat (or at least what is caught in nets) because of 
migration and differences in activity levels. However, because most sampling techniques 
are standardised and integrate over a substantial part of the day, DIURNAL variability is 
not deemed relevant to monitoring data. Components of the sampling and analytical 
processes, particularly components having to do with differences in methods among areas 
(e.g. sampling device), may also be relevant to the uncertainty of fish measurements. 
PERSON dependence is mainly considered important in the case of measurements 
involving species identification, although uncertainty from this source can probably be 
substantially reduced by education. Finally, because net sampling is dependent on fish 
movements and, accordingly, its efficiency may vary, many samples are often necessary to 
achieve sufficient precision within a water body, suggesting that uncertainty due to 
REPLICATE is usually very relevant. 

TABLE 3.5 
Importance of different sources of variation in fish characteristics assessed using 
biomass, abundance of various key species, and overall taxonomical composition. 

Type of 

uncertainty 

Uncertainty 

component 

Abundance of 

key species 

Composition Weight 

Temporal 

sampling 

Year Relevant Relevant Relevant 

YEAR Relevant Relevant Relevant 

Season Maybe relevant Maybe relevant Maybe relevant 

SEASON Maybe relevant Maybe relevant Maybe relevant 

DIURNAL Not relevant Not relevant Not relevant 

IRREGULAR Relevant Relevant Relevant 

Spatial sampling gradient Relevant Relevant Relevant 

GRADIENT Relevant Relevant Relevant 

PATCHINESS Relevant Relevant Relevant 

Spatio-temporal 

interaction 

YEAR × GRADIENT Relevant Relevant Relevant 

SEASON × GRADIENT Not relevant Not relevant Not relevant 

Sampling 

method 

sampling device Relevant Relevant Relevant 

PERSON Relevant Relevant Not relevant 

instrument Not relevant Not relevant Not relevant 

REPLICATE Relevant Relevant Relevant 
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4 Methods for quantifying sources of variability 
To estimate and model the uncertainty of status assessments involving data on BQEs 
collected from monitoring programmes, it is fundamental that the different components 
of variability can be separated and quantified. This can be done using various methods 
and approaches, ranging from simple analysis of variance (ANOVA), through 
general/generalised linear models (i.e. GLMs, GLZs), to Bayesian frameworks and 
simulation methods. In some circumstances, some of these approaches may converge, 
while in others a particular method may be preferable. Nevertheless, the quality of 
estimates of different components of variability is clearly central to the reliable analysis of 
precision and confidence. This requires that the best available data be combined with 
flexible and reliable methods for quantifying the components of variability. 

The uncertainty framework described in the previous chapter involved many sources of 
variation, including both fixed and random factors. A statistical model that includes both 
fixed and random factors is termed a mixed model (e.g. Bolker et al. 2009). The aim of 
these models is to estimate (“parameterise”) the separate fixed effects and random 
components of variability. The parameterisation of the fixed effects can be linear or non-
linear. The distribution assumption of the dependent variable (i.e. the response variable) is 
not restricted to the normal distribution. Therefore, these models can be expanded to 
estimate random components from all distributions belonging to the exponential family 
(e.g. Poisson, binomial, multinomial, gamma, and negative binomial distributions). This 
expanded framework is called generalised mixed models. However, it is quite common in 
environmental science to use linear models and assume the data to be normally 
distributed, and in such cases the models are termed general linear mixed models. 

Linear mixed models are usually formulated in matrix notation as: 

𝑦 = 𝑋×𝛽 + 𝑍×𝑢 + 𝜖 

where 𝑦 is a vector of all the observations, 𝑋 is a matrix of the variables used in the fixed 

effects, 𝛽 is a vector of unknown parameters for the fixed effects, 𝑍 is a matrix of the 

variables used in the random effects, 𝑢 is a vector of unknown random-effect errors 
having a zero mean and dispersion matrix, 𝐺, and 𝜖 is the residual error term of dispersion 

matrix 𝑅. The mean of 𝑦 is given by the fixed effect 𝑋×𝛽, and the variance of 𝑦 is given 

by 𝑉 = 𝑍×𝐺×𝑍′ + 𝑅. Thus, in simple terms, the fixed effects explain the mean of the 

observations and the random effects explain the variance of the observations. However, 
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we will not explore the underlying mathematics of mixed models any further, but simply 
note that many statistical textbooks deal with mixed models. 

Several methods are available for estimating the parameters of mixed models, but the 
most common is to maximise the likelihood function – either full information maximum 
likelihood (FIML) or restricted maximum likelihood (REML). However, the main 
difference between general linear models (without random effects) and mixed models is 
that the parameters of a general linear model can be estimated explicitly by means of least 
squares, whereas the parameters of a mixed model are found by iteratively improving a 
goodness-of-fit function with respect to the parameters until the optimum value is 
reached. In addition to the classical statistical estimation techniques, several computer-
intensive algorithms, mostly using Monte Carlo simulation techniques, have been 
developed in recent years (e.g. GLUE: Beven & Binley 1992; MCMC: Christian & Casella 
2004). 
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5 Combining uncertainties 
The previous chapters have demonstrated that estimates of the mean status and 
classification of a BQE are associated with a certain amount of uncertainty and that this 
uncertainty is attributable to a diverse set of components. The magnitudes of these 
components can often be determined using statistical methods; using this information, it 
is possible to calculate the overall uncertainty of a given estimate and to model and 
minimise the uncertainty of future estimates from alternative monitoring designs. 

To assess the overall uncertainty of an estimated mean, it is important to identify different 
temporal, spatial, and analytical sources of variability and to combine these using general 
procedures for uncertainty (or error) propagation (e.g. Cochran 1977, Taylor 1997). 
Several accounts of uncertainty propagation exist in relation to bioassessment methods in 
general and to the WFD in particular (e.g. Clarke et al. 2002, 2006a,b, Clarke & Hering 
2006, Bennet et al. 2011, Mascaró et al. 2012). These studies have demonstrated the need 
for the combined assessment of various sources of uncertainty, of the spatial and 
temporal context of uncertainties, and of the benefits of reducing uncertainty by 
optimising sampling designs. 

The fundamental temporal and spatial units for the assessment of ecological status 
according to the WFD are six-year periods and water bodies. These are the units for 
which precision and confidence in classification primarily need to be assessed. At present, 
no routines implemented for BQEs in the Swedish assessment criteria address all 
uncertainties at these temporal and spatial scales. The consequences of this deficiency may 
vary among BQEs. Using “method-bound” variability, as in the case of many freshwater 
BQEs in individual years, may lead to the underestimation of the indicator uncertainty. 
On the other hand, assessing status on the basis of individual years instead of combining 
measurements from several years may lead to the overestimation of uncertainty, because 
fewer observations are used for the assessment, i.e. the full potential of yearly sampling 
programmes is not used. 

To bridge the gap between: 1) the temporal and spatial scales of assessment defined in the 
WFD, and 2) those implemented in the Swedish assessment routines, two fundamental 
scenarios based on common monitoring strategies are developed below. The aim is to 
provide a framework for combining different sources of uncertainty and to illustrate how 
sampling design and dimensioning affect precision and confidence. For the sake of 
simplicity, the examples below assume that all spatial variability is random, i.e. there are 
currently no fixed factors that can explain variability among or within sites. Similarly, 
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samples are taken at fixed times once a year and the seasonal components of variability 
can be disregarded. Variability among years is essentially random, but because there is a 
finite number of years to be sampled in each assessment period (≤6 years), we introduce a 
correction term (1 – the number of sampled years/6) reducing (and finally removing, if all 
years are monitored) the uncertainty associated with interannual variation (e.g. Cochran 
1977, Clarke 2012). The scenarios illustrate sampling within an individual coastal, lake, or 
stream water body where a number of sites (S) are sampled for a number of years (Y). In 
each of a years, n samples are taken at b sites. The sites may be identical from year to year 
(“orthogonal design”); alternatively, new sites may be selected each year (“nested design”). 
As will be demonstrated below, the choice of sampling design has fundamental 
consequences for estimates of uncertainty within a water body over an assessment period. 

5.1 Precision of the estimated metric 

5.1.1 Orthogonal (crossed) design 

One monitoring design representative of most current programmes in aquatic 
environments in Sweden is a design in which sites (“stations”) are revisited and sampled 
repeatedly year after year (Figure 5.1). The sites may have been selected completely at 
random within the water body or using criteria such as a narrow depth range, substrate, or 
distance from shore (see Annex B). The important thing is that the sites are selected to 
“represent”, to some degree, the water body or a defined stratum thereof. Note also that 
the numbers of sites (b) and samples (n) vary strongly among monitoring programmes. 

 
FIGURE 5.1 
Schematics of orthogonal monitoring designs in a coastal water body (left) and in a lake 
and stream (right). In the examples, a = 2, b = 3, and n = 3. 

 

Each measurement made in such a programme may be expressed using a linear model, in 
which the measured value, y, is the sum of the overall mean, µ, and deviations due to the 
other sources of variability. 
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  𝑦 = 𝜇 + 𝑌𝐸𝐴𝑅 + 𝑆𝐼𝑇𝐸𝑆 + 𝑌𝐸𝐴𝑅 ∗ 𝑆𝐼𝑇𝐸 + 𝑃𝐴𝑇𝐶𝐻𝐼𝑁𝐸𝑆𝑆 

 

Thus, the variability of the overall mean for such a sampling design consists of several 
variance components, i.e., 𝑠!!, 𝑠!!, 𝑠!∗!! , and 𝑠!! (unknown but estimated from data), each 
associated with a different source of variability in the linear model. The total variance of 
the estimated mean, 𝑦, resulting from these components in an orthogonal design can be 
calculated as: 

𝑉 𝑦 =
𝑠!! ∗ (1 −

!
!
)

𝑎
+
𝑠!!

𝑏
+
𝑠!∗!!

𝑎𝑏
+

𝑠!!

𝑎𝑏𝑛
 

This formula for error propagation indicates how individual uncertainty components are 
combined into a total variance estimate and, importantly, how the numbers of samples, 
sites, and years affect the variance and uncertainty. Increasing the number of samples 
reduces the uncertainty due to small-scale variability within sites and years, but does not 
affect the uncertainty caused by variability among years or sites. Monitoring at many sites 
reduces the uncertainty due to sites and samples, but does not cause any reduction in the 
uncertainty due to years. Similarly, sampling at a number of years reduces the uncertainty 
due to years, interactive variability, and patchiness, but not among sites. Note also that if 
all years within an assessment period are sampled, i.e. a = Y = 6, all possible levels of the 
factor are sampled, which implies that the distribution over the six years (constituting the 
entire relevant population) is known (estimated) and therefore does not contribute any 
random variation. 

To represent uncertainty, however, the total variability, 𝑉[𝑦], needs to be transformed 
into a measure of the standard error of the mean, 𝑆𝐸!"# , and finally into a confidence 
interval according to:  

𝐶𝐼% = 𝑉!"# ∗ 𝑡!/!,!"; 𝑉!"# ∗ 𝑡!!!/!,!"  

where 𝑡!/!,!" and 𝑡!!!/!,!" are the percentiles of the t-distribution (usually the 2.5- and 
97.5-percentiles, corresponding to α = 5%) with df effective degrees of freedom. Since the 
variance of the mean (𝑉 𝑦 ) is calculated from several variance components, each likely 
determined from a different number of replications and thus different degrees of freedom, 
an exact value cannot be computed for df , which has to be approximated using 
Satterthwaite’s formula (Satterthwaite 1946, Cochran 1977, p. 96). The effective degrees of 
freedom always lie somewhere between the df of the component with the smallest df and 
the sum of the dfs of all components. Note that the tails of the t-distribution narrow as the 
numbers of samples, sites, and years sampled increase to approximate the normal 
distribution. If the degrees of freedom for 𝑉 𝑦 , as computed using Satterthwaite’s 
approximation, exceed 30, the percentiles of the t-distribution can be approximated using 
the standard normal deviates, i.e. 𝑧!/! and 𝑧!!!/!.  

For example, the precision based on the 95% confidence interval for the mean (𝑦) 
resulting from an orthogonal design with a realistic number of measurements and 
𝑠!! = 𝑠!! = 𝑠!∗!! = 𝑠!! = 1 is shown in Figure 5.2. The results illustrate: 1) a generally 
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improved precision (i.e. smaller intervals) if several sites are sampled, 2) improved 
precision if several years are sampled, and 3) relative insensitivity to the number of 
samples, provided that several sites and/or years are sampled. 

 

 

FIGURE 5.2 
Half-width of 95% confidence intervals for varying sampling years and sites using an 
orthogonal design. Number of samples, n = 3 or 1. 𝑠!! = 𝑠!! = 𝑠!∗!! = 𝑠!! = 1. Intervals are 
calculated using the standard normal distribution (see text). 

 

One crucial aspect in this context is that, to realistically calculate the precision of an 
estimate used to classify a water body during a six-year period, it is necessary to account 
for all sources of variability, even if some of the variance components cannot be estimated 
from the monitoring data. In such cases, information on the magnitude of the variance 
components from other similar water bodies may provide the best estimates for 
calculating the indicator uncertainty, and it is assumed that the dataset used for estimating 
the variance components is sufficiently large that confidence intervals can be estimated 
using the normal distribution rather than the t-distribution. Using the example from 
Figure 5.2, if only one site is sampled (and the spatial variation cannot be estimated 
directly, but 𝑠!! and 𝑠!∗!!  are assumed = 1) with n = 3 replications in all six years, 
appropriate estimates of variability and 95% confidence intervals at the scales of water 
bodies and assessment periods is calculated as (note that the component due to years 
disappears because a = 6): 

𝑉 𝑦 =
1 ∗ (1 − 6 6)

6
+
1
1
+

1
6 ∗ 1

+
1

6 ∗ 1 ∗ 3
= 1.22 

𝐶𝐼95% = 1.22 ∗ 𝑧!.!"# = 1.22 ∗ 1.96 = 2.2 

Ignoring the spatial and temporal variance components (i.e. setting 𝑠!!, 𝑠!!, and 𝑠!∗!!  to 
zero) and assuming that the uncertainty was due only to small-scale methodological errors 
would have resulted in a substantially smaller, although unrealistic estimate of the 
uncertainty: 𝑉 𝑦 = !

!∗!∗!
= 0.06 and a precision of 0.48. Thus, the precision calculated 

from estimates of small-scale variability would have been almost a five-fold underestimate 
of the actual uncertainty at the water body scale. Clearly, and as will be demonstrated later, 
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ignoring important variance components will have severe consequences for the 
confidence of status classifications. 

This example illustrates the risks associated with monitoring programmes that do not take 
account of key sources of variability. Just because they are impossible to estimate from the 
monitoring programme, it does not follow that they can be ignored in assessments of 
uncertainty. Furthermore, the example illustrates the need for quantitative information on 
the size of the different components of variability. The construction of a “library” of such 
estimates would enable the reliable assessment of uncertainty even in situations in which 
sampling designs are incomplete. More importantly, it would form the basis for reducing 
uncertainty by modifying sampling programmes and finding relevant covariates, reducing 
the uncertainty associated with the most important sources of variability. 

5.1.2 Nested design 

Another fundamental type of design that is potentially useful but not commonly used in 
aquatic environments in Sweden is a design in which new sites (“stations”) are sampled 
each year (Figure 5.3). As in the previous example, the sites may have been selected 
completely at random within the water body or using criteria such as a narrow depth 
range, substrate, or distance from shore (see Annex B). The important thing is that the 
sites are selected to “represent”, to some degree, the water body or a defined stratum 
thereof. Note also that the number of sites (b) and samples (n) may vary greatly among 
monitoring programmes. 

 

 
FIGURE 5.3 
Schematics of monitoring designs in a coastal water body (left) and in a lake and 
stream (right). New sites are selected each year, so sites are nested within years. In the 
examples, a = 2, b = 3, and n = 3. 

 

Each measurement can be expressed using a linear model in which the measured value, y, 
is the sum of the overall mean, µ, and deviations due to the other sources of variability. 
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𝑦 = 𝜇 + 𝑌𝐸𝐴𝑅 + 𝑆𝐼𝑇𝐸𝑆 𝑌𝐸𝐴𝑅 + 𝑃𝐴𝑇𝐶𝐻𝐼𝑁𝐸𝑆𝑆 

The variability of the overall mean for such a sampling design consists of three variance 
components, i.e., 𝑠!!, 𝑠!(!)! , and 𝑠!!, each associated with a different source of variability in 
the linear model. The total variance resulting from these components in an orthogonal 
design can be calculated as: 

𝑉 𝑦 =
𝑠!! ∗ (1 −

!
!
)

𝑎
+
𝑠!(!)!

𝑎𝑏
+

𝑠!!

𝑎𝑏𝑛
 

This formula summarises how the components are combined into a total variance and, 
importantly, how the numbers of samples, sites, and years affect the variance and 
uncertainty. Again, we can see that increasing the number of samples per site and year 
reduces the uncertainty due to small-scale variability, but does not affect the uncertainty 
caused by variability among years or sites. As in the previous example, sampling over a 
number of years will reduce the uncertainty due to years; if all years are sampled, the 
factor is considered completely fixed and the component due to years is removed. One 
important difference from the orthogonal design is that, because sites are nested within 
years, the number of both sites and of years will contribute to reducing the uncertainty 
due to sites. This may substantially reduce uncertainty if the variability due to sites is 
dominant in relation to interactive variability, i.e. if there are consistent rather than 
transient differences among sites (i.e. 𝑠!! > 𝑠!∗!! , see paragraph below). Another important 
difference is that the variance component, 𝑠!(!)! , captures both the spatial variation across 
sites at any given time (𝑠!!) and the difference in this spatial variation across years (𝑠!∗!! ) 
Thus, given the design, it is impossible to partition 𝑠!(!)!  further into the two other 
components. 

The precision of the overall mean resulting from a nested design with a realistic number 
of measurements and 𝑠!! = 𝑠!! = 1, 𝑠!(!)! = 2 (the latter in order to preserve the total 
variability in relation to the previous example) is shown in Figure 5.4. The results are 
qualitatively similar to those of the orthogonal design for the same combinations of years, 
sites, and samples. Closer examination of the numbers reveals that the nested design 
results in increasingly narrower confidence intervals as the number of sampled years 
increases. For example, with six years of sampling at five sites and three samples (i.e. a = 
6, b = 5, and n = 3), the orthogonal and nested designs have precisions of 0.97 and 0.55, 
respectively. 
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FIGURE 5.4 
Half-width of 95% confidence intervals for varying sampling years and sites using a 
nested design. Number of samples, n = 3 or 1. 𝑠!! = 𝑠!! = 1,𝑠!(!)! =2. Intervals are 
calculated using the standard normal distribution (see text). 

 

One interesting difference between the orthogonal and nested designs is that the 
difference in precision depends on the nature of the spatio-temporal variability (Figure 
5.5). If we assume constant total spatio-temporal components, i.e. the sum of the static 
spatial variability and the interactive variability is constant, the nested design gives 
identical confidence intervals irrespective of whether the static or interactive components 
dominate. The orthogonal design, however, has increasingly larger confidence intervals 
the more dominant the spatial variance components become. Furthermore, this effect is 
increasingly important with an increasing number of years of sampling. Technically, this 
effect can be understood by studying the error propagation formulae, in which the 
uncertainty contribution to 𝑉 𝑦  associated with the spatial component (𝑠!(!)! ) is reduced 
by a larger number of sites and of monitoring years in the nested design (ab), while in the 
orthogonal design, the uncertainty contribution associated with spatial variability is 
reduced by a larger number of sites only. A less theoretical explanation is that any error 
introduced in the original selection of sites in the orthogonal design is maintained 
throughout the assessment period. This error is particularly large if spatial patterns remain 
relatively unaltered across years, i.e. a static spatial pattern dominates, 𝑠!(!)! . Under such 
circumstances, the independent selection of new sites, as in the nested design, gives a 
more representative sample of the water body and thus a smaller variance and confidence 
interval for the mean. However, it can also be added that the difference in performance 
between orthogonal and nested designs is likely to decrease as the number of sites 
increases. Again, this effect can be understood technically but also intuitively, as the risk 
of substantial error decreases with the increasing number of sites. 
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FIGURE 5.5 
Half-width of 95% confidence intervals for varying years for orthogonal and nested 
designs at varying degrees of interactive variability. Left: static spatial 
variability>>interactive variability. Middle: interactive component = spatial component. 
Right: interactive variability>>spatial variability. n = 3, b = 5. Intervals are calculated 
using the standard normal distribution (see text). 

 

In summary, these analyses indicate that not only the total number of samples, but also 
the allocation of samples among spatial and temporal units and the nature of the spatio-
temporal variability affect the precision of mean estimates. This in turn may have a large 
impact on the confidence that can be placed in status classifications. 

5.2 Confidence of status classification 
Apart from precision, the second central aspect of uncertainty in the WFD is the 
confidence of a status classification. As explained earlier, the Directive and its guidance 
documents recommend that the confidence of a classification be reported, i.e. the 
probability that the particular classification is correct. Of particular importance is the 
confidence about classifications better or worse than the “good”–“moderate” (G–M) 
boundary.  

The confidence of a classification depends on the estimated mean status, 𝑋, the location 
of class boundaries, 𝐿! , and the standard error of the mean, SEM. As SEM is a central 
component in estimates of precision, this means that there is a strong link between the 
two aspects of uncertainty and that any limitations set by a monitoring or sampling design 
will automatically affect confidence. 

As in the case of precision, there are methods for calculating confidence in classification 
based on traditional statistical principles. According to these, confidence should be 
calculated using the t-distribution at small sample sizes (i.e. n < 30). However, it can easily 
be demonstrated that confidence can be approximately estimated using a simpler method 
based on the normal distribution even at small sample sizes (Figure 5.6). For example, at n 
= 6 and thus df = 5, the difference in confidence for any single class is <0.02 and ≈0.02 
for the classification “better than moderate”. These small deviations decrease further at 
larger sample sizes. Thus, it appears safe to recommend the use of the normal distribution 
as an approximation of confidence at sample sizes >5. Formulae for obtaining estimates 
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of confidence using the normal distribution were described by Ellis and Adrianssens 
(2006) and later reproduced in the Swedish handbook (2007:4) (see Annex A). 

 

df=2  df=5  df=15 

 

FIGURE 5.6 
Confidence in classifications using the normal distribution (blue) and the t-distribution 
(red) at df = 2, 5, and 15. Estimated mean 𝑋= 6 and 𝐿!= 2, 4, 6, and 8. Differences 
between methods diminish with an increasing number of samples (df).  

 

An alternative and potentially more convenient way to estimate confidence in 
classification is to use purpose-built software. At least two generations of user-friendly 
packages based on Monte Carlo simulation have been developed for the WFD context: 
STARBUGS and WISERBUGS (“BUGS” = bioassessment uncertainty guidance 
software; Clarke & Hering 2006, Clarke 2011). Both of these were developed within EU-
funded projects on WFD implementation. 

WISERBUGS was developed in the WISER project (Water bodies in Europe: Integrative 
Systems to assess Ecological status and Recovery, 
http://www.wiser.eu/results/software/). The main aim of WISERBUGS is to provide a 
general tool for simulating and assessing uncertainty in estimates of single metrics, multi-
metric indices, and multi-metric rules for combining WFD quality elements. As such, it 
can also be used to assess the effects of new indices, class limits, and combination rules. 
As pointed out in the user manual (Clarke 2011), however, it is fundamental to realize that 
the estimates of precision and confidence obtained using WISERBUGS are completely 
dependent on representative estimates of variability for the appropriate spatial and 
temporal context.1 

“The error assessment software must, of necessity, be based on the best available 
estimates of the various sources of variation and errors in observed metric values 
and EQRs … Sources of variation for which no estimates are currently available 
are ignored in the error assessment program (and effectively treated as zero). In 

                                                        
 

 
1 Note that Clarke (2011) consistently uses SD (“sampling standard deviation”) to denote the standard error of the mean 
(SE). 
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such cases, the software system will over-estimate the precision and under-estimate 
the true uncertainty in the assessment of status classes.” (p. 9) 

Thus, the WISERBUGS (and STARBUGS) tool is very useful for assessing confidence in 
status classification, but the quality of its assessment is completely dependent on the 
quality of the estimated variability. As discussed at length in section 5.1, accounting for all 
relevant sources of variability affecting estimates of mean ecological status based on 
various types of monitoring programmes, at the scale of individual water bodies and for 
whole assessment periods, is a great and crucial challenge. 

In an earlier example (section 5.1.1), the effects of ignoring important components of 
variability led to nearly a five-fold underestimation of the uncertainty, i.e. the apparent 
precision was unrealistically high. Applying the same input data in an example of effects 
on confidence indicates similar dramatic consequences (Figure 5.7). Appropriate treatment 
of the components of variability would have resulted in a confidence of 63%, whereas the 
apparent confidence considering only methodological errors would have been 100%. 

 

 

FIGURE 5.7 
Confidence in classifications using the normal distribution with (𝑆𝐸 = 1.22) and without 
(𝑆𝐸 = 0.06) important spatial and temporal components of variability (see section 5.1.1 
for details). Estimated mean 𝑋= 6 and 𝐿!= 2, 4, 6, and 8. Confidence in classification is 
grossly overestimated if spatio-temporal components are ignored. 

 

In conclusion, these examples indicate that there are efficient methodological frameworks 
for estimating confidence in the way that is prescribed by the WFD. However, it is clear 
that frameworks for handling diverse sources of variability are necessary, not only to 
assess precision, but also to estimate confidence in classification. 
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6 Estimating uncertainty for selected quality 
elements 
In this chapter, the estimation of variance components in the uncertainty framework 
introduced in chapter 3 will be exemplified using data from the Swedish monitoring 
programme. It should be stressed that the framework cannot be directly applied to a 
monitoring dataset, because the possible statistical analyses are constrained by the 
availability and structure of the data. It is therefore necessary to modify the uncertainty 
framework given the dataset in question. The aim of this chapter is to illustrate how this is 
achieved with specific datasets. 

6.1 Uncertainty analysis of eelgrass shoot density in Öresund 
Eelgrass has been monitored since 1995 along the Swedish coast of Skåne County from 
the island of Hallands Väderö to Falsterbo (Figure 6.1). Sampling was carried out using a 
frame with an area of 0.0625 m2, which was randomly placed on top of the sediments near 
the monitoring station. Within each frame, the shoot density, length, biomass, and sugar 
content of the leaves were measured; for some stations and years, the biomass of the 
rhizomes was also measured. For monitoring at each station, either 6 or 12 frames were 
sampled and the overall coverage of eelgrass at the station was assessed. The monitoring 
programme included 13 sites, each of which could be represented by one or more stations 
typically located at different depths. Information on the identity of the diver conducting 
the sampling was included in the dataset. 
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FIGURE 6.1 
Location of eelgrass monitoring sites in the Öresund. Some sites had several 
monitoring stations. 

 

For exemplifying the uncertainty framework, eelgrass shoot density will be used, and for 
the purpose of estimating the variance components, the data will be log-transformed. The 
implication of the log-transformation is that the random factors estimate relative 
uncertainties, i.e. the uncertainty due to a component relative to the mean value. A total of 
1919 observations were analysed, but these were very unevenly distributed over the sites 
(Table 6.1). The eelgrass monitoring was conducted between July and October every year, 
but, with few exceptions, the stations were sampled only once per year. It is therefore 
difficult to assess the seasonality of the eelgrass variables, and it is assumed that the 
sampling months within a year as well as the sampling years represent a relatively stable 
period without net losses or gains in eelgrass. 
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TABLE 6.1 
Sampling efforts at the 13 sites in the Öresund (1995–2011). Only Landskrona and 
Klagshamn were sampled every year. The total number of divers is six, and one diver 
carried out almost half of the sampling. 

Area Site No. of 

stations 

No. of 

years 

No. of 

divers 

No. of 

observations 

Northern Öresund Vitsandsbrygga 1 2 2 12 

 Höganäs 2 12 2 144 

Central Öresund Landskrona 2 17 4 288 

 Bjärred 4 16 3 288 

 Lomma 3 13 3 168 

 Limhamn 2 4 2 120 

Southern Öresund Bunkeflo 3 11 3 204 

 Klagshamn 5 17 4 450 

 Bredgrund 3 11 2 167 

 Ö. Haken 1 1 1 6 

 Lilla Hammar 1 1 1 6 

South coast Segelskär 1 1 1 6 

 Fredshög 1 11 3 60 

 

Model 1 – individual sites; all factors random 

The first model of shoot density is a simplified version of the general model presented in 
section 3.5 and includes a mean value for the site and random variation between stations, 
between years, and between divers as well as random interannual variation between 
stations. The mean was estimated for each site separately. 

𝑦 = 𝜇 + 𝑌𝐸𝐴𝑅 + 𝐺𝑅𝐴𝐷𝐼𝐸𝑁𝑇 + 𝑌𝐸𝐴𝑅×𝐺𝑅𝐴𝐷𝐼𝐸𝑁𝑇 + 𝑃𝐸𝑅𝑆𝑂𝑁 + 𝑃𝐴𝑇𝐶𝐻𝐼𝑁𝐸𝑆𝑆 

Note that GRADIENT represents the random variation between stations and 
PATCHINESS represents the random variation between replicates, i.e. small-scale spatial 
variation. For most sites, the small-scale spatial variability (V[PATCHINESS]) was the 

largest (Table 6.2), with a relative variation (
![!"#$%&'())]

!
) of 10–100%. The large-scale 

variation between stations could be just as large, whereas the interannual variation and the 
variation between divers were generally smaller (<39% and <56%, respectively). The 
smallest random component for all sites was the large-scale variation across years 
(V[GRADIENT × YEAR]), suggesting that the spatial variation between stations changed 
up to 25% between years. It should be stressed that many of the variance component 
estimates were uncertain due to the small amount of data available for their estimation 
(Table 6.1). 

 



WATERS: UNCERTAINTY IN STATUS ASSESSMENT 
 

 49 

TABLE 6.2 
Variance components estimated using REML from the mixed model above. Not all 
variance components could be estimated for each site, as indicated by “-”, due to data 
limitations. The standard deviation of the components is calculated as the square root of 
the variance. 

Area Site V[GRADIENT] V[YEAR] V[PERSON] V[G × Y] V[PATCHINESS] 

Northern  Vitsandsbrygga - 0.1102 - - 0.0511 

Öresund Höganäs 0.2119 0.0164 - 0.0027 0.1761 

Central  Landskrona 0.0262 0.0082 0.0697 0.0082 0.2275 

Öresund Bjärred 0.0520 0.0292 0.0718 0.0111 0.1370 

 Lomma 0.0777 0.0067 0.0123 - 0.1432 

 Limhamn - 0.0177 0.0167 0.0121 0.4577 

Southern Bunkeflo 0.5013 - 0.0987 0.0508 0.1132 

Öresund Klagshamn 0.1142 0.0368 0.0137 - 0.3550 

 Bredgrund 0.0734 0.0388 0.1986 0.0117 0.0391 

 Ö. Haken - - - - 0.0646 

 Lilla Hammar - - - - 0.0089 

South 

coast 

Segelskär - - - - 0.0568 

Fredshög - 0.0648 - 0.0012 0.0917 

 

Model 2 – all sites combined; sites and years fixed factors 

In the second model, the variance components were estimated for the dataset as a whole, 
and not for individual sites separately. Given that most of the variance component 
estimates were of similar magnitude and that those that deviated substantially were 
typically from sites with poorer datasets, a general model was applied to the entire dataset 
that included a site-specific mean for the shoot density. 

𝑦 = 𝜇 𝑠𝑖𝑡𝑒 + 𝑦𝑒𝑎𝑟 + 𝑌𝐸𝐴𝑅×𝑆𝐼𝑇𝐸 + 𝐺𝑅𝐴𝐷𝐼𝐸𝑁𝑇(𝑆𝐼𝑇𝐸)
+ 𝑌𝐸𝐴𝑅×𝐺𝑅𝐴𝐷𝐼𝐸𝑁𝑇(𝑆𝐼𝑇𝐸) + 𝑃𝐸𝑅𝑆𝑂𝑁 + 𝑃𝐴𝑇𝐶𝐻𝐼𝑁𝐸𝑆𝑆 

Another extension to this model is that it is assumed that there is a common fixed trend 
(year) to all sites, whereas the random variation in trends among sites is described by the 
random factor (𝑌𝐸𝐴𝑅×𝑆𝐼𝑇𝐸). Thus, it is assumed that there are some common, although 
unknown, mechanisms governing the eelgrass shoot density that act on all sites in the 
same manner. However, there can be random interannual fluctuations at each site around 
this common trend. Note that inclusion of the factor SITE introduces a hierarchical 
structure, in which stations are nested within sites. In fact, PATCHINESS is also nested 
within stations, but since it represents the residual variation, the nesting is not indicated. 

There was significant variation between sites (F12,26 = 2.59; p = 0.0207) and between years 
(F16,36 = 3.19; p = 0.0019), indicating a fairly variable north–south gradient and similarly 
for the trend (Figure 6.2). The estimated variance components were 0.0098 for 𝑌𝐸𝐴𝑅×
𝑆𝐼𝑇𝐸 (corresponding to 10% uncertainty), 0.1273 for 𝐺𝑅𝐴𝐷𝐼𝐸𝑁𝑇 (~43%), 0.0133 for 
𝑌𝐸𝐴𝑅×𝐺𝑅𝐴𝐷𝐼𝐸𝑁𝑇 (~12%), 0.0599 for 𝑃𝐸𝑅𝑆𝑂𝑁 (~28%), and 0.2151 for 
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𝑃𝐴𝑇𝐶𝐻𝐼𝑁𝐸𝑆𝑆 (~59%). These results of the more general model confirm that small-scale 
spatial variation is the largest source of uncertainty, followed by large-scale spatial 
variation and then diver-specific variation. Temporal random variation was low relative to 
the other components. 

 

 

FIGURE 6.2 
Mean shoot densities obtained from model 2 (after back-transformation) for the 13 sites 
(from north to south) and 17 years. Error bars show the 95% confidence interval of the 
mean shoot densities. 

 

Model 3 – all sites combined; sites, years, and depth fixed factors  

A third model examines whether the variation between stations can be explained by 
including depth as an explanatory variable, acknowledging that part of the variation 
between stations could be due to differences in depths, which vary from 1.4 to 5.6 m 
across stations. The depth dependency was modelled as a linear function for the log-
transformed shoot densities, corresponding to an exponential decline on the original scale. 

𝑦 = 𝜇 𝑠𝑖𝑡𝑒 + 𝑦𝑒𝑎𝑟 + 𝑌𝐸𝐴𝑅×𝑆𝐼𝑇𝐸 + 𝑑𝑒𝑝𝑡ℎ + 𝐺𝑅𝐴𝐷𝐼𝐸𝑁𝑇(𝑆𝐼𝑇𝐸)
+ 𝑌𝐸𝐴𝑅×𝐺𝑅𝐴𝐷𝐼𝐸𝑁𝑇(𝑆𝐼𝑇𝐸) + 𝑃𝐸𝑅𝑆𝑂𝑁 + 𝑃𝐴𝑇𝐶𝐻𝐼𝑁𝐸𝑆𝑆 

The fixed effects of the model became more significant as a result of explaining more of 
the random variation. There was a significant variation between sites (F12,26 = 11.55; p < 
0.0001) and between years (F16,36 = 4.87; p < 0.0001), as well as a decrease with depth 
(F1,1745 = 2347.74; p < 0.0001), suggesting that shoot density would decline by 27% for 
each additional meter in depth. The precision of the site-specific and annual means 
improved and the spatial pattern, in particular, was altered by including the depth 
dependency (Figure 6.3). Mean shoot density displayed an increasing spatial trend from 
north to south, except that Ö. Haken and Lilla Hammar, having just one station and one 
year of data (Table 6.1), deviated strongly from this trend. 

The estimated variance components were 0.0063 for 𝑌𝐸𝐴𝑅×𝑆𝐼𝑇𝐸 (corresponding to 8% 
uncertainty), 0.0181 for 𝐺𝑅𝐴𝐷𝐼𝐸𝑁𝑇 (~14%), 0.0222 for 𝑌𝐸𝐴𝑅×𝐺𝑅𝐴𝐷𝐼𝐸𝑁𝑇 (~16%), 
0.0768 for 𝑃𝐸𝑅𝑆𝑂𝑁 (~32%), and 0.0944 for 𝑃𝐴𝑇𝐶𝐻𝐼𝑁𝐸𝑆𝑆 (~36%). Although the 
small-scale spatial variation is still large, the inclusion of depth as an explanatory variable 
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substantially reduced the large-scale spatial variation. The other components were 
moderately changed. Actually, the estimated variance component, 𝑌𝐸𝐴𝑅×𝑆𝐼𝑇𝐸, was not 
significant (Z = 1.06; p = 0.1438), whereas 𝑌𝐸𝐴𝑅×𝐺𝑅𝐴𝐷𝐼𝐸𝑁𝑇 was (Z = 3.35; p = 
0.0004). This suggests that the sites follow the same overall pattern (Figure 6.3), but that 
there can be large differences in the trends among stations within a site. Thus, random 
temporal variations at the small scale are very important. 

Analysis of the residuals of model 3 with respect to depth suggested that the linear 
relationship was adequate for describing the declining shoot density with depth. Replicate 
number was also included in an additional analysis to test whether there was a potential 
systematic effect of either increasing or decreasing shoot density with replicates, but this 
additional regression variable was not significant (F1,1744 = 3.09; p = 0.0791) when added 
to the model. 

 

 

FIGURE 6.3 
Mean shoot densities obtained from Model 3 (after back-transformation) for the 13 sites 
(from north to south) and 17 years. Differences in observation depths between sites and 
years were accounted for. Error bars show the 95% confidence interval of the mean 
shoot densities. 

 

6.2 Uncertainty analysis of benthic fauna in the Skagerrak and the 
Gulf of Bothnia 
The benthic fauna in soft sediments has been regularly and increasingly monitored in the 
Swedish coastal zone since the 1970s. The current programme is partly coordinated 
between national and regional authorities. The structure of monitoring programmes 
differs slightly among regions within Sweden, but a total of 500 grab samples (0.1 m2) are 
collected around the coast in the spring each year. 

To assess the ecological status of benthic fauna according to the WFD, Swedish 
authorities and scientists have developed a benthic quality index (BQI; SEPA 2010, 
Rosenberg et al. 2004, Leonardsson et al. 2009) based on: 1) tolerance and sensitivity to 
eutrophication and increased organic load, 2) species richness, and 3) abundance. The 
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index is adapted to specific conditions in the Baltic Sea and the Kattegat/Skagerrak and 
assessment involves type-specific class boundaries (see also Annex B). 

Data from the Skagerrak and from the “coastal clusters” of the Gulf of Bothnia were used 
to illustrate the uncertainty framework. In both regions, data from three years were used 
and no information on person dependency was available. The samples from the Skagerrak 
were clustered in three areas, each represented by eight stations with two replicate samples 
per station each year. The samples from the Gulf of Bothnia were clustered in five areas, 
each represented by approximately 20 stations with one replicate sample per station each 
year. In both programmes, stations were revisited each year (note that this is only a 
selection of the available data). 

 

TABLE 6.3 
Sampling efforts in the eight areas used for evaluating sources of uncertainty in the BQI 
of benthic fauna in the Skagerrak (2002–2004) and the Gulf of Bothnia (1996–1998).  

Region Area # stations # years # samples # observations 

Skagerrak Area 1 8 3 2 48 

 Area 2 8 3 2 48 

 Area 3 8 3 2 48 

Gulf of Bothnia NAT 1 22 3 1 66 

 REG 2 20 3 1 60 

 REG 4 20 3 1 60 

 REG 6 20 3 1 60 

 REG 8 20 3 1 60 

 

The aim of these examples was to estimate different sources of variability and to illustrate 
how these affect the uncertainty of an assessment of ecological status within a WFD 
assessment period (i.e. six years). Furthermore, the analysis provided opportunities to 
qualitatively compare differences in relative importance among and within the Skagerrak 
and the Gulf of Bothnia. This was done using modelling within individual areas and for 
whole regions. No attempts were made to reduce uncertainty by incorporating fixed 
covariates, as was done for eelgrass shoot density in section 6.1. Nevertheless, initial tests 
indicate that factors such as depth and substrate characteristics can substantially reduce 
variability among stations (GRADIENTS). 

As a general observation, it is evident that the average values of the BQI were higher in 
the Skagerrak than in the Gulf of Bothnia (Figure 6.4). Furthermore, the overall average 
standard error of the mean within areas and years was ~0.65 and ~0.45 for the Gulf of 
Bothnia and Skagerrak, respectively. Thus, for both spatial and temporal variation, though 
without a deeper quantitative analysis of the sources of variability, the uncertainty 
generally appeared larger in the Gulf of Bothnia, in terms of absolute deviations and even 
more so relative to the means. 
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FIGURE 6.4 
Mean BQI for areas in the Skagerrak (left) and the Gulf of Bothnia (right). Error bars 
show the standard error of the mean estimate. 

 

Model 1 – individual areas; all factors random 

Despite similarities among sampling programmes, the models for assessing uncertainties 
within the Skagerrak and the Gulf of Bothnia differed slightly. In the Skagerrak, the 
following components can be estimated: 

𝑦 = 𝜇 + 𝑌𝐸𝐴𝑅 + 𝐺𝑅𝐴𝐷𝐼𝐸𝑁𝑇 + 𝑌𝐸𝐴𝑅×𝐺𝑅𝐴𝐷𝐼𝐸𝑁𝑇 + 𝑃𝐴𝑇𝐶𝐻𝐼𝑁𝐸𝑆𝑆 

As mentioned earlier, this model contains only random factors, where GRADIENT 
represents unpredictable variability among stations and PATCHINESS similarly 
represents unpredictable variability among samples within a station. In the Gulf of 
Bothnia, however, only one sample is taken at each station each year. This means that the 
variability due to interactive variability between YEAR and GRADIENT cannot be 
separated from that due to PATCHINESS. Therefore, the model is reduced and any 
existing variability due to PATCHINESS among samples will be included in the 
component YEAR × GRADIENT: 

𝑦 = 𝜇 + 𝑌𝐸𝐴𝑅 + 𝐺𝑅𝐴𝐷𝐼𝐸𝑁𝑇 + 𝑌𝐸𝐴𝑅×𝐺𝑅𝐴𝐷𝐼𝐸𝑁𝑇 

Analyses of separate areas in the Skagerrak and the Gulf of Bothnia revealed a number of 
interesting patterns (Table 6.4). First, in all areas the variability due to YEAR was the least 
important component. This does not necessarily imply that there were no changes among 
years during the two periods, as indicated by the occasional large variation of YEAR × 
GRADIENT; there may well be changes within individual stations that were not 
consistent across all stations. Second, the most important source of variability in all areas 
(except for REG 2) was the random component GRADIENT. In the Skagerrak, where all 
components could be separated, V[GRADIENT] was 2–8 times larger than 
V[PATCHINESS]. In the Gulf of Bothnia, where such partitioning was impossible, 
V[GRADIENT] was on average twice as large as V[YEAR × GRADIENT]. Finally, it is 
also evident that there were some differences in the estimated components among areas 
within regions. These may reflect true differences, but it is also likely that substantial parts 
were associated with sampling errors due to the small number of stations and years. One 
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exception was the estimates of V[PATCHINESS] in the Skagerrak, which all fall within a 
fairly narrow range. Nevertheless, despite these shortcomings, the overall patterns 
discussed above appear qualitatively robust. 

The overall uncertainty of mean estimates in individual areas, using the current monitoring 
design, can be assessed using the formulae presented in section 5.1. In absolute numbers, 
the area-specific precision of BQI obtained with these programmes was similar in the two 
regions (Table 6.4). In the Skagerrak, the total variance was 0.15–0.68; using the normal 
distribution to calculate confidence intervals, the resulting precision was 0.75–1.6. In the 
Gulf of Bothnia, the total variance was 0.26–0.45 and the confidence intervals were 1–1.3. 
In relation to the average BQIs, most deviations in individual areas were generally in the 
range of 5–10% of the mean. In the northernmost parts of the Gulf of Bothnia (REG 6 & 
8), however, relative uncertainties were slightly larger (15–25%), probably as a result of 
larger variability and a lower mean BQI (Figure 6.4).  

 

TABLE 6.4 
Variance components estimated using REML from the mixed models for BQI in the 
Skagerrak and the Gulf of Bothnia. Not all variance components could be estimated for 
each area, as indicated by “-”, due to data limitations. The standard deviation of the 
components is calculated as the square root of the variance. Total variability was 
calculated correcting for sampling three years out of six in an assessment cycle. 

REGION AREA V[YEAR] V[GRADIENT] V[YEARx 

GRADIENT] 

V[PATCHI- 

NESS] 

V[𝒚] SD/ 

Mean 

Skagerrak AREA 1 0.000 4.445 2.682 0.541 0.68 0.07 

 AREA 2 0.017 1.064 0.112 0.459 0.15 0.03 

 AREA 3 0.178 2.549 0.619 0.428 0.38 0.06 

Gulf of NAT 1 0.101 4.580 3.960 - 0.29 0.08 

Bothnia REG 2 0.000 3.881 5.224 - 0.26 0.08 

 REG 4 0.000 6.244 1.619 - 0.31 0.08 

 REG 6 0.231 8.242 2.608 - 0.45 0.15 

 REG 8 0.903 3.126 2.775 - 0.33 0.24 

 

Model 2 – all areas within regions combined; all factors random 

In the second set of analyses, the variance components were estimated for entire datasets 
from each of the two regions. Given that most of the variance component estimates were 
of similar magnitude in the Skagerrak, a general model (model 2) was applied to the entire 
region. For the Gulf of Bothnia, however, there were large differences, particularly 
between the datasets in the northern areas of the Bothnian Bay (i.e. REG6 and REG8) 
and those in the Bothnian Sea (i.e. NAT1, REG2, and REG4). Therefore, these two 
basins of the Gulf of Bothnia were treated separately in model 2: 

𝑦 = 𝜇 + 𝐴𝑅𝐸𝐴 + 𝑌𝐸𝐴𝑅 + 𝑌𝐸𝐴𝑅×𝐴𝑅𝐸𝐴 + 𝐺𝑅𝐴𝐷𝐼𝐸𝑁𝑇(𝐴𝑅𝐸𝐴)
+ 𝑌𝐸𝐴𝑅×𝐺𝑅𝐴𝐷𝐼𝐸𝑁𝑇(𝐴𝑅𝐸𝐴) + 𝑃𝐴𝑇𝐶𝐻𝐼𝑁𝐸𝑆𝑆 
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Note that, unlike in model 2 in section 6.1, AREA is considered a random source of 
variation, which means that the estimated total uncertainties represent the overall 
uncertainties of assessments in coastal areas of the Skagerrak, the Bothnian Sea, and the 
Bothnian Bay (Table 6.5). The analyses indicate that the most important source of 
variability in all areas is that due to GRADIENT(AREA), the values of which ranged 
from 2.5 to 5.7. In relative terms, the error due to GRADIENT was ~20% in the 
Skagerrak, but in the two basins of the Gulf of Bothnia it was 70% and 160% of the 
mean. Another common pattern is that the interaction YEAR×AREA was not important 
in any of the areas. This means that interannual variation tends to be similar across areas 
within regions. However, the contribution from YEAR×GRADIENT(AREA) is 
generally also substantial, indicating that the small-scale spatio-temporal variation within 
areas (note, however, that this variability cannot be separated from that due to 
PATCHINESS in the Gulf of Bothnia) is more important than the large-scale spatio-
temporal variation. Little variability is attributed to YEAR and AREA in the Skagerrak 
and the Bothnian Sea, but especially that due to YEAR is substantial in the Bothnian Bay. 

 

TABLE 6.5 
Variance components estimated using REML from the mixed models for BQI in the 
Skagerrak, the Bothnian Sea (NAT1, REG2, and REG4), and the Bothnian Bay (REG6 
and REG8) using model 2. SD/𝑋 captures the uncertainty in relation to the means in the 
three regions (11.5, 6.9, and 3.6 for the Skagerrak, the Bothnian Sea, and Bothnian 
Bay, respectively). 

 Skagerrak Bothnian Sea Bothnian Bay 

 V SD/𝑿 V SD/𝑿 V SD/𝑿 

V[YEAR] 0.090 0.008 0.000 0.000 2.059 0.581 

V[AREA] 0.000 0.000 0.000 0.000 0.574 0.162 

V[YEAR×AREA] 0.000 0.000 0.000 0.000 0.000 0.000 

V[GRADIENT(AREA)] 2.524 0.219 4.788 0.694 5.699 1.609 

V[YEAR×GRADIENT(AREA)] 1.113 0.096 3.649 0.529 2.684 0.758 

Y[PATCHINESS] 0.476 0.041 - - - - 

V[𝑦] 0.139 0.032 0.100 0.014 0.795 0.224 

 

Although differences in sampling designs make certain comparisons difficult, we can 
conclude from the analyses using model 2 that there are similarities in the relative 
importance of the temporal and spatial components of variability. In general, it appears 
that BQI is more variable in the Gulf of Bothnia and particularly so if sources of 
uncertainty are considered relative to the mean. Nevertheless, the overall uncertainty, 
incorporating several levels of spatial and temporal replication, suggest that overall means 
are estimated with a precision of a ~1–3% error in the Skagerrak and the Bothnian Sea. In 
the Bothnian Bay, however, mean estimates for the period analysed were considerably 
more uncertain (~22%).  
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6.3 Lessons from uncertainty analyses 
These examples have demonstrated how the uncertainty framework can be applied to 
shed light on various sources of uncertainty in monitoring data in general and in relation 
to the WFD in particular. The framework was used successfully with monitoring datasets 
for vegetation and benthic fauna in coastal areas, and there is no reason to believe that it 
could not be applied to other BQEs in pelagic and inland environments. Important 
conclusions from these analyses are as follows: 

• Estimates of mean status of a BQE will likely be associated with a large 
number of sources of uncertainty. These sources of uncertainty stem from 
unpredictable (random) or partly predictable (fixed) spatial and temporal 
processes and from processes associated with sampling and analyses. To properly 
assess the uncertainty of estimates and classifications, a coherent framework is 
necessary. 

• Estimating variance components with reasonable precision requires a 
large dataset with a structure that allows these components to be 
identified. Estimates from single years and sites are often very uncertain. To 
obtain reliable estimates of uncertainty, it is often advisable to conduct 
comprehensive analyses of data from several years, sites, and areas, rather than 
only using the actual data from a particular water body and year. 

• The uncertainty associated with the various variance components can be 
reduced by including fixed, explanatory factors in the model. For example, 
the variance components for shoot density associated with spatial variation (i.e. 
between stations and samples) were reduced by more than 50% by including 
depth as an explanatory variable. However, small-scale spatial variation was still 
the largest source of uncertainty, stressing the importance of using many samples 
when assessing the mean shoot density. 

• The size and relative importance of different sources of uncertainty may 
differ greatly among areas and regions, for the same BQE. For example, 
some components of variability (and their size relative to the mean) were 
generally larger in BQI estimates for the Gulf of Bothnia than for the Skagerrak.  

• Proper use of replication at different spatial and temporal scales allows for 
the precise estimation and classification of ecological status, despite the 
existence of relatively large sources of variability. 
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7 Conclusions: implications for future work 
The aims of this report were to review important concepts related to uncertainty as 
defined in the WFD and its guidance documents, to analyse how these concepts are 
implemented in the Swedish assessment criteria, and to develop a comprehensive 
framework for how uncertainty can be assessed systematically. 

In relation to these aims, we conclude that the Directive provides appropriate conceptual 
definitions of uncertainty, precision, and confidence in classification, but that guidelines 
for quantitative targets for acceptable levels of uncertainty are not provided and issues 
concerning precautions and burden of proof are not given. These may be important 
reasons for the lack of coherence and occasional absence of appropriate treatment of 
uncertainty observed in current Swedish assessment criteria. A review of methods for 
describing, quantifying, and incorporating uncertainty in existing routines revealed 
substantial differences among BQEs. Some of these differences may be caused by specific 
properties of each BQE, but from the perspectives of transparency and reliability, such 
differences appear unfortunate. Therefore, it is suggested that a common framework 
could offer considerable advantages. 

A general uncertainty framework was developed that partitions variation into four 
categories: 1) temporal variation, 2) spatial variation, 3) spatio-temporal interaction, and 4) 
methodological variation. Several of these sources of variation contain both fixed and 
random components, where fixed components describe variations that are predictable, 
such as patterns of variation that are repeatable or can be modelled by means of 
explanatory variables. Potential sources of variation for these four categories are discussed 
with reference to the different BQEs and to their relative importance. An important 
aspect of the uncertainty framework is that sources of variation that may contribute great 
uncertainty can be disregarded by appropriately limiting their ranges. For example, an 
indicator can be chosen to reflect a certain seasonal window only, in which the variation is 
believed to be small. 

The framework was exemplified using monitoring data on vegetation and benthic fauna, 
quantifying those sources that could be estimated given the datasets. However, since the 
outcomes of analyses using this general framework will differ greatly among BQEs, there 
is a need in WATERS to populate this framework with additional studies using other 
datasets and indicators. Thus, based on these realisations, we propose the construction of 
a library or catalogue of sources of uncertainty for Swedish indicators. An expected future 
outcome of WATERS will thus be a catalogue of uncertainty analyses within the general 
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framework that allows for the assessment of the uncertainty of various indicators to be 
used for ecological status assessment. 

The examples used to demonstrate the uncertainty framework also highlighted the 
importance of estimating uncertainty components from larger datasets. Variance 
components estimated from small datasets will often be associated with substantial 
uncertainty. More consistent estimates are obtained when the uncertainty components are 
estimated from a larger pooled dataset (e.g. from several years and water bodies), 
assuming the uncertainty components to be of similar magnitude across a range of similar 
water bodies. Furthermore, a larger dataset also allows for the formulation of generic 
models to account for parts of the variation, thus reducing the random variation. Finally, a 
larger dataset delivers more degrees of freedom for the calculation of variation 
components, which reduces the confidence intervals of an indicator (but note that this still 
means that the standard error of the mean and thus the uncertainty is calculated using the 
actual number of samples, times, etc., from the unit of interest). Thus, in line with the idea 
of a catalogue of uncertainty components, it is recommended that, for the estimation of 
variance components, data be combined into larger datasets, albeit for similar ecosystems 
only. The implications and basis for this recommendation will be further evaluated in the 
project. 

Finally, the conceptual framework for uncertainty, in combination with existing and future 
estimates of different variance components, has important consequences for the design 
and optimisation of monitoring programmes. For example, strong and consistent patterns 
of random spatial and temporal components of variability were identified in the benthic 
fauna. The relative and absolute size of these components, in particular, the importance of 
static and interactive spatial patterns, has strong implications for the design of monitoring 
programmes. Some of these results indicate that there may be important trade-offs 
between nested and crossed designs, but the generality of these results needs to be further 
analysed and understood. Therefore, analyses of the practical consequences of estimated 
patterns of variability for monitoring designs will follow. 

In conclusion, we have developed a general framework for assessing the uncertainty of 
biological indicators and illustrated some of its benefits. We believe that such a framework 
can substantially improve the transparency and reliability of ecological status assessments 
according to the WFD in Swedish coastal and inland waters. 
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Annex A: Statistical terminology 

 

FIGURE A.1 
Illustration of difference between observations and model (see text for further 
explanations).  

In statistics, it is important to distinguish between data and the model used to describe the 
data. Therefore the terminology used to separate model and estimated parameters differs. 
In figure A.1, the histogram represents the sampling distribution, whereas the solid line 
represents the modelled distribution, assuming the data to be normally distributed. 

 

TABLE A1 
Statistical terminology and the distinction between observations (estimates) and models 
(statistical populations). 

Observations Model 

x1, x2, x3, ….. , xn are observed values, e.g. x1 = 10.5 

and so forth 

X is a stochastic variable that can be described by a 

distribution, e.g. the normal distribution N(µ; σ2). 
The average is 𝑥 = !

!
𝑥!!

!!! . It is also called the 

sample mean. 

The mean of the distribution is µ and is normally 

unknown. It is estimated (µμ) by the sample mean. 

The sample standard deviation is: 

𝑠 =
1

𝑛 − 1 (𝑥! − 𝑥)!
!

!!!

 

 

 

The standard deviation of the distribution is σ and is 

normally unknown. It is estimated by the sample 

standard deviation (s). 

The standard error is the standard deviation of the 

sampling distribution of a statistic, e.g. the standard 

error of the mean (𝑆𝐸𝑀 = !!

!
,  the estimated 

standard deviation of µμ) or the standard error of a 

regression slope. Thus, standard error refers to the 

standard deviation of estimated parameters used to 

characterize a distribution. 
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Calculation of precision and confidence 

The precision of an indicator is a measure of uncertainty and equals the half-width of the 
confidence interval, i.e. for a symmetrical distribution (e.g. normal) it is the distance from 
the mean value to the lower or upper confidence limit. 

If the indicator is normally distributed or is estimated with a large number of df, i.e. ≥30, 
the precision can be found as: 

 𝐶𝐼% = 𝑉 𝑦 ×𝑧!!!/!. 

If it is estimated with few samples, the confidence interval is estimated using the t-
distribution: 

 𝐶𝐼% = 𝑉 𝑦 ×𝑡!!!/!,!" , 

where α is the desired level of type 1 error (and 1 − 𝛼/2 is the desired confidence in the 
estimate). The WFD does not give any recommendations as to appropriate levels of type 1 
error. 

The confidence in classification is a measure of the probability of a certain classification 
being correct. The confidence of five classes can be calculated using the normal 
distribution. For each class boundary in turn, we calculate the probability, pi, of observing 
an indicator value of x or better if the true mean quality, µ, is equal to the class boundary, 
Li: 

𝑝! = Pr 𝑋 ≥ 𝑥   𝜇 = 𝐿!) = 1 −Φ 𝑥 − 𝐿! / 𝑉 𝑦     

where Φ denotes the cumulative normal probability. 

This probability statement says that Pr 𝑋 ≥ 𝜇 + 𝑧! 𝑉 𝑦 = 𝑝! , where 𝑧! is the standard 

normal deviate corresponding to 1 – pi and 𝑉 𝑦  is the standard error of the mean. We 
can turn this into a confidence statement by inverting it, giving: 

𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 𝜇 ≤ 𝑥 + 𝑧! 𝑉 𝑦 = 𝑝! . 

Thus we can calculate: confidence of class 5 = p5, confidence of class 4 = p4 – p5, 
confidence of class 3 = p3 – p4, confidence of class 2 = p2 – p3, and confidence of class 1 = 
1 – p2 (note that these five quantities sum to 1).  

 

Reporting the confidence of a classification. 

Once the probabilities of the different classes are calculated, there are various options for 
classification. The CIS guideline no. 7 outlines three approaches for classification: 

1) The fail-safe approach is a precautionary approach for the environment. It generally 
assumes a worse ecological status (null hypothesis) unless a better ecological status can be 
documented with sufficient confidence. Thus, for testing the G–M boundary, the null 
hypothesis is that the status is moderate or less, and sufficient confidence is needed to 
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reject this hypothesis to conclude that the status is actually better than moderate. This is 
the environmentally friendly option, in which the burden of proof rests with the polluter. 

2) The benefit-of-doubt approach is a precautionary approach for the polluters. It generally 
assumes a better ecological status (null hypothesis) unless a worse ecological status can be 
documented with sufficient confidence. Thus, for testing the G–M boundary, the null 
hypothesis is that the status is good or better, and sufficient confidence is needed to reject 
this hypothesis to conclude that the status is actually worse than good. This is the polluter-
friendly option, in which the burden of proof rests with the environment. 

3) The face-value approach does not consider confidence or the uncertainty of an indicator. 
The value of the indicator strictly gives the status class, disregarding whether or not the 
indicator is well-determined. Thus, if the indicator value is above the G–M boundary, the 
status is good (or high), and if the indicator value is below the G–M boundary, the status 
is moderate (or below). Since the uncertainty of the indicator is disregarded, the burden of 
proof is shared equally between the polluter and the environment. 

It is argued in the CIS guideline no. 7 that if the true value of an indicator is close to the 
G–M boundary, increased monitoring is needed to achieve better indicator precision and 
thus more confidence in the classification. However, if the true ecological status is 
moderate or below, there may not be an incentive to increase monitoring efforts with the 
benefit-of-doubt or face-value approaches, because a high uncertainty would increase the 
probability of actually achieving a better than moderate status. 

The CIS guideline no. 13 recommends that confidence be reported for: 1) the status class 
reported, 2) the status worse than reported, and 3) the status class better than reported. 
Confidence reporting using a confidence level of 95% is illustrated for the three 
classification approaches above using an indicator with a distribution given in the figure 
A.2.  

1. The status according to the fail-safe approach is moderate, because the status class cannot 
be classified as better than moderate with 95% confidence (Figure A.2). Thus, the 
confidence reporting should state that the ecological status is moderate with 24.2% 
confidence and better than moderate with 75.8% confidence. 

2. The status according to the benefit-of-doubt approach is high, because the status class 
cannot be classified as lower than high with 95% confidence. Thus, the confidence 
reporting should state that the ecological status is high with 8.2% confidence and less than 
high with 91.2% confidence (Figure A.2). 

3. The status according to the face-value approach is good, because the mean of the indicator 
is in the interval for good status. Thus, the confidence reporting should state that the 
ecological status is good with 67.6% confidence, less than good with 24.2% confidence, 
and better than good with 8.2% confidence (Figure A.2). 
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FIGURE A.2 
Figure illustrating confidence in classification and classification approaches. 
Probabilities for three different status classes are given. 
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Annex B: Review of indicators, sampling 
requirements, and uncertainty procedures for 
Swedish WFD indicators 
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Uncertainty of biological indicators for the 
WFD in Swedish water bodies:  
current procedures and a proposed 
framework for the future 
Monitoring and status assessment of the environment is always associated with 
uncertainties. Therefore the Water Framework Directive (WFD) defines two aspects of 
uncertainty, precision and confidence, that need to be estimated and reported by the 
member states. In this report we review the basic requirements from the Directive and the 
routines defined in the Swedish assessment criteria. We conclude that there are substantial 
differences in the way uncertainty is assessed among biological quality elements and that 
the overall uncertainty of estimates for whole six-year WFD cycles is not addressed by any 
of the quality elements. We propose a general framework which can be used to harmonise 
assessments of uncertainty across quality elements and to reduce uncertainty by a more 
efficient use of existing data, optimisation of monitoring programs and by accounting for 
environmental factors that may explain some of the random variability. These possibilities 
will be further explored in coming work within WATERS.  

 

 


